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1 Latent Variable Models

Many signal and data models are naturally described through unobserved (latent) vari-
ables. These latent variables encode hidden structure such as the regime that generated
a measurement, the source identity in a mixture, a cluster label, or a discrete state in a
temporal model. A typical motivating example is a mixture / multi-regime signal: each
observation yi is produced by one of K underlying sources (or regimes), but the identity
of the active source is not directly observed. We represent that hidden identity with a
latent variable

zi ∈ {1, . . . , K}.

If the latent variables were observed, learning would be straightforward because we could
write the complete-data model (joint density) in a factorized form:

p(yi, zi | θ) = p(zi | θ) p(yi | zi,θ),

and for an i.i.d. dataset (y1, . . . , yN) the complete-data likelihood becomes

p(Y ,Z | θ) =
N∏
i=1

p(zi | θ) p(yi | zi,θ), Y = {yi}Ni=1, Z = {zi}Ni=1.

In reality, however, we only observe Y , while Z is missing. Therefore we must
marginalize over the latent variables to obtain the incomplete-data likelihood:

p(Y | θ) =
∑
Z

p(Y ,Z | θ) (or

∫
p(Y ,Z | θ) dZ if Z is continuous).

Parameter estimation is then posed as maximum likelihood (ML):

θ̂ = argmax
θ

p(Y | θ) ⇔ argmax
θ

log p(Y | θ).

The core difficulty appears immediately when we write the incomplete-data log-
likelihood:

log p(Y | θ) = log
∑
Z

p(Y ,Z | θ).

This is a log of a sum, which does not simplify into a sum of logs:

log
∑
Z

(·) ̸=
∑
Z

log(·).

As a consequence, direct maximization is typically hard: the objective is often non-
convex, the marginalization couples variables in an inconvenient way, and gradients tend
to involve ratios of sums (numerically delicate and algebraically messy). In short, latent
variables make modeling easier and more expressive, but they make ML optimization
harder because we must marginalize over missing structure.

A concrete instance of this difficulty is the mixture likelihood. Suppose each obser-
vation comes from one of K components, with mixing probabilities πk and component
likelihoods pk(· | θk):

p(zi = k) = πk, p(yi | zi = k,θ) = pk(yi | θk).
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Then the marginal likelihood for a single sample is

p(yi | θ) =
K∑
k=1

πk pk(yi | θk),

and the dataset log-likelihood becomes

log p(Y | θ) =
N∑
i=1

log
( K∑

k=1

πk pk(yi | θk)
)
,

which is exactly the “sum inside a log” structure that motivates the Expectation–Maximization
(EM) algorithm.

The EM idea is to handle the missing Z by alternating between (i) inferring soft
latent assignments using the current parameters, and (ii) updating the parameters using
those soft assignments. Concretely, EM iterates:

E-step: compute p(zi = k | yi,θ), M-step: update θ using these assignments.

This alternating strategy converts the difficult marginal-likelihood optimization into a
sequence of simpler subproblems that exploit the tractable complete-data factorization.

2 Expectation–Maximization (EM) Algorithm

We now derive the Expectation–Maximization (EM) algorithm as a principled method to
maximize the incomplete-data (marginal) log-likelihood in latent-variable models. Recall
the setting: we observe Y , the latent variables Z are unobserved, and the joint model is
p(Y ,Z | θ). The quantity we would like to maximize is the incomplete-data log-likelihood

ℓ(θ) := log p(Y | θ) = log
∑
Z

p(Y ,Z | θ) (or log

∫
p(Y ,Z | θ) dZ if continuous).

The difficulty is structural: the latent variables appear inside a log-sum (or log-integral),
which typically prevents closed-form optimization.

2.1 Step 1: Introduce an auxiliary distribution

Let q(Z) be any distribution over Z with support contained in that of p(Y ,Z | θ) (so
that ratios below are well-defined). Insert q into the marginal likelihood:

p(Y | θ) =
∑
Z

p(Y ,Z | θ) =
∑
Z

q(Z)
p(Y ,Z | θ)

q(Z)
.

This expression can be interpreted probabilistically by recalling the definition of expec-
tation with respect to a discrete random variable. If Z is distributed according to q(Z),
then for any function g(Z) we have

Eq[g(Z)] =
∑
Z

q(Z) g(Z).
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By identifying

g(Z) =
p(Y ,Z | θ)

q(Z)
,

the marginal likelihood can therefore be written compactly as

p(Y | θ) = Eq

[
p(Y ,Z | θ)

q(Z)

]
.

Taking the logarithm of both sides yields

log p(Y | θ) = logEq

[
p(Y ,Z | θ)

q(Z)

]
.

Thus:

p(Y | θ) = Eq

[
p(Y ,Z | θ)

q(Z)

]
, ⇒ ℓ(θ) = logEq

[
p(Y ,Z | θ)

q(Z)

]
.

2.2 Step 2: Jensen gives a lower bound (ELBO)

Because log(·) is concave, Jensen’s inequality yields

logEq[f(Z)] ≥ Eq[log f(Z)].

Apply this with f(Z) =
p(Y ,Z | θ)

q(Z)
. Then

ℓ(θ) = logEq

[
p(Y ,Z | θ)

q(Z)

]
≥ Eq

[
log

p(Y ,Z | θ)
q(Z)

]
.

Define the lower bound (also called ELBO in variational inference):

L(q,θ) := Eq[log p(Y ,Z | θ)]− Eq[log q(Z)] .

Equivalently, writing expectations as sums (discrete Z):

L(q,θ) =
∑
Z

q(Z) log p(Y ,Z | θ)−
∑
Z

q(Z) log q(Z).

This exhibits the two canonical pieces:

Eq[log p(Y ,Z | θ)]︸ ︷︷ ︸
expected complete-data log-likelihood

+ H(q)︸︷︷︸
entropy of q

, since H(q) := −Eq[log q(Z)].

2.3 Step 3: Bound tightness via KL divergence

The bound is not arbitrary; it differs from the true log-likelihood by a KL divergence.
Start from Bayes’ rule:

p(Z | Y ,θ) =
p(Y ,Z | θ)
p(Y | θ)

.

Take logs and rearrange:

log p(Y | θ) = log p(Y ,Z | θ)− log p(Z | Y ,θ).
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Now take expectation with respect to q(Z):

log p(Y | θ) = Eq[log p(Y ,Z | θ)]− Eq[log p(Z | Y ,θ)].

Add and subtract Eq[log q(Z)]:

log p(Y | θ) =
(
Eq[log p(Y ,Z | θ)]− Eq[log q(Z)]

)
+
(
Eq[log q(Z)]− Eq[log p(Z | Y ,θ)]

)
= L(q,θ) + KL(q(Z) ∥ p(Z | Y ,θ)) ,

because

KL(q∥p) = Eq

[
log

q(Z)

p(Z)

]
= Eq[log q(Z)]− Eq[log p(Z)] ≥ 0.

Therefore,

L(q,θ) ≤ log p(Y | θ), and equality holds iff q(Z) = p(Z | Y ,θ) (a.e.).

So the best (tightest) bound for a fixed θ is achieved by choosing q equal to the posterior
of the latent variables.

2.4 Step 4: Coordinate ascent on the bound (EM)

EM is simply coordinate ascent on L(q,θ):

max
θ

log p(Y | θ) is approached by iterating max
q
L(q,θ) and max

θ
L(q,θ).

E-step (optimize over q for fixed θ(t)). For fixed θ(t), we maximize L(q,θ(t)) w.r.t.
q. Using the identity log p(Y | θ(t)) = L(q,θ(t)) + KL(q∥p(Z | Y ,θ(t))), and noting the
left-hand side does not depend on q, maximizing L is equivalent to minimizing the KL
divergence. The minimum KL is 0, achieved by setting

q(t+1)(Z) = p(Z | Y ,θ(t)).

In mixture models, this corresponds to computing responsibilities (soft assignments).

M-step (optimize over θ for fixed q(t+1)). Now fix q(t+1) and maximize the bound
over parameters:

θ(t+1) = argmax
θ
L(q(t+1),θ).

Since the entropy term −Eq(t+1) [log q(t+1)(Z)] does not depend on θ, the M-step reduces
to

θ(t+1) = argmax
θ

Eq(t+1) [log p(Y ,Z | θ)] .

It is common to define the Q-function:

Q(θ,θ(t)) := EZ∼p(Z|Y ,θ(t))

[
log p(Y ,Z | θ)

]
,

so that the M-step is simply

θ(t+1) = argmax
θ

Q(θ,θ(t)).
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2.5 Monotonic improvement guarantee

EM guarantees that the incomplete-data log-likelihood does not decrease. One clean way
to see this is through the bound:

ℓ(θ) ≥ L(q,θ) for any q.

At iteration t:

ℓ(θ(t)) = L
(
q(t+1),θ(t)

)
(E-step makes the bound tight at θ(t)).

Then the M-step increases (or leaves unchanged) the bound:

L
(
q(t+1),θ(t+1)

)
≥ L

(
q(t+1),θ(t)

)
.

Finally, since ℓ(θ(t+1)) upper-bounds the same quantity,

ℓ(θ(t+1)) ≥ L
(
q(t+1),θ(t+1)

)
.

Chaining the inequalities yields

log p(Y | θ(t+1)) ≥ log p(Y | θ(t)).

Thus EM performs ascent in the observed-data likelihood, converging to a stationary
point (typically a local maximum) in non-convex problems.

2.6 Practical notes

In practice, EM is attractive because the E-step often has a closed form (posterior
computations), and the M-step often decomposes into weighted maximum-likelihood up-
dates that resemble the complete-data case. However, because the objective is generally
non-convex, initialization matters; common strategies include random restarts, k-means
initialization for mixture models, and monitoring convergence via the improvement in
log p(Y | θ) (or in L(q,θ)).

3 Gaussian Mixture Models (GMMs)

A Gaussian Mixture Model (GMM) assumes that each observation is generated by first
selecting one of K Gaussian components and then sampling from that Gaussian. This
introduces a latent discrete assignment variable zi ∈ {1, . . . , K} per sample. Let yi ∈ Rd

denote the i-th data point and let the full dataset be Y = {yi}Ni=1. The model parameters
are

θ = {πk,µk,Σk}Kk=1, πk ≥ 0,
K∑
k=1

πk = 1, Σk ≻ 0.

The generative mechanism is:

zi ∼ Categorical(π1, . . . , πK), yi | (zi = k) ∼ N (µk,Σk).

Equivalently, the joint distribution for a single sample factorizes as

p(yi, zi = k | θ) = p(zi = k | θ) p(yi | zi = k,θ) = πkN (yi | µk,Σk).
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3.1 Observed-data (incomplete) likelihood

Since zi is unobserved, the likelihood of yi is obtained by marginalization:

p(yi | θ) =
K∑
k=1

p(yi, zi = k | θ) =
K∑
k=1

πkN (yi | µk,Σk).

Thus the incomplete-data log-likelihood of the dataset is

log p(Y | θ) =
N∑
i=1

log p(yi | θ) =
N∑
i=1

log
( K∑

k=1

πkN (yi | µk,Σk)
)
.

This is the characteristic log-sum form that prevents direct closed-form maximization.

3.2 Complete-data likelihood (indicator form)

If assignments were known, the likelihood would factor nicely. Define indicator variables

I[zi = k] =

{
1, zi = k,

0, otherwise.

Then the complete-data likelihood can be written as

p(Y ,Z | θ) =
N∏
i=1

K∏
k=1

(
πkN (yi | µk,Σk)

)I[zi=k]

,

and the complete-data log-likelihood becomes

log p(Y ,Z | θ) =
N∑
i=1

K∑
k=1

I[zi = k]
(
log πk + logN (yi | µk,Σk)

)
.

EM replaces these hard indicators by their posterior expectations (responsibilities).

3.3 E-step: responsibilities (posterior assignment probabilities)

At iteration t, EM sets
q(t+1)(Z) = p(Z | Y ,θ(t)).

Because the samples are i.i.d. and each zi only governs yi, this posterior factorizes:

p(Z | Y ,θ(t)) =
N∏
i=1

p(zi | yi,θ
(t)).

Define the responsibility of component k for point i as

γik := p(zi = k | yi,θ
(t)).

Using Bayes’ rule,

p(zi = k | yi,θ
(t)) =

p(zi = k | θ(t)) p(yi | zi = k,θ(t))∑K
j=1 p(zi = j | θ(t)) p(yi | zi = j,θ(t))

.
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Substituting p(zi = k | θ) = πk and p(yi | zi = k,θ) = N (yi | µk,Σk) gives

γik =
π
(t)
k N (yi | µ

(t)
k ,Σ

(t)
k )∑K

j=1 π
(t)
j N (yi | µ

(t)
j ,Σ

(t)
j )

.

These satisfy γik ∈ [0, 1] and
∑K

k=1 γik = 1, i.e., they form a soft assignment of each
sample to components.

3.4 M-step: maximize the expected complete-data log-likelihood

The M-step maximizes the Q-function

Q(θ,θ(t)) := EZ∼p(Z|Y ,θ(t))

[
log p(Y ,Z | θ)

]
.

Using E[I[zi = k]] = γik,

Q(θ,θ(t)) =
N∑
i=1

K∑
k=1

γik

(
log πk + logN (yi | µk,Σk)

)
.

Let

Nk :=
N∑
i=1

γik (effective number of points assigned to component k).

We now maximize Q w.r.t. {πk}, {µk}, {Σk}.

(1) Update for mixing weights πk

The π-dependent part is

Qπ =
K∑
k=1

Nk log πk, subject to
K∑
k=1

πk = 1.

Using a Lagrangian J =
∑

k Nk log πk + λ(
∑

k πk − 1), the stationarity condition gives

∂J
∂πk

=
Nk

πk

+ λ = 0 ⇒ πk = −
Nk

λ
.

Enforcing
∑

k πk = 1 yields λ = −N (since
∑

k Nk =
∑

i

∑
k γik = N), hence

π
(t+1)
k =

Nk

N
.

(2) Update for means µk

The µk-dependent part of Q is

Qµ =
N∑
i=1

K∑
k=1

γik logN (yi | µk,Σk).
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Using the Gaussian log-density and keeping only terms that depend on µk,

logN (yi | µk,Σk) = −
1

2
(yi − µk)

TΣ−1
k (yi − µk) + const,

so (up to irrelevant constants)

Qµ = −1

2

N∑
i=1

γik(yi − µk)
TΣ−1

k (yi − µk) (for each k separately).

Differentiate w.r.t. µk and set to zero:

N∑
i=1

γikΣ
−1
k (yi − µk) = 0 ⇒

N∑
i=1

γik(yi − µk) = 0,

which implies

µ
(t+1)
k =

1

Nk

N∑
i=1

γikyi.

(3) Update for covariances Σk

For the covariance, expand the Gaussian log-density (dropping constants independent of
Σk):

logN (yi | µk,Σk) = −
1

2
log |Σk| −

1

2
(yi − µk)

TΣ−1
k (yi − µk) + const.

Define Sik := (yi − µk)(yi − µk)
T. Then the Σk-dependent part of Q for a fixed k is

QΣk
= −1

2

N∑
i=1

γik

(
log |Σk|+ tr(Σ−1

k Sik)
)
.

Setting the derivative to zero yields the standard weighted sample covariance update:

Σ
(t+1)
k =

1

Nk

N∑
i=1

γik(yi − µ
(t+1)
k )(yi − µ

(t+1)
k )T.

In implementations, it is common to regularize:

Σk ← Σk + ϵI, ϵ > 0,

to prevent singular covariances.

3.5 GMM-EM algorithm (summary)

• Initialize {π(0)
k ,µ

(0)
k ,Σ

(0)
k }Kk=1 (often via k-means).

• Repeat for t = 0, 1, 2, . . . until convergence:

– E-step: compute γik for all i, k.
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– M-step: compute Nk =
∑

i γik and update

π
(t+1)
k =

Nk

N
, µ

(t+1)
k =

1

Nk

∑
i

γikyi,

Σ
(t+1)
k =

1

Nk

∑
i

γik(yi − µ
(t+1)
k )(yi − µ

(t+1)
k )T.

• Stop when log p(Y | θ(t+1))− log p(Y | θ(t)) < δ.

Each iteration increases (or leaves unchanged) the observed-data likelihood, and the
algorithm converges to a stationary point (typically a local maximum) of the GMM log-
likelihood.

3.6 Worked EM Examples for GMMs (1D and 2D)

3.6.1 Worked Example 1: 1D GMM with K = 2 (one EM iteration)

We illustrate one full EM iteration for a simple one-dimensional mixture of two Gaussians.
Assume data points yi ∈ R and the model

p(yi | θ) =
2∑

k=1

πkN (yi | µk, σ
2
k), θ = {πk, µk, σ

2
k}2k=1.

Consider the dataset

{yi}6i=1 = {−2.0, −1.0, −0.5, 1.0, 2.0, 3.0}.

Initialize (at iteration t = 0):

π
(0)
1 = π

(0)
2 = 0.5, µ

(0)
1 = −1, µ

(0)
2 = 2, (σ2

1)
(0) = (σ2

2)
(0) = 1.

E-step (compute responsibilities). For each data point yi, compute

γi1 = p(zi = 1 | yi, θ(0)) =
π
(0)
1 N (yi | µ(0)

1 , (σ2
1)

(0))

π
(0)
1 N (yi | µ(0)

1 , (σ2
1)

(0)) + π
(0)
2 N (yi | µ(0)

2 , (σ2
2)

(0))
, γi2 = 1−γi1.

Using N (y | µ, 1) ∝ exp{−1
2
(y − µ)2} and the equal priors π1 = π2, we can compute

numerically:
yi −2.0 −1.0 −0.5 1.0 2.0 3.0
γi1 0.9994 0.9890 0.9560 0.1824 0.0110 0.0006
γi2 0.0006 0.0110 0.0440 0.8176 0.9890 0.9994

(These values come directly from the responsibility formula above.)
Define effective counts

N1 =
6∑

i=1

γi1 ≈ 3.1384, N2 =
6∑

i=1

γi2 = 6−N1 ≈ 2.8616.
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M-step (update parameters). Mixing weights:

π
(1)
1 =

N1

6
≈ 0.5231, π

(1)
2 =

N2

6
≈ 0.4769.

Means:

µ
(1)
1 =

1

N1

6∑
i=1

γi1yi ≈
−3.9810
3.1384

≈ −1.268,

µ
(1)
2 =

1

N2

6∑
i=1

γi2yi ≈
6.9810

2.8616
≈ 2.439.

Variances:

(σ2
1)

(1) =
1

N1

6∑
i=1

γi1(yi − µ
(1)
1 )2 ≈ 0.547, (σ2

2)
(1) =

1

N2

6∑
i=1

γi2(yi − µ
(1)
2 )2 ≈ 0.818.

This completes one EM iteration: E-step computes soft assignments, and M-step updates
parameters via responsibility-weighted averages.

Takeaway (1D): EM behaves like “soft k-means” with probabilistic weighting, updating
means and variances based on how strongly each point belongs to each component.

3.6.2 Worked Example 2: 2D GMM with K = 2 (one EM iteration)

We now illustrate a two-dimensional case where each observation is yi ∈ R2. The model
is

p(yi | θ) =
2∑

k=1

πkN (yi | µk,Σk).

Consider six 2D points forming two clusters:

y1 =

[
0
0

]
, y2 =

[
1
0

]
, y3 =

[
0
1

]
, y4 =

[
4
4

]
, y5 =

[
5
4

]
, y6 =

[
4
5

]
.

Initialize:

π
(0)
1 = π

(0)
2 = 0.5, µ

(0)
1 =

[
0
0

]
, µ

(0)
2 =

[
4
4

]
, Σ

(0)
1 = Σ

(0)
2 = I.

E-step. Responsibilities are

γi1 =
π
(0)
1 N (yi | µ

(0)
1 , I)

π
(0)
1 N (yi | µ

(0)
1 , I) + π

(0)
2 N (yi | µ

(0)
2 , I)

, γi2 = 1− γi1.

Since both covariances are I and priors are equal, the Gaussian densities are proportional
to

exp

(
−1

2
∥yi − µ

(0)
k ∥

2
2

)
.

Thus points near (0, 0) will have γi1 ≈ 1 and points near (4, 4) will have γi1 ≈ 0. Numer-
ically, the squared distances are:
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y1 y2 y3 y4 y5 y6

∥yi − µ
(0)
1 ∥2 0 1 1 32 41 41

∥yi − µ
(0)
2 ∥2 32 25 25 0 1 1

From the responsibility formula, for example for y2 = (1, 0)⊤:

γ21 =
exp

(
−1

2
· 1
)

exp
(
−1

2
· 1
)
+ exp

(
−1

2
· 25

) ≈ 1− 7× 10−6,

so it is essentially assigned to component 1. Similarly, y5 = (5, 4)⊤ is essentially assigned
to component 2.

Hence, to an excellent approximation in this toy setup,

γi1 ≈ 1 for i ∈ {1, 2, 3}, γi1 ≈ 0 for i ∈ {4, 5, 6},

and the reverse for γi2.

M-step. Effective counts:

N1 =
6∑

i=1

γi1 ≈ 3, N2 ≈ 3.

Mixing weights:

π
(1)
1 ≈

3

6
= 0.5, π

(1)
2 ≈ 0.5.

Means (responsibility-weighted averages):

µ
(1)
1 ≈

1

3

(
y1 + y2 + y3

)
=

1

3

[
0 + 1 + 0
0 + 0 + 1

]
=

[1
3
1
3

]
,

µ
(1)
2 ≈

1

3

(
y4 + y5 + y6

)
=

1

3

[
4 + 5 + 4
4 + 4 + 5

]
=

[13
3
13
3

]
.

Covariances:

Σ
(1)
1 ≈

1

3

3∑
i=1

(yi − µ
(1)
1 )(yi − µ

(1)
1 )T, Σ

(1)
2 ≈

1

3

6∑
i=4

(yi − µ
(1)
2 )(yi − µ

(1)
2 )T.

(You may optionally regularize Σ
(1)
k ← Σ

(1)
k + ϵI.)

Takeaway (2D): the E-step compares Gaussian densities using Mahalanobis distances;
the M-step updates each component by computing responsibility-weighted sample mean
and covariance in R2.

3.7 Python Implementation

We now describe how the EM algorithm for Gaussian Mixture Models is implemented in
practice, and how each part of the code directly corresponds to the mathematical steps
derived above. The goal of this subsection is not to introduce new theory, but to connect
equations to executable code, so that the algorithmic flow of EM becomes completely
transparent.
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Overall structure. A typical GMM–EM implementation follows the same high-level
loop:

initialize parameters → repeat E-step and M-step → check convergence.

In code, this is usually a for- or while-loop over EM iterations. The parameters stored
and updated at each iteration are

{πk,µk,Σk}Kk=1,

and the intermediate quantities computed in the E-step are the responsibilities

γik = p(zi = k | yi,θ).

Initialization. The code typically begins by initializing:

• mixing weights π
(0)
k (often uniformly, πk = 1/K),

• means µ
(0)
k (random samples from data or k-means centroids),

• covariances Σ
(0)
k (identity matrices, diagonal matrices, or empirical covariances).

This corresponds exactly to choosing the starting point θ(0) for EM. As emphasized
earlier, initialization is crucial due to non-convexity.

E-step in code (responsibility computation). The E-step computes the posterior
assignment probabilities

γik =
πkN (yi | µk,Σk)∑K
j=1 πj N (yi | µj,Σj)

.

In code, this usually appears as:

• a loop (or vectorized operation) over components k computing Gaussian densities,

• multiplication by mixing weights πk,

• normalization across components so that
∑

k γik = 1.

Numerically stable implementations compute these quantities in log-space (using log-sum-exp)
to avoid underflow, especially in higher dimensions.

Effective counts. Once responsibilities are available, the code computes

Nk =
N∑
i=1

γik,

which represents the effective number of samples assigned to component k. This quantity
appears repeatedly in the M-step updates and is typically computed once per iteration.
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M-step in code (parameter updates). The M-step corresponds to maximizing the
Q-function and is implemented via closed-form updates:

• Mixing weights:

πk ←
Nk

N
.

• Means:

µk ←
1

Nk

N∑
i=1

γikyi.

In code, this is a weighted average of data points.

• Covariances:

Σk ←
1

Nk

N∑
i=1

γik(yi − µk)(yi − µk)
T.

This corresponds to computing a responsibility-weighted sample covariance matrix.

Many implementations add a small regularization term ϵI to Σk to ensure numerical
stability and invertibility.

Log-likelihood evaluation and convergence. After each EM iteration, the code
often evaluates the incomplete-data log-likelihood

log p(Y | θ) =
N∑
i=1

log
( K∑

k=1

πkN (yi | µk,Σk)
)
,

which serves two purposes:

• verifying the monotonic increase guaranteed by EM,

• providing a stopping criterion, e.g.,

log p(Y | θ(t+1))− log p(Y | θ(t)) < δ.

Connection to the worked examples. The 1D and 2D worked examples presented
earlier are exactly what the code is doing numerically:

• computing distances (scalar or Mahalanobis) inside Gaussian densities,

• converting them into soft assignments (responsibilities),

• updating means as weighted averages and covariances as weighted scatter matrices.

The only difference in higher dimensions or larger datasets is scale and numerical care;
conceptually, the algorithm remains identical.
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Key takeaway. The EM algorithm for GMMs is not a black box: each line of code
corresponds directly to a specific probabilistic or optimization step derived earlier. Un-
derstanding this mapping makes it easier to debug implementations, modify covariance
structures (diagonal, spherical), and extend GMMs to more complex latent-variable mod-
els.

1 import numpy as np

2 import matplotlib.pyplot as plt

3

4 np.random.seed (0)

5

6 # ---------------------------

7 # Generate 1D mixture data

8 # ---------------------------

9 N = 600

10 true_pi = np.array ([0.65 , 0.35])

11 true_mu = np.array ([-1.2, 1.8])

12 true_sigma = np.array ([0.45 , 0.7])

13

14 z = np.random.choice ([0, 1], size=N, p=true_pi)

15 y = np.random.randn(N) * true_sigma[z] + true_mu[z]

16 y = y.reshape(-1, 1) # (N,1) for uniformity

17

18 # ---------------------------

19 # Helper: 1D Gaussian pdf

20 # ---------------------------

21 def gauss_pdf_1d(x, mu , var):

22 return (1.0 / np.sqrt (2*np.pi*var)) * np.exp ( -0.5*(x-mu)**2 / var)

23

24 # ---------------------------

25 # EM for 1D GMM (K=2)

26 # ---------------------------

27 K = 2

28 # init (simple): random means from data , equal weights , same variances

29 mu = np.random.choice(y.flatten (), K, replace=False)

30 var = np.full(K, np.var(y))

31 pi = np.full(K, 1.0/K)

32

33 def e_step(y, mu , var , pi):

34 N = y.shape [0]

35 gamma = np.zeros((N, K))

36 for k in range(K):

37 gamma[:, k] = pi[k] * gauss_pdf_1d(y.flatten (), mu[k], var[k])

38 gamma /= np.sum(gamma , axis=1, keepdims=True)

39 return gamma

40

41 def m_step(y, gamma):

42 Nk = np.sum(gamma , axis =0)

43 pi_new = Nk / y.shape [0]

44 mu_new = np.sum(gamma * y, axis =0) / Nk

45 var_new = np.sum(gamma * (y - mu_new)**2, axis =0) / Nk

46 return mu_new , var_new , pi_new

47

48 # EM loop

49 max_iter = 13

50 for t in range(max_iter):

51 gamma = e_step(y, mu , var , pi)

52 mu , var , pi = m_step(y, gamma)
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53

54 if t % 2 == 0 or t == max_iter - 1:

55 print(f"Iteration {t+1}: mu={mu}, var={var}, pi={pi}")

56 # ---------------------------

57 # Plot fitted model

58 # ---------------------------

59 x = np.linspace(y.min() -1, y.max()+1, 1200)

60

61 p1 = pi[0] * gauss_pdf_1d(x, mu[0], var [0])

62 p2 = pi[1] * gauss_pdf_1d(x, mu[1], var [1])

63 pmix = p1 + p2

64

65 # responsibilities as function of x (for component 1)

66 gamma1_x = p1 / (pmix + 1e-12)

67 gamma2_x = p2 / (pmix + 1e-12)

68

69 plt.figure(figsize =(7 ,4))

70

71 plt.hist(y.flatten (), bins=40, density=True , alpha =0.35, label=

"Data histogram")

72 plt.plot(x, p1 , linewidth=2, label="Fitted component 1")

73 plt.plot(x, p2 , linewidth=2, label="Fitted component 2")

74 plt.plot(x, pmix , linewidth=2, linestyle="--", label="Fitted

mixture")

75

76 # scale responsibility to sit on same axis nicely

77 plt.plot(x, gamma1_x * pmix.max(), linewidth=2, linestyle="-.",

78 label=r"Responsibility $\gamma_ {1}(y)$ (scaled)")

79 plt.plot(x, gamma2_x * pmix.max(), linewidth=2, linestyle="-.",

80 label=r"Responsibility $\gamma_ {2}(y)$ (scaled)")

81

82 plt.xlabel(r"$y$")
83 plt.ylabel("Density / scaled responsibility")

84 plt.title("1D GMM fit with EM (K=2) - Iteration " + str(t))

85 plt.legend ()

86 plt.tight_layout ()

87 plt.show()

Listing 1: GMMs in 1D

3.8 Python Implementation of GMMs in 2D

We now walk through a concrete Python implementation of EM for a 2D Gaussian Mix-
ture Model (GMM) with K = 3 components. The purpose of this example is to show
how the theoretical EM steps map line-by-line to code: (i) generate mixture data, (ii)
implement the Gaussian density, (iii) implement E-step and M-step, and (iv) visualize
convergence through fitted contours and estimated means.

3.8.1 Step 0: Generating synthetic data from a 2D mixture

The script first creates a dataset Y ∈ RN×2 sampled from a known (ground-truth)
mixture model with N = 800 and K = 3:

p(y) =
3∑

k=1

π⋆
kN (y | µ⋆

k,Σ
⋆
k).
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In code:

• true pi stores π⋆ = (0.4, 0.35, 0.25),

• true mu stores the true component means µ⋆
k ∈ R2,

• true Sigma stores the true covariance matrices Σ⋆
k ∈ R2×2.

Then, latent assignments are sampled:

zi ∼ Categorical(π⋆
1, π

⋆
2, π

⋆
3),

implemented by:

z = np.random.choice(np.arange(K), size=N, p=true pi).

Conditioned on zi = k, the data are sampled from N (µ⋆
k,Σ

⋆
k):

yi | (zi = k) ∼ N (µ⋆
k,Σ

⋆
k).

In the script, this is implemented using np.random.multivariate normal and concate-
nated into the final data matrix Y .

Why two seeds? The outer loop for seed in [1, 78] repeats the experiment with
two random initializations. Since GMM likelihood is non-convex, EM can converge to
different local maxima depending on initialization. Running multiple seeds is a minimal
demonstration of this phenomenon.

3.8.2 Step 1: Implementing the multivariate Gaussian density

The helper function gauss pdf nd(X, mu, Sigma) computes

N (x | µ,Σ) =
1√

(2π)d|Σ|
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
,

for all rows x in a matrix X ∈ RN×d (here d = 2).
The code computes:

• diff = X - mu ↔ (x− µ) for each row,

• invS = np.linalg.inv(Sigma) ↔ Σ−1,

• expo = ... computes the quadratic form

(x− µ)TΣ−1(x− µ),

vectorized using einsum:

np.einsum("ni,ij,nj->n", diff, invS, diff).

• norm = sqrt((2pi)^d det(Sigma)) computes the normalization constant.

Finally, it returns exp(-0.5*expo)/norm for all rows.

Numerical note. This implementation computes densities in standard space. In higher
dimensions or with many iterations, it is often more stable to compute responsibilities
using log-densities and the log-sum-exp trick. For d = 2, this explicit form is usually
fine.
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3.8.3 Step 2: EM initialization

Before running EM, the parameters are initialized as:

π
(0)
k =

1

K
, µ

(0)
k = randomly chosen data points, Σ

(0)
k = Ĉov(Y ) (shared, copied for all k).

In code:

• mu = Y[np.random.choice(N, K, replace=False)] initializes means by sampling
K distinct points from the dataset.

• Sigma = np.array([np.cov(Y.T) for in range(K)]) sets all covariances to
the empirical covariance of the entire dataset at initialization.

• pi = np.full(K, 1.0/K) initializes uniform mixing weights.

This is a common baseline initialization, though k-means is often superior in practice.

3.8.4 Step 3: E-step in code (responsibilities)

The E-step computes responsibilities

γik = p(zi = k | yi,θ) =
πkN (yi | µk,Σk)∑K
j=1 πj N (yi | µj,Σj)

.

The function e step(Y, mu, Sigma, pi) implements this as follows:

• It builds an N ×K matrix gamma with entries

gamma[:,k] = pi[k] * gauss pdf nd(Y, mu[k], Sigma[k]).

• Then it normalizes each row to sum to 1:

gamma /= np.sum(gamma, axis=1, keepdims=True).

After normalization, each row (γi1, . . . , γiK) forms a categorical posterior distribution for
zi.

3.8.5 Step 4: M-step in code (closed-form updates)

The M-step maximizes the expected complete-data log-likelihood and yields the standard
closed-form GMM updates:

Nk =
N∑
i=1

γik, πk ←
Nk

N
, µk ←

1

Nk

N∑
i=1

γikyi,

Σk ←
1

Nk

N∑
i=1

γik (yi − µk)(yi − µk)
T.

The function m step(Y, gamma) implements exactly these:

• Nk = np.sum(gamma, axis=0) computes (N1, . . . , NK).
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• pi new = Nk / Y.shape[0] updates mixing weights.

• mu new = (gamma.T @ Y) / Nk[:, None] updates means via weighted averages.

• For covariances, for each component k:

– diff = Y - mu new[k] corresponds to (yi − µk),

– Sk = (gamma[:,k][:,None] * diff).T @ diff / Nk[k] computes the weighted
scatter matrix divided by Nk, i.e.

Σk =
1

Nk

N∑
i=1

γik diffi diff
T
i .

3.8.6 Step 5: Iteration, logging, and visualization

The loop
for t in range(max iter):

runs EM for max iter = 121 iterations, alternating:

γ ← e step(·), (µ,Σ, π)← m step(·).

Every 20 iterations (and at the final iteration), the code prints the current estimates of
(µ, π) and generates a plot:

• Scatter plot of the raw data in R2.

• Contours of each fitted Gaussian component, computed on a grid:

Zk(y) = πkN (y | µk,Σk),

and plotted with plt.contour.

• The current means µk are shown as large x markers.

This visualization is pedagogically useful: as EM iterates, the means move toward dense
regions of the data and covariances rotate/scale to match the shape of clusters.

3.8.7 Summary: what this code demonstrates

This code example demonstrates three key points about EM for GMMs:

1. E-step = soft clustering: responsibilities γik assign each point fractionally to
each component.

2. M-step = weighted Gaussian fitting: each component is updated using responsibility-
weighted means and covariances.

3. Initialization sensitivity: different seeds can lead to different local optima or
different convergence speeds, even on the same dataset.

In short, the script is a direct computational instantiation of the EM derivation:
it alternates between computing the posterior over latent assignments and re-estimating
mixture parameters from those posteriors, while providing a geometric visualization (con-
tours) of how the fitted density evolves over iterations.
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1 import numpy as np

2 import matplotlib.pyplot as plt

3

4 for seed in [1, 78]:

5 np.random.seed(seed)

6

7 # ---------------------------

8 # Generate 2D mixture data

9 # ---------------------------

10 N = 800

11 K = 3

12

13 true_pi = np.array ([0.4, 0.35, 0.25])

14 true_mu = np.array([

15 [-2.0, -1.0],

16 [ 1.5, 0.7],

17 [ 0.0, 2.5]

18 ])

19 true_Sigma = np.array([

20 [[0.6, 0.2] ,[0.2 , 0.5]],

21 [[0.5 , -0.1] ,[ -0.1 ,0.4]] ,

22 [[0.3, 0.0] ,[0.0 , 0.8]]

23 ])

24

25 z = np.random.choice(np.arange(K), size=N, p=true_pi)

26 Y = np.vstack ([

27 np.random.multivariate_normal(true_mu[k], true_Sigma[k], size=(

z==k).sum())

28 for k in range(K)

29 ])

30

31 # ---------------------------

32 # Helpers: multivariate Gaussian pdf

33 # ---------------------------

34 def gauss_pdf_nd(X, mu , Sigma):

35 d = X.shape [1]

36 diff = X - mu

37 invS = np.linalg.inv(Sigma)

38 expo = np.einsum("ni ,ij ,nj ->n", diff , invS , diff)

39 norm = np.sqrt ((2*np.pi)**d * np.linalg.det(Sigma))

40 return np.exp (-0.5* expo) / norm

41

42 # ---------------------------

43 # EM for 2D GMM

44 # ---------------------------

45 # init: random means from data , equal weights , shared covariance

46 mu = Y[np.random.choice(N, K, replace=False)]

47 Sigma = np.array([np.cov(Y.T) for _ in range(K)])

48 pi = np.full(K, 1.0/K)

49

50 def e_step(Y, mu , Sigma , pi):

51 N = Y.shape [0]

52 gamma = np.zeros((N, K))

53 for k in range(K):

54 gamma[:, k] = pi[k] * gauss_pdf_nd(Y, mu[k], Sigma[k])

55 gamma /= np.sum(gamma , axis=1, keepdims=True)

56 return gamma
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57

58 def m_step(Y, gamma):

59 Nk = np.sum(gamma , axis =0)

60 pi_new = Nk / Y.shape [0]

61 mu_new = (gamma.T @ Y) / Nk[:, None]

62 Sigma_new = []

63 for k in range(K):

64 diff = Y - mu_new[k]

65 Sk = (gamma[:, k][:, None] * diff).T @ diff / Nk[k]

66 Sigma_new.append(Sk)

67 return mu_new , np.array(Sigma_new), pi_new

68

69 max_iter = 121

70 for t in range(max_iter):

71 gamma = e_step(Y, mu , Sigma , pi)

72 mu , Sigma , pi = m_step(Y, gamma)

73

74 if t % 20 == 0 or t == max_iter - 1:

75 print(f"Iteration {t}: mu={mu}, pi={pi}")

76 # ---------------------------

77 # Plot data + fitted contours

78 # ---------------------------

79 plt.figure(figsize =(6.5 ,5))

80 plt.scatter(Y[:,0], Y[:,1], s=12, alpha =0.5, label="Data")

81

82 # grid for contours

83 x1 = np.linspace(Y[:,0]. min() -1, Y[:,0]. max()+1, 250)

84 x2 = np.linspace(Y[:,1]. min() -1, Y[:,1]. max()+1, 250)

85 X1 , X2 = np.meshgrid(x1 , x2)

86 grid = np.column_stack ([X1.ravel(), X2.ravel()])

87

88 # plot each fitted Gaussian contour

89 for k in range(K):

90 Zk = pi[k] * gauss_pdf_nd(grid , mu[k], Sigma[k]).

reshape(X1.shape)

91 plt.contour(X1 , X2 , Zk , levels=6, linewidths =2)

92

93 # mark means

94 plt.scatter(mu[:,0], mu[:,1], s=120, marker="x", linewidths

=3, label="Fitted means")

95

96 plt.xlabel(r"$y_1$")
97 plt.ylabel(r"$y_2$")
98 plt.title("2D GMM fit with EM (K=3): contours + means -

Iteration " + str(t))

99 plt.legend ()

100 plt.tight_layout ()

101 plt.show()

Listing 2: GMMs in 2D
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