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1 From Hand-Crafted to Optimal Filters

Classical filtering is often introduced through hand-crafted designs such as FIR/IIR filters,
moving averages, and standard bandpass or notch filters. In this paradigm, we first
choose a filter structure and then tune its parameters (e.g., cutoff frequencies, filter
order, window length) based on intuition about the spectrum. This works well when the
spectral separation between signal and noise is clear and stable.

In many real-world problems, however, the assumptions behind manual tuning are
fragile. Noise may be colored rather than white, and it may vary over time (nonstationary
behavior). Moreover, signal and noise spectra may overlap, so there is rarely a uniquely
“right” cutoff frequency. Different design choices therefore lead to different tradeoffs
between noise suppression and signal distortion, and it is not always obvious how to
select the best compromise.

This motivates a natural question:

Can we design a filter automatically, in an optimal way, once we state what
“optimal” means?

The optimal filtering viewpoint answers this by turning filter design into an estimation
problem. Instead of choosing a filter heuristically, we specify (i) a goal (e.g., estimate
or reconstruct a clean signal), (ii) a criterion (most commonly, minimize mean squared
error), and (iii) a model for the signal and noise (typically via second-order statistics).
The resulting filter is then derived as the one that achieves the best possible performance
under these assumptions.

In Wiener filtering, we consider a static (non-recursive) optimal linear estimator:
given a noisy observation process, we seek the linear filter that minimizes the mean
squared estimation error. This leads to the Wiener—Hopf equations and yields a closed-
form optimal solution in terms of correlation functions (or, equivalently, power spectral
densities). Wiener filtering is particularly useful when we can assume stationarity and
when a batch/offline filter is acceptable.

In Kalman filtering, we move from static estimation to dynamic estimation. Here
the quantity of interest evolves over time according to a state-space model, and mea-
surements arrive sequentially. Rather than computing a single batch solution, we aim
for a recursive estimator that updates its belief about the state whenever a new mea-
surement becomes available. Under linear dynamics, linear measurements, and Gaussian
noise assumptions, the Kalman filter provides the optimal minimum mean squared error
(MMSE) estimate of the state, and it does so efficiently by propagating only the current
estimate and its uncertainty (covariance).

Thus, Wiener and Kalman filtering can be seen as two classical instances of opti-
mal filtering: Wiener filtering addresses optimal linear MMSE estimation in (typically)
stationary settings, while Kalman filtering generalizes the idea to time-varying systems
with a principled recursive update. Together, they illustrate the central theme of this
module: once we define a model and an optimality criterion, the filter follows from the
mathematics rather than from ad hoc tuning.



2 Wiener Filtering: The Optimal Linear MMSE Es-
timator

We now derive the Wiener filter, i.e., the classical optimal linear estimator that minimizes
mean squared error under standard second-order (and, optionally, Gaussian) assumptions.

2.1 Assumptions and Modeling

Wiener filtering can be interpreted as the Bayesian MMSE solution (posterior mean) in a
linear—-Gaussian setting, and equivalently as the linear MMSE (LMMSE) solution when
only second-order statistics are assumed. Concretely, we adopt the following model.

1) Linear observation model. We assume that the measurements x[n] € RP are
generated from the unknown (clean) signal dn| € R? via

x[n| = Ad[n] + v[n], (2.1)

where A € RP*? is a known linear operator. For denoising, A = I; for deconvolution or
deblurring, A is often a convolution operator.

2) Second-order signal model (WSS). The clean signal d[n] is modeled as a (wide-
sense) stationary random process, characterized by its autocorrelation Ry4[k] (or, equiv-
alently, its power spectral density Sgq(w) in the scalar/WSS setting).

3) Additive noise model (WSS) and signal-noise uncorrelatedness. The noise
v[n] is modeled as WSS with autocorrelation R,,[k] (or PSD S,,(w)), and we assume it
is uncorrelated with the signal:

R [k] = 0. (2.2)

4) Gaussianity (Bayesian justification). If, additionally, d and v are modeled as
Gaussian processes, then p(d | x) is Gaussian and the posterior mean is linear in . This
implies that the MMSE estimator coincides with the optimal linear estimator.

5) Restriction to linear estimators. We search for an estimator within the class of
linear mappings, written (at a fixed time index n) as

d[n] = W7 z[n), (2.3)

where W € RP*? (so that W'z € R?). In the LTI/WSS setting, this linear mapping
corresponds to convolution with an impulse response (i.e., an LTI filter). The Wiener
filter is the particular choice of W that minimizes mean squared error.

2.2 Linear MMSE Objective

We seek the linear estimator that minimizes the expected squared reconstruction error:

W, = argmin Emd[n] - WTa:[n]H;] . (2.4)



For notational simplicity, we drop [n] and write @, d when no confusion is possible.
Expanding the quadratic form yields

JW)=E[(d-—W"z)"(d— W"z)]

=tr(E{dd"}) — 2 tr(W'E{zd"}) + tr (W E{zz" }W). (2.5)
Define the (cross-)correlation matrices
Ry 2 E{dd"}, R, 2E{zd"}, R, 2E{zz"}. (2.6)
Then can be written compactly as
J(W) =tr(Rg) — 2 tr (W' R,q) + tr (W R,,W). (2.7)

2.2.1 Wiener—Hopf (Normal) Equations and Closed-Form Solution

Differentiating J(W') with respect to W and setting the gradient to zero yields the
normal (Wiener-Hopf) equations:

aJ
oW
Assuming R, is invertible, we obtain the Wiener/LMMSE solution

0 — R,W,=R.,. (2.8)

Using the measurement model ((2.1)) and the assumption that v L d, we can express
R,; and R,, in terms of the model covariances. Indeed,

R,; =E{(Ad +v)d"} = AE{dd"} + E{vd"} = ARy, (2.10)
R,, =E{(Ad+v)(Ad +v)"}
= AR, A" + R, (2.11)

where R,, £ E{vvT}. Substituting (2.10)-(2.11) into (2.9) gives the commonly used

closed form:

W, = (AR4AT + R,,)” ARy, (2.12)

Remark (correlation vs. covariance). Under the standard assumption of zero-mean
processes, E{x} = 0 and E{d} = 0, the correlation and covariance matrices coincide:

Coviz, x| = E[(x — p,)(x — p,)"| = E{zz"} = R,,, (2.13)
and similarly

Covz,d] = E[(x — p,)(d — p,)"] = E{zd"} = R,a. (2.14)

2.3 Detailed Derivation of the Wiener Filter

We now provide a detailed derivation of the Wiener filter by explicitly minimizing the
mean squared error over the class of linear estimators. Throughout, we assume real-valued
random vectors and zero-mean processes.

Let € R? denote the observation vector, d € R? the desired (clean) signal, and
W € RP*4 the linear estimator matrix such that d = W'z € RY.



2.3.1 Objective Function
The linear MMSE objective is

JW)=E[|d—W'z|3] =E[(d— W"z)"(d— W'z)].

(2.15)

Using the trace operator, which allows convenient manipulation of matrix-valued expres-

sions, we can write

J(W) =E[tr((d -
= tr(E[(d —

where linearity of the trace and expectation has been used.

2.3.2 Expanding the Quadratic Form
We first expand the quadratic term:
(d—Wrx)'(d-W'z)=d"d —d" W'z — "™ Wd + 2" WW'z.

Substituting this expansion into the objective yields

J(W) = tr(E[d"d]) — tr(E[d"W"x]) — tr(Elz" Wd]) + tr(E[x’ WW x]).

2.3.3 Evaluating Each Term
First term. Using d'd = tr(ddT), we obtain

tr(E[d"d]) = tr(E[dd"]) = tr(Raa),
where Ryq = E[dd"].

Second term. Using cyclic permutation of the trace,

tr(E[d"W'z)) = E[tr(d"WTz)] = E[tr (W zd")]
= tr(WT E[zd"]) = tr(WTR,,),

where R,y £ E[zd”].

Third term. Similarly,

tr(Efx” Wd)) = E[tr (2" Wd)] = E[tr(WdaT)]
= tr(WE[dz"]) = tr(W Ry,),

with Ry, = R, Using tr(A) = tr(A”), this becomes

tr(WRy,) = tr(RgW') = tr(W R,q).

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)



Fourth term. Finally,

tr(Elx" WW'x]) =E[tr (2" WW )]
=K [tr(WT:chW)}
= tr(W' Elzz”| W) = tr(W' R, W), (2.23)

where R,, = E[zx].

2.3.4 Final Cost Function

Collecting all terms, the objective function becomes

J(W) =tr(Ra) — 2 tr (W' Ryq) + tr( W R, W) |. (2.24)

2.3.5 Gradient and Optimality Condition

We now differentiate J(W') with respect to W. The required matrix calculus identities
are:

tr(WTA) = A tr(WTAW) = (A + AT )W.

W r(W ) , W r(W W) (A+ A" YW

Since R,, is symmetric, R,, = RQTW we obtain
oJ
9 R, +2R.W. 2.25
oW i (2.25)

Setting the gradient to zero yields the Wiener—Hopf equations

R..W, = R,,, (2.26)

which lead directly to the Wiener filter solution W, = R, R,

2.3.6 Computing R,; and R,, from the Observation Model

We now explicitly compute the cross-covariance R4 and the observation covariance R,
from the assumed linear measurement model. Recall that the observations are generated
according to

x[n| = Ad[n] + v[n], (2.27)
where E[d] = 0, E[v] = 0, and the noise is uncorrelated with the signal, i.e., v L d.

Cross-covariance between observation and signal. By definition,
R, 2 E{xd"}. (2.28)
Substituting the observation model (2.27) gives

R,; = E{(Ad + v)d"}
= AE{dd"} + E{vd"}. (2.29)

Since v and d are uncorrelated, the second term vanishes: E{vd”} = 0. Therefore,

|R,.= ARy (2.30)
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Auto-covariance of the observations. Similarly, the observation covariance is
R,, £ E{xz"} = E{(Ad + v)(Ad + v)"}. (2.31)
Expanding the product yields
R,. = AE{dd"} A" + AE{dv"} + E{vd"}A" + E{vv"}. (2.32)
Again, uncorrelatedness implies that the cross terms vanish:
E{dv"} = E{vd"} = 0.

Thus, the observation covariance reduces to

R,.= AR,AT + R,,, (2.33)

where R,, = E{vv’}.

Remark. Equations and show that the Wiener filter depends only on the
linear operator A and on second-order statistics of the signal and noise. No higher-order
moments are required, and Gaussianity is only needed if one wishes to interpret the
solution as the full Bayesian MMSE estimator rather than the linear MMSE solution.

2.4 Using the Wiener Filter in Practice: Offline Targets vs.
Second-Order Statistics

The Wiener solution is written in terms of correlation matrices such as R,, and R,q4,
which are expectations over the (unknown) data-generating process. In practice, we
rarely have access to these expectations directly, and we must approximate them from
data. There are two common regimes:

2.4.1 Case 1: When the desired signal d[n] is available (supervised / training
mode)

In some applications we can obtain (at least occasionally) pairs of observations and ground
truth,
(z[n], d[n]), n=1,...,N,

for example from calibration experiments, high-quality sensors, offline post-processing,
or simulated data. In this setting, the Wiener filter can be learned by empirical risk
minimization: we minimize the sample mean squared error

W = arg m“i/n %Z |d[n] — WT:z:[n]Hz (2.34)

This is simply multivariate least squares (linear regression) with inputs x[n] and targets
d[n].

Define the data matrices

X & [z[l] -+ z[N]] e RPN D2 [d[l] --- d[N]] € RV,



Then (2.34) can be written as miny || D — W7’ X2, whose normal equations yield

W = (XXTY1 X D" (assuming X X7 is invertible). (2.35)

Equivalently, introducing the sample correlation estimates

N N
D 1 T 1 T S 1 T 1 T
R, =+ nzl zln)zn)” = - . Ru= ; zlnldln]” = :
we recover the familiar Wiener form
—~ ~—1~
W=R, R, (2.36)

Online use after training. Once W is learned, deployment is fully online and ex-
tremely cheap: for each incoming observation @[n] we compute

If the environment drifts, we may update W online using recursive least squares (RLS)
or stochastic gradient descent on the instantaneous squared error ||d[n] — W' z[n]||3
whenever ground truth becomes available.

2.4.2 Case 2: When only correlations are known or can be estimated (unsu-
pervised / model-based mode)

Often, the clean signal d[n] is never observed directly, so we cannot form f{xd from paired
samples. Nevertheless, Wiener filtering remains usable if we know (or can estimate) the
second-order statistics implied by the model.

A common situation is additive noise with A = I:

x[n| = d[n] + v[n|, v.ld.
From the identities derived earlier,
R, = Ryg+ Ry, R.i= R
Thus the Wiener solution becomes
W, = (Ra+ Ry) 'Rua (2.37)

In the scalar LTI/WSS case, this corresponds in the frequency domain to the well-known
PSD form
de(w)

" Saa(w) + Spu(w)

H(w) (2.38)



How do we obtain the needed statistics? In practice, one typically proceeds by
one of the following routes:

e Noise-only segments / calibration: estimate R,, (or S,,(w)) from time inter-
vals where the signal is absent.

e Signal modeling: assume a parametric prior for d (e.g., AR/ARMA) and estimate
its parameters from data, which then determines R4y (or Sgq(w)).

e Domain knowledge: use a known or expected PSD shape for the signal and/or
noise (e.g., 1/f noise, band-limited signals).

e Nonstationary / online adaptation: estimate correlations over a sliding window
so that S,,(w) or S, (w) can adapt to changing conditions.

Online implementation viewpoint. Even when correlations are estimated, online
operation typically has a two-stage structure: (i) update the second-order statistics (or
their parametric models) from incoming data, and (ii) update or apply the filter to
produce El[n] In stationary settings, the filter can be designed once and then applied
online. In slowly varying settings, one can re-estimate statistics and redesign the Wiener
filter periodically (blockwise) or continuously (adaptive filtering).

Summary. If d[n] is available (even occasionally), the Wiener filter can be learned from
data via least squares and then deployed online. If d[n] is not available, Wiener filtering
is still possible provided that the relevant second-order statistics (correlations/PSDs) are
known or can be estimated from the measurement stream under modeling assumptions.

2.5 Worked Examples

To make the Wiener filter concrete, we now work through small, low-dimensional exam-
ples. We use 2-dimensional signals so that every matrix and step is easy to inspect by
hand.

2.5.1 Example 1: Pure Denoising with A = I (Known Covariances)

Setup. Assume the observation model

r=d+v, Eld] =0, Ejv] =0, v L d,

21 10

3 1
15

with

Then

sz = Rdd + Rv'u = |: :| ’ Rxd = E[wdT] = Rdd-
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Wiener solution. The Wiener matrix is

-1
o, 31721
W,.=R'R,, = L 5] [1 2]

Compute the inverse:

1[5 -1
— . j— . — -1 [r—
det(Ro;) =3-5-1-1=14, R =— {_1 ] }

9 3
veds AR -0 8- 4]
14 [-1 3|1 2 14 (1 5 1 U
Using the filter. Given a measured vector & € R?, the estimate is

d= Wia.

Therefore,

For instance, if £ = [1 2]7 then
R 2171 1
3 519 13|
4 14 14
Interpretation. The second component has larger noise variance (3 vs. 1), so the filter

shrinks and mixes components asymmetrically. The estimate is not simply ax; it exploits
correlation in d (off-diagonal terms of R44) to “borrow strength” from the cleaner channel.

2.5.2 Example 2: Denoising When d[n] is Known During Training (Learning
w)

Setup. Assume we have N supervised training samples {(x[n], d[n])}2_,, with [n], d[n] €
R2. Define

X =[z[l] --- z[N]] e R**Y D =Id[l] --- d[N]] € R*".
The least-squares estimate of the Wiener matrix is

W= (XxXx")"'XD".

A tiny numeric example (N = 3). Consider the training set

A e A |

Then
10 1 01
x=g 1] o=l Vil
Compute
r (21 r 120
XX [1 2|7 XD = 1 1
Since )
ror_1[2 -1
we obtain



~ —~T
Using the learned filter. For a new measurement x, the estimate isd = W .

2.5.3 Example 3: Deconvolution / Mixing with a Nontrivial A

Setup. Assume a linear mixing (“blur”) operator

:E:Ad—}—v, A:|:1 1:|7 Rdd:|:1 0:|7 Rm}:|:1 0:|

0 1 0 1 0 1
Then
R,;= AR, = A, R,, = AR,AT + R,, = AAT + 1.
Compute
r |1 1p|1 0f (21 131
e R e B
Invert: .
a0 11 a1 2 -1
det(R;) =3-2—1-1=5, R, . = : {_1 3 ] )
Thus

Iy2 —1f(1 1 112 1
— p-1 —— —
Hence d = W'z with

112 -1
T—_
wi-2lh

Interpretation. Because A mixes the two components, the optimal estimator must
both (i) undo the mixing (like an inverse) and (ii) regularize against noise. The Wiener
filter performs exactly this tradeoff automatically through the covariance terms.

2.6 M-tap FIR Wiener Filtering (Time-Domain Wiener—Hopf
Design)

So far, we have considered a memoryless linear estimator of the form

~

dn] = Whz[n], xz[n] € R?, d[n] € RY.

This is appropriate when x[n| contains all relevant information at time n. However, in
many signal processing settings the desired estimate at time n should depend on a window
of past observations, leading naturally to an M-tap causal FIR filter.

2.6.1 Stacked Data Vector and FIR Parameterization

To obtain an M-tap causal FIR estimator, we form an augmented data vector by stacking
the current and past measurements:

c RPM, (2.39)



We then apply a linear estimator to x,:
din] =Wz, ~ W ecRFPM*q (2.40)

Partition W into M blocks,

W
W,
W = . , W, € RP*?,
Wi
Then (2.40) can be written as
x[n]
. . - - x[n — 1]
din]=[W{§ Wi -« Wy _,] : : (2.41)
x[n — M + 1]
Equivalently, this is precisely a causal FIR convolution:
M-1
dn] = Y W} z[n— k. (2.42)
k=0

Thus, the usual LMMSE form d[n] = W'a,, becomes an M-tap FIR Wiener filter simply
by choosing x,, to include M past samples.

2.6.2 Designing the FIR Wiener Filter from Second-Order Statistics
The optimal FIR Wiener filter is obtained by minimizing the MSE over the stacked

estimator (2.40)), i.e.,
: 2
W, = arg min ]E[Hd[n] — WTzanQ} .

The solution has the same algebraic form as before:

W,=R!

TnTn

R, 4. (2.43)

where
Rmnfvn é E{mnmz} S RPMXPMJ and é E{xnd[n}T} c RPMX(]-

In the wide-sense stationary (WSS) case, these matrices have a block-Toeplitz struc-
ture. Define the lag-k observation autocorrelation matrices

R..[k] = E{x[n]z[n — K"}, ke,
and the cross-correlation matrices

R.[k] 2 E{z[n)d[n — KT}

13



Then

R,.[0) R..[1) Ro.[M — 1]
R - Rm:[—l] in,;[()] Rm[f\? — 2] - (2.4
Rul-M+1] Ru[-M+2 - R0
and
R,4[0]
Ry.i— Rxfm e RPM*a, (2.45)
Rxd[M —1]

For WSS x[n|, we also have the symmetry relation

2.6.3 Practical Wiener Filtering on Data (FIR Case)

Suppose we are given measurements {x[n]}) - and either (i) a clean reference d[n] (su-

pervised / calibration) or (ii) a model that allows us to form the required correlations
(model-based).

Step 1: Choose the filter form. We select an FIR length M and use the stacked
vector x,, as in (2.39)).

Step 2: Estimate the required second-order statistics. A common unbiased sam-
ple estimate for the observation autocorrelation matrices is

Rk =——S zhlzn—kT,  k=0,...,M—1. (2.46)
If a clean reference exists, the cross-correlation may be estimated as
=,
R, k] = —— — k" =0,...,M—1. 2.4

If d is not observed, one instead uses a model (e.g. * = Ad + v) together with estimates
of signal /noise statistics to form R, [k] and R,4[k].

Step 3: Build the Wiener—Hopf linear system. Using (2.44)—(2.45]) with the esti-
mated correlations, form

~

R, ., cRwMxM R cRpMxa,

Step 4: Solve for the optimal tap matrix.

~—1 ~

W*=R, . R, . (2.48)

ITnTn

(Equivalently, solve the linear system ﬁxnwn W* = ﬁmnd.)

14



Step 5: Filter the data. Finally, partition W* into taps W7, ..., W7,_, and apply

d[n] = 2_: Wil xn — k. (2.49)

k=0

Remark (causality and delay). The above construction yields a causal FIR filter
that uses only current and past samples. If noncausal smoothing is allowed (e.g. offline
processing), one can include future samples to obtain a two-sided Wiener smoother, often
achieving lower MSE at the cost of delay.

2.6.4 Numeric Example (1D, M = 2): Supervised vs. Model-Based

We illustrate the complete Wiener—-Hopf construction for a two-tap causal FIR filter
d[n] = woz[n] + wyz[n — 1], w = [wo] :

For M = 2, the Wiener—-Hopf system is

i 250

N /

R p

A) Supervised case (sample-based correlations). Assume we have N = 5 paired
samples {z[n|, d[n]}:

d=1[1,0,-1,0,1, v=[02, -0.1,0.1, —02,0], z=d+v=][12 —0.1, =0.9, 0.2, 1].

Step 1: compute 7,,[0].

— % :_0 z[n)? = é(1.22 + (=0.1)* + (=0.9)* + (-0.2)* + 12).

3

Compute each term:
1.2 =144, (-0.1)>=0.01, (-0.9*=0.81, (-0.2)?=0.04, 1*=1.

Sum:

144 +0.01 +08140.04+1=330 = |[0] =3.30/5= 0.66.

Step 2: compute 7,,[1].
Frall] = ﬁ = pnlein — 1] = i(m[l]x[()] + af2lall] + 2f3](2] + 2[4Jo3]).
Compute each product:
z[1]z[0] = (=0.1)(1.2) = —0.12, =z[2]z[1] = (—0.9)(—0.1) = 0.09,
z[3]z[2] = (=0.2)(—0.9) = 0.18, z[4]z[3] = (1)(—0.2) = —0.20.

Sum:

—0.1240.0940.18 —0.20 = —0.05 = |#,,[1] = —0.05/4 = —0.0125.
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Step 3: compute 7,4[0].

P2al0] = % 2 z[n)d[n] = %(m[O]d[O] + 2[1)d[1] + «[2]d[2] + =[3]d[3] + x[4]d[4]> .

n=0

Compute each product:
z[0]d[0] =1.2-1=1.2, z[1]d[l]]=(-0.1)-0=0, z[2]d]2]=(-0.9) -(—1)=0.9,
z[3]d[3] = (—=0.2)-0=0, z[4]d[4]=(1)-1=1.

Sum:

12404094+04+1=31 = |fgl0] =3.1/5=0.62.

Step 4: compute 7,4[1] = E{z[n|d[n — 1]}.
Frall] = ﬁ ~ enldln — 1] = i(m]d[o] + af2d[1] + f3Ja2] + 2l41d[3]).

Compute each product:
z[1]d[0] = (=0.1) - 1 = —0.1, z[2]d[1] = (-0.9)-0 =0,
z[3]d[2] = (=0.2) - (—=1) = 0.2, =x[4]d[3]=1-0=0.

Sum:

—0140+02+0=01 = |fuyl]=0.1/4=0.025.

Step 5: build and solve the Wiener—Hopf system. Using (2.50)),

. {0.66 —0.0125} . [0.62]
, D= :

R=\ 0125 066 0.025

The inverse of a 2 X 2 matrix [Z Z] is

a b0 1 a —b
b al  a2—02|-b al’
Here a = 0.66, b = —0.0125, hence

a® —b* = 0.66% — (—0.0125)* = 0.4356 — 0.00015625 = 0.43544375.

Therefore,
S-1 1 0.66 0.0125
T 0.43544375 |0.0125  0.66 |-

L1
Now compute w = R p. First multiply:

0.66 0.0125| | 0.62 | ]0.66-0.62+ 0.0125-0.025|  [0.4092 + 0.0003125|  [0.4095125
0.0125 0.66 | |0.025]  [0.0125-0.62 4+ 0.66-0.025| | 0.00775+ 0.0165 | | 0.02425 |-

Then divide by 0.43544375:

wo = 0.4095125/0.43544375 ~ 0.9404, wy = 0.02425/0.43544375 ~ 0.0557.
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Step 6: apply the filter on a sample. For example, at n = 4 (using x[4] = 1 and
z[3] = —0.2),

A

d[4] = wox[4] + @r2[3] ~ 0.9404 - 1 + 0.0557 - (—0.2) ~ 0.9293.

B) Model-based case (AR(1) prior + white noise). Assume
z[n| = d[n] + v[n], v[n] white with Var(v) = o2, v ld,
and an AR(1) prior
dn] = ad[n — 1] + e[n], e[n] ~ N(0,02), |a| < 1.

For AR(1), the stationary autocorrelations are

0.2
T'dd[O] = 1_—ea2, Tdd[l] = ardd[O].
Using ¢ = d + v with white noise,
T’xg;[O] = Tdd[O] + 0'5, sz[l] = Tdd[l], T‘xd[O] = T’dd[O], T:Cd[l] = Tdd[l].

Step 1: compute 744[0],744[1]. Choose
a=0.9, 0. =0.5= 0> =0.25, o, =08 = 02 = 0.64.

Then
0.25 B 0.25 _0.25

T1-092 1-081 019
raa[l] = 0.9 - 1.315789 ~ 1.184210.

Tdd[O] ~ 1315789,

Step 2: compute r,,[0], 7.:[1], 724[0], za[1]-
roal0] = 74q[0] + 02 A 1.315780 + 0.64 = 1.955780,  14.[1] = raa[1] ~ 1184210,

72al0] = raa[0] = 1.315789,  7,4[1] = r44[1] ~ 1.184210.

Step 3: build and solve the Wiener—Hopf system. Thus

R 1.955789 1.184210 ~11.315789
~[1.184210 1.955789”’ - |1.184210| ¢

Again using the 2 x 2 inverse formula with a = 1.955789, b = 1.184210:

a? — b? ~ (1.955789)% — (1.184210)* ~ 3.825113 — 1.402357 = 2.422756.

R '=

a2 — b2

1 [a —b] 1 [1.955789 —1.1842101

—-b a %2,422756 —1.184210 1.955789

Compute w = R 'p. First multiply:

1.955789 —1.184210} {1.315789}

1.955789 - 1.315789 — 1.184210 - 1.184210
—1.184210 1.955789 | |1.184210 ’

—1.184210 - 1.315789 + 1.955789 - 1.184210
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Compute each product:
1.955789 - 1.315789 ~ 2.573407, 1.184210 - 1.184210 ~ 1.402357,

1.184210 - 1.315789 ~ 1.557092, 1.955789 - 1.184210 ~ 2.315552.

So the vector becomes

2.573407 — 1.402357 |  |1.171050
—1.557092 + 2.315552|  |0.758460 | -

Divide by 2.422756:

wp &~ 1.171050/2.422756 ~ 0.4834, wy ~ 0.758460/2.422756 ~ 0.3129.

Step 4: apply the filter on a sample. For instance, at time n, the estimate is

~

d[n] = 0.4834 z[n] + 0.3129 z[n — 1].

Interpretation. The supervised example above uses very few samples (N = 5), so the
correlation estimates and therefore the taps (o, w;) are noisy. The model-based taps
use exact second-order statistics from the assumed AR(1)+white-noise model, so they
are “clean” and stable. In practice, with enough training data (or with regularization),
the supervised approach approaches the model-based solution when the model is correct.

2.6.5 Python Implementation

import numpy as np
import matplotlib.pyplot as plt

def make_arl(N, a, sigma_e, seed=0):

rng = np.random.default_rng(seed)
e = rng.normal (0.0, sigma_e, size=N)
d = np.zeros(N, dtype=float)
for n in range(1l, N):
d[n] = a * d[n-11 + eln]
return d

def wiener_m2_from_correlations (rxx0, rxxl, rxd0, rxdl):

R = np.array ([[rxx0, rxxl],
[rxx1, rxx0]], dtype=float)
P np.array ([rxd0, rxdl], dtype=float)
W np.linalg.solve(R, p)
return w # [w0, wil]

def estimate_corrs_supervised(x, d):

N = len(x)
rxx0 np.mean(x * x)

rxxl = np.mean(x[1:] * x[:-1]1) # lag 1
rxd0 = np.mean(x * d)
rxdl = np.mean(x[1:] * d[:-1]) # E[z[n] d[n-17]

return rxx0, rxxl, rxd0, rxdil
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30 def apply_m2_filter(x, wO, wl):

32 d_hat = np.zeros_like(x, dtype=float)
33 d_hat [0] = wO * x[0] # assume z[-1]=0
34 d_hat[1:] = wO * x[1:] + wil *x x[:-1]

35 return d_hat

37 (Rt DL LS LB LU s

3s # 1) Generate synthetic data

39 | # —mmm e m e m e m s

o N = 800

i1 a = 0.9

12 sigma_e 0.5

43 sigma_v = 0.8

E%s

5 d = make_arl (N, a=a, sigma_e=sigma_e, seed=1)
6 rng = np.random.default_rng(2)

7 v = rng.normal (0.0, sigma_v, size=N)
s X = d + v # denoising setting

50 # Split into training/test

51 N_train = N // 2

52 x_tr, d_tr = x[:N_train], d[:N_train]
53 x_te, d_te = x[N_train:], d[N_train:]

55 [ e i

6 # 2) Supervised M=2 Wiener filter (training)

7 [ e

55 rxx0_hat, rxxl_hat, rxdO_hat, rxdl_hat = estimate_corrs_supervised(x_tr
, d_tr)

50 W_sup = wiener_m2_from_correlations (rxxO_hat, rxxl_hat, rxdO_hat,
rxd1l_hat)

60 wO_sup, wl_sup = w_sup

61

62 | # ——mmmm—— e — - = =

63 # 3) Model -based M=2 Wiener filter (AR(1))

(Yl (i} —coooooooooooooooooooooooooooooooooooooooS

65 # For AR(1): r_dd[0] = stigma_e~2 / (1-a~"2), r_dd[1] = a r_dd[0]
66 rdd0 = (sigma_ex**2) / (1.0 - a*x*2)
67 rddl = a * rddO

60 # For z=d+v with white notise wvar sigma_v 2:
70 rxx0_model = rdd0 + sigma_v**2

71 rxx1l_model = rddl

72 rxdO_model = rddO

73 rxdl_model = rddil

74

75 w_mod = wiener_m2_from_correlations (rxx0_model, rxxl_model, rxdO_model,
rxd1l_model)

76 wO_mod, wl_mod = w_mod

78 # mmmmmmm e m e

70 # 4) Apply filters on test

Wl (i —occoocoooooooooooooooooos

s1 dhat_sup = apply_m2_filter(x_te, wO_sup, wl_sup)
s2 dhat_mod = apply_m2_filter(x_te, wO_mod, wl_mod)
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mse_noisy = np.mean((x_te - d_te) **2)
mse_sup = np.mean((dhat_sup - d_te) **2)
mse_mod = np.mean((dhat_mod - d_te) **2)

print( % (wO_sup,
wl_sup))

print ( % (wO_mod,
wl_mod))

; print( % mse_noisy)

print( % mse_sup)

95 print( % mse_mod)

# Plot a short window for readability
L = min(250, N - N_train)
t = np.arange (L)

plt.figure ()

plt.plot(t, d_te[:L], label= )

s plt.plot(t, x_te[:L], label= )
plt.plot(t, dhat_sup[:L], label= )
plt.plot(t, dhat_mod[:L], label= )
plt.xlabel ( )
plt.ylabel ( )
plt.title( )

plt.legend ()
plt.grid (True)
plt.show ()

Listing 1: Wiener Filter implementation

This simulation implements a complete end-to-end example of Wiener filtering for a
scalar (1D) signal using a two-tap (M = 2) causal FIR estimator. We now describe each
step of the experiment in mathematical terms.

Signal and noise model. The clean signal {d[n]} is generated as a stationary autore-
gressive process of order one:

dln] = adn — 1] + e[n], e[n] ~ N(0,0?), la| < 1. (2.51)

This defines a zero-mean, wide-sense stationary random process with autocorrelation

(L)

74al0] = li—a?’ raall] = araq0]. (2.52)

The observed signal is obtained through additive noise:
z[n] = d[n] +v[n], o[l ~N(0,02), v ld (2.53)

The goal is to estimate d[n] from z[n] using a causal FIR Wiener filter.
Estimator structure (M = 2). The estimator is restricted to the class of two-tap
causal FIR filters: R

d[n] = wo z[n] + wy z[n — 1], (2.54)
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2-tap FIR Wiener filtering (supervised vs model-based)

> l
-
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©
_2-
=3 4 —— true d[n]
——— observed x[n]
—4 + —— Wiener M=2 (supervised)
—— Wiener M=2 (model-based)

0 50 100 150 200 250
n (test segment)

Figure 1: Two-tap FIR Wiener filtering (M = 2) in 1D. We show the clean signal
d[n], the noisy observation z[n] = d[n] + v[n], and two Wiener estimates d[n] = woz|n] +
wyz[n —1]. The supervised filter learns (wo, w;) from paired training data (x[n|, d[n]) via
sample correlations, while the model-based filter computes (wg, wy) from assumed second-
order statistics (e.g., AR(1) prior for d[n| and known noise variance).

or, equivalently,

biewre e[ - [p]

Optimality criterion. The coefficients (wg,w;) are chosen to minimize the mean
squared error

E [(d[n] - d[n])Q] .

For M = 2, the Wiener-Hopf equations reduce to
Tz 0] rm[l]} [wo] {rwd [0]]
= , 2.55
{rm[l] r (01| Jwn | = |raalt] (2.55)

rec|k] = E{x[n]x[n — k|}, rzalk] = E{z[n]d[n — k]}.

where

Supervised correlation estimation. In the supervised part of the experiment, paired
samples {z[n],d[n]} are available over a training interval. The expectations in (2.55|) are
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approximated by sample averages:

T (0] = % ]:: z[n)?, (2.56)
fwﬂkzﬁ%igjﬂMﬂn—u, (2.57)
T2q[0] = % ]1: z[n]d[n], (2.58)
@ﬂyzﬁéji:$mﬂn—u. (2.59)

These empirical correlations are inserted into ([2.55)), yielding a data-driven estimate Weyp.
This corresponds to solving a least-squares problem over the chosen FIR structure.

Model-based correlation computation. In the model-based part of the experiment,
the clean signal d[n] is not used directly. Instead, the assumed probabilistic model (2.51])—
(2.53) is used to compute correlations analytically. Using x = d+v with v L d, we obtain
Tex [0] = Tdd[O] + 0-37 rx:p[l] = Tdd[”? (260)

and
Txd[()] = Tdd[O], Tzd[l] = Tdd[l]. (261)
Substituting the AR(1) autocorrelations from ([2.52)) produces a closed-form Wiener—Hopf

system whose solution wy,0qe is the optimal two-tap LMMSE estimator under the as-
sumed statistics.

Filtering and evaluation. Both filters are applied to a disjoint test segment using
(2.54). Performance is quantified by the empirical mean squared error

LS () = din])?,

test
and compared against the baseline MSE of the noisy observation z[n].

MSE =

Key interpretation. The supervised Wiener filter approximates the optimal solution
using finite-sample estimates of second-order statistics, and is therefore subject to estima-
tion variance. The model-based Wiener filter uses exact (oracle) second-order statistics
derived from the generating model, and is therefore closer to the true LMMSE solution
when the model is correct. As the amount of training data increases, the supervised solu-
tion converges to the model-based one; conversely, under model mismatch, the supervised
approach can outperform the model-based design.

3 Kalman Filtering

3.1 Motivation: Why Kalman Filtering?

In the previous lecture we studied Wiener filtering, which provides an optimal linear
estimator (LMMSE/MMSE under Gaussianity) for stationary settings, often interpreted
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in a batch or frequency-domain viewpoint. In many applications, however, the quantity
we wish to estimate is inherently dynamic: it evolves over time, and measurements arrive
sequentially. Typical examples include position and velocity in navigation, slowly varying
channel gains in communications, or temperature in a thermal system.

This motivates the need for an estimator with three properties. First, it should be
recursive (online): rather than recomputing an estimate from scratch when new data
arrive, it should update the current estimate efficiently using the new measurement.
Second, it should be model-based: it should exploit knowledge of how the state evolves
over time via a dynamical model. Third, it should be uncertainty-aware: it should track
not only a point estimate but also its confidence, typically represented by a covariance
matrix that quantifies estimation error.

The Kalman filter addresses precisely this need. For linear state-space models with
Gaussian noise, it yields the optimal linear MMSE estimator and, under Gaussian
assumptions, coincides with the exact Bayesian posterior mean. Its conceptual structure
is simple and powerful: predict the state forward using the model, then correct that
prediction using the new measurement.

3.2 State-Space Modeling

Many dynamical systems can be described through a latent (hidden) state that evolves
over time and generates noisy observations. In a generic (possibly nonlinear) form, this
is written as

zy, = f(zr—1, up—1, k — 1) + wy1, (3.1)
Yy, = h(xg, k) + vp. (3.2)

Here,

e x; € R” is the latent/hidden state (the quantity to be estimated),

Y, € R™ is the measurement (observed data),

e u; € R” is a known input/control (may be absent),

wj,_1 is the process noise capturing model uncertainty and unmodeled effects,
e v, is the measurement noise capturing sensor uncertainty.

The Bayesian filtering objective is:

infer z;, from v, = {y;,...,y.}.

Equivalently, one seeks the posterior distribution p(x; | y,..), and typically a point
estimate such as the posterior mean.

3.3 Kalman Filter: Linear—(aussian Assumptions
The Kalman filter is optimal under the linear—Gaussian special case of (3.1)—(3.2)). The

state evolves linearly:
x, = Ax)_1 + Bug_1 + wi_1, (33)

23



and measurements are linear functions of the current state:
Yy, = Cxy, + vy (3.4)
The noise terms are assumed to be zero-mean, white, and Gaussian:
wy, ~ N(0,Q,), v ~ N(0, Ry), (3.5)
and mutually independent across time and between processes, i.e.
E[wkvjr] =0, Vk,j, (and similarly across time indices). (3.6)
Finally, the initial condition is Gaussian:

xo ~ N (20, Py). (3.7)

Key consequence (closure of Gaussians under linear transformations). Under

(3.3)—(3.7)), the predictive distribution p(xy | y,.._;) is Gaussian if p(xr_1 | Yy1p_q) 1S
Gaussian. Then, incorporating the linear Gaussian measurement model ([3.4)) preserves
Gaussianity of the posterior. Hence the filtering distribution remains Gaussian for all k:

p(er | Yrp) = N(ﬁ?kuc, Pklk) ;

and the Kalman filter provides recursive update equations for the posterior mean &y
and covariance Pjyy.

3.4 Kalman Filtering as Recursive Bayesian Estimation

The goal of Kalman filtering is to compute the posterior distribution of the hidden state
at time step k£ given all measurements up to that time:

p(xr | Yi.p)-

Rather than recomputing this posterior from scratch at each time step, we exploit the
temporal structure of the problem to derive a recursive Bayesian update.

3.4.1 Bayesian Filtering Recursion
Bayesian filtering decomposes inference into two conceptually distinct steps: a predic-

tion (time update) and a correction (measurement update).

Prediction (time update). Given the posterior at time k — 1, we propagate uncer-
tainty through the dynamics:

p(xr | Yrp1) = /p(wk | 1) p(Tp—1 | Y1 1) dTp—1. (3.8)

Update (measurement update). Once a new measurement y, is available, we in-
corporate it using Bayes’ rule:

p(@k | Yrx) X DYk | k) D(T8 | Y14m1)- (3.9)

The prediction step propagates the previous posterior forward in time, while the
update step corrects this prediction using new information. For linear dynamics and
Gaussian noise, both steps preserve Gaussianity, allowing the posterior to be summarized
entirely by a mean and a covariance.
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3.4.2 Kalman Filter: Prediction Step

Assume that at time k — 1 the posterior is Gaussian:
p(®r-1 | Yrg1) = N (@p1, Bi1) -
The linear state-space model is
x, = Az + Buj_1 + wy_1, w1 ~N(0,Q,_,), (3.10)

where the process noise covariance Q,_; may vary with time.

Applying (3.8)) yields the predicted (prior) distribution:

p(xr | Yrp) =N (25, Tp) -

The predicted mean is

z, =E[z), | y1.4_1] = AZp_1 + Buy_1, (3.11)

and the predicted covariance is

2 = Coviay | Y] = A1 AT + Q. (3.12)

The covariance increases due to process noise, reflecting growing uncertainty when
the system evolves without measurement updates.

3.4.3 Kalman Filter: Update Step

After prediction, we incorporate the new measurement using the linear observation model
Y. = CIEk—i-’Uk, Vi NN(O,Rk), (313)

where Ry, is the (possibly time-varying) measurement noise covariance.
Define the innovation (measurement residual)

r, =1y, — Cx,, (3.14)
and its covariance
S, =CX.C" +Ry. (3.15)
The Kalman gain is then
K,=%,C'S " (3.16)

The posterior mean and covariance become

¥, = - K,C)%;. (3.18)

The Kalman gain balances trust between the model prediction (encoded in ¥,7) and
the measurement (encoded in Ry).
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3.5 Bayes Filtering: The General Framework

Bayes filtering is the general mathematical framework for recursive state estimation in
dynamical systems. The key idea is to maintain a probability distribution over the current
state (the belief) and update it sequentially as new controls and measurements arrive.

3.5.1 State, Controls, Measurements, and Belief

Let
x, € R" (state), ur € R"  (control/input), Y, € R™  (measurement).

We denote the measurement history by y,.. = {yy,...,¥y;} and the control history by

Ui = {ub s 7uk}'
The belief at time k is defined as the filtering distribution

bel(zy) = p(xx | Yig, i), (3.19)

i.e., the posterior distribution over the current state given all information available up to
time k.

3.5.2 Probabilistic Assumptions (State-Space Model)

Bayes filtering relies on two key conditional-independence assumptions.

1) First-order Markov dynamics (motion model). The state at time k& depends
on the past only through the previous state and the current control:

p(wk | iBo:k—hUl:k) = p(ilfk | wk—huk)- (3-20)

The conditional density p(axy | @®r_1,u;) is called the motion model (or transition
model).

2) Conditional independence of measurements (observation model). The mea-
surement at time k depends on the past only through the current state:

P | Tok, Y11, wrk) = P(Yy | Th). (3.21)

The conditional density p(y, | k) is called the observation model (or measurement
likelihood).
These assumptions define a hidden Markov model (HMM) with inputs.

3.5.3 Deriving the Bayes Filter Recursion
Starting from the belief definition (3.19)), we apply Bayes’ rule:

bel(xr) = p(@k | Y14 w1:k)

— p(yk‘ | wk) yl:k—l’ ullk) p(wk ’ yl:k‘—l? ul:k) (3 22)

p(yk | Yik-1> ul:k)
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Introduce the normalization constant

R 1
n= , 3.23
P | Y11, Vi) (3.23)

so that
bel(zr) = 1 p(Yy | Tr, Yrp—1, Wik) P(Th | Yrp_1, Uik)- (3.24)

Using the observation Markov assumption (3.21)),

p(yk | wkyyl:k—hul:k) = P(yk ’ $k)a

we obtain
bel(zr) = 1 p(yy, | 1) P(Tk | Y1p1; Vi)- (3.25)

3.5.4 Prediction via the Law of Total Probability

The predictive distribution p(xy | Yy.._1, ¥1.k) is obtained by marginalizing over the
previous state:

p(®r | Yrpo1, k) = /P(wkywkl | Yrp_1, Uik) dTp—y
= /p(wk | 1, Y11 Wik) P(Tp—1 | Y1go1, Vi) dTi—1. (3.26)

Using the motion-model Markov assumption ((3.20)) and recognizing

P(xp—1 | Y11 Uik) = P(p—1 | Y11, Ure—1) = bel(xp_1),

we arrive at
Pk | Yrpo1 Urk) = /p(fb'k | 1, ug) bel(xy_1) dzp 1. (3.27)

Substituting (3.27) into (3.25)) yields the Bayes filter recursion:

bel(ay) = 1 p(y,. | ) / p(@x | @p 1, ) bel(ze_ 1) dzss. (3.28)

3.5.5 Bayes Filtering as Two Steps

The recursion ([3.28]) naturally decomposes into two steps.

Prediction (prior / time update).

@(azk) = /p(iL‘k | CBk_l,’U,k) bel(mk_l) d:ck_l. (329)

Correction (posterior / measurement update).

bel(zy,) =1 p(yy, | @) bel(xy), (3-30)

with 7 chosen such that [ bel(zy) dxy = 1.
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3.5.6 Kalman Filtering as a Special Case

Bayes filtering is exact but generally intractable because the belief bel(xy) is an arbitrary
distribution over R". Kalman filtering arises when:

e the motion model is linear and Gaussian:
x, = Arxi_1 + Bruy + wy, wy ~N(0,Q)),
e the observation model is linear and Gaussian:

Y, = Crxy + vy, v ~ N (0, Ry,).

Under these assumptions, the belief remains Gaussian for all k, and the Bayes filter
recursion ([3.29)—(3.30) reduces to the Kalman filter update equations for the mean and

covariance.

3.6 Kalman Filter as Recursive Wiener Filtering

A useful way to interpret the Kalman filter is as a time-varying (recursive) version of
Wiener/LMMSE estimation. In Wiener filtering we form an optimal linear estimator
from second-order statistics, typically in a batch setting. In Kalman filtering we solve a
closely related LMMSE problem at each time step using the current predicted covariance,
leading to a gain that changes over time.

3.6.1 At Time k: A One-Step LMMSE Problem

Consider the linear—-Gaussian measurement model at time k:

y, = Crx) + vy, vp ~ N(0, Ry). (3.31)
Assume we already have a prior (predicted) distribution from the time update:
o | Yy~ N(@, Bp). (3.32)
Define the estimation error and consider estimators of the affine form
z, =&, + Ki(y, — Ciy,), (3.33)

where K is a matrix to be chosen. This is exactly the Kalman update form: start from

the prior mean and add a correction proportional to the innovation.
The key point is: (3.33)) can be obtained by solving an LMMSE problem. Let

Ty = xp — X, U, =y — Cry,.

From —,

U, = Cr&y, + vy, E[zx] =0, Cov(zi) =X,. (3.34)
Now restrict to linear estimators of & from y,:

z). = K\,
Choose K, to minimize the conditional MSE
K = argmin B[ & — K5 | y141] - (3.35)

This is a standard Wiener/LMMSE problem with “desired signal” &; and “observation”
Y-
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3.6.2 Wiener Solution = Kalman Gain

The Wiener/LMMSE solution has the form

K;=R;; R_; (3.36)

vy’

where (conditioning on y,.,_; is implicit)
Ry = E{®9:}, Ry = E{9u9i )
Using and independence of x; and wvy:
R;; = E{&y(Cra), +v)"} = E{z2] }C] = X, CT,
and

R;; = E{(Cy&), + vi.)(Cray, + vi.)"}
= CE{z,2] }CT + B{v,vI}

Substituting into (3.36) yields

K, =%;Cl (C:Z;CT + R,) ', (3.37)

which is exactly the Kalman gain. Defining the innovation covariance
S, 2 C.2. Cl + Ry,

we can write K = X, C} S, "
Finally, returning from centered variables to the original ones,

.= Ki(y, — Chity) = &= a5 + Ky, — Crity),

which matches the usual Kalman measurement update.

3.6.3 Interpretation: “Recursive” Wiener Filtering

Equation (3.37)) shows that the Kalman gain is a Wiener/LMMSE filter, but computed

online using time-varying statistics:

e In Wiener filtering, the gain depends on (typically constant) second-order statistics

such as R,, and R,,.

e In Kalman filtering, the corresponding statistics are conditional on past data and
evolve with time through the prediction step, via 3, .

What makes it recursive? The key recursion is that 3, (the prior covariance) is
produced by propagating the previous posterior covariance through the dynamics:

Sp = AZio1 AL + QL

so the “Wiener statistics” used to compute K, are updated at every time step.
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What makes it time-varying? Even if Ay, C} are constant, the conditional covari-
ance X, changes over time (especially during transients), and the noise covariances
Q._,, R may also vary with time. Therefore, the gain Ky is typically time-varying,
unlike the classical stationary Wiener filter.

Takeaway. Kalman filtering can be viewed as applying a Wiener/LMMSE design at
each time step:

“Kalman gain” = “Wiener filter” computed from current conditional covariances.

Under linear—Gaussian assumptions, this recursive Wiener viewpoint is exactly equivalent
to the Bayesian posterior-mean estimator.

3.7 Worked Kalman Filter Examples (1D and 2D)

In this section we work through concrete Kalman-filter updates by hand. We emphasize
the two steps at each time k:

Predict: (41, X-1) — (Z,%;), Update: (z,,%,,y;) — (Tk, Xk).
We allow time-varying noise covariances Q,_; and Ry.

3.7.1 Example 1 (1D): Random Walk with Noisy Measurements

Model. We estimate a scalar state x; € R from scalar measurements y; € R using

Tp = Tp—1 + Wi—1, wi—1 ~ N (0, Q-1), (3.38)
Yk = Tk + Vg, vp ~ N (0, Ry). (3.39)

Thus A =1, C' =1, and there is no control input.

Kalman filter equations (scalar form). Prediction:

T, = Tp1, Y, =Xk + Q1. (3.40)

Update:
Se =N+ Ry Kn— i—i (3.41)
T =2, + Ky (ye — ), Yp=01-Ky)X,. (3.42)

Numerical values. Assume prior
o =0, Yo = 1.
Let the noise variances vary with time:
Qo = 0.10, R; = 0.40, @1 = 0.20, Ry, = 0.10.
Suppose we receive measurements

Y1 = 120, Yo = 0.90.
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Step £ = 1. Prediction:
T =20 =0, ¥ =20+ Qo =1+0.10 = 1.10.
Innovation and gain:

2 110 ~ 0.7333.

=¥ =1.10 +0.40 = 1. K =21 =
S =% + Ry 0+ 0.40 = 1.50, i

Update:
#y =2; + Ki(y1 —27) =04 0.7333(1.20 — 0) ~ 0.8800,

Sy = (1— K%y = (1—0.7333) - 1.10 ~ 0.2933.

Step k£ = 2. Prediction:
5 = 21 ~ 0.8800, ¥, =21+ @1~ 0.2933 + 0.20 = 0.4933.

Innovation and gain:

Y 0.4933
Sy = Y7 + Ry ~ 0.4933 + 0.10 = 0.5933 Ky = 22~ 22729 L (0.8316.
2= 2 0 + ’ 278, T 0.5933

Update:
To = Ty + Ka(y2 — &5 ) =~ 0.8800 + 0.8316(0.90 — 0.8800) ~ 0.8966,
Yo=(1—- K%, =~ (1—0.8316) - 0.4933 ~ 0.0831.

Interpretation. At k = 2, the sensor is more reliable (Rs is smaller), so Ky increases
and the filter trusts y» more strongly. The posterior uncertainty > decreases accordingly.

3.7.2 Example 2 (2D): Constant-Velocity Model with Position Measure-

ments
_ | Pk
L = |:’Uk::| )

Model. Now the state is 2D:
where py, is position and vy, is velocity. For a sampling period At = 1, the constant-velocity
dynamics are

Iy = Awk_l + Wi.—1, A

|:(1) {| s Wr—1 ~ N(O, Qk—l)' (343)

Assume we measure position only:

ye = Cax+0™,  C=[1 0], o™ ~N(0,Ry). (3.44)

Kalman equations. Prediction:
&, = A%y, S =A%, AT+ Q, .
Update:
re =1y — Cx,, Sy =CX,. CT + Ry, K,=%,C"s",
x = x;, + Kyry, X, =I-K,C)%, .
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Numerical values (one full update at k£ = 1). Assume initial posterior:

.o 10
w=li] ==l

Choose a time-varying process noise (here, at k = 0):

0.10 0
Q) = { 0 0‘201 , Ry = 0.50.

Suppose the first measurement is y; = 0.70.

Prediction to k = 1. _ o
. . 11 0] H
T, = Az = 0 = .

For the covariance, first compute

AS AT — AAT — 1 1] [1 0}:{2 1]'

s-_ |2 1] [010 0] [210 1
| 0 020 |1 1.20]°

Update at £ = 1. Innovation:

Then add Q:

1

=y —Czxy =070—[1 0] L

] =0.70 = 1 = —0.30.

Innovation covariance (scalar):
Sy =CE[C" + Ry =%y, + Ry = 2.10+ 0.50 = 2.60.

Kalman gain:

Cegen [210 17[] 1 [210] 1 [0.8077
Ki=2,005 _[ 1 1.20] M ~ |1 |260  [0.3846]

Posterior mean:
R . 1 0.8077 0.7577
$1:$1+K1T1:|::|+|: :|(—O30)z|: :|
Posterior covariance:

Here

K.C— [0.8077} 1 0] = [0.8077 0

0.1923 0
0.3846 0.3846 0]  T-KC= { ] '

—0.3846 1

Thus

~
~

0.1923 O} {2.10 1]

5 _ 0.4038 0.1923
V7103846 1] 1 1.20 '

0.1923 0.8154
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Interpretation. Even though we only measure position, the update changes both po-
sition and velocity: the position residual r; is partially attributed to velocity through the
state covariance (and the coupling in the dynamics). The gain vector K; shows how a
scalar measurement updates each state component.

3.7.3 Python Implementation
We consider a 1D tracking problem with a 2D state:

_ | Pk
L = |:Uk:| )
where p;. is position and vy is velocity at discrete time k.

Constant-velocity (CV) motion model. With sampling period At > 0, a standard
linear CV model is

1 At

T, = Az + wy_q, A= {O 1

:| s Wip_1 ~ N(O, Qk—l)‘ (345)

The process noise wy_; captures unmodeled effects (e.g., small accelerations). In general
we allow time-varying uncertainty:

Qp1 = 0.
Position-only measurement model. We assume that we measure position only:
y, = Cxj, + vy, C=11 0], v, ~ N(0, Ry), (3.46)

where y,, € R is a scalar observation and Ry € R'! is a (time-varying) measurement
noise covariance (i.e., variance).

Independence assumptions. We assume the standard Kalman conditions:

wy L v; VE, 7, wj, and v are white and zero-mean.

import numpy as np
import matplotlib.pyplot as plt

# 2D Kalman Filter (CV model)
# State: z_k = [p_k, v_k] T

# Measurement: y_k = p_k + noise
# Time-wvarying {_k, R_k
# _____________________________

def simulate_cv_1d(T=80, dt=1.0, q_base=0.05, r_base=0.4, seed=0):
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rng = np.random.default_rng(seed)

=
]

np.array ([[1.0, dt],
[0.0, 1.011)
C = np.array([[1.0, 0.0]]) # measure position only

# True tntttal state
x = np.array([0.0, 1.0]) # pO, w0

X = np.zeros((T + 1, 2), dtype=float)
y = np.zeros(T + 1, dtype=float)

# Time-varying noise levels
Q_list = []
R_list = []

# Make time-varying R_k (sensor gets worse in the middle)
for k in range(T + 1):
bump = 1.0 + 2.5 * np.exp(-0.5 *x ((k - 0.6 *x T) / (0.12 * T))
*x 2)
Rk = np.array([[r_base * bumpl], dtype=float) # scalar
measurement variance
R_list.append (Rk)

# Make time-varying Q_k (process more uncertain near the end)
for k in range(T):
ramp = 1.0 + 1.5 * (k / max(T - 1, 1))
# Stmple diagonal @_k on [p, v]; you can also use a phystically-
motivated accel model.
Qk = np.array([[q_base * ramp, 0.0],
[0.0, 2.0 * g_base * rampl]], dtype=
float)
Q_list.append(Qk)

# Generate trajectory + measurements

X[0] = x

y[0] = (C @ x.reshape(-1, 1)).item() + rng.normal (0.0, np.sqrt(
R_list [0].item()))

for k in range(l, T + 1):
# Process mnoise

wk = rng.multivariate_normal (mean=np.zeros(2), cov=Q_list[k -
11)

x = A Q@ x + wk

X[k] = x

# Measurement noise
vk = rng.normal (0.0, np.sqrt(R_list[k].item()))
y[k] = (C @ x.reshape(-1, 1)).item() + vk

return A, C, X, y, Q_list, R_list

def kf_filter(A, C, y, Q_list, R_1list, xO_hat, SigmaO, u=None, B=None):
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75 T = len(y) - 1
76 n = A.shape [0]
77 m = C.shape [0]

79 if u is None:

80 u = np.zeros ((T, 1))

81 if B is None:

82 B = np.zeros((n, 1))

84 x_hat = np.zeros((T + 1, n), dtype=float)

85 x_hat_minus = np.zeros((T + 1, n), dtype=float)

86 Sigma = np.zeros((T + 1, n, n), dtype=float)

87 Sigma_minus = np.zeros((T + 1, n, n), dtype=float)
88 K = np.zeros((T + 1, n, m), dtype=float)

89 r = np.zeros(T + 1, dtype=float)

91 # Inttialize
92 x_hat [0] = xO_hat
93 Sigma [0] SigmaO

95 # (Optional) incorporate y0O as an update; here we do a standard
update at k=0

96 # Prediction at k=0 ts trivial (use inittal prior as predicted),
then update with yO

97 x_hat_minus [0] = x_hat [0]

98 Sigma_minus [0] = Sigma[0]

99 SO = (C @ Sigma_minus[0] @ C.T + R_1list [0])

100 K[0] = (Sigma_minus[0] @ C.T) @ np.linalg.inv(S0)

101 r[0] = y[0] - (C @ x_hat_minus [0].reshape(-1, 1)).item()

102 x_hat [0] = x_hat_minus[0] + (K[0] * r[0]).reshape(-1)

103 Sigma [0] = (np.eye(n) - K[0] @ C) @ Sigma_minus [0]

104

105 # Main loop

106 for k in range(l, T + 1):

107 # Predict

108 x_hat_minus[k] = (A @ x_hat[k - 1].reshape(-1, 1) + B @ ulk -
1] .reshape(-1, 1)) .reshape(-1)

109 Sigma_minus[k] = A @ Sigmalk - 1] @ A.T + Q_list[k - 1]

110

111 # Update

112 Sk = C @ Sigma_minus[k] @ C.T + R_list [k]

113 K[k] = (Sigma_minus([k] @ C.T) @ np.linalg.inv(Sk)
114 r[k] = y[k] - (C @ x_hat_minus[k].reshape(-1, 1)).item()
115 x_hat [k] = x_hat_minus[k] + (K[k] * r[k]).reshape(-1)

117 # Covartance update (simple form; Joseph form %s more
numerically robust)
118 Sigmal[k] = (np.eye(n) - K[k] @ C) @ Sigma_minus [k]

120 return x_hat, Sigma, x_hat_minus, Sigma_minus, K, r
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126 A, C, X_true, y, Q_list, R_list = simulate_cv_1d(
127 T=120, dt=1.0,

128 q_base=0.04, r_base=0.25,

129 seed=3

132 # Prior (intentionally imperfect)
133 xO_hat = np.array([0.0, 0.0])

134 Sigma0 = np.array([[2.0, 0.0],

135 [0.0, 2.0]11)

137 x_hat, Sigma, x_hat_minus, Sigma_minus, K, r = kf_filter(
138 A=A, C=C, y=y,

139 Q_list=Q_list, R_list=R_1list,
140 x0_hat=x0_hat, SigmaO=Sigmal

146t = np.arange(len(y))

us plt.figure ()

119 plt.plot(t, X_truel:, 0], label= )

50 plt.plot(t, y, label= )

51 plt.plot(t, x_hat([:, 0], label= )
152 plt.xlabel( )

155 plt.ylabel( )

154 plt.title(

155 plt.legend ()
156 plt.grid(True)

158 plt.figure ()

50 plt.plot(t, X_truel[:, 1], label= )

60 plt.plot(t, x_hat[:, 1], label= )
161 plt.xlabel( )

162 plt.ylabel( )

163 plt.title(

162 plt.legend ()

165 plt.grid(True)

166

167 plt.figure ()

165 plt.plot(t, Sigmal:, 0, 0], label=
6o plt.plot(t, Sigmal:, 1, 1], labels=
70 plt.xlabel( )

171 plt.ylabel( )

72 plt.title(

173 plt.legend ()

172 plt.grid(True)

176 plt.show ()

Listing 2: Kalman Filter implementation
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3.8 Kalman Filter Algorithm and Intuition
3.8.1 Kalman Filter Algorithm (Predict-Update)

We now summarize the Kalman filter as a simple predict—update recursion. We allow
time-varying system matrices and noise covariances.

Input: {Ag, By, Cy}; {Q,, Ri}; initial (&g, 3p); measurements {y; }r>1; inputs
{urtr>o
Output: Filtered estimates {(Zg, Xx) }r>1
1 fork=1,2,...do
// Prediction (Time Update)
2 @I; — Akik—l + Bruy_q
3 | B AS A FQ,

// Update (Measurement Update)

4 ri < Y, — Cry // innovation
5 S+ CkE,;CkT + Ry, // innovation cov.
6 K, «+X.C!S;! // Kalman gain
7 .’,Aljk — CAU]; + Kk’l"k

// or Joseph form (3.51)

Conceptual summary. The Kalman filter alternates between:
e Predict: use the model to propagate mean and covariance forward.
e Correct: use the measurement to reduce uncertainty and refine the estimate.

This recursion is the closed-form Gaussian solution of the Bayes filter for linear systems.

3.8.2 Intuition I: The Role of the Kalman Gain

At time k, the Kalman gain is

K, =%,C[(C:Z,Cl + Ry) ' =%,C[S;", (3.47)

where

S, =C3,C] + Ry (3.48)

is the innovation covariance.
Equation (3.47) makes explicit that K, is an automatic weighting between the model
prediction and the measurement:

e Large measurement noise R implies S}, is large, hence K becomes small. The
update term K7y is damped, and the filter trusts the model (prediction) more.

e Large prior uncertainty 3, makes the term X, CT large, and therefore increases
K ;.. The filter trusts the measurement more because the prediction is uncertain.

Thus, K plays the role of a data-driven mixing coefficient that balances model reli-
ability versus sensor reliability at each time step.
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3.8.3 Intuition II: Innovation = New Information

The innovation (measurement residual) is defined as

Ty =y, — Crxy . (3.49)

The term Cjx,, is what the model predicts the measurement should be. The residual 7
captures the component of the measurement that is not explained by the prediction.
Two limiting cases are instructive:

o If r;, =~ 0, the measurement agrees with the prediction, so the update x, = &, +
K r; makes only a small correction.

o If |7y is large, the measurement disagrees with the prediction. The correction is
strong, but it is still modulated by the gain K (i.e., by uncertainty).

In this sense, 7y is the new information contained in y, relative to what was already
implied by past measurements and the system model.

3.8.4 Intuition III: Why Uncertainty Shrinks After the Update

The posterior covariance update (basic form) is

= (I — K,.Cp)=5. (3.50)

This shows that the measurement reduces uncertainty only along directions that are

observed by the sensor. Indeed, the measurement model maps the state into measurement

space through C'; therefore, only components of x; that influence y, can be corrected.
Geometrically:

e The prediction step propagates uncertainty through dynamics and injects process
noise (via Q,_,), typically ezpanding the covariance ellipsoid.

e The update step uses the measurement to contract uncertainty in the observed
subspace, by multiplying by (I — K;C}).

Unobserved directions remain uncertain (or may continue to grow during prediction).
Remark (numerically robust covariance update). In implementations one often

uses the Joseph form, which preserves symmetry and positive semidefiniteness better in
finite precision:

= - K;CE, (I - K,.Cp)' + K1 R.K| . (3.51)

3.9 Practical Considerations
3.9.1 When Assumptions Are Violated

The classical Kalman filter is exact (and optimal in the MMSE sense) for linear dynamics,
linear observations, and Gaussian noise. When these assumptions do not hold, the
algorithm can still be used as an approximation, but performance may degrade, and in
extreme cases the filter may become inconsistent (covariance too small) or even diverge.
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Nonlinear dynamics and/or nonlinear observations. In many systems the state
and measurement models take the nonlinear form

T = f(:vk_l,uk_l) + Wwi—1, Y = h(mk) + Vg, (352)

with wy_; ~ N(0,Q,_,) and vy ~ N (0, R;). In this case, the Bayes filter recursion
remains valid, but the posterior is generally not Gaussian, so it cannot be represented
exactly by a mean and covariance.

Common approximations include:

e Extended Kalman Filter (EKF): linearize f and h around the current estimate
using Jacobians, then apply a Kalman-like update in the locally linearized model.

e Unscented Kalman Filter (UKF'): propagate a deterministic set of sigma points
through f and h to approximate mean/covariance without explicit Jacobians.

e Particle filters: approximate the belief by a weighted set of samples, enabling
nonlinear and non-Gaussian inference at higher computational cost.

Non-Gaussian noise, heavy tails, and outliers. If the noise is heavy-tailed (e.g.,
contains outliers), the Gaussian likelihood implicit in the Kalman update may assign too
much influence to corrupted measurements. In practice this can lead to large residuals
that cause erroneous corrections. A large literature studies robust variants, for example
replacing the quadratic loss underlying MMSE with robust losses (Huber/Tukey), or
modeling the noise with heavy-tailed distributions (e.g., Student-t), which effectively
downweights outliers.

Model mismatch and incorrect uncertainty specification. FEven when the model
is linear, performance depends crucially on how well Q,_; (process uncertainty) and
R;; (measurement uncertainty) capture reality. If they are poorly tuned, the filter may
become:

e Sluggish (too much trust in the model),
e Noisy (too much trust in measurements),
e Inconsistent (covariance underestimates true error),

e Divergent (errors grow and the estimate becomes unstable).

Takeaway. The Kalman filter is only as good as the assumed model and its uncertainty
description: Q,_;, R encode what we do not know.

3.9.2 Effect of Tuning Q, and Ry
The tuning intuition can be read directly from the gain expression

K, =3,C] (C:Z;C] +Ry,) . (3.53)
Recall also that the prior covariance is produced by the prediction step:

.= A A Q. (3.54)
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Increasing Q,_, (more process noise). From (3.54), increasing Q,_, increases X,
which typically increases K, in . Therefore the update term K7, becomes larger.

Behavior: the filter trusts measurements more. This makes the estimate more re-
sponsive to changes, but typically noisier.

Increasing R, (more measurement noise). From , increasing Ry increases
the denominator C, X, C| + Ry, thereby decreasing K.

Behavior: the filter trusts the model prediction more. This makes the estimate
smoother, but typically slower to react to real changes.

A useful scalar intuition (1D case). If C}, =1 and everything is scalar,

Xy

=k Y=+ Qr.
Z;—FR;C k k—1 le

Ky

Hence:

Qe1t= X, T= K1, Rt= K. l.
This explicitly shows how () and R control the model-versus-measurement weighting.
Practical implication. Tuning Q,_; and Ry is not merely numerical housekeeping:

it encodes the designer’s belief about uncertainty and determines the filter’s qualitative
behavior.

3.10 Filtering vs. Smoothing and the Batch Perspective
3.10.1 Filtering vs. Smoothing
Consider a linear-Gaussian state-space model and a finite sequence of measurements y, ..

Filtering (online / causal inference). The Kalman filter computes the filtering
distribution

p(@i | Y1), (3.55)

which depends only on measurements available up to time k. The output of the filter is
the posterior mean and covariance

("ika Ek)a

and the recursion is causal and suitable for real-time operation.

Smoothing (offline / non-causal inference). If all measurements y,.; are available,
we may instead compute the smoothing distribution

p(xk | Yrr), (3.56)

which uses both past and future measurements relative to time k. This yields the
smoothed estimates
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Key property. Smoothing can never be worse than filtering in terms of uncertainty:

> <%, Vk (3.57)

where < denotes the Loewner (positive semidefinite) ordering. Intuitively, future mea-
surements contain information about past states and can be used to retrospectively cor-
rect earlier estimates.
Conceptual summary.

o Filtering: real-time, causal, uses y ..

e Smoothing: offline, non-causal, uses y;.;.

e Future data always improves (or leaves unchanged) past state estimates.

3.10.2 Kalman Smoothing: Rauch—Tung—Striebel (RTS) Algorithm

For linear—Gaussian systems, smoothing can be performed efficiently by a backward pass
after Kalman filtering. The most common smoother is the Rauch—Tung—Striebel
(RTS) smoother.

Forward pass (Kalman filter). Run the standard Kalman filter for £ = 0:7" and
store:

A~

T, Ty, Xk, 2/;+1'

Backward pass (smoothing recursion). For k=T —1,...,0, define the smoother
gain

Gr =i AL (Z) " (3.58)

The smoothed mean is updated as

& = @+ Ge(@),, — i), (3.59)

and the smoothed covariance as

I S N Gk(z:,j+1 . 2,;“)(;;. (3.60)

Interpretation. The backward correction term &, , — &,,, represents information
revealed by future measurements. The smoother gain G} propagates this information
backward through the dynamics.

3.10.3 Batch View: MAP Estimation of the Entire Trajectory

Filtering and smoothing can also be understood from a batch optimization viewpoint.
Under the linear-Gaussian model, estimating the entire state trajectory xg.r is equivalent
to a maximum a posteriori (MAP) problem.
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Batch M AP formulation. The posterior over the full trajectory is Gaussian, and the
MAP estimate solves

T T
mS:T = argmin Z ||yk — Ck$k;||2 -1+ Z ||$k — Akmk_l — Bk“k—l”éfl + ||$0 — @0”224 .
To.T 1 k 1 k—1 0

(3.61)
This is a quadratic least-squares problem with a block-tridiagonal structure in time.

Relationship to Kalman filtering and smoothing.
e Kalman filtering computes the MAP estimate incrementally using only past data.

e Kalman smoothing computes the same solution as (3.61]), but efficiently, without
explicitly forming or solving the full batch problem.

e Both are algorithmic realizations of Gaussian Bayesian inference.

Big picture.
e Filtering: online solution of a growing inference problem.
e Smoothing: offline solution using all data.
e Batch MAP: global optimization perspective.

Kalman filtering and smoothing are not ad hoc algorithms; they are efficient recursive
solvers for structured Gaussian least-squares problems.
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