
Lecture 12 & 13: Optimal Filters
Notes

Konstantinos Chatzilygeroudis
costashatz@upatras.gr

December 21, 2025

Contents

1 From Hand-Crafted to Optimal Filters 3

2 Wiener Filtering: The Optimal Linear MMSE Estimator 4
2.1 Assumptions and Modeling . 4
2.2 Linear MMSE Objective . 4

2.2.1 Wiener–Hopf (Normal) Equations and Closed-Form Solution . . . 5
2.3 Detailed Derivation of the Wiener Filter 5

2.3.1 Objective Function . 6
2.3.2 Expanding the Quadratic Form 6
2.3.3 Evaluating Each Term . 6
2.3.4 Final Cost Function . 7
2.3.5 Gradient and Optimality Condition 7
2.3.6 Computing Rxd and Rxx from the Observation Model 7

2.4 Using the Wiener Filter in Practice: Offline Targets vs. Second-Order
Statistics . 8
2.4.1 Case 1: When the desired signal d[n] is available (supervised /

training mode) . 8
2.4.2 Case 2: When only correlations are known or can be estimated

(unsupervised / model-based mode) 9
2.5 Worked Examples . 10

2.5.1 Example 1: Pure Denoising with A = I (Known Covariances) . . 10
2.5.2 Example 2: DenoisingWhen d[n] is Known During Training (Learn-

ing W) . 11
2.5.3 Example 3: Deconvolution / Mixing with a Nontrivial A 12

2.6 M -tap FIR Wiener Filtering (Time-Domain Wiener–Hopf Design) 12
2.6.1 Stacked Data Vector and FIR Parameterization 12
2.6.2 Designing the FIR Wiener Filter from Second-Order Statistics . . 13
2.6.3 Practical Wiener Filtering on Data (FIR Case) 14
2.6.4 Numeric Example (1D, M = 2): Supervised vs. Model-Based . . . 15
2.6.5 Python Implementation . 18

1

3 Kalman Filtering 22
3.1 Motivation: Why Kalman Filtering? . 22
3.2 State-Space Modeling . 23
3.3 Kalman Filter: Linear–Gaussian Assumptions 23
3.4 Kalman Filtering as Recursive Bayesian Estimation 24

3.4.1 Bayesian Filtering Recursion . 24
3.4.2 Kalman Filter: Prediction Step 25
3.4.3 Kalman Filter: Update Step . 25

3.5 Bayes Filtering: The General Framework 26
3.5.1 State, Controls, Measurements, and Belief 26
3.5.2 Probabilistic Assumptions (State-Space Model) 26
3.5.3 Deriving the Bayes Filter Recursion 26
3.5.4 Prediction via the Law of Total Probability 27
3.5.5 Bayes Filtering as Two Steps . 27
3.5.6 Kalman Filtering as a Special Case 28

3.6 Kalman Filter as Recursive Wiener Filtering 28
3.6.1 At Time k: A One-Step LMMSE Problem 28
3.6.2 Wiener Solution ⇒ Kalman Gain 29
3.6.3 Interpretation: “Recursive” Wiener Filtering 29

3.7 Worked Kalman Filter Examples (1D and 2D) 30
3.7.1 Example 1 (1D): Random Walk with Noisy Measurements 30
3.7.2 Example 2 (2D): Constant-Velocity Model with Position Measure-

ments . 31
3.7.3 Python Implementation . 33

3.8 Kalman Filter Algorithm and Intuition 37
3.8.1 Kalman Filter Algorithm (Predict–Update) 37
3.8.2 Intuition I: The Role of the Kalman Gain 37
3.8.3 Intuition II: Innovation = New Information 38
3.8.4 Intuition III: Why Uncertainty Shrinks After the Update 38

3.9 Practical Considerations . 38
3.9.1 When Assumptions Are Violated 38
3.9.2 Effect of Tuning Qk and Rk . 39

3.10 Filtering vs. Smoothing and the Batch Perspective 40
3.10.1 Filtering vs. Smoothing . 40
3.10.2 Kalman Smoothing: Rauch–Tung–Striebel (RTS) Algorithm . . . 41
3.10.3 Batch View: MAP Estimation of the Entire Trajectory 41

2

1 From Hand-Crafted to Optimal Filters

Classical filtering is often introduced through hand-crafted designs such as FIR/IIR filters,
moving averages, and standard bandpass or notch filters. In this paradigm, we first
choose a filter structure and then tune its parameters (e.g., cutoff frequencies, filter
order, window length) based on intuition about the spectrum. This works well when the
spectral separation between signal and noise is clear and stable.

In many real-world problems, however, the assumptions behind manual tuning are
fragile. Noise may be colored rather than white, and it may vary over time (nonstationary
behavior). Moreover, signal and noise spectra may overlap, so there is rarely a uniquely
“right” cutoff frequency. Different design choices therefore lead to different tradeoffs
between noise suppression and signal distortion, and it is not always obvious how to
select the best compromise.

This motivates a natural question:

Can we design a filter automatically, in an optimal way, once we state what
“optimal” means?

The optimal filtering viewpoint answers this by turning filter design into an estimation
problem. Instead of choosing a filter heuristically, we specify (i) a goal (e.g., estimate
or reconstruct a clean signal), (ii) a criterion (most commonly, minimize mean squared
error), and (iii) a model for the signal and noise (typically via second-order statistics).
The resulting filter is then derived as the one that achieves the best possible performance
under these assumptions.

In Wiener filtering, we consider a static (non-recursive) optimal linear estimator:
given a noisy observation process, we seek the linear filter that minimizes the mean
squared estimation error. This leads to the Wiener–Hopf equations and yields a closed-
form optimal solution in terms of correlation functions (or, equivalently, power spectral
densities). Wiener filtering is particularly useful when we can assume stationarity and
when a batch/offline filter is acceptable.

In Kalman filtering, we move from static estimation to dynamic estimation. Here
the quantity of interest evolves over time according to a state-space model, and mea-
surements arrive sequentially. Rather than computing a single batch solution, we aim
for a recursive estimator that updates its belief about the state whenever a new mea-
surement becomes available. Under linear dynamics, linear measurements, and Gaussian
noise assumptions, the Kalman filter provides the optimal minimum mean squared error
(MMSE) estimate of the state, and it does so efficiently by propagating only the current
estimate and its uncertainty (covariance).

Thus, Wiener and Kalman filtering can be seen as two classical instances of opti-
mal filtering: Wiener filtering addresses optimal linear MMSE estimation in (typically)
stationary settings, while Kalman filtering generalizes the idea to time-varying systems
with a principled recursive update. Together, they illustrate the central theme of this
module: once we define a model and an optimality criterion, the filter follows from the
mathematics rather than from ad hoc tuning.

3

2 Wiener Filtering: The Optimal Linear MMSE Es-

timator

We now derive the Wiener filter, i.e., the classical optimal linear estimator that minimizes
mean squared error under standard second-order (and, optionally, Gaussian) assumptions.

2.1 Assumptions and Modeling

Wiener filtering can be interpreted as the Bayesian MMSE solution (posterior mean) in a
linear–Gaussian setting, and equivalently as the linear MMSE (LMMSE) solution when
only second-order statistics are assumed. Concretely, we adopt the following model.

1) Linear observation model. We assume that the measurements x[n] ∈ Rp are
generated from the unknown (clean) signal d[n] ∈ Rq via

x[n] = Ad[n] + v[n], (2.1)

where A ∈ Rp×q is a known linear operator. For denoising, A = I; for deconvolution or
deblurring, A is often a convolution operator.

2) Second-order signal model (WSS). The clean signal d[n] is modeled as a (wide-
sense) stationary random process, characterized by its autocorrelation Rdd[k] (or, equiv-
alently, its power spectral density Sdd(ω) in the scalar/WSS setting).

3) Additive noise model (WSS) and signal–noise uncorrelatedness. The noise
v[n] is modeled as WSS with autocorrelation Rvv[k] (or PSD Svv(ω)), and we assume it
is uncorrelated with the signal:

Rdv[k] = 0. (2.2)

4) Gaussianity (Bayesian justification). If, additionally, d and v are modeled as
Gaussian processes, then p(d | x) is Gaussian and the posterior mean is linear in x. This
implies that the MMSE estimator coincides with the optimal linear estimator.

5) Restriction to linear estimators. We search for an estimator within the class of
linear mappings, written (at a fixed time index n) as

d̂[n] = W T x[n], (2.3)

where W ∈ Rp×q (so that W Tx ∈ Rq). In the LTI/WSS setting, this linear mapping
corresponds to convolution with an impulse response (i.e., an LTI filter). The Wiener
filter is the particular choice of W that minimizes mean squared error.

2.2 Linear MMSE Objective

We seek the linear estimator that minimizes the expected squared reconstruction error:

W ⋆ = argmin
W

E
[∥∥d[n]−W Tx[n]

∥∥2

2

]
. (2.4)

4

For notational simplicity, we drop [n] and write x,d when no confusion is possible.
Expanding the quadratic form yields

J(W) = E
[
(d−W Tx)T (d−W Tx)

]
= tr

(
E{ddT}

)
− 2 tr

(
W TE{xdT}

)
+ tr

(
W TE{xxT}W

)
. (2.5)

Define the (cross-)correlation matrices

Rdd ≜ E{ddT}, Rxd ≜ E{xdT}, Rxx ≜ E{xxT}. (2.6)

Then (2.5) can be written compactly as

J(W) = tr(Rdd)− 2 tr
(
W TRxd

)
+ tr

(
W TRxxW

)
. (2.7)

2.2.1 Wiener–Hopf (Normal) Equations and Closed-Form Solution

Differentiating J(W) with respect to W and setting the gradient to zero yields the
normal (Wiener–Hopf) equations:

∂J

∂W
= 0 =⇒ RxxW ⋆ = Rxd. (2.8)

Assuming Rxx is invertible, we obtain the Wiener/LMMSE solution

W ⋆ = R−1
xx Rxd. (2.9)

Using the measurement model (2.1) and the assumption that v ⊥ d, we can express
Rxd and Rxx in terms of the model covariances. Indeed,

Rxd = E{(Ad+ v)dT} = AE{ddT}+ E{vdT} = ARdd, (2.10)

Rxx = E{(Ad+ v)(Ad+ v)T}
= ARddA

T +Rvv, (2.11)

where Rvv ≜ E{vvT}. Substituting (2.10)–(2.11) into (2.9) gives the commonly used
closed form:

W ⋆ =
(
ARddA

T +Rvv

)−1
ARdd. (2.12)

Remark (correlation vs. covariance). Under the standard assumption of zero-mean
processes, E{x} = 0 and E{d} = 0, the correlation and covariance matrices coincide:

Cov[x,x] = E
[
(x− µx)(x− µx)

T
]
= E{xxT} = Rxx, (2.13)

and similarly

Cov[x,d] = E
[
(x− µx)(d− µd)

T
]
= E{xdT} = Rxd. (2.14)

2.3 Detailed Derivation of the Wiener Filter

We now provide a detailed derivation of the Wiener filter by explicitly minimizing the
mean squared error over the class of linear estimators. Throughout, we assume real-valued
random vectors and zero-mean processes.

Let x ∈ Rp denote the observation vector, d ∈ Rq the desired (clean) signal, and
W ∈ Rp×q the linear estimator matrix such that d̂ = W Tx ∈ Rq.

5

2.3.1 Objective Function

The linear MMSE objective is

J(W) = E
[
∥d−W Tx∥22

]
= E

[
(d−W Tx)T (d−W Tx)

]
. (2.15)

Using the trace operator, which allows convenient manipulation of matrix-valued expres-
sions, we can write

J(W) = E
[
tr
(
(d−W Tx)T (d−W Tx)

)]
= tr

(
E
[
(d−W Tx)T (d−W Tx)

])
, (2.16)

where linearity of the trace and expectation has been used.

2.3.2 Expanding the Quadratic Form

We first expand the quadratic term:

(d−W Tx)T (d−W Tx) = dTd− dTW Tx− xTWd+ xTWW Tx. (2.17)

Substituting this expansion into the objective yields

J(W) = tr
(
E[dTd]

)
− tr

(
E[dTW Tx]

)
− tr

(
E[xTWd]

)
+ tr

(
E[xTWW Tx]

)
. (2.18)

2.3.3 Evaluating Each Term

First term. Using dTd = tr
(
ddT

)
, we obtain

tr
(
E[dTd]

)
= tr

(
E[ddT]

)
= tr(Rdd), (2.19)

where Rdd ≜ E[ddT].

Second term. Using cyclic permutation of the trace,

tr
(
E[dTW Tx]

)
= E

[
tr
(
dTW Tx

)]
= E

[
tr
(
W TxdT

)]
= tr

(
W T E[xdT]

)
= tr

(
W TRxd

)
, (2.20)

where Rxd ≜ E[xdT].

Third term. Similarly,

tr
(
E[xTWd]

)
= E

[
tr
(
xTWd

)]
= E

[
tr
(
WdxT

)]
= tr

(
W E[dxT]

)
= tr(WRdx), (2.21)

with Rdx = RT
xd. Using tr(A) = tr

(
AT

)
, this becomes

tr(WRdx) = tr
(
RxdW

T
)
= tr

(
W TRxd

)
. (2.22)

6

Fourth term. Finally,

tr
(
E[xTWW Tx]

)
= E

[
tr
(
xTWW Tx

)]
= E

[
tr
(
W TxxTW

)]
= tr

(
W T E[xxT]W

)
= tr

(
W TRxxW

)
, (2.23)

where Rxx ≜ E[xxT].

2.3.4 Final Cost Function

Collecting all terms, the objective function becomes

J(W) = tr(Rdd)− 2 tr
(
W TRxd

)
+ tr

(
W TRxxW

)
. (2.24)

2.3.5 Gradient and Optimality Condition

We now differentiate J(W) with respect to W . The required matrix calculus identities
are:

∂

∂W
tr
(
W TA

)
= A,

∂

∂W
tr
(
W TAW

)
= (A+AT)W .

Since Rxx is symmetric, Rxx = RT
xx, we obtain

∂J

∂W
= −2Rxd + 2RxxW . (2.25)

Setting the gradient to zero yields the Wiener–Hopf equations

RxxW ⋆ = Rxd, (2.26)

which lead directly to the Wiener filter solution W ⋆ = R−1
xxRxd.

2.3.6 Computing Rxd and Rxx from the Observation Model

We now explicitly compute the cross-covariance Rxd and the observation covariance Rxx

from the assumed linear measurement model. Recall that the observations are generated
according to

x[n] = Ad[n] + v[n], (2.27)

where E[d] = 0, E[v] = 0, and the noise is uncorrelated with the signal, i.e., v ⊥ d.

Cross-covariance between observation and signal. By definition,

Rxd ≜ E{xdT}. (2.28)

Substituting the observation model (2.27) gives

Rxd = E{(Ad+ v)dT}
= AE{ddT}+ E{vdT}. (2.29)

Since v and d are uncorrelated, the second term vanishes: E{vdT} = 0. Therefore,

Rxd = ARdd. (2.30)

7

Auto-covariance of the observations. Similarly, the observation covariance is

Rxx ≜ E{xxT} = E{(Ad+ v)(Ad+ v)T}. (2.31)

Expanding the product yields

Rxx = AE{ddT}AT +AE{dvT}+ E{vdT}AT + E{vvT}. (2.32)

Again, uncorrelatedness implies that the cross terms vanish:

E{dvT} = E{vdT} = 0.

Thus, the observation covariance reduces to

Rxx = ARddA
T +Rvv, (2.33)

where Rvv ≜ E{vvT}.

Remark. Equations (2.30) and (2.33) show that the Wiener filter depends only on the
linear operator A and on second-order statistics of the signal and noise. No higher-order
moments are required, and Gaussianity is only needed if one wishes to interpret the
solution as the full Bayesian MMSE estimator rather than the linear MMSE solution.

2.4 Using the Wiener Filter in Practice: Offline Targets vs.
Second-Order Statistics

The Wiener solution is written in terms of correlation matrices such as Rxx and Rxd,
which are expectations over the (unknown) data-generating process. In practice, we
rarely have access to these expectations directly, and we must approximate them from
data. There are two common regimes:

2.4.1 Case 1: When the desired signal d[n] is available (supervised / training
mode)

In some applications we can obtain (at least occasionally) pairs of observations and ground
truth,

(x[n],d[n]), n = 1, . . . , N,

for example from calibration experiments, high-quality sensors, offline post-processing,
or simulated data. In this setting, the Wiener filter can be learned by empirical risk
minimization: we minimize the sample mean squared error

Ŵ = argmin
W

1

N

N∑
n=1

∥∥d[n]−W Tx[n]
∥∥2

2
. (2.34)

This is simply multivariate least squares (linear regression) with inputs x[n] and targets
d[n].

Define the data matrices

X ≜ [x[1] · · · x[N]] ∈ Rp×N , D ≜ [d[1] · · · d[N]] ∈ Rq×N .

8

Then (2.34) can be written as minW ∥D −W TX∥2F , whose normal equations yield

Ŵ =
(
XXT

)−1
XDT (assuming XXT is invertible). (2.35)

Equivalently, introducing the sample correlation estimates

R̂xx =
1

N

N∑
n=1

x[n]x[n]T =
1

N
XXT , R̂xd =

1

N

N∑
n=1

x[n]d[n]T =
1

N
XDT ,

we recover the familiar Wiener form

Ŵ = R̂
−1

xx R̂xd. (2.36)

Online use after training. Once Ŵ is learned, deployment is fully online and ex-
tremely cheap: for each incoming observation x[n] we compute

d̂[n] = Ŵ
T
x[n].

If the environment drifts, we may update Ŵ online using recursive least squares (RLS)
or stochastic gradient descent on the instantaneous squared error ∥d[n] −W Tx[n]∥22
whenever ground truth becomes available.

2.4.2 Case 2: When only correlations are known or can be estimated (unsu-
pervised / model-based mode)

Often, the clean signal d[n] is never observed directly, so we cannot form R̂xd from paired
samples. Nevertheless, Wiener filtering remains usable if we know (or can estimate) the
second-order statistics implied by the model.

A common situation is additive noise with A = I:

x[n] = d[n] + v[n], v ⊥ d.

From the identities derived earlier,

Rxx = Rdd +Rvv, Rxd = Rdd.

Thus the Wiener solution becomes

W ⋆ = (Rdd +Rvv)
−1Rdd. (2.37)

In the scalar LTI/WSS case, this corresponds in the frequency domain to the well-known
PSD form

H(ω) =
Sdd(ω)

Sdd(ω) + Svv(ω)
. (2.38)

9

How do we obtain the needed statistics? In practice, one typically proceeds by
one of the following routes:

• Noise-only segments / calibration: estimate Rvv (or Svv(ω)) from time inter-
vals where the signal is absent.

• Signal modeling: assume a parametric prior for d (e.g., AR/ARMA) and estimate
its parameters from data, which then determines Rdd (or Sdd(ω)).

• Domain knowledge: use a known or expected PSD shape for the signal and/or
noise (e.g., 1/f noise, band-limited signals).

• Nonstationary / online adaptation: estimate correlations over a sliding window
so that Svv(ω) or Sxx(ω) can adapt to changing conditions.

Online implementation viewpoint. Even when correlations are estimated, online
operation typically has a two-stage structure: (i) update the second-order statistics (or
their parametric models) from incoming data, and (ii) update or apply the filter to
produce d̂[n]. In stationary settings, the filter can be designed once and then applied
online. In slowly varying settings, one can re-estimate statistics and redesign the Wiener
filter periodically (blockwise) or continuously (adaptive filtering).

Summary. If d[n] is available (even occasionally), the Wiener filter can be learned from
data via least squares and then deployed online. If d[n] is not available, Wiener filtering
is still possible provided that the relevant second-order statistics (correlations/PSDs) are
known or can be estimated from the measurement stream under modeling assumptions.

2.5 Worked Examples

To make the Wiener filter concrete, we now work through small, low-dimensional exam-
ples. We use 2-dimensional signals so that every matrix and step is easy to inspect by
hand.

2.5.1 Example 1: Pure Denoising with A = I (Known Covariances)

Setup. Assume the observation model

x = d+ v, E[d] = 0, E[v] = 0, v ⊥ d,

with

Rdd =

[
2 1
1 2

]
, Rvv =

[
1 0
0 3

]
.

Then

Rxx = Rdd +Rvv =

[
3 1
1 5

]
, Rxd = E[xdT] = Rdd.

10

Wiener solution. The Wiener matrix is

W ⋆ = R−1
xxRxd =

[
3 1
1 5

]−1 [
2 1
1 2

]
.

Compute the inverse:

det(Rxx) = 3 · 5− 1 · 1 = 14, R−1
xx =

1

14

[
5 −1
−1 3

]
.

Therefore,

W ⋆ =
1

14

[
5 −1
−1 3

] [
2 1
1 2

]
=

1

14

[
9 3
1 5

]
=

[
9
14

3
14

1
14

5
14

]
.

Using the filter. Given a measured vector x ∈ R2, the estimate is

d̂ = W T
⋆ x.

For instance, if x = [1 2]T then

d̂ =

[9
14

1
14

3
14

5
14

] [
1
2

]
=

[11
14
13
14

]
.

Interpretation. The second component has larger noise variance (3 vs. 1), so the filter
shrinks and mixes components asymmetrically. The estimate is not simply αx; it exploits
correlation in d (off-diagonal terms ofRdd) to “borrow strength” from the cleaner channel.

2.5.2 Example 2: Denoising When d[n] is Known During Training (Learning
W)

Setup. Assume we haveN supervised training samples {(x[n],d[n])}Nn=1, with x[n],d[n] ∈
R2. Define

X = [x[1] · · · x[N]] ∈ R2×N , D = [d[1] · · · d[N]] ∈ R2×N .

The least-squares estimate of the Wiener matrix is

Ŵ = (XXT)−1XDT .

A tiny numeric example (N = 3). Consider the training set

x[1] =

[
1
0

]
, d[1] =

[
1
0

]
, x[2] =

[
0
1

]
, d[2] =

[
0
1

]
, x[3] =

[
1
1

]
, d[3] =

[
1
0

]
.

Then

X =

[
1 0 1
0 1 1

]
, D =

[
1 0 1
0 1 0

]
.

Compute

XXT =

[
2 1
1 2

]
, XDT =

[
2 0
1 1

]
.

Since

(XXT)−1 =
1

3

[
2 −1
−1 2

]
,

we obtain

Ŵ =
1

3

[
2 −1
−1 2

] [
2 0
1 1

]
=

1

3

[
3 −1
0 2

]
=

[
1 −1

3

0 2
3

]
.

11

Using the learned filter. For a new measurement x, the estimate is d̂ = Ŵ
T
x.

2.5.3 Example 3: Deconvolution / Mixing with a Nontrivial A

Setup. Assume a linear mixing (“blur”) operator

x = Ad+ v, A =

[
1 1
0 1

]
, Rdd =

[
1 0
0 1

]
, Rvv =

[
1 0
0 1

]
.

Then
Rxd = ARdd = A, Rxx = ARddA

T +Rvv = AAT + I.

Compute

AAT =

[
1 1
0 1

] [
1 0
1 1

]
=

[
2 1
1 1

]
, Rxx =

[
3 1
1 2

]
.

Invert:

det(Rxx) = 3 · 2− 1 · 1 = 5, R−1
xx =

1

5

[
2 −1
−1 3

]
.

Thus

W ⋆ = R−1
xxRxd =

1

5

[
2 −1
−1 3

] [
1 1
0 1

]
=

1

5

[
2 1
−1 2

]
.

Hence d̂ = W T
⋆ x with

W T
⋆ =

1

5

[
2 −1
1 2

]
.

Interpretation. Because A mixes the two components, the optimal estimator must
both (i) undo the mixing (like an inverse) and (ii) regularize against noise. The Wiener
filter performs exactly this tradeoff automatically through the covariance terms.

2.6 M-tap FIR Wiener Filtering (Time-Domain Wiener–Hopf
Design)

So far, we have considered a memoryless linear estimator of the form

d̂[n] = W Tx[n], x[n] ∈ Rp, d[n] ∈ Rq.

This is appropriate when x[n] contains all relevant information at time n. However, in
many signal processing settings the desired estimate at time n should depend on a window
of past observations, leading naturally to an M -tap causal FIR filter.

2.6.1 Stacked Data Vector and FIR Parameterization

To obtain an M -tap causal FIR estimator, we form an augmented data vector by stacking
the current and past measurements:

xn ≜


x[n]

x[n− 1]
...

x[n−M + 1]

 ∈ RpM . (2.39)

12

We then apply a linear estimator to xn:

d̂[n] = W Txn, W ∈ R(pM)×q. (2.40)

Partition W into M blocks,

W =


W 0

W 1
...

WM−1

 , W k ∈ Rp×q.

Then (2.40) can be written as

d̂[n] =
[
W T

0 W T
1 · · · W T

M−1

]


x[n]
x[n− 1]

...
x[n−M + 1]

 . (2.41)

Equivalently, this is precisely a causal FIR convolution:

d̂[n] =
M−1∑
k=0

W T
k x[n− k]. (2.42)

Thus, the usual LMMSE form d̂[n] = W Txn becomes an M -tap FIR Wiener filter simply
by choosing xn to include M past samples.

2.6.2 Designing the FIR Wiener Filter from Second-Order Statistics

The optimal FIR Wiener filter is obtained by minimizing the MSE over the stacked
estimator (2.40), i.e.,

W ⋆ = argmin
W

E
[∥∥d[n]−W Txn

∥∥2

2

]
.

The solution has the same algebraic form as before:

W ⋆ = R−1
xnxn

Rxnd, (2.43)

where
Rxnxn ≜ E{xnx

T
n} ∈ RpM×pM , Rxnd ≜ E{xnd[n]

T} ∈ RpM×q.

In the wide-sense stationary (WSS) case, these matrices have a block-Toeplitz struc-
ture. Define the lag-k observation autocorrelation matrices

Rxx[k] ≜ E{x[n]x[n− k]T}, k ∈ Z,

and the cross-correlation matrices

Rxd[k] ≜ E{x[n]d[n− k]T}.

13

Then

Rxnxn =


Rxx[0] Rxx[1] · · · Rxx[M − 1]
Rxx[−1] Rxx[0] · · · Rxx[M − 2]

...
...

. . .
...

Rxx[−M + 1] Rxx[−M + 2] · · · Rxx[0]

 ∈ RpM×pM , (2.44)

and

Rxnd =


Rxd[0]
Rxd[1]

...
Rxd[M − 1]

 ∈ RpM×q. (2.45)

For WSS x[n], we also have the symmetry relation

Rxx[−k] = Rxx[k]
T .

2.6.3 Practical Wiener Filtering on Data (FIR Case)

Suppose we are given measurements {x[n]}N−1
n=0 and either (i) a clean reference d[n] (su-

pervised / calibration) or (ii) a model that allows us to form the required correlations
(model-based).

Step 1: Choose the filter form. We select an FIR length M and use the stacked
vector xn as in (2.39).

Step 2: Estimate the required second-order statistics. A common unbiased sam-
ple estimate for the observation autocorrelation matrices is

R̂xx[k] =
1

N − k

N−1∑
n=k

x[n]x[n− k]T , k = 0, . . . ,M − 1. (2.46)

If a clean reference exists, the cross-correlation may be estimated as

R̂xd[k] =
1

N − k

N−1∑
n=k

x[n]d[n− k]T , k = 0, . . . ,M − 1. (2.47)

If d is not observed, one instead uses a model (e.g. x = Ad+ v) together with estimates

of signal/noise statistics to form R̂xx[k] and R̂xd[k].

Step 3: Build the Wiener–Hopf linear system. Using (2.44)–(2.45) with the esti-
mated correlations, form

R̂xnxn ∈ RpM×pM , R̂xnd ∈ RpM×q.

Step 4: Solve for the optimal tap matrix.

W ⋆ = R̂
−1

xnxn
R̂xnd. (2.48)

(Equivalently, solve the linear system R̂xnxnW
⋆ = R̂xnd.)

14

Step 5: Filter the data. Finally, partition W ⋆ into taps W ⋆
0, . . . ,W

⋆
M−1 and apply

d̂[n] =
M−1∑
k=0

W ⋆T
k x[n− k]. (2.49)

Remark (causality and delay). The above construction yields a causal FIR filter
that uses only current and past samples. If noncausal smoothing is allowed (e.g. offline
processing), one can include future samples to obtain a two-sided Wiener smoother, often
achieving lower MSE at the cost of delay.

2.6.4 Numeric Example (1D, M = 2): Supervised vs. Model-Based

We illustrate the complete Wiener–Hopf construction for a two-tap causal FIR filter

d̂[n] = w0x[n] + w1x[n− 1], w =

[
w0

w1

]
.

For M = 2, the Wiener–Hopf system is[
rxx[0] rxx[1]
rxx[1] rxx[0]

]
︸ ︷︷ ︸

R

w =

[
rxd[0]
rxd[1]

]
︸ ︷︷ ︸

p

, w = R−1p. (2.50)

A) Supervised case (sample-based correlations). Assume we have N = 5 paired
samples {x[n], d[n]}:

d = [1, 0, −1, 0, 1], v = [0.2, −0.1, 0.1, −0.2, 0], x = d+v = [1.2, −0.1, −0.9, −0.2, 1].

Step 1: compute r̂xx[0].

r̂xx[0] =
1

N

N−1∑
n=0

x[n]2 =
1

5

(
1.22 + (−0.1)2 + (−0.9)2 + (−0.2)2 + 12

)
.

Compute each term:

1.22 = 1.44, (−0.1)2 = 0.01, (−0.9)2 = 0.81, (−0.2)2 = 0.04, 12 = 1.

Sum:
1.44 + 0.01 + 0.81 + 0.04 + 1 = 3.30 ⇒ r̂xx[0] = 3.30/5 = 0.66.

Step 2: compute r̂xx[1].

r̂xx[1] =
1

N − 1

N−1∑
n=1

x[n]x[n− 1] =
1

4

(
x[1]x[0] + x[2]x[1] + x[3]x[2] + x[4]x[3]

)
.

Compute each product:

x[1]x[0] = (−0.1)(1.2) = −0.12, x[2]x[1] = (−0.9)(−0.1) = 0.09,

x[3]x[2] = (−0.2)(−0.9) = 0.18, x[4]x[3] = (1)(−0.2) = −0.20.
Sum:

−0.12 + 0.09 + 0.18− 0.20 = −0.05 ⇒ r̂xx[1] = −0.05/4 = −0.0125.

15

Step 3: compute r̂xd[0].

r̂xd[0] =
1

N

N−1∑
n=0

x[n]d[n] =
1

5

(
x[0]d[0] + x[1]d[1] + x[2]d[2] + x[3]d[3] + x[4]d[4]

)
.

Compute each product:

x[0]d[0] = 1.2 · 1 = 1.2, x[1]d[1] = (−0.1) · 0 = 0, x[2]d[2] = (−0.9) · (−1) = 0.9,

x[3]d[3] = (−0.2) · 0 = 0, x[4]d[4] = (1) · 1 = 1.

Sum:
1.2 + 0 + 0.9 + 0 + 1 = 3.1 ⇒ r̂xd[0] = 3.1/5 = 0.62.

Step 4: compute r̂xd[1] = E{x[n]d[n− 1]}.

r̂xd[1] =
1

N − 1

N−1∑
n=1

x[n]d[n− 1] =
1

4

(
x[1]d[0] + x[2]d[1] + x[3]d[2] + x[4]d[3]

)
.

Compute each product:

x[1]d[0] = (−0.1) · 1 = −0.1, x[2]d[1] = (−0.9) · 0 = 0,

x[3]d[2] = (−0.2) · (−1) = 0.2, x[4]d[3] = 1 · 0 = 0.

Sum:
−0.1 + 0 + 0.2 + 0 = 0.1 ⇒ r̂xd[1] = 0.1/4 = 0.025.

Step 5: build and solve the Wiener–Hopf system. Using (2.50),

R̂ =

[
0.66 −0.0125
−0.0125 0.66

]
, p̂ =

[
0.62
0.025

]
.

The inverse of a 2× 2 matrix

[
a b
b a

]
is

[
a b
b a

]−1

=
1

a2 − b2

[
a −b
−b a

]
.

Here a = 0.66, b = −0.0125, hence

a2 − b2 = 0.662 − (−0.0125)2 = 0.4356− 0.00015625 = 0.43544375.

Therefore,

R̂
−1

=
1

0.43544375

[
0.66 0.0125
0.0125 0.66

]
.

Now compute ŵ = R̂
−1
p̂. First multiply:[

0.66 0.0125
0.0125 0.66

] [
0.62
0.025

]
=

[
0.66 · 0.62 + 0.0125 · 0.025
0.0125 · 0.62 + 0.66 · 0.025

]
=

[
0.4092 + 0.0003125
0.00775 + 0.0165

]
=

[
0.4095125
0.02425

]
.

Then divide by 0.43544375:

ŵ0 = 0.4095125/0.43544375 ≈ 0.9404, ŵ1 = 0.02425/0.43544375 ≈ 0.0557.

16

Step 6: apply the filter on a sample. For example, at n = 4 (using x[4] = 1 and
x[3] = −0.2),

d̂[4] = ŵ0x[4] + ŵ1x[3] ≈ 0.9404 · 1 + 0.0557 · (−0.2) ≈ 0.9293.

B) Model-based case (AR(1) prior + white noise). Assume

x[n] = d[n] + v[n], v[n] white with Var(v) = σ2
v , v ⊥ d,

and an AR(1) prior

d[n] = a d[n− 1] + e[n], e[n] ∼ N (0, σ2
e), |a| < 1.

For AR(1), the stationary autocorrelations are

rdd[0] =
σ2
e

1− a2
, rdd[1] = a rdd[0].

Using x = d+ v with white noise,

rxx[0] = rdd[0] + σ2
v , rxx[1] = rdd[1], rxd[0] = rdd[0], rxd[1] = rdd[1].

Step 1: compute rdd[0], rdd[1]. Choose

a = 0.9, σe = 0.5⇒ σ2
e = 0.25, σv = 0.8⇒ σ2

v = 0.64.

Then

rdd[0] =
0.25

1− 0.92
=

0.25

1− 0.81
=

0.25

0.19
≈ 1.315789,

rdd[1] = 0.9 · 1.315789 ≈ 1.184210.

Step 2: compute rxx[0], rxx[1], rxd[0], rxd[1].

rxx[0] = rdd[0] + σ2
v ≈ 1.315789 + 0.64 = 1.955789, rxx[1] = rdd[1] ≈ 1.184210,

rxd[0] = rdd[0] ≈ 1.315789, rxd[1] = rdd[1] ≈ 1.184210.

Step 3: build and solve the Wiener–Hopf system. Thus

R =

[
1.955789 1.184210
1.184210 1.955789

]
, p =

[
1.315789
1.184210

]
.

Again using the 2× 2 inverse formula with a = 1.955789, b = 1.184210:

a2 − b2 ≈ (1.955789)2 − (1.184210)2 ≈ 3.825113− 1.402357 = 2.422756.

So

R−1 =
1

a2 − b2

[
a −b
−b a

]
≈ 1

2.422756

[
1.955789 −1.184210
−1.184210 1.955789

]
.

Compute w = R−1p. First multiply:[
1.955789 −1.184210
−1.184210 1.955789

] [
1.315789
1.184210

]
=

[
1.955789 · 1.315789− 1.184210 · 1.184210
−1.184210 · 1.315789 + 1.955789 · 1.184210

]
.

17

Compute each product:

1.955789 · 1.315789 ≈ 2.573407, 1.184210 · 1.184210 ≈ 1.402357,

1.184210 · 1.315789 ≈ 1.557092, 1.955789 · 1.184210 ≈ 2.315552.

So the vector becomes [
2.573407− 1.402357
−1.557092 + 2.315552

]
=

[
1.171050
0.758460

]
.

Divide by 2.422756:

w0 ≈ 1.171050/2.422756 ≈ 0.4834, w1 ≈ 0.758460/2.422756 ≈ 0.3129.

Step 4: apply the filter on a sample. For instance, at time n, the estimate is

d̂[n] = 0.4834 x[n] + 0.3129 x[n− 1].

Interpretation. The supervised example above uses very few samples (N = 5), so the
correlation estimates and therefore the taps (ŵ0, ŵ1) are noisy. The model-based taps
use exact second-order statistics from the assumed AR(1)+white-noise model, so they
are “clean” and stable. In practice, with enough training data (or with regularization),
the supervised approach approaches the model-based solution when the model is correct.

2.6.5 Python Implementation

1 import numpy as np

2 import matplotlib.pyplot as plt

3

4 def make_ar1(N, a, sigma_e , seed =0):

5 """Generate AR(1): d[n] = a d[n-1] + e[n], e~N(0,sigma_e ^2)."""

6 rng = np.random.default_rng(seed)

7 e = rng.normal (0.0, sigma_e , size=N)

8 d = np.zeros(N, dtype=float)

9 for n in range(1, N):

10 d[n] = a * d[n-1] + e[n]

11 return d

12

13 def wiener_m2_from_correlations(rxx0 , rxx1 , rxd0 , rxd1):

14 """Solve M=2 Wiener -Hopf system for w=[w0 ,w1]."""

15 R = np.array ([[rxx0 , rxx1],

16 [rxx1 , rxx0]], dtype=float)

17 p = np.array([rxd0 , rxd1], dtype=float)

18 w = np.linalg.solve(R, p)

19 return w # [w0 , w1]

20

21 def estimate_corrs_supervised(x, d):

22 """Estimate rxx[0], rxx[1], rxd[0], rxd [1] from paired data."""

23 N = len(x)

24 rxx0 = np.mean(x * x)

25 rxx1 = np.mean(x[1:] * x[:-1]) # lag 1

26 rxd0 = np.mean(x * d)

27 rxd1 = np.mean(x[1:] * d[:-1]) # E[x[n] d[n-1]]

28 return rxx0 , rxx1 , rxd0 , rxd1

18

29

30 def apply_m2_filter(x, w0 , w1):

31 """Apply causal 2-tap FIR: d_hat[n] = w0 x[n] + w1 x[n-1]."""

32 d_hat = np.zeros_like(x, dtype=float)

33 d_hat [0] = w0 * x[0] # assume x[-1]=0

34 d_hat [1:] = w0 * x[1:] + w1 * x[:-1]

35 return d_hat

36

37 # --------------------------

38 # 1) Generate synthetic data

39 # --------------------------

40 N = 800

41 a = 0.9

42 sigma_e = 0.5

43 sigma_v = 0.8

44

45 d = make_ar1(N, a=a, sigma_e=sigma_e , seed =1)

46 rng = np.random.default_rng (2)

47 v = rng.normal (0.0, sigma_v , size=N)

48 x = d + v # denoising setting

49

50 # Split into training/test

51 N_train = N // 2

52 x_tr , d_tr = x[: N_train], d[: N_train]

53 x_te , d_te = x[N_train:], d[N_train :]

54

55 # ---

56 # 2) Supervised M=2 Wiener filter (training)

57 # ---

58 rxx0_hat , rxx1_hat , rxd0_hat , rxd1_hat = estimate_corrs_supervised(x_tr

, d_tr)

59 w_sup = wiener_m2_from_correlations(rxx0_hat , rxx1_hat , rxd0_hat ,

rxd1_hat)

60 w0_sup , w1_sup = w_sup

61

62 # ---

63 # 3) Model -based M=2 Wiener filter (AR(1))

64 # ---

65 # For AR(1): r_dd [0] = sigma_e ^2 / (1-a^2), r_dd [1] = a r_dd [0]

66 rdd0 = (sigma_e **2) / (1.0 - a**2)

67 rdd1 = a * rdd0

68

69 # For x=d+v with white noise var sigma_v ^2:

70 rxx0_model = rdd0 + sigma_v **2

71 rxx1_model = rdd1

72 rxd0_model = rdd0

73 rxd1_model = rdd1

74

75 w_mod = wiener_m2_from_correlations(rxx0_model , rxx1_model , rxd0_model ,

rxd1_model)

76 w0_mod , w1_mod = w_mod

77

78 # --------------------------

79 # 4) Apply filters on test

80 # --------------------------

81 dhat_sup = apply_m2_filter(x_te , w0_sup , w1_sup)

82 dhat_mod = apply_m2_filter(x_te , w0_mod , w1_mod)

83

19

84 # --------------------------

85 # 5) Evaluate and plot

86 # --------------------------

87 mse_noisy = np.mean((x_te - d_te)**2)

88 mse_sup = np.mean((dhat_sup - d_te)**2)

89 mse_mod = np.mean((dhat_mod - d_te)**2)

90

91 print("Supervised Wiener (M=2) taps: w0 = %.4f, w1 = %.4f" % (w0_sup ,

w1_sup))

92 print("Model -based Wiener (M=2) taps: w0 = %.4f, w1 = %.4f" % (w0_mod ,

w1_mod))

93 print("Test MSE: noisy x vs d: %.4f" % mse_noisy)

94 print("Test MSE: supervised estimate: %.4f" % mse_sup)

95 print("Test MSE: model -based estimate :%.4f" % mse_mod)

96

97 # Plot a short window for readability

98 L = min(250, N - N_train)

99 t = np.arange(L)

100

101 plt.figure ()

102 plt.plot(t, d_te[:L], label="true d[n]")

103 plt.plot(t, x_te[:L], label="observed x[n]")

104 plt.plot(t, dhat_sup [:L], label="Wiener M=2 (supervised)")

105 plt.plot(t, dhat_mod [:L], label="Wiener M=2 (model -based)")

106 plt.xlabel("n (test segment)")

107 plt.ylabel("amplitude")

108 plt.title("2-tap FIR Wiener filtering (supervised vs model -based)")

109 plt.legend ()

110 plt.grid(True)

111 plt.show()

Listing 1: Wiener Filter implementation

This simulation implements a complete end-to-end example of Wiener filtering for a
scalar (1D) signal using a two-tap (M = 2) causal FIR estimator. We now describe each
step of the experiment in mathematical terms.

Signal and noise model. The clean signal {d[n]} is generated as a stationary autore-
gressive process of order one:

d[n] = a d[n− 1] + e[n], e[n] ∼ N (0, σ2
e), |a| < 1. (2.51)

This defines a zero-mean, wide-sense stationary random process with autocorrelation

rdd[0] =
σ2
e

1− a2
, rdd[1] = a rdd[0]. (2.52)

The observed signal is obtained through additive noise:

x[n] = d[n] + v[n], v[n] ∼ N (0, σ2
v), v ⊥ d. (2.53)

The goal is to estimate d[n] from x[n] using a causal FIR Wiener filter.

Estimator structure (M = 2). The estimator is restricted to the class of two-tap
causal FIR filters:

d̂[n] = w0 x[n] + w1 x[n− 1], (2.54)

20

0 50 100 150 200 250
n (test segment)

4

3

2

1

0

1

2

3

am
pl

itu
de

2-tap FIR Wiener filtering (supervised vs model-based)

true d[n]
observed x[n]
Wiener M=2 (supervised)
Wiener M=2 (model-based)

Figure 1: Two-tap FIR Wiener filtering (M = 2) in 1D. We show the clean signal
d[n], the noisy observation x[n] = d[n] + v[n], and two Wiener estimates d̂[n] = w0x[n] +
w1x[n− 1]. The supervised filter learns (w0, w1) from paired training data (x[n], d[n]) via
sample correlations, while the model-based filter computes (w0, w1) from assumed second-
order statistics (e.g., AR(1) prior for d[n] and known noise variance).

or, equivalently,

d̂[n] = wTxn, xn =

[
x[n]

x[n− 1]

]
, w =

[
w0

w1

]
.

Optimality criterion. The coefficients (w0, w1) are chosen to minimize the mean
squared error

E
[
(d[n]− d̂[n])2

]
.

For M = 2, the Wiener–Hopf equations reduce to[
rxx[0] rxx[1]
rxx[1] rxx[0]

] [
w0

w1

]
=

[
rxd[0]
rxd[1]

]
, (2.55)

where
rxx[k] = E{x[n]x[n− k]}, rxd[k] = E{x[n]d[n− k]}.

Supervised correlation estimation. In the supervised part of the experiment, paired
samples {x[n], d[n]} are available over a training interval. The expectations in (2.55) are

21

approximated by sample averages:

r̂xx[0] =
1

N

N−1∑
n=0

x[n]2, (2.56)

r̂xx[1] =
1

N − 1

N−1∑
n=1

x[n]x[n− 1], (2.57)

r̂xd[0] =
1

N

N−1∑
n=0

x[n]d[n], (2.58)

r̂xd[1] =
1

N − 1

N−1∑
n=1

x[n]d[n− 1]. (2.59)

These empirical correlations are inserted into (2.55), yielding a data-driven estimate ŵsup.
This corresponds to solving a least-squares problem over the chosen FIR structure.

Model-based correlation computation. In the model-based part of the experiment,
the clean signal d[n] is not used directly. Instead, the assumed probabilistic model (2.51)–
(2.53) is used to compute correlations analytically. Using x = d+v with v ⊥ d, we obtain

rxx[0] = rdd[0] + σ2
v , rxx[1] = rdd[1], (2.60)

and
rxd[0] = rdd[0], rxd[1] = rdd[1]. (2.61)

Substituting the AR(1) autocorrelations from (2.52) produces a closed-form Wiener–Hopf
system whose solution wmodel is the optimal two-tap LMMSE estimator under the as-
sumed statistics.

Filtering and evaluation. Both filters are applied to a disjoint test segment using
(2.54). Performance is quantified by the empirical mean squared error

MSE =
1

Ntest

∑
n

(
d[n]− d̂[n]

)2
,

and compared against the baseline MSE of the noisy observation x[n].

Key interpretation. The supervised Wiener filter approximates the optimal solution
using finite-sample estimates of second-order statistics, and is therefore subject to estima-
tion variance. The model-based Wiener filter uses exact (oracle) second-order statistics
derived from the generating model, and is therefore closer to the true LMMSE solution
when the model is correct. As the amount of training data increases, the supervised solu-
tion converges to the model-based one; conversely, under model mismatch, the supervised
approach can outperform the model-based design.

3 Kalman Filtering

3.1 Motivation: Why Kalman Filtering?

In the previous lecture we studied Wiener filtering, which provides an optimal linear
estimator (LMMSE/MMSE under Gaussianity) for stationary settings, often interpreted

22

in a batch or frequency-domain viewpoint. In many applications, however, the quantity
we wish to estimate is inherently dynamic: it evolves over time, and measurements arrive
sequentially. Typical examples include position and velocity in navigation, slowly varying
channel gains in communications, or temperature in a thermal system.

This motivates the need for an estimator with three properties. First, it should be
recursive (online): rather than recomputing an estimate from scratch when new data
arrive, it should update the current estimate efficiently using the new measurement.
Second, it should be model-based: it should exploit knowledge of how the state evolves
over time via a dynamical model. Third, it should be uncertainty-aware: it should track
not only a point estimate but also its confidence, typically represented by a covariance
matrix that quantifies estimation error.

The Kalman filter addresses precisely this need. For linear state-space models with
Gaussian noise, it yields the optimal linear MMSE estimator and, under Gaussian
assumptions, coincides with the exact Bayesian posterior mean. Its conceptual structure
is simple and powerful: predict the state forward using the model, then correct that
prediction using the new measurement.

3.2 State-Space Modeling

Many dynamical systems can be described through a latent (hidden) state that evolves
over time and generates noisy observations. In a generic (possibly nonlinear) form, this
is written as

xk = f(xk−1, uk−1, k − 1) +wk−1, (3.1)

yk = h(xk, k) + vk. (3.2)

Here,

• xk ∈ Rn is the latent/hidden state (the quantity to be estimated),

• yk ∈ Rm is the measurement (observed data),

• uk ∈ Rr is a known input/control (may be absent),

• wk−1 is the process noise capturing model uncertainty and unmodeled effects,

• vk is the measurement noise capturing sensor uncertainty.

The Bayesian filtering objective is:

infer xk from y1:k ≜ {y1, . . . ,yk}.

Equivalently, one seeks the posterior distribution p(xk | y1:k), and typically a point
estimate such as the posterior mean.

3.3 Kalman Filter: Linear–Gaussian Assumptions

The Kalman filter is optimal under the linear–Gaussian special case of (3.1)–(3.2). The
state evolves linearly:

xk = Axk−1 +Buk−1 +wk−1, (3.3)

23

and measurements are linear functions of the current state:

yk = Cxk + vk. (3.4)

The noise terms are assumed to be zero-mean, white, and Gaussian:

wk ∼ N (0,Qk), vk ∼ N (0,Rk), (3.5)

and mutually independent across time and between processes, i.e.

E[wkv
T
j] = 0, ∀k, j, (and similarly across time indices). (3.6)

Finally, the initial condition is Gaussian:

x0 ∼ N (x̂0,P 0). (3.7)

Key consequence (closure of Gaussians under linear transformations). Under
(3.3)–(3.7), the predictive distribution p(xk | y1:k−1) is Gaussian if p(xk−1 | y1:k−1) is
Gaussian. Then, incorporating the linear Gaussian measurement model (3.4) preserves
Gaussianity of the posterior. Hence the filtering distribution remains Gaussian for all k:

p(xk | y1:k) = N
(
x̂k|k, P k|k

)
,

and the Kalman filter provides recursive update equations for the posterior mean x̂k|k
and covariance P k|k.

3.4 Kalman Filtering as Recursive Bayesian Estimation

The goal of Kalman filtering is to compute the posterior distribution of the hidden state
at time step k given all measurements up to that time:

p(xk | y1:k).

Rather than recomputing this posterior from scratch at each time step, we exploit the
temporal structure of the problem to derive a recursive Bayesian update.

3.4.1 Bayesian Filtering Recursion

Bayesian filtering decomposes inference into two conceptually distinct steps: a predic-
tion (time update) and a correction (measurement update).

Prediction (time update). Given the posterior at time k − 1, we propagate uncer-
tainty through the dynamics:

p(xk | y1:k−1) =

∫
p(xk | xk−1) p(xk−1 | y1:k−1) dxk−1. (3.8)

Update (measurement update). Once a new measurement yk is available, we in-
corporate it using Bayes’ rule:

p(xk | y1:k) ∝ p(yk | xk) p(xk | y1:k−1). (3.9)

The prediction step propagates the previous posterior forward in time, while the
update step corrects this prediction using new information. For linear dynamics and
Gaussian noise, both steps preserve Gaussianity, allowing the posterior to be summarized
entirely by a mean and a covariance.

24

3.4.2 Kalman Filter: Prediction Step

Assume that at time k − 1 the posterior is Gaussian:

p(xk−1 | y1:k−1) = N (x̂k−1, Σk−1) .

The linear state-space model is

xk = Axk−1 +Buk−1 +wk−1, wk−1 ∼ N (0,Qk−1), (3.10)

where the process noise covariance Qk−1 may vary with time.
Applying (3.8) yields the predicted (prior) distribution:

p(xk | y1:k−1) = N
(
x̂−
k , Σ

−
k

)
.

The predicted mean is

x̂−
k = E[xk | y1:k−1] = Ax̂k−1 +Buk−1, (3.11)

and the predicted covariance is

Σ−
k = Cov[xk | y1:k−1] = AΣk−1A

⊤ +Qk−1. (3.12)

The covariance increases due to process noise, reflecting growing uncertainty when
the system evolves without measurement updates.

3.4.3 Kalman Filter: Update Step

After prediction, we incorporate the new measurement using the linear observation model

yk = Cxk + vk, vk ∼ N (0,Rk), (3.13)

where Rk is the (possibly time-varying) measurement noise covariance.
Define the innovation (measurement residual)

rk = yk −Cx̂−
k , (3.14)

and its covariance
Sk = CΣ−

k C
⊤ +Rk. (3.15)

The Kalman gain is then

Kk = Σ−
k C

⊤S−1
k . (3.16)

The posterior mean and covariance become

x̂k = x̂−
k +Kkrk, (3.17)

Σk = (I −KkC)Σ−
k . (3.18)

The Kalman gain balances trust between the model prediction (encoded in Σ−
k) and

the measurement (encoded in Rk).

25

3.5 Bayes Filtering: The General Framework

Bayes filtering is the general mathematical framework for recursive state estimation in
dynamical systems. The key idea is to maintain a probability distribution over the current
state (the belief) and update it sequentially as new controls and measurements arrive.

3.5.1 State, Controls, Measurements, and Belief

Let

xk ∈ Rn (state), uk ∈ Rr (control/input), yk ∈ Rm (measurement).

We denote the measurement history by y1:k = {y1, . . . ,yk} and the control history by
u1:k = {u1, . . . ,uk}.

The belief at time k is defined as the filtering distribution

bel(xk) ≜ p(xk | y1:k,u1:k), (3.19)

i.e., the posterior distribution over the current state given all information available up to
time k.

3.5.2 Probabilistic Assumptions (State-Space Model)

Bayes filtering relies on two key conditional-independence assumptions.

1) First-order Markov dynamics (motion model). The state at time k depends
on the past only through the previous state and the current control:

p(xk | x0:k−1,u1:k) = p(xk | xk−1,uk). (3.20)

The conditional density p(xk | xk−1,uk) is called the motion model (or transition
model).

2) Conditional independence of measurements (observation model). The mea-
surement at time k depends on the past only through the current state:

p(yk | x0:k,y1:k−1,u1:k) = p(yk | xk). (3.21)

The conditional density p(yk | xk) is called the observation model (or measurement
likelihood).

These assumptions define a hidden Markov model (HMM) with inputs.

3.5.3 Deriving the Bayes Filter Recursion

Starting from the belief definition (3.19), we apply Bayes’ rule:

bel(xk) = p(xk | y1:k,u1:k)

=
p(yk | xk,y1:k−1,u1:k) p(xk | y1:k−1,u1:k)

p(yk | y1:k−1,u1:k)
. (3.22)

26

Introduce the normalization constant

η ≜
1

p(yk | y1:k−1,u1:k)
, (3.23)

so that
bel(xk) = η p(yk | xk,y1:k−1,u1:k) p(xk | y1:k−1,u1:k). (3.24)

Using the observation Markov assumption (3.21),

p(yk | xk,y1:k−1,u1:k) = p(yk | xk),

we obtain
bel(xk) = η p(yk | xk) p(xk | y1:k−1,u1:k). (3.25)

3.5.4 Prediction via the Law of Total Probability

The predictive distribution p(xk | y1:k−1,u1:k) is obtained by marginalizing over the
previous state:

p(xk | y1:k−1,u1:k) =

∫
p(xk,xk−1 | y1:k−1,u1:k) dxk−1

=

∫
p(xk | xk−1,y1:k−1,u1:k) p(xk−1 | y1:k−1,u1:k) dxk−1. (3.26)

Using the motion-model Markov assumption (3.20) and recognizing

p(xk−1 | y1:k−1,u1:k) = p(xk−1 | y1:k−1,u1:k−1) = bel(xk−1),

we arrive at

p(xk | y1:k−1,u1:k) =

∫
p(xk | xk−1,uk) bel(xk−1) dxk−1. (3.27)

Substituting (3.27) into (3.25) yields the Bayes filter recursion:

bel(xk) = η p(yk | xk)

∫
p(xk | xk−1,uk) bel(xk−1) dxk−1. (3.28)

3.5.5 Bayes Filtering as Two Steps

The recursion (3.28) naturally decomposes into two steps.

Prediction (prior / time update).

bel(xk) =

∫
p(xk | xk−1,uk) bel(xk−1) dxk−1. (3.29)

Correction (posterior / measurement update).

bel(xk) = η p(yk | xk) bel(xk), (3.30)

with η chosen such that
∫
bel(xk) dxk = 1.

27

3.5.6 Kalman Filtering as a Special Case

Bayes filtering is exact but generally intractable because the belief bel(xk) is an arbitrary
distribution over Rn. Kalman filtering arises when:

• the motion model is linear and Gaussian:

xk = Akxk−1 +Bkuk +wk, wk ∼ N (0,Qk),

• the observation model is linear and Gaussian:

yk = Ckxk + vk, vk ∼ N (0,Rk).

Under these assumptions, the belief remains Gaussian for all k, and the Bayes filter
recursion (3.29)–(3.30) reduces to the Kalman filter update equations for the mean and
covariance.

3.6 Kalman Filter as Recursive Wiener Filtering

A useful way to interpret the Kalman filter is as a time-varying (recursive) version of
Wiener/LMMSE estimation. In Wiener filtering we form an optimal linear estimator
from second-order statistics, typically in a batch setting. In Kalman filtering we solve a
closely related LMMSE problem at each time step using the current predicted covariance,
leading to a gain that changes over time.

3.6.1 At Time k: A One-Step LMMSE Problem

Consider the linear–Gaussian measurement model at time k:

yk = Ckxk + vk, vk ∼ N (0,Rk). (3.31)

Assume we already have a prior (predicted) distribution from the time update:

xk | y1:k−1 ∼ N (x̂−
k ,Σ

−
k). (3.32)

Define the estimation error and consider estimators of the affine form

x̂k = x̂−
k +Kk

(
yk −Ckx̂

−
k

)
, (3.33)

where Kk is a matrix to be chosen. This is exactly the Kalman update form: start from
the prior mean and add a correction proportional to the innovation.

The key point is: (3.33) can be obtained by solving an LMMSE problem. Let

x̃k ≜ xk − x̂−
k , ỹk ≜ yk −Ckx̂

−
k .

From (3.31)–(3.32),

ỹk = Ckx̃k + vk, E[x̃k] = 0, Cov(x̃k) = Σ−
k . (3.34)

Now restrict to linear estimators of x̃k from ỹk:̂̃xk = Kkỹk.

Choose Kk to minimize the conditional MSE

K⋆
k = argmin

K
E
[
∥x̃k −Kỹk∥

2
2

∣∣ y1:k−1

]
. (3.35)

This is a standard Wiener/LMMSE problem with “desired signal” x̃k and “observation”
ỹk.

28

3.6.2 Wiener Solution ⇒ Kalman Gain

The Wiener/LMMSE solution has the form

K⋆
k = Rx̃ỹ R

−1
ỹỹ , (3.36)

where (conditioning on y1:k−1 is implicit)

Rx̃ỹ ≜ E{x̃kỹ
T
k }, Rỹỹ ≜ E{ỹkỹ

T
k }.

Using (3.34) and independence of x̃k and vk:

Rx̃ỹ = E{x̃k(Ckx̃k + vk)
T} = E{x̃kx̃

T
k }CT

k = Σ−
k C

T
k ,

and

Rỹỹ = E{(Ckx̃k + vk)(Ckx̃k + vk)
T}

= CkE{x̃kx̃
T
k }CT

k + E{vkv
T
k }

= CkΣ
−
k C

T
k +Rk.

Substituting into (3.36) yields

Kk = Σ−
k C

T
k

(
CkΣ

−
k C

T
k +Rk

)−1
, (3.37)

which is exactly the Kalman gain. Defining the innovation covariance

Sk ≜ CkΣ
−
k C

T
k +Rk,

we can write Kk = Σ−
k C

T
kS

−1
k .

Finally, returning from centered variables to the original ones,

̂̃xk = Kk(yk −Ckx̂
−
k) ⇒ x̂k = x̂−

k +Kk(yk −Ckx̂
−
k),

which matches the usual Kalman measurement update.

3.6.3 Interpretation: “Recursive” Wiener Filtering

Equation (3.37) shows that the Kalman gain is a Wiener/LMMSE filter, but computed
online using time-varying statistics:

• In Wiener filtering, the gain depends on (typically constant) second-order statistics
such as Rxx and Rxd.

• In Kalman filtering, the corresponding statistics are conditional on past data and
evolve with time through the prediction step, via Σ−

k .

What makes it recursive? The key recursion is that Σ−
k (the prior covariance) is

produced by propagating the previous posterior covariance through the dynamics:

Σ−
k = AkΣk−1A

T
k +Qk−1,

so the “Wiener statistics” used to compute Kk are updated at every time step.

29

What makes it time-varying? Even if Ak,Ck are constant, the conditional covari-
ance Σ−

k changes over time (especially during transients), and the noise covariances
Qk−1,Rk may also vary with time. Therefore, the gain Kk is typically time-varying,
unlike the classical stationary Wiener filter.

Takeaway. Kalman filtering can be viewed as applying a Wiener/LMMSE design at
each time step:

“Kalman gain” = “Wiener filter” computed from current conditional covariances.

Under linear–Gaussian assumptions, this recursive Wiener viewpoint is exactly equivalent
to the Bayesian posterior-mean estimator.

3.7 Worked Kalman Filter Examples (1D and 2D)

In this section we work through concrete Kalman-filter updates by hand. We emphasize
the two steps at each time k:

Predict: (x̂k−1,Σk−1) 7→ (x̂−
k ,Σ

−
k), Update: (x̂−

k ,Σ
−
k ,yk) 7→ (x̂k,Σk).

We allow time-varying noise covariances Qk−1 and Rk.

3.7.1 Example 1 (1D): Random Walk with Noisy Measurements

Model. We estimate a scalar state xk ∈ R from scalar measurements yk ∈ R using

xk = xk−1 + wk−1, wk−1 ∼ N (0, Qk−1), (3.38)

yk = xk + vk, vk ∼ N (0, Rk). (3.39)

Thus A = 1, C = 1, and there is no control input.

Kalman filter equations (scalar form). Prediction:

x̂−
k = x̂k−1, Σ−

k = Σk−1 +Qk−1. (3.40)

Update:

Sk = Σ−
k +Rk, Kk =

Σ−
k

Sk

, (3.41)

x̂k = x̂−
k +Kk (yk − x̂−

k), Σk = (1−Kk)Σ
−
k . (3.42)

Numerical values. Assume prior

x̂0 = 0, Σ0 = 1.

Let the noise variances vary with time:

Q0 = 0.10, R1 = 0.40, Q1 = 0.20, R2 = 0.10.

Suppose we receive measurements

y1 = 1.20, y2 = 0.90.

30

Step k = 1. Prediction:

x̂−
1 = x̂0 = 0, Σ−

1 = Σ0 +Q0 = 1 + 0.10 = 1.10.

Innovation and gain:

S1 = Σ−
1 +R1 = 1.10 + 0.40 = 1.50, K1 =

Σ−
1

S1

=
1.10

1.50
≈ 0.7333.

Update:
x̂1 = x̂−

1 +K1(y1 − x̂−
1) = 0 + 0.7333(1.20− 0) ≈ 0.8800,

Σ1 = (1−K1)Σ
−
1 = (1− 0.7333) · 1.10 ≈ 0.2933.

Step k = 2. Prediction:

x̂−
2 = x̂1 ≈ 0.8800, Σ−

2 = Σ1 +Q1 ≈ 0.2933 + 0.20 = 0.4933.

Innovation and gain:

S2 = Σ−
2 +R2 ≈ 0.4933 + 0.10 = 0.5933, K2 =

Σ−
2

S2

≈ 0.4933

0.5933
≈ 0.8316.

Update:

x̂2 = x̂−
2 +K2(y2 − x̂−

2) ≈ 0.8800 + 0.8316(0.90− 0.8800) ≈ 0.8966,

Σ2 = (1−K2)Σ
−
2 ≈ (1− 0.8316) · 0.4933 ≈ 0.0831.

Interpretation. At k = 2, the sensor is more reliable (R2 is smaller), so K2 increases
and the filter trusts y2 more strongly. The posterior uncertainty Σ2 decreases accordingly.

3.7.2 Example 2 (2D): Constant-Velocity Model with Position Measure-
ments

Model. Now the state is 2D:

xk =

[
pk
vk

]
,

where pk is position and vk is velocity. For a sampling period ∆t = 1, the constant-velocity
dynamics are

xk = Axk−1 +wk−1, A =

[
1 1
0 1

]
, wk−1 ∼ N (0,Qk−1). (3.43)

Assume we measure position only:

yk = Cxk + v
(m)
k , C =

[
1 0

]
, v

(m)
k ∼ N (0, Rk). (3.44)

Kalman equations. Prediction:

x̂−
k = Ax̂k−1, Σ−

k = AΣk−1A
T +Qk−1.

Update:

rk = yk −Cx̂−
k , Sk = CΣ−

k C
T +Rk, Kk = Σ−

k C
TS−1

k ,

x̂k = x̂−
k +Kkrk, Σk = (I −KkC)Σ−

k .

31

Numerical values (one full update at k = 1). Assume initial posterior:

x̂0 =

[
0
1

]
, Σ0 =

[
1 0
0 1

]
.

Choose a time-varying process noise (here, at k = 0):

Q0 =

[
0.10 0
0 0.20

]
, R1 = 0.50.

Suppose the first measurement is y1 = 0.70.

Prediction to k = 1.

x̂−
1 = Ax̂0 =

[
1 1
0 1

] [
0
1

]
=

[
1
1

]
.

For the covariance, first compute

AΣ0A
T = AAT =

[
1 1
0 1

] [
1 0
1 1

]
=

[
2 1
1 1

]
.

Then add Q0:

Σ−
1 =

[
2 1
1 1

]
+

[
0.10 0
0 0.20

]
=

[
2.10 1
1 1.20

]
.

Update at k = 1. Innovation:

r1 = y1 −Cx̂−
1 = 0.70−

[
1 0

] [1
1

]
= 0.70− 1 = −0.30.

Innovation covariance (scalar):

S1 = CΣ−
1 C

T +R1 = Σ−
1,11 +R1 = 2.10 + 0.50 = 2.60.

Kalman gain:

K1 = Σ−
1 C

TS−1
1 =

[
2.10 1
1 1.20

] [
1
0

]
1

2.60
=

[
2.10
1

]
1

2.60
=

[
0.8077
0.3846

]
.

Posterior mean:

x̂1 = x̂−
1 +K1r1 =

[
1
1

]
+

[
0.8077
0.3846

]
(−0.30) ≈

[
0.7577
0.8846

]
.

Posterior covariance:
Σ1 = (I −K1C)Σ−

1 .

Here

K1C =

[
0.8077
0.3846

] [
1 0

]
=

[
0.8077 0
0.3846 0

]
, I −K1C =

[
0.1923 0
−0.3846 1

]
.

Thus

Σ1 =

[
0.1923 0
−0.3846 1

] [
2.10 1
1 1.20

]
≈

[
0.4038 0.1923
0.1923 0.8154

]
.

32

Interpretation. Even though we only measure position, the update changes both po-
sition and velocity: the position residual r1 is partially attributed to velocity through the
state covariance (and the coupling in the dynamics). The gain vector K1 shows how a
scalar measurement updates each state component.

3.7.3 Python Implementation

We consider a 1D tracking problem with a 2D state:

xk =

[
pk
vk

]
,

where pk is position and vk is velocity at discrete time k.

Constant-velocity (CV) motion model. With sampling period ∆t > 0, a standard
linear CV model is

xk = Axk−1 +wk−1, A =

[
1 ∆t
0 1

]
, wk−1 ∼ N (0,Qk−1). (3.45)

The process noise wk−1 captures unmodeled effects (e.g., small accelerations). In general
we allow time-varying uncertainty:

Qk−1 ⪰ 0.

Position-only measurement model. We assume that we measure position only:

yk = Cxk + vk, C =
[
1 0

]
, vk ∼ N (0,Rk), (3.46)

where yk ∈ R is a scalar observation and Rk ∈ R1×1 is a (time-varying) measurement
noise covariance (i.e., variance).

Independence assumptions. We assume the standard Kalman conditions:

wk ⊥ vj ∀k, j, wk and vk are white and zero-mean.

1 import numpy as np

2 import matplotlib.pyplot as plt

3

4 # -----------------------------

5 # 2D Kalman Filter (CV model)

6 # State: x_k = [p_k , v_k]^T

7 # Measurement: y_k = p_k + noise

8 # Time -varying Q_k , R_k

9 # -----------------------------

10

11 def simulate_cv_1d(T=80, dt=1.0, q_base =0.05, r_base =0.4, seed =0):

12 """

13 Simulate constant -velocity motion with random acceleration -like

process noise.

14 Returns: true states X (T+1,2), measurements y (T+1,), Q_k list ,

R_k list

15 """

33

16 rng = np.random.default_rng(seed)

17

18 A = np.array ([[1.0 , dt],

19 [0.0, 1.0]])

20 C = np.array ([[1.0 , 0.0]]) # measure position only

21

22 # True initial state

23 x = np.array ([0.0, 1.0]) # p0 , v0

24

25 X = np.zeros((T + 1, 2), dtype=float)

26 y = np.zeros(T + 1, dtype=float)

27

28 # Time -varying noise levels

29 Q_list = []

30 R_list = []

31

32 # Make time -varying R_k (sensor gets worse in the middle)

33 for k in range(T + 1):

34 bump = 1.0 + 2.5 * np.exp(-0.5 * ((k - 0.6 * T) / (0.12 * T))

** 2)

35 Rk = np.array ([[r_base * bump]], dtype=float) # scalar

measurement variance

36 R_list.append(Rk)

37

38 # Make time -varying Q_k (process more uncertain near the end)

39 for k in range(T):

40 ramp = 1.0 + 1.5 * (k / max(T - 1, 1))

41 # Simple diagonal Q_k on [p, v]; you can also use a physically -

motivated accel model.

42 Qk = np.array ([[q_base * ramp , 0.0],

43 [0.0, 2.0 * q_base * ramp]], dtype=

float)

44 Q_list.append(Qk)

45

46 # Generate trajectory + measurements

47 X[0] = x

48 y[0] = (C @ x.reshape(-1, 1)).item() + rng.normal (0.0, np.sqrt(

R_list [0]. item()))

49

50 for k in range(1, T + 1):

51 # Process noise

52 wk = rng.multivariate_normal(mean=np.zeros (2), cov=Q_list[k -

1])

53 x = A @ x + wk

54 X[k] = x

55

56 # Measurement noise

57 vk = rng.normal (0.0, np.sqrt(R_list[k].item()))

58 y[k] = (C @ x.reshape(-1, 1)).item() + vk

59

60 return A, C, X, y, Q_list , R_list

61

62

63 def kf_filter(A, C, y, Q_list , R_list , x0_hat , Sigma0 , u=None , B=None):

64 """

65 Kalman filter for:

66 x_k = A x_{k-1} + B u_{k-1} + w_{k-1}, w ~ N(0, Q_{k-1})

67 y_k = C x_k + v_k , v ~ N(0, R_k)

34

68 with time -varying Q_{k-1}, R_k.

69

70 Returns:

71 x_hat (T+1,2), Sigma (T+1,2,2),

72 x_hat_minus (T+1,2), Sigma_minus (T+1,2,2),

73 K (T+1,2,1), innovations r (T+1,)

74 """

75 T = len(y) - 1

76 n = A.shape [0]

77 m = C.shape [0]

78

79 if u is None:

80 u = np.zeros((T, 1))

81 if B is None:

82 B = np.zeros((n, 1))

83

84 x_hat = np.zeros((T + 1, n), dtype=float)

85 x_hat_minus = np.zeros((T + 1, n), dtype=float)

86 Sigma = np.zeros((T + 1, n, n), dtype=float)

87 Sigma_minus = np.zeros((T + 1, n, n), dtype=float)

88 K = np.zeros((T + 1, n, m), dtype=float)

89 r = np.zeros(T + 1, dtype=float)

90

91 # Initialize

92 x_hat [0] = x0_hat

93 Sigma [0] = Sigma0

94

95 # (Optional) incorporate y0 as an update; here we do a standard

update at k=0

96 # Prediction at k=0 is trivial (use initial prior as predicted),

then update with y0

97 x_hat_minus [0] = x_hat [0]

98 Sigma_minus [0] = Sigma [0]

99 S0 = (C @ Sigma_minus [0] @ C.T + R_list [0])

100 K[0] = (Sigma_minus [0] @ C.T) @ np.linalg.inv(S0)

101 r[0] = y[0] - (C @ x_hat_minus [0]. reshape(-1, 1)).item()

102 x_hat [0] = x_hat_minus [0] + (K[0] * r[0]).reshape (-1)

103 Sigma [0] = (np.eye(n) - K[0] @ C) @ Sigma_minus [0]

104

105 # Main loop

106 for k in range(1, T + 1):

107 # Predict

108 x_hat_minus[k] = (A @ x_hat[k - 1]. reshape(-1, 1) + B @ u[k -

1]. reshape(-1, 1)).reshape (-1)

109 Sigma_minus[k] = A @ Sigma[k - 1] @ A.T + Q_list[k - 1]

110

111 # Update

112 Sk = C @ Sigma_minus[k] @ C.T + R_list[k]

113 K[k] = (Sigma_minus[k] @ C.T) @ np.linalg.inv(Sk)

114 r[k] = y[k] - (C @ x_hat_minus[k]. reshape(-1, 1)).item()

115 x_hat[k] = x_hat_minus[k] + (K[k] * r[k]).reshape (-1)

116

117 # Covariance update (simple form; Joseph form is more

numerically robust)

118 Sigma[k] = (np.eye(n) - K[k] @ C) @ Sigma_minus[k]

119

120 return x_hat , Sigma , x_hat_minus , Sigma_minus , K, r

121

35

122

123 # -----------------------------

124 # Run example

125 # -----------------------------

126 A, C, X_true , y, Q_list , R_list = simulate_cv_1d(

127 T=120, dt=1.0,

128 q_base =0.04, r_base =0.25,

129 seed=3

130)

131

132 # Prior (intentionally imperfect)

133 x0_hat = np.array ([0.0, 0.0])

134 Sigma0 = np.array ([[2.0 , 0.0],

135 [0.0, 2.0]])

136

137 x_hat , Sigma , x_hat_minus , Sigma_minus , K, r = kf_filter(

138 A=A, C=C, y=y,

139 Q_list=Q_list , R_list=R_list ,

140 x0_hat=x0_hat , Sigma0=Sigma0

141)

142

143 # -----------------------------

144 # Plot

145 # -----------------------------

146 t = np.arange(len(y))

147

148 plt.figure ()

149 plt.plot(t, X_true[:, 0], label="true position p_k")
150 plt.plot(t, y, label="measured position y_k")
151 plt.plot(t, x_hat[:, 0], label="KF estimate \hat{p}_k")
152 plt.xlabel("k")

153 plt.ylabel("position")

154 plt.title("2D Kalman filter (state=[position , velocity], measurement=

position)")

155 plt.legend ()

156 plt.grid(True)

157

158 plt.figure ()

159 plt.plot(t, X_true[:, 1], label="true velocity v_k")
160 plt.plot(t, x_hat[:, 1], label="KF estimate \hat{v}_k")
161 plt.xlabel("k")

162 plt.ylabel("velocity")

163 plt.title("Velocity is inferred from position -only measurements")

164 plt.legend ()

165 plt.grid(True)

166

167 plt.figure ()

168 plt.plot(t, Sigma[:, 0, 0], label="posterior var(p): $Σ_k[0,0]$")
169 plt.plot(t, Sigma[:, 1, 1], label="posterior var(v): $Σ_k[1,1]$")
170 plt.xlabel("k")

171 plt.ylabel("variance")

172 plt.title("Posterior uncertainties shrink/grow with Q_k and R_k")

173 plt.legend ()

174 plt.grid(True)

175

176 plt.show()

Listing 2: Kalman Filter implementation

36

3.8 Kalman Filter Algorithm and Intuition

3.8.1 Kalman Filter Algorithm (Predict–Update)

We now summarize the Kalman filter as a simple predict–update recursion. We allow
time-varying system matrices and noise covariances.

Input: {Ak,Bk,Ck}; {Qk,Rk}; initial (x̂0,Σ0); measurements {yk}k≥1; inputs
{uk}k≥0

Output: Filtered estimates {(x̂k,Σk)}k≥1

1 for k = 1, 2, . . . do
// Prediction (Time Update)

2 x̂−
k ← Akx̂k−1 +Bkuk−1

3 Σ−
k ← AkΣk−1A

⊤
k +Qk−1

// Update (Measurement Update)

4 rk ← yk −Ckx̂
−
k // innovation

5 Sk ← CkΣ
−
k C

⊤
k +Rk // innovation cov.

6 Kk ← Σ−
k C

⊤
k S

−1
k // Kalman gain

7 x̂k ← x̂−
k +Kkrk

8 Σk ← (I −KkCk)Σ
−
k

// or Joseph form (3.51)

Conceptual summary. The Kalman filter alternates between:

• Predict: use the model to propagate mean and covariance forward.

• Correct: use the measurement to reduce uncertainty and refine the estimate.

This recursion is the closed-form Gaussian solution of the Bayes filter for linear systems.

3.8.2 Intuition I: The Role of the Kalman Gain

At time k, the Kalman gain is

Kk = Σ−
k C

⊤
k

(
CkΣ

−
k C

⊤
k +Rk

)−1
= Σ−

k C
⊤
k S

−1
k , (3.47)

where
Sk = CkΣ

−
k C

⊤
k +Rk (3.48)

is the innovation covariance.
Equation (3.47) makes explicit that Kk is an automatic weighting between the model

prediction and the measurement:

• Large measurement noise Rk implies Sk is large, hence Kk becomes small. The
update term Kkrk is damped, and the filter trusts the model (prediction) more.

• Large prior uncertainty Σ−
k makes the term Σ−

k C
T
k large, and therefore increases

Kk. The filter trusts the measurement more because the prediction is uncertain.

Thus, Kk plays the role of a data-driven mixing coefficient that balances model reli-
ability versus sensor reliability at each time step.

37

3.8.3 Intuition II: Innovation = New Information

The innovation (measurement residual) is defined as

rk = yk −Ckx̂
−
k . (3.49)

The term Ckx̂
−
k is what the model predicts the measurement should be. The residual rk

captures the component of the measurement that is not explained by the prediction.
Two limiting cases are instructive:

• If rk ≈ 0, the measurement agrees with the prediction, so the update x̂k = x̂−
k +

Kkrk makes only a small correction.

• If ∥rk∥ is large, the measurement disagrees with the prediction. The correction is
strong, but it is still modulated by the gain Kk (i.e., by uncertainty).

In this sense, rk is the new information contained in yk relative to what was already
implied by past measurements and the system model.

3.8.4 Intuition III: Why Uncertainty Shrinks After the Update

The posterior covariance update (basic form) is

Σk = (I −KkCk)Σ
−
k . (3.50)

This shows that the measurement reduces uncertainty only along directions that are
observed by the sensor. Indeed, the measurement model maps the state into measurement
space through Ck; therefore, only components of xk that influence yk can be corrected.

Geometrically:

• The prediction step propagates uncertainty through dynamics and injects process
noise (via Qk−1), typically expanding the covariance ellipsoid.

• The update step uses the measurement to contract uncertainty in the observed
subspace, by multiplying by (I −KkCk).

Unobserved directions remain uncertain (or may continue to grow during prediction).

Remark (numerically robust covariance update). In implementations one often
uses the Joseph form, which preserves symmetry and positive semidefiniteness better in
finite precision:

Σk = (I −KkCk)Σ
−
k (I −KkCk)

⊤ +KkRkK
⊤
k . (3.51)

3.9 Practical Considerations

3.9.1 When Assumptions Are Violated

The classical Kalman filter is exact (and optimal in the MMSE sense) for linear dynamics,
linear observations, and Gaussian noise. When these assumptions do not hold, the
algorithm can still be used as an approximation, but performance may degrade, and in
extreme cases the filter may become inconsistent (covariance too small) or even diverge.

38

Nonlinear dynamics and/or nonlinear observations. In many systems the state
and measurement models take the nonlinear form

xk = f(xk−1,uk−1) +wk−1, yk = h(xk) + vk, (3.52)

with wk−1 ∼ N (0,Qk−1) and vk ∼ N (0,Rk). In this case, the Bayes filter recursion
remains valid, but the posterior is generally not Gaussian, so it cannot be represented
exactly by a mean and covariance.

Common approximations include:

• Extended Kalman Filter (EKF): linearize f and h around the current estimate
using Jacobians, then apply a Kalman-like update in the locally linearized model.

• Unscented Kalman Filter (UKF): propagate a deterministic set of sigma points
through f and h to approximate mean/covariance without explicit Jacobians.

• Particle filters: approximate the belief by a weighted set of samples, enabling
nonlinear and non-Gaussian inference at higher computational cost.

Non-Gaussian noise, heavy tails, and outliers. If the noise is heavy-tailed (e.g.,
contains outliers), the Gaussian likelihood implicit in the Kalman update may assign too
much influence to corrupted measurements. In practice this can lead to large residuals
that cause erroneous corrections. A large literature studies robust variants, for example
replacing the quadratic loss underlying MMSE with robust losses (Huber/Tukey), or
modeling the noise with heavy-tailed distributions (e.g., Student-t), which effectively
downweights outliers.

Model mismatch and incorrect uncertainty specification. Even when the model
is linear, performance depends crucially on how well Qk−1 (process uncertainty) and
Rk (measurement uncertainty) capture reality. If they are poorly tuned, the filter may
become:

• Sluggish (too much trust in the model),

• Noisy (too much trust in measurements),

• Inconsistent (covariance underestimates true error),

• Divergent (errors grow and the estimate becomes unstable).

Takeaway. The Kalman filter is only as good as the assumed model and its uncertainty
description: Qk−1, Rk encode what we do not know.

3.9.2 Effect of Tuning Qk and Rk

The tuning intuition can be read directly from the gain expression

Kk = Σ−
k C

⊤
k

(
CkΣ

−
k C

⊤
k +Rk

)−1
. (3.53)

Recall also that the prior covariance is produced by the prediction step:

Σ−
k = AkΣk−1A

⊤
k +Qk−1. (3.54)

39

Increasing Qk−1 (more process noise). From (3.54), increasing Qk−1 increases Σ
−
k ,

which typically increases Kk in (3.53). Therefore the update term Kkrk becomes larger.
Behavior: the filter trusts measurements more. This makes the estimate more re-

sponsive to changes, but typically noisier.

Increasing Rk (more measurement noise). From (3.53), increasing Rk increases
the denominator CkΣ

−
k C

⊤
k +Rk, thereby decreasing Kk.

Behavior: the filter trusts the model prediction more. This makes the estimate
smoother, but typically slower to react to real changes.

A useful scalar intuition (1D case). If Ck = 1 and everything is scalar,

Kk =
Σ−

k

Σ−
k +Rk

, Σ−
k = Σk−1 +Qk−1.

Hence:
Qk−1 ↑ ⇒ Σ−

k ↑ ⇒ Kk ↑, Rk ↑ ⇒ Kk ↓ .

This explicitly shows how Q and R control the model-versus-measurement weighting.

Practical implication. Tuning Qk−1 and Rk is not merely numerical housekeeping:
it encodes the designer’s belief about uncertainty and determines the filter’s qualitative
behavior.

3.10 Filtering vs. Smoothing and the Batch Perspective

3.10.1 Filtering vs. Smoothing

Consider a linear–Gaussian state-space model and a finite sequence of measurements y1:T .

Filtering (online / causal inference). The Kalman filter computes the filtering
distribution

p(xk | y1:k), (3.55)

which depends only on measurements available up to time k. The output of the filter is
the posterior mean and covariance

(x̂k,Σk),

and the recursion is causal and suitable for real-time operation.

Smoothing (offline / non-causal inference). If all measurements y1:T are available,
we may instead compute the smoothing distribution

p(xk | y1:T), (3.56)

which uses both past and future measurements relative to time k. This yields the
smoothed estimates

(x̂ s
k ,Σ

s
k).

40

Key property. Smoothing can never be worse than filtering in terms of uncertainty:

Σ s
k ⪯ Σk ∀k, (3.57)

where ⪯ denotes the Loewner (positive semidefinite) ordering. Intuitively, future mea-
surements contain information about past states and can be used to retrospectively cor-
rect earlier estimates.

Conceptual summary.

• Filtering: real-time, causal, uses y1:k.

• Smoothing: offline, non-causal, uses y1:T .

• Future data always improves (or leaves unchanged) past state estimates.

3.10.2 Kalman Smoothing: Rauch–Tung–Striebel (RTS) Algorithm

For linear–Gaussian systems, smoothing can be performed efficiently by a backward pass
after Kalman filtering. The most common smoother is the Rauch–Tung–Striebel
(RTS) smoother.

Forward pass (Kalman filter). Run the standard Kalman filter for k = 0:T and
store:

x̂k, x̂−
k+1, Σk, Σ−

k+1.

Backward pass (smoothing recursion). For k = T −1, . . . , 0, define the smoother
gain

Gk = ΣkA
⊤
k (Σ

−
k+1)

−1. (3.58)

The smoothed mean is updated as

x̂ s
k = x̂k +Gk

(
x̂ s
k+1 − x̂−

k+1

)
, (3.59)

and the smoothed covariance as

Σ s
k = Σk +Gk

(
Σ s

k+1 −Σ−
k+1

)
G⊤

k . (3.60)

Interpretation. The backward correction term x̂ s
k+1 − x̂−

k+1 represents information
revealed by future measurements. The smoother gain Gk propagates this information
backward through the dynamics.

3.10.3 Batch View: MAP Estimation of the Entire Trajectory

Filtering and smoothing can also be understood from a batch optimization viewpoint.
Under the linear–Gaussian model, estimating the entire state trajectory x0:T is equivalent
to a maximum a posteriori (MAP) problem.

41

Batch MAP formulation. The posterior over the full trajectory is Gaussian, and the
MAP estimate solves

x⋆
0:T = argmin

x0:T

[
T∑

k=1

∥yk −Ckxk∥2R−1
k

+
T∑

k=1

∥xk −Akxk−1 −Bkuk−1∥2Q−1
k−1

+ ∥x0 − x̂0∥2Σ−1
0

]
.

(3.61)
This is a quadratic least-squares problem with a block-tridiagonal structure in time.

Relationship to Kalman filtering and smoothing.

• Kalman filtering computes the MAP estimate incrementally using only past data.

• Kalman smoothing computes the same solution as (3.61), but efficiently, without
explicitly forming or solving the full batch problem.

• Both are algorithmic realizations of Gaussian Bayesian inference.

Big picture.

• Filtering: online solution of a growing inference problem.

• Smoothing: offline solution using all data.

• Batch MAP: global optimization perspective.

Kalman filtering and smoothing are not ad hoc algorithms; they are efficient recursive
solvers for structured Gaussian least-squares problems.

42

	From Hand-Crafted to Optimal Filters
	Wiener Filtering: The Optimal Linear MMSE Estimator
	Assumptions and Modeling
	Linear MMSE Objective
	Wiener–Hopf (Normal) Equations and Closed-Form Solution

	Detailed Derivation of the Wiener Filter
	Objective Function
	Expanding the Quadratic Form
	Evaluating Each Term
	Final Cost Function
	Gradient and Optimality Condition
	Computing bold0mu mumu RRfalseRRRRxd and bold0mu mumu RRfalseRRRRxx from the Observation Model

	Using the Wiener Filter in Practice: Offline Targets vs. Second-Order Statistics
	Case 1: When the desired signal bold0mu mumu ddfalsedddd[n] is available (supervised / training mode)
	Case 2: When only correlations are known or can be estimated (unsupervised / model-based mode)

	Worked Examples
	Example 1: Pure Denoising with bold0mu mumu AAfalseAAAA=bold0mu mumu IIfalseIIII (Known Covariances)
	Example 2: Denoising When bold0mu mumu ddfalsedddd[n] is Known During Training (Learning bold0mu mumu WWfalseWWWW)
	Example 3: Deconvolution / Mixing with a Nontrivial bold0mu mumu AAfalseAAAA

	M-tap FIR Wiener Filtering (Time-Domain Wiener–Hopf Design)
	Stacked Data Vector and FIR Parameterization
	Designing the FIR Wiener Filter from Second-Order Statistics
	Practical Wiener Filtering on Data (FIR Case)
	Numeric Example (1D, M=2): Supervised vs. Model-Based
	Python Implementation

	Kalman Filtering
	Motivation: Why Kalman Filtering?
	State-Space Modeling
	Kalman Filter: Linear–Gaussian Assumptions
	Kalman Filtering as Recursive Bayesian Estimation
	Bayesian Filtering Recursion
	Kalman Filter: Prediction Step
	Kalman Filter: Update Step

	Bayes Filtering: The General Framework
	State, Controls, Measurements, and Belief
	Probabilistic Assumptions (State-Space Model)
	Deriving the Bayes Filter Recursion
	Prediction via the Law of Total Probability
	Bayes Filtering as Two Steps
	Kalman Filtering as a Special Case

	Kalman Filter as Recursive Wiener Filtering
	At Time k: A One-Step LMMSE Problem
	Wiener Solution Kalman Gain
	Interpretation: ``Recursive'' Wiener Filtering

	Worked Kalman Filter Examples (1D and 2D)
	Example 1 (1D): Random Walk with Noisy Measurements
	Example 2 (2D): Constant-Velocity Model with Position Measurements
	Python Implementation

	Kalman Filter Algorithm and Intuition
	Kalman Filter Algorithm (Predict–Update)
	Intuition I: The Role of the Kalman Gain
	Intuition II: Innovation = New Information
	Intuition III: Why Uncertainty Shrinks After the Update

	Practical Considerations
	When Assumptions Are Violated
	Effect of Tuning bold0mu mumu QQfalseQQQQk and bold0mu mumu RRfalseRRRRk

	Filtering vs. Smoothing and the Batch Perspective
	Filtering vs. Smoothing
	Kalman Smoothing: Rauch–Tung–Striebel (RTS) Algorithm
	Batch View: MAP Estimation of the Entire Trajectory

