
Lecture 11 & 14: Parameter Estimation & Bayesian
Inference
Notes

Konstantinos Chatzilygeroudis
costashatz@upatras.gr

December 22, 2025

Contents

1 Motivation for Parameter Estimation 3

2 Linear Least Squares 3
2.1 Derivation . 4
2.2 Least Squares Estimation of AR Model Parameters 5

3 Overfitting and Regularization 6

4 Nonlinear Least Squares 6
4.1 ARMA Parameter Estimation via Prediction Error Minimization 6
4.2 Gauss–Newton for Nonlinear Least Squares 8
4.3 Gauss–Newton in General Form . 9
4.4 Gauss–Newton Example: Estimating an ARMA(1,1) Model 9
4.5 Worked Mini-Example (One Gauss–Newton Step) 10
4.6 Practical View: Nonlinear LS via an Optimization Lens 11

5 Nonlinear Autoregressive Models and Linear Models on Features 12
5.1 NAR Models . 12
5.2 Linear Models on Features (Basis Expansion) 13
5.3 NAR as Linear Regression on Features (Special Case) 14
5.4 Worked Examples: Linear Models on Features 14
5.5 Python Implemetation . 15

6 Bayesian Inference 19
6.1 Core Idea . 19
6.2 Likelihood . 19
6.3 Bayes’ Rule and the Posterior . 20
6.4 Interpretation of the Bayesian Quantities 20
6.5 Bayesian Point Estimation via Risk Minimization 21

6.5.1 MAP Estimator (Posterior Mode) 21
6.5.2 MMSE Estimator (Posterior Mean) 22

1

6.5.3 MMAE Estimator (Posterior Median) 23
6.5.4 Summary: MAP vs. MMSE vs. MMAE 23

6.6 Maximum Likelihood Estimation (MLE) 24
6.6.1 Worked Example: MLE for a Gaussian Mean (Known Variance) . 25
6.6.2 Worked Example: MLE for Linear Regression with Unknown Vari-

ance . 26

7 Bayesian Linear Regression 28
7.1 Model, Notation, and Goals . 28
7.2 Prior and Likelihood . 28
7.3 Posterior over Weights . 28
7.4 MAP Connection: BLR as Regularized Least Squares 30
7.5 Predictive Distributions . 30
7.6 Practical Note: Sampling from the Prior (Function Space Intuition) . . . 31
7.7 Worked Example: Bayesian Linear Regression (1D, Closed Form) 32
7.8 Python Implementation . 34
7.9 Sequential Bayesian Linear Regression (Recursive Update) 38
7.10 What Bayesian Linear Regression Adds Beyond LS / MLE 39

2

1 Motivation for Parameter Estimation

Up until now, our focus has been on signal analysis : given a measured signal, we aimed
to characterize its properties through spectral analysis, correlation functions, and filter-
ing. We introduced non-parametric tools such as the periodogram and Welch method,
discussed windowing effects, leakage, and resolution limits, and analyzed how stochastic
processes and noise propagate through LTI systems and FIR/IIR filters.

While these methods are powerful, non-parametric descriptions can become unreli-
able when data records are short, measurements are noisy or colored, or high spectral
resolution is required. In such cases, spectral estimates often exhibit high variance and
fail to exploit any underlying structure in the signal generation process.

Parametric estimation addresses these limitations by explicitly assuming that the
observed signal is generated by a model with a finite number of parameters. This view
is already implicit in filtering, where signals are modeled as the output of a system
driven by inputs and noise. Estimating the parameters of such models can lead to more
compact representations, improved robustness to noise, and better generalization beyond
the observed data.

The goal of this chapter is therefore to move from analyzing signals to estimating
the models that generate them. We will introduce parametric model families, and
study fundamental estimation principles including least squares, maximum likelihood,
maximum a posteriori estimation, and Bayesian inference.

2 Linear Least Squares

Least Squares (LS) estimation is the basic tool for fitting linear parametric models to
data. We assume a linear observation model

y = Xθ +w,

where y ∈ RN is the vector of measurements, X ∈ RN×p is a known design (regressor)
matrix constructed from inputs and/or past outputs, θ ∈ Rp is the unknown parameter
vector, and w ∈ RN captures measurement noise and modeling error. The LS principle
chooses parameters that minimize the total squared residual (prediction error),

θ̂ = argmin
θ
∥y −Xθ∥22.

Geometrically, Xθ̂ is the orthogonal projection of y onto the column space of X, and
the residual r = y−Xθ̂ is orthogonal to that subspace. Setting the gradient of the cost
to zero yields the normal equations,

XTX θ̂ = XTy.

If X has full column rank (so XTX is invertible), the unique minimizer is

θ̂ = (XTX)−1XTy.

If X does not have full column rank, there are infinitely many minimizers; the standard
choice is the minimum-norm solution given by the Moore–Penrose pseudo-inverse,

θ̂ = X†y.

3

Under standard statistical assumptions, LS has important optimality properties. If
the model is correct and E[w] = 0, then θ̂ is unbiased. If w is i.i.d. Gaussian with
covariance σ2I, then LS coincides with the maximum likelihood estimator, and among
all linear unbiased estimators it achieves minimum variance (Gauss–Markov theorem; in
the Gaussian case it is also efficient in the class of unbiased estimators). These ideas
form the foundation of linear regression, identification of AR/ARMA models (via linear-
in-parameters formulations), and many estimation algorithms used in filtering and state-
space modeling.

2.1 Derivation

We start from the linear observation model

y = Xθ +w,

where the vector
w = y −Xθ

represents the residual, capturing measurement noise and modeling error for a given
choice of parameters θ.

The least-squares principle selects the parameter vector that minimizes the energy of
this residual. This leads to the cost function

J(θ) = ∥w∥22 = ∥y −Xθ∥22 = (y −Xθ)T(y −Xθ).

Expanding the quadratic form gives

J(θ) = yTy − 2θTXTy + θTXTXθ.

Since this is a convex quadratic function of θ, its minimum is found by setting its gradient
with respect to θ equal to zero:

∇θJ(θ) = −2XTy + 2XTXθ = 0.

This yields the normal equations

XTX θ̂ = XTy.

If XTX is invertible (equivalently, if X has full column rank), the unique least-squares
solution is

θ̂ = (XTX)−1XTy.

An important geometric interpretation follows directly from the normal equations.
Defining the estimated residual

ŵ = y −Xθ̂,

we obtain the orthogonality condition

XTŵ = 0.

Thus, the least-squares residual is orthogonal to the column space of X, meaning that
the fitted vector Xθ̂ is the orthogonal projection of y onto that subspace.

4

2.2 Least Squares Estimation of AR Model Parameters

Consider an autoregressive model of order p,

x[k] = −
p∑

i=1

ai x[k − i] + w[k],

where w[k] is the one-step-ahead prediction error (residual). The unknown parameters
are the AR coefficients collected in

a = [a1, . . . , ap]
T.

A key point is that the AR model is linear in the parameters ai. For each time index k
we can write a linear regression equation

x[k] = −aTxpast[k] + w[k], xpast[k] =


x[k − 1]
x[k − 2]

...
x[k − p]

 .

Thus, each sample x[k] (for k ≥ p) provides one linear equation in the unknown vector
a.

To estimate a from a record {x[0], x[1], . . . , x[N − 1]}, we stack the equations for
k = p, . . . , N − 1 into matrix–vector form:

y = −Xa+w,

with

y =


x[p]

x[p+ 1]
...

x[N − 1]

 , X =


x[p− 1] x[p− 2] · · · x[p− p]
x[p] x[p− 1] · · · x[p− p+ 1]
...

...
. . .

...
x[N − 2] x[N − 3] · · · x[N − 1− p]

 , w =


w[p]

w[p+ 1]
...

w[N − 1]

 .

The least-squares estimate minimizes the sum of squared one-step prediction errors:

â = argmin
a
∥y +Xa∥22.

Solving the corresponding normal equations yields (when XTX is invertible)

â = −(XTX)−1XTy,

and, more generally, â = −X†y using the pseudo-inverse.
It is useful to contrast this with the Yule–Walker (YW) approach. LS estimates

the coefficients by directly fitting sample-by-sample prediction equations, whereas YW
estimates autocorrelations and then solves a Toeplitz linear system derived from the AR
assumptions. When the data truly follow an AR(p) model and are wide-sense stationary,
the two approaches are asymptotically equivalent, but for short data records or mild
model mismatch, LS can be more accurate because it avoids the intermediate step of
estimating autocorrelations.

5

3 Overfitting and Regularization

In linear regression, increasing the number of parameters (or using a very rich set of
regressors) increases the flexibility of the model. While this can reduce the training error,
it also increases the risk of overfitting : the least-squares solution may start fitting not only
the underlying signal structure but also the noise present in the measurements. Typical
symptoms include large-magnitude coefficients, strong sensitivity to small perturbations
in the data, and unstable predictions. As a result, a model that fits the available data
extremely well can still generalize poorly to new data, producing unrealistic or highly
oscillatory behavior.

A standard way to mitigate overfitting is to introduce regularization, which explicitly
penalizes overly complex solutions. The most common choice in linear models is ridge
(or Tikhonov) regularization, where we add an ℓ2 penalty on the parameter vector:

θ̂reg = argmin
θ
∥y −Xθ∥22 + λ ∥θ∥22 , λ > 0.

The parameter λ controls the trade-off between fitting the data and keeping the parameter
vector small. For λ → 0 the solution approaches ordinary least squares, while larger λ
increasingly shrinks the coefficients toward zero.

Ridge regression admits a closed-form solution:

θ̂reg =
(
XTX + λI

)−1
XTy.

Regularization has several important effects. First, it reduces the variance of the estima-
tor by shrinking parameter magnitudes, often improving prediction performance when
data are noisy or limited. Second, it improves numerical stability: even if XTX is ill-
conditioned (or singular), adding λI makes the system better conditioned and typically
invertible. Finally, regularization reduces sensitivity to noise and small modeling errors
in the regressors.

Figure 1 illustrates the phenomenon on a toy example: a high-degree polynomial fitted
by ordinary least squares oscillates strongly to interpolate noisy samples, while ridge
regularization produces a smoother curve that better captures the underlying function.

4 Nonlinear Least Squares

4.1 ARMA Parameter Estimation via Prediction Error Mini-
mization

Autoregressive–moving average (ARMA) models extend AR models by introducing a
moving-average (MA) component that captures correlation structure in the residuals.
An ARMA(p, q) process can be written as

x[k] = −
p∑

i=1

ai x[k − i] +

q∑
j=1

bj w[k − j] + w[k], w[k] : innovation/white noise.

The unknown parameter vector is

θ =
[
a1 · · · ap b1 · · · bq

]T ∈ Rp+q.

6

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

2

0

2

4

6

8

10
y

Train MSE: LS=0.0187 Ridge=0.1176

Overfitting in Least Squares and the Effect of Ridge Regularization
True function
Noisy training data
High-degree LS (deg=10)
Ridge (=0.01)

Figure 1: Overfitting in ordinary least squares (high-degree polynomial) and mitigation
via ridge regularization. The LS fit tends to match noise and oscillates between samples,
whereas ridge shrinks coefficients and yields a more stable, better-generalizing model.

Why this becomes nonlinear. For a pure AR(p) model, the regressors x[k−1], . . . , x[k−
p] are known from data, so the model is linear in the unknown coefficients and can be
written in the form y = Xa + w, yielding a closed-form LS solution. In ARMA, the
MA part depends on past innovations w[k − j], which are not observable. If we try
to rewrite the model in terms of measurable quantities, we obtain a recursion for the
one-step prediction error (innovation estimate). Starting from

w[k] = x[k] +

p∑
i=1

ai x[k − i]−
q∑

j=1

bj w[k − j],

we define the prediction error (residual) as a function of the parameters,

ε(k,θ) = x[k] +

p∑
i=1

ai x[k − i]−
q∑

j=1

bj ε(k − j,θ),

with suitable initial conditions for ε(k,θ) for k < 0 (often set to zero) and with the first
usable index

k0 = max(p, q),

so that all required past samples and past errors are available. The key point is that
ε(k,θ) depends on previous ε(k − j,θ), which themselves depend on θ. Therefore, the
residual sequence is a nonlinear function of the parameters, and we cannot cast the
problem as a single linear system y = Xθ.

Nonlinear least squares objective. A standard approach is prediction error min-
imization, which chooses parameters that minimize the sum of squared one-step-ahead

7

prediction errors:

J(θ) =
1

2

N−1∑
k=k0

ε(k,θ)2.

Defining the stacked residual vector

ε(θ) =


ε(k0,θ)

ε(k0 + 1,θ)
...

ε(N − 1,θ)

 ∈ RM , M = N − k0,

we can write

J(θ) =
1

2
ε(θ)Tε(θ) =

1

2

∥∥ε(θ)∥∥2

2
, θ̂ = argmin

θ
J(θ).

Unlike linear LS, this optimization problem generally has no closed-form solution and
must be solved iteratively.

4.2 Gauss–Newton for Nonlinear Least Squares

Gauss–Newton is a classical method for minimizing least-squares objectives. It proceeds
by locally linearizing the residual vector around the current estimate θi. Let the Jacobian
of the residual vector be

J ε(θ) =
∂ε(θ)

∂θ
∈ RM×P , P = p+ q,

[
J ε(θ)

]
m,ℓ

=
∂ε(k0 +m,θ)

∂θℓ
.

A first-order Taylor approximation gives

ε(θi +∆θ) ≈ ε(θi) + J ε(θi)∆θ.

Gauss–Newton then chooses ∆θi as the minimizer of the resulting linear least-squares
subproblem:

∆θi = argmin
∆θ
∥ε(θi) + J ε(θi)∆θ∥22 .

This leads to the normal equations

J ε(θi)
TJ ε(θi)∆θi = −J ε(θi)

Tε(θi),

followed by the parameter update

θi+1 = θi +∆θi,

optionally combined with damping or line search to improve robustness.

Interpretation. At each iteration, Gauss–Newton replaces the nonlinear residual map-
ping by its local linear approximation and solves a linear least-squares problem. The
method also admits a useful second-order interpretation: for least-squares objectives,

∇J(θ) = J ε(θ)
Tε(θ), ∇2J(θ) = JT

ε J ε +
M∑

m=1

εm(θ)∇2εm(θ),

and Gauss–Newton approximates the Hessian by dropping the second term, yielding

∇2J(θ) ≈ J ε(θ)
TJ ε(θ),

which avoids computing second derivatives while exploiting the least-squares structure.

8

4.3 Gauss–Newton in General Form

More generally, given residuals r(θ) ∈ RM and objective

J(θ) =
1

2
∥r(θ)∥22 = r(θ)Tr(θ),

with Jacobian

J r(θ) =
∂r(θ)

∂θ
∈ RM×P ,

Gauss–Newton computes ∆θi from

J r(θi)
TJ r(θi)∆θi = −J r(θi)

Tr(θi), θi+1 = θi +∆θi.

In ARMA estimation, r(θ) corresponds to the stacked prediction errors ε(θ), and the
method iteratively refines the coefficients to minimize one-step-ahead prediction error
energy.

4.4 Gauss–Newton Example: Estimating an ARMA(1,1) Model

Consider the ARMA(1,1) model

x[k] = −a x[k − 1] + bw[k − 1] + w[k], w[k] innovation.

Because the past innovations w[k−1] are not observable, we work with the one-step-ahead
prediction error (innovation estimate)

ε(k,θ) = x[k] + a x[k − 1]− b ε(k − 1,θ), θ =

[
a
b

]
,

with a standard initialization such as ε(0,θ) = 0. The nonlinear least-squares (prediction
error) cost is

J(θ) =
1

2

N−1∑
k=1

ε(k,θ)2 =
1

2

∥∥ε(θ)∥∥2

2
, ε(θ) =

 ε(1,θ)
...

ε(N − 1,θ)

 .

Since ε(k,θ) depends recursively on past errors, it is a nonlinear function of (a, b), and
we minimize J(θ) iteratively using Gauss–Newton.

Jacobian via recursions. Gauss–Newton requires the Jacobian of the residual vector:

J ε(θ) =
∂ε(θ)

∂θ
=

 ∂aε(1,θ) ∂bε(1,θ)
...

...
∂aε(N − 1,θ) ∂bε(N − 1,θ)

 .

Differentiate the recursion ε(k) = x[k]+a x[k−1]−b ε(k−1) to obtain forward recursions
for the partial derivatives:

∂aε(k) = x[k − 1]− b ∂aε(k − 1),

∂bε(k) = −ε(k − 1)− b ∂bε(k − 1),

with initial conditions

ε(0) = 0, ∂aε(0) = 0, ∂bε(0) = 0.

Thus, for a fixed parameter guess (a, b), we can compute ε(k), ∂aε(k), and ∂bε(k) in a
single forward pass through the data.

9

Gauss–Newton iteration. At iteration i, given θi = [ai bi]
T, we compute ε(θi) and

J ε(θi), then solve the linear least-squares step

∆θi = argmin
∆θ
∥ε(θi) + J ε(θi)∆θ∥22 ,

which yields the normal equations

J ε(θi)
TJ ε(θi)∆θi = −J ε(θi)

Tε(θi).

The update is
θi+1 = θi +∆θi,

and we stop when ∥∆θi∥ (or the decrease in J) is small. In practice, damping/line-search
can be added if the plain step is unstable.

4.5 Worked Mini-Example (One Gauss–Newton Step)

Take three samples:
x[0] = 1, x[1] = 0.5, x[2] = −0.2,

and initialize at

θ0 =

[
0
0

]
⇒ a0 = 0, b0 = 0, ε(0) = 0.

Step 1: residuals at θ0. Using ε(k) = x[k] + a x[k − 1]− b ε(k − 1) with a0 = b0 = 0:

ε(1,θ0) = x[1] = 0.5, ε(2,θ0) = x[2] = −0.2.

So

ε(θ0) =

[
0.5
−0.2

]
.

Step 2: Jacobian at θ0. With b0 = 0, the derivative recursions simplify to

∂aε(k) = x[k − 1], ∂bε(k) = −ε(k − 1).

Therefore,
∂aε(1) = x[0] = 1, ∂aε(2) = x[1] = 0.5,

∂bε(1) = −ε(0) = 0, ∂bε(2) = −ε(1) = −0.5.
Hence,

J ε(θ0) =

[
1 0
0.5 −0.5

]
.

Step 3: Gauss–Newton step. Compute

JTJ =

[
1.25 −0.25
−0.25 0.25

]
, JTε =

[
0.4
0.1

]
.

Since det
(
JTJ

)
= 0.25, the inverse is

(JTJ)−1 =

[
1 1
1 5

]
.

10

Thus,

∆θ0 = −(JTJ)−1JTε = −
[
1 1
1 5

] [
0.4
0.1

]
=

[
−0.5
−0.9

]
,

and the updated parameters are

θ1 = θ0 +∆θ0 =

[
−0.5
−0.9

]
.

This illustrates the mechanics of Gauss–Newton: compute residuals and Jacobian via
forward recursions, then solve a small linear system to update the parameters.

4.6 Practical View: Nonlinear LS via an Optimization Lens

Nonlinear least squares is an optimization problem of the form

min
θ

J(θ), J(θ) =
1

2
∥r(θ)∥22,

where r(θ) ∈ RM is the residual vector (e.g., stacked ARMA prediction errors). From
the perspective of general optimization, Gauss–Newton simply constructs, at each iterate
θi, a local quadratic model of J based on a first-order linearization of r, and then takes
a descent step.

Gradient and (approximate) Hessian. Using the chain rule,

∇J(θ) = J r(θ)
Tr(θ), J r(θ) =

∂r(θ)

∂θ
.

The exact Hessian is

∇2J(θ) = J r(θ)
TJ r(θ) +

M∑
m=1

rm(θ)∇2rm(θ),

and Gauss–Newton uses the approximation

HGN(θ) ≜ J r(θ)
TJ r(θ),

which is accurate when residuals are small near the optimum (or when the model is close
to correct).

Step computation as a linear solve. The Gauss–Newton direction ∆θi solves

HGN(θi)∆θi = −∇J(θi) = −J r(θi)
Tr(θi).

This is directly analogous to a Newton step, but with an approximate Hessian that avoids
second derivatives and exploits the least-squares structure.

Line search (globalization). As with general nonlinear optimization, the full step
θi+1 = θi + ∆θi may fail when the initial guess is poor or when the quadratic model is
not accurate. A standard remedy is line search:

θi+1 = θi + αi ∆θi, αi ∈ (0, 1],

where αi is chosen to ensure sufficient decrease in J (e.g., Armijo condition) and to
keep the iterates stable. In practice, a backtracking line search is often sufficient: start
from αi = 1 and repeatedly reduce αi ← ραi (with ρ ∈ (0, 1)) until J(θi+1) decreases
adequately.

11

Damping (Levenberg–Marquardt) as trust-region intuition. Another widely
used stabilization is damping, leading to the Levenberg–Marquardt (LM) step:(

J r(θi)
TJ r(θi) + µiI

)
∆θi = −J r(θi)

Tr(θi), µi > 0.

For large µi, the step behaves like gradient descent (small, conservative, robust); for
small µi, it approaches Gauss–Newton (fast local convergence). This is closely related to
a trust-region viewpoint: the algorithm restricts steps when the local model is unreliable
and enlarges them when predictions match actual decrease.

Practical checklist (what you actually implement). Given a current estimate θi:

1. Compute residuals r(θi) (e.g., ARMA prediction errors via forward recursion).

2. Compute Jacobian J r(θi) (analytically via recursions, or numerically if needed).

3. Compute a search direction by solving either:

JTJ ∆θ = −JTr (Gauss–Newton), or (JTJ + µI)∆θ = −JTr (LM).

4. Update using a step length αi (line search) and/or a damping parameter µi:

θi+1 = θi + αi∆θi.

5. Stop when J(θi), ∥∇J(θi)∥, or ∥∆θi∥ is sufficiently small.

Last remarks. From an optimization viewpoint, Gauss–Newton is simply “Newton’s
method specialized to least squares”, with a Hessian approximation that is cheap and
often very effective. When combined with standard globalization tools (line search or
trust-region/damping), it becomes a robust workhorse for practical parameter estima-
tion problems such as ARMA prediction-error fitting, nonlinear regression, and many
identification tasks in state-space models.

5 Nonlinear Autoregressive Models and Linear Mod-

els on Features

5.1 NAR Models

Many real-world signals cannot be accurately captured by linear autoregressive dynamics.
Phenomena such as saturation, dead-zones, hysteresis, switching, and state-dependent
noise introduce nonlinear dependencies on past values. A natural extension of an AR(p)
model is the nonlinear autoregressive (NAR) model

x[k] = f
(
x[k − 1], x[k − 2], . . . , x[k − p];θ

)
+ w[k],

where f(·;θ) is a nonlinear mapping parameterized by an unknown vector θ, and w[k]
collects innovation noise and modeling error. The order p determines the memory length,
i.e., how many past samples influence the prediction.

12

From an estimation viewpoint, NAR identification is naturally posed as a (generally)
nonlinear least-squares problem. For each k ≥ p we define the one-step prediction residual

ε(k,θ) = x[k]− f
(
x[k − 1], . . . , x[k − p];θ

)
,

and estimate the parameters by minimizing the sum of squared residuals:

θ̂ = argmin
θ

1

2

N−1∑
k=p

ε(k,θ)2.

In contrast to linear AR, there is typically no closed-form solution, so we use iterative
optimization methods (gradient descent, Gauss–Newton, Levenberg–Marquardt). The
practical cost of these methods is dominated by repeatedly (i) evaluating f(·;θ) over the
dataset and (ii) computing derivatives of the residuals with respect to θ.

Conceptually, NAR generalizes AR by replacing the linear predictor −
∑p

i=1 aix[k− i]
with a nonlinear function of the same past-sample vector.

5.2 Linear Models on Features (Basis Expansion)

A useful compromise between linear and nonlinear modeling is to keep the model linear
in the parameters while allowing nonlinear dependence on the inputs through a feature
map. Let x ∈ Rd denote an input (or regressor) vector, and define a feature vector

ϕ(x) =


ϕ1(x)
ϕ2(x)

...
ϕP (x)

 ∈ RP .

A linear-in-features model is

y = θTϕ(x) + w, θ ∈ RP .

Given data {(xn, yn)}Nn=1, we stack the feature vectors into the design matrix

Φ =


ϕ(x1)

T

ϕ(x2)
T

...
ϕ(xN)

T

 ∈ RN×P , y =


y1
y2
...
yN

 .

Then parameter estimation reduces to ordinary least squares:

θ̂ = argmin
θ
∥y −Φθ∥22, θ̂ = (ΦTΦ)−1ΦTy,

assuming Φ has full column rank (otherwise use Φ† or ridge regularization).
This viewpoint is important because it allows nonlinear function approximation while

preserving the simplicity of linear estimation tools (LS, ridge/Tikhonov, and their statis-
tical interpretations). The nonlinearity is pushed into the choice of basis functions ϕi(·),
while the unknown parameters still enter linearly.

Common feature choices include polynomial basis expansions (e.g., [1, x, x2, . . .]),
trigonometric/Fourier features (e.g., sin(ωx) and cos(ωx)), radial basis functions, and
learned features (e.g., the output of a fixed neural network layer). Model complexity is
controlled by the number and type of features and, in practice, by regularization when
P is large relative to N .

13

5.3 NAR as Linear Regression on Features (Special Case)

An instructive special case is when the NAR function is expressed as a linear combination
of chosen nonlinear features of the past-sample vector. Define the regressor

z[k] =


x[k − 1]
x[k − 2]

...
x[k − p]

 ,

choose a feature map ϕ(z[k]), and model

x[k] = θTϕ(z[k]) + w[k].

This is a nonlinear autoregressive model in terms of input–output behavior, but it re-
mains linear in the unknown parameters θ, so we can estimate it by (regularized) least
squares. This perspective is often called basis-function NAR and provides a practical
bridge between linear AR estimation and fully nonlinear NAR identification.

5.4 Worked Examples: Linear Models on Features

Example 1: Affine model. Consider again the simple feature map

ϕ(x) =

[
1
x

]
, y = θTϕ(x) + w, θ =

[
θ0
θ1

]
.

Suppose we observe the following three samples:

(x1, y1) = (0, 0), (x2, y2) = (1, 1), (x3, y3) = (2, 3).

The design matrix and output vector are

Φ =

1 0
1 1
1 2

 , y =

01
3

 .

Compute

ΦTΦ =

[
3 3
3 5

]
, ΦTy =

[
4
7

]
.

Thus,

θ̂ = (ΦTΦ)−1ΦTy =
1

6

[
5 −3
−3 3

] [
4
7

]
=

[
−1/6
7/6

]
.

The fitted model is therefore

ŷ(x) = −1

6
+

7

6
x.

Example 2: Quadratic feature expansion. We now increase model flexibility by
using a quadratic feature map:

ϕ(x) =

 1
x
x2

 , y = θTϕ(x) + w, θ =

θ0θ1
θ2

 .

14

Consider four samples:

(x1, y1) = (−1, 1), (x2, y2) = (0, 0), (x3, y3) = (1, 1), (x4, y4) = (2, 4).

The design matrix and output vector are

Φ =


1 −1 1
1 0 0
1 1 1
1 2 4

 , y =


1
0
1
4

 .

Compute

ΦTΦ =

4 2 6
2 6 8
6 8 18

 , ΦTy =

 6
8
18

 .

Solving (ΦTΦ)θ̂ = ΦTy gives

θ̂ =

00
1

 .

Hence, the fitted model is
ŷ(x) = x2.

Takeaway. By changing the feature map ϕ(x), we can move from simple linear models
to more expressive nonlinear predictors, while still relying on exactly the same least-
squares machinery. Model complexity is determined entirely by the chosen features (and,
in practice, by regularization when the feature dimension grows).

5.5 Python Implemetation

The following script demonstrates the “linear model on features” idea on a toy nonlinear
regression problem. We generate a small set of noisy samples from a nonlinear ground-
truth function

ytrue(x) = 0.6 sin(2πx) + 0.3x3 − 0.2x,

and then fit it using a model that is linear in the parameters but nonlinear in the input
via a feature map

ϕ(x) =
[
1, x, x2, x3, sin(2πx), cos(2πx)

]T
.

Stacking these features over all samples yields a design matrix Φ and the linear regression
model

y ≈ Φθ.

Two estimators are compared:

• Least Squares (LS): θ̂LS = argminθ ∥y−Φθ∥22 (implemented with np.linalg.lstsq).

• Ridge (regularized LS): θ̂ridge = argminθ ∥y − Φθ∥22 + λ∥θ∥22, which has the
closed form

θ̂ridge = (ΦTΦ+ λI)−1ΦTy.

15

Figure 2 plots the noisy samples, the true function, and the fitted curves from LS and
ridge. Figure 3 visualizes the learned weights of each feature; ridge typically shrinks
coefficients and reduces sensitivity to noise. For reference, the script also constructs the
“true” coefficient vector (matching the data-generating function in this chosen basis) and
compares it to the estimated weights.

1 import numpy as np

2 import matplotlib.pyplot as plt

3

4 # -----------------------------

5 # 1) Generate nonlinear data

6 # -----------------------------

7 rng = np.random.default_rng (0)

8

9 N = 10

10 x = np.linspace(-1, 1, N)

11 y_true = 0.6*np.sin (2*np.pi*x) + 0.3*x**3 - 0.2*x

12 y = y_true + 0.3* rng.standard_normal(N) # noisy observations

13

14 # Dense grid for smooth plotting

15 x_plot = np.linspace(-1, 1, 500)

16 y_true_plot = 0.6*np.sin (2*np.pi*x_plot) + 0.3* x_plot **3 - 0.2* x_plot

17

18 # -----------------------------

19 # 2) Feature map phi(x)

20 # (polynomials + sin/cos)

21 # -----------------------------

22 def phi(x):

23 """

24 Feature vector:

25 [1, x, x^2, x^3, sin(2πx), cos(2πx)]
26 """

27 x = np.asarray(x)

28 return np.column_stack ([

29 np.ones_like(x),

30 x,

31 x**2,

32 x**3,

33 np.sin (2*np.pi*x),

34 np.cos (2*np.pi*x),

35])

36

37 Phi = phi(x)

38 Phi_plot = phi(x_plot)

39

40 # -----------------------------

41 # 3) Least Squares fit

42 # y ≈ Phi theta

43 # -----------------------------

44 theta_ls , *_ = np.linalg.lstsq(Phi , y, rcond=None)

45 y_ls_plot = Phi_plot @ theta_ls

46

47 # -----------------------------

48 # 4) Ridge fit (regularized LS)

49 # min ||y-Phi theta ||^2 + λ||theta ||^2
50 # -----------------------------

51 lam = 1.

52 I = np.eye(Phi.shape [1])

16

53 theta_ridge = np.linalg.solve(Phi.T @ Phi + lam*I, Phi.T @ y)

54 y_ridge_plot = Phi_plot @ theta_ridge

55

56 # -----------------------------

57 # 5) Plot results

58 # -----------------------------

59 plt.figure(figsize =(9, 4))

60

61 plt.scatter(x, y, label="Noisy samples", marker="o")

62 plt.plot(x_plot , y_true_plot , linestyle="--", label="True function")

63 plt.plot(x_plot , y_ls_plot , label="LS on features")

64 plt.plot(x_plot , y_ridge_plot , label=f"Ridge on features (λ={lam})")
65

66 plt.xlabel("x")

67 plt.ylabel("y")

68 plt.title("Linear Model on Nonlinear Features")

69 plt.legend ()

70 plt.tight_layout ()

71 plt.show()

72

73 # -----------------------------

74 # 6) Plot feature weights

75 # -----------------------------

76 feature_names = ["1", "x", "x^2", "x^3", "sin(2πx)", "cos(2πx)"]
77 theta_true = np.zeros_like(theta_ridge)

78 theta_true [1] = -0.2

79 theta_true [3] = 0.3

80 theta_true [4] = 0.6

81

82 plt.figure(figsize =(7, 3))

83 idx = np.arange(len(feature_names))

84 plt.stem(idx , theta_ls , linefmt=’b--’, markerfmt=’bo’, basefmt=" ",

label="LS")

85 plt.stem(idx , theta_ridge , linefmt="g--", markerfmt="gD", basefmt=" ",

label="Ridge")

86 plt.stem(idx , theta_true , linefmt="k--", markerfmt="kD", basefmt=" ",

label="True")

87

88 plt.xticks(idx , feature_names)

89 plt.xlabel("Feature")

90 plt.ylabel("Weight")

91 plt.title("Learned Feature Weights")

92 plt.legend ()

93 plt.tight_layout ()

94 plt.show()

95

96 print("theta_ls =", theta_ls)

97 print("theta_ridge=", theta_ridge)

Listing 1: Linear in Features Regression Example

17

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

0.75

0.50

0.25

0.00

0.25

0.50

0.75

y

Linear Model on Nonlinear Features

Noisy samples
True function
LS on features
Ridge on features (=1.0)

Figure 2: Noisy samples, true function, LS fit on features, and ridge-regularized fit.

1 x x^2 x^3 sin(2 x) cos(2 x)
Feature

0.2

0.0

0.2

0.4

0.6

W
ei

gh
t

Learned Feature Weights
LS
Ridge
True

Figure 3: Estimated feature weights for LS vs. ridge.

18

6 Bayesian Inference

6.1 Core Idea

In Bayesian inference, unknown model parameters are treated as random variables rather
than fixed but unknown constants. Instead of seeking a single best estimate of θ, we rep-
resent our uncertainty about its value using a probability distribution. This uncertainty
before seeing any data is encoded through a prior distribution p(θ), which reflects prior
knowledge, physical constraints, or modeling assumptions.

The observed data are also modeled probabilistically. Given inputs X and parameters
θ, the outputs Y are assumed to be generated according to a stochastic data model. This
explicitly accounts for measurement noise, unmodeled dynamics, and randomness in the
data-generating process.

The central goal of Bayesian inference is therefore not to compute a single parameter
vector, but to infer a distribution over parameters conditioned on the observed data.
This distribution quantifies both what parameter values are plausible and how uncertain
we are about them. Bayesian methods are particularly attractive because they provide
principled uncertainty estimates, incorporate regularization naturally through priors, and
enable systematic comparison between competing models.

6.2 Likelihood

The likelihood
p(Y |X,θ)

describes how the data are generated given the parameters. It is a probabilistic model of
the observations conditioned on θ (and possibly inputs X).

The likelihood can be interpreted in two complementary ways.

1. For fixed parameters θ, it is a probability distribution over possible datasets,
describing how likely different observations are under the assumed model.

2. For fixed observed data (X,Y), it becomes a function of θ that measures how
compatible different parameter values are with the data.

The choice of likelihood depends on the assumed noise model and data-generating process.
A common example is additive Gaussian noise:

yi = f(xi;θ) + εi, εi ∼ N (0, σ2).

Under the assumption that noise samples are independent, the likelihood factorizes as

p(Y |X,θ) =
N∏
i=1

N
(
yi ; f(xi;θ), σ

2
)
.

This choice directly connects Bayesian inference with least-squares estimation, since max-
imizing the likelihood under Gaussian noise is equivalent to minimizing a sum of squared
residuals.

19

6.3 Bayes’ Rule and the Posterior

Bayes’ rule combines prior knowledge and data through

p(θ | Y ,X) =
p(Y |X,θ) p(θ)

p(Y |X)
.

The resulting distribution p(θ | Y ,X) is the posterior, representing our updated belief
about the parameters after observing the data.

The denominator

p(Y |X) =

∫
p(Y |X,θ) p(θ) dθ

is called the evidence or marginal likelihood. It ensures that the posterior integrates to
one and plays a key role in model comparison. Importantly, it does not depend on θ
when performing parameter inference.

A useful summary is

posterior ∝ likelihood× prior.

The likelihood pulls the posterior toward parameter values that explain the data well,
while the prior pulls it toward values considered plausible before seeing the data. The
posterior represents a balance between these two sources of information.

6.4 Interpretation of the Bayesian Quantities

Each component of Bayes’ rule has a clear interpretation. The prior p(θ) encodes assump-
tions or domain knowledge available before observing data. The likelihood p(Y | X,θ)
measures how well a given parameter setting explains the observed data. The posterior
p(θ | Y ,X) is the updated belief that combines both. Finally, the evidence p(Y | X)
quantifies how plausible the observed data are under the assumed model class and prior,
and is therefore useful for comparing different models.

From an estimation perspective, Bayesian inference generalizes the methods studied so
far: least squares and regularization appear as special cases corresponding to particular
likelihood–prior combinations, while Bayesian methods additionally provide principled
uncertainty quantification and a unified probabilistic interpretation.

Evidence and Model Comparison Beyond parameter estimation, Bayesian infer-
ence also provides a principled mechanism for comparing different models. This is done
through the evidence, or marginal likelihood,

p(Y |X) =

∫
p(Y |X,θ) p(θ) dθ.

Unlike the likelihood, which evaluates how well a specific parameter value explains the
data, the evidence measures how well an entire model class explains the data before
knowing the parameters.

The evidence can be interpreted as an average of the likelihood over the prior dis-
tribution. Models that assign high likelihood to the observed data for many plausible
parameter values achieve high evidence, whereas models that require fine-tuned param-
eter choices to explain the data are penalized. In this sense, the evidence naturally
balances data fit and model complexity.

20

This quantity enables Bayesian model comparison. Given two competing modelsM1

andM2, their relative support from the data is given by the Bayes factor :

p(Y |X,M1)

p(Y |X,M2)
.

If this ratio is greater than one, the data favorM1 overM2; if it is less than one,M2 is
preferred.

A key conceptual consequence is the built-in Occam’s razor effect of Bayesian infer-
ence. More complex models typically spread probability mass over a larger parameter
space and therefore tend to have lower evidence unless the data provide strong support
for that added complexity. As a result, Bayesian model comparison automatically trades
off goodness of fit against model complexity, without the need for ad hoc penalties or
cross-validation heuristics.

6.5 Bayesian Point Estimation via Risk Minimization

Bayesian inference yields a full posterior distribution p(θ | Y ,X), which quantifies un-
certainty about the unknown parameters. In many applications, however, we still want
to report a single parameter vector θ̂ for prediction, control, or interpretation. Bayesian
point estimators are best understood through a decision-theoretic viewpoint: we choose
an estimate that minimizes posterior expected loss (posterior risk). Given a loss func-
tion L(θ, θ̃) that penalizes estimating θ̃ when the (latent) parameter is θ, the optimal
Bayesian decision rule is

θ̂ = argmin
θ̃

E
[
L(θ, θ̃)

∣∣∣ Y ,X
]
= argmin

θ̃

∫
L(θ, θ̃) p(θ | Y ,X) dθ.

Different loss functions correspond to different notions of “best” estimate, and therefore
lead to different point estimators.

6.5.1 MAP Estimator (Posterior Mode)

The maximum a posteriori (MAP) estimator selects the parameter value at which the
posterior density is maximized:

θ̂MAP = argmax
θ

p(θ | Y ,X).

Using Bayes’ rule,
p(θ | Y ,X) ∝ p(Y |X,θ) p(θ),

so equivalently
θ̂MAP = argmax

θ
p(Y |X,θ) p(θ).

In optimization form, MAP is obtained by minimizing the negative log-posterior:

θ̂MAP = argmin
θ

(
− log p(Y |X,θ)− log p(θ)

)
.

Thus, MAP estimation can be interpreted as minimizing a data misfit term (from the like-
lihood) plus a regularization term (from the prior). Because MAP chooses the posterior
mode, it selects the single most probable parameter value; if the posterior is multimodal,
there may be multiple MAP solutions (multiple local maxima).

21

MAP, Priors, and Regularization The connection between priors and regularization
becomes explicit in common likelihood–prior combinations. For example, a zero-mean
isotropic Gaussian prior

p(θ) = N (0, α−1I)

implies

− log p(θ) = const +
α

2
∥θ∥22,

i.e., an ℓ2 penalty on the parameters. If the likelihood corresponds to Gaussian observa-
tion noise,

yi = f(xi;θ) + εi, εi ∼ N (0, σ2),

then

− log p(Y |X,θ) = const +
1

2σ2
∥Y − f(X;θ)∥22.

Therefore MAP becomes a regularized least-squares problem:

θ̂MAP = argmin
θ

1

2σ2
∥Y − f(X;θ)∥22 +

α

2
∥θ∥22.

This provides a precise probabilistic interpretation of ridge (Tikhonov) regularization: it
corresponds to a Gaussian prior on the parameters.

MLE as a Special Case of MAP If the prior is flat (uninformative) over the param-
eter region of interest,

p(θ) ∝ const,

then the MAP estimator reduces to the maximum likelihood estimator (MLE):

θ̂MAP = argmax
θ

p(Y |X,θ) = θ̂MLE.

In words, MAP uses both prior information and data, whereas MLE uses data only. As
the amount of data increases, the influence of the prior typically diminishes and MAP
and MLE often become close.

6.5.2 MMSE Estimator (Posterior Mean)

The minimum mean square error (MMSE) estimator arises from squared-error loss:

θ̂MMSE = argmin
θ̃

E
[
∥θ − θ̃∥22

∣∣∣ Y ,X
]
.

The unique minimizer is the posterior mean:

θ̂MMSE = E[θ | Y ,X] =

∫
θ p(θ | Y ,X) dθ.

Intuitively, MMSE averages all plausible parameter values, weighted by their posterior
probability. This can be more robust than MAP when the posterior is skewed or mul-
timodal, because the mean reflects the full mass of the distribution rather than only its
peak.

22

Derivation Let µ = E[θ | Y ,X]. Consider the posterior risk for a candidate estimate
θ̃:

E
[
∥θ − θ̃∥22 | Y ,X

]
.

Add and subtract µ:

∥θ − θ̃∥22 = ∥(θ − µ) + (µ− θ̃)∥22 = ∥θ − µ∥22 + ∥µ− θ̃∥22 + 2(θ − µ)T(µ− θ̃).

Taking the posterior expectation makes the cross-term vanish because E[θ−µ | Y ,X] =
0. Hence

E
[
∥θ − θ̃∥22 | ·

]
= E

[
∥θ − µ∥22 | ·

]︸ ︷︷ ︸
independent of θ̃

+∥µ− θ̃∥22,

which is minimized when θ̃ = µ.

6.5.3 MMAE Estimator (Posterior Median)

If we instead use absolute-error loss (componentwise ℓ1 loss),

θ̂MMAE = argmin
θ̃

E
[
∥θ − θ̃∥1

∣∣∣ Y ,X
]
, ∥v∥1 =

∑
i

|vi|,

then the optimal estimator is the posterior median. In practice, a common choice is the
componentwise posterior median:

θ̂MMAE =
[
median(p(θ1 | Y ,X)), . . . ,median(p(θP | Y ,X))

]T
.

MMAE is often more robust to heavy-tailed posteriors and outliers than MMSE, because
medians are less influenced by extreme values than means.

6.5.4 Summary: MAP vs. MMSE vs. MMAE

The three most common Bayesian point estimators correspond to different summaries of
the posterior:

θ̂MAP = argmax
θ

p(θ | Y ,X) (mode), θ̂MMSE = E[θ | Y ,X] (mean),

θ̂MMAE = argmin
θ̃

E
[
∥θ − θ̃∥1 | Y ,X

]
(median).

If the posterior is Gaussian (or, more generally, symmetric and unimodal), then

mean = median = mode ⇒ θ̂MMSE = θ̂MMAE = θ̂MAP.

For skewed, heavy-tailed, or multimodal posteriors, these estimators can differ signifi-
cantly, and the appropriate choice depends on the loss function that best matches the
application’s notion of error.

1D Geometric Intuition Figure 4 illustrates the geometric intuition behind MAP,
MMSE, and MMAE in one dimension. The MAP estimate corresponds to the peak of
the posterior density (mode), the MMSE estimate corresponds to the center of mass
(mean), and the MMAE estimate corresponds to the point that divides the posterior into
two equal probability halves (median). The key result is that different estimators reflect
different optimality criteria (different losses).

23

4 2 0 2 4 6
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
De

ns
ity

1D Posterior: MAP vs MMSE vs MMAE
p(Y)
MAP (mode)
MMSE (mean)
MMAE (median)

Figure 4: Geometric intuition for Bayesian point estimators in one dimension. For a
posterior p(θ | Y): the MAP estimate θ̂MAP is the posterior mode (peak), the MMSE
estimate θ̂MMSE is the posterior mean (center of mass), and the MMAE estimate θ̂MMAE

is the posterior median (50% probability mass on each side). Different estimators cor-
respond to different loss functions and can differ substantially for skewed or multimodal
posteriors.

6.6 Maximum Likelihood Estimation (MLE)

Maximum likelihood estimation is a frequentist approach in which the unknown param-
eter vector θ is treated as a fixed (but unknown) quantity. We assume an observation
model that specifies a likelihood

p(y | θ),

i.e., the probability (density) of observing the data y under a given parameter value.
The MLE selects the parameter value that makes the observed data most probable:

θ̂MLE = argmax
θ

p(y | θ).

In practice we almost always work with the log-likelihood

L(θ) = log p(y | θ), θ̂MLE = argmax
θ
L(θ),

because the logarithm turns products into sums and improves numerical stability without
changing the maximizer.

i.i.d. data. If the samples are independent and identically distributed (i.i.d.), then the
likelihood factorizes:

p(y | θ) =
N∏
k=1

p(yk | θ),

24

so the log-likelihood becomes a sum:

L(θ) =
N∑
k=1

log p(yk | θ).

More generally, for i.i.d. input–output pairs {(xi, yi)}Ni=1 with a conditional model,

p(Y |X,θ) =
N∏
i=1

p(yi | xi,θ), L(θ) =
N∑
i=1

log p(yi | xi,θ),

and MLE is

θ̂MLE = argmax
θ

N∑
i=1

log p(yi | xi,θ).

The crucial point is that MLE depends entirely on the assumed data/noise model through
p(yi | xi,θ): changing the distributional assumption changes the estimator.

How is the MLE computed? If the log-likelihood is concave in θ and has a simple
form, the maximizer may be available in closed form (or via a single linear solve). Oth-
erwise, we solve an optimization problem numerically, typically using the tools already
seen in optimization: gradient ascent/descent on −L, Newton’s method, Gauss–Newton
(when the objective has least-squares structure), and line-search or trust-region strategies
for robustness.

Example: linear model with Gaussian noise ⇒ least squares. Consider the
linear regression model

yi = θTxi + wi, θ ∈ Rp,

with i.i.d. Gaussian noise wi ∼ N (0, σ2). Then

p(yi | xi,θ) = N
(
yi;θ

Txi, σ
2
)
,

and the log-likelihood is

L(θ) =
N∑
i=1

[
−1

2
log

(
2πσ2

)
− 1

2σ2

(
yi − θTxi

)2]
.

Maximizing L(θ) is equivalent to minimizing the sum of squared residuals:

θ̂MLE = argmax
θ
L(θ) ⇐⇒ argmin

θ

N∑
i=1

(
yi − θTxi

)2
.

Therefore, under a linear model with i.i.d. Gaussian noise, MLE coincides exactly with
ordinary linear least squares. This provides a probabilistic justification for the LS criterion
and clarifies how the assumed noise distribution determines the estimation objective.

6.6.1 Worked Example: MLE for a Gaussian Mean (Known Variance)

Assume we observe i.i.d. samples

y1, . . . , yN with yk ∼ N (µ, σ2),

where the variance σ2 is known and the unknown parameter is the mean θ = µ.

25

Likelihood. Because the samples are i.i.d.,

p(y | µ) =
N∏
k=1

1√
2πσ2

exp

(
−(yk − µ)2

2σ2

)
.

Log-likelihood. Taking the logarithm,

L(µ) = log p(y | µ) = −N

2
log

(
2πσ2

)
− 1

2σ2

N∑
k=1

(yk − µ)2.

Since the first term is constant in µ, maximizing L(µ) is equivalent to minimizing∑N
k=1(yk − µ)2.

Compute the maximizer. Differentiate L(µ) (or the equivalent sum-of-squares ob-
jective) and set to zero:

dL
dµ

= − 1

2σ2

d

dµ

N∑
k=1

(yk − µ)2 = − 1

2σ2

N∑
k=1

2(yk − µ)(−1) = 1

σ2

N∑
k=1

(yk − µ).

Set dL
dµ

= 0:

N∑
k=1

(yk − µ) = 0 ⇒ Nµ =
N∑
k=1

yk ⇒ µ̂MLE =
1

N

N∑
k=1

yk .

Thus, the MLE of the Gaussian mean (with known variance) is the sample average.

Numeric mini-example. Let

y1 = 1.2, y2 = 0.7, y3 = 1.5, y4 = 0.6, y5 = 1.0, (N = 5).

Then

µ̂MLE =
1

5
(1.2 + 0.7 + 1.5 + 0.6 + 1.0) =

1

5
· 5.0 = 1.0.

Connection to least squares. In this example, maximizing the Gaussian likelihood
is equivalent to minimizing

∑N
k=1(yk − µ)2, i.e., fitting a constant model to data in the

least-squares sense. This mirrors the general fact that Gaussian-noise MLE leads to
squared-error objectives.

6.6.2 Worked Example: MLE for Linear Regression with Unknown Variance

Assume the standard linear model with Gaussian noise:

y = Xθ +w, w ∼ N (0, σ2I),

where both the regression coefficients θ ∈ Rp and the noise variance σ2 > 0 are unknown.

26

Likelihood. The conditional density of y given (θ, σ2) is multivariate Gaussian:

p(y |X,θ, σ2) = (2πσ2)−N/2 exp

(
− 1

2σ2
∥y −Xθ∥22

)
.

Log-likelihood. Taking the log:

L(θ, σ2) = −N

2
log

(
2πσ2

)
− 1

2σ2
∥y −Xθ∥22.

MLE for θ. For fixed σ2, maximizing L w.r.t. θ is equivalent to minimizing ∥y−Xθ∥22,
so the MLE for θ is the ordinary least-squares solution:

θ̂MLE = (XTX)−1XTy (assuming X has full column rank).

MLE for σ2. Plug θ̂MLE into the log-likelihood and maximize w.r.t. σ2. Differentiate
L w.r.t. σ2:

∂L
∂σ2

= −N

2

1

σ2
+

1

2

1

(σ2)2
∥y −Xθ∥22.

Setting this to zero gives

−Nσ2 + ∥y −Xθ∥22 = 0 ⇒ σ2 =
1

N
∥y −Xθ∥22.

Therefore,

σ̂2
MLE =

1

N

∥∥y −Xθ̂MLE

∥∥2

2

(note: the unbiased variance estimator uses 1
N−p

instead of 1
N
).

Numeric mini-example (small dataset). Fit a line y = θ0 + θ1x + w from three
samples:

(x1, y1) = (0, 1), (x2, y2) = (1, 2), (x3, y3) = (2, 2).

Then

X =

1 0
1 1
1 2

 , y =

12
2

 .

Compute

XTX =

[
3 3
3 5

]
, XTy =

[
5
6

]
, (XTX)−1 =

1

6

[
5 −3
−3 3

]
.

Thus

θ̂MLE =
1

6

[
5 −3
−3 3

] [
5
6

]
=

[
7/6
1/2

]
, ⇒ ŷ(x) =

7

6
+

1

2
x.

Residuals:

r̂ = y −Xθ̂MLE =

 1− 7/6
2− (7/6 + 1/2)
2− (7/6 + 1)

 =

−1/61/3
−1/6

 , ∥r̂∥22 =
1

36
+

1

9
+

1

36
=

1

6
.

Therefore, with N = 3,

σ̂2
MLE =

1

N
∥r̂∥22 =

1

3
· 1
6
=

1

18
.

27

7 Bayesian Linear Regression

7.1 Model, Notation, and Goals

Bayesian linear regression (BLR) combines a linear-in-parameters model with a proba-
bilistic description of uncertainty in the parameters. We observe training data

D = {(xi, yi)}Ni=1,

choose a feature map
ϕ : Rd → RP , ϕi ≡ ϕ(xi),

and assume the observation model

yi = ϕT
i θ + wi, wi ∼ N (0, σ2

w), i.i.d.

Stacking the observations yields

y =

y1
...
yN

 , Φ =

ϕ
T
1
...

ϕT
N

 ∈ RN×P , y = Φθ +w, w ∼ N (0, σ2
wI).

The Bayesian goal is twofold:

• infer a posterior distribution over weights, p(θ | D),

• predict at a new input x∗ with uncertainty: p(y∗ | x∗,D).

7.2 Prior and Likelihood

Prior on weights (conjugate Gaussian). We encode uncertainty and prior knowl-
edge about the weights by a Gaussian prior

p(θ) = N (µ0,Σ0).

Here µ0 is the prior mean (our best guess of the weights before data) and Σ0 is the prior
covariance (uncertainty and correlations). A common special case is an isotropic prior
Σ0 = α−1I, which shrinks weights toward µ0 (often 0).

Likelihood. Conditioned on θ, the outputs are Gaussian:

p(y | Φ,θ) = N (Φθ, σ2
wI).

Equivalently, the log-likelihood is

log p(y | Φ,θ) = −N

2
log

(
2πσ2

w

)
− 1

2σ2
w

∥y −Φθ∥22.

Thus, Gaussian noise connects directly to least squares (MLE ⇔ LS).

7.3 Posterior over Weights

Bayes’ rule gives
p(θ | y,Φ) ∝ p(y | Φ,θ) p(θ).

We derive the posterior explicitly and show it is Gaussian (conjugacy).

28

Step 1: Write the unnormalized log posterior. Ignoring constants independent of
θ,

log p(θ | y,Φ) = log p(y | Φ,θ) + log p(θ) + const

= − 1

2σ2
w

∥y −Φθ∥22 −
1

2
(θ − µ0)

TΣ−1
0 (θ − µ0) + const.

Step 2: Expand both quadratic forms. First,

∥y −Φθ∥22 = (y −Φθ)T(y −Φθ) = yTy − 2θTΦTy + θTΦTΦθ.

Second,
(θ − µ0)

TΣ−1
0 (θ − µ0) = θTΣ−1

0 θ − 2θTΣ−1
0 µ0 + µT

0Σ
−1
0 µ0.

Substitute into the log posterior and collect terms in θ. All terms that do not depend
on θ are absorbed into “const”. We obtain

log p(θ | y,Φ) = −1

2

[
θT

(
Σ−1

0 +
1

σ2
w

ΦTΦ

)
θ − 2θT

(
Σ−1

0 µ0 +
1

σ2
w

ΦTy

)]
+ const.

Step 3: Identify the Gaussian by completing the square. Define the posterior
precision matrix and the corresponding linear term:

ΛN ≜ Σ−1
0 +

1

σ2
w

ΦTΦ, ηN ≜ Σ−1
0 µ0 +

1

σ2
w

ΦTy.

Then the log posterior becomes

log p(θ | y,Φ) = −1

2

(
θTΛNθ − 2θTηN

)
+ const.

Complete the square:

θTΛNθ − 2θTηN = (θ − µN)
TΛN(θ − µN)− µT

NΛNµN ,

where the shift µN must satisfy

ΛNµN = ηN ⇒ µN = Λ−1
N ηN .

Hence,

p(θ | y,Φ) = N (µN ,ΣN), ΣN = Λ−1
N µN = ΣN ηN .

Final posterior formulas (mean/covariance). Explicitly,

ΣN =

(
Σ−1

0 +
1

σ2
w

ΦTΦ

)−1

, µN = ΣN

(
Σ−1

0 µ0 +
1

σ2
w

ΦTy

)
.

Interpretation via “precision addition”. It is often clearest to look at precisions:

Σ−1
N = Σ−1

0 +
1

σ2
w

ΦTΦ.

The data contribute a precision term 1
σ2
w
ΦTΦ: more data (larger N) or cleaner data

(smaller σ2
w) increase precision and shrink posterior uncertainty.

29

7.4 MAP Connection: BLR as Regularized Least Squares

The MAP estimator is the posterior mode. Since the posterior is Gaussian, the mode
equals the mean:

θ̂MAP = µN .

Equivalently, maximize the posterior or minimize the negative log posterior:

θ̂MAP = argmin
θ

1

2σ2
w

∥y −Φθ∥22 +
1

2
(θ − µ0)

TΣ−1
0 (θ − µ0).

For µ0 = 0 and Σ0 = α−1I this becomes ridge regression:

θ̂MAP = argmin
θ
∥y −Φθ∥22 + λ∥θ∥22, λ = σ2

wα.

This makes the “prior ↔ regularizer” correspondence explicit.

7.5 Predictive Distributions

Prior predictive (before observing data)

For a new input x∗ with feature vector ϕ∗ = ϕ(x∗), the conditional model is

p(y∗ | x∗,θ) = N (ϕT
∗ θ, σ

2
w).

Before seeing data, the predictive distribution averages over the prior:

p(y∗ | x∗) =

∫
p(y∗ | x∗,θ) p(θ) dθ.

Let z∗ = ϕT
∗ θ. Since θ ∼ N (µ0,Σ0) and z∗ is linear,

z∗ ∼ N
(
ϕT

∗µ0, ϕ
T
∗Σ0ϕ∗

)
.

With independent additive noise y∗ = z∗ + w∗, w∗ ∼ N (0, σ2
w),

p(y∗ | x∗) = N
(
ϕT

∗µ0, ϕ
T
∗Σ0ϕ∗ + σ2

w

)
.

Posterior predictive (after observing data)

After observing D, we average over the posterior:

p(y∗ | x∗,y,Φ) =

∫
p(y∗ | x∗,θ) p(θ | y,Φ) dθ.

Using p(θ | y,Φ) = N (µN ,ΣN), the same linear-Gaussian argument yields

p(y∗ | x∗,y,Φ) = N
(
ϕT

∗µN , ϕ
T
∗ΣNϕ∗ + σ2

w

)
.

Mean vs. variance decomposition. The predictive mean is

E[y∗ | ·] = ϕT
∗µN ,

and the predictive variance splits into two terms:

Var(y∗ | ·) = ϕT
∗ΣNϕ∗︸ ︷︷ ︸

parameter uncertainty

+ σ2
w︸︷︷︸

measurement noise

.

As more informative data arrive, ΣN shrinks and the uncertainty bands tighten; the
irreducible term σ2

w remains as observation noise.

30

7.6 Practical Note: Sampling from the Prior (Function Space
Intuition)

Before observing data, BLR defines a distribution over functions via sampling weights:

θ(s) ∼ N (µ0,Σ0), z(s)(x) = ϕ(x)Tθ(s).

Adding observation noise yields synthetic datasets:

y
(s)
i = z(s)(xi) + w

(s)
i , w

(s)
i ∼ N (0, σ2

w).

This is a useful way to visualize and debug priors/features: it shows what functions the
model believes are plausible before seeing any data.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

6

4

2

0

2

4

6

z(
x)

=
(x

)

Functions sampled from BLR prior
Prior mean

Prior function samples

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

2

1

0

1

2

3

4

y

Synthetic data generated from BLR prior
True sampled function
Noisy synthetic data

One synthetic dataset

Figure 5: Bayesian linear regression prior intuition via sampling. Left: sample weights
θ ∼ N (µ0,Σ0) and plot the corresponding noiseless functions z(x) = ϕ(x)Tθ to visualize
what the prior considers plausible. Right: sample one such function and add Gaussian
noise w ∼ N (0, σ2

w) to generate a synthetic training dataset.

Figure 5 illustrates an important intuition behind Bayesian linear regression: before
observing any data, the model already defines a distribution over functions. This distri-
bution is induced by the prior p(θ) together with the chosen feature map ϕ(·).

The left panel shows multiple function samples obtained by first drawing θ ∼ N (µ0,Σ0

and then evaluating the corresponding noiseless prediction z(x) = ϕ(x)Tθ over the input
domain. These curves represent the set of functions that the prior considers plausible be-
fore seeing any data. The choice of features and the prior covarianceΣ0 strongly influence
their smoothness, amplitude, and variability.

The right panel demonstrates how synthetic datasets can be generated from this
prior. A single function is sampled from the left panel and Gaussian observation noise
w ∼ N (0, σ2

w) is added to produce training points. This process exactly matches the
assumed generative model of Bayesian linear regression.

Such prior sampling is useful for several reasons. It provides a sanity check on fea-
ture design and prior choices, allowing us to verify that the model encodes reasonable
assumptions before fitting data. It also helps build intuition about uncertainty: even
in the absence of data, predictions vary because many parameter values are plausible.
Finally, it is a convenient way to generate controlled toy datasets for experiments, demos,
or assignments under the same assumptions used by the inference procedure.

31

7.7 Worked Example: Bayesian Linear Regression (1D, Closed
Form)

We work through a complete Bayesian linear regression example for a simple 1D linear
model (intercept + slope). The goal is to compute the posterior over weights and the
posterior predictive distribution at a new input.

Model and features. Let

ϕ(x) =

[
1
x

]
, yi = ϕ(xi)

Tθ + wi, wi ∼ N (0, σ2
w), θ =

[
θ0
θ1

]
.

Assume noise variance
σ2
w = 1.

Prior. Use a zero-mean isotropic Gaussian prior

p(θ) = N (0, α−1I), α = 1 ⇒ Σ0 = I, µ0 = 0.

Training data. Use three observations:

(x1, y1) = (0, 1), (x2, y2) = (1, 2), (x3, y3) = (2, 2).

Then

Φ =

1 0
1 1
1 2

 , y =

12
2

 .

Step 1: Compute posterior covariance ΣN

BLR posterior covariance is

ΣN =

(
Σ−1

0 +
1

σ2
w

ΦTΦ

)−1

.

Compute

Σ−1
0 = I, ΦTΦ =

[
3 3
3 5

]
.

Since σ2
w = 1,

Σ−1
N = I +ΦTΦ =

[
4 3
3 6

]
.

Invert:
det

(
Σ−1

N

)
= 4 · 6− 3 · 3 = 24− 9 = 15,

⇒ ΣN = (Σ−1
N)−1 =

1

15

[
6 −3
−3 4

]
.

32

Step 2: Compute posterior mean µN

The posterior mean is

µN = ΣN

(
Σ−1

0 µ0 +
1

σ2
w

ΦTy

)
.

Here µ0 = 0 and σ2
w = 1, so

µN = ΣNΦ
Ty.

Compute

ΦTy =

[
1 + 2 + 2

0 · 1 + 1 · 2 + 2 · 2

]
=

[
5
6

]
.

Thus

µN =
1

15

[
6 −3
−3 4

] [
5
6

]
=

1

15

[
30− 18
−15 + 24

]
=

[
4/5
3/5

]
.

Therefore,

p(θ | D) = N
([

4/5
3/5

]
,
1

15

[
6 −3
−3 4

])
.

Step 3: Posterior predictive at a new input

Take a test input x∗ = 1.5, so

ϕ∗ = ϕ(1.5) =

[
1
1.5

]
.

The posterior predictive distribution is Gaussian:

p(y∗ | x∗,D) = N
(
m∗, s

2
∗
)
,

with
m∗ = ϕT

∗µN , s2∗ = ϕT
∗ΣNϕ∗ + σ2

w.

Compute the predictive mean:

m∗ =
[
1 1.5

] [4/5
3/5

]
=

4

5
+

4.5

5
=

8.5

5
= 1.7.

Compute the predictive variance term from parameter uncertainty:

ΣNϕ∗ =
1

15

[
6 −3
−3 4

] [
1
1.5

]
=

1

15

[
6− 4.5
−3 + 6

]
=

1

15

[
1.5
3

]
=

[
0.1
0.2

]
.

Then

ϕT
∗ΣNϕ∗ =

[
1 1.5

] [0.1
0.2

]
= 0.1 + 0.3 = 0.4.

Finally,
s2∗ = 0.4 + σ2

w = 0.4 + 1 = 1.4.

So
p(y∗ | x∗ = 1.5,D) = N (1.7, 1.4).

33

Interpretation.

• The posterior mean µN is the MAP estimate (Gaussian posterior).

• The posterior covariance ΣN quantifies weight uncertainty and typically shrinks as
more data arrive.

• The predictive variance splits into ϕT
∗ΣNϕ∗ (uncertainty about the weights) plus

σ2
w (irreducible measurement noise).

7.8 Python Implementation

1.5 1.0 0.5 0.0 0.5 1.0 1.5
x

1

0

1

2

3

4

y

BLR Posterior Predictive: Mean and Variance
True function
Predictive mean
MAP function (MAP)
MLE function (MLE)
±2 predictive std
Training data

Figure 6: Posterior predictive behavior in Bayesian linear regression (BLR), compared
to MLE and MAP point estimates. The training data are concentrated in two separated
input regions (near x ≈ −1 and x ≈ +1), leaving a gap with no observations. The figure
shows: (i) the BLR predictive mean (posterior predictive mean), (ii) an uncertainty
band of ±2 predictive standard deviations, (iii) the MAP function induced by the MAP
weights θMAP (for a Gaussian posterior, this equals the posterior mean), and (iv) the
MLE function induced by θMLE (no prior).

The code constructs a synthetic regression problem where the underlying function is
nonlinear, but we deliberately fit a polynomial feature model of degree P :

ϕ(x) =
[
1 x x2 · · · xP

]T
, y ≈ θTϕ(x) + w, w ∼ N (0, σ2

w).

This is a typical “linear model on nonlinear features” setting: the model is linear in θ,
but nonlinear in x.

34

Dataset design: why the gap matters. The inputs are sampled from two disjoint
intervals:

x ∈ [−1,−0.8] ∪ [0.8, 1],

so the model sees no data in the middle region. This is precisely where Bayesian predictive
uncertainty becomes informative: BLR should be confident where data exist and less
confident where they do not.

Three different predictors in the plot.

• MLE function (point estimate, no prior). The code computes

θMLE = argmax
θ

p(y | θ) ⇐⇒ argmin
θ
∥y −Φθ∥22,

implemented as θMLE = pinv(Φ)y. This yields a single curve ŷ(x) = ϕ(x)TθMLE

with no uncertainty.

• MAP function (point estimate with prior). The prior is Gaussian,

θ ∼ N (µ0,Σ0), Σ0 = α−1I,

which leads to a MAP estimator equivalent to ridge regression:

θMAP = argmin
θ

1

2σ2
w

∥y −Φθ∥22 +
1

2
(θ − µ0)

TΣ−1
0 (θ − µ0).

The code computes θMAP explicitly in closed form. This again gives a single curve,
typically smoother / less extreme than MLE due to shrinkage.

• BLR posterior predictive (distribution over outputs). BLR does not return a
single function only; it returns a predictive distribution:

p(y∗ | x∗,D) = N
(

ϕ(x∗)
TµN︸ ︷︷ ︸

predictive mean

, ϕ(x∗)
TΣNϕ(x∗)︸ ︷︷ ︸

parameter uncertainty

+ σ2
w︸︷︷︸

noise

)
.

The shaded band in the plot corresponds to ±2 predictive standard deviations, i.e.
roughly a 95% interval under the Gaussian predictive model.

How to read the figure (main takeaways).

• Point estimators (MLE/MAP) produce curves but no uncertainty. They
cannot express that the prediction in the gap is less reliable than near the observed
regions.

• BLR uncertainty grows away from the data. In regions with few/no training
points, ϕ(x)TΣNϕ(x) increases, widening the predictive band.

• MAP vs MLE differs most when data are limited or features are flexible.
The prior shrinks coefficients and prevents extreme polynomial behavior, so the
MAP curve is often less oscillatory than MLE (especially outside the observed
range).

35

Implementation details mirrored in the code. The code uses the closed-form pos-
terior:

Σ−1
N = Σ−1

0 +
1

σ2
w

ΦTΦ, µN = ΣN

(
Σ−1

0 µ0 +
1

σ2
w

ΦTy

)
,

then computes predictive mean and variance on a grid using

Var(y∗ | ·) = diag(Φ∗ΣNΦ
T
∗) + σ2

w,

implemented via the efficient diagonal trick

diag(Φ∗ΣNΦ
T
∗) =

∑
j

(Φ∗ΣN)·j ⊙ (Φ∗)·j.

This is why the code computes param var = np.sum(Phi grid @ SigmaN * Phi grid,

axis=1).

1 import numpy as np

2 import matplotlib.pyplot as plt

3

4 # ---------------------------

5 # 1) Synthetic dataset

6 # ---------------------------

7 np.random.seed (1)

8

9 # N = 25

10 # x_data = np.linspace (-1., 1., N)

11 N = 25

12 N_left = N // 2

13 N_right = N - N_left

14

15 x_left = np.linspace (-1.0, -0.8, N_left , endpoint=True)

16 x_right = np.linspace (0.8, 1.0, N_right , endpoint=True)

17

18 x_data = np.concatenate ([x_left , x_right])

19 sigma_w = 0.1 # noise std

20

21 # True underlying function (just for data gen)

22 def f_true(x):

23 return 0.7*np.sin (2.5*x) + 0.3*x

24

25 y_data = f_true(x_data) + sigma_w*np.random.randn(N)

26

27 # ---------------------------

28 # 2) Feature map (polynomial)

29 # ---------------------------

30 P = 4 # order -> feature dim = P+1

31

32 def phi(x, P):

33 return np.vstack ([x**k for k in range(P+1)]).T

34

35 Phi_data = phi(x_data , P) # (N, P+1)

36

37 # Grid for prediction

38 x_grid = np.linspace (-1.5, 1.5, 300)

39 Phi_grid = phi(x_grid , P)

40

41 y_grid = f_true(x_grid)

36

42

43 # ---------------------------

44 # 3) Prior over theta

45 # ---------------------------

46 alpha = 2.0

47 mu0 = np.zeros(P+1)

48 Sigma0 = (1/ alpha) * np.eye(P+1)

49

50 # ---------------------------

51 # 4) Posterior (closed form)

52 # ---------------------------

53 SigmaN_inv = np.linalg.inv(Sigma0) + (1/ sigma_w **2) * (Phi_data.T @

Phi_data)

54 SigmaN = np.linalg.inv(SigmaN_inv)

55

56 muN = SigmaN @ (np.linalg.inv(Sigma0) @ mu0 + (1/ sigma_w **2) * Phi_data

.T @ y_data)

57

58 # ---------------------------

59 # 4b) MAP estimate for theta

60 # ---------------------------

61 # For Gaussian posterior , MAP = posterior mean

62 # theta_map = muN.copy()

63

64 # (Optional explicit ridge/MAP form; should match muN)

65 theta_map = np.linalg.inv(Phi_data.T @ Phi_data + sigma_w **2 * np.

linalg.inv(Sigma0)) @ (Phi_data.T @ y_data + sigma_w **2 * np.linalg.

inv(Sigma0) @ mu0)

66

67 # ---------------------------

68 # 4c) MLE estimate for theta (no prior)

69 # ---------------------------

70 # With N < P+1, use pseudoinverse for stability

71 theta_mle = np.linalg.pinv(Phi_data) @ y_data

72 y_mle = Phi_grid @ theta_mle

73

74 # Function induced by MAP parameters

75 y_map = Phi_grid @ theta_map

76

77 # ---------------------------

78 # 5) Posterior predictive

79 # ---------------------------

80 # Mean

81 y_mean = Phi_grid @ muN

82

83 # Variance = parameter uncertainty + noise

84 param_var = np.sum(Phi_grid @ SigmaN * Phi_grid , axis =1) # diag(Phi Σ
Phi^T)

85 pred_var = param_var + sigma_w **2

86 pred_std = np.sqrt(pred_var)

87

88 # ---------------------------

89 # 6) Plot

90 # ---------------------------

91 plt.figure(figsize =(6.8, 4.0))

92

93 # the actual function

94 plt.plot(x_grid , y_grid , "--", linewidth=2, alpha =0.4, label="True

37

function")

95

96 # predictive mean

97 plt.plot(x_grid , y_mean , linewidth=2, label="Predictive mean")

98

99 # MAP function

100 plt.plot(x_grid , y_map , "--", linewidth=2, label=r"MAP function ($\
theta_ {\ mathrm{MAP}}$)")

101

102 # MLE function

103 plt.plot(x_grid , y_mle , ":", linewidth =2.5, label=r"MLE function ($\
theta_ {\ mathrm{MLE}}$)")

104

105 # uncertainty band ±2 std

106 plt.fill_between(

107 x_grid ,

108 y_mean - 2*pred_std ,

109 y_mean + 2*pred_std ,

110 alpha =0.25,

111 label=r"± 2 predictive std"

112)

113

114 # data

115 plt.scatter(x_data , y_data , s=35, label="Training data")

116

117 plt.xlabel(r"x")
118 plt.ylabel(r"y")
119 plt.title("BLR Posterior Predictive: Mean and Variance")

120 plt.legend ()

121 plt.tight_layout ()

122 plt.show()

123

124 print("theta_MAP =", theta_map)

125 print("theta_MLE =", theta_mle)

Listing 2: Bayesian Linear Regression

7.9 Sequential Bayesian Linear Regression (Recursive Update)

A major practical advantage of Bayesian linear regression is that it can be updated
online: when a new sample arrives, we update the posterior without re-processing the
whole dataset. Suppose that after observing

Dk = {(xi, yi)}ki=1,

our posterior is
p(θ | Dk) = N (µk,Σk).

A new data point (xk+1, yk+1) induces a feature vector

ϕk+1 ≡ ϕ(xk+1), yk+1 = ϕT
k+1θ + wk+1, wk+1 ∼ N (0, σ2

w).

Bayes’ rule says the updated posterior is proportional to the previous posterior times the
new likelihood:

p(θ | Dk+1) ∝ p(yk+1 | θ) p(θ | Dk).

38

Because both factors are Gaussian in θ, the posterior remains Gaussian:

p(θ | Dk+1) = N (µk+1,Σk+1).

It is especially clean to express the recursion in information form. Define the precision
(information) matrix

Λk ≜ Σ−1
k .

Then each new sample contributes a rank-1 information increment:

Λk+1 = Λk +
1

σ2
w

ϕk+1ϕ
T
k+1.

Similarly, define the information vector

ηk ≜ Λkµk.

The mean update becomes a simple additive rule in information space:

ηk+1 = ηk +
1

σ2
w

ϕk+1yk+1, µk+1 = Λ−1
k+1ηk+1.

This representation highlights the interpretation of sequential BLR: we keep accumulating
information about θ. When the observation noise variance σ2

w is small, each sample is
trusted more and adds more information; when σ2

w is large, the update is smaller.
The same recursion can also be written in a Kalman-filter-like form, which may be

more intuitive if you have seen recursive least squares or Kalman updates. The one-step
predictive distribution of the new output is

yk+1 | Dk ∼ N
(
ϕT

k+1µk, sk+1

)
, sk+1 ≜ ϕT

k+1Σkϕk+1 + σ2
w.

Define the innovation (prediction error)

ek+1 ≜ yk+1 − ϕT
k+1µk,

and the gain vector

Kk+1 ≜
Σkϕk+1

sk+1

.

Then the posterior mean and covariance update as

µk+1 = µk +Kk+1ek+1, Σk+1 = Σk −Kk+1ϕ
T
k+1Σk.

This is exactly the measurement update of a Kalman filter for a static state θ (no dy-
namics), with measurement matrix ϕT

k+1.

7.10 What Bayesian Linear Regression Adds Beyond LS / MLE

Least squares and maximum likelihood estimation provide a single best-fit parameter
vector. In contrast, BLR produces a full posterior distribution

p(θ | D) = N (µN ,ΣN),

39

which directly quantifies how uncertain we are about each parameter and how parameters
are correlated.

A second benefit is that BLR incorporates regularization in a principled way through
the prior. For a Gaussian prior, the MAP estimate coincides with the posterior mean
and is equivalent to ridge regression:

θ̂MAP = argmin
θ

1

2σ2
w

∥y −Φθ∥22 +
1

2
(θ − µ0)

TΣ−1
0 (θ − µ0).

Thus, the prior controls model complexity and improves numerical stability, especially
when data are scarce or the feature dimension is large.

Most importantly, BLR yields predictive uncertainty. For a new input x∗ with features
ϕ∗, the posterior predictive distribution is

p(y∗ | x∗,D) = N
(
ϕT

∗µN , ϕ
T
∗ΣNϕ∗ + σ2

w

)
.

The predictive variance decomposes into two intuitive parts:

Var(y∗ | ·) = ϕT
∗ΣNϕ∗︸ ︷︷ ︸

uncertainty in θ

+ σ2
w︸︷︷︸

observation noise

.

The first term becomes small when the data strongly constrain the weights (posterior
concentrates), while the second term is irreducible measurement noise.

Finally, BLR connects naturally to the asymptotic behavior of MLE: as N grows
and the data are informative, the posterior covariance shrinks and the posterior mean
approaches the MLE under standard regularity conditions. In that sense, BLR can be
viewed as LS/MLE augmented with prior knowledge and a coherent uncertainty quan-
tification mechanism.

40

	Motivation for Parameter Estimation
	Linear Least Squares
	Derivation
	Least Squares Estimation of AR Model Parameters

	Overfitting and Regularization
	Nonlinear Least Squares
	ARMA Parameter Estimation via Prediction Error Minimization
	Gauss–Newton for Nonlinear Least Squares
	Gauss–Newton in General Form
	Gauss–Newton Example: Estimating an ARMA(1,1) Model
	Worked Mini-Example (One Gauss–Newton Step)
	Practical View: Nonlinear LS via an Optimization Lens

	Nonlinear Autoregressive Models and Linear Models on Features
	NAR Models
	Linear Models on Features (Basis Expansion)
	NAR as Linear Regression on Features (Special Case)
	Worked Examples: Linear Models on Features
	Python Implemetation

	Bayesian Inference
	Core Idea
	Likelihood
	Bayes' Rule and the Posterior
	Interpretation of the Bayesian Quantities
	Bayesian Point Estimation via Risk Minimization
	MAP Estimator (Posterior Mode)
	MMSE Estimator (Posterior Mean)
	MMAE Estimator (Posterior Median)
	Summary: MAP vs. MMSE vs. MMAE

	Maximum Likelihood Estimation (MLE)
	Worked Example: MLE for a Gaussian Mean (Known Variance)
	Worked Example: MLE for Linear Regression with Unknown Variance

	Bayesian Linear Regression
	Model, Notation, and Goals
	Prior and Likelihood
	Posterior over Weights
	MAP Connection: BLR as Regularized Least Squares
	Predictive Distributions
	Practical Note: Sampling from the Prior (Function Space Intuition)
	Worked Example: Bayesian Linear Regression (1D, Closed Form)
	Python Implementation
	Sequential Bayesian Linear Regression (Recursive Update)
	What Bayesian Linear Regression Adds Beyond LS / MLE

