£ \ [TANEITIXTHMIO

[TATPON

UNIVERSITY OF PATRAS

Signal Processing

Lecture 16: Dimensionality Reduction

Konstantinos Chatzilygeroudis - costashatz@upatras.gr

Department of Electrical and Computer Engineering
University of Patras

Template made by Panagiotis Papagiannopoulos



https://lar.ece.upatras.gr/
mailto:costashatz@upatras.gr

- Why Dimensionality Reduction?

We often observe data in a high-dimensional space:

x;eRP, i=1,....N,

where D can be large (pixels, sensors, features, embeddings, ...).

But the phenomenon that generated the data may be much
simpler:

x; ~ g(z;), zieRY d«D.




What are we trying to achieve?

We want a representation
zi=g(x))eRY (d « D)

that preserves the important structure of the data.

Typical goals:
m Compression: store/transmit x; using fewer numbers.
m Visualization: understand structure by plotting d = 2 or
d=3.
m Denoising: remove directions that are mostly noise.

m Learning efficiency: reduce computation and sample
complexity.



The curse of dimensionality (intuition)

As D grows, geometric intuition changes:

m Data become sparse: a fixed number of samples N covers a
vanishing fraction of RP.

m Distances can become less informative (many points look
“equally far").

m Estimating quantities like densities or covariances becomes
harder without much larger N.

In many problems, we pay a price in high dimensions:

more features = more parameters to estimate = more data needed.




Redundancy and correlations

High-dimensional features are often correlated or redundant.

Example idea:

X1
X2

x= X with x ~ 2x3, x5 = x3 + X3,

XD

So although x € RP, the data may concentrate near a much
lower-dimensional set (e.g., a line, plane, or curved manifold).



A geometric picture

Even if observations live in RD, the data may lie (approximately) in
a lower-dimensional subspace:

xi~p+ Wz;, WeRP* 2z eR? d«D.

Interpretation:
m p is the mean (translation).

m Columns of W span a d-dimensional subspace capturing most
variation.

m Remaining directions contain little signal (often noise).



Formalizing “keep what matters”

A common principle: preserve information measured by variance
(or energy).

If P is a projection onto a d-dimensional subspace, we want
Ix; — Px,-H2 small for most J.

Equivalently, we want Px; to retain as much “spread” of the data
as possible.
In other words, we want to:

m choose directions of maximum variance,

m or equivalently, minimize reconstruction error.



A symmetric 2 x 2 matrix as a geometric transform

Let
A= [Z g] (symmetric).
It defines a linear transformation x — Ax.

Key geometric fact (symmetric case):
m A maps the unit circle to an ellipse.
m The ellipse’s principal axes are orthogonal.

m Those principal axes directions are the eigenvectors of A.

Eigenpairs satisfy:
Avk = /\kvk.

Along direction vy, vectors are scaled by A (no rotation).



Visualizing the transformation

Symmetric matrix maps unit circle to an ellipse
(principal axes = eigenvectors)
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Visualizing the transformation (2)

Symmetric matrix maps unit circle to an ellipse
(principal axes = eigenvectors)
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- Unit circle — ellipse (principal axes = eigenvectors)

Consider all unit vectors:

C={xeR%:|x| =1}
Their images under A form:
& ={Ax:xeC}.
For symmetric A, &£ is an ellipse.
If A= QAQ" with
A = diag(M\1,A2), Q=[viva], QTQ=1,

then:
m the ellipse axes point along vy, vy,

m the axis “length scales” are |A\1] and |Az| (applied to unit
vectors).



Rayleigh quotient: “which direction stretches the most?”

For any nonzero x define the Rayleigh quotient:

xT Ax

xTx '

R(x) =
If [x| =1, then R(x) = x " Ax.
For symmetric A:

max X AX = Amax and is achieved at x = V.
Ix[=1

min x' Ax = Amin and is achieved at x = vyin.
[x]|=1




- What changes for a non-symmetric matrix?

Let
Ac R?*2, AxA".

Then x — Ax can include shear and streching-like effects.

Key differences from the symmetric case:
m Eigenvalues may be complex (no real invariant directions).

m Real eigenvectors (if they exist) need not be orthogonal.

m The image of the unit circle is still an ellipse, but its principal
axes are not generally given by eigenvectors.




Singular Value Decomposition (SVD)

For any matrix
A c Rmx n’

there exists a decomposition

A=UxVT,

where:
m U c R™™ has orthonormal columns,
m V € R™" has orthonormal columns,
m X € R™*" s diagonal with

o1 =0p=---20.
Geometric interpretation of x — Ax:

v’ b . .
x — rotate/reflect = axis-aligned scaling LN rotate/reflect.



Unit circle — ellipse via SVD

Consider the unit circle {x : |x|| = 1} in R2,
Under x — Ax:

m columns of V give input directions that map to the ellipse
axes,

m columns of U give the output directions of those axes,

m singular values o are the lengths of the ellipse semi-axes.

Unlike eigenvectors:
m SVD always exists (for any matrix),
m directions are always orthogonal,
m geometry is always real and well-defined.

Key takeaway: eigenvectors explain symmetric matrices well;
SVD explains all linear maps.



Visualizing SVD

Non-symmetric A: unit circle -> ellipse
(eigenvectors vs SVD axes)
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Principal Component Analysis (PCA)

Given centered data X; = x; — X and covariance

1
=K,
NH
PCA finds an orthonormal basis Wy = [w1 - - wq] that best captures the
data.
Variance-maximizing view:
wi = arg max WTZW, wy = arg max w' Tw.
[w]=1 [wl=1, wlwy,...,wj_y

Equivalent reconstruction view:

~ T o 2
Xi — ww Xi

N
wa =g 3|
Solution: wy are the eigenvectors of X, with eigenvalues
Twi = AW, A=Az 20,
and the reduced coordinates are
Zi = W;,r)?;.



- PCA Example: 3D points on a plane

We observe points in 3D:
. 3 P
x;eR i=1,...,N.
But the data are approximately planar (intrinsic dimension ~ 2):
Xi~ p+uppy+Vvipy +gin,

where p;, p, span an (unknown) plane, n is its normal, and |g;] is
small.

Within that plane, the points form an “S” shape (nonlinear
structure), so:
m dimension 3 — 2 should work well,

m dimension 3 — 1 will generally lose structure.



PCA goal (variance-maximizing view)

First, center the data:

N
_ 1 .
XZNZX,', X = X;j — X.
i=1
Define the sample covariance:

1 N
=g ;;xT e R3*3,

The first principal component solves

max Var(w'xX) = max w'Xw

[wi=1 lwl=1
Thus wj is the top eigenvector of X, and the variance along it is
Al
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3D data: 'S' on a rotated plane + PCA axes




Visualizing PCA (2)

PCA projection to 2D (PC1 vs PC2) — should show the 'S’
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Why PCA discovers the plane (in our example)

Because the points are (approximately) on a plane:
A1 large, Ao large, A3z small.

Geometrically:

® w1, wy span the best-fitting plane (maximum retained
variance),

® w3 approximates the plane normal (minimum variance
direction).

We reduce dimension by projection:
W2= [Wl W2]ER3X2, zZ; = W;r)?iERz.
The 2D coordinates z; should reveal the “S" clearly.



Reconstruction and “information loss”

From reduced coordinates:

~

Xi=x+ Wsyz;

is the orthogonal projection of x; onto the PCA plane.

Reconstruction error (per point):

[xi — %[> = | % — W2 W3 %],

If we keep only 1 component (W1 = wj), the 1D projection can
collapse parts of the “S" onto each other (structure loss).



Visualizing PCA (3)

PCA projection to 1D (PC1) — structure collapses
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PCA via SVD (same geometry, two viewpoints)

Stack centered samples as rows of a data matrix:

Compute the SVD:
X=UxzVv', X =diag(o1,0s,...).

Then the sample covariance is

1oTg 32 T
}:dm=NX X=V<W)V .
So:
m PCA directions (principal axes) are columns of V.
m PCA eigenvalues are )\, = 02 /N.
= Reduced coordinates (scores):
zi= V% < XVg=U4Z,.



SVD for Image Compression (Grayscale)

m Treat an image as a matrix X € R™*" (pixel intensities).
m Compute SVD: X = UZ V.
m Keep top-k singular values/vectors for compression:

Xie = U Zweax Vi)
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m Any Questions?

m Office Hours:
= Tue & Thu (09:00-11:00)

m 24/7 by email (costashatz@upatras.gr, subject: ECE_SP_AM)

m Material and Announcements | |
.-.H.-.
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