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Why Dimensionality Reduction?

We often observe data in a high-dimensional space:

x i P RD , i “ 1, . . . ,N,

where D can be large (pixels, sensors, features, embeddings, . . . ).

But the phenomenon that generated the data may be much
simpler:

x i « gpz i q, z i P Rd , d ! D.
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What are we trying to achieve?

We want a representation

z i “ gpx i q P Rd pd ! Dq

that preserves the important structure of the data.

Typical goals:

Compression: store/transmit x i using fewer numbers.

Visualization: understand structure by plotting d “ 2 or
d “ 3.

Denoising: remove directions that are mostly noise.

Learning efficiency: reduce computation and sample
complexity.
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The curse of dimensionality (intuition)

As D grows, geometric intuition changes:

Data become sparse: a fixed number of samples N covers a
vanishing fraction of RD .

Distances can become less informative (many points look
“equally far”).

Estimating quantities like densities or covariances becomes
harder without much larger N.

In many problems, we pay a price in high dimensions:

more features ñ more parameters to estimate ñ more data needed.
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Redundancy and correlations

High-dimensional features are often correlated or redundant.

Example idea:

x “

»

—

—

—

—

—

–

x1
x2
x3
...
xD

fi

ffi

ffi

ffi

ffi

ffi

fl

with x2 « 2x1, x5 « x1 ` x3, . . .

So although x P RD , the data may concentrate near a much
lower-dimensional set (e.g., a line, plane, or curved manifold).
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A geometric picture

Even if observations live in RD , the data may lie (approximately) in
a lower-dimensional subspace:

x i « µ ` Wz i , W P RDˆd , z i P Rd , d ! D.

Interpretation:

µ is the mean (translation).

Columns of W span a d-dimensional subspace capturing most
variation.

Remaining directions contain little signal (often noise).

K. Chatzilygeroudis ECE Upatras Signal Processing 6 / 27



Formalizing “keep what matters”

A common principle: preserve information measured by variance
(or energy).

If P is a projection onto a d-dimensional subspace, we want

}x i ´ Px i}
2 small for most i .

Equivalently, we want Px i to retain as much “spread” of the data
as possible.

In other words, we want to:

choose directions of maximum variance,

or equivalently, minimize reconstruction error.
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A symmetric 2 ˆ 2 matrix as a geometric transform

Let

A “

„

a b
b c

ȷ

(symmetric).

It defines a linear transformation x ÞÑ Ax .

Key geometric fact (symmetric case):

A maps the unit circle to an ellipse.

The ellipse’s principal axes are orthogonal.

Those principal axes directions are the eigenvectors of A.

Eigenpairs satisfy:
Avk “ λkvk .

Along direction vk , vectors are scaled by λk (no rotation).

K. Chatzilygeroudis ECE Upatras Signal Processing 8 / 27



Visualizing the transformation
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Symmetric matrix maps unit circle to an ellipse
(principal axes = eigenvectors)

unit circle
A * unit circle (ellipse)
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Visualizing the transformation (2)
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Unit circle Ñ ellipse (principal axes = eigenvectors)

Consider all unit vectors:

C “ tx P R2 : }x} “ 1u.

Their images under A form:

E “ tAx : x P Cu.

For symmetric A, E is an ellipse.

If A “ QΛQJ with

Λ “ diagpλ1, λ2q, Q “ rv1 v2s, QJQ “ I ,

then:

the ellipse axes point along v1, v2,

the axis “length scales” are |λ1| and |λ2| (applied to unit
vectors).
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Rayleigh quotient: “which direction stretches the most?”

For any nonzero x define the Rayleigh quotient:

Rpxq “
xJAx
xJx

.

If }x} “ 1, then Rpxq “ xJAx .

For symmetric A:

max
}x}“1

xJAx “ λmax and is achieved at x “ vmax.

min
}x}“1

xJAx “ λmin and is achieved at x “ vmin.
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What changes for a non-symmetric matrix?

Let
A P R2ˆ2, A ‰ AJ.

Then x ÞÑ Ax can include shear and streching-like effects.

Key differences from the symmetric case:

Eigenvalues may be complex (no real invariant directions).

Real eigenvectors (if they exist) need not be orthogonal.

The image of the unit circle is still an ellipse, but its principal
axes are not generally given by eigenvectors.
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Singular Value Decomposition (SVD)

For any matrix
A P Rmˆn,

there exists a decomposition

A “ UΣV J,

where:

U P Rmˆm has orthonormal columns,

V P Rnˆn has orthonormal columns,

Σ P Rmˆn is diagonal with

σ1 ě σ2 ě ¨ ¨ ¨ ě 0.

Geometric interpretation of x ÞÑ Ax :

x V J

ÝÝÑ rotate/reflect
Σ
ÝÑ axis-aligned scaling

U
ÝÑ rotate/reflect.
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Unit circle Ñ ellipse via SVD

Consider the unit circle tx : }x} “ 1u in R2.

Under x ÞÑ Ax :
columns of V give input directions that map to the ellipse
axes,

columns of U give the output directions of those axes,

singular values σk are the lengths of the ellipse semi-axes.

Unlike eigenvectors:

SVD always exists (for any matrix),

directions are always orthogonal,

geometry is always real and well-defined.

Key takeaway: eigenvectors explain symmetric matrices well;
SVD explains all linear maps.
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Visualizing SVD
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Principal Component Analysis (PCA)

Given centered data x̃ i “ x i ´ x̄ and covariance

Σ “
1

N

N
ÿ

i“1

x̃ i x̃J
i ,

PCA finds an orthonormal basis W d “ rw 1 ¨ ¨ ¨ w d s that best captures the
data.
Variance-maximizing view:

w 1 “ arg max
}w}“1

wJΣw , w k “ arg max
}w}“1, wKw1,...,wk´1

wJΣw .

Equivalent reconstruction view:

W d “ arg min
W JW “I

N
ÿ

i“1

›

›

›
x̃ i ´ WW Jx̃ i

›

›

›

2

.

Solution: w k are the eigenvectors of Σ, with eigenvalues

Σw k “ λkw k , λ1 ě λ2 ě ¨ ¨ ¨ ě 0,

and the reduced coordinates are

z i “ W J
d x̃ i .
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PCA Example: 3D points on a plane

We observe points in 3D:

x i P R3, i “ 1, . . . ,N.

But the data are approximately planar (intrinsic dimension « 2):

x i « µ ` ui p1 ` vi p2 ` εi n,

where p1,p2 span an (unknown) plane, n is its normal, and |εi | is
small.

Within that plane, the points form an “S” shape (nonlinear
structure), so:

dimension 3 Ñ 2 should work well,

dimension 3 Ñ 1 will generally lose structure.
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PCA goal (variance-maximizing view)

First, center the data:

x̄ “
1

N

N
ÿ

i“1

x i , x̃ i “ x i ´ x̄ .

Define the sample covariance:

Σ “
1

N

N
ÿ

i“1

x̃ i x̃J
i P R3ˆ3.

The first principal component solves

max
}w}“1

VarpwJx̃q “ max
}w}“1

wJΣw .

Thus w1 is the top eigenvector of Σ, and the variance along it is
λ1.
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Visualizing PCA
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Visualizing PCA (2)
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Why PCA discovers the plane (in our example)

Because the points are (approximately) on a plane:

λ1 large, λ2 large, λ3 small.

Geometrically:

w1,w2 span the best-fitting plane (maximum retained
variance),

w3 approximates the plane normal (minimum variance
direction).

We reduce dimension by projection:

W 2 “ rw1 w2s P R3ˆ2, z i “ W J
2 x̃ i P R2.

The 2D coordinates z i should reveal the “S” clearly.
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Reconstruction and “information loss”

From reduced coordinates:

x̂ i “ x̄ ` W 2z i

is the orthogonal projection of x i onto the PCA plane.

Reconstruction error (per point):

}x i ´ x̂ i}
2 “ }x̃ i ´ W 2W J

2 x̃ i}
2.

If we keep only 1 component (W 1 “ w1), the 1D projection can
collapse parts of the “S” onto each other (structure loss).
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Visualizing PCA (3)
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PCA projection to 1D (PC1)  structure collapses
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PCA via SVD (same geometry, two viewpoints)

Stack centered samples as rows of a data matrix:

X̃ “

»

—

—

—

–

x̃J
1

x̃J
2

...
x̃J
N

fi

ffi

ffi

ffi

fl

P RNˆD , x̃ i “ x i ´ x̄ .

Compute the SVD:

X̃ “ UΣV J, Σ “ diagpσ1, σ2, . . . q.

Then the sample covariance is

Σdata “
1

N
X̃

J
X̃ “ V

ˆ

Σ2

N

˙

V J.

So:

PCA directions (principal axes) are columns of V .

PCA eigenvalues are λk “ σ2
k{N.

Reduced coordinates (scores):

z i “ V J
d x̃ i ô X̃V d “ UdΣd .
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SVD for Image Compression (Grayscale)

Treat an image as a matrix X P Rmˆn (pixel intensities).
Compute SVD: X “ UΣV J.
Keep top-k singular values/vectors for compression:

X k “ U r:,1:ks Σ1:k,1:k V J
r:,1:ks.

Original (256×256)

Rank-2
Energy=96.9%

CR 63.88×

Rank-5
Energy=99.7%

CR 25.55×

Rank-20
Energy=100.0%

CR 6.39×

Rank-50
Energy=100.0%

CR 2.56×
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Thank you

Laboratory of Automation & Robotics

Any Questions?

Office Hours:
Tue & Thu (09:00-11:00)

24/7 by email (costashatz@upatras.gr, subject: ECE SP AM)

Material and Announcements
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