£ \ [TANEITIXTHMIO

[TATPON

UNIVERSITY OF PATRAS

Signal Processing

Lecture 15: Expectation Maximization & Mixture Models

Konstantinos Chatzilygeroudis - costashatz@upatras.gr

Department of Electrical and Computer Engineering
University of Patras

Template made by Panagiotis Papagiannopoulos



https://lar.ece.upatras.gr/
mailto:costashatz@upatras.gr

Motivation: Why Latent-Variable Models?

Many signal models involve hidden / latent variables that we do not observe
directly.

Example (mixture / multi-regime signals):
yi is generated by one of K sources or regimes =z e {l,...,K}.
Complete-data model:
p(yi,zi | 8) = p(zi | ) p(yi | zi,6).

But we only observe y; (N samples):

N K

py |0) =[] plzi=k|6)plyi | zi = k,6).

i=1 k=1

Key difficulty:

log p(y | 0) Z log Z( (log of sum is hard to optimize/compute).



Motivation: Why Latent-Variable Models? (2)

Motivation for EM: Mixture with Hidden Assignments
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Expectation Maximization idea: alternate between
m E-step: infer soft assignments p(z; = k | i, 0),

m M-step: update @ using these assignments.




Latent-Variable Models

We assume that the data is generated with the help of unobserved (latent) variables.

Observed data:
Y = {}’i}IN:I

Latent variables:

Z = {z;}", (eg., cluster label, regime index, source ID).

Generative structure:
p(Y.Z|6)=p(Z|6)p(Y|Z6).

Examples in signal processing
= Mixture / multi-regime signals: z; = which regime generated y;.
m Clustering features: z; = cluster assignment.

m Speech / audio: z; = phoneme/state producing a frame.



Complete-Data vs Incomplete-Data Likelihood

Complete-data likelihood (if we knew Z):
N

p(Y,Z|0) =H (zi | 0) plyi | z;,0).

Incomplete-data likelihood (what we actually have):

p(Y | 6)= Zp(Y,Z | 6) (or jdz if continuous).
z

Key point:
Latent variables Z are missing = we must marginalize them out.

Goal: estimate parameters by maximizing the incomplete-data likelihood

9=argmeaxp(Y|0) ©  argmax logp(Y | 6).




Why the Likelihood is Hard

The log-likelihood for incomplete data becomes

logp(Y | 6) =log ) p(Y,Z|6).
V4

Problem: log of a sum

log Z() # Z log(-).
z z

Consequences
m The objective is often non-convex.
m Direct maximization is typically intractable.

m Gradients involve ratios of sums of exponentials (unstable / messy).

We need a trick to handle the hidden Z.



A Concrete Example: Mixture Likelihood

Suppose each y; comes from one of K components:
p(zi=k) =m,  plyilzi=k0)=plyi|Ok).
Marginal likelihood per sample:
K
plyi |0) = X mkpilyi | Ox).
k=1

Dataset log-likelihood:

log p(Y | 8) = Zlog(ZﬂkPk}’:|0k)




Expectation-Maximization (EM): Core Idea

We want to maximize the incomplete-data log-likelihood:

log p(Y | 8) =log > .p(Y,Z | 0).

Difficulty: the hidden Z is inside a log-sum.
EM key idea:
m Introduce a tractable lower bound on log p(Y | ).

m Alternate between:

B estimating latent variables (E-step),
® updating parameters (M-step).




EM Derivation I: Introduce an Auxiliary Distribution

Let g(Z) be any distribution over latent variables.
Rewrite the likelihood:

logp(Y | 6) = long pLY, z)| 9,

Interpretation:

21a(2) () = Eq[()].
So

0g p(¥ |0) ~ log’s,|

p(Y,ZIG)]
q(z) |




EM Derivation I: Introduce an Auxiliary Distribution

Let g(Z) be any distribution over latent variables.
Rewrite the likelihood:

logp(Y | 6) = long pLY, z)| 9,

Interpretation:

2.9(2) () = Eq[()].

So
p(Y,Z| 9)]
logp(Y | 0) =logEq| ————| .
gp(Y | 6) = log q[ 22
Jensen’s Inequality:

m Convex case (Jensen): If ¢ is convex and X integrable, then
P(E[X]) < E[p(X)].

m Concave case: If ¢ is concave and X integrable, then the inequality
reverses:

¢(E[X]) = E[x(X)],
with equality iff X is a.s. constant or ¢ is affine on the support of X.



EM Derivation Il: Jensen's Inequality (Lower Bound)

Apply Jensen's inequality (since log(-) is concave):
log Eq[f(Z)] > Eqllog f(Z)].

Here, f(Z) = "(:(’7549). Therefore:

=>.,9(2)log

logp(Y | 8) = Eq [Iog w] @
z

q(Z)

Define the lower bound:

L(q,0) = ). a(Z)logp(Y,Z | 6) — > q(Z)log q(2).

Two terms:
m Expected complete-data log-likelihood.
m Entropy of q(Z).



EM Derivation Ill: Tightness via KL Divergence

We can prove that:
log p(Y | 0) = L(q,0) + KL(q(Z) | p(Z ] Y,8)).

Since KL(-|-) = 0:
L(q,0) <logp(Y | 0).

Bound becomes tight when

a(2) = p(Z | ¥.6).

KL divergence: measures how different g is from p (i.e., expected information
loss using q instead of p).

KL(q[p) = Eq [log Zg;] = ; q(Z)log Zgi > 0,

with equality iff g = p (a.e.).



Expectation-Maximization Algorithm

EM performs coordinate ascent on £L(q, 0):

E-step (update latent distribution):

" (Z)=p(Z|Y,0Y).

Tightens the bound by minimizing KL: sets g to the posterior given our current
parameters, ), and data Y.

M-step (update parameters):

00t = arg meaxIEq(Hl) [logp(Y,Z|0)].

Maximizes the bound w.r.t. parameters.



EM: Guarantees and Practical Notes

Monotonic improvement
log p(Y | 0+Y) > log p(Y | 6).

What EM guarantees
m Each iteration does not decrease the incomplete likelihood.

m Converges to a local optimum (not necessarily global).

Practical notes
m Initialization matters (often use k-means / random restarts).

m Stop when likelihood improvement is small.

m Non-convexity = multiple runs recommended.




Gaussian Mixture Models (GMM): Model

We model data {y;}!;, y; € RY as coming from a mixture of K Gaussians.

Latent assignment:
Z,'E{].,...,K}.
Mixing weights:

K
p(Z,'=k|0)=7Tk, 7rk>0,27rk=1.
k=1

Component densities:

P(y,‘ | Zi = k70) :N(yi | u‘k)zk)'

Parameters:
K
0= {ﬂ-lﬁ My, zk}k:l'



GMM: Incomplete (Observed) Likelihood

Marginal likelihood per sample:

K
ply; | 6) = Z e N (i | 1 Zio)-

k=1

Incomplete-data log-likelihood:

logp(Y | 0) = ZIOg(ZﬂkNy1|ukvzk))

i=1 k=1

Hard part: log-sum prevents direct optimization = use EM.




GMM: Complete-Data Likelihood

If the assignments z; were known:

K I[z;=k]
p(Y.Z|6) =HH(mNy,|uk,Zk)) :

i=1k=1
Complete-data log-likelihood:

N K
logp(Y,Z10) = Y 1[z = ] (|og7rk +log N (y; | uk,zk)).
i=1k=1

EM replaces I[z; = k] by its posterior expectation, where I[z; = k] is the

indicator function:
1, ifz =k,
]I[z,-=k]={ | ifz

0, otherwise.



E-step: Responsibilities

E-step: compute posterior probability that sample i belongs to component k:

w = plzi=kl|y,00) = O Ny | E0)
Yik = P(Z: = | Yi ) - K (t) (t) (By"
Zj:l 7rj N(y, | l”‘J 721 )

Interpretation:
= i €[0,1], and 3, vic = 1.

m “Soft” cluster assignment (not hard labels).




M-step: Update Mixing Weights and Means

Let the effective number of points in cluster k be:

Mixing weights:

N
+1 k
7T,((t ) = TV .

Means:

E(H—l) N Z’Y:ky,

Interpretation: re-weighted averages using responsibilities.




M-step: Update Covariances

Covariances:

N
1
B = 2w )y = )T
i=1

Interpretation: responsibility-weighted covariance within each component.

Numerical note: often regularize to avoid singularities:

T — X+l




GMM-EM Algorithm (Summary)

Initialize {r*), u, (}.
Repeat until convergence:
m E-step: compute responsibilities .

m M-step: update 7y, py, Xk using vik.
Convergence check:

logp(Y | 6“"V) —logp(Y | ) < 6.

Each iteration increases (or leaves unchanged) the incomplete likelihood.




Practical Notes for GMMs

Initialization matters

m Initial centers, y,,((o), are very important!.

m Multiple random restarts help avoid bad local maxima.
Choosing K

m BIC / AIC / cross-validation.

m Too small K: underfit; too large K: overfit.
Covariance structure

m Full : flexible but more parameters.

m Diagonal / spherical: faster, more stable.
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GMMs: 1D Example

1D GMM fit with EM (K=2) - Iteration 0

1D GMM fit with EM (K=2) - Iteration 2

Data histogram
—— Fitted component 1

—— Fitted component 2

- Fitted mixture

— - Responsibility y1(y) (scaled)
— - Responsibility a(y) (scaled)

Density / scaled responsi

Data histogram
—— Fitted component 1

—— Fitted component 2

Fitted mixture
Responsibility y1(y) (scaled)
Responsibility y2(y) (scaled)
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1D GMM fit with EM (K=2) - Iteration 12
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Data histogram g Data histogram
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GMMs: 2D Example

2D GMM fit with EM (K=3): contours + means - Iteration 0

2D GMM fit with EM (K=3): contours + means - Iteration 20

- Data - Data
X Fitted means X Fitted means
4
2
2 .
0
-2
-4 -4
-4 -2 0 2 a -4 -2 0 2 a
A »

2D GMM fit with EM (K=3): contours + means - Iteration 40

2D GMM fit with EM (K=3): contours + means - Iteration 120

. Dpata
X Fitted means

. Data
X Fitted means




GMMs: 2D Example - Bad Initialization

2D GMM fit with EM (K=3): contours + means - Iteration 0 2D GMM fit with EM (K=3): contours + means - Iteration 20
- Data - Data
X Fitted means X Fitted means
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2D GMM fit with EM (K=3): contours + means - Iteration 40 2D GMM fit with EM (K=3): contours + means - Iteration 120
- Data - Data

X Fitted means

X Fitted means




m Any Questions?

m Office Hours:
= Tue & Thu (09:00-11:00)

m 24/7 by email (costashatz@upatras.gr, subject: ECE_SP_AM)

m Material and Announcements | |
.-.H.-.
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