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Motivation: Why Latent-Variable Models?

Many signal models involve hidden / latent variables that we do not observe
directly.

Example (mixture / multi-regime signals):

yi is generated by one of K sources or regimes ñ zi P t1, . . . ,Ku.

Complete-data model:

ppyi , zi | θq “ ppzi | θq ppyi | zi ,θq.

But we only observe yi (N samples):

ppy | θq “

N
ź

i“1

K
ÿ

k“1

ppzi “ k | θq ppyi | zi “ k,θq.

Key difficulty:

log ppy | θq “
ÿ

i

log
ÿ

k

p¨q (log of sum is hard to optimize/compute).
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Motivation: Why Latent-Variable Models? (2)
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Motivation for EM: Mixture with Hidden Assignments

Observed data
Component 1 density
Component 2 density
Mixture density
Responsibility i1 (scaled)
Responsibility i2 (scaled)

Expectation Maximization idea: alternate between

E-step: infer soft assignments ppzi “ k | yi ,θq,

M-step: update θ using these assignments.
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Latent-Variable Models

We assume that the data is generated with the help of unobserved (latent) variables.

Observed data:
Y “ tyiu

N
i“1

Latent variables:

Z “ tziu
N
i“1 (e.g., cluster label, regime index, source ID).

Generative structure:

ppY ,Z | θq “ ppZ | θq ppY | Z ,θq.

Examples in signal processing

Mixture / multi-regime signals: zi = which regime generated yi .

Clustering features: zi = cluster assignment.

Speech / audio: zi = phoneme/state producing a frame.
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Complete-Data vs Incomplete-Data Likelihood

Complete-data likelihood (if we knew Z):

ppY ,Z | θq “

N
ź

i“1

ppzi | θq ppyi | zi ,θq.

Incomplete-data likelihood (what we actually have):

ppY | θq “
ÿ

Z
ppY ,Z | θq (or

ż

dZ if continuous).

Key point:

Latent variables Z are missing ñ we must marginalize them out.

Goal: estimate parameters by maximizing the incomplete-data likelihood

θ̂ “ argmax
θ

ppY | θq ô argmax
θ

log ppY | θq.
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Why the Likelihood is Hard

The log-likelihood for incomplete data becomes

log ppY | θq “ log
ÿ

Z
ppY ,Z | θq.

Problem: log of a sum

log
ÿ

Z
p¨q ‰

ÿ

Z
logp¨q.

Consequences

The objective is often non-convex.

Direct maximization is typically intractable.

Gradients involve ratios of sums of exponentials (unstable / messy).

We need a trick to handle the hidden Z .
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A Concrete Example: Mixture Likelihood

Suppose each yi comes from one of K components:

ppzi “ kq “ πk , ppyi | zi “ k,θq “ pkpyi | θkq.

Marginal likelihood per sample:

ppyi | θq “

K
ÿ

k“1

πk pkpyi | θkq.

Dataset log-likelihood:

log ppY | θq “

N
ÿ

i“1

log
´

K
ÿ

k“1

πk pkpyi | θkq

¯

.
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Expectation-Maximization (EM): Core Idea

We want to maximize the incomplete-data log-likelihood:

log ppY | θq “ log
ÿ

Z

ppY ,Z | θq.

Difficulty: the hidden Z is inside a log-sum.

EM key idea:

Introduce a tractable lower bound on log ppY | θq.

Alternate between:

estimating latent variables (E-step),
updating parameters (M-step).
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EM Derivation I: Introduce an Auxiliary Distribution

Let qpZq be any distribution over latent variables.
Rewrite the likelihood:

log ppY | θq “ log
ÿ

Z

qpZq
ppY ,Z | θq

qpZq
.

Interpretation:
ÿ

Z

qpZq p¨q “ Eqrp¨qs.

So

log ppY | θq “ logEq

„

ppY ,Z | θq

qpZq

ȷ

.

Jensen’s Inequality:

Convex case (Jensen): If φ is convex and X integrable, then

φ
`

ErX s
˘

ď E
“

φpX q
‰

.

Concave case: If φ is concave and X integrable, then the inequality
reverses:

φ
`

ErX s
˘

ě E
“

φpX q
‰

,

with equality iff X is a.s. constant or φ is affine on the support of X .
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EM Derivation II: Jensen’s Inequality (Lower Bound)

Apply Jensen’s inequality (since logp¨q is concave):

logEqrf pZqs ě Eqrlog f pZqs.

Here, f pZq “
ppY ,Z |θq

qpZq
. Therefore:

log ppY | θq ě Eq

„

log
ppY ,Z | θq

qpZq

ȷ

“
ÿ

Z

qpZq log
ppY ,Z | θq

qpZq
.

Define the lower bound:

Lpq,θq “
ÿ

Z

qpZq log ppY ,Z | θq ´
ÿ

Z

qpZq log qpZq.

Two terms:

Expected complete-data log-likelihood.

Entropy of qpZq.
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EM Derivation III: Tightness via KL Divergence

We can prove that:

log ppY | θq “ Lpq,θq ` KLpqpZq } ppZ | Y ,θqq .

Since KLp¨}¨q ě 0:
Lpq,θq ď log ppY | θq.

Bound becomes tight when

qpZq “ ppZ | Y ,θq.

KL divergence: measures how different q is from p (i.e., expected information
loss using q instead of p).

KLpq}pq “ Eq

„

log
qpZq

ppZq

ȷ

“
ÿ

Z

qpZq log
qpZq

ppZq
ě 0,

with equality iff q “ p (a.e.).
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Expectation-Maximization Algorithm

EM performs coordinate ascent on Lpq,θq:

E-step (update latent distribution):

qpt`1q
pZq “ ppZ | Y ,θptq

q.

Tightens the bound by minimizing KL: sets q to the posterior given our current
parameters, θptq, and data Y .

M-step (update parameters):

θpt`1q
“ argmax

θ
Eqpt`1q rlog ppY ,Z | θqs .

Maximizes the bound w.r.t. parameters.
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EM: Guarantees and Practical Notes

Monotonic improvement

log ppY | θpt`1q
q ě log ppY | θptq

q.

What EM guarantees

Each iteration does not decrease the incomplete likelihood.

Converges to a local optimum (not necessarily global).

Practical notes

Initialization matters (often use k-means / random restarts).

Stop when likelihood improvement is small.

Non-convexity ñ multiple runs recommended.
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Gaussian Mixture Models (GMM): Model

We model data ty iu
N
i“1, y i P Rd as coming from a mixture of K Gaussians.

Latent assignment:
zi P t1, . . . ,Ku.

Mixing weights:

ppzi “ k | θq “ πk , πk ě 0,
K

ÿ

k“1

πk “ 1.

Component densities:

ppy i | zi “ k,θq “ N py i | µk ,Σkq.

Parameters:
θ “ tπk ,µk ,Σku

K
k“1.
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GMM: Incomplete (Observed) Likelihood

Marginal likelihood per sample:

ppy i | θq “

K
ÿ

k“1

πk N py i | µk ,Σkq.

Incomplete-data log-likelihood:

log ppY | θq “

N
ÿ

i“1

log
´

K
ÿ

k“1

πk N py i | µk ,Σkq

¯

.

Hard part: log-sum prevents direct optimization ñ use EM.
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GMM: Complete-Data Likelihood

If the assignments zi were known:

ppY ,Z | θq “

N
ź

i“1

K
ź

k“1

´

πk N py i | µk ,Σkq

¯Irzi“ks

.

Complete-data log-likelihood:

log ppY ,Z | θq “

N
ÿ

i“1

K
ÿ

k“1

Irzi “ ks

´

log πk ` logN py i | µk ,Σkq

¯

.

EM replaces Irzi “ ks by its posterior expectation, where Irzi “ ks is the
indicator function:

Irzi “ ks “

#

1, if zi “ k,

0, otherwise.
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E-step: Responsibilities

E-step: compute posterior probability that sample i belongs to component k:

γik ” ppzi “ k | y i ,θ
ptq

q “
π

ptq

k N py i | µ
ptq

k ,Σptq

k q
řK

j“1 π
ptq

j N py i | µ
ptq

j ,Σptq

j q
.

Interpretation:

γik P r0, 1s, and
ř

k γik “ 1.

“Soft” cluster assignment (not hard labels).
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M-step: Update Mixing Weights and Means

Let the effective number of points in cluster k be:

Nk “

N
ÿ

i“1

γik .

Mixing weights:

π
pt`1q

k “
Nk

N
.

Means:

µ
pt`1q

k “
1

Nk

N
ÿ

i“1

γiky i .

Interpretation: re-weighted averages using responsibilities.
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M-step: Update Covariances

Covariances:

Σpt`1q

k “
1

Nk

N
ÿ

i“1

γik py i ´ µ
pt`1q

k qpy i ´ µ
pt`1q

k q
T.

Interpretation: responsibility-weighted covariance within each component.

Numerical note: often regularize to avoid singularities:

Σk Ð Σk ` ϵI .
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GMM-EM Algorithm (Summary)

Initialize tπ
p0q

k ,µ
p0q

k ,Σp0q

k u.

Repeat until convergence:

E-step: compute responsibilities γik .

M-step: update πk ,µk ,Σk using γik .

Convergence check:

log ppY | θpt`1q
q ´ log ppY | θptq

q ă δ.

Each iteration increases (or leaves unchanged) the incomplete likelihood.
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Practical Notes for GMMs

Initialization matters

Initial centers, µp0q

k , are very important!.

Multiple random restarts help avoid bad local maxima.

Choosing K

BIC / AIC / cross-validation.

Too small K : underfit; too large K : overfit.

Covariance structure

Full Σk : flexible but more parameters.

Diagonal / spherical: faster, more stable.
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GMMs: 1D Example
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1D GMM fit with EM (K=2) - Iteration 0
Data histogram
Fitted component 1
Fitted component 2
Fitted mixture
Responsibility 1(y) (scaled)
Responsibility 2(y) (scaled)
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1D GMM fit with EM (K=2) - Iteration 2

Data histogram
Fitted component 1
Fitted component 2
Fitted mixture
Responsibility 1(y) (scaled)
Responsibility 2(y) (scaled)
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1D GMM fit with EM (K=2) - Iteration 4

Data histogram
Fitted component 1
Fitted component 2
Fitted mixture
Responsibility 1(y) (scaled)
Responsibility 2(y) (scaled)
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1D GMM fit with EM (K=2) - Iteration 12

Data histogram
Fitted component 1
Fitted component 2
Fitted mixture
Responsibility 1(y) (scaled)
Responsibility 2(y) (scaled)

K. Chatzilygeroudis ECE Upatras Signal Processing 22 / 25



GMMs: 2D Example
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2D GMM fit with EM (K=3): contours + means - Iteration 0
Data
Fitted means
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2D GMM fit with EM (K=3): contours + means - Iteration 20
Data
Fitted means
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2D GMM fit with EM (K=3): contours + means - Iteration 40
Data
Fitted means
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2D GMM fit with EM (K=3): contours + means - Iteration 120
Data
Fitted means
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GMMs: 2D Example - Bad Initialization
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2D GMM fit with EM (K=3): contours + means - Iteration 0
Data
Fitted means
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2D GMM fit with EM (K=3): contours + means - Iteration 20
Data
Fitted means
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2D GMM fit with EM (K=3): contours + means - Iteration 40
Data
Fitted means
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2D GMM fit with EM (K=3): contours + means - Iteration 120
Data
Fitted means
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Thank you

Laboratory of Automation & Robotics

Any Questions?

Office Hours:
Tue & Thu (09:00-11:00)

24/7 by email (costashatz@upatras.gr, subject: ECE SP AM)

Material and Announcements
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