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Bayesian Inference: Core Idea

Unknown parameters as random variables

θ is uncertain ñ treat θ as a random variable and encode belief with a prior ppθq.

Observations are random too

Y is generated from a model conditioned on pX ,θq,

so we need a probabilistic data model.

Goal: infer θ from data

Given pX ,Y q, compute a distribution over θ.

Why Bayesian?

Gives uncertainty about parameters.

Naturally incorporates prior knowledge / regularization.

Enables model comparison via evidence.
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Bayesian Inference: Likelihood

Data model (likelihood)

ppY | X ,θq describes how data is generated given θ.

Interpretation

A function of Y for fixed θ: a probability model.

A function of θ for fixed data: a measure of how compatible θ is with the
observations.

Example (Gaussian noise)

yi “ f pxi ;θq ` εi , εi „ N p0, σ2
q

ñ ppY | X ,θq “

N
ź

i“1

N
´

yi ; f pxi ;θq, σ2
¯

.
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Bayes’ Rule and Posterior

Bayes’ rule: posterior distribution

ppθ | Y ,X q “
ppY | X ,θq ppθq

ppY | X q
.

Evidence / Marginal likelihood

ppY | X q “

ż

ppY | X ,θq ppθq dθ.

Key message

Posterior 9 Likelihood ˆ Prior.
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Prior, Likelihood, Posterior, Evidence

Interpretation:

Prior ppθq: knowledge / belief before seeing data.

Likelihood ppY | X ,θq: how likely data is under θ.

Posterior ppθ | Y ,X q: updated belief after seeing data.

Evidence ppY | X q: normalizes and measures model plausibility.

Intuition

The likelihood pulls θ toward values that explain data.

The prior pulls θ toward values we believed beforehand.

The posterior balances the two.
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Evidence and Model Comparison

Why do we care about evidence?

ppY | X q “

ż

ppY | X ,θqppθqdθ.

Interpretation

It is the probability of observing the data under the model before knowing
parameters.

It averages likelihood over the prior: good models explain data for many
plausible parameters.

Model comparison (Bayes factor) For two models M1,M2:

ppY | X ,M1q

ppY | X ,M2q
compares how well each model explains the data.

Occam’s razor effect: complex models are penalized unless strongly supported by
data.
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Point Estimation as Risk Minimization

Bayesian inference gives a distribution over parameters. Often we want a single
estimate θ̂.

Decision-theoretic view Choose θ̂ to minimize posterior expected loss:

θ̂ “ argmin
θ̃

E
”

Lpθ, θ̃q

ˇ

ˇ

ˇ
Y ,X

ı

.

Different losses L lead to different estimators:

0–1 loss ñ MAP.

Squared error loss ñ MMSE.

Absolute error loss ñ posterior median.
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Common Bayesian Estimators – MAP

Given the posterior
ppθ | Y ,X q9ppY | X ,θq ppθq,

1) MAP (Maximum A Posteriori): posterior mode

θ̂MAP “ argmax
θ

ppθ | Y ,X q “ argmax
θ

ppY | X ,θq ppθq.

Equivalent minimization form

θ̂MAP “ argmin
θ

´

´ log ppY | X ,θq ´ log ppθq

¯

.

Interpretation: maximize posterior ô minimize data misfit + regularization.

The optimization over the MAP criterion results to the parameters, θ̂MAP, that
are the posterior distribution’s mode value. In other words, we find the peak of
the posterior probability density function (in general, we may have multiple
peaks!).
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MAP, Priors, and Regularization

Example: Gaussian prior

ppθq “ N p0, α´1I q ñ ´ log ppθq9
α

2
}θ}22.

With Gaussian noise likelihood:

´ log ppY | X ,θq9
1

2σ2
}Y ´ f pX ;θq}22

MAP becomes regularized least squares

θ̂MAP “ argmin
θ

1

2σ2
}Y ´ f pX ;θq}2 `

α

2
}θ}2.

So: priors correspond to regularizers.
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MLE as a Special Case of MAP

If ppθq9 const (flat / uninformative prior), then

θ̂MAP “ argmax
θ

ppY | X ,θq “ θ̂MLE.

Interpretation

MAP uses prior + data.

MLE uses data only.

With enough data, MAP and MLE often get close.
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Common Bayesian Estimators – MMSE

2) MMSE (Minimum Mean Square Error): posterior mean
Definition (squared-error loss):

θ̂MMSE “ argmin
θ̃

E
”

}θ ´ θ̃}22

ˇ

ˇ

ˇ
Y ,X

ı

.

where θ is the true (latent) parameter treated as a random vector, and θ̃ is a
deterministic estimate we choose to minimize posterior risk.

Result: the minimizer is the posterior mean

θ̂MMSE “ Erθ | Y ,X s “

ż

θ ppθ | Y ,X q dθ.

Interpretation:

MMSE averages all plausible parameters, weighted by posterior probability.

Optimal when we care about expected squared deviation from the truth.

More robust than MAP when the posterior is skewed or multimodal.

K. Chatzilygeroudis ECE Upatras Signal Processing 11 / 35



Why MMSE Equals the Posterior Mean? (Sketch)

We want to minimize
E

”

}θ ´ θ̃}2 | Y ,X
ı

.

Expand around the posterior mean µ “ Erθ | Y ,X s:

}θ ´ θ̃}2 “ }pθ ´ µq ` pµ ´ θ̃q}2 “ }θ ´ µ}2 ` }µ ´ θ̃}2 ` 2pθ ´ µqJpµ ´ θ̃q.

Take posterior expectation:

Erθ ´ µ | Y ,X s “ 0 ñ cross term vanishes.

Thus
E

”

}θ ´ θ̃}2 | ¨

ı

“ E
“

}θ ´ µ}2 | ¨
‰

loooooooomoooooooon

independent of θ̃

`}µ ´ θ̃}2,

minimized when θ̃ “ µ.
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Common Bayesian Estimators – MMAE

3) MMAE (Minimum Mean Absolute Error): posterior median
Definition (absolute-error loss):

θ̂MMAE “ argmin
θ̃

E
”

}θ ´ θ̃}1

ˇ

ˇ

ˇ
Y ,X

ı

.

where θ is the true (latent) parameter treated as a random vector, and θ̃ is a
deterministic estimate we choose to minimize posterior risk.
Result: the minimizer is the posterior median. We assume } ¨ }1 “

ř

i | ¨ |,

θ̂MMAE “
“

medianpppθ1 | Y ,X qq, . . . ,medianpppθd | Y ,X qq
‰J
.

i.e., the estimator is the componentwise posterior median.
Interpretation:

MMAE picks the most “central” posterior value in terms of absolute deviation.

Optimal when we care about expected absolute error rather than squared error.

More robust to outliers/heavy tails than MMSE (mean can be pulled by
extremes).

For skewed posteriors, median and mean can differ substantially.
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MAP vs MMSE vs MMAE

MAP:
θ̂MAP “ argmax

θ
ppθ | Y ,X q (posterior mode)

MMSE:
θ̂MMSE “ Erθ | Y ,X s (posterior mean)

MMAE:
θ̂MMAE “ argmin

θ̃
E

”

}θ ´ θ̃}1

ˇ

ˇ

ˇ
Y ,X

ı

(posterior median)

When are they equal? If ppθ | Y ,X q is Gaussian (or any symmetric unimodal pdf):

mean “ median “ mode ñ θ̂MMSE “ θ̂MMAE “ θ̂MAP.

Practical intuition

MAP picks the single most probable parameter.

MMSE averages all plausible parameters with posterior weights.

MMAE selects the central posterior value, robust to outliers.

For skewed / heavy-tailed posteriors:

mode ‰ median ‰ mean,

so the three estimators can differ substantially.
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1D Illustration

Consider a posterior ppθ | Y q in 1D.

MAP θ̂MAP is at the peak.

MMSE θ̂MMSE is the center of mass.

MMAE θ̂MMAE is the median.
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1D Posterior: MAP vs MMSE vs MMAE
p( Y)
MAP (mode)
MMSE (mean)
MMAE (median)

Key idea: different estimators reflect different optimality criteria.
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Maximum Likelihood Estimation (MLE)

Setup: we observe data y generated by a model parameterized by θ with likelihood

ppy |θq.

Goal (MLE): choose parameters that make the observed data most probable:

θ̂MLE “ argmax
θ

ppy |θq.

Log-likelihood (equivalent objective):

Lpθq “ log ppy |θq, θ̂MLE “ argmax
θ

Lpθq.

(Log is used because it turns products into sums and is numerically stable.)
If samples are i.i.d.:

ppy |θq “

N
ź

k“1

p
`

yk |θ
˘

ñ Lpθq “

N
ÿ

k“1

log p
`

yk |θ
˘

.

How do we solve it?

If Lpθq is concave and simple ñ closed form.
Otherwise ñ iterative optimization (Newton / Gauss–Newton methods /
gradient descent).

Key idea: MLE depends on the assumed noise/data distribution in ppy |θq.
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Maximum Likelihood Estimation: i.i.d. Data

Data: N i.i.d. input–output samples

tpx i , y i quNi“1, X “

»

—

—

—

–

xT
1

xT
2
...

xT
N

fi

ffi

ffi

ffi

fl

, Y “

»

—

—

—

–

yT
1

yT
2
...

yT
N

fi

ffi

ffi

ffi

fl

.

Model: conditional distribution of outputs given inputs and parameters with i.i.d.
assumption:

ppY | X ,θq “

N
ź

i“1

p
`

y i | x i ,θ
˘

.

Log-likelihood: (turn product into sum)

Lpθq “ log ppY | X ,θq “

N
ÿ

i“1

log p
`

y i | x i ,θ
˘

.

MLE objective:

θ̂MLE “ argmax
θ

Lpθq “ argmax
θ

N
ÿ

i“1

log p
`

y i | x i ,θ
˘

.

Note: the form of ppy i |x i ,θq depends on the assumed noise / data model.
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MLE for Linear Models with Gaussian Noise

Data: N i.i.d. pairs tpx i , yi quNi“1 with x i P Rp , yi P R.
Linear model (scalar output):

yi “ θTx i ` wi , θ P Rp .

Gaussian noise assumption:

wi „ N p0, σ2q ñ ppyi | x i ,θq “ N pθTx i , σ
2q.

Log-likelihood:

Lpθq “ log ppY | X ,θq “

N
ÿ

i“1

log ppyi | x i ,θq.

For Gaussian noise:

Lpθq “

N
ÿ

i“1

„

´
1

2
logp2πσ2q ´

1

2σ2

`

yi ´ θTx i

˘2
ȷ

.

MLE (maximize log-likelihood):

θ̂MLE “ argmax
θ

Lpθq ðñ argmin
θ

N
ÿ

i“1

`

yi ´ θTx i

˘2

looooooooooooooomooooooooooooooon

Linear Least Squares!

.
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Bayesian Linear Regression (BLR): Problem Setting

We observe training pairs tpx i , yi qu
N
i“1 and assume

yi “ θTϕpx i q ` wi , wi „ N p0, σ2
w q.

Feature map:

ϕ : Rd
Ñ RP (could be polynomial, Fourier, RBF, etc.)

Matrix form:

y “ Φθ ` w , w „ N p0, σ2
w I q, Φ “

»

—

–

ϕpx1q
T

...
ϕpxNq

T

fi

ffi

fl

.

Goal: infer θ and predict y˚ with uncertainty.
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BLR: Bayesian Viewpoint

Parameters are random variables

θ „ ppθq (encode uncertainty / prior knowledge).

Gaussian prior (conjugate choice):

ppθq “ N pµ0,Σ0q.

Interpretation

µ0: prior guess of weights.

Σ0: prior uncertainty / correlation between weights.

If Σ0 “ α´1I : isotropic prior ñ shrink weights toward zero.
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BLR: Likelihood

Given θ, the data likelihood is Gaussian:

ppy | Φ,θq “ N pΦθ, σ2
w I q.

Log-likelihood

log ppy | Φ,θq “ ´
N

2
logp2πσ2

w q ´
1

2σ2
w

}y ´ Φθ}
2.

Connection
Gaussian noise ñ Least Squares ô MLE.
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BLR: Prior Predictive Distribution (Before Data)

Prior prediction at new input x˚:

ppy˚ | x˚q “

ż

ppy˚ | x˚,θq ppθq dθ.

Since (likelihood)

ppy˚ | x˚,θq “ N pϕT
˚θ, σ

2
w q, ϕ˚ ”ϕpx˚q,

introduce the noiseless latent prediction

z˚ ” ϕT
˚θ.

Because θ „ N pµ0,Σ0q and z˚ is a linear function of θ,

z˚ „ N
´

ϕT
˚µ0, ϕT

˚Σ0ϕ˚

¯

.

Now y˚ “ z˚ ` w˚ with w˚ „ N p0, σ2
w q independent, so the sum of Gaussians is

Gaussian:

ppy˚ | x˚q “ N
´

ϕT
˚µ0, ϕT

˚Σ0ϕ˚ ` σ2
w

¯

.

Intuition:
We predict by averaging over all plausible θ under the prior.
Predictive variance = parameter uncertainty ` measurement noise.
No data yet: predictions are driven only by the prior.
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BLR: Generating Synthetic Data from the Prior

Prior sampling idea: before observing any data, we can sample plausible models from
the prior and generate synthetic observations.

Step 1: sample parameters

θpsq „ N pµ0,Σ0q, s “ 1, . . . ,S.

Step 2: form noiseless functions

z
psq
˚ “ ϕpx˚qTθpsq.

Step 3: add observation noise

y
psq
˚ “ z

psq
˚ ` w

psq
˚ , w

psq
˚ „ N p0, σ2

w q.

Why useful?

Visualize what functions the prior considers plausible.

Create toy datasets for demos / assignments.

Stress-test inference: does BLR recover θ under its own assumptions?

Debug priors/features before collecting real data.
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BLR: Prior Sampling and Synthetic Data
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Functions sampled from BLR prior
Prior mean

Prior function samples
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Synthetic data generated from BLR prior
True sampled function
Noisy synthetic data

One synthetic dataset

Left: plausible functions before seeing data.

Right: sample one function, add noise to generate training points.
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BLR: Posterior is Gaussian (Conjugacy)

Posterior
ppθ | y ,Φq9ppy | Φ,θq ppθq.

Because both prior and likelihood are Gaussian in θ,

ppθ | y ,Φq “ N pµN ,ΣNq.

Meaning: data updates our belief, but keeps a Gaussian form.
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BLR: Derivation (Complete the Square)

Start from log posterior up to constants:

log ppθ | y ,Φq “ ´
1

2σ2
w

}y ´ Φθ}
2

´
1

2
pθ ´ µ0q

TΣ´1
0 pθ ´ µ0q.

Expand the quadratic terms in θ:

“ ´
1

2

”

θT
´

Σ´1
0 `

1

σ2
w
ΦTΦ

¯

θ ´ 2θT
´

Σ´1
0 µ0 `

1

σ2
w
ΦTy

¯ı

.

Identify Gaussian form ñ read off posterior mean/covariance.

Let A “ Σ´1
0 `

1

σ2
w
ΦTΦ, b “ Σ´1

0 µ0 `
1

σ2
w
ΦTy .

´
1

2

”

θTAθ ´ 2θTb
ı

“ ´
1

2
pθ ´ A´1bq

TApθ ´ A´1bq ` const.

ñ ppθ | y ,Φq “ N pµN ,ΣNq, ΣN “ A´1, µN “ A´1b.
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BLR: Posterior Mean and Covariance

ppθ | y ,Φq “ N pµN ,ΣNq.

ΣN “

ˆ

Σ´1
0 `

1

σ2
w
ΦTΦ

˙´1

µN “ ΣN

ˆ

Σ´1
0 µ0 `

1

σ2
w
ΦTy

˙

.

Precision form (often cleaner):

Σ´1
N “ Σ´1

0 `
1

σ2
w
ΦTΦ.

Interpretation

Prior precision ` data precision.

More / cleaner data ñ larger precision ñ smaller variance.

K. Chatzilygeroudis ECE Upatras Signal Processing 27 / 35



BLR vs LS: MAP Connection

MAP estimator (posterior mode):

θ̂MAP “ argmax
θ

ppθ | y ,Φq.

Using the log posterior:

θ̂MAP “ argmin
θ

1

2σ2
w

}y ´ Φθ}
2

`
1

2
pθ ´ µ0q

TΣ´1
0 pθ ´ µ0q.

Special case µ0 “ 0, Σ0 “ α´1I :

θ̂MAP “ argmin
θ

}y ´ Φθ}
2

` λ}θ}
2, λ “ σ2

wα,

i.e. ridge regression / Tikhonov regularization.
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BLR: Posterior Predictive (After Data)

Predict at x˚ after observing data:

ppy˚ | x˚, y ,Φq “

ż

ppy˚ | x˚,θq ppθ | y ,Φq dθ.

With
ppy˚ | x˚,θq “ N pϕT

˚θ, σ
2
w q, ppθ | y ,Φq “ N pµN ,ΣNq,

we get:

ppy˚ | x˚, y ,Φq “ N
´

ϕT
˚µN , ϕ

T
˚ΣNϕ˚ ` σ2

w

¯

.
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Posterior Predictive: Mean vs Variance

Predictive mean:

Ery˚ | ¨s “ ϕT
˚µN (use posterior mean weights).

Predictive variance:

Varpy˚ | ¨q “ ϕT
˚ΣNϕ˚

loooomoooon

parameter uncertainty

` σ2
w

loomoon

measurement noise

.

Key messages

Even with zero noise (σ2
w Ñ0), uncertainty remains if ΣN ‰ 0.

As N Ñ 8, ΣN Ñ 0: uncertainty bands tighten.
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Posterior Predictive: Mean vs Variance (Example)

Example: BLR with polynomial features on noisy 1D data.

1.5 1.0 0.5 0.0 0.5 1.0 1.5
x

4

2

0

2

4

y

BLR Posterior Predictive: Mean and Variance
Predictive mean
±2 predictive std
Training data

Solid line: predictive mean Ery˚ | ¨s “ ϕJ
˚µN .

Shaded band: ˘2 predictive std,
b

ϕJ
˚ΣNϕ˚ ` σ2

w .

Uncertainty is small near data, larger far away (parameter uncertainty).
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Posterior Predictive: BLR vs MLE vs MAP
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BLR Posterior Predictive: Mean and Variance
True function
Predictive mean
MAP function ( MAP)
MLE function ( MLE)
±2 predictive std
Training data
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BLR: Sequential / Recursive Update

BLR can be updated one data point at a time. Assume current posterior after
k samples:

ppθ | Dkq “ N pµk ,Σkq.

Given new sample pxk`1, yk`1q with feature ϕk`1:

Σ´1
k`1 “ Σ´1

k `
1

σ2
w
ϕk`1ϕ

T
k`1,

µk`1 “ Σk`1

ˆ

Σ´1
k µk `

1

σ2
w
ϕk`1yk`1

˙

.
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BLR: What We Gain vs LS/MLE

A distribution over parameters (uncertainty on θ).

Built-in regularization via the prior.

Predictive uncertainty:

ppy˚ | x˚, yq “

ż

ppy˚ | x˚,θqppθ | yq dθ.

With enough data, posterior concentrates and approaches the MLE.

Takeaway: BLR = LS/MLE + prior knowledge
looooooooooooooooomooooooooooooooooon

MAP

` uncertainty quantification.
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Thank you

Laboratory of Automation & Robotics

Any Questions?

Office Hours:
Tue & Thu (09:00-11:00)

24/7 by email (costashatz@upatras.gr, subject: ECE SP AM)

Material and Announcements
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