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Bayesian Inference: Core ldea

Unknown parameters as random variables

0 is uncertain = treat 6 as a random variable and encode belief with a prior p(0).

Observations are random too
Y is generated from a model conditioned on (X, 0),

so we need a probabilistic data model.

Goal: infer 8 from data

Given (X,Y), compute a distribution over 6.

Why Bayesian?
m Gives uncertainty about parameters.
m Naturally incorporates prior knowledge / regularization.

m Enables model comparison via evidence.



Bayesian Inference: Likelihood

Data model (likelihood)

p(Y | X,0) describes how data is generated given 6.

Interpretation
m A function of Y for fixed @: a probability model.

m A function of 0 for fixed data: a measure of how compatible 0 is with the
observations.

Example (Gaussian noise)

yi = f(x;; 0) + i, g~ N(0,02)

= p(Y|X,0)= HN(y,, xi: 0 )



Bayes' Rule and Posterior

Bayes’ rule: posterior distribution

p(Y | X,6) p(9)

p(elY,X)= p(Y [ X)

Evidence / Marginal likelihood

p(Y | X) = jpw | X.6) p(6) db.

Key message

| Posterior oc Likelihood x Prior. |




Prior, Likelihood, Posterior, Evidence

Interpretation:
m Prior p(0): knowledge / belief before seeing data.
m Likelihood p(Y | X, 0): how likely data is under 6.
m Posterior p(0 | Y, X): updated belief after seeing data.

m Evidence p(Y | X): normalizes and measures model plausibility.

Intuition
m The likelihood pulls 8 toward values that explain data.

m The prior pulls 8 toward values we believed beforehand.

m The posterior balances the two.




Evidence and Model Comparison

Why do we care about evidence?

p(Y | X) = j p(Y | X,0)p(6)d6.

Interpretation

m It is the probability of observing the data under the model before knowing
parameters.

m It averages likelihood over the prior: good models explain data for many
plausible parameters.

Model comparison (Bayes factor) For two models My, M>:

p(Y | X, Mi)

——————--  compares how well each model explains the data.
p(Y | X, Mz)

Occam’s razor effect: complex models are penalized unless strongly supported by
data.



Point Estimation as Risk Minimization

Bayesian inference gives a distribution over parameters. Often we want a single
estimate 6.

Decision-theoretic view Choose & to minimize posterior expected loss:

~

= arg méinIE[ﬁ(B, 8) ’ Y,x] .

Different losses L lead to different estimators:
m 0-1 loss = MAP.
m Squared error loss = MMSE.

m Absolute error loss = posterior median.




Common Bayesian Estimators — MAP

Given the posterior
p(0 | Y, X)xp(Y | X,0)p(6),

1) MAP (Maximum A Posteriori): posterior mode

Buap = arg maxp(6 | Y, X) = argmaxp(Y | X, 6) p(6).

Equivalent minimization form
Ouap = arg mein ( —logp(Y | X,6) — log p(O)).

Interpretation: maximize posterior < minimize data misfit + regularization.

The optimization over the MAP criterion results to the parameters, Quap, that
are the posterior distribution’s mode value. In other words, we find the peak of
the posterior probability density function (in general, we may have multiple
peaks!).



MAP, Priors, and Regularization

Example: Gaussian prior

pO) =N(0.0711) = —logp(0)cZ[6]3.

With Gaussian noise likelihood:

1
—logp(Y | X, 0)c5 5| Y — F(X;0)[3

MAP becomes regularized least squares
BDuap — argmin —— | Y — F(X; 0)2 + £|0]2
MAP = arg 8" 252 ) 5 .

So: priors correspond to regularizers.



MLE as a Special Case of MAP

If p(@)cc const (flat / uninformative prior), then

Ovap = arg meaxp(Y | X,0) = Ouie.

Interpretation

m MAP uses prior + data.

m MLE uses data only.
m With enough data, MAP and MLE often get close.




Common Bayesian Estimators — MMSE

2) MMSE (Minimum Mean Square Error): posterior mean
Definition (squared-error loss):

Bvmise = arg min IE[HB - 6|3 ‘ fo] .
6

where 8 is the true (latent) parameter treated as a random vector, and @ is a
deterministic estimate we choose to minimize posterior risk.

Result: the minimizer is the posterior mean

Oumse = B[O | ¥, X] = fopw 1Y, X) do.

Interpretation:
m MMSE averages all plausible parameters, weighted by posterior probability.
m Optimal when we care about expected squared deviation from the truth.

m More robust than MAP when the posterior is skewed or multimodal.



Why MMSE Equals the Posterior Mean? (Sketch)

We want to minimize

E[HO — 92|, x] .
Expand around the posterior mean pu = E[0 | Y, X]:
10— 8] = (0 — ) + (u—8)|* = [0 — u|® + | — 8> +2(6 — ) " (1 — 6).
Take posterior expectation:
E[@—p|Y,X]=0 = crossterm vanishes.

Thus _ ~
E[l6— 82| -] = E[l6 — ul? | -] +]u - BI,
[ -

independent of

minimized when 6 = .



Common Bayesian Estimators — MMAE

3) MMAE (Minimum Mean Absolute Error): posterior median
Definition (absolute-error loss):

Ommae = arg mjn]E[||0 -0 ‘ Y,X] .
6

where @ is the true (latent) parameter treated as a random vector, and Ois a
deterministic estimate we choose to minimize posterior risk.
Result: the minimizer is the posterior median. We assume | - |1 = >}; | -

OvmAE = [median(p(61 | Y, X)), ..., median(p(6q4 | Y,X))]T.

i.e., the estimator is the componentwise posterior median.
Interpretation:

m MMAE picks the most “central” posterior value in terms of absolute deviation.
m Optimal when we care about expected absolute error rather than squared error.

m More robust to outliers/heavy tails than MMSE (mean can be pulled by
extremes).

m For skewed posteriors, median and mean can differ substantially.



MAP vs MMSE vs MMAE

MAP: R
Ouap = arg max p(@ | Y,X) (posterior mode)
MMSE: N
Oumse = E[0 | Y, X] (posterior mean)
MMAE:

Onmag = arg min ]E[HB — 0|y ‘ Y,X] (posterior median)
o

When are they equal? If p(6@ | Y, X) is Gaussian (or any symmetric unimodal pdf):

mean = median = mode = Oymse = OmmaE = Omap.

Practical intuition
m MARP picks the single most probable parameter.
m MMSE averages all plausible parameters with posterior weights.
m MMAE selects the central posterior value, robust to outliers.
m For skewed / heavy-tailed posteriors:

mode # median # mean,

so the three estimators can differ substantially.



1D lllustration

Consider a posterior p(6 | Y) in 1D.
m MAP Oyap is at the peak.
= MMSE éMMSE is the center of mass.
= MMAE éMMAE is the median.

1D Posterior: MAP vs MMSE vs MMAE
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Key idea: different estimators reflect different optimality criteria.



Maximum Likelihood Estimation (MLE)

Setup: we observe data y generated by a model parameterized by 6 with likelihood

Py [ 6).

Goal (MLE): choose parameters that make the observed data most probable:
Bue = argmax p(y | 6).
Log-likelihood (equivalent objective):
L£(6) =logp(y|6),  Buie = argmax L(6).

(Log is used because it turns products into sums and is numerically stable.)
If samples are i.i.d.:

N N
(v16) = H (vel0) = L£(O) =) logp(yk|6).
k=1 k=1
How do we solve it?
m If £(0) is concave and simple = closed form.
m Otherwise = iterative optimization (Newton / Gauss—Newton methods /
gradient descent).
Key idea: MLE depends on the assumed noise/data distribution in p(y | 6).




Maximum Likelihood Estimation: i.i.d. Data

Data: N i.i.d. input—output samples

a1
X3 Y2
N
{(xis ¥}z X = BE Y = -
Xy Y
Model: conditional distribution of outputs given inputs and parameters with i.i.d.

assumption:
N

p(Y|X,0) =H (vilxi,0)

Log-likelihood: (turn product into sum)

N
L£(0) =logp(Y|X,0) = > logp(y;| xi,0).
i=1
MLE objective:
N

Omie = arg max L£(0) = arg max Z log p(y; | xi,8).
i=1

Note: the form of :|x;,0) depends on the assumed noise / data model.




MLE for Linear Models with Gaussian Noise

Data: N i.i.d. pairs {(x;,y;)}" , with x; € RP, yi€R.
Linear model (scalar output):

y,'=9TX,‘+W,', 0 € RP.
Gaussian noise assumption:
wi ~N(©,0%) = p(yi|xi,0) =NO x;, o2).

Log-likelihood:
N

L(6) = logp(Y | X,0) = ) logp(yi | x;,6).
i=1
For Gaussian noise:
N1 1 )
L(O) = ’:zzl [—5 log(2mo?) — g(y,- — HTX,-) ] .

MLE (maximize log-likelihood):

Omie = 6 i — 07
MLE argmgx/l() — argmmz x,

Linear Least Squares!



Bayesian Linear Regression (BLR): Problem Setting

We observe training pairs {(x;, i)}, and assume
yi=0"p(x) +w,  wi~N(0,02).
Feature map:
b R? - R” (could be polynomial, Fourier, RBF, etc.)
Matrix form:

$(x1)"
y=00+w, w~N(0,0l), &= :
d(xn)"

Goal: infer 6 and predict yy with uncertainty.



BLR: Bayesian Viewpoint

Parameters are random variables
6 ~ p(@) (encode uncertainty / prior knowledge).
Gaussian prior (conjugate choice):
p(8) = N'(15, o).
Interpretation

m [, prior guess of weights.

m X, prior uncertainty / correlation between weights.

m If ¥y = o 11 isotropic prior = shrink weights toward zero.




BLR: Likelihood

Given 0, the data likelihood is Gaussian:
Ply | ©,6) = N'(90, 5% 1).

Log-likelihood

N 1
log p(y | ®,0) = —= log(2mos) — o~ ||y — ®6".

Connection

Gaussian noise = Least Squares < MLE.




BLR: Prior Predictive Distribution (Before Data)

Prior prediction at new input x:

plrs | xs) = [ Pl | x.6) p(6) db.
Since (likelihood)
Py | x4, 0) = N(616,07),  dy=0b(xx),
introduce the noiseless latent prediction
Zy = ¢10A
Because 6 ~ N'(pg, Xo) and zy is a linear function of 6,
2~ (DL 1o, DLE00y, ).

Now yx = zx + wx with wyx ~ N(0,02) independent, so the sum of Gaussians is
Gaussian:

p(ys | xx) = N( T o, PrZod, + oﬁ,),

Intuition:
m We predict by averaging over all plausible 6 under the prior.
m Predictive variance = parameter uncertainty + measurement noise.
m No data yet: predictions are driven only by the prior.



BLR: Generating Synthetic Data from the Prior

Prior sampling idea: before observing any data, we can sample plausible models from
the prior and generate synthetic observations.

Step 1: sample parameters
0(5)~N(p.0,}:0), s=1,...,S.

Step 2: form noiseless functions

Zis) = ¢(xx)0).

Step 3: add observation noise
R T )

Why useful?
m Visualize what functions the prior considers plausible.
m Create toy datasets for demos / assignments.
m Stress-test inference: does BLR recover € under its own assumptions?
[

Debug priors/features before collecting real data.



BLR: Prior Sampling and Synthetic Data

Functions sampled from BLR prior Synthetic data generated from BLR prior

— = Prior mean 41 0 ~—— True sampled function
6

o Noisy synthetic data

2= ()70

-100 -0.75 =050 -025 000 025 050 075 100
x

Prior function samples One synthetic dataset

m Left: plausible functions before seeing data.

m Right: sample one function, add noise to generate training points.




BLR: Posterior is Gaussian (Conjugacy)

Posterior
p(6 |y, ®)xcp(y | ®,0)p(6).
Because both prior and likelihood are Gaussian in 6,

[p(6]y,®) = N(ny, En). |

Meaning: data updates our belief, but keeps a Gaussian form.




BLR: Derivation (Complete the Square)

Start from log posterior up to constants:
1 1 _
logp(6 | ¥, ®) = =55 [ly = ®0|" — (8 — o) "Eq (6 — o).
Expand the quadratic terms in 6:
_ lrrfe1 1 o7 opT(s-1 1T
- 2[9 (zo t a0 ¢)9 20 (}:0 Hot @ y)]
Identify Gaussian form = read off posterior mean/covariance.
Let A=,  + 0T ¥t Lo
A= + 5 , b= 0 Mot Sy
11,7 T,]_ 1 1T “1
—20A0—20b ——2(0—A b) A(@ — A" "b) + const.

= p(e | y7¢) = N(I"’Nfz’\l)v ZN = A_la Ky = A_lb'



BLR: Posterior Mean and Covariance

[p(6 ]y, ®) = N(py, Zn). |

o1 - _ 1
Ty = (}:O Ty ¢T¢) y = Zn (zo Yo + U—Qany) '

o2,

Precision form (often cleaner):
1 e
Ty=X + 5% 0
Ow

Interpretation
m Prior precision + data precision.

m More / cleaner data = larger precision = smaller variance.



BLR vs LS: MAP Connection

MAP estimator (posterior mode):
Ounp = arg mgxp(@ |y, ®).
Using the log posterior:
Buap = argmin 2|y — ®OJ + 2 (8 — py) "E5 (6 — o).
0 204 2
Special case p, =0, X = a

Bune = argmin |y — @0 + A|0J>, A= o,

i.e. ridge regression / Tikhonov regularization.




- BLR: Posterior Predictive (After Data)

Predict at x, after observing data:

P(vs | Xry, ®) = j p(ys | x2.0) p(6 | y, ®) do.

With
pys | x5,0) = N(¢3.0,05), p(0 ]y, ®) = N(y, ),

we get:

Py | x5,y,®) = N(SLitn, SLEnb, + ).




Posterior Predictive: Mean vs Variance

Predictive mean:
Elys | -] = ¢pipy (use posterior mean weights).

Predictive variance:

T 2
Var(}/* | ) = ¢*ZN¢* + Ow
parameter uncertainty measurement noise

Key messages

m Even with zero noise (02— 0), uncertainty remains if Xy # 0.

m As N — o0, £y — 0: uncertainty bands tighten.




Posterior Predictive: Mean vs Variance (Example)

Example: BLR with polynomial features on noisy 1D data.

BLR Posterior Predictive: Mean and Variance

= Predictive mean
4 +2 predictive std
® Training data

—i.5 —i.O —6.5 0:0 0t5 1:0 ljS

= Solid line: predictive mean E[ys | -] = ¢4 un-

m Shaded band: +2 predictive std, 1/¢IZN¢* +o02.

m Uncertainty is small near data, larger far away (parameter uncertainty).



Posterior Predictive: BLR vs MLE vs MAP

BLR Posterior Predictive: Mean and Variance

True function
——— Predictive mean

MAP function (6uap)
==« MLE function (6ue)
+2 predictive std

® Training data
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BLR: Sequential / Recursive Update

BLR can be updated one data point at a time. Assume current posterior after
k samples:
P(6 | Di) = N (1, Zuc).

Given new sample (Xi11, ykr1) with feature ¢, ;:
sl _y-1 1 T
k1 = &, t 072¢k+1¢k+17
w

1
o3

¢k+1yk+l> .

B = Tppr (zk_lﬂk +




BLR: What We Gain vs LS/MLE

m A distribution over parameters (uncertainty on 6).
m Built-in regularization via the prior.

m Predictive uncertainty:
s | x409) = [ B | x4 0)0(0 | ) db.

m With enough data, posterior concentrates and approaches the MLE.

Takeaway: BLR = LS/MLE + prior knowledge + uncertainty quantification.

MAP




m Any Questions?

m Office Hours:
= Tue & Thu (09:00-11:00)

m 24/7 by email (costashatz@upatras.gr, subject: ECE_SP_AM)

m Material and Announcements | |
.-.H.-.

AR
L

Laboratory of Automation & Robotics

LA
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