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Motivation: Why Kalman Filtering?

Previously, we studied Wiener filtering: an optimal batch linear estimator
for stationary signals, typically in the frequency domain.

Many real systems are dynamic and non-stationary:

states evolve over time (e.g., position/velocity, temperature,
channel gains),
measurements arrive sequentially and may be noisy or incomplete.

We want an estimator that is:

recursive (online): update estimates as each new measurement
arrives,
model-based: uses system dynamics,
uncertainty-aware: tracks confidence via covariance matrices.

Kalman filtering provides the optimal linear MMSE estimator for linear
Gaussian state-space models.

Key idea: predict using the model, then correct using measurements.
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Learning Outcomes

By the end of this lecture, you should be able to:

1 Formulate a linear Gaussian state-space model:

xk “ Axk´1 ` Buk´1 ` w k´1, y k “ Cxk ` v k .

2 Derive the Kalman filter recursion as the optimal linear MMSE / MAP
estimator under Gaussian assumptions.

3 Apply the predict–update steps to propagate:

the state estimate mean x̂k ,
the estimation error covariance Pk .

4 Interpret the roles of:

the innovation r k ,
the Kalman gain K k ,
the covariance matrices Q and R.

5 Recognize key assumptions and limitations of the Kalman filter (linearity,
Gaussian noise, correct models).
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State-Space Modeling (Generic Form)

Many dynamical systems can be described using a hidden state that evolves
over time and generates noisy measurements.
State (process) model:

xk “ f pxk´1, uk´1, k ´ 1q ` w k´1

Measurement (observation) model:

y k “ hpxk , kq ` v k

xk P Rn: latent/hidden state (what we want to estimate)

y k P Rm: observed measurement

uk : known input/control (may be absent)

w k : process noise (model uncertainty)

v k : measurement noise (sensor uncertainty)

Goal: infer xk from measurements y 1:k .
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Kalman Filter: State-Space Assumptions

The Kalman filter is optimal under the following linear–Gaussian state-space
model:
State (process) model:

xk “ Axk´1 ` Buk´1 ` w k´1

Measurement (observation) model:

y k “ Cxk ` v k

Noise assumptions:

w k „ N p0,Qq, v k „ N p0,Rq

Erw kvJ
j s “ 0 @k, j , (independent, white, zero-mean)

Initial condition:
x0 „ N px̂0,P0q

Under these assumptions, ppxk | y 1:kq remains Gaussian.
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Kalman Filter as Recursive Bayesian Estimation

We want the posterior over the hidden state at time k:

ppxk | y1:kq

Bayesian recursion:

1) Prediction (time update):

ppxk | y1:k´1q “

ż

ppxk | xk´1q ppxk´1 | y1:k´1q dxk´1

2) Update (measurement update):

ppxk | y1:kq9ppyk | xkq ppxk | y1:k´1q

Prediction: propagate the previous posterior through the
dynamics.
Update: correct the prediction using the new measurement.

Linear dynamics + Gaussian noise ñ all distributions remain
Gaussian ñ track only mean and covariance.
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Prediction Step (Time Update)

Assume at time k´1 we have the posterior:

ppxk´1 | y 1:k´1q “ N px̂k´1, Σk´1q .

Using the state model xk “ Axk´1 ` Buk´1 ` w k´1, we compute the prior
(predicted) distribution:

ppxk | y 1:k´1q “ N
`

x̂´
k , Σ

´
k

˘

.

Predicted mean:

x̂´
k “ Erxk | y 1:k´1s “ Ax̂k´1 ` Buk´1

Predicted covariance:

Σ´
k “ Covrxk | y 1:k´1s “ AΣk´1AJ

` Q

The covariance grows due to model uncertainty Q.

x̂´
k ,Σ

´
k summarize what we believe before seeing y k .
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Update Step (Measurement Update)

After prediction we have the prior:

ppxk | y 1:k´1q “ N
`

x̂´
k , Σ

´
k

˘

.

Using the measurement model y k “ Cxk ` v k , we incorporate the new
observation y k to obtain:

ppxk | y 1:kq “ N px̂k , Σkq .

Innovation (residual):

r k “ y k ´ Cx̂´
k

Innovation covariance:

Sk “ CΣ´
k CJ

` R

Kalman gain:

K k “ Σ´
k CJS´1

k
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Update Step (Measurement Update) (2)

Kalman gain:

K k “ Σ´
k CJS´1

k

Updated mean (posterior estimate):

x̂k “ x̂´
k ` K k r k

Updated covariance:

Σk “ pI ´ K kCqΣ´
k

r k measures new information in y k .

K k balances trust between model (Σ´
k ) and sensor (R).
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Worked Example: 1D Kalman Filter

Model (random walk):

xk “ xk´1 ` wk´1, yk “ xk ` vk , ñ A “ 1,C “ 1.

Noise: wk´1 „ N p0,Qq with Q “ 1, vk „ N p0,Rq with R “ 4.
Prior at k “ 0: x̂0 “ 0, Σ0 “ 2.
New measurement: y1 “ 3.
Prediction: x̂´

1 “ Ax̂0 “ 1 ¨ 0 “ 0, Σ´
1 “ AΣ0A

J
` Q “ 1 ¨ 2 ¨ 1 ` 1 “ 3.

Update:
r1 “ y1 ´ Cx̂´

1 “ 3 ´ 1 ¨ 0 “ 3

S1 “ CΣ´
1 C

J
` R “ 1 ¨ 3 ¨ 1 ` 4 “ 7

K1 “ Σ´
1 C

JS´1
1 “

3

7

x̂1 “ x̂´
1 ` K1r1 “ 0 `

3

7
¨ 3 “

9

7
« 1.29

Σ1 “ p1 ´ K1CqΣ´
1 “

ˆ

1 ´
3

7

˙

3 “
12

7
« 1.71

Interpretation: measurement pulls the estimate from 0 toward 3, and
uncertainty drops.
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Worked Example: 2D Kalman Filter

State: xk “

„

qk
vk

ȷ

(position q, velocity v), and we only observe q.

Model (constant velocity):

xk “ Axk´1 ` w k´1, y k “ Cxk ` v k

A “

„

1 1
0 1

ȷ

, C “
“

1 0
‰

.

Noise:

w k´1 „ N p0,Qq, Q “

„

1 0
0 1

ȷ

, v k „ N p0,Rq, R “ 4.

Prior at k “ 0:

x̂0 “

„

0
1

ȷ

, Σ0 “

„

4 0
0 1

ȷ

, y1 “ 2.

Prediction:

x̂´
1 “ Ax̂0 “

„

1 1
0 1

ȷ „

0
1

ȷ

“

„

1
1

ȷ

Σ´
1 “ AΣ0AJ

` Q “

„

6 1
1 2

ȷ

.
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Worked Example: 2D Kalman Filter (2)

Prediction:

x̂´
1 “ Ax̂0 “

„

1 1
0 1

ȷ „

0
1

ȷ

“

„

1
1

ȷ

Σ´
1 “ AΣ0AJ

` Q “

„

6 1
1 2

ȷ

.

Update:
r1 “ y1 ´ Cx̂´

1 “ 2 ´ 1 “ 1

S1 “ CΣ´
1 CJ

` R “ 6 ` 4 “ 10

K 1 “ Σ´
1 CJS´1

1 “
1

10

„

6
1

ȷ

“

„ 3
5
1
10

ȷ

x̂1 “ x̂´
1 ` K 1r1 “

„

1
1

ȷ

`

„ 3
5
1
10

ȷ

“

„ 8
5
11
10

ȷ

«

„

1.60
1.10

ȷ

Σ1 “ pI ´ K 1CqΣ´
1 “

„ 12
5

2
5

2
5

19
10

ȷ

.

Even though we only measure q, the update also improves v via the
dynamics/coupling.
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Derivation of the Kalman Filter (Setup)

We assume the linear–Gaussian model:

xk “ Axk´1 ` Buk´1 ` w k´1, y k “ Cxk ` v k ,

w k´1 „ N p0,Qq, v k „ N p0,Rq.

Assume the prior (prediction) is Gaussian:

ppxk | y 1:k´1q “ N
`

x̂´
k , Σ

´
k

˘

.

We look for a linear correction using y k :

x̂k “ x̂´
k ` K k

`

y k ´ Cx̂´
k

˘

where K k is chosen to minimize the MMSE.
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Derivation of the Kalman Gain

Define the estimation error:

ek “ xk ´ x̂k , e´
k “ xk ´ x̂´

k .

Using y k “ Cxk ` v k ,

ek “ e´
k ´ K k

`

Ce´
k ` v k

˘

“ pI ´ K kCqe´
k ´ K kv k .

Hence the posterior covariance is

Σk “ ErekeJ
k s “ pI ´ K kCqΣ´

k pI ´ K kCq
J

` K kRKJ
k .

Choose K k to minimize
JpK kq “ trpΣkq.
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Derivation of the Kalman Gain (Minimization)

Expand JpK kq (trace is linear and invariant under cyclic permutations):

J “ trpΣ´
k q ´ 2 trpK kCΣ´

k q ` tr
´

K kpCΣ´
k CJ

` RqKJ
k

¯

.

Differentiate w.r.t. K k and set to zero:

BJ

BK k
“ ´2Σ´

k CJ
` 2K kpCΣ´

k CJ
` Rq “ 0.

Solve for K k :

K k “ Σ´
k CJ

`

CΣ´
k CJ

` R
˘´1

Define the innovation covariance Sk “ CΣ´
k CJ

` R, so K k “ Σ´
k CJS´1

k .
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Resulting Kalman Update Equations

Innovation:
r k “ y k ´ Cx̂´

k , Sk “ CΣ´
k CJ

` R.

Kalman gain:
K k “ Σ´

k CJS´1
k .

Posterior mean:

x̂k “ x̂´
k ` K k r k

Posterior covariance:

Σk “ pI ´ K kCqΣ´
k

The optimal linear MMSE estimator is obtained by minimizing the posterior
error covariance.
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Intuition I: The Role of the Kalman Gain

K k “ Σ´
k CJ

`

CΣ´
k CJ

` R
˘´1

“ Σ´
k CJS´1

k .

Large measurement noise R

ñ Sk large ñ K k small ñ trust the model (prediction) more.

Large prior uncertainty Σ´
k

ñ K k large ñ trust the measurement more.

K k automatically balances model vs. sensor reliability.
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Intuition II: Innovation = New Information

The innovation (measurement residual) is

r k “ y k ´ Cx̂´
k

Cx̂´
k is what the model expected to measure.

r k is what is unexpected (new information).

Interpretation
If r k « 0: measurement matches prediction ñ small correction.

If }r k} is large: measurement disagrees with prediction ñ strong
correction through K k r k .
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Intuition III: Why Uncertainty Shrinks After Update

Posterior covariance update:

Σk “ pI ´ K kCqΣ´
k

The measurement provides information only in the observed subspace
(defined by C).

Multiplying by pI ´ K kCq removes uncertainty along those directions.

Unobserved directions keep their uncertainty (or may even grow in
prediction).

Prediction spreads uncertainty; update “pulls it back” using data.
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Kalman Filter Algorithm (Predict–Update)

Input: A,B,C ,Q,R; initial x̂0,Σ0; measurements ty ku; inputs tuku

Output: Filtered estimates tx̂k ,Σku

1 for k “ 1, 2, . . . do
// Prediction (Time Update)

2 x̂´
k Ð Ax̂k´1 ` Buk´1

3 Σ´
k Ð AΣk´1AJ

` Q

// Update (Measurement Update)

4 r k Ð y k ´ Cx̂´
k // innovation

5 Sk Ð CΣ´
k CJ

` R // innovation cov.

6 K k Ð Σ´
k CJS´1

k // Kalman gain

7 x̂k Ð x̂´
k ` K k r k

8 Σk Ð pI ´ K kCqΣ´
k
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Assumptions for Optimality

The Kalman filter is the optimal linear MMSE estimator only if:

1 Linearity:

xk “ Axk´1 ` Buk´1 ` w k´1, y k “ Cxk ` v k

2 Gaussian, zero-mean noises:

w k „ N p0,Qq, v k „ N p0,Rq

3 Correct noise covariances Q,R.

4 Correct model matrices A,B,C .

Under these conditions, the posterior remains Gaussian and is fully described by
px̂k ,Σkq.
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When Assumptions Are Violated

Nonlinear dynamics / observations:

xk “ f pxk´1q ` w k´1, y k “ hpxkq ` v k

ñ Extended KF (EKF), Unscented KF (UKF), Particle Filters

Heavy-tailed noise / outliers (non-Gaussian):

ñ Robust Kalman filtering variants

Incorrect tuning of Q,R:

ñ sluggish response, noisy estimates, or divergence

The filter is only as good as the model and its uncertainty description.

K. Chatzilygeroudis ECE Upatras Signal Processing 22 / 27



Effect of Tuning Q and R

Recall the Kalman gain:

K k “ Σ´
k CJ

pCΣ´
k CJ

` Rq
´1.

Increase Q (more process noise)

Σ´
k becomes larger.

ñ K k increases.

Behavior: filter trusts measurements more ñ more responsive but noisier.

Increase R (more measurement noise)

Denominator increases.

ñ K k decreases.

Behavior: filter trusts model more ñ smoother but slower to react.
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Filtering vs. Smoothing

Given measurements y 1:T from a state-space model:

Kalman filter (online / causal):

ppxk | y 1:kq ñ px̂k ,Σkq

uses only measurements up to time k.

Kalman smoother (offline / non-causal):

ppxk | y 1:T q ñ px̂ s
k ,Σ

s
k q

uses all measurements in the interval 1:T .

Key fact: smoothing always improves (or keeps) accuracy:

Σ s
k ĺ Σk @k.

Future measurements help correct past state estimates.
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Kalman Smoothing (RTS) in Two Passes

Step 1: Forward pass (Kalman filter)
Compute and store x̂k , x̂´

k`1,Σk ,Σ
´
k`1 for k “ 0:T .

Step 2: Backward pass (Rauch–Tung–Striebel smoother)
For k “ T ´ 1, . . . , 0:

Smoother gain:

G k “ ΣkAJ
pΣ´

k`1q
´1

Smoothed mean:

x̂ s
k “ x̂k ` G k

´

x̂ s
k`1 ´ x̂´

k`1

¯

Smoothed covariance:

Σ s
k “ Σk ` G k

´

Σ s
k`1 ´ Σ´

k`1

¯

GJ
k
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Batch View

Under the linear–Gaussian model, estimating the whole trajectory x0:T is
equivalent to a batch MAP problem:

x‹
0:T “ argmin

x0:T

«

T
ÿ

k“1

}yk ´ Cxk}2R´1 `

T
ÿ

k“1

}xk ´ Axk´1 ´ Buk´1}2Q´1 ` }x0 ´ x̂0}2
Σ´1
0

ff

This is a quadratic optimization with block-tridiagonal structure (Least
Squares!).

Kalman filtering/smoothing are efficient recursive solvers of this
problem.

Filtering: online solution vs. Smoothing/Batch MAP: offline solution.
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Thank you

Laboratory of Automation & Robotics

Any Questions?

Office Hours:
Tue & Thu (09:00-11:00)

24/7 by email (costashatz@upatras.gr, subject: ECE SP AM)

Material and Announcements
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