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Motivation: Why Kalman Filtering?

m Previously, we studied Wiener filtering: an optimal batch linear estimator
for stationary signals, typically in the frequency domain.

m Many real systems are dynamic and non-stationary:

B states evolve over time (e.g., position/velocity, temperature,
channel gains),
B measurements arrive sequentially and may be noisy or incomplete.

m We want an estimator that is:

m recursive (online): update estimates as each new measurement
arrives,

® model-based: uses system dynamics,

B uncertainty-aware: tracks confidence via covariance matrices.

m Kalman filtering provides the optimal linear MMSE estimator for linear
Gaussian state-space models.

Key idea: predict using the model, then correct using measurements.



Learning Outcomes

By the end of this lecture, you should be able to:

Formulate a linear Gaussian state-space model:
Xk = Axy—1 + Buy—1 + wi_1, Y = Cxi + v
Derive the Kalman filter recursion as the optimal linear MMSE / MAP
estimator under Gaussian assumptions.

Apply the predict—update steps to propagate:

m the state estimate mean Xy,

m the estimation error covariance Py.
Interpret the roles of:

m the innovation ry,
m the Kalman gain Ky,
m the covariance matrices @ and R.

Recognize key assumptions and limitations of the Kalman filter (linearity,
Gaussian noise, correct models).



State-Space Modeling (Generic Form)

Many dynamical systems can be described using a hidden state that evolves
over time and generates noisy measurements.
State (process) model:

Xi = f(kal, Up—1, k — 1) + W1
Measurement (observation) model:
Yi = h(xk, k) + v
m xx € R": latent/hidden state (what we want to estimate)
m y, € R™: observed measurement
m uy: known input/control (may be absent)
m wy: process noise (model uncertainty)

B v, measurement noise (sensor uncertainty)

Goal: infer x, from measurements y ..



Kalman Filter: State-Space Assumptions

The Kalman filter is optimal under the following linear—Gaussian state-space
model:
State (process) model:

Xk = Axp—1 + Buy—1 + wi_1
Measurement (observation) model:
Yi=Cxi+ v
Noise assumptions:
wi ~ N(0, @), vi ~N(0,R)

E[wkva] =0 Vk,j, (independent, white, zero-mean)

Initial condition:
X0 ~ ./\/.()/?o, Po)

Under these assumptions, p(xx | ¥1..) remains Gaussian.



- Kalman Filter as Recursive Bayesian Estimation

We want the posterior over the hidden state at time k:

P(Xk | ¥1:4)
Bayesian recursion:
1) Prediction (time update):

p(xk | Yrs1) = f P(xk | Xie1) P(Xkct | Yrk1) dxis

2) Update (measurement update):
P(Xi | Y1)P(Y i | Xi) P(Xkc [ Y1:4-1)

m Prediction: propagate the previous posterior through the
dynamics.
m Update: correct the prediction using the new measurement.
Linear dynamics + Gaussian noise = all distributions remain
Gaussian = track only mean and covariance.



Prediction Step (Time Update)

Assume at time k—1 we have the posterior:

P(xk=1 | Y1x-1) = N (Xk—1, Z—1) -

Using the state model xx = Axx—1 + Bux_1 + wi_1, we compute the prior
(predicted) distribution:

P(Xk | Y141) = N(’A‘;a }:;) .

Predicted mean:

~

% = E[xk | y1u—1] = AXi—1 + Bue—y

Predicted covariance:

T, = Covlxi | y14i] = AT 1A" + Q

m The covariance grows due to model uncertainty Q.

m X, ,X, summarize what we believe before seeing y,.



Update Step (Measurement Update)

After prediction we have the prior:
P(Xk | Y141) = N(’A‘;: zk_) .

Using the measurement model y, = Cxx + vi, we incorporate the new
observation y, to obtain:

P(xk | Y1) = N (%i, i) -

|- cx,C" +R|

Innovation (residual):

Innovation covariance:

Kalman gain:

(Ki=x,C's;?|




Update Step (Measurement Update) (2)

Kalman gain:

(Ki=%,C's;.|

Updated mean (posterior estimate):
Xk = )/?k_ + Kgri

Updated covariance:

5= (1 - KO T, |

m r, measures new information in y,.

m K balances trust between model (X, ) and sensor (R).




Worked Example: 1D Kalman Filter

Model (random walk):
Xk = Xk—1 + Wik—1, Yk = Xk + Vi, =A=1C=1

Noise: wi_1 ~ N(0, Q) with Q =1, vk ~N(0,R) with R = 4.
Prior at kK = 0: X = 0, Yo =2.
New measurement: y; = 3.
Prediction: 8, =A% =1-0=0, ¥, =ASA +Q=1-2-14+1=3.
Update:
r1=y1—C)?f=3—1-0=3
$=C;C'+R=1-3-14+4=7

Ki=¥;C's :%
o ~ 3 9
X1 = X +K1I’1=0+?'3=?%1.29
21=(1—K1C)Zl_= <1—;)3=$%1.71

Interpretation: measurement pulls the estimate from O toward 3, and
uncertainty drops.




Worked Example: 2D Kalman Filter

State: xx = [3"] (position g, velocity v), and we only observe q.
(3
Model (constant velocity):

X = AXp—1 + Wi—1, Yi=Cxp+ v

A=[(1) ﬂ c=[1 0.

Noise:
1 0
Wi ~ N(0,Q), Q= [0 1] . W ~N(OR), R4
Prior at kK = 0:
“ 0 4 0
S
Prediction:

K1 = Ao = [cl) i] [?] B [ﬂ

_ 6 1
b2 =A>:0AT+Q=[1 ol



Worked Example: 2D Kalman Filter (2)

Prediction:
e X 1 1110 1
=Ao=1g 1|1 |1

_ 6 1
3, =AZOAT+Q=[1 2].

Update:
=y —Ci =2-1=1

51=CZICT+R—6+4—1

3

oxerst - ]

10

3 8
o o 3 8 1.60
R HE [i] hi] [mJ

2

5

Even though we only measure q, the update also improves v via the

dynamics/coupling.




Derivation of the Kalman Filter (Setup)

We assume the linear—Gaussian model:
Xk = Axy—1 + Buk—1 + wi_1, Yi = Cxp + vy,
wi_1 ~ N(0,Q), vi ~N(0,R).
Assume the prior (prediction) is Gaussian:

P(Xk | Y1h—1) = N(’A‘;a ZZ) .

We look for a linear correction using y,:

Rk = % + Kiy, — CXy)

where K is chosen to minimize the MMSE.



Derivation of the Kalman Gain

Define the estimation error:
er = Xk — Xi, e, =Xk — X .
Using y, = Cxx + v,
ex =€, —Ki(Ce, +vi) = (I —KiC)e, — Kivi.

Hence the posterior covariance is

T =Elexer] = (I — KkC)E, (I — Ky C)" + KkRK .

Choose K, to minimize
J(Ki) = tr(Xy).



Derivation of the Kalman Gain (Minimization)

Expand J(K) (trace is linear and invariant under cyclic permutations):
J=tr(E;) — 2tr(K CEp) + tr(Kk(cz; c’+ R)KI) .
Differentiate w.r.t. K, and set to zero:

O oy €T 4 2Ki(CE €T + R) 0.
oK»

Solve for Ky:

Ki=%,C'(Cx,C" +R) "

Define the innovation covariance Sy = CEX,C' + R, so K, =X, C'S; .
K K K




Resulting Kalman Update Equations

Innovation:
re=y,—Cx,, Si=CX,C'+R.

Kalman gain:
Ki=X,C'S. "

Posterior mean:
XK = f(k_ + Kiri

Posterior covariance:

5= (1 - K O)E, |

The optimal linear MMSE estimator is obtained by minimizing the posterior
error covariance.



Intuition |: The Role of the Kalman Gain

Ki=%,C'(CE,CT +R) ' =x,C's. "

m Large measurement noise R

= Sy large = K small = trust the model (prediction) more.

m Large prior uncertainty X,

= K large = trust the measurement more.

K« automatically balances model vs. sensor reliability.




Intuition Il: Innovation = New Information

The innovation (measurement residual) is
re=y,—Cx,

m CX, is what the model expected to measure.

m r, is what is unexpected (new information).

Interpretation
m If re & 0: measurement matches prediction = small correction.

m If |r| is large: measurement disagrees with prediction = strong
correction through Kyry.




Intuition IlI: Why Uncertainty Shrinks After Update

Posterior covariance update:

¥, = (I - KiO)X}

m The measurement provides information only in the observed subspace
(defined by C).

m Multiplying by (I — K«C) removes uncertainty along those directions.

m Unobserved directions keep their uncertainty (or may even grow in
prediction).

Prediction spreads uncertainty; update “pulls it back” using data.




Kalman Filter Algorithm (Predict-Update)

Input: A, B, C, Q,R; initial %o, Xo; measurements {y,}; inputs {ux}
Output: Filtered estimates {Xx, Xx}

1 for k=1,2,...do

// Prediction (Time Update)

2 X, < AXy_1+ Buy_;

Y, AL AT +Q

// Update (Measurement Update)

re—y,—Cx, // innovation
Sk — C):;CT +R // innovation cov.
Ky «— Z;CTS;I // Kalman gain

Xk <—)A(k_ + Kyrk
I — (I - KO

©© N o a s




Assumptions for Optimality

The Kalman filter is the optimal linear MMSE estimator only if:
Linearity:
Xk = Axy—1 + Buk—1 + wg_1, Yi=Cxi + vi
Gaussian, zero-mean noises:
wi ~ N(0,Q), vi ~N(0,R)

Correct noise covariances Q, R.

A Correct model matrices A, B, C.

Under these conditions, the posterior remains Gaussian and is fully described by
(Xk, k).



When Assumptions Are Violated

= Nonlinear dynamics / observations:
xe = f(xk—1) + wik—1, ¥, = h(xk) + vk

= Extended KF (EKF), Unscented KF (UKF), Particle Filters

m Heavy-tailed noise / outliers (non-Gaussian):

= Robust Kalman filtering variants

m Incorrect tuning of Q, R:

= sluggish response, noisy estimates, or divergence

The filter is only as good as the model and its uncertainty description.



Effect of Tuning Q and R

Recall the Kalman gain:

Ki=%,C'(CE,C"+R)".

Increase @ (more process noise)
m ¥ becomes larger.
m = K increases.

m Behavior: filter trusts measurements more = more responsive but noisier.

Increase R (more measurement noise)
m Denominator increases.

m = K decreases.

m Behavior: filter trusts model more = smoother but slower to react. )




Filtering vs. Smoothing

Given measurements y,.; from a state-space model:
m Kalman filter (online / causal):

P(xk | yre) = (R Xi)
uses only measurements up to time k.
m Kalman smoother (offline / non-causal):
p(xi lyrr) = (XGEQ)
uses all measurements in the interval 1:T.

m Key fact: smoothing always improves (or keeps) accuracy:

TP <X, Vk.

Future measurements help correct past state estimates.



Kalman Smoothing (RTS) in Two Passes

Step 1: Forward pass (Kalman filter)
Compute and store X, X, ,, Xk, X, for k =0:T.

Step 2: Backward pass (Rauch—Tung—Striebel smoother)
Fork=T-1,...,0:
Smoother gain:

Gy = zkAT (2;4—1)_1

Smoothed mean:

o5 o ns .
X =Xk + Gk (xk+1 — xkﬂ)

Smoothed covariance:

=%+ Gy (z;+1 - z;ﬂ) G/




Batch View

Under the linear—Gaussian model, estimating the whole trajectory xo.7 is
equivalent to a batch MAP problem:

T

=
Xg.7 = arg min DIy = Cxillgos + D Ixk — Axp1 — Buy a5y + [xo0 — 20”261
= =1

m This is a quadratic optimization with block-tridiagonal structure (Least
Squares!).

m Kalman filtering/smoothing are efficient recursive solvers of this
problem.

Filtering: online solution  vs. Smoothing/Batch MAP: offline solution.



m Any Questions?

m Office Hours:
= Tue & Thu (09:00-11:00)

m 24/7 by email (costashatz@upatras.gr, subject: ECE_SP_AM)

m Material and Announcements | |
.-.H.-.
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