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Autocorrelation Function of Stationary Random Processes

If a random process is wide sense stationary, then by the definition of
stationarity

Rxx(rl + T, t]_) = RXX(II + t + T, tl + t) = Rxx(tg + T, tz). th, tz.
(11-17)

Thus Ry y for stationary processes depends only on , the time difference,
and we will write Rx <(f; + 7, 1,) as Ry x(r). We now show some of the
roperties of Ry x(7).
per Rxx(7) = Ry x(—7). (11-18)
This follows from letting ¢, =# — = in (11-17) and recalling that
Rxx(t1, 12) = E[X(1)X(t:)] = E[X(1)X(1)] = Rxx(ta, 1y).
From (11-17) with 7 = 0

Ry x(0) = E[X*(1)]. (11-19)
Thus Rxx(0) > 0.
Also Rxx(0) > |Rx x(7)|. (11-20)

This last result follows from the same argument made earlier (Chapter V)
to show that the correlation coefficient was bounded by +1.
If X(#,) and X(z, 4 7) are independent

Ry x(7) = p*. (11-21)
In many practical cases X(t,) and X(z, + 7) will be independent for large
values of .
Exampre 11-11

Why are the functions shown in Figure 11-11 not autocorrelation func-
tions ?
(a) Is not symmetrical and thus violates (11-18).
(b) Violates (11-20).

Rxx(”') RXX(T)

{a) ()
Figure 11-11
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11-3 MOMENTS
Now E[Y,Y,]= E[VIE[Y,] if ksm due to independence. Thus
E Raxl@o) = IELYA + @ — DIE(HRPR + iE[11( — DE[Y,]
ety =1 =D = g1 + i — i)(p — gy
=i+ —dp —gp, i<y

o

o
i

4 : Ifj < i then
smsity funct . . T R
7 nction . Rexo)=j+G-pip—-gr, j<i
£ Z) dzy dz,. (11-11) ¢ If p = g (fair coin) then
Rxx(i,j) =i, i <J

The autocorrelation function for the

case where ¢; and/or ¢, are not integers
is easily derived from the above results

—Hwh 1)

EXAMPLE 11-8

Find the mean and autoco

rrelation of the random process given in
Example 11-3. The mean u(r) is

#il,). (11-13)
+ 35 similar to the correla- (t) = E[A cos (w1 +
#1) = 0 = u(r,) and if ~ #O) = Eld cos (01 + ¢)]
¢ correlation coefficient ‘ = A cos (wt + 6) zi 46
. -

: = 4 sin (or + e)]I
the random walk. 05z -
= ; =0
=3 Y,where ¥, = + |
=1 . The autocorrelation function is
=3 £$ a tail.
Rx x(t1, t.) = E[A cos (wt, + ¢)A4 cos (wt; + ¢)] 7
= ilp — q), . .
=f A% cos (ot; + 6) cos (wty + ) — 49
3 55 + 1). -7 2ar
T A2 3
= 2——f {3 cos (wt; + oty + 28) + £ cos [w(t, — 1,)1} db
T J-7
2
=0 4 % cos w(t, — t,).
LW
Find the mean and autocorrelation function for the Poisson process, The
; ; expected value of X(1) is
ey Ym]' ‘ ) E[X(1)] = ML
gl
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11-6 TIME AVERAGES AND ERGOD

Ergodicity
The basic idea of ergodicity is that expected values can be replaced by time
averages. This concept seems natural when “noise” is considered. In this case
randomness is present not only in the selection of the sample function, but
also in how the function behaves in time. The thermal noise of a resistor is
random not because of the choice of a resistor, but because of the uncertainty

AT =D e df]

'

: r
o 1)] B associated with the collisions of the “free” electrons in the metal. The random-

ness of shot noise similarly is due to the random behavior of the electrons
T 1)] _2 [ I, 1 ] in the filament and one might expect that time averages of the output noise of
e T? a® one tube would be the same as averaging over the instantaneous output of

many tubes of the same type operating under equivalent conditions.
Such ideas have led to a loose definition of ergodicity. A random process is
ergodic if (with probability one)

. 1 &
B} = lim — [ gix(y1ar (11-33)

for all functions g.
For our purposes the most interesting functions g are

glX(] = x(1)
and glX(] = XOX(r + 1),

We now examine what is necessary in order for the cxpe?ted value u to
equal the time avera,

1 (T
: =lim — | X(1)dt
! ' ' Note that if the tithe aver; i is gverage must not be a function

of time. Also note that'in general 7 will depend on"Which sample function is
-1 chosen.
~ i Thus if the expected value u is to equal 5 then x must be constant, that is,
‘ X(1) must be stationary in the mean. Moreover 4 is not a function of the
sample space, that is, we have averaged over the sample space. Thus % must
not depend on the sample space, that is, 5 must be the same (with probability
one) for all choices of sample functions.
FEign. we-say-thet- ¥GHI EIpodic in the mean? We have seen that
. ; stationarity of the mean is necessary for ergodicify in the mean. We have

\ also seen that » must be a con.»tan.t,oveﬁt-é\e sample space. Thus if 7 is a-

: constant this will imply that] ¢,2 = 0. | imilarly if 0,2 =0, then by
e Tchebycheff’s inequality 7 is a constant. Thus a necessary and sufficient
77 8aT  9aT 1oar condition for stationarity of the mean is that o2 = 0. e

are usefulyn determining if a random process is ergodic in
the autocorrelation function./The process must be wide sense stationary. In
295 /
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addition the average over the sample space Ry y(r) must equal the time
average autocorrelation function % x y(+) where

T
Ry x(r) = lim Bp(r) = lim -~ | XXt + ) dr.
T T-o00 2T J-1

In order for Rxx(7) to be the same as #5 x(7) it is, in addition to wide
sense stationarity, necessary that (with probability one) Zx x(t) does not
depend on which sample function is chosen.

In practiceit is usually impossible to decide on the basis of data if a random
process is ergodic. One has to decide based on reasoning about the situation.
In order to be ergodic a random process must be stationary, and “random-
ness” must be evident in the time variation as well as in the selection of a
sample function. In addition the time average must not depend on which
sample function is selected.

ExampLE 11-16

Is the process of Examples 11-3 and 11-8 ergodic in the mean and in the
autocorrelation function?
We see from Example 11-14 that limg. ., (0, T) = 0. Thus the mean (see

Example 11-8) and the time average agree. We now find the time average of
XXt + 7).

T
Rp(7) = %f_TA cos (wt + $)A cos (wt + wr + $) dt
A2 [T
= _‘f [cos Qwt + 7 + 24) + cos (wr)] dt
4T J-1

-4 [i sin QoT + 7 + 24)
4T 2w

2
— isin (-20T + v + 295)] + A—cos wT.
2w 2

Now limyg._, o, Z7(7) = (42/2) cos wr. Note that as T — co, the time average
oes not depend on the sample function selected, that is, ¢ is not in the final

nswer, and the time average autocorrelation function agrees with Ry x(7).

hus this;xampw
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11-7 POWER DENSITY SPECTRUM

If the autocorrelation function R(7) of a stationary random process is such
that

[ Ry e
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