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1.0 Introduction

There are number of excellent, comprehensive, and in-depth texts on MIPS assembly language
programming. This is not one of them.

The purpose of this text is to provide a simple and free reference for university level programming and
architecture units that include a brief section covering MIPS assembly language. The text uses the
QtSpim simulator. An appendix covers the downloading, installation, and basic use of the simulator.

The scope of this text addresses basic MIPS assembly language programming including instruction set
basics, stack, procedure/function calls, QtSpim simulator system services, multiple dimension arrays,
and basic recursion.

1.1 Additional References

Some key references for additional information are listed below:
* MIPS Assembly-language Programmer Guide, Silicon Graphics
e  MIPS Software Users Manual, MIPS Technologies, Inc.

* Hennessy and Patterson, Computer Organization and Design: The Hardware/Software Interface

More information regarding these references can be found on the Internet.






2.0 MIPS Architecture Overview

The following text presents a basic, general overview of the architecture of the MIPS processor.

The MIPS architecture is a Reduced Instruction Set Computer (RISC). This means that there is a
smaller number of instructions, using a uniform instruction encoding format. Each
instruction/operation does one thing (memory access, computation, conditional, etc.). The idea is to
make the lesser number of instructions execute faster. In general RISC architectures, and specifically
the MIPS architecture, are designed for high-speed implementations.

2.1 Architecture Overview

The basic components of a computer include a Central Processing Unit (CPU), Random Access
Memory (RAM), Disk Drive, and Input/Output devices (i.e., screen and keyboard), and an
interconnection referred to as BUS.

A very basic diagram of a computer architecture is as follows:

CPU Random Access
Memory (RAM)

BUS

(Interconnection)

(o

Screen / Keyboard / Disk Drive /
Mouse Other Storage Media

Illustration 1: Computer Architecture

Programs and data are typically stored on the disk drive. When a program is executed, it must be
copied from the disk drive into the RAM memory. The CPU executes the program from RAM. This is
similar to storing a term paper on the disk drive, and when writing/editing the term paper, it is copied
from the disk drive into memory. When done, the updated version is stored back to the disk drive.



2.2 Data Types/Sizes
The basic data types include integer, floating point, and characters.

Data can be stored in byte, halfword, word, double-word sizes. Floating point must be in either word
(32-bit) or double word (64-bit) size. Character data is typically a byte and a string is a series of
sequential bytes. The MIPS architecture supports the following data/memory sizes:

Name Size

byte 8-bit integer

half 16-bit integer

word 32-bit integer

float 32-bit floating-point number
double 64-bit floating-point number

Lists or arrays (sets of memory) can be reserved in any of these types. In addition, an arbitrary amount
of space can be defined with the "space" directive.

2.3 Memory

Memory can be viewed as a series of bytes, one after another. That is, memory is byte addressable.
This means each memory address hold one byte of information. To store a word, four bytes are
required which use four memory addresses.

Additionally, the MIPS architecture as simulated in QtSpim is little-endian. This means that the Least
Significant Byte (LSB) is stored in the lowest memory address. The Most Significant Byte (MSB) is
stored in the highest memory location.

For a word (32-bits), the MSB and LSB are allocated as shown below.
3103029 28] 27| 26 | 25| 24| 23] 22| 21| 20| 19] 18] 17| 16| 1514 ] 13 | 12| 11|10 9 |8 [ 76| s |4 3]2]1]0
MSB LSB

For example, assuming the following declarations:

numl: .word 42
num2: .word 5000000

Recall that 42 in hex, word size is 0x0000002A and 5,000,000 in hex, word size is 0x004C4B40.



For a little-endian architecture, the memory picture would be as follows:

variable value address
name
00 0x100100B
4c 0x100100A
4B 0x1001009
Num?2 — 40 0x1001008
00 0x1001007
00 0x1001006
00 0x1001005
Numl - 2A 0x1001004
2.4 Memory Layout
The general memory layout is as shown:
stack
heap

uninitialized data

data

text (code)

reserved

Later sections will provided additional detail for the listed sections.

2.5 Registers

A CPU register, or just register, is a temporary storage or working location built into the CPU itself
(separate form memory). Computations are typically performed by the CPU using registers.

The MIPS has 32, 32-bit integer registers ($0 through $31) and 32 32-bit floating point register ($f0

through $f31). Some of the integer registers are used for special purposes.

In addition, there are some miscellaneous registers, $pc, $hi, $lo, and $epc. The $pc is the Program
Counter (point to the next instruction to be executed). The $hi and $lo registers are used for some

integer arithmetic operations.



The registers and register usage is described in the following table.

Register Register Register Usage
Name Number
$zero $0 Hardware set to 0
$at $1 Assembler temporary
$vO0 - $v1 $2-%$3 Function result (low/high)
$a0 - $a3 $4 - $7 Argument Register 1
$t0 - $t7 $8 - $15 Temporary registers
$s0 - $s7 $16 - $23 Saved registers
$t8 - $t9 $24 - $25 Temporary registers
$kO - $k1 $26 - $27 Reserved for OS kernel
$gp $28 Global pointer
$sp $29 Stack pointer
$fp $30 Frame pointer
$ra $31 Return address

The register names will used in the remainder of this document. Further sections will expand on
register usage and address the usage including the 'temporary' and 'saved' registers.

2.5.1 Reserved Registers

The following register should not be used in user programs.

Register Name
$kO0 - $k1
$at
$9p

The $k0 and $k1 register are reserved for use by the operating system and should not be used in user
programs. The $at register is used by the assembler and should not be used in user programs. The $gp
register is used point to global data (as needed) and should not be used in user programs.
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3.0 Data Representation

Data representation refers to how information is stored within the computer. There is a specific method
for storing integers which is different that storing floating point values which is different than storing
characters. This chapter presents a brief summary of the integer, floating-point, and ASCII
representation schemes. It is assumed the reader is already generally familiar with data representation
issues.

3.1 Integer Representation

Representing integer numbers refers to how the computer stores or represents a number in memory. As
you know, the computer represents numbers in binary. However, the computer has a limited amount of
space that can be used for each number or variable. This directly impacts the size, or range, of the
number that can be represented. For example, a byte (8 bits) can be used to to represent 2° or 256
different numbers. Those 256 different numbers can be unsigned (all positive) in which case we can
represent any number between 0 and 255 (inclusive). If we choose signed (positive and negative), then
we can represent any number between -128 and +127 (inclusive).

If that range is not large enough to handle the intended values, a larger size must be used. For example,
a word (16 bits) can be used to to represent 2'® or 65,536 different numbers, and a double-word can be
used to to represent 2** or 4,294,967,296 different numbers. So, if you wanted to store a value of
100,000 then a double-word would be required.

The following table shows the ranges associated with typical sizes:

Size Size Unsigned Range Signed Range
Bytes (8 bits) 28 0 to 255 -128 to +127
Words (16 bits) 216 0 to 65,535 -32,768 to +32,767
Double words (32 bits) 2% 0 to 4,294,967,295 —2,147,483,648 to
+2,147,483,647

In order to determine if a value can be represented, you will need to know the size of storage (byte,
word, double-word) and if the values are signed or unsigned values.

* For representing unsigned values within the range of a given storage size, standard binary is
used.

* For representing signed values with the range, two's compliment is used. Specifically, two's
compliment applies to the values in the negative range. Values within the positive range,
standard binary is used.

11



For example, the unsigned byte range can be represented as follows:

0 255

For example, the signed byte range can be represented as follows:

-128 0 +127

The same concept applies to halfwords and words with larger ranges.

3.1.1 Two's Compliment
The following describes how to find the two's compliment representation for negative values.
To take the two's compliment of a number:

1. take the one's compliment (negate)

2. add 1 (in binary)

The same process is used to encode a decimal value into two's compliment and from two's compliment
back to decimal.

3.1.2 Byte Example

For example, to find the byte size, two's compliment representation of -9 and -12.

9(8+1)=| 00001001 12 (8+4)=| 00001100
Step1| 11110110 Step 1:| 11110011
Step2| 11110111 11110100

-9 (in hex) = F7 -12 (in hex) = F4

12
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3.1.3 Word Example

To find the word size, two's compliment representation of -18 and -40.

18 (16+2) =, 0000000000010010 40 (32+8) =| 0000000000101000
Step 1| 1111111111101110 Step 1:| 1111111111010111
Step 2| 1111111111101111 1111111111011000

-18 (in hex) = FFEE -40 (in hex) = FFD8

Note, all bits for the given size, words in these examples, must be specified.

3.2 Unsigned and Signed Addition

Since unsigned values have a different, positive only, range than signed values, there is some overlap
between the values. For example:

* A signed byte representation of -15 is Flis
* An unsigned representation of 241 is also Flis

However, the addition and subtraction operations are the same. For example:

241 11110001 -15| 11110001
+ 7| 00000111 + 7| 00000111
248 11111000 -8 11111000

248 = F8 -8 = F8

Additionally, F8¢ is the ° (degree symbol) in the ASCII table.

As such, it is very important to have a clear definition of the sizes (byte, half, word, etc.) and types
(signed, unsigned) of operations being performed.

3.3 Floating-point Representation

The representation issues for floating points numbers are more complex. There are a series of floating
point representations for various ranges of the value. For simplicity, we will only look primarily at the
IEEE 754 32-bit floating-point standard.
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3.3.1 IEEE 32-bit Representation
The IEEE 754 32-bit floating-point standard is defined as follows:

3 30‘29‘28‘27‘26‘25‘24‘23 22‘21‘20‘19‘18‘17‘16‘15‘14‘13‘12‘11‘10‘9‘8‘7‘6‘5‘4‘3‘2‘1‘0

—

s biased exponent fraction

Where s is the sign (0 => positive and 1 => negative).

When representing floating point values, the first step is to convert floating point value into binary.
The following table provides a brief reminder of how binary handles fractional components:

22022 2h 20 2t 2% 278
412 |1 .| 121 1/4]1/8
Oo,0[{0|0|. 0,00

For example, 100.101, would be 4.625,. For repeating decimals, calculating the binary value can be
time consuming. However, there is a limit since computers have finite storage.

The next step is to show the value in normalized scientific notation in binary. This means that the
number should has a single, non-zero leading digit to the left of the decimal point. For example,
8.1251 is 1000.001, (or 1000.001, x 2°) and in binary normalized scientific notation that would be
written as 1.000001 x 23 (since the decimal point was moved three places to the left). Of course, if the
number was 0.125;, the binary would be 0.001, (or 0.001, x 2°) and the normalized scientific notation
would be 1.0 x 27 (since the decimal point was moved three places to the right). The numbers after the
leading 1, not including the leading 1, are stored left-justified in the fraction portion of the word.

The next step is to calculate the biased exponent, which is the exponent from the normalized scientific
notation with plus the bias. The bias for the IEEE 754 32-bit floating-point standard is 127:,. The
result should be converted to a byte (8 bits) and stored in the biased exponent portion of the word.

Note, converting from the IEEE 754 32-bit floating-point representation to the decimal value is done in
reverse, however leading 1 must be added back (as it is not stored in the word). Additionally, the bias
is subtracted (instead of added).

3.3.1.1 IEEE 32-bit Representation Examples

This section presents several examples of encoding and decoding floating-point representation for
reference.

14



3.3.1.1.1 Example — 7.75;
For example, to find the IEEE 754 32-bit floating-point representation for -7.75:

Example 1: -7.75

determine sign -7.75 => 1 (since negative)
convert to binary 175 = -0111.11,
normalized scientific notation = 1.1111 x 22
compute biased exponent 2,1t 127, =129,

© and convert to binary = 10000001,

write components in binary:
sign exponent mantissa

1 10000001 11110000000000000000000
convert to hex (split into groups of 4)

11000000111110000000000000000000

1100 0000 1111 1000 0000 0000 0000 0000

c o0 F 8 0 0 0 0

final result: COF8 0000,

3.3.1.1.2 Example — 0.125,
For example, to find the IEEE 754 32-bit floating-point representation for -0.125;:

Example 2: -0.125

determine sign -0.125 => 1 (since negative)
convert to binary -0.125 = -0.001,
normalized scientific notation = 1.0x 23

compute biased exponent 3, T 127, = 124,

© and convert to binary = 01111100,

write components in binary:
sign exponent mantissa
1 01111100 00000000000000000000000
convert to hex (split into groups of 4)
10111110000000000000000000000000
1011 1110 0000 0000 0000 0000 0000 0000
B E 0 0 0 0 0 O

final result: BE00 0000,
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3.3.1.1.3 Example — 41440000,

For example, given the IEEE 754 32-bit floating-point representation 414400006 find the decimal
value:

Example 3: 4144000046
* convert to binary
0100 0001 0100 0100 0000 0000 0000 0000,

* split into components
0 10000010 10001000000000000000000,

e determine exponent 10000010, = 130,
© and remove bias 130,,- 127,, = 3,
* determine sign 0 => positive
e write result +1.10001 x 2°=+1100.01 = +12.25

3.3.2 IEEE 64-bit Representation
The IEEE 754 64-bit floating-point standard is defined as follows:

63 62‘ ‘52 51‘

s biased exponent fraction

The representation process is the same, however the format allows for an 11-bit biased exponent
(which support large and smaller values). The 11-bit biased exponent uses a bias of +£1023.
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4.0 QtSpim Program Formats

The QtSpim MIPS simulator will be used for programs in this text. The SPIM simulator has a number
of features and requirements for writing MIPS assembly language programs. This includes a properly
formatted assembly source file.

A properly formatted assembly source file consists of two main parts; the data section (where data is
placed) and the text section (where code is placed). The following sections summarize the formatting
requirements and explains each of these parts.

4.1 Assembly Process

The QtSpim effectively assembles the program during the load process. Any major errors in the
program format or the instructions will be noted immediately. Assembler errors must be resolved
before the program can be successfully executed. Refer to Appendix B regarding the use of QtSpim to
load and execute programs.

4.2 Comments

The "#" character represents a comment line. Anything typed after the "#" is considered a comment.
Blank lines are accepted.

4.3 Assembler Directives

An assembler directive is a message to the assembler, or the QtSpim simulator, that tells the assembler
something it needs to know in order to carry out the assembly process. This includes noting where the
data is declared or the code is defined. Assembler directives are not executable statements.

Directives are required for data declarations and to define the start and end of procedures. Assembler
directives start with a “.”. For example, “.data” or “.text”.

Additionally, directives are used to declare and defined data. The following sections provide some
examples of data declarations using the directives.

4.4 Data Declarations

The data must be preceded by the ".data" directive. All variables and constants are placed in this
section. Variable names must start with a letter followed by letters or numbers (including some special
characters such as the "_"), and terminated with a ":". Variable definitions must include the name, the
data type, and the initial value for the variable. In the definition, the variable name must be terminated

n.n

witha"™:".
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The data type must be preceded with a ".". The general format is:

<variableName>: .<dataType> <initialvalue>

Refer to the following sections for a series of examples using various data types.

The supported data types are as follows:

Declaration
-byte 8-bit variable(s)
.half 16-bit variable(s)
.word 32-bit variable(s)
.ascii ASCII string
.asciiz NULL terminated ASCII string
.float 32 bit IEEE floating point number
.double 64 bit IEEE floating point number
-space <n> <n> bytes of uninitialized memory

These are the primary assembler directives for data declaration. Other directives are referenced in
different sections.

4.4.1 Integer Data Declarations

Integer values are defined with the .word, .half, or .byte directives. Two's compliment is used for the
representation of negative values. For more information regarding two's compliment, refer to the Data
Representation section.

The following declarations are used to define the integer variables "wVarl" and "wVar2" as 32-bit
word values and initialize them to 500,000 and -100,000.

wVarl: .word 500000
wvVar2: .word -100000

The following declarations are used to define the integer variables "hVar1" and "hVar2" as 16-bit word
values and initialize them to 5,000 and -3,000.

hvarl: .half 5000
hvar2: .half -3000
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The following declarations are used to define the integer variables "bVarl" and "bVar2" as 8-bit word
values and initialize them to 5 and -3.

bvarl: .byte 5
bvar2: .byte -3

If an variable is initialized to a value that can not be stored in the allocated space, an assembler error
will be generated. For example, attempting to set a byte variable to 500 would be illegal and generate
an error.

4.4.2 String Data Declarations

Strings are defined with .ascii or .asciiz directives. Characters are represented using standard ASCII
characters. Refer to Appendix D for a copy of the ASCII table for reference.

The C/C++ style new line, "\n", and tab, "\t" tab are supported within in strings.

The following declarations are used to define the a string "message" and initialize it to “Hello World”.

message: .asciiz "Hello World\n"

In this example, the string is defined as NULL terminated (i.e., after the new line). The NULL is a
non-printable ASCII character and is used to mark the end of the string. The NULL termination is
standard and is required by the print string system service (to work correctly).

To define a string with multiple lines, the NULL termination would only be required on the final or last
line. For example,

message: .ascii "Line 1: Goodbye World\n"
.ascii "Line 2: So, long and thanks "
.ascii "for all the fish.\n"
.asciiz "Line 3: Game Over.\n"

When printed, using the starting address of 'message’, everything up-to (but not including) the NULL
will be displayed. As such, the declaration using multiple lines is not relevant to the final displayed
output.

4.4.3 Floating-Point Data Declarations

Floating-point values are defined with the .float (32-bit) or .double (64-bit) directives. The IEEE
floating-point format is used for the internal representation of floating-point values.

The following declarations are used to define the floating-point variables "pi" to a 32-bit floating-point
value initialized to 3.14159 and "tao" to a 64-bit floating-point values initialized them to 6.28318.

pPi: .float 3.14159
tao: .double 6.28318

For more information regarding the IEEE format, refer to the Data Representation section.
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4.5 Constants

Constant names must start with a letter followed by letters or numbers including some special
characters such as the (underscore). Constant definitions are created with an "=" sign.

mon

For example, to create some constants named TRUE and FALSE, set to 1 and O:

TRUE = 1
FALSE = 0

Constants are also defined in the data section. The use of all capitals for a constant is a convention and
not required by the QtSpim program. The convention helps programmers more easily distinguish
between variables (which can change values) and constants (which can not change values).
Additionally, in assembly language constants are not typed (i.e., not predefined to be a specific size
such as 8-bit, 16-bit, or 32-bits, etc.).

4.6 Program Code
The code must be preceded by the ".text" directive.

In addition, there are some basic requirements for naming a "main" procedure (i.e., the first procedure
to be executed). The ".globl name" and ".ent name" directives are required to define the name of the
initial or main procedure. Note, the globl is correct. Also, the main procedure must start with a label
with the procedure name. The main procedure (as all procedures) should be terminated with the ".end
<name>" directive.

In the following example, the <name> would be the name of the main procedure, which is “main”.
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4.7 Program Template

The following is a template for QtSpim MIPS programs. This general template will be used for all
programs.

# Name and assignment number
.data

# data declarations go here...

.globl main
.text

.ent main
main:

# Done, terminate program.
1i $vo, 10
syscall # all done!

.end main

A more complete example, with working code, is located in Appendix A.
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5.0 Instruction Set Overview

In assembly-language, instructions are how work is accomplished. In assembly the instructions are
simple, single operation commands. In a high-level language, one line can be a series of instructions in
assembly-language.

This section presents a summary of the basic, most common instructions. The MIPS Instruction Set
Appendix presents a more comprehensive list of the available instructions.

5.1 Pseudo-Instructions vs Bare-Instructions

As part of the MIPS architecture, the assembly language includes a number of pseudo-instructions. A
bare-instruction is an instructed that is executed by the CPU. A pseudo-instruction is an instruction
that the assembler, or simulator, will recognize but then convert into one or more bare-instructions.
This text will focus primarily on the pseudo-instructions.

5.2 Notational Conventions

This section summarizes the notation used within this text which is fairly common in the technical
literature. In general, an instruction will consist of the instruction or operation itself (i.e., add, sub,
mul, etc.) and the operands. The operands refer to where the data (to be operated on) is coming from
or the result will be placed.

The following table summarizes the notational conventions used in the remainder of the document.

Operand Notation Description

Rdest Destination operand. Must be a register. Since it is a
destination operand, the contents will be over written
with the new result.

Rsrc Source operand. Must be a register. Register value
is unchanged.
Src Source operand. Must be a register or an immediate
value. Value is unchanged.
Imm Immediate value
Mem Memory location. May be a variable name or an

indirect reference.

Refer to the chapter on Addressing Modes for more information regarding indirection.
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5.3 Data Movement

CPU computations are typically performed using registers. As such, before computations can be
performed, data is typically moved into registers from variables (i.e., memory) and when the
computations are completed the data would be moved out of registers into variables.

To support the loading of data from memory into registers and storing of data in register to memory,

there are a series of load and store instructions.

The general form of the load and store instructions are as follows:

Instruction Description

l<type> Rdest, mem Load value from memory location
memory into destination register.

li Rdest, imm Load specified immediate value
into destination register.

la Rdest, mem Load address of memory location
into destination register.

s<type> Rsrc, mem Store contents of source register
into memory location.

move Rdest, RSrc Copy contents of source register
into destination register.

Assuming the following data declarations:

num: .word 0
wnum: .word 42
hnum: .half 73
bnum: .byte 7
wans: .word 0
hnum: .half 0
bnum: .byte 0
To perform, the basic operations of:
num = 27
wans = wnum
hans = hnum
bans = bnum
The following instructions
1i $to, 27
sw $t0, num # num = 27
lw $t0, wnum
sw $t0, wans # wans = wnum
1h $tl, hnum
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sh $tl, hans # hans = hnum
1b $t2, bnum
sb $t2, bans # bans = bnum

For the halfword and byte instructions, only the lower 16-bits are 8-bits are used.

5.4 Integer Arithmetic Operations

The arithmetic operations include addition, subtraction, multiplication, division, remainder (remainder
after division), logical AND, and logical OR. The general format for these basic instructions is as
follows:

Instruction Description

add<ui> Rdest, Rsrc, Src Rdest = Rsrc + Src
sub<ui> Rdest, Rsrc, Src Rdest = Rsrc - Src
mul<ui> Rdest, Rsrc, Src Rdest = Rsrc * Src

div<ui> Rdest, Rsrc, Src Rdest = Rsrc / Src

rem<ui> Rdest, Rsrc, Src Rdest = Rsrc % Src

and<ui> Rdest, Rsrc, Src Rdest = Rsrc & & Src

or<ui> Rdest, Rsrc, Src Rdest = Rsrc || Src

Note, the && refers to the logical AND operation and the || refers to the logical OR operation (as per
C/C++).

These instructions operate on 32-bit registers (even if byte or halfword values are placed in the
registers).

Assuming the following data declarations:

wnuml: .word 651
wnum2 : .word 42
wansl: .word (0]
wans2: .word (0]
wans3: .word (0]
hnuml: .half 73
hnum2: .half 15
hans: .half (0}
bnuml: .byte 7
bnum2: .byte 9
bans: .byte 0

To perform, the basic operations of:

wansl wnuml + wnum2
wans2 = wnuml * wnum2
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wans3 = wnuml % wnum2
hans hnuml hnum2
bans bnuml bnum2

N O*

The following instructions

lw $t0, wnuml

1w $tl, wnum2

add $t2, $tO0, S$tl

sw $t0, wansl # wansl = wnuml + wnum2

lw $t0, wnuml

lw $tl, wnum2

add S$t2, $tO0, Stl

sw $t0, wans2 # wans2 = wnuml * wnum2

1w $t0, wnuml

lw $tl, wnum2

rem S$t2, S$tO, S$tl

sw $t0, wans3 # wans = wnuml % wnum2

1h $t0, wnuml

1h $tl, wnum2

mul $t2, $t0, S$tl

sh $t0, wans # hans

wnuml * wnum2
1b $t0, bnuml
1b $tl, bnum2

div $t2, S$t0, S$t1
sb $t0, bans # bans

bnuml / bnum2

For the halfword instructions, only the lower 16-bits are used. For the byte instructions, only the lower
8-bits are used.

5.5 Example Program, Integer Arithmetic

The following is an example program to compute the volume and surface area of a rectangular
parallelepiped.

The formulas for the volume and surface area are as follows:

volume = aSide* bSide* cSide
surfaceArea = 2(aSide* bSide + aSide* cSide + bSide* cSide)

This example main initializes the a, b, and c sides to arbitrary integer values.

# Example to compute the volume and surface area
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# of a rectangular parallelepiped.

o
# Data Declarations

.data

aSide: .word 73

bSide: .word 14

cSide: .word 16

volume: .word 0

surfaceArea: .word (0]

oo
# Text/code section

.text

.globl main

main:

$ oo

# Load variables into registers.

lw $t0, aSide
1w $tl, bSide
1w $t2, cSide

$ ———o
# Find volume of a rectangular paralllelpiped.
# volume = aSide * bSide * cSide
mul $t3, S$tO0, S$t1
mul S$t4, $t3, $t2
sw $t4, volume
$ oo
# Find surface area of a rectangular parallelepiped.
# volume = 2*(aSide*bSide + aSide*cSide + bSide*cSide)
mul S$t3, S$t0, Stl # note, redundent

mul $t4, $tO0, $t2
mul $t5, S$tl, $t2

add $t6, $t3, S$t4
add $t7, $t6, $t5

sw $t7, surfaceArea
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# Done, terminate program.

1i $v0o, 10 # call code for terminate
syscall # system call
.end main

Refer to the system services section for information on displaying the final results to the console.

5.6 Labels

Labels are code locations, typically used as the target of a jump. A typical use for a label would be the
start of a loop. The conditional statements are explained in the following section.

The rules for a label are as follows:

*  Must start with a letter
* May be followed by letters, numbers, or an

* Must be terminated with a “:” (colon).
* May only be define once.

€ »

(underscore).

Some examples of a label include:

mainLoop:
exitProgram:

Characters in a label are case-sensitive. As such, Loop: and loop: are different labels. This can be
very confusing initially, so caution is advised.

5.7 Control Instructions

The control instructions refer to unconditional and conditional branching. Branching is required for
basic conditional statements (i.e., [F statements) and looping.

5.7.1 Unconditional Control Instructions

The unconditional instruction provides an unconditional jump to a specific location.

Instruction Description
j <label> Unconditionally branch to the
specified label.

An error is generated if the label is not defined.
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5.7.2 Conditional Control Instructions

The conditional instruction provides a conditional jump based on a comparison. This is a basic IF
statement.

The conditional control instructions include the standard set; branch equal, branch not equal, branch
less than, branch less than or equal, branch greater than, and branch greater than or equal. The general
format for these basic instructions is as follows:

Instruction Description

beq <Rsrc>, <Src>, <label> Branch to label if <Rscr> and
<Scr> are equal

bne <Rsrc>, <Src>, <label> | Branch to label if <Rscr> and
<Scr> are not equal

blt <Rsrc>, <Src>, <label>  Branch to label if <Rscr> is less
than <Scr>

ble <Rsrc>, <Src>, <label>  Branch to label if <Rscr> is less
than or equal to <Scr>

bgt <Rsrc>, <Src>, <label>| Branch to label if <Rscr> is
greater than <Scr>

bge <Rsrc>, <Src>, <label> | Branch to label if <Rscr> is
greater than or equal to <Scr>

These instructions operate on 32-bit registers (even if byte or halfword values are placed in the
registers).

5.8 Example Program, Sum of Squares

The following is an example program to find the sum of squares from 1 to n. For example, the sum of
squares for 10 is as follows:

12+2>+ - +10*> = 385

This example main initializes the n to arbitrary to 10 to match the example.

# Example program to compute the sum of squares.

B e
# Data Declarations

.data

n: .word 10
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sumOfSquares: .word O

o
# text/code section
.text
.globl main
main:
$ o
# Compute sum of squares from 1 to n.
1w $t0, n #
1i $t1, 1 # loop index (1 to n)
1i $t2, 0 # sum
sumLoop:
mul S$t3, $tl1, Stl # index"2

add $t2, $t2, s$t3

add S$tl1, S$t1, 1
ble $tl1, $t0, sumLoop

sw $t2, sumOfSquares

$

# Done, terminate program.
1li $v0o, 10 # call code for terminate
syscall # system call

.end main
Refer to the system services section for information on displaying the final results to the console.

5.9 Floating-Point Instructions

This section presents a summary of the basic, most common floating-point arithmetic instructions. The
MIPS Instruction Set Appendix presents a more comprehensive list of the available instructions.

5.9.1 Floating-Point Register Usage

The floating-point instructions are similar to the integer instructions, however the floating-point
register must be used. And, the floating-point register must be used exclusively (i.e., no ability to use
the integer registers).

When single-precision (32-bit) floating-point operation is performed, the specified 32-bit floating-point
register is used. When a double-precision (64-bit) floating-point operation is performed, two 32-bit
floating-point registers are used; the specified 32-bit floating-point register and the next numerically
sequential register is used by the instruction.
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5.9.2 Floating-Point Instruction Notation

This section summarizes the notation used within this text which is fairly common in the technical
literature. In general, an instruction will consist of the instruction or operation itself (i.e., add, sub,
mul, etc.) and the operands. The operands refer to where the data (to be operated on) is coming from
or the result will be placed.

The following table summarizes the notational conventions used in the remainder of the document.

Operand Notation | Description

FRdest Destination operand. Must be a floating-point
register. Since it is a destination operand, the
contents will be over written with the new result.

FRsrc Source operand. Must be a floating-point register.
Register value is unchanged.

Mem Memory location. May be a variable name or an
indirect reference.

Refer to the chapter on Addressing Modes for more information regarding indirection.

5.9.3 Floating-Point Data Movement

Floating-point CPU computations are typically performed using floating-point registers. As such,
before computations can be performed, data is typically moved into registers from variables (i.e.,
memory) and when the computations are completed the data would be moved out of registers into
variables.

To support the loading of data from memory into registers and storing of data in register to memory,
there are a series of load and store instructions.

The general form of the load and store instructions are as follows:

Instruction Description

l<type> FRdest, mem Load value from memory location
memory into destination register.

s<type> FRsrc, mem Store contents of source register
into memory location.

mov<type> Frdest, FRsrc Copy the contents of source register
into the destination register.

(13 »
.S

In this case, the floating-point types are for single-precision and “.d” for double-precision.

Assuming the following data declarations:
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fnuml: .float

fnum2 .float
dnuml: .double
dnum2 .double

To perform, the basic operations of:

fnum2 fnuml
dnum2 = dnuml

The following instructions :

l.s $f6, fnuml
s.s $£f0, fnum2

$£f6, dnuml

1.
s $£f0, dnum2

d
d

# fnum2

# dnum2

fnuml

dnuml

For the halfword and byte instructions, only the lower 16-bits are 8-bits are used.

5.9.4 Floating-Point Arithmetic Operations

The arithmetic operations include addition, subtraction, multiplication, division, remainder (remainder
after division), logical AND, and logical OR. The general format for these basic instructions is as

follows:

Assuming the following data declarations:

6.28318
3.14159

fnuml: .float
fnum2: .float
fansl: .float
fans2: .float
dnuml: .double
dnum2: .double
dansl: .double
dans2: .double

To perform, the basic operations of:

0.0
0.0

42.3
73.6
0.0
0.0
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Instruction Description
add<type> FRdest, FRsrc, FRsrc FRdest = FRsrc + FRsrc
sub<type> FRdest, FRsrc, FRsrc FRdest = FRsrc - FRsrc
mul<type> FRdest, FRsrc, FRsrc FRdest = FRsrc * FRsrc
div<type> FRdest, FRsrc, FRsrc FRdest = FRsrc / FRsrc
rem<type> FRdest, FRsrc, FRsrc FRdest = FRsrc % FRsrc




fansl = fnuml + fnum2

fans2 = fnuml * fnum2
dansl = dnuml - dnum2
dans2 = dnuml / dnum2

The following instructions:

l.s $f4, fnuml

l.s $f6, fnum2

add.d $f8, $f4, Sf6

S.s $t0, fansl # fansl = fnuml + fnum2
mul.s $f10, $f4, S$Sf6

S.s $t0, fans2 # fans2 = fnuml * fnum2
1.4 $f4, fnuml

1.4 $f6, fnum2

sub.d $f8, $f4, Sf6

s.d $t0, fansl # dansl = dnuml - dnum2
div.d $f10, S$f4, S$fé6

s.d $t0, fans2 # dans2 = dnuml / dnum2

For the double-precision instructions, the specified register and the next numerically sequential register
is used. For example, the l.d instruction sets the $f4 and $f5 32-bit registers with the 64-bit value.

5.10 Example Program, Floating-Point Arithmetic
The following is an example program to compute the surface area and volume of a sphere.

The formulas for the surface area and volume of a sphere are as follows:

. . 2
surfaceArea = 4.0 * pi * radius

volume = 4(;% * radius®

This example main initializes the radius to arbitrary floating-point value.

# Example program to calculate the surface area
# and volume of a sphere given the radius.

# Data Declarations

.data
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pi: .float 3.14159
fourPtZero: .float 4.0
threePtZero: .float 3.0
radius: .float 17.25
surfaceArea: .float 0.0
volume: .float 0.0

e
# text/code section

.text

.globl main

main:

$ ———c

# Compute: (4.0 * pi) which is used for both equations.

l.s $f2, fourPtZero
l.s $f4, pi

mul.s $f4, $f2, S$f4 # 4.0 * pi
l.s $f6, radius # radius
$ ———
# Calculate surface area of a sphere.
# surfaceArea = 4.0 * pi * radius”2
mul.s $£8, S$f6, S$f6 # radius”2
mul.s $£f8, $f4, Sf8 # 4.0 * pi * radius”"2
S.S $£8, surfaceArea # store final answer
$ oo
# Calculate volume of a sphere.
# volume = (4.0 * pi / 3.0) * radius”3

l.s $f8, threePtZero

div.s $f6, $f4, S$f8 # (4.0 * pi / 3.0)

mul.s $£10, S$f6, Sf6

mul.s $£10, $f10, S$f6 # radius”3

mul.s $£12, $f6, $£f10 # (4.0 * pi / 3.0) * radius”3
s.s $f12, volume # store final answer
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# Done, terminate program.

1i $v0o, 10 # call code for terminate
syscall # system call
.end main

Refer to the system services section for information on displaying the final results to the console.
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6.0 Addressing Modes

This file contains some basic information regarding addressing modes and address manipulations on
the MIPS architecture.

To get an address, the "la" instruction is used. All addresses are words (32-bit) for the MIPS
architecture.

6.1 Direct Mode
Direct addressing mode is when the register or memory location contains the actual values.

For example:

lw $t0, varl
lw $tl, var2

Registers and variables $t0, $t1, var1, and var2 are all accessed in direct mode addressing.

6.2 Immediate Mode
Immediate addressing mode is when the actual value is one of the operands.

For example:

1i  $t0, 57
add $t0, $t0, 57

The value 57 is immediate mode addressing. The register $t0 is direct mode addressing.

6.3 Indirection

The ()'s are used to denote an indirect memory access. For example, to get a value from a list of longs

la $t0, 1st
1w $sl1l, ($t0)

The address, in $t0, is a word size (32-bits). Memory is byte addressable. As such, if the data items in
"Ist" (from above) are words, then four add must be added to get the the next element.

For example:

add $tO0 $tO, 4
lw  $s2, ($t0)

Will get the next word value in array (named Ist in this example).
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A form of displacement addressing is allowed. For example, to get the second item from a list of long
sized values:

la $t0, 1st
1w $sl, 4($t0)

The "4" is added to the address before the memory access. However, the register is not changed.

6.4 Examples

This section provides some example using the addressing modes to access arrays and perform basic
calculations.

6.4.1 Example Program, Sum and Average

The following example computes the sum and average for an array integer values. The values are
calculated and saved into memory variables.

# Example to compute the sum and integer average
# for an array of integer values.

o

# Data Declarations

.data

array: .word i, 3, 5, 171, 9, 11, 13, 15, 17, 19
.word 21, 23, 25, 27, 29, 31, 33, 35, 37, 39
.word 41, 43, 45, 47, 49, 51, 53, 55, 57, 59

length: .word 30

sum: .word 0

average: .word 0

o

# text/code section

# Basic approach:

# - loop through the array
# accessing each value
# update sum

# - calculate the average

.text
.globl main
main:

# Loop through the array to calculate sum
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la $t0, array # array starting address

1i $tl, O # loop index, i=0
1w $t2, length # length
1i $t3, O # initialize sum=0
sumLoop:
1w $t4, ($tO) # get array[i]
add $t3, S$t3, St4 # sum = sum + array[i]
add S$tl1, S$t1, 1 i = i+l
add $tO, S$to, 4 # update array address
blt $tl, $t2, sumLoop # if i<length, continue looping
swW $t3, sum # save sum
$
# Calculate average
# note, sum and length set in section above.
div $t5, $t3, S$t2 # ave = sum / length
sw $t5, average
$
# Done, terminate program.
1i $v0o, 10 # call code for terminate
syscall # system call

.end main

This example program does not display the results to the screen. For information regarding displaying
values and strings to output (console), refer to the QtSpim System Services section.

6.4.2 Example Program, Median

The following example finds the median for a sorted array of values. In this example, the length is
given as always even. As such, the integer median is the integer average for the two middle values.
Specifically, the formula for median is:

(array[length /2] + array[length/2—1])
2

medianEvenOnly =

The length/2 notation refers to generating the correct index of the appropriate value from the array. In
assembly, we must convert the index into the offset from the base address (i.e., starting address) of the
array. Since the data in this example is words (i.e., 4 bytes), it will be necessary to multiply by four to
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convert the index into an offset. That offset is from the start of the array, so the final address is the

array base address plus the offset. This requires a series of calculations as demonstrated in the

following example.

# Example to find the median of a sorted
# array of integer values of even length.

# Data Declarations

.data

array:

length:

median:

.word
.word
.word
.word

.word

1,
21,
41,

30

# text/code section

3,
25,
45,

217,
417,

7, 9,
29,
49,

11,
31,
51,

13,
33,
53,

15,
35,
55,

17, 19
37, 39
57, 59

# The median for an even length array is defined as:

# median =

# Note,

#

#

#

.text

.globl main

main:

$ oo
la $to,
lw Stl,
div $t2,
mul St3,
add S$t4,
lw $t5,
sub S$t4,
lw S$te6,
add S$t7,

array
length

stl, 2
$t3, $t2
$t0, $t3

($t4)
sta, 4

($t4)

$t6, $t5

the len/2 is the index.
into the an offset from the base address (of the array.
Since the data is words (4 bytes), multiple the index
by four to convert to the offset.
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( array[len/2] + array[len/2-1] ) / 2

Must convert the index

starting address of array
value of length

length / 2
convert index into offset

add base address of array to

get array[len/2]
address of previous value in

get array[len/2-1]

array[len/2] + array[len/2-1]

offset

array



div $t8, $t7, 2 # /2

swW $t8, median # save median

$ o——e—

# Done, terminate program.
1i $v0o, 10 # call code for terminate
syscall # system call

.end main
This example program does not display the results to the screen. For information regarding displaying

values and strings to output (console), refer to the QtSpim System Services section.

Finding the median for an odd length list is left to the reader as an exercise.
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7.0 Stack

In a computer, a stack is a type of data structure where items are added and them removed from the
stack in reverse order. That is, the most recently added item is the very first one that is removed. This
is often referred to as Last-In, First-Out (LIFO).

A stack is heavily used in programming for the storage of information during procedure or function
calls. The following section provides information and examples regarding procedure and function
calls.

Adding an item to a stack is refer to as a PUSH. Removing an item from a stack is referred to as a
POP.

It is generally expected that the reader will be familiar with the general concept of a stack.

7.1 Stack Example

To demonstrate the usage of the stack, given an array, a = {7, 19, 37}, consider the operations:

push aj[0]
push af[l]
push a[2]

Followed by the operations:

pop a[o0]
pop a[l]
pop a[2]

The initial push will push the 7, followed by the 29, and finally the 37. Since the stack is last-in, first-
out, the first item pop'ed off the stack will be the last item pushed, or 37 in this example. The 37 is
placed in the first element of the array (over-writing the 7). As this continues, the order of the array
elements is reversed.
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The following diagram shows the progress and the results.

stack stack stack stack stack stack
37
19 19 19
7 7 7 7 7 empty
push a[0] push a[l] push a[2] pop a[O0] pop a[l] pop a[2]
a = {717, a = {717, a= {717, a = {37, a = {37, a = {37,
19, 37} 19, 37} 19, 37} 19, 37} 19, 37} 19, 7}

The following sections provide more detail regarding the implementation and applicable instructions.

7.2 Stack Implementation

The current top of the stack is pointed to by the $sp register. The stack grows downward in memory
and it is generally expected that all items push'ed and/or pop'ed should be of word size (32-bit).

There is no push or pop instruction. Instead, you must perform the push and pop operations manually.

While it is possible to push/pop items of various sizes (byte, halfword, etc.) it is not recommended. For
such operations, it is recommended to use the entire word (4-bytes).

7.3 Push

For example, a push would subtract the $sp by 4 bytes and then copy the operand to that location. The
instructions to "push $t9" would be:

subu $sp, $sp, 4
sw $t9, ($sp)

Which will place the contents of the $t9 register at the top of the stack.

7.4 Pop
A pop would copy the operand and then add 8 bytes. To pop $t2, the instructions would be as follows:
lw $t2, ($sp)

addu S$sp, $sp, 4

Which will place the contents of the $t9 register at the top of the stack.
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7.5 Multiple push/pop's

The preferred method of performing multiple push's or pop's is to perform the $sp adjustment only
once. For example, to push registers, $s0, $s1, and $s2:

subu $sp, $sp, 12
sw $s0, ($sp)
sw $sl, 4(S$sp)
sw $s2, 8($sp)

And, the commands to pop registers, $9, $10, and $11 as as follows:

1w $s0, (S$sp)
1w $sl, 4(S$sp)
1w $s2, 8(S$Ssp)

addu $sp, $sp, 12

By performing the stack adjustment only once, it is faster for the architecture to execute.

7.6 Example Program, Stack Usage
A pop would copy the operand and then add 8 bytes. To pop $t2, the i

# Example to reverse values in an array
# by using the stack.

oo

# Data Declarations

.data

array: .word i, 3, 5, 171, 9, 11, 13, 15, 17, 19
.word 21, 23, 25, 27, 29, 31, 33, 35, 37, 39
.word 41, 43, 45, 47, 49, 51, 53, 55, 57, 59

length: .word 30

e e

# Text/code section

Basic approach:
- loop to push each element onto the stack
- loop to pop each element off the stack
Final result is all elements reversed.

.text
.globl main
main:

# Loop to read items from array and push onto stack and place.
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=

la $t0, array

1i $t1, O #

1w $t2, length #
pushLoop:

1w  $t4, ($t0) #

subu $sp, S$sp, 4 #

sw $t4, ($sp)

=

add $t1, $tl1, 1
add $t0, $to, 4 #

blt $tl1, $t2, pushLoop #

array starting address
loop index, i=0

length

get array[i]

push array[i]

i=i+1

update array address

if i<length, continue looping

# Loop to pop items from stack and write into array.

=

la $t0, array
1i $t1, O

+=

lw $t2, length #
popLoop:

1w $t4, ($sp)

addu $sp, S$sp, 4 #

sw  $t4, ($t0) #

add S$tl1l, S$Stl1, 1 #

add $tO0, $tO0, 4 #

blt $tl1l, $t2, popLoop #
$ oo

# Done, terminate program.

1i $v0o, 10 #
syscall #
.end main

array starting address
loop index, i=0
length (redundant line)

pop array[i]
set array[i]

i =i+l
update array address

if i<length, continue looping

call code for terminate
system call

It must be noted that there are easier ways to reverse a set of numbers, but they would not help

demonstrate stack operations.
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8.0 Procedures/Functions

This following information provides and overview of using assembly language procedures/functions.
In C/C++ a procedure is referred to as a void function. Other languages refer to such functions as
procedures. A function returns a single value in a more mathematical sense. C/C++ refers to functions
as value returning functions.

With regard to calling a procedure/function, there are two primary activities; linkage and argument
transmission. Each are explained in the following sections. Additionally, using procedures/functions
in MIPS assembly assembly language requires the use of a series of special purpose registers. These
special purpose registers are part of the basic integer register set but have a dedicated purpose based
upon standardized and conventional usage.

8.1 MIPS Calling Conventions

When writing MIPS assembly-language procedures, the MIPS standard calling conventions should be
utilized. This ensures that the code can more effectively re-used, can interact with other compiler-
generated code or mixed-language programs, and utilize high-level language libraries.

The calling conventions address register usage, argument passing and register preservation.
There are two categories of procedures as follows:

* Non-leaf procedures
© These procedures call other procedures.
* Leaf procedures
© These procedures do not other procedures (or themselves).

The standard calling convention specified actions for the caller (routine that is calling) and the caller
(routine that is being called). The specifics requirements for each are detailed in the following sections.

8.2 Procedure Format

The basic format for a procedure requires an entry point to be declared. This is done as follows.

A procedure definition uses the ".ent <procName>" directive, and ".globl <procName>" directive, and
an entry label for the procedure. The general syntax is:

.globl procedureName
.ent procedureName
procedureName:

# code goes here

.end procedureName
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Use of the ".end <procName> directive is optional in the QtSpim simulator.

8.2.1 Procedure Format Example

The following is an example of the basic procedure format.

.globl proc_name
.ent proc_ name
proc_name:

# procedure code...

jr $ra
.end proc_name

The “.end <procName>" directive may be omitted in the MIPS simulator.

8.3 Caller Conventions

The calling convention addresses specific requirements for the caller or routine that is calling a
procedure.

* The calling procedures is expected to save any non-preserved registers ($a0-$a3, $t0-$t9, $v0,
$v1, $f0-$f10 and $f16 - $£18) that are required after the call is completed.
* The calling procedure should pass all arguments.
o The first argument is passed in either $a0 or $f12 ($a0 if integer or $f12 if float single or
double precision).
o The second argument is passed in either $al or $f14 ($al if integer or $f14 if float single or
double precision).
© The third argument is passed in $a2 (integer only).
o If the third argument is float, it must be passed on the stack.
o The fourth argument is passed in $a3 (integer only).
o If the fourth argument is float, it must be passed on the stack.

Remaining arguments are passed on the stack. Arguments on the the stack should be placed on the
stack in reverse order. Call by reference arguments load address (la instruction) and call by value load
the value.

Calling procedure should use the "jal <proc>" instruction.

Upon completion of the procedure, the caller procedure must restore any saved non-preserved registers
(from 1 above) and adjust the stack point ($sp) as necessary if any arguments were passed on the stack.

Note, for floating-point arguments appearing in registers you must allocate a pair of registers (even if
it's a single precision argument) that start with an even register.

48



8.4 Linkage

The term linkage refers to the basic process of getting to a procedure and getting back to the correct
location in the calling routine. This does not include argument transmission, which is addressed in the
next section.

The basic linkage operation uses the jal and jr instructions. Both instructions utilize the $ra register.
This register is set to the return address as part of the procedure call.

The call to a procedure/function requires the procedure/function name, generically labeled as
<procName>, as follows:

jal <procName>

The jal, jump and link, instruction, will copy the $pc into the $ra register and jump to the procedure
<procName>. Recall that the $pc register points to the next instruction to be executed. That will be the
instruction immediately after the call, which is the correct place to return to when the
procedure/function has completed.

If the procedure/function does not call any other procedures/functions, nothing additional is required
with regard to the $ra register.

A procedure that does not call another procedure is referred to as a "leaf procedure". A procedure that
calls another procedure is referred to as a "non-leaf procedure".

The return from procedure is as follows:

jr S$ra

If the procedure/function calls yet another procedure/function, the $ra must be preserved. Since $ra
contains the return address, it will be changed when the procedure/function calls the next
procedure/function. As such, it must be saved and restored from the stack in the calling procedure.
This is typically performed only once at the beginning and then at the end of the procedure (for non-
leaf procedures).

Refer to the example programs for a more detailed series of examples that demonstrate the linkage.

8.5 Argument Transmission

Based on the context, parameters may be transmitted to procedures/functions as either values or
addresses. These basic approaches are implemented in high-level languages.

The basic argument transmission is accomplished via a combination of registers and the stack.

8.5.1 Call-by-Value

Call-by-value involves passing a copy of the information being passed to the procedure or function. As
such, the original value can not be altered.

8.5.2 Call-by-Reference

Call-by-reference involves passing the address of the variables. Call-by-reference is used when passing
arrays or when passing variables that will be altered or set by the procedure or function.
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8.5.3 Argument Transmission Convention
The basic argument transmission is accomplished via a combination of registers and the stack.

Integer arguments can be passed in registers $a0, $al, $a2, and $a3 and floating-point values passed in
$f12 and $f14 (single or double precision floating point).

* The first argument is passed in either $a0 or $f12 ($a0 if integer or $f12 if float single or double
precision).

* The second argument is passed in either $al or $f14 ($al if integer or $f14 if float single or
double precision).

* The third argument is passed in $a2 (integer only).

* If the third argument is float, it must be passed on the stack.

* The fourth argument is passed in $a3 (integer only).

» If the fourth argument is float, it must be passed on the stack.

If the first argument is integer, $a0 is used and $f12 should not be used at all. If the first argument is
floating-point value, $f12 is used and $a0 is not used at all. Any additional arguments are passed on
the stack. The following table shows the argument order and register allocation.

1st 2nd 3rd 4th 5th Nth
integer $a0 $al $a2 $a3 | stack | stack
or or
floating-point | $f12 | $f14 | stack | stack | stack | stack
value

Recall that addresses are integers, even when pointing to floating-point values. As such, addresses are
passed in integer registers.

8.6 Function Results
A function is expected to return a result (i.e., value returning function).

Integer registers $v0 or $v1/$v0 are used to return integers values from function/procedure calls.
Floating point registers $f0 and $f2 are used to return floating point values from function/procedures.

8.7 Registers Preservation Conventions

The MIPS calling convention requires that only specific registers (not all) be saved across procedure
calls.

* Integer registers $s0 - $s7 must be saved the procedure.
* Floating point registers $f20 - $f30 must be saved the procedure.

When writing a procedure, this will require that the registers $s0 - $s7 or $f20 - $f30 (single or double
precision) be push'ed and pop'ed from the stack if those registers are utilized/changed. When calling a
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procedure, the main routine must be written so that any values required across procedure calls be
placed in register $s0 - $s7 or $f20 - $f30 (single or double precision).

Integer registers $t0 - $t9 and floating point registers $f4 - $£10 and $16 - $f18 (single or double
precision) are used to hold temporary quantities that do not need to be preserved across procedure calls.

8.8 Miscellaneous Register Usage

Registers $at, $k0, and $k1 are reserved for the assembler and operating system and should not be used
by programs. Register $fp is used to point to the procedure call frame on the stack. This can be used
when arguments are passed on the stack.

Register $gp is used as a global point (to point to globally accessible data areas). This register is not
typically used when writing assembly programs directly.

8.9 Summary, Callee Conventions

The calling convention addresses specific requirements for the callee or routine that is being called
from another procedure (which includes the main routine).

* Push any altered "saved" registers on the stack.

o Specifically, this includes $s0-$s7, $f20-$£30, $ra, $fp, or $gp.

o If the procedure is a non-leaf procedure, $ra must be saved.

o If $fp is altered, $fp must be saved which is required when arguments are passed on the

stack

o Space for local variables should be created on the stack for stack dynamic local variables.
* Note, when altering the $sp register, it should be done in a single operation (instead of a series).
» If arguments are passed on the stack, $fp should be set as follows

o $fp = $sp + (frame size)

o This will set $fp pointing to the first argument passed on the stack.

The procedure can access fist 4 integer arguments in registers $a0-$a3 and the first two float registers
$£12-$f14.

Arguments passed on the stack can be accessed using $fp. The procedure should place returned values
(if any) into $v0 and $v1.

* Restore saved registers
o Includes $s0 - $s7, $fp, $ra, $gp if they were pushed.
o Return to the calling procedure via the "jr $ra" instruction.

The procedures example section provides a series of example procedures and functions including
register usage and argument transmission.

8.10 Procedure Call Frame

The procedure call frame or activation record is what the information placed on the stack is called. As
noted in the previous sections, the procedure call frame includes passed parameters (if any) and the
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preserved registers. In addition, space for the procedures local variables (if any) is allocated on the
stack.

A general overview of the procedure call frame is show as follows:

Procedure Parameters

Call

Frame
Preserved
Registers
Local
Variables

Each part of the procedure call frame may be a different size based on home many arguments are
passed (if any), which registers must be preserved (if any), or the amount and size of the local variabels

(if any).

8.10.1.1 Stack Dynamic Local Variables

The local variables, also referred to as stack dynamic local variables, are typically allocated by the
compiler and assigned to stack locations. This allows a more efficient use of memory for high-level
languages. This can be very important in large programs.

For example, assume there are 10 procedures each with a locally declared 100,000 element array of
integers. Since each integer typically requires 4-bytes, this would mean 400,000 bytes for each
procedure with a combined total of 4,000,000 bytes (or about ~4MB) for all ten procedures.

For the standard method of stack dynamic local variables, each array is only allocated when the
procedure is active (i.e., being executed). If none of the procedures is called, none of the memory is
allocated. If only two of the arrays are active at any given time, only 800,000 bytes are allocated at any
given time.

However, if the arrays were to be declared statically (i.e., not the standard local declaration), the ~4MB
of memory allocated even if none of the procedures is ever called. This can lead to excessive memory
usage which can slow a program down.

8.11 Procedure Examples

This section presents a series of example procedures of varying complexity.

8.11.1 Example Program, Power Function

This following is a very simple example function call. The example includes a simple main procedure
and a simple function that computes X’ (i.e., x to the y power). The high-level language call, shown in
C/C++ here, would be:
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answer = power(x, Y);

Where x and y are passed by value and the result return to the variable answer. The main passes the
arguments by value and receives the result in $v0 (as per the convention). The main then saves the
result into the variable answer.

# Example function to demonstrate calling conventions
# Function computes power (i.e., x to y power).

e
# Data Declarations

.data

X: .word 3

y: .word 5

answer: .word 0
o

# Main routine.
# Call simple procedure two add two numbers.

.text
.globl main
.ent main
main:
1w $al0, x # pass arg's to function

lw $al, y
jal power
sw $v0, answer

1i $vo, 10
syscall # terminate program
.end main

B m oo
# Function to find and return x"y

$ ———

# Arguments

# $a0 — x

# Sal — y

# Returns

# $v0 - x"y
.globl power
.ent power
power:
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1i
1i

powLoop:

.end power

mul
add
blt

jr

$vo,
$to,

$vo,
$to,
$to,

Sra

[

$v0, Sa0
$to, 1
$al, powLoop

Refer to the next section for a more complex example.

8.11.2

Example program, Summation Function

This following is an example procedure call.

# Example function to demonstrate calling conventions.
# Simple function to sum six arguments.

# Data Declarations

.data

numl:
num2 :
num3:
numé:
num5:
numé6 :
sum:

H= = H= HF

.text

.word
.word
.word
.word
.word
.word
.word

Main routine.
Call function to add six numbers.

oOuUTwuLwu w

First 4 arguments are passed in $a0-$a3.
Next 2 arguments are passed on the stack.

.globl

.ent main

main:
lw
lw
lw
lw
lw

main

$ao,
sal,
$az,
$a3,
$to,

numl # pass arg's and procedure
num2
num3
numé
num5
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1w $tl, numé
subu $sp, $sp, 8
sw $t0, ($sp)
sw $tl, 4(S$sp)
jal addem
sw $v0, sum
addu $sp, S$sp, 8 # clear stack
1i $v0,10
syscall # terminate
.end main
oo
# Example function to add 6 numbers
$ oo
# Arguments
# $a0 - numl
# $al - num2
# $a2 - num3
# $a3 - num4
# ($fp) - num5
# 4($fp) - numé6
# Returns
# $v0 — numl+num2+num3+num4+num5+numé
.globl addem
.ent addem
addem:
subu $sp, $sp, 4 # preserve registers
sw $fp, ($sp)
addu $fp, $sp, 4 # set frame pointer
$ oo
# Perform additions.
1li $vo, O
add $v0, S$vO0 $ao # numl
add $v0, $vO0 Sal # num2
add $v0, $vO0 S$a2 # num3
add $v0, $SvO0 $a3 # numé
1w $t0o, ($fp) # num5
add $v0, S$SvO0 $tO
1w $t0, 4($fp) # numé
add $v0, $vO0 $tO
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# Restore registers.

1w $fp, ($sp)
addu S$sp, S$sp, 4
jr Sra

.end addem

Refer to the next section for a more complex example.

8.11.3

The following is an example of a procedure that calls another function. Given the a and b sides of a
right triangle, the c side can be computed as follows:

\/ aSide® + bSide*

This example program will call a procedure to compute the c sides of a series of b
right triangles. The a sides and b sides are stored in an arrays, aSides[] and

bSides|[] and results stored into an array, cSides[]. The procedure will also

compute the minimum, maximum, sum, and average of the cSides[] values. All a
values are integers. In order to compute the integer square root, a iSqrt() function

is used. The iSqrt() function uses a simplified versioon of Newtons method.

Example Program, Pythagorean Theorem Procedure

cSide

# Example program to calculate the cSide for each
# right triangle in a series of right triangles

# given the aSides and bSides using the

# pythagorean theorem.

# Pythagorean theorem:

# cSide = sgrt ( aSide”2 + bSide”2 )

# Provides examples of MIPS procedure calling.

o .

# Data Declarations

.data

aSides: .word 19, 17, 15, 13, 11, 19, 17, 15, 13, 11
.word 12, 14, 16, 18, 10

bSides: .word 34, 32, 31, 35, 34, 33, 32, 37, 38, 39
.word 32, 30, 36, 38, 30

cSides: .space 60

length: .word 15

56



min:
max:
sum:
ave:

.word O
.word O
.word O
.word O

# text/code section

# For example

.text
.globl

.ent main

main:

main

# Main program calls the cSidesStats routine.

# The HLL call is as follows:

# cSidesStats(aSides, bSides, cSides, length, min,

# max, sum, ave)

# Note:

# The arrays are passed by reference

# The length is passed by value

# The min, max, sum, and ave are passed by reference.
la $a0, aSides # address of array
la $al, bSides # address of array
la $a2, cSides # address of array
1w $a3, length # value of length
la $t0, min # address for min
la $tl, max # address for max
la $t2, sum # address for sum
la $t3, ave # address for ave
subu $sp, $sp, 16
swW $t0, (S$Ssp) # push addresses
sw $tl, 4(S$sp)
sw $t2, 8($sp)
swW $t3, 12(S$sp)
jal cSidesStats # call routine
addu $sp, $sp, 16 # clear arguments

# Done, terminate program.

1i

$v0, 10
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syscall # system call
.end main

Procedure to calculate the cSides[] for each right
triangle in a series of right triangles given the
aSides[] and bSides[] using the pythagorean theorem.

H= H= H

=

Pythagorean theorem formula:
cSides[n] = sqrt ( aSides[n]”2 + bSides[n]"2 )

=

=

Also finds and returns the minimum, maximum, sum,
and average for the cSides.

=

=

Uses the iSqrt() routine to find the integer
square root of an integer.

=

=

Arguments:
$a0 - address of aSides][]
$al - address of bSides][]
$a2 - address of cSides][]
$a3 - list length
($fp) - addr of min
4($fp) - addr of max
8($fp) - addr of sum
12($fp) - addr of ave

= = = H H o =

Returns (via passed addresses):
cSides|[]
min
max
sum
ave

H 3 = = H

.globl cSidesStats

.ent cSidesStats

cSidesStats:
subu $sp, $sp, 28 # preserve registers
sw $a0, ($sp)
sw $s0, 4(S$sp)
sw $sl, 8($sp)
sw $s2, 12($sp)
sw $s3, 16(S$Ssp)
sw $fp, 20($sp)
sw Sra, 24($sp)

add S$fp, S$sp, 28 # set frame pointer
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# Loop to calculate cSides[]
# Note, must use $s<n> registers due to iSqrt() call

move $sO0,
move S$sl,
move $s2,
1li $s3,

cSidesLoop:
lw s$to,
mul S$tO,
lw Stl,
mul S$t1,
add S$ao,
jal

sw $vo,

addu
addu
addu
addu

$s0,
$sl,
$s2,
$s3,

blt $s3,

# Loop to find

move S$s2,

1li $to,

lw Stl,

1w s$t2,

1li $t3,
statsLoop:

lw sSt4,

bge $t4,

move S$tl,
notNewMin:

ble $t4,

move S$t2,
notNewMax:

add $t3,

addu S$s2,

isqrt

$a0
sal
$a2
0

($s0)
$t0, $tO
($s1)
$tl, $ti
$t0, S$tl

($s2)

$s0,
$sl,
$s2,
$s3,

= s

$a3, cSidesLoop

minimum, maximum,

$a2
0
($s2)
($s2)
0

($s2)

$tl, notNewMin

$t4

$t2,
s$ta

notNewMax

$t3, $t4

$s2, 4
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H = ==

H=

H= 3 H H 3

starting address of aSides
starting address of bSides
starting address of cSides
index = 0

get aSides[n]
aSides[n] "2
get bSides[n]
bSides[n] "2

call isqrt()

save to cSides[n]
update aSides address
update bSides address
update cSides address

index++

if index < length, loop

and sum.

starting address of cSides
index = 0

min = cSides[0]

max = cSides[0]

sum = 0

get cSides[n]

if cSides[n] >= item -> skip

set new min value

if cSides[n] <= item -> skip
set new max value

sum = sum + cSides[n]

update cSides address



addu

blt

1w
sw

1w
sw

lw
sw

div

$to,
$to,

$t5,
$t1,

$t5,
$t2,

$t5,
$t3,

$to,

$t5,
$to,

$to, 1
$a3, statsLoop

($£p)
($t5)

4($fp)
($t5)

8(sfp)
($t5)

$t3, Sa3

12($£p)
($t5)

index++

if index < length -> loop

get address
save min
get address
save max
get address
save sum
ave = sum /

get address
save ave

of min

of max

of sum

len

of ave

Done, restore registers and return to calling routine.

lw
addu
jr

$ao,
$s0,
$s1,
$s2,
$s3,
$fp,
$ra,
$sp,
Sra

($sp)
4($sp)
8(S$sp)
12 ($sp)
16($sp)
20($sp)
24 ($sp)
$sp, 28

.end cSidesStats

+*= H = = H H +*=

=

=

Function to computer integer square root for

an integer value.
Uses a simplified version of Newtons method.
X =N
iterate 10 times:
x' = (x + N/x) / 2
X = x
Arguments
$a0 - N
Returns

$v0 - integer square root of N
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.globl isqrt

.ent iSqrt
iSqrt:
move S$vO, $a0 # St0 = x =N
1i $to, O # counter
sqrLoop:
div $v0, $a0, $vO # N/x
add S$vO0, $vO, $a0 # x + N/x
div $v0, S$vO, 2 # (x + N/x)/2

add $t0, $to, 1
blt $t0, 10, sqrLoop

jr S$ra
.end iSqrt

This example uses a simplified version of Newtons method. Further improvements are left to the
reader as an exercise.
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9.0

QtSpim System Service Calls

The operating system must provide some basic services for functions that a user program can not easily
perform on its own. Some key examples include input and output operations. These functions are
typicallt referred to as system services. The QtSpim simulator provides a series of operating system

like services by using a syscall instruction.

To request a specific service from the QtSpim simulator, the 'call code' is loaded in the $vO register.
Based on the specific system service being requested, additional information may be needed which is

loaded in the argument registers (as noted in the Procedures/Functions section).

9.1 Supported QtSpim System Services

A list of the supported system services are listed in the below table. A series of examples is provided

in the following sections.

Service Name Call Input Output
Code
Print Integer (32-bit) 1 |$%a0 — integer to be printed

allocate

Print Float (32-bit) 2 | $f12 — 32-bit floating-point
value to be printed
Print Double (64-bit) 3 | $f12 - 64-bit floating-point
value to be printed
Print String 4 |$a0 — starting address of
NULL terminated string to be
printed
Read Integer (32-bit) 5 $v0 — 32-bit integer entered
by user
Read Float (32-bit) 6 $f0 — 32-bit floating-point
value entered by user
Read Double (64-bit) 7 $f0 — 64-bit floating-point
value entered by user
Read String 8 |%a0 — starting address of
buffer (of where to store
character entered by user)
$al — length of buffer
Allocate Memory 9 |$%$a0 - number of bytes to $v0 — starting address of

allocated memory
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Terminate 10

Print Character 11 |$a0 — character to be printed
Read Character 12 $v0 — character entered by
user
File Open 13 |$%a0 - file name string, NULL | $v0 — file descripor
terminated

$al — access flags
$a2 - file mode, (UNIX style)

File Read 14 |$a0 — file descriptor $v0 — number of bytes
$al — buffer starting address | actually read from file (-1 =
$a2 — number of bytes to read | error, 0 = end of file)

File Write 15 |$a0 — file descriptor $v0 — number of bytes
$al — buffer starting address |actually written to file (-1 =
$a2 — number of bytes to read | error, 0 = end of file)

File Close 16 |$a0 — file descriptor

The file open access flags are defined as follows:

Read = 0x0, Write = 0xl, Read/Write = 0x2
OR Create = 0x100, Truncate = 0x200, Append = 0x8
OR Text = 0x4000, Binary = 0x8000

For example, for a file read operation the 0x0 would be selected. For a file write operation, the 0x1
would be selected.

9.2 QtSpim System Services Examples
This section provides a series of examples using system service calls.

The system service calls follow the standard calling convention in that the temporary registers ($t0 -
$t9) may be altered and the saved registers ($s0 - $s7, $fp, $ra) will be preserved. As such, if a series
of values is being printed in a loop, it saved register would be required for the loop counter and the
current array address/index.

9.2.1 Example Program, Display String and Integer

The following code provides an example of how to to display a string and an integer.

# Example program to display a string and an integer.
# Demonstrates use of QtSpim system service calls.

e __
# Data Declarations

.data

hdr: .ascii "Example\n"

.asciiz "The meaning of life is: "
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o
# text/code section
.text
.globl main
main:
1i $vo, 4 # call code for print string
la $a0, hdr # address of NULL terminated string
syscall # system call
1i $vo, 1 # call code for print integer
1w $a0, number # value for integer to be printed
syscall # system call
$ oo
# Done, terminate program.
1li $v0o, 10 # call code for terminate

syscall # system call
.end main

Note, in this example, the string definition ensures the NULL termination as required by the system
service.

The output for the example would be displayed to the QtSpim console window. For example,

Console

Example
The meaning of life is: 42

The console window can be display or hidden from the Windows menu (on the top bar).

9.2.2 Example Program, Read Integer

The following code provides an example of how to to display a prompt string, read an integer value,
square that integer value, and display the final result.

# Example program to display an array.
# Demonstrates use of QtSpim system service calls.

# Data Declarations

.data
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hdr: .ascii "Squaring Example\n"
.asciiz "Enter Value: "

ansMsg: .ascii "Value Squared: "

value: .word 0

o

# text/code section

.text

.globl main

main:
1i $vo, 4 # call code for print string
la $a0, hdr # address of NULL terminated string
syscall # system call
1i $v0, 5 # call code for read integer
syscall # system call (response in $vO)
mul $tO0, $vO0, S$vO # square answer
swW $t0, value # save to variable
1i $vo, 4 # call code for print string
la $a0, ansMsg # address of NULL terminated string
syscall # system call
1i $vo, 1 # call code for print integer
lw $a0, value # value for integer to be printed
syscall # system call

$ oo

# Done, terminate program.

1i

$vo,

syscall

.end main

10

Console

call code for terminate
system call

The output for the example would be displayed to the QtSpim console window. For example,

squaring Example
Enter Value: 12
Value Squared: 144

Note, the default console window size will typically be larger than what is shown above.
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9.2.3 Example Program, Display Array

The following code provides an example of how to display an array. In this example, an array of
numbers is displayed to the screen five number per line (arbitrarily chosen) to make the output appear
more pleasing.

Since the system service call is utilized for the print function, the saved register must be used. Refer to
the Procedures/Functions section for additional information regarding the MIPS calling conventions.

# Example program to display an array.
# Demonstrates use of QtSpim system service calls.

$ — e~
# Data Declarations
.data
hdr: .ascii "Array Values\n"
.asciiz M \n\n"
spaces: .asciiz " "
newLine: .asciiz "\n"
array: .word 11, 13, 15, 17, 19
.word 21, 23, 25, 27, 29
.word 31, 33, 35, 37, 39
.word 41, 43, 45, 47
length: .word 19
$ m e~
# text/code section
.text
.globl main
main:
1i $vo, 4 # print header string
la $a0, hdr
syscall
la $s0, array

1i $sl1, O
1w $s2, length

printLoop:
1i $vo, 1 # call code for print integer
lw $a0, ($s0) # get array[i]
syscall # system call
1li $vo, 4 # print spaces
la $a0, spaces
syscall
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addu $s0, $s0, 4 # update address (to next word)
add S$sl, $sl, 1 # increment counter

rem $tO, $sl, 5
bnez $t0, skipNewLine

1i $vo, 4 # print spaces
la $a0, newLine
syscall

skipNewLine:
bne $sl1, $s2, printLoop # if counter<length -> loop

$

# Done, terminate program.
1i $v0, 10 # call code for terminate
syscall # system call

.end main

The output for the example would be displayed to the QtSpim console window. For example,

Array Values

11 13 A5-4F 19
21 23 25 27 29
31 33 35 37 39
41 43 45 47

The example codes does not align the values (when printed). The values above appear aligned only
since they are all the same size.
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10.0 Multi-dimension Array Implementation

This section provides a summary of the implementation of multiple dimension array as viewed from
assembly language.

Memory is inherently a single dimension physical entity. As such, multi-dimension array is
implemented as sets of single dimension array. There are two primary ways this can be performed; row
major and column major. Each is explained in subsequent sections.

To simplify the explanation, this section focuses on two-dimensional arrays.The general process
extents to high dimensions.

10.1

Multi-Dimension arrays are sometimes used in high level languages. For example, in C/C++, the
declaration of: int arr [3][4] would declare an array as follows:

High-Level Language View

am— | amo0] | arr[0][1] | arr[0][2] | arr[O][3]
arr[1][0] | arr[1][1] | arr[1][2] | arr[1][3]
arr[2][0] | arr[2][1] | arr[2][2] | arr[2][3]

It is expected that the reader is generally familiar with the high-level language use of two-dimensional

arrays.
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10.2 Row-Major

Row-major assigns each row as a single dimension array in memory, one row after the next until all
rows are in memory.

=
=

arr[2][3]
arr[2][2]
arr[2][1]
arr[2][0]
arr[1][3]
arr[1][2]
arr[1][1]
arr[1][0]
arr[0][3]
arr[0][2]
arr[0][1]
arr[0][0]

=
o

arr

N |
ORI N W|lhrlUulo|lv o ©

v

The formula to convert two-dimensional array indexes (row, column) into a single dimension, row-
major memory offset is as follows:

address = baseAddress + (rowIndex * colSize + colIndex) * dataSize

Where the base address is the starting address of the array, dataSize is the size of the data in bytes, and
colSize is the dimension or number of the rows in the array. In this example, the number of columns in
the array is 4 (from the previous high-level language declaration).

For example, to access the arr[1][2] element (labeled '6' in the above diagram), assuming the array
is composed of 32-bit sized elements it would be:

address =arr + (1 * 3 + 2) * 4 = arr + (4 + 2) * 4
= arr + 6 * 4 = arr + 24

Which generates the correct, final address.
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10.3 Column-Major

Column-major assigns each column as a single dimension array in memory, one column after the next
until all rows are in memory.

=
=

arr[2][3]
arr[1]1[3]
arr[0][3]
arr[2][2]
arr[1][2]
arr[0][2]
arr[2][1]
arr[1][1]
arr[0][1]
arr[2][0]
arr[1][0]
arr[0][0]

=
o

arr

10

o
©
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The formula to convert two-dimensional array indexes (row, column) into a single dimension, column-
major memory offset is as follows:

address = baseAddress + (colIndex * rowSize + rowIndex) * dataSize

Where the base address is the starting address of the array, dataSize is the size of the data in bytes, and
rowSize is the dimension or number of the columns in the array. In this example, the number of rows
in the array is 3 (from the previous high-level language declaration).

For example, to access the arr[1][2] element (labeled '6' in the above diagram), assuming the array
is composed of 32-bit sized elements it would be:

address =arr + (2 * 4+ 1) * 4 = arr + (6 + 1) * 4
= arr + 7 * 4 = arr + 28
Which generates the correct, final address.
104 Example Program, Matrix Diagonal Summation

The following code provides an example of how to access elements in a two-dimensional array. This
example adds the elements on the diagonal of a two-dimensional array.
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For example, given the logical view of a five-by-five square matrix:

11 | 12 | 13 | 14 | 15
16 | 17 | 18 | 19 | 20
21 | 22 | 23 | 24 | 25
26 | 27 | 28 | 29 | 30
31 1 32 | 33 | 34 | 35

The main diagonal contains the numbers, 11, 17, 23, 29, and 35.

# Example program to compute the sum of diagonal

# in a square two-dimensional array

# Demonstrates multi-dimension array indexing.

# Assumes row-major ordering.

# m e _

# Data Declarations
.data

mdArray: .word 11, 12, 13, 14, 15
.word 16, 17, 18, 19, 20
.word 21, 22, 23, 24, 25
.word 26, 27, 28, 29, 30
.word 31, 32, 33, 34, 35

size: .word 5

dSum: .word 0

DATASIZE = 4 # 4 bytes for words

finalMsg: .ascii "Two-Dimensioanl Diagonal Summation\n\n"
.asciiz "Diagonal Sum = "

o

# Text/code section

.text

.globl main

main:

$ o

# Call function to sum the diagaonal

# (of square two-dimensional array)

la $a0, mdArray # base address of array
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1w $al, size # array size

jal diagSummer

sw $v0, dSum
$ -
# Display final result.
1i $vo, 4 # print prompt string
la $a0, finalMsg
syscall
1i $vo, 1 # print integer
lw $a0, dSum
syscall
$ o
# Done, terminate program.
1i $v0o, 10 # call code for terminate
syscall # system call
.end main
o _
# Simple function to sum the diagonals of a
# square two-dimensional array.
# Approach
# loop i = 0 to len-1
# sum = sum + mdArray[i][i]
# Note, for two-dimensional array:
# address = baseAddr + (rowIndex * colSize + colIndex) * dataSize
# Since the two-dimensional array is given as square, the
# row and column dimensions are the same (i.e., size).
$ oo
# Arguments
# $a0 - array base address
# $al - size (of square two-dimension array)
# Returns
# $v0 - sum of diagonals
.globl diagSummer
.ent diagSummer
diagSummer:
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1i $vo,
1li $tl, O

o
]

sum=0
loop index, i=0

=

diagSumLoop:

mul $t3, S$tl1l, Sal # (rowIndex * colSize

add $t3, S$t3, S$tl # + colIndex)
# note, rowIndex=collIndex

mul S$t3, $t3, DATASIZE # * dataSize

add $t4, S$a0, $t3 # + base address

1w $t5, ($t4) # get mdArray[i][i]

add S$v0, S$vO, S$t5 # sum = sum + mdArray[i][i]

add S$t1, S$t1, 1 #$i=41i+1

blt $tl1, S$al, diagSumLoop
# Done, return to calling routine.

jr Sra
.end diagSummer

While not mathematically useful, this does demonstrate how elements in a two-dimensional array.
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11.0 Recursion

The Google search result for recursion, shows Recursion, did you mean recursion?

Recursion is the idea that a function may call itself (which is the basis for the joke). Recursion is a
powerful general-purpose programming technique and is used for some important applications
including search and sorting methods.

Recursion can be very confusing in its simplicity. The simple examples in this section will not be
enough in themselves for the reader to obtain recursive enlightenment. The goal of this section is to
provide some insight into the underlying mechanisms that support recursion. The simple examples
here which are used introduce recursion are meant to help demonstrate the form and structure for
recursion. More complex examples (than will be discussed here) should be studied and implemented in
order to ensure a complete appreciation for the power of recursion.

The procedure/function calling process previously described supports recursion without any changes.
A recursive function must have a recursive definition that includes:
1. base case, or cases, that provide a simple result (that defines when the recursion should stop).
2. rule, or set of rules, that reduce toward the base case.

This definition is referred to as a recursive relation.

11.1 Recursion Example, Factorial

The factorial function is mathematically defined as follows:

nt =[]k
k=1

Or more familiarly, you might see 5! as:

nl = 5X4X3X2X1

It must be noted that this function could easily be computed with a loop. However, the reason this is
done recursively is to provide a simple example of how recursion works.

A typical recursive for factorial is:

1 ifn=0

torial =
factorial(n) n X factorial(n—1) ifn>1

This definition assumes that the value of n is positive.
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11.1.1 Example Program, Recursive Factorial Function

The following code provides an example of the recursive factorial function.

# Example program to demonstrate recursion.

o
# Data Declarations
.data
prompt: .ascii "Factorial Example Program\n\n"
.asciiz "Enter N value: "
results: .asciiz "\nFactorial of N = "
n: .word O
answer: .word O
o
# Text/code section
.text
.globl main
main:
$ -
# Read n value from user
1i $vo, 4 # print prompt string
la $a0, prompt
syscall
1li $v0o, 5 # read N (as integer)
syscall
sw $v0, n

# call factorial function.

1w $a0, n
jal fact

sw $v0, answer

# Display result
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1i $vo, 4 # print prompt string
la $a0, results
syscall

1i $vo, 1 # print integer
1w $a0, answer
syscall

# Done, terminate program.

1i $v0o, 10 # call code for terminate
syscall # system call
.end main

# Factorial function

# Recursive definition:

# =1 ifn=020
# = n * fact(n-1) if n>=1

# Arguments

# $a0 - n

# Returns

# $v0 set to n!

.globl fact

.ent fact

fact:
subu $sp, $sp, 8
sw $ra, ($sp)
sw $s0, 4(S$sp)

1i $vo, 1 # check base case
beq $a0, 0, factDone

move $s0, $a0 # fact(n-1)

sub $a0, $a0, 1

jal fact

mul S$vO0, $s0, S$SvO # n * fact(n-1)

factDone:
1w $ra, ($sp)
1w $s0, 4(S$sp)
addu $sp, S$sp, 8
jr $Sra

.end fact
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The output for the example would be displayed to the QtSpim console window. For example,

Factorial Example Program

Enter W value: 10

Factorial of N = 3628800

Refer to the next section for an explanation of how this function woks.

11.1.2 Recursive Factorial Function Call Tree

In order to help understand recursion, a recursion tree can help show how the recursive calls interact.

act(4) Step 9

fact:

4 * fact(3) ‘ Step 8

fact:

Step 3 3 * fact(2)

| Step 7

Step 4 fact:
€p 2 * fact(1 |
act(l) Step 6
fact:
Step 5 return 1

When the initial call occurs from main, the main will start into the fact() function (shown as step 1).
Since the argument, of 5 is not a base case, the fact() function must call fact() again with the argument
of n-1 or 4 in this example (step 2). And, again, since 4 is not the base case, the fact() function must
call fact() again with the argument of n-1 or 3 in this example (step 3).
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This process continues until the argument passed into the fact() function meets the base case which is
when the arguments is equal to 1 (shown as step 5). When this occurs, only then is a return value
provided to the previous call (step 6). This return argument is then used to calculate the previous
multiplication which is 2 times 1 which will return a value to the previous call (as shown in step 7).

This returns will continue (steps 8, 9, and 10) until the main has a final answer.

Since the code being executed is the same, each instance of the fact() function is different from any
other instance only in the arguments and temporary values. The arguments and temporary values for
each instance are different since they maintained on the stack as required by the standard calling
convention.

For example, consider a call to factorial with n = 2 (step 4 on the diagram). The return address, $ra,
and previous contents of $s0 are preserver by pushing them on the stack in accordance with the
standard calling convention. The base case is checked and since n # 1 it continues to save the original
value of 1 into $s0, decrement the original argument, n, by 1 and calling the fact() function (with n =
1). The call the the fact() function (step 5 in the diagram) is like any other function call in that it must
follow the standard calling convention, which requires preserving $ra and $s0. This when the function
returns an answer, 1 in this specific case, that answer in $v0 is multiplied by the original n value in $s0
and returned to the calling routine.

As such the foundation for recursion is the procedure call frame or activation record. In general, it is
simply stated that recursion is stack-based.

It should also be noted that the height of the recursion tree is directly associated with the amount of
stack memory used by the function.

11.2 Recursion Example, Fibonacci
The Fibonacci function is mathematically defined as follows:
F, =F, +F,_,
for positive integers with seed values of F, = 0 and F; = 1 by definition.
As such, starting from 0 the first 14 numbers in the Fibonacci series are:

0,1,1,2,3,5,8, 13, 21, 34, 55, 89, 144, 233

It must be noted that this function could easily be computed with a loop. However, the reason this is
done recursively is to provide a simple example of how recursion works.

For example, a typical recursive definition for Fibonacci is:

0 ifn=0
fib(n) = |1 ifn=1
fib(n—1) + fib(n—2) ifn>1

This definition assumes that the value of n is positive.
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11.2.1 Example Program, Recursive Fibonacci Function

The following code provides an example of the recursive Fibonacci function.

# Recursive Fibonacci program to demonstrate recursion.

o~
# Data Declarations
.data
prompt: .ascii "Fibonacci Example Program\n\n"
.asciiz "Enter N value: "
results: .asciiz "\nFibonacci of N = "
n: .word O
answer: .word O
.
# Text/code section
.text
.globl main
main:
$ o————
# Read n value from user
1i $vo, 4 # print prompt string
la $a0, prompt
syscall
1i $v0o, 5 # read N (as integer)
syscall
sw $v0, n

# call Fibonacci function.

1w $a0, n
jal f£ib

sw $v0, answer

# Display result
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1i $vo, 4 # print prompt string
la $a0, results
syscall

1i $vo, 1 # print integer
1w $a0, answer
syscall

# Done, terminate program.
1i $vo, 10 # call code for terminate
syscall # system call

.end main

oo
# Fibonacci function

# Recursive definition:

# =0 ifn=0
# =1 if n=1
# = fib(n-1) + £fib(n-2) if n > 2
$ ———

# Arguments

# $a0 - n

# Returns

# $v0 set to fib(n)

.globl fib

.ent fib

fib:

subu $sp, $sp, 8
swW Sra, ($sp)
sw $s0, 4($sp)

move $vO0, $a0 # check for base cases
ble $a0, 1, fibDone

move $s0, $a0 # get fib(n-1)
sub $a0, $a0, 1
jal f£ib

move $a0, S$sO

sub $a0, $a0, 2 # set n-2

move $s0, S$SvO # save fib(n-1)

jal f£ib # get fib(n-2)

add $vO0, $s0, $vO # fib(n-1)+£fib(n-2)
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fibDone:
1w $ra, ($sp)
1w $s0, 4(S$sp)
addu S$sp, S$sp, 8
jr $ra

.end fib

The output for the example would be displayed to the QtSpim console window. For example,

Fibonacci Example Program

Enter N value: 13

Fibonacci of N = 233

Refer to the next section for an explanation of how this function works.

11.2.2 Recursive Fibonacci Function Call Tree

The Fibonacci recursion tree appears more complex than the previous factorial tree since the Fibonacci
functions uses two recursive calls. However, the general process and use of the stack for arguments
and temporary values is the same.

As noted in the factorial example, the basis of recursion is the stack. In this example, since two
recursive calls are made, the first call will make another call, which may make yet another call. In this
manner, the call sequence will follow the order shown in the following diagram.
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The following is an example of the call tree for a Fibonacci call with n = 4.
main:
fib(4)

step 16
step 1 :

fib:
fib(3) + L

g fib: stepd  step 12 | fip: | i
oo " Ty e 14
| fib(1) P fib(0) ”’4 ....................... :
step 3 step 8 step 11 step 13
step 5 fl?i:b(l) X fib: Pl fib: fio:
g : E return1 return 1 return0 =
: \ fib(0) i @ \
step 4 S . step 7
step 6 | P step 7
fi: fib:
return 1 return O

The calls are shown with a solid line and the returns are shown with a dashed line.
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12.0 Appendix A — Example Program

Below is a simple example program. This program can be used to test the simulator installation and as
an example of the required program formatting.

# Example program to find the minimum and maximum from
# a list of numbers. Also displays the list of numbers.

# data segment

.data
array: .word 13, 34, 16, 61, 28
.word 24, 58, 11, 26, 41
.word 19, 17, 38, 12, 13
len: .word 15
hdr: .asciiz "\nExample program to find max and min\n\n"
newLine: .asciiz "\n"
alMsg: .asciiz "min = "
a2Msg: .asciiz "max = "
o~

# text/code segment
# Note, OtSpim requires the main procedure to be named "main".

.text
.globl main
.ent main
main:

# This program will use pointers.
# t0 - array address

# tl - count of elements

# s2 - min

# s3 - max

# t4 - each word from array

=

# Display header
# Uses print string system call

la $a0, hdr
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1i

$vo,

syscall

HH = = =

la
lw
lw
lw

loop:
1w

bge
move

NotMin:
ble
move

NotMax:
sub
addu
bnez

$to,
$t1,
$s2,
$s3,

$t4,
s$t4,
$s2,
s$t4,
$s3,
$t1,

$to,
$tl1,

4

# print header

Find max and min of the array.
Set min and max to first item in list and then
loop through the array and check min and max against
each item in the list, updating the min and max values
as needed.

set
set
set
set

get

$t0 addr of array
$tl to length

min, $t2 to array[O0]
max, $t3 to array[O0]

array[n]

array #
len #
($t0) #
($t0) #
($t0) #
$s2, NotMin #
$t4 #
$s3, NotMax #
s$ta #
$t1, 1 #
$to, 4 #
loop

# Display results min and max.

# First display string, then value, then a print a
Do for each max and min.

# new line (for formatting).
la $a0, alMsg
1i $vo, 4
syscall #
move $a0, $s2
1i $vo, 1
syscall #
la $a0, newLine #
1i $vo, 4
syscall
la $a0, a2Msg
1i $vo, 4
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is new min?
set new min

is new max?
set new max

decrement counter
increment addr by word

print "min =

print min

print a newline



syscall # print "max = "

move $a0, S$s3
1i $vo, 1

syscall # print max

la $a0, newLine # print a newline
1i $vo, 4

syscall

# Done, terminate program.
1i $vo, 10
syscall # all done!

.end main
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13.0 Appendix B — QtSpim Tutorial

This QtSpim Tutorial is designed to prepare you to use the QtSpim simulator and complete your MIPS
assignments more easily.

13.1 Downloading and Installing QtSpim

The first step is to download and install QtSpim for your specific machine. QtSpim is available for
Winodws, Linux, and MAC OS's.

13.1.1 QtSpim Download URLs
The following are the current URLs for QtSpim. These are subject to change.
The QtSpim home page is located at: http://spimsimulator.sourceforge.net/

The specific download site is located at: ~ http://sourceforge.net/projects/spimsimulator/files/

At the download site there are multiple versions for different target machines. These include Windows
(all versions), linux (32-bit), linux (64-bit), and MAC OS (all versions). Download the latest version
for your machine.

13.1.2 Installing QtSpim

Once the package is downloaded, follow the standard installation process for the specific OS being
used. This typically will involve double-clicking the downloaded installation package and following
the instructions. You will need administrator privileges to perform the installation. Additionally, some
installations will require Internet access during the installation.

13.2 Sample Program

Copy the provided example file (assignment #0, asst0.asm) to a file in your working directory. This
file will be used in the remainder of the tutorial. It demonstrates assembler directives, procedure calls,
console I/0, program termination, and good programming practice. Notice in particular the assembler
directives '.data" and ".text' as well as the declarations of program constants. Understanding the basic
flow of the example program will help you to complete your SPIM assignment quickly and painlessly.
Once you have created the file and reviewed the code, it is time to move onto the next section.
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13.3

After the QtSpim application installation has been complete and the sample program has been created,
you can execute the program to view the results. The use of QtSpim is described in the following
sections.

QtSpim — Executing Programs

13.3.1 Starting QtSpim

For Windows, this is typically, performed with the standard “Start Menu -> Programs -> QtSpim ”
operation. For MAC OS, enter LaunchPad and click on QtSPim. For Linux, find the QtSpim icon
(location is OS distribution dependent) and click on QtSpim.

13.3.2

The initial QtSpim screen will appear as shown below. There will be some minor difference based on
the specific Operating System being used.

Main Screen

E & H 9 @ # » 0 @ = @
FP Regs Int Regs [16] Data Text

Int Regs [16] ® Text [£3]
PC =0 User Text Segment [00400000]..[00440000]
EBC = [00400000] 8fad40000 1w $4, 0(529) ; 183: 1w $al0 O0($sp) # argc
Cause =0 [00400004] 27a50004 addiu $5, $29%, 4 F : addiu Sal Ssp 4 # argv
BadVAddr = 0 [00400008] 24a60004 addiu $6, §5, 4 7 : addiu $a2 §al 4 # envp
Status = 3000££10 [0040000c] 00041080 =11 §2, S4, 2 F 5: 511 §v0 Sal 2

[00400010] 00c23021 addu $6, 56, $2 ; addu Fa2 $a2 &v0
HI =0 1004000141 0c000000  jal O0x00000000 [main] I : jal main
o =0 (004000181 00000000 nop ; : nep

[0040001c] 3402000a ori $2, $0, 10 ; : 1i 8vO 10
RO [r0] = 0 [00400020] 0000000c syscall £ syscall # syscall 10 (exit)
Rl [at] = O
R2 [vD] = O Kernel Text Segment [80000000]..[80010000]
R3 [vl] =0 [80000180] 00014821 addu $27, $0, 51 ; 90: move S5kl Sat # Save Sat
R4 [a0] = 1 [80000184] 3c01%2000 Iui $1, -28B672 ; 92: sw $v0 s1 # Not re-entrant and we can't
RS [al] = Tff trust $sp
Ré [a2] = 7 [80000188] ac220200 sw $2, 512($1)
R7 [a3] = 0 [8000018c] 3c01%000 1ui §1, -28672 ; 93: sw $al s2 # But we need to use these
R8 [t0] = O registers
R9 [tl] = O 180 ac240204 sw $4, 516(51)
R10 [t2] = O 180 401a6800 mfcO $26, $13 ; 95: mfcO 5k0 513 # Cause register
R11 [t3] = 0 180 001a2082 srl $4, $26, 2 ; 96: srl $al) 5k0 2 # Extract ExcCode Field
R12 [t4] = 0 180 3084001f andi $4, $4, 31 ; 97: andi $a0 $al OxIif
R13 [t5] = O 180 34020004 ori $2, $0, 4 ; 101: 1i 5v0 4 # syscall 4 (print_str)
Rl4 [t6] = 0 (80 3c04%000 1ui $4, -28672 [__ml_] ; 102: 1a a0 __mi_
R15 [t7] = 0 (80 0000000c syscall ; 103: syscall
R16 [s0] = 0 (80 34020001 eri $2, $0, 1 ; 105: 1i $v0 1 # syscall 1 (print_int)
R17 [s1] = O (80 001a2082 srl $4, %26, 2 ; 106: srl $a0 $k0 2 # Extract ExcCode Field
R18 [s2] = 0 (80 3084001f andi $4, $4, 31 ; 107: andi $af $a0 0x1if
R19 [s3] = 0 180 0000000 syseall ; 108: syscall
R20 [s4] = 0 [800001bc] 34020004 ori $2, S0, 4 ; 110: 1i $v0 4 # syscall 4 (print_str)
R21 [s5] - O [800001c0] 3344003c andi $4, $26, 60 ; 111: andi Sa0 $k0 0x3c
R22 [s6] = O [800001c4] 3c01%000 1Iui $1, -28672 ; 112: 1w $al _ excp(Sal)
R23 [s7] = O [800001cB] 00240821 addu $1, 51, $4
R24 [t8] = O [800001cc] 8c240180 1w 54, 384(51)
R25 [t9] = O [800001d0] 00000000 nop ; 113: nop
R26 [k0] = 0 [800001d4] 0000000c syscall ; 114: syscall
R27 [k1] = 0 ~|| [800001d8] 34010018 ori $1, $0, 24 ; 116: bne 5k0 0x18 ok_pc # Bad PC exception =

Copyright 1990-2012, James R. Larus.
All Rights Reserved.

SPIM is distributed under a BSD license.

See the file README for a Full copyright notice.
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13.3.3 Load Program

To load the example program (and all programs), you can select the standard “File — Reinitialize and
Load File” option from the menu bar. However, it is typically easier to select the Reinitialize and
Load File Icon from the main screen (second file icon on right side).

Note, the Load File option can be used on the initial load, but subsequent file loads will need to use the
Reinitialize and Load File to ensure the appropriate reinitialization occurs.

Reinitialize and Load File Icon

E & B & o # P o0 @ = @

FP Regs Int Regs [16] Data Text
Int Regs [16] ® Text 3]
PC =0 User Text Segment [00400000]..[00440000]
EPC -0 [00400000] 8£a40000 1w $4, 0($29) ; 183: 1w $a0 0($sp) #
Cause =0 [00400004] 27a50004 addiu $5, $23, 4 ; 184:
BadVAddr = 0 [00400008] 24a60004 addiu $6, §5, 4 ; 185:
Status = 3000££10 [0040000c] 00041080 =11 $2, $4, 2 ; 186: s11 Sv0 Sal 2

Once selected, a standard open file dialog box will be displayed. Find and select 'asst0.asm' file (or
whatever you named it) created in section 3.0.

|#| || izied | tmp]

Places Name ¥ Size Maodified
Q, search |1 mips0.asm 0 bytes 15:16
&3 Recently Used L] mipsl.asm 0 bytes 15:16

= ed

Bl Desktop

£ File System
. Floppy Drive
@ Documents
@ Music

= Pictures

B videos

£l Downloads
[ float

| Add | ';!E'_,sembly_“' v |

| cancel |L Oopen J

Navigate as appropriate to find the example file previously created. When found, select the file (it will
be highlighted) and click Open button (lower right hand corner).
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The assembly process occurs as the file is being loaded. As such, any assembly syntax errors (i.e.,
misspelled instructions, undefined variables, etc.) are caught at this point. An appropriate error
message is provided with a reference to the line number that caused the error.

When the file load is completed with no errors, the program is ready to run, but has not yet been
executed. The screen will appear something like the following image.

E & H 8 a # Pon @ = @

FP Regs Int Regs [16] Data Text
Int Regs [16] B Text 3]
PC =0 User Text Segment [00400000]..[00440000]
EPC =0 [00400000] B8£fa40000 1w $4, 0($29) ; 183: 1w Sal 0(Ssp) # argc
Cause =i [00400004] 27a50004 addiun $5, $29, 4 ; 184: addiu sal $sp 4 # argv
BadVAddr = 0 [00400008] 24260004 addiu $6, $5, 4 ; 185: u $a2 $al 4 # envp
Status = 3000££10 [0040000c] 00041080 =11 $2, $4, 2 ; 186: =511 $v0 Sa0 2

[00400010] 00c23021 addu $6, $6, 52 ; 187: addu Sa2 5a2 Sv0
HI =0 [00400014] 0c10000% jal 0x00400024 [main] ; 188: jal main
j7e) =0 [00400018] 00000000 nop ; 189: nop
[0040001c] 34020002 eori $2, $0, 10 Fod81: 13 Svwh 10

RO [rD] = O (004000201 0000000c syscall ; 192: syscall # syscall 10 (exit)
Rl [at] = 0 [00400024] 3c011001 lui $1, 4097 [hdr] ; 45: la $Sa0, hdr
R2 [v0] = O [00400028] 34240040 ori $4, $1, 64 [hdr]
R3 [vl] - O [0040002c] 34020004 ori $2, 50, 4 ;
R4 [aD] = 1 [00400030] 0000000c syscall ;
RS [al] = Tffffaic (004000341 3c081001 1lui $§8, 4097 [array] ; array
R6 [a2] = Tffffa54 [00400038] 3c011001 1ui $1, 4057 £
RT [a3] = O [0040003c] 8c29%003c 1w $9, 60($51)
R8 [tO] = O [00400040] 8d120000 1w $18, 0O($8) ; 59: 1w $s2, ($t0) # set min, St2 to array[0]
R9 [tl] = O [00400044] 84130000 1w $19, O($8) ; 60: 1w $§s3, ($t0) # set max, $t3 to arrayl0]
R10 [t2] = O (004000481 8d0c0000 1w $12, 0($8) ; 62: 1w 5td, (5t0) # get arrayln
R11 [t3] = O [0040004c] 0192082a =1t $1, $12, S18 ; 64: bge $t4, Ss2, NotMin # is new min?
R12 [t4] = O (004000501 10200002 beqg $1, $0, 8 [NotMin-0x00400050]
R13 [t5] = O [00400054] 000c9%021 addu $18, $0, 512 ; 65: move $s2, Std # set new min
Rl4 [t6] = O [00400058] 026c082a slt §1, §19, $12 ; 67: ble 5td4, §s3, NotMax # is new max?
R15 [t7] = O [00400053c] 10200002 beq $1, $0, 8 [NotMax-0x0040005¢]
R16 [80] = O [00400060] 000c9821 addu $19, $0, 512 ; 68: move §s3, $td # set new max
R17 [s1] = O [00400064] addi 53, %3, -1 ; 71: sub $tl1, §tl, 1 # decrement counter
R18 [s2] = O [00400068] addiu 58, 58, 4 ; 72: addu 5t0, 5t0, 4 # increment addr by word
R19 [s3] = 0 [0040006c] 1320ff£7 bne $9, $0, -36 [loop-0x0040006c]
R20 [s4] = 0 (004000701 3c011001 1ui $1, 4097 [al_msg] ; B0: 1la Sal, al_msg
R21 [s5] = O [00400074] 34240069 ori $4, $1, 105 [al_m=g]
R22 [s6] = O [00400078] 34020004 ori $2, $0, 4 ; B1: 1i $v0, 4
R23 [s7] = 0 [0040007c] 0000000c s=sysecall ; B2: syscall # print "min = "
R24 [t8] = 0 [00400080] 00122021 addu $4, 50, 518 ; 84: move Sal, §s2
R25 [t9] = O (004000841 34020001 eri $2, S0, 1 ;s 85: 1i svo, 1
R26 [k0O] = O [00400088] 0000000c syscall ; 86: syscall # print min
R27 [k1] = O <1 | [0040008c] 3c011001 1lui $1, 4057 [new_1n] ; B8: la $al, new_ 1ln # print a newline =

Copyright 1990-2012, James R. -
All Rights Reserved. ~
SPIM is distributed under a BSD [fense. I |
See the file README for a full yright notice. I

Addresses OpCodes Bare-Instructions Psuedo-Instructions

The code is placed in Text Window. The first column of hex values (in the []'s) is the address of that
line of code. The next hex value is the OpCode or hex value of the 1's and 0's that the CPU
understands to be that instruction.

MIPS includes psuedo-instructions. That is an instruction that the CPU does not execute, but the
programmer is allowed to use. The assembler, QtSpim here, accepts the instruction and inserts the real
or bare instruction as appropriate.
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13.3.4 Data Window

The data segment contains the data declared by your program (if any). To view the data segment, click
on the Data Icon.

The data window will appear similar to the following:

E & H & @ # » 0 @ I @
FP Regs Int Regs [16] Data Text

Int Regs [16] ® Data 5]
PC = 400070 - User data segment [10000000]..[1l0040000]
EPC = 400070 [100000001..[1000E£€E€] 00000000
Cause = 24 [100100001 0ooo000d 00000022 00000010 0000003d e e T e s e = . ..
BadVAddr = O [100100101 0000001c 00000018 00000032 0000000k C e e e e e e D e e
Status = 2000££10 [100100201 00000012 00000029 00000013 00000007 L

[10010030] 00000028 0000000c O0OO0000Od O0O00000OE B 0 i e e e e e e e e
HI =0 [10010040] €178450a 636cT06d 6f727020 64617267 Example progranm
LO =0 [100100301 206£7420 646e6966 TH616d20 64626120 t o find ma x and

[100100601 6e696d20 0al00ala 6e696d00 00203d20 min. .. .. min =
RO [r0] = O [100100701 2078616d 00002034 00000000 00000000 ma x = 0w e e e e e e
Rl [at] = O [100100801..[1003E£££€] 00000000
R2 [v0] = 4
R3 [vl] =0
R4 [a0] = 10010040 User Stack [Tffffa4s8].
RS [al] = T£fffalc [Tffffad8] 0ooooo001 Fffffade ... .. ..
R6 [a2] = TEfffasd [TE£££a50] 00000000 TEEEEfel TEEEEFCA o o v v v v w w e e e e e e
R7 [a3] = O [TE£££a60] TEEEEEDS TEEEEfde  TEEEEFla . . . o o . . . Ho.o.oe e ..
R8 [t0] = 1001003c [TE£££a70] TEEEFe9b TEEEEE90 . o v . v u a e e e e e .
RS [t1] = O [TE£££a80] TEEEfdbd  TEEEEdB2 e
R10 [t2] = O [TE£££a90] TEEEEATL  TEEEEASE . . . . . . . . G oo e e
R11 [£3] = O [Tf£ffaa0] TEEffcds TEEEECHO Bov v e e e e e e e e e e
R12 [t4] = d [TE£££abO] TEEEEcOf TEEEEDL3 TS
R13 [t5] = O [TE££facO] TEEEFDYY T bée TEfEfb2d TEEEfbla T T T
R14 [t6] = O [Tffffad0] 00000000 00000000 00000000 6defeB82f . . . . o o o & 0 . . . /{'hom
R15 [t7] = O [Tffffael] 6£72442f TB6£6270 6cbeT52f e/ed/Dropbox/ nl
R16é [s0] = O [Tffffafl] T42£7370 T26£7475 2f6c6l69 v/mips/tutorial/
R17 [s1] = O [TE£££D00O] 73612230 4947006d 414cSE4E asst0.asm.GIO_LA
R18 [s2] = 7 [T££££b10] 445£4445 544b5345 465E504f UNCHED _DESKTOPF _F
R19 [s3] = 3d [T££££b20] 34444950 39333038 4£494700 ILE_PID=8039.GI0
R20 [s4] = O [T££££b30] 4548434 45445£44 4£544b53 _LAUNCHED _DESKT O
R21 [s5] = O [TE£££b40] 2£3d454c 2£727375 72616873 P_FILE=/usct/shar
R22 [s6] = O [7££££b50] 63696cT70  6£697461 T12f736e e/applications/gqg
R23 [s7] = O [T£££fb60] 656d42e6d 6£746b73 50470070 tspim.desktop.GP
R24 [t8] = O [TE£££DT0] S£544e45 4£464ed49 6d742f3d G _AGENT _INFO=/tnm
R25 [t9] = O [T£££fbB0O] 6e697279 6dee2deT  4£774a56 p/keyring-fmVJwo
R26 [k0] = O [TE£££DSO] 313a303a 47445800 5255435f /gpg:0:1.XDG_CUR
R27 [k1] = O || [7££££ba0] 5345445f 504£544b 696e553d R ENT _DESKTOP =Un i -
Copyright 1990-2012, James R. L.
All Rights Reserved. -
SPIM is distributed under a BS se. I |
See the file README For a full#bpyright notice.
Running

. .
Addresses Data (Hex Representation) Data (ASCII Representation)

As before, the addresses are shown on the left side (with the []'s). The values at that address are shown
in hex (middle) and in ASCII (right side). Depending on the specific type of data declarations, it may
be easier to view the hex representation (i.e., like the array of numbers from the example code) or the
ASCII representation (i.e., the declared strings).

Note, right clicking in the Data Window will display a menu allowing the user to change the default
hex representation to decimal representation (if desired).
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13.3.5 Program Execution

To execute the entire program (uninterrupted), you can select the standard “Simulator —
Run/Continue” option from the menu bar. However, it is typically easier to select the Run/Continue
Icon from the main screen or to type the F5 key.

Run/Continue

E & H S @ # » 1 @3 = @
FP Regs Int Regs [16] Data Text
Int Regs [16] ® Text ®
PC =0 User Text Segment [00400000]..[00440000]
EPC =0 [00400000] 8£fa40000 1w $4, 0(529) ; 183: 1w $al 0($sp) # argc
Cause =0 [00400004] 27a50004 addiu $5, $23, 4 ;/ 184: addiu $al $sp 4 # argv
BadVAddr = 0 [00400008] 24a60004 addiu $6, $5, 4 ; 185: id $a2 $al 4 # emvp
Status = 3000££10 [0040000c] 00041080 =11 $2, $4, 2 ; 186: s11 $v0 $al0 2

Once typed, the program will be execution.

If a program performs input and/or output, it will be directed to the Console window. For example, the
sample program (from Appendix B) will display the following in the Console window when executed.

Example program to find max and min

min=7
max = 61

For the sample program and the initial data set, these are the correct results.
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13.3.6 Log File

QtSpim can create a log file documenting of the program results. To create a log file, you can select
the standard “File — Save Log File” option from the menu bar. However, it is typically easier to
select the Save Log File Icon from the main screen.

Save Log File

E & H S @ # » 1 @3 = @
FP Regs Int Regs [16] Data Text
Int Regs [16] ® Text 3]
PC =0 User Text Segment [00400000]..[00440000]
EPC =0 [00400000] 8£fa40000 1w $4, 0(529) 5 183: 1 al 0($sp) # argc
Cause =0 [00400004] 27a50004 addiu $5, $23, 4 v $al $sp 4 # argv
BadVAddr = 0 [00400008] 24a60004 addiu $6, $5, 4 7 $a2 $al 4 # emvp
Status = 3000££10 [0040000c] 00041080 =11 $2, $4, 2 i s11 §vl@ $al 2

When selected, the Save Windows to Log File dialog box will be displayed as shown below on the left.

¢ Save Windows To Log File ¢ save Windows To Log File

Select windows to write to log File Select windows to write to log File
[] Registers ["] Registers
["] Text Segments & Text Segments
[] Data Segments [] Data segments
[ console & console
Save to file = Save to file (=
cancel | ok | cancel | e —

In general, the Text Segments and Console options should be selected as shown on the left. Basedon
the current version, selecting all will cause the simulator to crash.

Additionally, there is no default file name or location (for the log file). As such, a file name must be
entered before it can be saved. This can done by manually entering the name in the Save to file box or
by selecting the ... box (on the lower right side).
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When the ... option is selected, a Save to Log File dialog box is displayed allowing selection of a
location and the entry of a file name.

& Save To Log File

Look in: | s fhome/ed = Lo '@' [=]

B computer il Desktop
i ed il Documents
il Downloads
|l Dropbox
il Music
il Pictures
il Public
|l Templates
gl Ubuntu Cne

il Videos

File name: [l

Files of type: | Text files (*.kxt) +|| Cancel

When completed correctly, the Save Windows To Log File box will appear similar the the below

image.
€ save Windows To Log File A

Select windows to write to log File
| Registers

[ Text Segments

| Data Segments

& Console

Save to File |/homefed/Desktop/logFile.txt

cancel | [ BK |

When the options are selected and the file name entered, the OK box can be selected which will save
the log file. This log file will need to be submitted as part the assignment submission.

13.3.7 Making Updates

In the highly unlikely event that the program does not work the first time or the program requirements
are changed, the source file will need to be updated in a text editor. After the program source file is
updated, it must be explicitly reloaded into QtSpim. The Reinitialize and Load File option must be
used as described in section 4.3. Every change made to the source file must be re-loaded into QtSpim.

Once re-loaded, the program can be re-executed as noted in section 4.5. Refer to section 5.0 for
information regarding debugging and controlled program execution.
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134 Debugging

Often, looking at program source code will not help to find errors. The first step in debugging is to
ensure that the file assembles correctly (or “reads” in the specific case of QtSpim). However, even if
the file assembles, it still may not work correctly. In this case, the program must be debugged. In a
broad sense, debugging is comparing the expected program results to actual program results. This
requires a solid understanding of what the program is supposed to do and the specific order in which it
does it — that is understanding the algorithm being used to solve the program. The algorithm should
be noted in the program comments and can be used as a checklist for the debugging process.

One potentially useful way to check the program status is to view the register contents. The current
register contents are show in registers window (left side) as shown in the image below.

Register Window

E & = [« B Poonm @ = @
FP Regs Int Regl [16] Data Text
Int Regs [16] & Text 3]
PC =0 User Text Segment [00400000]..[00440000]
EPC =0 1w $4, 0($29) | w Sal 0(5sp) #
Cause =0 40 i addiu $5, 529, 4
BadVAddr = 0 40 4 addiu 56, §5, 4
Status = 3000££10 40 s11 52, 54, 2
40 addu 56, $6, $2 ;
HI =t 40 i] jal 0x00000000 [main] ; 188: jal main
Lo = 004000 00000000 nop ; 189: ne
40001 3402000a eori $2, $0, 10 o=
RO [r0] = O 20] 0000000c syscall ; 192: syscall # syscall 10 (exit)
Rl [at] = O
Rz [v0] = O Kernel Text Segment [80000000]..[80010000]
R3 [vl] = O [80000180] 00014821 addu $27, $0, 51 ; 90: move $k1 Sat # Save Sat

The overall debugging process can be simplified by using the QtSpim controlled execution functions.
These functions include single stepping through the program and using one or more breakpoints. A
breakpoint a programmer selected location in the program where execution will be paused. When the
program is paused the current program status can be checked by viewing the register contents and/or
the data segment. Typically, a breakpoint will be set, the program executed (to that point), and from
there single stepping through the program watching execution and checking the results (via register
contents and/or data segment).

When stepping through the program, the next instruction to be executed is highlighted. As such, that
instruction has net yet been executed. This highlighting is how to track the progress of the program
execution.

To set a breakpoint, select an appropriate location. This should be chosen with a specific expectation
in mind. For example, if a program does not produce the correct average for a list of numbers, a typical
debugging strategy would be to see of the sum is correct (as it is required for the average calculation).
As such, a breakpoint could be set after the loop and before the average calculation.

As an example, to set a breakpoint after the loop in the sample program (from Appendix B), the first
instruction after the loop can be found in the Text Window. This will require looking at the pseudo-
instructions (on the right side of the Text Window).
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The first instruction after the loop in the example program is highlighted in orange (for reference) in
the image below.

E & H a o # P om =% @
FP Regs Int Regs [16] Data Text

|Int Regs [16] @ ® Text =
| (UUSUUUUL ] £SSUOUUE  auaiu wer 9o, W , . -
PC = 40002c ~ | [0040000c] 00041080 =11 $2, $4, 2 ;
EPC 0 00400010] 00c22021 addu $6, $6, $2 ; 7 -
Cause =0 (004000141 0cl00002 jal 0x00400024 [main] ; 188: jal main
e [00400018] 00000000 nop ; 189: nop
Status = 3000If10 [0040001c] 3402000a ori $2, $0, 10 ; 191: 1i $v0 10

[(00400020] 0000000c syscall ; 192: syscall # syscall 10 (exit)
HI =i} 004000241 3c011001 1ui 51, 4057 [hdr] ;s 45: la $a0, hdr
| Lo il [00400028] 34240040 ori $4, $1, 64 [hdr]

[0040002c] 34020004 ori $2, $0, 4 ;
RO [r0] = O [(00400030] 0000000c syscall ; t header
R1 [at] = 10010000 (004000341 3c081001 1lui $8, 4037 [array] ; # set $t0 addr of array
R2 [v0] = 4 [00400038] 3c011001 1lui $1, 4057 7 set $t1 to length
R3 [vl] = O [0040003c] B8c29003c 1w §9, 60(51)
R4 [a0] = 10010040 [00400040] 84120000 1w $18, 0($8) ; Iw §s2, (§t0) # set min, $t2 to v
RS [al] = Tffffadc (004000441 8d130000 1w $13, 0($8) 3 lw $s3, (5t0) # set max, $t3 to
R6 [a2] = TEfffa54 [00400048] 8d40c0000 1w $12, 0(%$8) 7 1w $t4, (St0) # get arrayin]
R7 [a3] 0 [0040004c] 0192082a slt $1, $12, §1s ; : bge §td4, $s2, NotMin # is new m
R8 [tO] 0 [00400050] 10200002 beq $1, $0, 8 [NotMin-0x00400050]
R9 [t1] = O (004000541 000c2021 addu $18, 50, §1z2 ;s 65: move $s2, $td # set new min
R10 [t2] = O [00400058] 026c082a slt $1, $19, §12 ; 67: ble $t4, $s3, NotMax # is new max?
R11 [£3] = O [0040005c] 10200002 beq $1, $0, 8 [NotMax—0x0040005c]
R1Z2 [t4] 0 [00400060] 000c%821 adda $15, 50, §12 ; 68: move 8§53, Std4 # set new max
R13 [t5] = O 004000641 2129ffff addi $2, $2, -1 i sub st1, $til, 1 # decrement counter
R14 [t6] = O [00400068] 25080004 addiu $8, $8, 4 ; 72: addu 5t0, $t0, 4 # increment addr by word
R15 [t7] 0 [004000&c] 1520££ff7 bne $9, $0, —36 [loop-O0x0040006c]
R16 [s0] 0 [EEEEEEER! 3c011001 lui $1, 4057 [al_msg] ; 80: la Sa0, al_msg
®i7 [#1] =0 (004000741 34240069 ori $4, $1, 105 [al_ms=g]
R18 [s2] = O 004000781 34020004 ori $2, $0, 4 z 1i
R19 [s3] = O [0040007c] 0000000c syscall ; s "
R20 [s4] 0 [00400080] 00122021 addu $4, 30, S18 ; ma
R21 [s5] = O 004000841 34020001 ori $2, $0, 1 5 1i
R22 [s6] = 0 [00400088] 0000000c syscall 7 sy.
R23 [=7] = 0 [0040008c] 3c011001 1lui $1, 4097 [new _1ln] i la a newline
R24 [t8] = O [00400090] 34240067 ori $4, $1, 103 [new_1n]
R25 [t3] = O [00400094] 34020004 ori $2, $0, 4 5 1i
R26 [kD] = O 00400093] 0000000c syscall 7 sy.
R27 [k1] 0 -/ | [004000%c] 32011001 lui $1, 4097 [a2_msg] ; 1a =

Copyright 1990-2012, James R. Larus.
All Rights Reserved. ~
| SPIM is distributed under a BSD license. H
See the file README For a full copyright notice. =

Note, the orange highlighting was added in this document for reference and will not be displayed in
QtSpim during normal execution.
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When an appropriate instruction is determined, move the cursor to the instruction address and right-
click. The right-click will display the breakpoint menu as shown in the image below.

E & Hd S5 @ # » a0 @ = @
FP Regs Int Regs [16] Data Text
Int Regs [16] B ® Text
| (UUSUUUUD] Z900UUUY  auuku 9oy Wy % ;7 IDUT EUdIU vEZ YAl ¥ § SIvp
°C —Annnae [0040000c] 00041080 s11 $2, 54, 2 ; 186: s11 $v0 $a0 2
EPC =l [00400010] 00c23021 addu $6, $6, $2 ; 187: addu $a2 $a2 $v0
Cause =0 [00400014] 0cl00009 jal 0x00400024 [main] ; 188: jal main
B [00400018] 00000000 nep ; 189: nop
Seatus. = 3000F£00 [0040001c] 3402000a ori $2, $0, 10 ; 191: 1i $v0 10
[00400020] 0000000c syscall ; 192: syscall # syscall 10 (exit)
HI = 0 [00400024] 3c011001 lui $1, 4057 [hdr] ; 45: la $a0, hdr
| Lo 0 [00400028] 34240040 ori $4, $1, 64 [hdr]
[0040002c] 34020004 ori $2, $0, 4 ; 46: 11 svo, 4
RO [x0] = 0 [00400030] 0000000c syscall ; syscall # print header
Rl [at] = 10010000 [00400034] 3c081001 1lui $8, 4097 [array] ¥ la $t0, array # set $t0 addr of array
R2 [vD] = 4 [(00400038] 3c011001 1ui $1, 4097 5 1w St1, len # set 5t1 to length
R3 [vl] =0 [0040003c] 8c29003c 1w $9, 60($1)
R4 [a0] = 10010040 [00400040] 84120000 1w 518, 0(%$8) #.8 lw §s2, (§t0) # set min, §t2 to array(0]
RS [al] = Tffffadc [00400044] 8d130000 1w $19, 0(58) ; 60: 1w §s3, (5t0) # set max, §t3 to arrayl0]
RE [a2] = Tffffa54 [00400048] 8d0c0000 1w $12, 0($8) ; 62: lw Std4, (5t0) # get arrayl(n]
R7 [a3] =0 [0040004c] 0192082a =1t $1, 512, §$18 ; 64: bge 5t4, $sZ, NotMin # is new min?
R8 [tO] = O [00400050] 10200002 beq $1, $0, 8 [NotMin-0x00400050]
R [t1] =0 [00400054] 000c9%021 adda $18, $0, 512 ; 65: move $§s52, 5td # set new min
R10 [t2] = 0 [00400058] 026c082a =1t $1, 519, $12 67: ble 5t4, 553, NotMax # is new max?
R11 [t3] = O [0040005c] 10200002 beq $1, $0, 8 [NotMax-0x0040005¢c]
Rl2 [t4] = 0 (004000601 000c9821 adda $19, $0, 512 ; 68: move §s3, 5td # set new max
R13 [t5] = 0 [00400064] 2129ffff addi $9, 59, -1 ;j 71: sub sti1, $tl, 1 # decrement counter
Rl4 [t6] = 0 [00400068] 25080004 addiu $8, $8, 4 ; 72: addu $t0, $t0, 4 # increment addr by word
R15 [t7] = O [0040006c] 1520£££7 bne $9, $0, —-36 [loop-0x0040006c]
Rl16 [=0] = 0 (004000701 3c011001 1ui S$1, 4097 [al_msg] ; 80: la sal, al_msg
R17 [=1] = 0 101 ) » 51, 105 [al msg]
R18 [s2] = 0 [0} %5 i, S50, 4 J Bl: 11 sv0, 4
R19 [s3] = 0 [0} elect All Ctri+A 1 ;/ 82: syscall # print "min = "
R20 [s4] = 0 [0} 4, $0, 518 ; B4: move $al, $s2
R21 [s5] = O (o  SetBreakpoint i 50, 1 ; 85: 1i 5v0, 1
R22 [s6] = 0 101 Clear Breakpoint 23 ; 86: syscall # print min
R23 [=7] = 0 [OUgovoscT 3CUTTOUT " Iur~s1, 4097 [new_ln] ; 88: la $al, new_ln # print a newline
R24 [t8] = 0 [00400090] 34240067 ori $4, $1, 103 [new_ln]
R25 [t9] = 0 [00400094] 34020004 ori $2, $0, 4 ;i B9: 1i &v0, 4
R26 [kD] = 0 [00400098] 0000000c syscall ;/ 90: syscall
|R27 [k1] = 0 ~| | 10040009c] 3c011001 1ui $1, 4057 [a2_msqg] ; 92: la $al, a2 _msg

®

Copyright 1990-2012, James R. Larus.

All Rights Reserved.
| SPIM is distributed under a BSD license.

See the file README for a Full copyright notice.

To set a breakpoint, select the Set Breakpoint option.
cleared by selecting the Clear Breakpoint option.
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Once the breakpoint has been set, it will be highlighted with a small red icon such as an N as shown in
the following image. Note, different operating systems may use a different icon.

E & H 3 @ Pon o m = @
FP Regs Int Regs [16] Data Text

Int Regs [16] & ® Text B®
(UUSUUUUT] £aUUUUYE  auuiu e, W, 9 s IUTT auuiu vEs wal ¥ § SR

rc g UL || 10040000c] 00041080 s11 $2, $4, 2 ; 186: s11 $v0 a0 2 " r

ERC R (004000101 00c23021 addu $6, $6, $2 ; 187: addu $a2 $a2 $v0 ~

Cause =~ [00400014] 0cl00002 jal O0x00400024 [main] ; 188: jal main

Dy [00400018] 00000000 nop ; 189: nop

SEatux o = 3000££10 [0040001c] 3402000a ori $2, $0, 10 ; 191: 1i $v0 10
[00400020] 0000000c syscall ; 182: syscall # syscall 10 (exit)

| HI =0 (004000241 3c011001 lui $1, 4097 [hdr] ; 45: la $a0, hdr

| Lo =0 [00400028] 34240040 ori %4, $1, 64 [hdr]
[0040002c] 34020004 orxi 52, S0, 4 ; 46: 11 sv0, 4

RO [r0] =0 [00400030] 0000000c syscall ; 47: syscall # print header

Rl [at] = 10010000 [00400034] 3c081001 1lui $8, 4097 [array] ¥ la $t0, array # set §t0 addr of array

R2 [v0] = 4 [00400038] 3c011001 1lui $1, 4097 i : 1w St1, len # set $tl to length

R3 [vl] =0 [0040003c] 8c29003c 1w $92, 60($1)

R4 [a0] = 10010040 [00400040] 8d120000 1w $18, 0($8) ; 59: 1w §s2, (St0) # set min, $t2 to array(0] "

RS [al] = Tffffadc (004000441 8d130000 1w 519, O(58) ;j 60: 1w 8§53, (5t0) # set max, 5$t3 to arrayl(0]

R6 [a2] = Tffffa54 =[| [00400048] 8d0c0000 1w $12, 0($8) ; 62: lw $td4, (St0) # get array(n]

R7 [a3] =0 [0040004c] 0192082a =1t 51, $12, $18 ; 64: bge 5td, 5s2, NotMin # is new min?

R8 [t0] = O [00400050] 10200002 beq $1, $0, 8 [NotMin-0x00400050]

R3 [tl1l] =0 [00400054] 000c9021 addu $18, $0, $12 ; 65: move 5s2, 5t4 # set new min

R10 [t2] = 0 [00400058] 026c082a =it 51, 519, $12 ; 67: ble 5td, 553, NotMax # is new max?

R11 [t3] = O [0040005c] 10200002 beq $1, $0, 8 [NotMax-0x0040005c]

R12 [t4] = 0 [00400060] 000c9821 addu $19, $0, $12 ; 68: move $s3, S5td # set new max

R13 [t5] = O [00400064] 2129ffff addi 59, $9, -1 ; 71: sub $t1, $t1, 1 # decrement counter

Rl4 [t6] = 0 [00400068] 25080004 addiu $8, $8, 4 ;/ 72: addu $t0, S$t0, 4 # increment addr by word

R1S [t7] = O [0040006c] 1520£££7 bne $9, $0, -36 [loop-0x0040006c]

Rl6é [s0] = O N [00400070] 3c011001 1lui $1, 4097 [al_msg] ; 80: la $al, al_msg

R17 [s1] = O [00400074] 34240069 ori $4, $1, 105 [al_msg]

Rl18 [s2] = 0 [00400078] 34020004 eorxri $2, $0, 4 ; 81: 11 $v0, 4

R19 [s3] = 0 [0040007c] 0000000c syscall ;j B2: syscall # print "min ="

R20 [s4] = O [00400080] 00122021 addu $4, $0, 518 ; 84: move $a0, $s2

R21 [s5] = O [00400084] 34020001 ori $2, $0, 1 ; 85: 1i Svl, 1

R22 [=6] = 0 [00400088] 0000000c syscall ; 86: syscall # print min

R23 [s7] = 0 [0040008c] 3c011001 1lui $1, 4097 [new ln] ; 88: la $al, new_ln # print a newline

R24 [t8] = 0 (004000901 34240067 eori $4, $1, 103 [new_ln]

R25 [t3] = 0 [00400094] 34020004 orxri $2, $0, 4 ; 89: 11 sv0, 4

R26 [k0] = 0 [00400098] 0000000c syscall ; 90: syscall

R27 [k1] = O »/ | [0040009c] 3c011001 1lui $1, 4097 [a2_msg] ; 92: la $al0, a2z _msg -

Copyright 1990-2012, James R. Larus.
All Rights Reserved.
| SPIM is distributed under a BSD license. H
See the file README For a full copyright notice. e

Select the Run/Continue option (as described in section 4.5) which will execute the program up to the
selected breakpoint. When program execution reaches the breakpoint, it will be paused and a
Breakpoint diaglog box display as shown in the below image.

™ Breakpoint

Execution stopped at breakpoint at 0x0

 Continue ] |Single Step| | Abort |
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The program execution can be halted by selecting the Abort box. The breakpoint can be ignored, thus
continuing to the next breakpoint or program termination, whichever comes first.

However, typically the Single Step box will be selected enter the single step mode. The following
image shows the result of selecting Single Step. Note, the highlighted instruction represents the next
instruction to be executed and thus has not yet been executed.

=" H@ S a [ |
FP Regs Int Regs [16] Data Text
|Int Regs [16] @ ® Text
. rrrTrTTTe T TaoTrT
EC = 400070 ~ | 1004000021 00041080
|EPC = 400070 [00400010] 00223021
| Cause =24 [00400014] 0100009
BadVAddr = 0 [00400018] 00000000
Status = 3000££10 [0040001c] 3402000a
[00400020] 0000000c
| HI 0 [00400024] 3c011001
| Lo 0 [00400028] 34240040
[0040002c] 34020004
RO [r0] = 0 [00400030] 0000000c
RL [at] = 0 [00400034] 3c081001
Rz [v0] = 4 [00400038] 3c011001
R3 [vl] = 0 [0040003c] 8c29003c
R4 [a0] = 10010040 [00400040] 84120000
RS [al] = Tffffailc [00400044] 84130000
R6 [a2] = Tffffa54 [00400048] 8d0c0000
RT [a3] = 0 [0040004c] 0192082a
RE [t0] = 1001003c [00400050] 10200002
R [tl] = O [00400054] 000c9021
R10 [t2] = O [00400058] 026c082a
R11 [t3] = O [0040005c] 10200002
R12 [t4] = d [00400060] 000c9821
R13 [t5] = 0 [00400064] 2129£fff
R14 [t6] = O [00400068] 25080004
R15 [t7] = O [0040006c] 1520£££7
R16 [s0] = O N [00400070] 3c011001
R17 [s1] = 0 [00400074] 34240069
R18 [s2] = 7 [00400078] 34020004
R19 [s3] = 3d [0040007c] 0000000c
R20 [s4] = 0 [00400080] 00122021
R21 [s5] = 0 || 1004000841 34020001
R22 [s6] = 0 [00400088] 0000000c
R23 [s7] = 0 [0040008c] 3c011001
R24 [t8] = 0 [00400090] 34240067
R25 [t3] = 0 [00400094] 34020004
R26 [k0] = 0 [00400098] 0000000c
|R27 [k1] = O -1 | [0040009c] 3c011001

| Copyright 1990-2012, James R. Larus.
| All Rights Reserved.
| SPIM is distributed under a BSD license.

See the file README for a Full copyright notice.

| Running

ULl WY, W, W
s11 $2, $4, 2
addu $8, $6, 52
jal 0x00400024 [main]
nep
ori 52,
syscall
lui 51,
ori $4,
ori $2,
syscall
lui 38,
lui $1,
1w 539,
1w $18,
1w §19,
1w §12,
slt $1, $12, §1s8
beq $1, 50,
addu $18, S0,
slt $1, $19,
beq $1, 50,
addu $19, $0, 512
addi $9, $9, -1
addiu 38, $8, 4
bne 59, 350,
lui $1, 4097 [al msg]
ori $4, $1, 105 [al_msg]
ori $2, 50, 4

50, 10

4097 [hdr]
$1, 64 [hdr]
$0, 4

4037 [array]
4097
60 (51)
0(%8)
0(%8)
0(%8)

§lz
$12

syscall

addu $4, $0, $1s
ori $2, S0, 1
syscall

lui $1, 4097 [new_1ln]
ori $4, 51, 103 [new_1n]
ori $2, 50, 4

syscall

lui $1, 4097 [a2_msg]
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;
;
;

;
;
;
;

;

T EuUdIU YaZ Yol ¥ W CIvp

186: s11 Sv0 Sal0 2

S1L

7: addu $a2 Sa2 sv0

: jal main

: nop

: 11 $v0 10

: syscall # sysecall 10 (exit)
45: 1la sa0,

hdr

4
# print header

array # set $t0 addr of array
len # set $t1 to length
59: 1w 532, (St0) # set min, St2 to arra
60: lw §53, (§t0) # set max, §t3 to arra
62: 1w §td, (5t0) # get arrayin]
64: bge $td4, §s2, NotMin # is new min?

& [NotMin-0x00400050]

5td
553,

# set new min
NotMax # is new max?

63: move §s2,
€7: ble §t4,

& [NotMax-0x0040005¢]

68: move §s3, §
7i: sub $tl1, St
72: addu St0, &

t4d # set new max
1, 1 # decrement counter
£

—36 [loop-0x0040006c]

; 80: la $sal, al _msg

81: 1i §v0, 4

82: syscall # print
84: move $Sal, §s2
B 1% 5wl 1

86: syscall # print min

88: la Sal, new_Iln # print a newline

"min = "

89: 1i §v0, 4
80: sysc

92: la $al0, a2 msg

y [0
y [0

, 4 # increment addr by word

@ =
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14.0 Appendix C — MIPS Instruction Set

This appendix presents a summary of the MIPS instructions as implemented within the QtSpim
simulator. The instructions a grouped by like-operations and presented alphabetically.

The following table summarizes the notational conventions used.

Operand Notation Description

Rdest Destination operand. Must be a register. Since it is a
destination operand, the contents will be over written
with the new result.

FRdest Destination operand. Must be a floating-point
register. Since it is a destination operand, the
contents will be over written with the new result.

Rsrc Source operand. Must be a register. Register value
is unchanged.
FRscr Source operand. Must be a floating-point register.
Register value is unchanged.
Src Source operand. Must be a register or an immediate
value. Value is unchanged.
Imm Immediate value
Mem Memory location. May be a variable name or an

indirect reference.

Refer to the chapter on Addressing Modes for more information regarding indirection.

14.1 Arithmetic Instructions

Below are a summary of the basic integer arithmetic instructions.

abs Rdest, Rsrc Absolute Value
Sets Rdest = absolute value of integer in Rsrc

add Rdest, Rsrc, Src Addition (with overflow)
Sets Rdest = Rscr + Src (or imm)

addu Rdest, Rsrc, Src Addition (without overflow)
Sets Rdest = Rscr + Src (or imm)
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div Rsrcl, Rsrc

divu Rsrcl, Rsrc

div Rdest, Rsrc, Src

divu Rdest, Rsrc, Src

mul Rdest, Rsrc, Src

mulo Rdest, Rsrc, Src

mulou Rdest, Rsrc, Src

mult Rsrc, Rsrc

multu Rsrc, Rsrc

neg Rdest, Rsrc

negu Rdest, Rsrc

rem Rdest, Rsrc, Src

remu Rdest, Rsrc, Src

sub Rdest, Rsrc, Src

Divide (with overflow)
Set $lo = Rscr / Src (or imm)
Remainder is placed in $hi

Divide (without overflow)
Set $lo = Rscr / Src (or imm)

Remainder is placed in $hi

Divide (with overflow)
Sets: Rdest = Rscr / Src (or imm)

Divide (without overflow)
Sets: Rdest = Rscr / Src (or imm)

Multiply (without overflow)
Sets: Rdest = Rscr ( Src (or imm)

Multiply (with overflow)
Sets: Rdest = Rscr * Src (or imm)

Unsigned Multiply (with overflow)
Sets: lo = Rscr * Src (or imm)

Multiply
Sets $hi:$lo = Rscr / Src (or imm)

Unsigned Multiply
Sets $hi:$lo = Rscr / Src (or imm)

Negate Value (with overflow)
Rdest = negative of integer in register Rsrc

Negate Value (without overflow)
Rdest = negative of integer in register Rsrc

Remainder after division
Rdest = remainder from Rscr / Src (or imm)

Unsigned Remainder
Rdest = remainder from Rscr / Src (or imm)

Subtract (with overflow)
Rdest = Rsrc — Src (or imm)
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subu Rdest, Rsrc, Src Subtract (without overflow)
Rdest = Rsrc — Src (or imm)

14.2 Comparison Instructions

Below are a summary of the basic integer comparison instructions. Programmers generally use the
conditional branch and jump instructions as detailed in the next section.

seq Rdest, Rsrcl, Src2 Set Equal
- Sets register Rdest to 1 if register Rsrcl
equals Src2 and to be 0 otherwise

sge Rdest, Rsrcl, Src2 Set Greater Than Equal
- Sets register Rdest to 1 if register Rsrcl
greater than or equal Src2 and to 0 otherwise

sgeu Rdest, Rsrcl, Src2 Set Greater Than Equal Unsigned
- Sets register Rdest to 1 if register Rsrcl is
greater than or equal to Src2 and to 0
otherwise

sgt Rdest, Rsrcl, Src2 Set Greater Than
- Sets register Rdest to 1 if register Rsrcl
greater than Src2 and to 0 otherwise

sgtu Rdest, Rsrcl, Src2 Set Greater Than Unsigned
- Sets register Rdest to 1 if register Rsrcl is
greater than Src2 and to 0 otherwise

sle Rdest, Rsrcl, Src2 Set Less Than Equal
- Sets register Rdest to 1 if register Rsrcl is
less than or equal to Src2 and to 0 otherwise

sleu Rdest, Rsrcl, Src2 Set Less Than Equal Unsigned
- Sets register Rdest to 1 if register Rsrcl is
less than or equal to Src2 and to 0 otherwise

slt Rdest, Rsrcl, Src2 Set Less Than
- Sets register Rdest to 1 if register Rsrcl is
less than to Src2 and to 0 otherwise

slti Rdest, Rsrcl, Imm Set Less Than Immediate

- Sets register Rdest to 1 if register Rsrcl is
less than or equal to Imm and to 0 otherwise
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sltu

sltiu

sne

14.3

Rdest, Rsrcl, Src2

Rdest,

Rsrcl,

Rdest, Rsrcl, Imm

Src2

Set Less Than Unsigned
- Sets register Rdest to 1 if register Rsrcl is
less than to Src2 and to 0 otherwise

Set Less Than Unsigned Immediate
- Sets register Rdest to 1 if register Rsrcl is
less than Src2 (or Imm) and to 0 otherwise

Set Not Equal
- Sets register Rdest to 1 if register Rsrcl is
not equal to Src2 and to 0 otherwise

Branch and Jump Instructions

Below are a summary of the basic conditional branch and jump instructions.

b label

beczt 1label
beczf label
beq Rsrcl,
beqz Rsrc,
bge Rsrcl,
bgeu Rsrcl,

Src2,

label

Src2,

Src2,

label

label

label

Branch instruction
- Unconditionally branch to the instruction at
the label

Branch Coprocessor z True

- Conditionally branch to the instruction at the
label if coprocessor z's condition flag is true
(false)

Branch Coprocessor z False

- Conditionally branch to the instruction at the
label if coprocessor z's condition flag is true
(false)

Branch on Equal

- Conditionally branch to the instruction at the
label if the contents of register Rsrcl equals
Src2

Branch on Equal Zero
- Conditionally branch to the instruction at the
label if the contents of Rsrc equals 0

Branch on Greater Than Equal

- Conditionally branch to the instruction at the
label if the contents of register Rsrcl are
greater than or equal to Src2

Branch on GTE Unsigned
- Conditionally branch to the instruction at the
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bgez Rsrc, label

bgezal Rsrc, label

bgt Rsrcl, Src2, label

bgtu Rsrcl, Src2, label

bgtz Rsrc, label

ble Rsrcl, Src2, label

bleu Rsrcl, Src2, label

blez Rsrc, label

bgezal Rsrc, label

label if the contents of register Rsrcl are
greater than or equal to Src2

Branch on Greater Than Equal Zero

- Conditionally branch to the instruction at the
label if the contents of Rsrc are greater than or
equal to 0

Branch on Greater Than Equal Zero

- Conditionally branch to the instruction at the
label if the contents of Rsrc are greater than or
equal to 0. Save the address of the next
instruction in $ra

Branch on Greater Than

- Conditionally branch to the instruction at the
label if the contents of register Rsrcl are
greater than Src2

Branch on Greater Than Unsigned

- Conditionally branch to the instruction at the
label if the contents of register Rsrcl are
greater than Src2

Branch on Greater Than Zero
- Conditionally branch to the instruction at the
label if the contents of Rsrc are greater than 0

Branch on Less Than Equal

- Conditionally branch to the instruction at the
label if the contents of register Rsrcl are less
than or equal to Src2

Branch on LTE Unsigned

- Conditionally branch to the instruction at the
label if the contents of register Rsrcl are less
than or equal to Src2

Branch on Less Than Equal Zero

- Conditionally branch to the instruction at the
label if the contents of Rsrc are less than or
equal to 0

Branch on Greater Than Equal Zero And Link

- Conditionally branch to the instruction at the
label if the contents of Rsrc are greater or
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bltzal Rsrc, label

blt Rsrcl, Src2, label

bltu Rsrcl, Src2, label

bltz Rsrc, label

bne Rsrcl, Src2, label

bnez Rsrc, label

j 1label

jal 1label

jalr Rsrc

equal to 0 or less than 0, respectively. Save
the address of the next instruction in register
$ra

Branch on Less Than And Link

- Conditionally branch to the instruction at the
label if the contents of Rsrc are less than 0 or
less than 0, respectively. Save the address of
the next instruction in register $ra

Branch on Less Than

- Conditionally branch to the instruction at the
label if the contents of register Rsrcl are less
than Src2

Branch on Less Than Unsigned

- Conditionally branch to the instruction at the
label if the contents of register Rsrcl are less
than Src2

Branch on Less Than Zero
- Conditionally branch to the instruction at the
label if the contents of Rsrc are less than 0

Branch on Not Equal

- Conditionally branch to the instruction at the
label if the contents of register Rsrcl are not
equal to Src2

Branch on Not Equal Zero
- Conditionally branch to the instruction at the
label if the contents of Rsrc are not equal to 0

Jump
- Unconditionally jump to the instruction at
the label

Jump and Link

- Unconditionally jump to the instruction at
the label or whose address is in register Rsrc.
Save the address of the next instruction in
register $ra

Jump and Link Register
- Unconditionally jump to the instruction at
the label or whose address is in register Rsrc.
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jr

14.4

Rsrc

Load Instructions

Save the address of the next instruction in
register $ra

Jump Register
- Unconditionally jump to the instruction
whose address is in register Rsrc

Below are a summary of the basic load instructions.

la

1b

lbu

1d

1lh

lhu

lw

lwcz

Rdest, address

Rdest, address

Rdest, address

Rdest, address

Rdest, address

Rdest, address

Rdest, address

Rdest, address

Load Address
- Load computed address, not the contents of
the location, into register Rdest

Load Byte

- Load the byte at address into register Rdest.
The byte is sign-extended by the Ib, but not
the Ibu, instruction

Load Unsigned Byte

- Load the byte at address into register Rdest.
The byte is sign-extended by the Ib, but not
the 1bu, instruction

Load Double-Word
- Load the 64-bit quantity at address into
registers Rdest and Rdest + 1

Load Halfword

- Load the 16-bit quantity (halfword) at
address into register Rdest. The halfword is
sign-extended

Load Unsigned Halfword

- Load the 16-bit quantity (halfword) at
address into register Rdest. The halfword is
not sign-extended

Load Word
- Load the 32-bit quantity (word) at address

into register Rdest

Load Word Coprocessor z
- Load the word at address into register Rdest
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lwl

lwr

ulh

ulhu

ulw

1i

lui

14.5

Rdest, address

Rdest, address

Rdest, address

Rdest, addres

Rdest, address

Rdest, imm

Rdest, imm

S

Logical Instructions

of coprocessor z (0-3)

Load Word Left
- Load the left bytes from the word at the
possibly-unaligned address into register Rdest

Load Word Right
- Load the right bytes from the word at the
possibly-unaligned address into register Rdest

Unaligned Load Halfword

- Load the 16-bit quantity (halfword) at the
possibly-unaligned address into register
Rdest. The halfword is sign-extended.

Unaligned Load Halfword Unsigned

- Load the 16-bit quantity (halfword) at the
possibly-unaligned address into register
Rdest. The halfword is not sign-extended

Unaligned Load Word
- Load the 32-bit quantity (word) at the
possibly-unaligned address into register Rdest

Load Immediate
- Move the immediate imm into register Rdest

Load Upper Immediate

- Load the lower halfword of the immediate
imm into the upper halfword of register Rdest.
The lower bits of the register are set to 0

Below are a summary of the basic logical instructions.

and

andi

nor

Rdest, Rsrcl,

Rdest, Rsrcl,

Rdest, Rsrcl,

Src2

Imm

Src2

AND

AND Immediate

- Put the logical AND of the integers from
register Rsrcl and Src2 (or Imm) into register
Rdest

NOR
- Put the logical NOR of the integers from
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not Rdest, Rsrc

or Rdest, Rsrcl, Src2

ori Rdest, Rsrcl, Imm

rol Rdest, Rsrcl, Src2

ror Rdest, Rsrcl, Src2

sll Rdest, Rsrcl, Src2

sllv Rdest, Rsrcl, Rsrc2

sra Rdest, Rsrcl, Src2

srav Rdest, Rsrcl, Rsrc2

srl Rdest, Rsrcl, Src2

register Rsrcl and Src2 into register Rdest

NOT
- Put the bitwise logical negation of the
integer from register Rsrc into register Rdest

OR
- Put the logical OR of the integers from
register Rsrcl and Src2 into register Rdest

OR Immediate
- Put the logical OR of the integers from
register Rsrcl and Imm into register Rdest

Rotate Left

- Rotate the contents of register Rsrcl left by
the distance indicated by Src2 and put the
result in register Rdest

Rotate Right

- Rotate the contents of register Rsrcl left
(right) by the distance indicated by Src2 and
put the result in register Rdest

Shift Left Logical

- Shift the contents of register Rsrcl left by
the distance indicated by Src2 and put the
result in register Rdest

Shift Left Logical Variable

- Shift the contents of register Rsrcl left by
the distance indicated by Rsrc2 and put the
result in register Rdest

Shift Right Arithmetic

- Shift the contents of register Rsrc1 right by
the distance indicated by Src2 and put the
result in register Rdest

Shift Right Arithmetic Variable
- Shift the contents of register Rsrc1 right by

the distance indicated by Rsrc2 and put the
result in register Rdest

Shift Right Logical
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srlv Rdest, Rsrcl, Rsrc2

xor Rdest, Rsrcl, Src2

xori Rdest, Rsrcl, Imm

14.6 Store Instructions

- Shift the contents of register Rsrcl right by
the distance indicated by Src2 and put the
result in register Rdest

Shift Right Logical Variable

- Shift the contents of register Rsrc1 right by
the distance indicated by Rsrc2 and put the
result in register Rdest

XOR
- Put the logical XOR of the integers from
register Rsrcl and Src2 into register Rdest

XOR Immediate
- Put the logical XOR of the integers from
register Rsrcl and Imm into register Rdest

Below are a summary of the basic store instructions.

sb Rsrc, address

sd Rsrc, address

sh Rsrc, address

sw Rsrc, address

swcz Rsrc, address

swl Rsrc, address

swr Rsrc, address

Store Byte
- Store the low byte from register Rsrc at
address

Store Double-Word
- Store the 64-bit quantity in registers Rsrc
and Rsrc + 1 at address

Store Halfword
- Store the low halfword from register Rsrc at
address

Store Word
- Store the word from register Rsrc at address

Store Word Coprocessor z
- Store the word from register Rsrc of
coprocessor z at address

Store Word Left
- Store the left bytes from register Rsrc at the

possibly-unaligned address

Store Word Right
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- Store the right bytes from register Rsrc at the
possibly-unaligned address

ush Rsrc, address Unaligned Store Halfword
- Store the low halfword from register Rsrc at
the possibly-unaligned address

usw Rsrc, address Unaligned Store Word
- Store the word from register Rsrc at the
possibly-unaligned address

14.7 Data Movement Instructions

Below are a summary of the basic data movement instructions. The data movement implies data
movement between registers.

move Rdest, Rsrc Move the contents of Rsrc to Rdest.
- The multiply and divide unit produces its
result in two additional registers, hi and lo.
These instructions move values to and from
these registers. The multiply, divide, and
remainder instructions described above are
pseudoinstructions that make it appear as if
this unit operates on the general registers and
detect error conditions such as divide by zero
or overflow.

mfhi Rdest Move from hi
- Move the contents of the hi register to
register Rdest

mflo Rdest Move from lo
- Move the contents of the lo register to
register Rdest

mthi Rdest Move to hi
- Move the contents register Rdest to the hi
register.
- Note, Coprocessors have their own register
sets. This instructions move values between
these registers and the CPU's registers.

mtlo Rdest Move to lo

- Move the contents register Rdest to the lo
register.
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- Note, Coprocessors have their own register
sets. This instructions move values between
these registers and the CPU's registers.

mfcz Rdest, CPsrc Move From Coprocessor z

- Move the contents of coprocessor z's register
CPsrc to CPU register Rdest

mfcl.d Rdest, FRsrcl Move Double From Coprocessor 1
- Move the contents of floating point registers
FRsrcl and FRsrcl + 1 to CPU registers Rdest
and Rdest + 1

mtcz Rsrc, CPdest Move To Coprocessor z
- Move the contents of CPU register Rsrc to
coprocessor z's register CPdest

14.8 Floating Point Instructions

The MIPS has a floating point coprocessor (numbered 1) that operates on single precision (32-bit) and
double precision (64-bit) floating point numbers. This coprocessor has its own registers, which are
numbered f0-f31. Because these registers are only 32-bits wide, two of them are required to hold
doubles. To simplify matters, floating point operations only use even-numbered registers - including
instructions that operate on single floats. Values are moved in or out of these registers a word (32-bits)
at a time by lwcl, swecl, mtcl, and mfcl instructions described above or by the Ls, 1.d, s.s, and s.d
pseudoinstructions described below. The flag set by floating point comparison operations is read by the
CPU with its belt and belf instructions. In all instructions below, FRdest, FRsrc1, FRsrc2, and FRsrc
are floating point registers (e.g., $/2).

abs.d FRdest, FRsrc Floating Point Absolute Value Double
- Compute the absolute value of the floating
float double in register FRsrc and put it in
register FRdest

abs.s FRdest, FRsrc Floating Point Absolute Value Single
- Compute the absolute value of the floating
float single in register FRsrc and put it in
register FRdest

add.d FRdest, FRsrcl, FRsrc2 Floating Point Addition Double
- Compute the sum of the floating float
doubles in registers FRsrc1 and FRsrc2 and
put it in register FRdest

add.s FRdest, FRsrcl, FRsrc2 Floating Point Addition Single
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cvt.d.s

FRsrcl,

FRsrcl,

FRsrcl,

FRsrcl,

FRsrcl,

FRsrcl,

FRsrc2

FRsrc2

FRsrc2

FRsrc2

FRsrc2

FRsrc2

FRdest, FRsrc

- Compute the sum of the floating float singles
in registers FRsrcl and FRsrc2 and put it in
register FRdest

Compare Equal Double

- Compare the floating point double in register
FRsrcl against the one in FRsrc2 and set the
floating point condition flag true if they are
equal

Compare Equal Single

- Compare the floating point single in register
FRsrcl against the one in FRsrc2 and set the
floating point condition flag true if they are
equal

Compare Less Than Equal Double

- Compare the floating point double in register
FRsrcl against the one in FRsrc2 and set the
floating point condition flag true if the first is
less than or equal to the second

Compare Less Than Equal Single

- Compare the floating point simgle in register
FRsrcl against the one in FRsrc2 and set the
floating point condition flag true if the first is
less than or equal to the second

Compare Less Than Double

- Compare the floating point double in register
FRsrcl against the one in FRsrc2 and set the
condition flag true if the first is less than the
second

Compare Less Than Single

- Compare the floating point single in register
FRsrcl against the one in FRsrc2 and set the
condition flag true if the first is less than the
second

Convert Single to Double

- Convert the single precision floating point
number in register FRsrc to a double precision
number and put it in register FRdest
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cvt.

cvt.

cvt.

cvt

cvt

div.

div.

1.4

l.s

mov.

d.w FRdest, FRsrc

s.d FRdest, FRsrc

s.w FRdest, FRsrc

.w.d FRdest, FRsrc

.w.s FRdest, FRsrc

d FRdest, FRsrcl,

s FRdest, FRsrcl,

FRdest, address

FRdest, address

d FRdest, FRsrc

FRsrc2

FRsrc2

Convert Integer to Double

- Convert the integer in register FRsrc to a
double precision number and put it in register
FRdest

Convert Double to Single

- Convert the double precision floating point
number in register FRsrc to a single precision
number and put it in register FRdest

Convert Integer to Single

- Convert the integer in register FRsrc to a
single precision number and put it in register
FRdest

Convert Double to Integer

- Convert the double precision floating point
number in register FRsrc to an integer and put
it in register FRdest

Convert Single to Integer

- Convert the single precision floating point
number in register FRsrc to an integer and put
it in register FRdest

Floating Point Divide Double

- Compute the quotient of the floating float
doubles in registers FRsrc1 and FRsrc2 and
put it in register FRdest.

Floating Point Divide Single

- Compute the quotient of the floating float
singles in registers FRsrc1 and FRsrc2 and put
it in register FRdest.

Load Floating Point Double
- Load the floating float double at address into
register FRdest

Load Floating Point Single
- Load the floating float single at address into
register FRdest

Move Floating Point Double
- Move the floating float double from register
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mov.

mul.

mul.

neg.

neg.

s.d

sub

sub.

s FRdest, FRsrc

d FRdest, FRsrcl, FRsrc2

s FRdest, FRsrcl, FRsrc2

d FRdest, FRsrc

s FRdest, FRsrc

FRdest, address

FRdest, address

.d FRdest, FRsrcl, FRsrc2

s FRdest, FRsrcl, FRsrc2

FRsrc to register FRdest

Move Floating Point Single
- Move the floating float single from register
FRsrc to register FRdest

Floating Point Multiply Double

- Compute the product of the floating float
doubles in registers FRsrc1l and FRsrc2 and
put it in register FRdest

Floating Point Multiply Single

- Compute the product of the floating float
singles in registers FRsrc1 and FRsrc2 and put
it in register FRdest

Negate Double
- Store the floating float double in register
FRdest at address

Negate Single
Store the floating float single in register
FRdest at address

Store Floating Point Double
- Store the floating float double in register
FRdest at address

Store Floating Point Single
- Store the floating float single in register
FRdest at address

Floating Point Subtract Double

- Compute the difference of the floating float
doubles in registers FRsrc1 and FRsrc2 and
put it in register FRdest

Floating Point Subtract Single

- Compute the difference of the floating float
singles in registers FRsrc1 and FRsrc2 and put
it in register FRdest
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14.9 Exception and Trap Handling Instructions

Below are a summary of the exception and trap instructions.

rfe

syscall

break n

nop

Return From Exception
- Restore the Status register

System Call
- Transfer control to system routine. Register
$v0 contains the number of the system call

Break

- Cause exception 7.

- Note, Exception 1 is reserved for the
debugger

No operation
- Do nothing
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15.0 Appendix D — ASCII Table

This appendix provides a copy of the ASCII Table for reference.

Char | Dec | Hex Char | Dec | Hex
NUL 0 0x00 space| 32 0x20
SOH 1 0x01 ! 33 | 0x21
STX 2 0x02 " 34 | 0x22
ETX 3 0x03 # 35 | 0x23
EOT 4 0x04 $ 36 | 0x24
ENQ 5 0x05 % 37 | 0x25
ACK 6 0x06 & 38 | 0x26
BEL 7 0x07 ! 39 | 0x27
BS 8 0x08 ( 40 | 0x28
TAB 9 0x09 ) 41 | 0x29
LF 10 | 0x10 * 42 | 0x2A
VT 11 | 0x0A + 43 | 0x2B
FF 12 | 0x0B , 44 | 0x2C
CR 13 | 0x0C - 45 | 0x2D
SO 14 | 0x0D 46 | 0x2E
ST 15 | Ox0E / 47 | 0x2F
DLE | 16 | OxOF 0 48 | 0x30
DC1 | 17 | Ox11 1 49 | 0x31
DC2 | 18 | 0x12 2 50 | 0x32
DC3 | 19 | 0x13 3 51 | 0x33
DC4 | 20 | Ox14 4 52 | 0x34
NAK | 21 | Ox15 5 53 | 0x35
SYN | 22 | Oxl16 6 54 | 0x36
ETB | 23 | 0x17 7 55 | 0x37
CAN | 24 | Ox18 8 56 | 0x38
EM 25 | 0x19 9 57 | 0x39
SUB | 26 | Ox1A 58 | 0x3A
ESC 27 | 0x1B ; 59 | 0x3B
FS 28 | 0x1C < 60 | 0x3C
GS 29 | 0x1D = 61 | 0x3D
RS 30 | Ox1E > 62 | 0x3E
Us 31 | OxIF ? 63 | Ox3F
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Char | Dec | Hex
@ 64 | 0x40
A 65 | 0x41
B 66 | 0x42
C 67 | 0x43
D 68 | 0x44
E 69 | 0x45
F 70 | 0x46
G 71 | 0x47
H 72 | 0x48
I 73 | 0x49
J 74 | 0x4A
K 75 | 0x4B
L 76 | 0x4C
M 77 | 0x4D
N 78 | 0x4E
(0] 79 | 0x4F
P 80 | 0x50
Q 81 | 0x51
R 82 | 0x52
S 83 | 0x53
T 84 | 0x54
8] 85 | 0x55
\% 86 | 0x56
W 87 | 0x57
X 88 | 0x58
Y 89 | 0x59
zZ 90 | 0xSA

[ 91 | 0x5B
\ 92 | 0x5C
93 | 0x5D
A 94 | Ox5E
95 | Ox5F

Char | Dec | Hex
96 | 0x60

a 97 | 0x61
b 98 | 0x62
c 99 | 0x63
d 100 | 0x64
e 101 | 0x65
f 102 | 0x66
g 103 | 0x67
h 104 | 0x68
i 105 | 0x69
j 106 | 0x6A
k 107 | 0x6B
1 108 | 0x6C
m 109 | 0x6D
n 110 | 0x6E
0 111 | Ox6F
p 112 | 0x70
q 113 | 0x71
r 114 | 0x72
s 115 | 0x73
t 116 | 0x74
u 117 | 0x75
v 118 | 0x76
w 119 | 0x77
X 120 | 0x78
y 121 | 0x79
z 122 | 0x7A
{ 123 | 0x7B
| 124 | 0x7C
} 125 | 0x7D
~ 126 | Ox7E
DEL| 127 | 0x7F




For additional information and a more complete listing of the ASCII codes (including the extended
ASCII characters), refer to http://www.asciitable.com/
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