
Hardware-Software Integrated Systems (HSIS)

Coursework - 2021/22 Academic Year

Module Title: Compilers for Embedded Systems

Module Leader: Dr. Vasilios Kelefouras

DEADLINE FOR SUBMISSION: 20th of February at 23.59

Overview

This piece of coursework consists of two parts.

1. Parallelize and vectorize a software application by using OpenMP (30%)

2. Reduce the execution time of an image processing application (70%)

Part 1: Parallelize and vectorize a software application using OpenMP application

programming interface

Download the ‘Helmholtz.c’ file from github. This is a program that solves an advanced mathematical

problem (discretized Helmholtz equation). Your task is to parallelize the application using OpenMP.

You can perform this task either in Linux or in Visual Studio 2019. The marking criteria are as follows.

Marks 0-4 5-9 10-19 20-30

Marking
Criteria

The student has
not used the

OpenMP
annotations

appropriately.
The student has

not used the
OpenMP

annotations to
all the loop

kernels that can
be parallelized*.

The student has
used the OpenMP

annotations
appropriately, but
just for a few loop

kernels.
He/she has not used

the OpenMP
annotations to all the
loop kernels that can

be parallelized*.

The student has
used the OpenMP

annotations
appropriately to all
the loop kernels

that can be
parallelized *.

However, the code
delivered includes

either multi-
threaded code only
or vectorized code

only, not both.

The student has
used the OpenMP

annotations
appropriately for all
the loop kernels that
can be parallelized *.
The code delivered
contains both multi-

threaded and
vectorized code.

* If a loop kernel cannot be parallelized or vectorized in its current form, then you do NOT have to take

actions against this problem, e.g., the loop kernel in line 178 cannot be vectorized by using OpenMP (in its

current form).

Extra information for Visual Studio users only: As it is explained in the notes of the OpenMP

session, Visual Studio (VS) provides limited support for vectorization by using OpeMP. VS support

only the ‘#pragma omp simd’ clause and not the ‘reduction’, ‘aligned’ and ‘omp for simd’ clauses.

The last will give an error, while the other two a warning. Therefore, it is recommended to use Linux.

However, you are allowed to work in VS if you want without losing any marks.

If you still want to use VS, just follow the instructions below:

 Regarding the ‘omp for simd’ clause, it gives an error; if you want to use it, then use the ‘omp

for’ clause instead and put the following comment just after ‘omp for simd not supported’.

 For the simd reduction and simd aligned clauses, you will get a warning during compilation,

e.g., warning C4849 OpenMP 'reduction' clause ignored in 'simd' directive. This means that

this clause is not effective and the compiler ignores it. For these two clauses, you can either

include them and ignore the warning or you can include them in comments.

Part 2: Reduce the execution time of an image processing application

Drawing upon the optimization techniques that you have learned in this module, you will speed up

an image processing application. You can use either Linux or Windows/Mac (Visual Studio). The

source code is found on GitHub. In canny.c/canny.cpp file you will find two loop kernels; these are

the Gaussian Blur and Sobel. You will optimize the Sobel loop kernel only. Please note that there

is no single solution.

The optimization includes vectorization using x86-64 SSE/AVX intrinsics, parallelization

using OpenMP and register blocking. All the C/C++ Intel intrinsics are provided in the following link:

https://software.intel.com/sites/landingpage/IntrinsicsGuide/# . For those who their PCs are old and

do not support AVX technology, they can use SSE intrinsics.

The marking criteria are as follows:

Question
marks

0
marks

0-9
Marks

10-29
marks

30-50
marks

51-70
marks

Question.1
marking
criteria

The
output
image
is not

correct.

The student has
not provided
appropriate
vectorised code
using SSE/AVX
intrinsics.
The output
image is correct
but parts of the
code that can be
executed in
parallel are not
fully vectorised.
The student has
vectorised the
code using
OpenMP.

The output image is
correct and all the
parallel parts are
fully vectorised
using intrinsics.
However, the
implementation
contains one of the
following:
A. Bad practice,
e.g., exceed the
array bounds,
B. register blocking
and parallelization
are not applied.

The student has provided
appropriate and efficient
vectorised code.
The output image is
correct, there is no bad
practice and all the
parallel parts of the code
have been fully
vectorised.
Arrays do not exceed
their bounds.
Register blocking and
parallelization are
applied.
The implementation does
not contain high
latency/throughput
instructions like hadd.

The student has
provided an
outstanding
implementation further
reducing the execution
time.
This means that more
than one output pixels are
computed in each
iteration and therefore
many instructions are
saved (both load and
arithmetical). Register
blocking and
parallelization are
applied.

Fig.1 Visual representation of the Gaussian Blur algorithm. The representation of Sobel is similar

https://software.intel.com/sites/landingpage/IntrinsicsGuide/

Tips:
1. Try to understand how the algorithm works.

2. The mask elements (GxMask, GyMask) contain constant values.

3. Before you apply vectorization, fully unroll the two innermost loops.

4. There are many different ways to implement this routine using SSE/AVX intrinsics and each solution

includes different intrinsics. However, a valid solution exists using the instructions hereafter.

 If using AVX intrinsics:

o _mm256_loadu_si256()

o _mm256_maddubs_epi16()

o _mm256_add_epi16()

o _mm256_hadd_epi16()

o _mm256_extract_epi16()

o _mm256_set_epi8()

 If using SSE instrinsics:

o _mm_loadu_si128()

o _mm_maddubs_epi16()

o _mm_add_epi16()

o _mm_hadd_epi16()

o _mm_extract_epi16()

o _mm_set_epi8()

5. Make sure that the load instructions do not exceed the array bounds. Remember that the ‘r0 =

_mm256_loadu_si256((__m256i *) & A[i][j])’ instruction reads 256bits of data starting from A[i][j], or

equivalently 32 char elements.

The application of register blocking to vectorized code is the same as applying it to non-vectorized

code. The only difference is that instead of using 32bit registers, you are using 256bit registers.

Submission Details

The submission will be done via email to v.kelefouras@plymouth.ac.uk . You will send just the

source and header files (do not send images or visual studio files). Note that if you submit your

coursework after the deadline you mark will be capped to 6/10.

mailto:v.kelefouras@plymouth.ac.uk

