Compilers for Embedded Systems

Integrated Systems of Hardware and Software

Lecture 2-3

Dr. Vasilios Kelefouras

Email: v.kelefouras@plymouth.ac.uk
Website: https://www.plymouth.ac.uk/staff/vasilios-kelefouras

```
School of Computing
(University of Plymouth)
```


Outline

\square Code optimization

- key problems
\square Some basic/simple code optimizations/transformations and manually applied techniques:
- Use the available Compiler Options
\square Reduce complex operations
\square Loop based strength reduction
- Dead code elimination
- Common subexpression elimination
- Use the appropriate precision
- Choose a better algorithm
\square More advanced code transformations
\square Loop merge/distribution, loop tiling, register blocking, array copying, etc

Optimize What?

\square Optimization in terms of
\square Execution time

- Energy consumption
\square Space (Memory size)
■ Reduce code size
- Reduce data size

How to optimize?

\square Optimizing the easy way

- Use a faster programing language, e.g., C instead of Python
- Use a better compiler
- Manually enable specific compiler's options
> Normally, the optimization gain is limited
> No expertise is needed
\square Optimizing the hard way
\square use a profiler to identify performance bottlenecks, normally loop kernels
- Manually apply code optimizations
\square Re-write parts of the code from scratch
> Needs expertise
> Optimization gain is high

Introduction

\square Loops represent the most computationally intensive part of a program.
\square Improvements to loops will produce the most significant effect
\square Loop optimization

- 90\% / 10\% rule
\square Normally, " 90% of a program's execution time is spent in executing 10% of the code"
- larger payoff to optimize the code within a loop

Which Compiler Options to use and when?

\square Compilers offer a large number of transformation/optimization options
\square This is a complex longstanding and unsolved problem for decades
\square Which compiler optimization/transformation to use?
\square Which parameters to use? Several optimizations include different parameters
\square In which order to apply them?

Optimizing SW - problem (1)

\square The key to optimizing software is the correct
\square Choice

- Order
- Parameters
of code optimizations
- One of the most used compilers is gcc
- You can find its options here
\square But why optimizing SW is so hard?
- Normally, the efficient optimizations for a specific code are not efficient for
\square another code
- another processor
- different hardware architecture details, e.g., cache line size
\square or even for a different input size

Optimizing SW - problem (2)

\square Why compilers can't find the optimum choice, order and parameters of optimizations?

1. Compilers are not smart enough to take into account
\checkmark most of the hardware architecture details (e.g., cache size and associativity)
\checkmark custom algorithm characteristics (e.g., data access patterns, data reuse, algorithm symmetries)

- Even experienced programmers
- Do not understand how software runs on the target hardware
- Treat threads as black boxes
- Blindly apply loop transformations
> Peak performance demands going low level
- Understand the hardware, compilers, ISA

Optimizing SW - problem (3)

\square Why compilers can't find the optimum choice, order and parameters of optimizations?
2. The compilation sub-problems depend on each other which makes the problem extremely difficult
\checkmark these dependencies require that all the problems should be optimized together as one problem and not separately

- Toward this much research has been done
- Iterative compilation techniques
- Methodologies that simultaneously optimize only two problems
- Searching and empirical methods
- Heuristics
> But...
- They are partially applicable
- They cannot give the best solution

Optimizing SW - problem (4)

\square Why compilers can't find the optimum choice, order and parameters of optimizations?
3. The exploration space (all different implementations/binaries) is so big that it cannot be searched; researchers try to decrease the space by using

- machine learning compilation techniques
- genetic algorithms
- statistical techniques
- exploration prediction models focusing on beneficial areas of optimization search space
$>$ however, the search space is still so big that it cannot be searched, even by using modern supercomputers

Basic and Simple techniques that will improve your code

\square Use the available Compiler Options

- Reduce complex operations
\square Loop based strength reduction
- Dead code elimination
- Common subexpression elimination
- Use the appropriate precision
- Choose a better algorithm
- Loop invariant code motion
\square Use table lookups
- Function Inline
- Loop unswitching
- Loop unroll
\square Scalar replacement

Use the available compiler options

\square The most used optimization flags/options are the following

- ‘-OO’ - Disables all optimizations, but the compilation time is very low
- '-O1’ - Enables basic optimizations
- '-O2’ - Enables more optimizations
- '-O3' - turns on all optimizations specified by -O2 and enables more aggressive loop transformations such as register blocking, loop interchange etc
- '-Ofast' option - be careful: it is not always safe for codes using floating point arithmetic
- 'Osize' option - Optimizes for code size
- In VS, go to Project tab -> properties -> C/C++ -> Optimization
- gcc options can be found here:
https://gcc.gnu.org/onlinedocs/gcc-4.5.2/gcc/Optimize-Options.html

Loop unroll transformation (1)

- Creates additional copies of loop body
- Always safe

$$
\begin{aligned}
& \text { //C-code1 } \\
& \text { for (i=0; } \mathrm{i}<100 ; \mathrm{i}++ \text {) } \\
& \mathrm{A}[\mathrm{i}]=\mathrm{B}[\mathrm{i}] ;
\end{aligned}
$$

Pros:

\checkmark Reduces the number of instructions
\checkmark Increase instruction parallelism
//C-code2
for (i=0; i < 100; i+=4) \{
$\mathrm{A}[\mathrm{i}]=\mathrm{B}[\mathrm{i}]$;
$\mathrm{A}[i+1]=\mathrm{B}[i+1]$;
$\mathrm{A}[\mathrm{i}+2]=\mathrm{B}[i+2] ;$ $\mathrm{A}[i+3]=\mathrm{B}[i+3] ;$
\}

Cons:

- Increases code size
- Increases register pressure

Loop unroll transformation (2)

// C code1

for (i=0; i<100; i++) \{
// assembly code1 loop_i ...
$\mathrm{A}[\mathrm{i}]=\mathrm{B}[\mathrm{i}]$;
inc i //increment i
cmp i, 100 // compare i to 100
jl loop_i // jump if i lower to 100

// C code2

for (i=0; i<100; i+=4) \{
\}
// assembly code2

loop_i ...	$\mathrm{A}[\mathrm{i}=\mathrm{B}[\mathrm{i}$;
	$\mathrm{A}[i+1]=\mathrm{B}[\mathrm{i}+1]$;
\cdots...	$A[i+2]=B[i+2] ;$
\cdots	$\mathrm{A}[1+3]=\mathrm{B}[1+3]$;

inc i // increment i
cmp i, 100 // compare i to 100
\checkmark The number of arithmetical instructions is reduced ${ }^{j l}$ loop_i // jump if lower

1. Less add instructions for i, i.e., $i=i+4$ instead of $i=i+1$
2. Less compare instructions, i.e., $i==100$?
3. Less jump instructions

Scalar replacement transformation

- Converts array reference to scalar reference
- Most compilers will do this for you automatically by specifying 'O2' option
- Always safe

$$
\begin{array}{ll}
\text { //Code-1 } & \text { //Code-2 } \\
\text { for }(\mathrm{i}=0 ; \mathrm{i}<100 ; \mathrm{i}++)\{ & \text { for }(\mathrm{i}=0 ; \mathrm{i}<100 ; \mathrm{i}++)\{ \\
\mathrm{A}[\mathrm{i}]=\ldots+\mathrm{B}[\mathrm{i}] ; & \mathrm{t}=\mathrm{B}[\mathrm{i}] ; \\
\mathrm{C}[\mathrm{i}]=\ldots+\mathrm{B}[\mathrm{i}] ; & \mathrm{A}[\mathrm{i}]=\ldots+\mathrm{t} ; \\
\mathrm{D}[\mathrm{i}]=\ldots+\mathrm{B}[\mathrm{i} ; \mathrm{l} ; & \mathrm{C}[\mathrm{i}]=\ldots+\mathrm{t} ; \\
\} & \mathrm{D}[\mathrm{i}]=\ldots+\mathrm{t} ; \\
& \}
\end{array}
$$

\checkmark Reduces the number of L/S instructions
\checkmark Reduces the number of memory accesses

Scalar Replacement Transformation example (1)

// C-code1
for ($i=0 ; i<300 ; i++$) for ($j=0 ; j<300 ; j++$) Y[i] + $=A[i][j]$ * $X[j] ;$

// C-code2

$$
t m p=Y[i] ;
$$

for ($j=0 ; j<300 ; j++$) \{ tmp+= A[i][j] * X[j];

Main memory

- $\mathrm{Y}[\mathrm{i}]$ is not affected by j loop
- For every $\mathrm{j}, \mathrm{Y}[\mathrm{i}]$ is redundantly loaded/stored from/to memory
- A load/store instruction needs 1-3 CPU cycles
\checkmark the number of L/S instructions is reduced \checkmark the number of L1 data accesses is reduced

You have learned that the largest the loop unroll factor, the largest the gain in instructions, but is it always efficient?
\square When code2 is faster than codel?
a) Always
b) Never
(d) It depends on the hardware architecture
d) It is impossible to know

When the code2 size becomes larger than L1 instruction cache size, code2 is no longer efficient

//code1
 //code2

$\mathrm{N}=1000000$;
$\mathrm{N}=1000000$;
for (i=0; i < N; i+=10000) \{ $\mathrm{A}[\mathrm{i}]=\mathrm{B}[\mathrm{i}]$; $\mathrm{A}[i+1]=\mathrm{B}[\mathrm{i}+1]$; $\mathrm{A}[i+2]=\mathrm{B}[i+2] ;$ $\mathrm{A}[i+3]=\mathrm{B}[i+3] ;$
A[i+9999] = B[i+9999]:

Use as less complex operations as possible (1)

\square Division is expensive
\square On most CPUs the division operator is significantly more expensive (i.e. takes many more clock cycles) than all other operators. When possible, refactor your code to not use division.
\square Use multiplication instead
\square For example, change " / 5.0 ' to ' * 0.2 '
\square Use shift operations instead of multiplication and division

- Only for multiplications and division with powers of 2
\square Compilers will do that for you though

Use as less complex operations as possible (2)

\square Functions such as pow(), sqrt() etc are expensive, so avoid them when possible
\square E.g., avoid calling functions such as strlen() all the time, call it once ($\mathrm{x}=$ strlen()) and then $\mathrm{x}++$ or x -- when you add or remove a character.
\square Avoid Standard Library Functions

- Many of them are expensive only because they try to handle all possible cases
- Think of writing your own simplified version of a function, if possible, tailored to your application
- E.g., $\operatorname{pow}(a, b)$ function where b is an integer and $b=[1,10]$

Strength Reduction (1)

\square Strength reduction is the replacement of an expression by a different expression that yields the same value but is cheaper to compute
\square Most compilers will do this for you automatically by specifying '-O1' option
do $i=1, n$
$\mathrm{a}[\mathrm{i}]=\mathrm{a}[\mathrm{i}]+\mathrm{c} * \mathrm{i}$
end do

> (a) original loop
\square Normally, addition needs less CPU cycles than multiplication
$\square \quad$ In each iteration c is added to T

$$
\begin{aligned}
& T=c \\
& \text { do } i=1, n \\
& \quad a[i]=a[i]+T \\
& T=T+c \\
& \text { end do }
\end{aligned}
$$

Loop-Invariant Code Motion

\square Any part of a computation that does not depend on the loop variable and which is not subject to side effects can be moved out of the loop entirely
\square Most compilers will do this for you automatically by specifying '-O1' option

$$
\begin{aligned}
& \text { do } i=1, n \\
& a[i]=a[i]+\operatorname{sqrt}(x)
\end{aligned}
$$

end do
(a) original loop
if $(n>0) C=\operatorname{sqrt}(x)$
do $i=1, n$
$a[i]=a[i]+C$
end do
\square The value of $\operatorname{sqrt}(x)$ is not affected by the loop
\square Therefore, its value is computed just once, outside of the loop
\square If $\mathrm{n}<1$, the loop is not executed and therefore C must not be assigned with the sqrt(x) value
(b) after code motion

Function Inline

\square Replace a function call with the body of the function
\square It can be applied in many different ways

- Either manually or automatically
- '-Ol' applies function inline
$\square \ln \mathrm{C}$, a good option is to use macros instead (if possible)
- Pros:-

1. It speeds up your program by avoiding function calling overhead
2. It saves the overhead of pushing/poping on the stack
3. It saves overhead of return call from a function
4. It increases locality of reference by utilizing instruction cache
\square Cons

- The main drawback is that it increases the code size

Loop Unswitching

- A loop containing a loop-invariant IF statement can be transformed into an IF statement containing two loops
\square After unswitching, the IF expression is only executed once, thus improving run-time performance
\square After unswitching, the loop body does not contain an IF condition and therefore it can be better optimized by the compiler
\square Most compilers will do this for you automatically by specifying '-O3' option

$$
\begin{aligned}
& \text { for }(i=0 ; i<N ; i++)\{ \\
& \text { if }(x<0) \\
& \quad a[i]=0 ; \\
& \text { else } \\
& \quad b[i]=0 ; \\
& \}
\end{aligned}
$$

$$
\begin{aligned}
& \text { if }(x<0) \\
& \text { for }(i=0 ; i<N ; i++)\{ \\
& \quad a[i]=0 ; \\
& \} \\
& \text { else } \\
& \text { for (} i=0 ; i<N ; i++)\{ \\
& b[i]=0 ; \\
& \text { \} }
\end{aligned}
$$

Register Blocking

also known as Loop unroll and jam (1)

\square Register blocking is primarily intended to
\square increase register exploitation (data reuse)
\square reduce the number of L / S instructions
\square reduce the number of memory accesses
> Register blocking involves two transformations
\square Loop unroll
\square Scalar replacement
\square Register blocking is included in '-O3' optimization option
\square In gcc you must enable this option : -floop-unroll-and-jam
\square However, an experienced developer can achieve better results

Register Blocking

also known as Loop unroll and jam (2)

$\square \quad$ The steps are:

1. One or more loops (not the innermost) are partially unrolled and as a consequence common array references are exposed in the loop body (data reuse) instructions is reduced
2. Then, the array references are replaced by variables (scalar replacement transformation) and thus the number of L / S

Step2

// C code of MMM
for (i=0; i<N; i++)
for ($\mathrm{j}=0$; $\mathrm{j}<\mathrm{N} ; \mathrm{j}+=2$) \{
c0=C[i][j];
c1=C[i][j+1];

Step1

// C code of MMM
for ($\mathrm{i}=0$; $\mathrm{i}<\mathrm{N}$; $\mathrm{i}++$)
for ($\mathrm{j}=0$; $\mathrm{j}<\mathrm{N} ; \mathrm{j}+=2$) \{
for ($k=0$; $k \leq N ; k++$)
$\left.{ }^{1} \bar{C} \bar{C}[\bar{i} \overline{[} \bar{j}]{ }^{-1+=}{ }^{1} A[i][k]\right]_{1}^{*} B[k][j] ;$
C[ij]j] does not ${ }^{1} \mathrm{C}[\mathrm{i}][\mathrm{j}+1]_{1}{ }^{1}+={ }^{1} \mathrm{~A}[\mathrm{~A}[\mathrm{I}] \mathrm{k}]^{1} * \mathrm{~B}[\mathrm{k}][\mathrm{j}+1]$;
depend on the - ----1 - - - Common
innermost loop
Get it out and use
register
for ($k=0$; $k<N ; k++$) a0=A[i][k];
$\mathrm{cO}+=\mathrm{aO}$ * $\mathrm{B}[\mathrm{k}][\mathrm{j}] ;$
$\mathrm{c} 1+=\mathrm{a} 0$ * $\mathrm{B}[\mathrm{k}][\mathrm{j}+1]$;
\}
$\mathrm{C}[\mathrm{i}][\mathrm{j}]=\mathrm{c} 0$;
$C[i][j+1]=c 1$;
\}

Register Blocking

also known as Loop unroll and jam (3)

\square Key Point:
\square The number of the variables in the loop kernel must be lower or equal to the number of the available registers
\square Otherwise, some of the variables cannot remain in the registers and they are loaded many times from L1 data cache (dL1), degrading performance

- This is also known as register spills

Register Blocking (4) Another example

- $A[i j[k]$ is loaded and then used 4 times (data reuse)
- Therefore, $A[i][k]$ is loaded 4 times less than before
- Every load from dL1 costs 1-3 cycles
- In the first case, C[i][j] is loaded/stored N^{3} times, i.e., (N times for k loop $\times N$ times for j x N times for i loop)
- Now, registers are used to hold the intermediate results and therefore they are loaded/stored from/to registers not dL1
- Using registers is much faster Now, C array references are outside k loop and therefore it is loaded/stored N^{2} times only

Step1

// C code of MMM
for (i=0; i<N; i++) for ($\mathrm{j}=0$; $\mathrm{j}<\mathrm{N} ; \mathrm{j}+=4$) $\{$ for ($k=0 ; k<N ; k++$)
C[i][j] +=A[i][k] * B[k][j];
$\mathrm{C}[\mathrm{i}][\mathrm{j}+1]+=\mathrm{A}[\mathrm{i}][\mathrm{k}] * \mathrm{~B}[\mathrm{k}][\mathrm{j}+1]$;
$\mathrm{C}[\mathrm{i}][\mathrm{j}+2 \mathrm{2}]+=\mathrm{A}[\mathrm{i}][\mathrm{k}] * \mathrm{~B}[\mathrm{k}][\mathrm{j}+2]$;
$\mathrm{C}[\mathrm{i}][\mathrm{j}+3]+=\mathrm{A}[\mathrm{i}][\mathrm{k}]$ * $\mathrm{B}[\mathrm{k}][\mathrm{j}+3]$;
\} \}

Step2
// C code of MMM
for ($\mathrm{i}=0$; $\mathrm{i}<\mathrm{N}$; $\mathrm{i}++$)
for ($\mathrm{j}=0$; $\mathrm{j}<\mathrm{N} ; \mathrm{j}+=4$) \{
c0=C[i][j];
c1=C[i][j+1];
c2=C[i][j+2];
c3=C[i][j+3];
for ($k=0 ; k<N ; k++$)

- $0=A[i][k]$;
co += a0 * B[k][j];
c1 += a0 * B[k][j+1];
c2 += a0 * B[k][j+2];
c3 += a0 * $\mathrm{B}[\mathrm{k}][\mathrm{j}+3]$;
C[i][j]=c0;
C[i][j+1]=c1;
$\mathrm{C}[\mathrm{i}][\mathrm{j}+2 \mathrm{Z}=\mathrm{c} 2$;
$C[i][j+3]=c 3 ; \quad\}$

Register Blocking (5)
 An example

\square The number of L / S instructions is reduced and as a consequence the number of memory accesses
\square The number of arithmetical instructions is reduced too as there are less address computations for $\mathrm{C}[\mathrm{i}][\mathrm{i}]$ and $\mathrm{A}[\mathrm{i}][\mathrm{k}]$
\square In the first case a different memory address is used for each load/store of A[][]
\square Now, registers are used instead and therefore less memory addresses are computed

Step1

// C code of MMM
for (i=0; i<N; i++) for ($\mathrm{j}=0$; j<N; j+=4) \{ for ($k=0 ; k<N ; k++$)
$\mathrm{C}[\mathrm{i}][\mathrm{j}]+=\mathrm{A}[\mathrm{i}][\mathrm{k}] * \mathrm{~B}[\mathrm{k}][\mathrm{j}] ;$
$\mathrm{C}[\mathrm{i}][\mathrm{j}+1]+=\mathrm{A}[\mathrm{i}][\mathrm{k}] * \mathrm{~B}[\mathrm{k}][\mathrm{j}+1]$;
$C[i][j+2]+=A[i][k] * B[k][j+2] ;$
$\mathrm{C}[\mathrm{i}][\mathrm{j}+3]+=\mathrm{A}[\mathrm{i}][\mathrm{k}] * \mathrm{~B}[\mathrm{k}][\mathrm{j}+3]$;

Step2

// C code of MMM
for (i=0; i<N; i++)
for ($\mathrm{j}=0 ; \mathrm{j}<\mathrm{N} ; \mathrm{j}+=4$) \{
c0=C[i][j];
c1=C[i][j+1];
c2 $=C[i][j+2]$;
c3=C[i][j+3];
for ($k=0 ; k<N ; k++$) \{ $\mathrm{a} 0=\mathrm{A}[\mathrm{i}][\mathrm{k}]$;
$\mathrm{cO}+=\mathrm{aO}$ * $\mathrm{B}[\mathrm{k}][\mathrm{j}]$;
c1 += a0 * B[k][j+1];
$\mathrm{c} 2+=\mathrm{aO} * \mathrm{~B}[\mathrm{k}][\mathrm{j}+2]$;
c3 += a0 * B[k][j+3];
\}
$C[i][j]=c 0 ;$
$C[i][j+1]=c 1$;
$C[i][j+2]=c 2$;
$C[i][j+3]=c 3 ; \quad\}$

Register Blocking (6)

Activity

// C code of MMM
for ($\mathrm{i}=0 ; \mathrm{i}<\mathrm{N} ; \mathrm{i}+=2$)
for ($\mathrm{j}=\mathrm{O} ; \mathrm{j}<\mathrm{N} ; \mathrm{j}+=2$) \{ for ($k=0 ; k<N ; k++$)
\} \}

Loop interchange

\square The loop interchange transformation switches the order of the loops in order to improve data locality or increase parallelism
\square Not always safe, only when data dependencies allow it
$\square \ln C / C++$, accessing arrays column wise is inefficient (see next)

Column-wise (bad)

int i, j, N=1000; int $A[N][N]$;
for ($j=0 ; j<N ; j++$) for ($i=0 ; i<N ; i++$)
$A[i][j]=i+j ;$

Row-wise (good)
int i, j, N=1000; int $A[N][N]$;
for (i=0; i<N; i++) for ($j=0 ; j<N ; j++$)
$A[i][j]=i+j ;$

Row-major order

Column-major order

Loop interchange

A more complicated example

\square Which one is more efficient and why?

```
for (j=0; j<N; j++)
for (i=0; i<N; i++)
    total [i ] = total [ i ] + A [ i ] [j];
\square for (i=0;i<N;i++)
loop total[i] = total[i] + A[i][j];
interchange
```


Loop interchange

A more complicated example

- total [] is loaded and stored N^{2} times
- all the intermediate results are loaded/stored from/to dL1
- total[i] is invariant with respect to the inner loop and therefore it can be replaced by a register, yielding better data locality
- This can be applied either manually or automatically by compiling with '-O3’

for $(j=0 ; j<N ; j++)$ for $(i=0 ; i<N ; i++)$ total $[i]=$ total $[i]+A[i][j] ;$	\square
	loop

- A[J[] is accessed column-wise
- A[][] is accessed row-wise*

$$
\begin{aligned}
& \text { for }(i=0 ; i<N ; i++)\{ \\
& t=\text { total }[i] ; \\
& \operatorname{for}(j=0 ; j<N ; j++)\{ \\
& t=t+A[i][j] ; \\
& \} \\
& \text { total }[i]=t ;\}
\end{aligned}
$$

Dependencies in programs (1)

\square Data dependencies
\square statement S 3 cannot be moved before either S1 or S2 without producing incorrect values

S1: Pl=3.14; S2: R=5.0;
S3: AREA=2 * PI *R
\square Control dependencies
\square statement S 2 cannot be executed before S1 in a correctly transformed program, because the execution of S2 is conditional upon the execution of the branch in S1

- Statement S3 cannot be executed before S2

Dependencies in programs (2)

\square Definition: There is a data dependence from statement S 1 to statement S2 (statement S2 depends on statement S1) if and only if 1. both statements access the same memory location and at least one of them stores into it and
2. there is a feasible run-time execution path from S 1 to S 2 .

Data Dependencies - classification

\square Data dependencies reside into 3 categories

Wite
B. Write after Read (WAR) or anti-dependence
c. Write after Write (WAW) or output dependençe

A: S1: PI=3.14;
S2: $R=2$;
S3: $\mathbf{S}=\mathbf{2} \times \mathbf{P I} \times \mathbf{R} \quad / / \mathrm{S} 3$ cannot be executed before $S 1$, S2 - true dependence

B: S1: $\mathrm{Tl}=\mathrm{R1;} \mathrm{//S3} \mathrm{cannot} \mathrm{be} \mathrm{executed} \mathrm{before} \mathrm{or} \mathrm{in} \mathrm{parallel} \mathrm{with} \mathrm{S1} \mathrm{-} \mathrm{anti-}$
T=...
S2: R2=PI-T1; //dependence. But it can be eliminated by applying register
S3: $\mathrm{R1}=\mathrm{PI}+\mathrm{S} ; / /$ renaming - this is why it is called 'anti' dependence

S1: Tl=R1;
S2: R2=PI-T1;
S3: R3=PI+S;

C: $\mathrm{S} 1: \mathrm{Tl}=\mathrm{R} 1 ; \quad \mathrm{S} 1: \mathrm{Tl}=\mathrm{R} 1$;
S2: T1=R2+5;

WAW dependence is eliminated by applying
register renaming

Data Dependencies - Terminology

\square Data dependencies:
\square Read after Write (RAW) or true dependence $\quad S 1 \xrightarrow{\boldsymbol{\delta}^{1}} S 2 \quad O R \quad S 1 \xrightarrow{\boldsymbol{\delta}} \boldsymbol{S 2}$
\square Write after Read (WAR) or anti-dependence
$S 1 \xrightarrow{\delta^{-1}} S 2$
\square Write after Write (WAW) or output dependence $\boldsymbol{S 1} \xrightarrow{\boldsymbol{\delta}^{0}} \boldsymbol{S 2}$

- The convention for graphically displaying dependence is to depict the edge as flowing from the statement that executes first (the source) to the one that executes later (the sink).
- Here S2 depends on S1

Data Dependencies - classification

Data Dependencies in loops Loop dependent dependencies

\square Loop dependent dependencies

- the statement S1 on any loop iteration depends on the instance of itself from the previous iteration.
\square A true dependence occurs for each different colour
- The program writes in iteration i and reads in iteration i+ 1
- The iterations cannot be executed in parallel

```
    for (i = 1; i<N i+++)
S1: }\quadA(i+1)=A(i)+B(i
```


$i=1: A[2]=A[1]+B[1]$
$i=2: A[3]=A[2]+B[1]$
$i=3: A[4]=A[3]+B[3]$
$i=4: A[5]=A[4]+B[4]$
$i=5: A[6]=A[5]+B[5]$

Loop dependent dependencies Terminology

\square On the right, there is a loop dependent true dependence

$$
S 1 \xrightarrow{\delta_{1}^{1}} S 1
$$

True, Anti, Output

Nesting level value for loop dependent dependencies or ' ∞ ' for loop independent dependencies

$$
\begin{aligned}
& \text { for }(i=1 ; i<N i++) \\
& \text { S1: } \quad A(i+1)=A(i)+B(i)
\end{aligned}
$$

$$
\begin{aligned}
& i=1: A[2]=A[1]+B[1] \\
& i=2: A[3]=A[2]+B[1] \\
& i=3: A[4]=A[3]+B[3] \\
& i=4: A[5]=A[4]+B[4] \\
& i=5: A[6]=A[5]+B[5] \\
& \cdots
\end{aligned}
$$

Loop dependent dependencies another example

\square Now, the distance of the dependence is 2
\square Therefore $\mathrm{i}=1$ and $\mathrm{i}=2$ can be executed in parallel - no dependence exists

S1: for ($i=1 ; i<N i++$)
S2: $\quad A(i+2)=A(i)+B(i)$

$$
S 2 \xrightarrow{\delta_{1}{ }^{1}} S 2
$$

$$
i=1: A[3]=A[1]+B[1]
$$

$$
i=2: A[4]=A[2]+B[1]
$$

$$
i=3: A[5]=A[3]+B[3]
$$

$$
i=4: A[6]=A[4]+B[4]
$$

$$
i=5: A[7]=A[5]+B[5]
$$

No dependence exists between 2 :. $i=6: A[8]=A[6]+B[5]$ iterations - they can be executed in parallel or vectorised (see later on)

Data Dependencies

Distance Vector \& Direction Vector

\square It is convenient to characterize dependences by the distance between the source and sink of a dependence in the iteration space
\square We express this in terms distance vectors and direction vectors
\square Distance Vector
\square Suppose that there is a dependence from S1 on iteration \boldsymbol{i} (of a loop nest of n loops) to $S 2$ on iteration \boldsymbol{j}, then the dependence distance vector $\boldsymbol{d}(i, j)$ is defined as a vector of length n such that $\boldsymbol{d}\left(i, \boldsymbol{j}_{k}=\boldsymbol{j}_{k}-\mathbf{i}_{k}\right.$
\square Direction Vector: is defined as a vector of length n such that

$$
\boldsymbol{D}(\boldsymbol{i}, \boldsymbol{j})_{k}=\quad \begin{aligned}
& \text { " }<" \text { if } \boldsymbol{d}(\mathbf{i}, \boldsymbol{j})_{k}>0 \\
& \text { " }=" \text { if } \boldsymbol{d}(\boldsymbol{i}, \boldsymbol{j})_{k}=0 \\
& \\
& \text { ">" if } \boldsymbol{d}(\mathbf{i}, \boldsymbol{j})_{k}<0
\end{aligned}
$$

Data Dependencies
 An example

$$
\begin{aligned}
& \text { for }(i=1 ; i<10 ; i++) \\
& \text { for }(j=0 ; j<20 ; j++) \\
& \quad \text { for }(k=0 ; k<100 ; k++) \\
& \quad \text { for }(n=2 ; n<80 ; n++) \\
& \text { S1: } \quad A(i, j+2, k, n)=A(i, j, k, n+1)+\text { temp; }
\end{aligned}
$$

- Distance vector: $d(i, j, k, n)=(0,2,0,-1)$
- Direction vector: $D(i, j, k, n)=(=,<,=,>)$

$$
\delta_{2}{ }^{1}
$$

- The dependence is always given by the leftmost non ' $=$ ’ symbol

Loop Merge also known as Loop Fusion (1)

\square Loop Merge is a transformation that combines 2 independent loop kernels that have the same loop bounds and number of iterations
\square This transformation is not always safe
\square data dependencies must be preserved

$$
\begin{array}{lll}
\text { for }(i=1 ; i<N ; i++) \\
A[i]=B[i] ; & & \text { for }(i=1 ; i<N ; i++)\{ \\
& A[i]=B[i] ; \\
\text { for }(i=1 ; i<N ; i++) \\
B[i]=A[i-1] ; & B[i]=A[i-1] ; \\
& \}
\end{array}
$$

Loop Merge also known as Loop Fusion (2)

Benefits:

\square Reduces the number of arithmetical instructions
\square Remember each loop is transformed into an add, compare and jump assembly instruction

- May improve data reuse
\square May enable other loop transformations

Drawbacks:

\square May increase register pressure

- May hurt data locality (extra cache misses)
- May hurt instruction cache performance

$$
\begin{aligned}
& \text { for }(i=1 ; i<N ; i++) \\
& A[i]=B[i] ; \\
& \text { for }(i=1 ; i<N ; i++) \\
& B[i]=A[i-1] ;
\end{aligned}
$$

$$
\begin{aligned}
& \text { for }(i=1 ; i<N ; i++)\{ \\
& A[i]=B[i] ; \\
& B[i]=A[i-1] ; \\
& \}
\end{aligned}
$$

Loop Merge also known as Loop Fusion (3)

$$
\begin{array}{ll}
\text { for }(i=1 ; i<N ; i++) & \\
A[i]=B[i] ; & \begin{array}{l}
\text { for }(i=1 ; i<N ; i++)\{ \\
A[i]=B[i] ; \\
\text { for }(i=1 ; i<N ; i++) \\
B[i]=A[i-1] ;
\end{array} \\
\begin{array}{l}
B[i]=A[i-1] ; \\
\}
\end{array} &
\end{array}
$$

Main memory
\square Consider the case where the arrays are bigger than L1 data cache, then
\square In the first case, both arrays are accessed from L2 and/or main memory twice
\square By merging the two loop kernels into one, the arrays are loaded once

- data locality is achieved

Loop Merge not always safe

\square Is the following transformation correct?

- NO - Data dependencies are not preserved

$$
\begin{array}{ll}
i=1: A[1]=B[1] . & \\
i=2: A[2]=B[2] & \\
& \text { for }(i=1 ; i<N ; i++) \\
i=3: A[3]=B[3] & A[i]=B[i] ; \\
& \ldots
\end{array} \quad\left[\begin{array}{ll}
&
\end{array}\right.
$$

$$
A[i]=B[1] ;
$$

$$
B[i]=A[i+1] ;
$$

$$
\begin{array}{ll}
& \text { for }(i=1 ; i<N ; i++) \\
i=1: B[1]=A[2], & B[i]=A[i+1] ; \\
i=2: B[2]=A[3] \\
i=3: B[3]=A[4] &
\end{array}
$$

Loop Merge not always safe

\square Is the following transformation correct？
\square NO－Data dependencies are not preserved
\square How can we be sure？
－The top subscript must be larger or equal to the bottom subscript
－Here， $\mathrm{i}>=\mathrm{i}+1$ is not true，thus loop merge is not safeー－ーニンン

Loop Distribution

also known as Loop Fission (1)

\square Loop Distribution is a transformation where a loop kernel is broken into multiple loop kernels over the same index range with each taking only a part of the original loop's body
\square This transformation is not always safe
\square data dependencies must be preserved
\square The top subscript must be larger or equal to the bottom subscript

$$
\begin{array}{lll}
\text { for }(i=1 ; i<N ; i++)\{ \\
A[i]=B[i] ; \\
B[i]=A[i-1] ; \\
\}
\end{array} \quad \leadsto \quad \begin{array}{ll}
\text { for }(i=1 ; i<N ; i++) \\
A[i]=B[i] ; \\
& \\
& \text { for }(i=1 ; i<N ; i++) \\
B[i]=A[i-1] ;
\end{array}
$$

Loop Distribution also known as Loop Fission (2)

Benefits:

\square May enable partial/full parallelization
\square This optimization is most efficient in multi/many core processors that can split a task into multiple tasks for each processor
\square May reduce register pressure
\square May improve data locality (cache misses)
\square May enable other loop transformations

Drawbacks:

\square Increases the number of arithmetical instructions

- May hurt data locality

$$
\begin{aligned}
& \text { for }(i=1 ; i<N ; i++)\{ \\
& A[i]=B[i] ; \\
& B[i]=A[i-1] ; \\
& \}
\end{aligned}
$$

for ($i=1 ; i<N ; i++$)
$A[i]=B[i] ;$
for ($i=1 ; i<N ; i++$)
$B[i]=A[i-1]$;

Activity

Should we apply loop merge or not?

$$
\begin{aligned}
& \text { // A } \\
& \text { for (i }=0 ; i<N ; i++) \\
& \qquad \text { for (}(j=0 ; j<N ; j++) \\
& y[i]=y[i]+\text { beta }{ }^{*} A[i][j] * x[j] ;
\end{aligned}
$$

$$
\text { for }(i=0 ; i<N ; i++)
$$

$$
\text { for }(j=0 ; j<N ; j++)
$$

$$
w[i]=w[i]+\text { alpha } * A[i][j] ;
$$

//B
for ($i=0 ; i<N ; i++$)

$$
\text { for }(j=0 ; i<N ; j++)
$$

$$
y[i]+=A[i][i] * x[i]
$$

for ($i=0 ; i<N ; i++$)

$$
\text { for }\left(j=0 ; i<N ; i^{++}\right)
$$

$$
y 2[i]+=A 2[i][i] * x 2[i]
$$

Loop Reversal (1)

$$
\begin{aligned}
& \text { for (i=end; } i>=\text { start; } i--) \\
& \qquad \text { A[i] = } . . \text {; } \\
& \text { OR } \\
& \text { for (i=start; } i<=\text { end; } i++ \text {) } \\
& \text { A[end - (} i \text { - start) }]=\ldots \text {; }
\end{aligned}
$$

\square Loop reversal is a transformation that reverses the order of the iterations of a given loop
\square It is not always safe
\square Remember, in the direction vector, the leftmost non '=" symbol has to be the same as before
\square Loop reversal, has no effect on a loop independent dependence.

Loop Reversal (2)

for ($(\mathbf{i}=0 ; i<N ; i++$)

$$
\begin{aligned}
& \text { for }(j=0 ; j<P ; j++) \\
& \qquad A[j][i]=A[j+1][i-1]+\text { temp; }
\end{aligned}
$$

$$
\begin{aligned}
& d(i, j)=(1,-1) \\
& D(i, j)=(<,>) \\
& \uparrow
\end{aligned}
$$

Dependence
\square Loop reversal cannot be applied to iloop

- In this case $D(i, i)=(>,>)$ and therefore the leftmost non "=' symbol changes, violating data dependencies
\square Loop reversal can be applied to j loop though
- In this case $D(i, i)=(<,<)$ and therefore the leftmost non "=' symbol does not change

Loop Reversal (3)

\square Main Benefits
\square Increase parallelism

- In loop nests, loop reversal is used to uncover parallelism and move it to the outermost iterator possible
- Enable other transformations

Loop Reversal - $1^{\text {st }}$ example (1)

$$
\begin{aligned}
& \text { for }(i=0 ; i<N ; i++) \\
& \text { for }(j=0 ; j<P ; j++) \\
& \quad A[j][i]=A[j+1][i-1]+\text { temp; }
\end{aligned}
$$

Dependence
$D(i, j)=(<,>)$
\square Problem: The array is accessed column-wise; this gives

- Low performance
- High energy consumption
\square Potential Solution: Apply loop interchange
\square However, loop interchange gives $D(j, i)=(>,<)$, violating data dependencies
\square Solution: Apply loop reversal to jloop which gives $D(i, i)=(<,<)$
- Then, loop interchange is valid as it gives $D(j, i)=(<,<)$

Loop Reversal - $1^{\text {st }}$ example (2)

Dependence

$$
\begin{aligned}
& \text { for (} i=0 ; i<N ; i++ \text {) } \\
& \text { for }(j=0 ; j<P ; j++) \quad D(i, j)=(<,>) \text { reversal for }(i=0 ; i<N ; i++) \\
& A[j][i]=A[j+1][i-1]+\text { temp; } \\
& \uparrow \\
& \text { column-wise array accesses (inefficient) } \\
& \text { for (} j=P-1 ; j>=0 ; j--) \\
& A[j][i]=A[j+1][i-1]+\text { temp; } \\
& \text { loop } \\
& \text { interchange }
\end{aligned}
$$

Dependence
$D(j, i)=(<,<)$
for (j=P-1; j>=0; j--)

$$
\text { for }(i=0 ; i<N ; i++)
$$

$$
A[j][i]=A[j+1][i-1]+\text { temp; }
$$

|

Loop Reversal $-2^{\text {nd }}$ example

for ($i=0 ; i<=N ; i++$) Apply loop reversal for ($i=0 ; i<=N ; i++$) $B[i]=A[i]+\ldots ; \quad$ to the $2^{\text {nd }}$ loop kernel $\quad B[i]=A[i]+\ldots$;
for ($i=0, j<=N ; i++$)
$C[i]=B[N-i]-\ldots ;$

$$
\begin{aligned}
& \text { for }(i=0 ; i<=N ; i++) \\
& C[N-i]=B[N-(N-i)]-\ldots ;
\end{aligned}
$$

Loop merge not possible i >= N-i, not true

Loop merge is now possible as $\mathbf{i}>=\mathbf{i}$

$$
\begin{gathered}
\text { for }(i=0 ; i<=N ; i++)\{ \\
B[i]=A[i]+\ldots ; \\
C[N-i]=B[i]-\ldots ; \\
\}
\end{gathered}
$$

Loop Peeling

\square Separate special cases at either end
\square Always safe

$$
\begin{aligned}
& \text { for (i=0; i<100; i++) } \\
& \qquad A[i]=A[0]+B[i] ; \\
& \vdots \\
& \text { Loop carried dependence }- \text { The } \\
& \text { compiler cannot parallelize it }
\end{aligned}
$$

$$
A[0]=A[0]+B[0] ;
$$

$$
\text { for }(i=1 ; i<100 ; i++)
$$

$$
A[i]=A[0]+B[i] ;
$$

No dependence - The compiler can parallelize it or vectorise it

Loop Peeling An example

$$
\begin{gathered}
\text { for }(i=2 ; i<=N ; i++) \\
B[i]={ }_{1}^{4} A[i]+\text { temp; } \\
\vdots \\
\text { for }(i=3 ; i<=N ; i++) \\
C[i]=A[i]+D[i] ;
\end{gathered}
$$

Apply loop peeling

$$
\begin{aligned}
& \text { If }(N>=2) \\
& B[2]=A[2]+\text { temp; }
\end{aligned}
$$

to the $1^{\text {st }}$ loop kernel

$$
\begin{array}{r}
\text { for }(i=3 ; i<=N ; i++) \\
B[i]=A[i]+\text { temp; }
\end{array}
$$

Loop merge not possible

Loop Bump

$$
\begin{aligned}
& \text { for }(i=s t a r t ; i<e n d ; i++) \\
& A[i]=\ldots
\end{aligned} \quad \square \quad \begin{aligned}
& \text { for }(i=s t a r t+N ; i<e n d+N ; i++) \\
& A[i-N]=\ldots
\end{aligned}
$$

\square Changes the loop bounds
\square It is always safe
\square Benefits:

- It can enable other transformations
\square It can increase parallelism

Loop Bump
 $1^{\text {st }}$ example

$$
\begin{gathered}
\text { for }(i=2 ; i<N ; i++) \\
B[i]=A[i]+\ldots ;
\end{gathered}
$$

Apply loop bump to the $2^{\text {nd }}$ loop kernel

$$
\text { for (} i=0 ; i<N-2 ; i++)
$$

$$
\begin{gathered}
\text { for }(i=2 ; i<N ; i++) \\
B[i]=A[i]+\ldots ;
\end{gathered}
$$

$$
C[i]=B[i+2]+\ldots ;
$$

$$
\begin{gathered}
\text { for }(i=0+2 ; i<N-2+2 ; i++) \\
C[i-2]=B[i+2-2]+\ldots ;
\end{gathered}
$$

Loop merge is now possible as $\mathbf{i}>=\mathbf{i}$

$$
\begin{gathered}
\square \\
\text { for }(i=2 ; i<N ; i++)\{ \\
B[i]=A[i]+\ldots ; \\
C[i-2]=B[i]+\ldots ;
\end{gathered}
$$

Array copying transformation (1)

\square Copies the array's elements into a new array before computation

- The new array's elements will be written in consecutive main memory locations
\square Always safe but incurs high cost

$$
\begin{aligned}
& \text { //array copying } \\
& \text { for (} i=0 ; i!=N ; i++ \text {) } \\
& \text { for (} i=0 ; i!=M ; i++) \quad \text { for }(j=0 ; j!=N ; j++) \\
& \text { for }(j=0 ; j!=M ; j++) \quad \text { B_transpose }[i][j]=B[j][i] \text {; } \\
& \text { for (} k=0 ; k!=M ; k++ \text {) } \\
& C[i][j]+=A[i][k] * B[k][j] ; \\
& \text { for (} i=0 ; i!=M ; i++ \text {) } \\
& \text { for (} j=0 ; j!=M ; j++ \text {) } \\
& \text { for (} k=0 ; k!=M ; k++ \text {) } \\
& \text { C[i][j]+=A[i][k] * B_transpose[j][kk]; }
\end{aligned}
$$

Vectorization is extremely pure
Vectorization can be applied effectively

Array copying transformation (2)

\square When should we apply array copying?
\square When the number of cache misses is high and multi-dimensional arrays exist

- In vectorization, as vectorization needs consecutive memory locations

$$
\begin{array}{ll}
& \begin{array}{l}
\text { //array copying } \\
\text { for }(i=0 ; i!=N ; i++) \\
\text { for }(j=0 ; j!=N ; j++)
\end{array} \\
\text { for }(i=0 ; i!=M ; i++) \\
\text { for }(j=0 ; j!=M ; j++) \\
\text { for }(k=0 ; k!=M ; k++) \\
C[i][j]+=A[i][k] * B[k][j] ; & \\
& \\
& \text { for }(i=0 ; i!=M ; i++) \\
& \text { for }(j=0 ; j!=M ; j++) \\
& \text { for }(k=0 ; k!=M ; k++) \\
& C i j[j]+=A[i][k]{ }^{*} B+\operatorname{transpose}[j][j][j] ;
\end{array}
$$

Software Prefetching

\square This is an advanced topic and it is not going to be studied
\square Next week, we will learn how to use SSE/AVX $\times 86-64$ intrinsics.
\square These include prefetch instructions.
\square All the prefetch instructions supported for $\times 86-64$ architectures can be found here
https://software.intel.com/sites/landingpage/IntrinsicsGuide/\#exp and $=173,5533,3505,1449,3505,2940,20248$ text $=$ prefetch.

- An example of a software prefetch instruction is shown below
_mm_prefetch(\&C[i][i],_MM_HINT_TO);
\square The instruction above pre-fetches the cache line containing C[i][i] from DDR. No value is written back to a register and we do not have to wait for the instruction to complete. The cache line is loaded in the background.

Loop Tiling / blocking (1)

Loop Tiling / blocking (2)

\square Loop tiling partitions a loop's iteration space into smaller chunks or blocks, so as to help data remain in the cache (data reuse)
\square The partitioning of loop iteration space leads to partitioning of large arrays into smaller blocks (tiles), thus fitting accessed array elements into cache, enhancing cache reuse and reducing cache misses
\square Loop tiling can be applied to each iterator multiple times, e.g., it is applied to the j and i iterators in previous example
\square Loop tiling is one of the most performance critical transformations for data dominant algorithms

Loop Tiling / blocking (3)

\square In data dominant algorithms, loop tiling is applied to exploit data locality in each memory, including register file
\square Register blocking can be considered as loop tiling for the register file memory
\square By applying Loop tiling to Li cache memory, the number of Li cache misses is reduced
\square The number of $\mathbf{L i}$ cache misses equals to the number of $\mathbf{L i}+1$ accesses

Loop Tiling / blocking (4)

\square Loop tiling reduces the number of cache misses
\square This doesn't entail performance improvement at all times performance depends on other parameters too, e.g., number of instructions
\square Key problems:
\square Selection of the tile size

- Loops/iterators to be applied to
- How many levels of tiling to apply (multi-level cache hierarchy)

Pros:
\square May increase locality (reduce cache \square Increases the number of instructions misses)

Cons: (adds extra loops)

Loop tiling - Case Study

 Matrix-Matrix Multiplication
Problem

The size of each row of A is 8 kbytes

float C[2048][2048], A[2048][2048], B[2048][2048];

Loop tiling - Case Study Matrix-Matrix Multiplication Motivation

\square Each row of A is multiplied by all the columns of B, thus:
\square Each row of A is loaded from memory 2048 times

- If the row of A cannot remain in dL1, it will be loaded 2048 times from L2
- If the row of A cannot remain in L2, it will be loaded 2048 times from main memory
$\square \quad$ The whole B array is multiplied by each row of A, thus:
- B array is loaded 2048 times from memory
\square If B cannot remain in dL1, it will be loaded 2048 times from L2
\square If B cannot remain in L2, it will be loaded 2048 times from main memory

Loop tiling - Case Study Matrix-Matrix Multiplication

Consider a single level of cache. In this case

- A array is loaded 2048 times from main memory, 2048^{3} loads
- B array is loaded 2048 times from main memory, 2048^{3} loads
\square C array is stored just once, 2048^{2} stores

Loop tiling - Case Study

Matrix-Matrix Multiplication - 1 level of cache (1)

Loop tiling - Case Study
 Matrix-Matrix Multiplication - 1 level of cache (2)

- The matrices are partitioned into smaller sub-matrices (TxT)
Instead of multiplying A[][] by B[][] , their tiles are multiplied
- The tiles are small enough in order to fit in the cache
\square A array is loaded 2048/T times from main memory
- B array is loaded 2048/T times from main memory
\square C array is loaded and stored 2048/T times from/to main memory

L1idata cache 8 Kbytes

L1 instruction cache

RF
CPU

Loop tiling - Case Study

Matrix-Matrix Multiplication - 1 level of cache (3)

\square Before applying loop tiling

- A: $2048 \times(2048 \times 2048)$ loads from main memory
- B: $2048 \times(2048 \times 2048)$ loads from main memory
\square C: $1 \times(2048 \times 2048)$ stores to main memory
- In total, $2 * 2048^{3}+2048^{2}$ main memory accesses
\square After applying loop tiling
- A: 2048/T x (2048×2048) loads from main memory
- B: 2048/T $\times(2048 \times 2048)$ loads from main memory
Main memory
- C: 2048/T x (2048×2048) stores to main memory
- In total, $3^{*}{ }^{*} 2048^{3} / \mathrm{T}$ main memory accesses
\square By increasing T, performance is increased
\square However, \mathbf{T} is bounded to the cache hardware details

L1 data cache 8 Kbytes

L1 instruction cache

MMM - Loop Tiling Performance Evaluation

Square Tile sizes are used $\mathrm{Ti}=\mathrm{Tj}=\mathrm{Tk}=\mathrm{T}$

MMM ($\mathrm{N}=2048$)

MMM - Loop Tiling
 Performance Evaluation (2)

- Roofline analysis for $\mathrm{T}=16$

ome target modules do not contain debug information ıggestion: enable debug information for relevant modules.

Further Reading

\square Optimizing compilers for modern architectures: a dependence-based approach, book, available at https:/ /liveplymouthacmy.sharepoint.com/:b:/g/personal/vasilios kelefouras plymouth ac uk/EVy4Lai 1W9Hr7D3W57CBuQBeohd0M9iVVT7x5n91PcDyg?e= RGnRCa
\square Options That Control Optimization, available at
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

