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also be introduced among the parameters that force a tradeoff in the selection of a
modulation scheme.

3.5 Capacity of the AWGN channel

We now evaluate the capacity of the AWGN channel; specifically, we examine the
Gaussian channel and a code built out of one-dimensional (i.e., real) elementary
signals. For every channel use, the input is  and the output is the real random
variable y = z + z. Assume initially that no constraint is put on the input and
output alphabets X and Y, except for a constraint on the energy of the input signal,
which has the form E z2. Since zllx, we have (see Appendix A for the relevant
definitions):

H(y | ) = H(z + z | z) = H(z | ) = H(z) (3.32)
and hence

I(z;y) = H(y)-H(y|x)

H(y) — H(2) (3.33)
Now (Theorem A.3.1, Appendix A),
H(z) = % log 27we E 22 (3.34)
and, since Ez = 0,
Ey? =E(z +2)? =Ez? + E2? (3.35)
Thus, the entropy of Y is bounded above by % log 2me(E 22 + E 22), and in conclu-

sion

1 1
I(z;y) < 3 log 2me(Ez? + E 22) — 3 log 2me E 22

1 E z2
= Slog (1 +e> ;) (3.36)

and the maximum of I{X; Y) is attained when z is a Gaussian random vector with
zero mean and variance E 2. This maximum value is the information capacity of
the Gaussian channel:

1
C= 3 log (1 4+ SNR) bit/dimension (3.37)

where 0
E
SNR 2 E—; (3.38)
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3.5. Capacity of the AWGN channel S1

Observation 3.5.1 If x and z are complex, then the maximum value of the mu-
tual information is achieved for z Gaussian, with zero mean, variance E|z 2 and
independent real and imaginary parts. Moreover, it is convenient to express C' in
bit/dimension pair:

C = log(1 + SNR) bit/dimension pair (3.39)

where now SNR £ E|z|?/E|z|2.

Observation 3.5.2 The SNR (3.38) can be given different expressions as follows.
Assume zx to be N-dimensional. The signal variance is £, while the noise variance
is N Np/2. Since the Shannon bandwidth of a signal is W = N/2T, we may write

3 /T P

NR = = = 3.40
SNR NNg/2 NgW  NoW (340)
Recalling (3.28), we can also express the SNR in the form
EpRp
SNR = 3.41
NoW (3.41)

Since SNR= 2& /(N Ny), we see that, as N — oo, if £€/Ny remains constant then
the number of bits per dimension expressed by C tends to zero, because SNR— 0.
The number N C of bits that can be reliably transmitted over N dimensions tends
to the constant limit log(e)& /Vy. We shall return on this in Section 3.5.1.

Sketch of the proof of the capacity theorem

The capacity (3.37) is also the maximum achievable rate for the channel. A fun-
damental theorem of Information Theory (Appendix A) shows that there exists a
sequence of codes with rate C' and block length n such that, as n — oo, the error
probability tends to 0. Here we provide a qualitative summary of the proof, in the
form originally given by Shannon.

As we are considering one-dimensional elementary signals and code words with
length n, the dimensionality of the signal constellation is n. Observe now that the
volume of a n-dimensional sphere ¥, with radius r is proportional to r™; thus,
the volume of the shell between r — ¢ (with 0 < € < r) and r is proportional to
r™ — (r — €)™. The ratio between the volume of the shell and the volume of the
sphere is

mor—9" (1 _ f)”
rh T
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and tends to 1 as n — o¢, no matter what the thickness ¢ of the shell is. This
phenomenon, called sphere hardening, is summarized by saying that the volume
of a n-dimensional sphere tends to concentrate near its surface as n — 00.

Next, consider a set of code words x whose components are subject to the energy
constraint Ez? < &, and let the received vector be y = x + z. Let us first apply
the sphere-hardening concept to the noise vector z. As n grows to infinity, due to
the law of large numbers, the squared length of vector z tends to a constant value:

mn

sz ~ nEz? = nNy /2

i=1
where z; are the independent, equally distributed random components of z. Sphere
hardening assures that, while fluctuations of the length of z are possible, they tend
to vanish as n — o0, so that x + z lies on the surface of the sphere £,,(x), centered
at x and with radius \/nNp/2. Thus, signals differing by a Euclidean distance
less than /nNy/2 cannot be detected without ambiguity. Conversely, x can be
detected with vanishingly small ambiguity if ¥,(x) is disjoint from the spheres
associated with the other code words: in fact, £,,(x) is contained in the Voronoi
region of x.

Further, consider the received vector y. Its squared length tends to

n
> yf = nEy? = n(Bx® + Ez%) < n(€ + No/2)
i=1
and consequently y lies within a sphere with radius /n(€ + Ng/2). In these
conditions, the maximum number of disjoint spheres ¥, (x) that can be accommo-
dated inside the sphere with radius \/n(€ + Np/2) is no more than the ratio of the
volumes

[n(€ + No/2)]*? n/2
= (1+SNR
n(Noy2? (SN
This is the number |S| of code words. Thus, the rate of the code is
log |8 1
o= lo8lsl _ 5 log(1+SNR)  bitidimension (3.42)

This “sphere-packing” argument also shows that we cannot hope to send informa-
tion at a rate greater than C' with low probability of error.

3.5.1 The bandlimited Gaussian channel

Assume now that the transmission of signal x takes a time 7". Assuming as usual
that the dimensionality of the constellation is N = 2WT, with W its (Shannon-)
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bandwidth occupancy, we transmit 2W dimensions per second. Thus, using (3.40),
Equation (3.37) can be rewritten in the form

i :
C =Wlog (1 + W) bit/s (3.43)

which expresses the capacity of the bandlimited AWGN channel.
Notice that, as W — oo, we have

C — > loge bit/s (3.44)
No

which shows how capacity grows linearly with signal power, rather than logarith-
mically as in (3.37). Equation (3.44) also shows that, for a given P /Ny, the capac-
ity remains bounded even though W (and hence the number of signal dimensions)
grows without bounds. This occurs because P is fixed, and hence the power per Hz
tends to zero.

If (3.41) is used, we obtain

_ EpRy .
C=Wlog (l + NOW) bit/s

Since for reliable transmission we must have R, < C, we require that

Ry Ep Ry
W < log (1 + NoW

Solving this inequality for the minimum allowable &, /Ny, we obtain

&,  2B/W _q
No = RyjW

as plotted in Figure 3.3. The curve in this figure demarcates the region in which ar-
bitrary low P(e) can be reached: for any given R;,/W there exists a minimum value
of £p/Np that must be exceeded if arbitrarily high reliability must be achieved. No-
tice that, as W increases, the required &,/Ny approaches the lower limit

1 2/ 1 In2 6d
im = —1.6dB
Ry

Moreover, as Rp/W > 2, that is, when bandwidth is constrained, the energy-to-
noise ratio required for reliable transmission increases dramatically. The region
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Figure 3.3: Capacity limits for the bandlimited AWGN channel.

where R,/W > 2 (more than 2 bit/s/Hz, or equivalently more than 1 bit per di-
mension) is usually referred to as the bandwidth-limited region, and the region
where Ry/W < 2 as the power-limited region. Figure 3.3 suggests that if the
available power is severely limited, then we should compensate for this limitation
by increasing the bandwidth occupancy, while the cost of a bandwidth limitation is
an increase in the transmitted power.

Example 3.6

In this example we exhibit explicitly an A -ary signal constellation that, with no
bandwidth constraint, has an error probability that tends to 0, as M — oo, provided
that £, /Ny > In 2, and hence shows the best possible behavior asymptotically. This
is the set of M orthogonal, equal-energy signals defined by

(x6,%;) ={ e 7 (3.45)

This signal set has dimensionality N = M. Due to the special symmetry of this
signal set, the Voronoi regions of the signals are all congruent (more on this infra, in
Section 3.6), and hence the error probability P(e | x;) is the same for all transmitted



