Aπό E. Biglieri, Coding for wireless channels

also be introduced among the parameters that force a tradeoff in the selection of a modulation scheme.

3.5 Capacity of the AWGN channel

We now evaluate the capacity of the AWGN channel; specifically, we examine the Gaussian channel and a code built out of one-dimensional (i.e., real) elementary signals. For every channel use, the input is x and the output is the real random variable y = x + z. Assume initially that no constraint is put on the input and output alphabets x and y, except for a constraint on the energy of the input signal, which has the form x^2 . Since $x \perp x$, we have (see Appendix A for the relevant definitions):

$$H(y \mid x) = H(x + z \mid x) = H(z \mid x) = H(z)$$
 (3.32)

and hence

$$I(x;y) = H(y) - H(y \mid x)$$

= $H(y) - H(z)$ (3.33)

Now (Theorem A.3.1, Appendix A),

$$H(z) = \frac{1}{2} \log 2\pi e \mathbb{E} z^2 \tag{3.34}$$

and, since $\mathbb{E} z = 0$,

$$\mathbb{E} y^2 = \mathbb{E} (x+z)^2 = \mathbb{E} x^2 + \mathbb{E} z^2$$
 (3.35)

Thus, the entropy of \mathcal{Y} is bounded above by $\frac{1}{2} \log 2\pi e (\mathbb{E} x^2 + \mathbb{E} z^2)$, and in conclusion

$$I(x;y) \leq \frac{1}{2}\log 2\pi e(\mathbb{E} x^2 + \mathbb{E} z^2) - \frac{1}{2}\log 2\pi e \mathbb{E} z^2$$

$$= \frac{1}{2}\log\left(1 + \frac{\mathbb{E} x^2}{\mathbb{E} z^2}\right)$$
(3.36)

and the maximum of I(X; y) is attained when x is a Gaussian random vector with zero mean and variance $\mathbb{E} x^2$. This maximum value is the information capacity of the Gaussian channel:

$$C = \frac{1}{2}\log(1 + \text{SNR}) \text{ bit/dimension}$$
 (3.37)

where

$$SNR \triangleq \frac{\mathbb{E} x^2}{\mathbb{E} z^2} \tag{3.38}$$

Observation 3.5.1 If x and z are complex, then the maximum value of the mutual information is achieved for x Gaussian, with zero mean, variance $\mathbb{E}|x|^2$, and independent real and imaginary parts. Moreover, it is convenient to express C in bit/dimension pair:

$$C = \log(1 + \text{SNR})$$
 bit/dimension pair (3.39)

where now SNR $\triangleq \mathbb{E}|x|^2/\mathbb{E}|z|^2$.

Observation 3.5.2 The SNR (3.38) can be given different expressions as follows. Assume x to be N-dimensional. The signal variance is \mathcal{E} , while the noise variance is $NN_0/2$. Since the Shannon bandwidth of a signal is W=N/2T, we may write

$$SNR = \frac{\mathcal{E}}{NN_0/2} = \frac{\mathcal{E}/T}{N_0W} = \frac{\mathcal{P}}{N_0W}$$
 (3.40)

Recalling (3.28), we can also express the SNR in the form

$$SNR = \frac{\mathcal{E}_b R_b}{N_0 W} \tag{3.41}$$

Since SNR= $2\mathcal{E}/(NN_0)$, we see that, as $N \to \infty$, if \mathcal{E}/N_0 remains constant then the number of bits per dimension expressed by C tends to zero, because SNR $\to 0$. The number NC of bits that can be reliably transmitted over N dimensions tends to the constant limit $\log(e)\mathcal{E}/N_0$. We shall return on this in Section 3.5.1.

Sketch of the proof of the capacity theorem

The capacity (3.37) is also the maximum achievable rate for the channel. A fundamental theorem of Information Theory (Appendix A) shows that there exists a sequence of codes with rate C and block length n such that, as $n \to \infty$, the error probability tends to 0. Here we provide a qualitative summary of the proof, in the form originally given by Shannon.

As we are considering one-dimensional elementary signals and code words with length n, the dimensionality of the signal constellation is n. Observe now that the volume of a n-dimensional sphere Σ_n with radius r is proportional to r^n ; thus, the volume of the shell between $r - \epsilon$ (with $0 < \epsilon < r$) and r is proportional to $r^n - (r - \epsilon)^n$. The ratio between the volume of the shell and the volume of the sphere is

$$\frac{r^n - (r - \epsilon)^n}{r^n} = 1 - \left(1 - \frac{\epsilon}{r}\right)^n$$

and tends to 1 as $n \to \infty$, no matter what the thickness ϵ of the shell is. This phenomenon, called *sphere hardening*, is summarized by saying that the volume of a n-dimensional sphere tends to concentrate near its surface as $n \to \infty$.

Next, consider a set of code words \mathbf{x} whose components are subject to the energy constraint $\mathbb{E}x^2 \leq \mathcal{E}$, and let the received vector be $\mathbf{y} = \mathbf{x} + \mathbf{z}$. Let us first apply the sphere-hardening concept to the noise vector \mathbf{z} . As n grows to infinity, due to the law of large numbers, the squared length of vector \mathbf{z} tends to a constant value:

$$\sum_{i=1}^{n} z_i^2 \approx n \mathbb{E} z^2 = n N_0 / 2$$

where z_i are the independent, equally distributed random components of \mathbf{z} . Sphere hardening assures that, while fluctuations of the length of \mathbf{z} are possible, they tend to vanish as $n \to \infty$, so that $\mathbf{x} + \mathbf{z}$ lies on the surface of the sphere $\Sigma_n(\mathbf{x})$, centered at \mathbf{x} and with radius $\sqrt{nN_0/2}$. Thus, signals differing by a Euclidean distance less than $\sqrt{nN_0/2}$ cannot be detected without ambiguity. Conversely, \mathbf{x} can be detected with vanishingly small ambiguity if $\Sigma_n(\mathbf{x})$ is disjoint from the spheres associated with the other code words: in fact, $\Sigma_n(\mathbf{x})$ is contained in the Voronoi region of \mathbf{x} .

Further, consider the received vector y. Its squared length tends to

$$\sum_{i=1}^{n} y_i^2 \approx n \mathbb{E} y^2 = n(\mathbb{E} x^2 + \mathbb{E} z^2) \le n(\mathcal{E} + N_0/2)$$

and consequently y lies within a sphere with radius $\sqrt{n(\mathcal{E}+N_0/2)}$. In these conditions, the maximum number of disjoint spheres $\Sigma_n(\mathbf{x})$ that can be accommodated inside the sphere with radius $\sqrt{n(\mathcal{E}+N_0/2)}$ is no more than the ratio of the volumes

$$\frac{[n(\mathcal{E} + N_0/2)]^{n/2}}{[n(N_0/2)]^{n/2}} = (1 + SNR)^{n/2}$$

This is the number |S| of code words. Thus, the rate of the code is

$$C = \frac{\log |S|}{n} = \frac{1}{2} \log(1 + \text{SNR}) \quad \text{bit/dimension}$$
 (3.42)

This "sphere-packing" argument also shows that we cannot hope to send information at a rate greater than C with low probability of error.

3.5.1 The bandlimited Gaussian channel

Assume now that the transmission of signal x takes a time T. Assuming as usual that the dimensionality of the constellation is N = 2WT, with W its (Shannon-)

bandwidth occupancy, we transmit 2W dimensions per second. Thus, using (3.40), Equation (3.37) can be rewritten in the form

$$C = W \log \left(1 + \frac{\mathcal{P}}{N_0 W} \right) \quad \text{bit/s} \tag{3.43}$$

which expresses the capacity of the bandlimited AWGN channel.

Notice that, as $W \to \infty$, we have

$$C \to \frac{\mathcal{P}}{N_0} \log e \quad \text{bit/s}$$
 (3.44)

which shows how capacity grows linearly with signal power, rather than logarithmically as in (3.37). Equation (3.44) also shows that, for a given \mathcal{P}/N_0 , the capacity remains bounded even though W (and hence the number of signal dimensions) grows without bounds. This occurs because \mathcal{P} is fixed, and hence the power per Hz tends to zero.

If (3.41) is used, we obtain

$$C = W \log \left(1 + \frac{\mathcal{E}_b R_b}{N_0 W} \right) \quad \text{bit/s}$$

Since for reliable transmission we must have $R_b < C$, we require that

$$\frac{R_b}{W} < \log\left(1 + \frac{\mathcal{E}_b R_b}{N_0 W}\right)$$

Solving this inequality for the minimum allowable \mathcal{E}_b/N_0 , we obtain

$$\frac{\mathcal{E}_b}{N_0} > \frac{2^{R_b/W} - 1}{R_b/W}$$

as plotted in Figure 3.3. The curve in this figure demarcates the region in which arbitrary low P(e) can be reached: for any given R_b/W there exists a minimum value of \mathcal{E}_b/N_0 that must be exceeded if arbitrarily high reliability must be achieved. Notice that, as W increases, the required \mathcal{E}_b/N_0 approaches the lower limit

$$\lim_{W \to \infty} \frac{2^{R_b/W} - 1}{R_b/W} = \ln 2 \Leftrightarrow -1.6 \text{ dB}$$

Moreover, as $R_b/W > 2$, that is, when bandwidth is constrained, the energy-to-noise ratio required for reliable transmission increases dramatically. The region

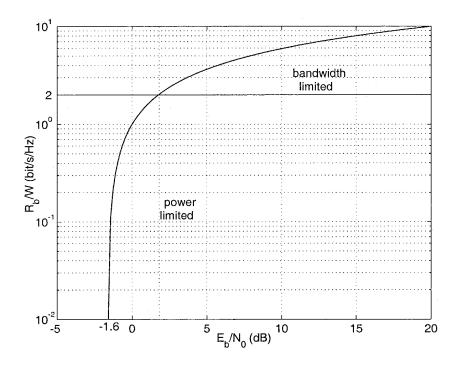


Figure 3.3: Capacity limits for the bandlimited AWGN channel.

where $R_b/W > 2$ (more than 2 bit/s/Hz, or equivalently more than 1 bit per dimension) is usually referred to as the *bandwidth-limited region*, and the region where $R_b/W < 2$ as the *power-limited region*. Figure 3.3 suggests that if the available power is severely limited, then we should compensate for this limitation by increasing the bandwidth occupancy, while the cost of a bandwidth limitation is an increase in the transmitted power.

Example 3.6

In this example we exhibit explicitly an M-ary signal constellation that, with no bandwidth constraint, has an error probability that tends to 0, as $M \to \infty$, provided that $\mathcal{E}_b/N_0 > \ln 2$, and hence shows the best possible behavior asymptotically. This is the set of M orthogonal, equal-energy signals defined by

$$(\mathbf{x}_i, \mathbf{x}_j) = \begin{cases} 0, & i \neq j \\ \mathcal{E}, & i = j \end{cases}$$
 (3.45)

This signal set has dimensionality N=M. Due to the special symmetry of this signal set, the Voronoi regions of the signals are all congruent (more on this *infra*, in Section 3.6), and hence the error probability $P(e \mid \mathbf{x}_i)$ is the same for all transmitted