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58 Coding for Discrete Sources
Since (3.5.9) is valid for all L, we have
H_(U) <lim AQh_ Uy~ Uz (3.5.10)
L= o

Equations 3.5.10 and 3.5.3 together establish (3.5.4), completing the proof. |

Theorem 3.5.2. (Variable-Length Source Coding Theorem). Let H;(U) be
the entropy per letter in a sequence of length L for a discrete source of
alphabet size K. Given a code alphabet of D symbols, it is possible to encode
sequences of L source letters into a prefix condition code in such a way that
the average number of code letters per source letter, 7, satisfies

H(U) 1

H(U) LF < 41

log D log D L
Furthermore, the left-hand inequality must be satisfied for any uniquely
decodable set of code words for the sequences of L source letters. Finally,
for any 0 > 0, if the source is stationary it is possible to choose L large
enough so that 77 satisfies

H.(U)
log D

and 7 can never violate the left-hand inequality for any uniquely decodable
code.

(3.5.11)

Hy(U)
2 )
log D +

<n<

(3.5.12)

Proof. The proof of (3.5.11) is the same as that of Theorem 3.3.2, except
that LH (U) is the entropy of a sequence of L source letters rather than
LH(U). Taking the limit in (3.5.11) as L > oo, H;(U) approaches H, (V)
and 1/L approaches 0, establishing (3.5.12). |

—1! In our discussion of discrete memoryless sources, our interest in 77 was
motivated by the law of large numbers, which asserted that the number of
code letters per source letter in a long sequence of code words approaches 7.
The following example shows that this limiting behavior need not hold for
arbitrary discrete stationary sources. Suppose that a source with the alphabet
(a,.,a5,a;) has two modes of behavior, each occurring with probability »%.
In the first mode the source produces an infinite sequence of repetitions of
ay. In'the second mode, the source products an infinite sequence of statistically
independent, equiprobable selections of the letters a, and a;. If we encode
sequences of L source letters into a binary code, it is not hard to see that 7
is minimized by mapping the sequence of a,’s into a single binary digit and
mapping each of the 2% sequences of a,’s and ay’s into code words of length
L + 1. Since the mode of the source never changes, either all code words in
a sequence will be of length 1 or all will be of length L + 1. For such sources,
neither 72 nor the entropy are quantities of any great significance.
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Sources that cannot be separated into different persisting modes of be-
havior are known as ergodic sources. To define ergodicity carefully, let
u=...,u,, U, t,...be an infinite length sequence of source letters and
let T'u denote the sequence u shifted in time by / positions. That is, if we
denote T'u by u’ we have

W = Uags —0 <n< o

Likewise, if S is a set of infinite length sequences of source letters, 7S
denotes the same set shifted by / positions. That is, if u" = T'u, then u’ is
in the set 7.5 iff u is in S. A set of sequences is said to be invariant if TS = S.
It can easily be seen that the set of all sequences from a discrete source is
invariant, and also that for any u, the set- - 7 'u, u, Tu, T, ... is in-
variant. 4 discrete stationary source is defined to be ergodic if every measurable,
invariant set of sequences has either probability one or probability zero. It can
be seen that, in the previous example, the set of sequences in each of the
modes of behavior referred to are invariant sets, each with probability }4.
Thus that source is nonergodic.

The above definition, although elegant, is sometimes difficult to work with
and does not bring out the intuitive concept of ergodicity. An equivalent
definition is as follows. Let f,(u) be a function of the infinite length source
sequence u which depends only on a finite sequence, u,,...,u,, of the
source letters. Then a discrete stationary source is ergodic iff for all n > 1

and all f,(u) for which m\a?v_ < o, we have, for all source sequences u
except a set of probability 0,

im 1S f.(T =T (3.5.13)

L-o Lix1
The class of functions in the definition can be expanded to all measurable
functions f(u) for which |[f{u)| < o0, or can be restricted to the special class

of functions f, .(u) where u,’ is a fixed sequence %, ..., u,” of letters and
1 ifu,=w'uy=0'\...,u,=u,
Ju, (@) = . (3.5.14)
0 otherwise

For a proof of the equivalence of these definitions, see Khinchin (1957),
pp- 49-54, and for yet another equivalent definition, see Wolfowitz (1961),
Lemma 10.3.1.

The definition of (3.5.13) is particularly important since it is the result that
we shall need for ergodic sources. What it says is that the law of large numbers
applies to ergodic sources. Alternatively, it says that the time average,
averaged in time over any sample source output (except a set of zero prob-

ability), is equal to the ensemble average f,(u). Since h;;?v is just the
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probability of sequence u,’, (3.5.14) states that the relative frequency of
occurrence of u,” in a very long source sequence will be approximately equal
to the probability of u,’”. L

Unfortunately, not even ergodicity quite implies that the number of code
letters per source letter in a variable length code approaches 7. If we encode
L source letters at a time and let n(u, . . ., uz) be the length of a code word,
then the time average number of code letters per source letter is given by

1 J-1
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See Problem 3.21 for an example of an ergodic source where this average,
as a random variable, takes on different values with nonzero probability.
The difficulty is that (3.5.15) is not a time average in the same sense as
(3.5.13) since it is defined in terms of shifts of L letters at a time rather than
shifts of one letter at a time.

Fortunately, Theorem 3.1.1 does apply to arbitrary ergodic sources. The
major difficulty in proving this lies in establishing a law of large numbers for
self-information; that is, in showing that I(u,)/L is, with high probability,
close to H,(U) for large L. This law of large numbers is of considerable
mathematical and information theoretic interest and we now state it as a
theorem.

Theorem 3.5.3 (McMillan (1953)). Let a discrete stationary ergodic source
have H,(U) < oo.

For arbitrary € > 0, 6 > 0, there exists an integer L,(¢,0) (which depends
upon the source) such that for all L > L,(¢,9)

i I(u) > @ ey (3.5.16)

L
Before proving the theorem, we shall develop some necessary notation
and prove two lemmas. We observe that
L
thv = M—.;WS:_ By s Bjeg) (3.5.17)
Notice that the right-hand side of (3.5.17) closely resembles a time average
as given in (3.5.13). The difference is that each self-information term in
(3.5.17) depends on a different number of previous source digits. The point
of the proof is to show that this dependence dies out sufficiently quickly as /
becomes large. Let P(uz) = P(u,, ..., uy) denote the probability assign-
ment on a sequence of L source digits, and define Q ,,(uy), for any integer
1 <m< Lby

L
Q,(up) = m.?a.vTﬁ_w_EE_ Uy s sl m) (3.5.18)




