
LEA: A 128-Bit Block Cipher for Fast
Encryption on Common Processors

Deukjo Hong1(B), Jung-Keun Lee1, Dong-Chan Kim1, Daesung Kwon1,
Kwon Ho Ryu1, and Dong-Geon Lee2

1 Attached Institute of ETRI, Seoul, Korea
{hongdj,jklee,dongchan,ds kwon,jude}@ensec.re.kr

2 Information Security & IoT Laboratory, Pusan National University,
Busan, South Korea
guneez@pusan.ac.kr

Abstract. We propose a new block cipher LEA, which has 128-bit block
size and 128, 192, or 256-bit key size. It provides a high-speed software
encryption on general-purpose processors. Our experiments show that
LEA is faster than AES on Intel, AMD, ARM, and ColdFire platforms.
LEA can be also implemented to have tiny code size. Its hardware imple-
mentation has a competitive throughput per area. It is secure against all
the existing attacks on block ciphers.

Keywords: LEA · Block cipher · Fast encryption

1 Introduction

CPUs and operating systems are continuously developing, and many comput-
ing devices work much better than before, with such powerful resources. For
example, smart portable devices like smart phones and tablet PCs do not only
replace mobile phones but also allow to enjoy various cloud computing and
social network services. With those applications, the amount of the private data
which people create for their business and life will be significantly increasing.
Another example is a smart meter, which is a basic unit of an advanced metering
infrastructure in a smart grid, recording consumption of electric energy, gather-
ing data for remote reporting, and communicating with the utility for monitoring
and billing purpose. For the convenience of management, smart meters are often
implemented to perform tasks in software with small CPUs [18].

Those data mentioned in the above examples are usually important informa-
tion which must be protected from various threats in networks. It implies that
the wide use of software applications significantly causes the necessity of cryp-
tographic systems on software platforms. With this consideration, we have been
interested in a software encryption. Software encryptions are easier to deploy
and more cost-effective than hardware ones in many cases. In particular, when a
new encryption service is required for already deployed computing environments,
a software encryption is more suitable than a hardware one.

Y. Kim et al. (Eds.): WISA 2013, LNCS 8267, pp. 3–27, 2014.
DOI: 10.1007/978-3-319-05149-9 1, c© Springer International Publishing Switzerland 2014

4 D. Hong et al.

A block cipher is one of the most widely used cryptographic primitives. It
is applied to data encryption, message authentication, random bit generation,
message hashing and so on. Presumably, the most widely used block cipher in
the world is AES [27] which has been established as various international stan-
dards. AES shows good performance figures on most software and hardware
platforms and is generally considered to be secure after surviving about 15 years
of comprehensive cryptanalysis though some weaknesses have been found. Since
AES, many block ciphers have been designed for hardware lightweight imple-
mentation. Some of them were standardized as ISO lightweight cryptography
(ISO/IEC 29192-2). The main feature of the lightweight block ciphers is the effi-
cient hardware implementation with low resource. In order to achieve that goal,
most of them use simple structures with small block sizes and large number
of rounds. However, those design approaches usually lead to low performance,
and is far from our consideration for software encryption. Consequently, we have
designed a new block cipher providing a fast encryption on common software
platforms.

1.1 Contribution

We propose a new block cipher LEA. It has the block size of 128 bits and the key
size of 128, 192, or 256 bits. We denote the algorithms with 128-bit, 192-bit, and
256-bit keys by LEA-128, LEA-192, and LEA-256, respectively. The structure
of LEA has the following features.

1. LEA consists of only ARX (modular Addition, bitwise Rotation, and bitwise
XOR) operations for 32-bit words. Those operations are well-supported and
fast in many 32-bit and 64-bit platforms. Moreover, we suppose that the usage
of 32-bit and 64-bit processors will grow rapidly compared to 8-bit or 16-bit
ones.

2. The ARX operations contribute to the encryption and key schedule proce-
dures in efficient and parallel way. Our arrangement of operations does not
only lead to fast software encryption and small size code, but also strong
resistance against the attacks using the properties of a particular operation.

3. The last round function of LEA is the same as other round functions, while
many block cipher including DES and AES have special last round functions
which are somewhat different from other round functions. This is for the
encryption speed in both software and hardware because we think the block
cipher encryption is more frequently used than decryption.

4. The key schedule of LEA has a simple structure without any interleaving
between 32-bit key words. It is good for the efficiency, and does not cause
any weakness.

Security. Our goal for the security of LEA is to get the resistance against all
the existing attacks for block ciphers and to provide enough security margin. To
achieve this goal, we firstly found the minimum number R of rounds for LEA to

LEA: A 128-Bit Block Cipher for Fast Encryption on Common Processors 5

resist against all the known cryptanalytic techniques for each key size. Then we
determined the number of rounds of LEA as around 3R/2 to prepare for the
unknown attacks to appear in future.

Efficiency. LEA provides a fast encryption on many platforms. Our experiments
measuring the speed for one-block encryption on the platforms of Intel, AMD,
ARM and ColdFire show that even a C level implementation of LEA is very
fast. It implies that the evaluation of LEA encryption requires the light overhead
to CPUs. Note that the light overhead can lead to the low power consumption
which is useful for the devices based on batteries. The optimized implementation
of LEA-128 for one-block encryption is faster than those of AES-128 publicly
reported [25,47], on our test platforms. To objectivity, we used the announced
facts for comparison instead of implementing AES.

LEA can be implemented with SIMD operations supported by Intel and
AMD CPUs such that it encrypts 4 blocks simultaneously. It is useful for the
highly fast encryption with ECB or CTR modes under a powerful environment
like a server-based computing. Our experiments on Intel Core 2 Quad Q6600
and Intel Core i7-800 show that the speed of the 4-block SIMD implementation
of LEA-128 is about 2 times and 1.7 times faster than the best records of the
multi-block encryption codes of AES-128 [35], respectively.

We also found that LEA is implemented with a small code-size. The small-size
implementation is useful in a memory-limited environment. LEA-128 is imple-
mented with less than 600 and 750 bytes on the platforms of ARM926EJ-S and
ColdFire MCF5213, respectively, while AES-128 is known to be implemented
with around 2,400 and 960 bytes on the platforms of ARM7TDMI and ColdFire
v2, respectively.

Comparison with Other Ciphers. We compare LEA to other ciphers in order to
explain why it is meaningful to propose this new block cipher.

– AES. AES was designed based on design and analysis techniques by 2000,
and cryptanalysis of block ciphers has been continuously researched and devel-
oped. Recent several attacks have pointed out some weaknesses for AES. In
[11], Biryukov et al. presented a chosen-key distinguisher for full 14-round
AES-256 and converted it to a key-recovery attack for a weak key class with
the complexities of 2131 time and 265 memory. In [10], Biryukov and Khovra-
tovich presented related-key boomerang attacks on full 14-round AES-256
with 299.5 time and data complexities and AES-192 with 2176 time and 2123

data complexities. In [14], Bogdanov et al. used biclique techniques to make
key recovery attacks on full AES-128, AES-192, and AES-256 with time com-
plexities 2126.1, 2189.7, and 2254.4, respectively. LEA is designed based on the
latest design and analysis techniques and we checked that LEA is secure and
has sufficient security margin against all the existing attacks.

Furthermore, as we already mentioned, LEA provides better software
encryptions in speed and size on many platforms than AES.

6 D. Hong et al.

– Block ciphers with ARX structure. TEA [56] and XTEA [46] are Feistel
block ciphers with simple round function and key schedule. Their encryption
speeds are not fast because they have the block length of 64 bits shorter than
LEA and 64 rounds more than LEA. Additionally, there are full-round attacks
[37,58] on TEA and XXTEA [57], which is the third algorithm of TEA family.

At the AES competition, RC6 [49] was regarded as faster than Rijndael [21],
which is the AES winner, on many software platforms. However, parallelism
offered by modern CPUs is not exploited well with RC6, and the performance
of recent implementation of AES exceeds that of RC6.

HIGHT [31] is a lightweight block cipher based on 8-bit ARX operations.
So, it is not suitable for fast encryption on 32-bit CPUs. Recently, full-round
attacks on HIGHT have been published [32,41].

Hash functions often adopt the ARX structure for the high performance on
various platforms, similarly to our design goal [2,26]. Most of them have block
ciphers as a component for building compression and hash functions. They
are even secure against attacks for block ciphers. However, hash functions and
block ciphers are different in the usage. In particular, most block ciphers in
the hash functions have much larger block and key sizes than those usually
required for the security and application of block ciphers.

Recently, NSA published two block cipher families SPECK and SIMON
[3]. SPECK is a typical ARX cipher and SIMON consists of ANDs, rotations,
and XORs. They have various parameters. The algorithms with 128-bit block
are comparable with LEA. The Performance of LEA is faster than SIMON
in both 32- and 64-bit processors. Since SPECK uses 64-bit addition with
128-bit block, its performance exceeds that of LEA only in 64-bit processors
but LEA is more suitable for most 32-bit processors.

– Lightweight block ciphers. Many lightweight block ciphers like HIGHT
[31], PRESENT [13], LED [30], and Piccolo [51] have short block size and
large number of rounds and their software encryptions are usually not fast.
Although [43] provides fast bitslice implementation of PRESENT and Piccolo,
SIMD implementation of LEA is faster than them. Furthermore, a short block
size is not proper for encrypting huge data because some modes of operation
can allow security leakage like a ciphertext-matching attack.

KLEIN [28] is designed to be faster than AES on 8-bit and 16-bit platforms,
while our targets are 32-bit and 64-bit platforms. CLEFIA [52] has the same
block and key size as AES and the performance of its software encryption
is close to that of AES on AMD Athlon TM Processor 4000+. However, as
far as we know, it does not claim higher software performance than AES.
Recently, PRINCE [16] was proposed as a low-latency block cipher which has
good performance in software and hardware implementations, but its security
goal is somewhat different from that for the general-purpose block ciphers.

– Stream ciphers. Several stream ciphers such as Salsa20 [4] are based on
ARX operations, but we think the block cipher is not totally comparable to
the stream cipher because they do not always have the same applications.

LEA: A 128-Bit Block Cipher for Fast Encryption on Common Processors 7

1.2 Organization

The remaining part is organized as follows. Section 2 describes the specification of
LEA. In Sect. 3, we introduce design principles. In Sect. 4, we present the security
analysis results for existing cryptanalytic techniques. In Sect. 5, we explain the
implementation results. Section 6 is the conclusion of our paper.

2 Specification of LEA

LEA is a block cipher with 128-bit block. Key size is 128-bit, 192-bit, and 256-
bit. The number of rounds is 24 for 128-bit keys, 28 for 192-bit keys, and 32 for
256-bit keys. In Sect. 2.1, we introduce notations which are often used in this
paper. We explain how the key schedule generates round keys from the master
key in Sect. 2.3. We explain how the encryption procedure converts a plaintext
to a ciphertext in Sect. 2.4. We omit the description of the decryption procedure
because it is simply considered as the inverse of the encryption procedure.

2.1 Notations

– P : a 128-bit plaintext, consisting of four 32-bit words P = (P [0], P [1], P [2],
P [3])

– C: a 128-bit ciphertext, consisting of four 32-bit words C = (C[0], C[1], C[2],
C[3])

– Xi: a 128-bit intermediate value (an input of i-th round in the encryption
function), consisting of four 32-bit words Xi = (Xi[0],Xi[1],Xi[2],Xi[3])

– Len(x): the bit-length of a string x
– K: a master key. It is denoted as a concatenation of 32-bit words. K =

(K[0],K[1],K[2],K[3]) when Len(K) = 128; K = (K[0],K[1], ...,K[5]) when
Len(K) = 192; K = (K[0],K[1], ...,K[7]) when Len(K) = 256

– r: the number of rounds. r = 24 when Len(K) = 128; r = 28 when Len(K) =
192; r = 32 when Len(K) = 256

– RK: the concatenation of all round keys, defined by RK = (RK0, RK1,
..., RKr−1) where RKi is the 192-bit round key for the i-th round. Each
RKi consists of six 32-bit words RKi = (RKi[0], RKi[1], ..., RKi[5])

– x ⊕ y: XOR (eXclusive OR) of bit strings x and y with same length
– x � y: Addition modulo 232 of 32-bit strings x and y
– ROLi(x): the i-bit left rotation on a 32-bit value x
– RORi(x): the i-bit right rotation on a 32-bit value x

2.2 State Representation

Let a[0], a[1], ..., be representation of arrays of bytes. The bytes and the bit order-
ing within bytes are derived from the 128-bit input sequence input0, input1, ...
as follows:

a[i] = {input8i, input8i+1, ..., input8i+7}.

8 D. Hong et al.

All the operations in the LEA algorithm are 32-bit-word-oriented. The 128-bit
plaintext P of LEA is represented as an array of four 32-bit words P [0], P [1], P [2],
P [3]. Each P [i] is taken for the input bytes a[0], a[1], ..., a[15] as follows:

P [i] = a[4i + 3]‖a[4i + 2]‖a[4i + 1]‖a[4i] for 0 ≤ i ≤ 3.

The key K of LEA is also represented as an array of 32-bit words K[0],K[1], ...,
and taken for the input bytes in the same way. Table 1 shows how bits and bytes
in the word indexed by 0 are numbered.

Table 1. Representations for words, bytes, and bits

Input bit sequence 24 · · · 31 16 · · · 23 8 · · · 15 0 · · · 7

Word number 0

Byte number 3 2 1 0

Bit numbers in word 31 · · · 0

2.3 Key Schedule

The key schedule generates a sequence of 192-bit round keys RKi as follows.

Constants. The key schedule uses several constants for generating round keys,
which are defined as

δ[0] = 0xc3efe9db, δ[1] = 0x44626b02,
δ[2] = 0x79e27c8a, δ[3] = 0x78df30ec,
δ[4] = 0x715ea49e, δ[5] = 0xc785da0a,
δ[6] = 0xe04ef22a, δ[7] = 0xe5c40957.

They are obtained from hexadecimal expression of
√

766995, where 76, 69, and
95 are ASCII codes of ‘L,’ ‘E,’ and ‘A.’

Key Schedule with a 128-Bit Key. Let K = (K[0],K[1],K[2],K[3]) be a 128-bit
key. We set T [i] = K[i] for 0 ≤ i < 4. Round key RKi = (RKi[0], RKi[1], ..., RKi

[5]) for 0 ≤ i < 24 are produced through the following relations:

T [0] ← ROL1(T [0] � ROLi(δ[i mod 4])),
T [1] ← ROL3(T [1] � ROLi+1(δ[i mod 4])),
T [2] ← ROL6(T [2] � ROLi+2(δ[i mod 4])),
T [3] ← ROL11(T [3] � ROLi+3(δ[i mod 4])),
RKi ← (T [0], T [1], T [2], T [1], T [3], T [1]).

LEA: A 128-Bit Block Cipher for Fast Encryption on Common Processors 9

Key Schedule with a 192-Bit Key. Let K = (K[0],K[1], ...,K[5]) be a 192-bit key.
We set T [i] = K[i] for 0 ≤ i < 6. Round key RKi = (RKi[0], RKi[1], ..., RKi[5])
for 0 ≤ i < 28 are produced through the following relations:

T [0] ← ROL1(T [0] � ROLi(δ[i mod 6])),
T [1] ← ROL3(T [1] � ROLi+1(δ[i mod 6])),
T [2] ← ROL6(T [2] � ROLi+2(δ[i mod 6])),
T [3] ← ROL11(T [3] � ROLi+3(δ[i mod 6])),
T [4] ← ROL13(T [4] � ROLi+4(δ[i mod 6])),
T [5] ← ROL17(T [5] � ROLi+5(δ[i mod 6])),
RKi ← (T [0], T [1], T [2], T [3], T [4], T [5]).

Key Schedule with a 256-Bit Key. Let K = (K[0],K[1], ...,K[7]) be a 256-bit key.
We set T [i] = K[i] for 0 ≤ i < 8. Round key RKi = (RKi[0], RKi[1], ..., RKi[5])
for 0 ≤ i < 32 are produced through the following relations:

T [6i mod 8] ← ROL1(T [6i mod 8] � ROLi(δ[i mod 8])),
T [6i + 1 mod 8] ← ROL3(T [6i + 1 mod 8] � ROLi+1(δ[i mod 8])),
T [6i + 2 mod 8] ← ROL6(T [6i + 2 mod 8] � ROLi+2(δ[i mod 8])),
T [6i + 3 mod 8] ← ROL11(T [6i + 3 mod 8] � ROLi+3(δ[i mod 8])),
T [6i + 4 mod 8] ← ROL13(T [6i + 4 mod 8] � ROLi+4(δ[i mod 8])),
T [6i + 5 mod 8] ← ROL17(T [6i + 5 mod 8] � ROLi+5(δ[i mod 8])),

RKi ← (T [6i mod 8], T [6i + 1 mod 8], T [6i + 2 mod 8],
T [6i + 3 mod 8], T [6i + 4 mod 8], T [6i + 5 mod 8]).

2.4 Encryption Procedure

The encryption procedure of LEA consists of 24 rounds for 128-bit keys, 28
rounds for 192-bit keys, and 32 rounds for 256-bit keys. For r rounds, it encrypts
a 128-bit plaintext P = (P [0], P [1], P [2], P [3]) to a 128-bit ciphertext C =
(C[0], C[1], C[2], C[3]).

Initialization. Set the 128-bit intermediate value X0 to the plaintext P . Run the
key schedule to generate r round keys.

Iterating Rounds. The 128-bit output Xi+1 = (Xi+1[0], ...,Xi+1[3]) of the ith
round for 0 ≤ i ≤ r − 1 is computed as

Xi+1[0] ← ROL9((Xi[0] ⊕ RKi[0]) � (Xi[1] ⊕ RKi[1])),
Xi+1[1] ← ROR5((Xi[1] ⊕ RKi[2]) � (Xi[2] ⊕ RKi[3])),
Xi+1[2] ← ROR3((Xi[2] ⊕ RKi[4]) � (Xi[3] ⊕ RKi[5])),
Xi+1[3] ← Xi[0].

10 D. Hong et al.

Finalization. The ciphertext C is produced from the finally obtained Xr after
round iteration in the following way:

C[0] ← Xr[0], C[1] ← Xr[1], C[2] ← Xr[2], and C[3] ← Xr[3].

3 Design Principles

We explain the design principles for LEA (Fig. 1).

Xi[0] Xi[1] Xi[2] Xi[3]

Xi+1[0] Xi+1[1] Xi+1[2] Xi+1[3]

RKi[0]

ROL9 ROR5 ROR3

RKi[1]

RKi[2]

RKi[3]

RKi[4]

RKi[a]

Fig. 1. ith round function

Efficient round structure with 32-bit ARX operations. The round function of LEA
consists of ARX operations. Especially, we used 32-bit ARX operations instead
of 8-bit ones because 32-bit operations are more popular than 8-bit ones and we
think that most processors will be developed to support 32-bit operations even
in resource-constrained devices. It has just three internal computation modules
including two key XORs, one addition, and one bitwise rotation. We adopt the
addition modulo 232 as a nonlinear function with two 32-bit inputs and one 32-bit
output1. Round key XORs are used for randomizing the inputs of the nonlinear
functions, the bitwise rotations and the word-wise swap are used for diffusion.
The simple and efficient structure of LEA provides both tiny-size code and high-
speed code. In spite of its simplicity, it has nice nonlinearity and diffusion effect
to give a proper number of rounds for good performance.

Encryption is more useful than decryption. Unexpectedly, there are not many
modes of operation which need the decryption function. For example, ISO/IEC
9797-1, ISO/IEC 10116, and ISO/IEC 19772 specify 6 message authentication
1 On the other hand, round key XORs and rotations work as nonlinear functions for

the adversary using add-differences.

LEA: A 128-Bit Block Cipher for Fast Encryption on Common Processors 11

modes, 5 encryption modes, and 6 authenticated-encryption modes of block
ciphers, respectively. However, only ECB, CBC, and OCB modes need both
encryption and decryption functions2. It implies that the block cipher encryp-
tion is more widely and frequently used than the block cipher decryption. With
this consideration, we did not care for the balance of the speed between encryp-
tion and decryption. Note that most block ciphers usually have the special last
round different from other rounds for efficiency in the implementation of decryp-
tion, while the last round of LEA is not special but has the same structure as
the other rounds for efficiency of the encryption-only modes. Nevertheless, the
decryption speed of LEA is still competitive with most block ciphers.

Choice of rotations. We chose the rotations in encryption procedure such that it
has the strong diffusion property. Firstly, for the parameters (a, b, c), we set the
round function with input Xi, output Xi+1, and round key RKi as follows.

Xi+1[0] ← ROLa((Xi[0] ⊕ RKi[0]) � (Xi[1] ⊕ RKi[1])),
Xi+1[1] ← ROLb((Xi[1] ⊕ RKi[2]) � (Xi[2] ⊕ RKi[3])),
Xi+1[2] ← ROLc((Xi[2] ⊕ RKi[4]) � (Xi[3] ⊕ RKi[5])),
Xi+1[3] ← Xi[0].

Then, we linearized the LEA encryption algorithm by replacing the additions
with XORs, and searched the XOR differential characteristics (XDCs) of the
linearized structure for all possible

(
32
3

)
candidates of (a, b, c). Note that ROLb =

ROR32−b and ROLc = ROR32−c. One of our searching strategies is to start from
a middle round with low Hamming weight of differences. As a result, we found
that for each candidate of (a, b, c) there exists a 11-round XDC whose probability
is not lower than 2−128. The probability is estimated under the assumption that
every addition is independent. Note that this assumption is not stronger than
any other block ciphers because each addition can be regarded as a nonlinear
function with two 32-bit inputs and a 32-bit output and because XORing subkeys
with the inputs of nonlinear functions is the most popular way to combine key
materials to encryption body. We found 32 candidates of (a, b, c) which have 12-
round XDCs with the probability of 2−128 or 2−129 as best ones. We optimized
these characteristics such that both of the first and last rounds are not linearized.
We chose (9, 27, 29) because it made only differential characteristics with the
probability 2−128 as best ones, and because the number of such characteristics
is fewer than any other candidates.

Additionally, we considered short characteristics for the boomerang attack,
and found that the maximum number of rounds having differential characteristic
with the probability greater than 2−32 is 7 over all (a, b, c), and so does it for
the case (a, b, c) = (9, 27, 29).

As a different approach for the same goal, we can also regard the linearized
rounds as a linear code. So, we tried to get good differential characteristics by
2 We leave the fifth mode, ‘Encrypt-then-MAC’ in [33] out of the discussion because

it uses general notions of encryption and MAC.

12 D. Hong et al.

applying Canteaut-Chabaud method [17] to search code words with minimum
weight code words, but we could not find better differential characteristics than
the first approach.

Simple key schedule. We adopt a very simple structure for the key schedule.
It does not mix the words of the key and has no avalanche effect in key bits
at all. Nevertheless, our security analysis show that it protects LEA from the
attacks such as slide attack [12], related-key attack [5], related-key boomerang
attack [10,11], biclique attack [14], rotational attack [38] and so on. The simplic-
ity of the key schedule provides efficiency in small-size hardware and software
implementations.

4 Security Analysis

We analyzed the security of LEA for existing cryptanalytic techniques by search-
ing, constructing, or exploiting various characteristics such as differential and lin-
ear trails. For each attack, firstly, we found the maximum number N of rounds
where there exists an available characteristic, and then constructed the best N -
round characteristic. We determined the number of rounds making the algorithm
secure against each attack, considering the difference propagation of the round
function and the arrangement of the round key words, as follows.

1. If the characteristic is N -round and holds with the probability between 0 and
1, then the secure number of rounds is N + 3 for 128-bit keys, N + 4 for
192-bit keys, and N + 5 for 256-bit keys.

2. If the characteristic is N -round and holds with the probability 0 or 1, then
the secure number of rounds is N +4 for 128-bit keys, N +5 for 192-bit keys,
and N + 6 for 256-bit keys.

COSIC made an evaluation report for LEA, too, independently of us [20]. We will
explain some of their security analysis results. The whole main analysis results
are summarized at Table 2. We also discuss other attacks not listed in Table 2.

Table 2. Security of LEA against several main attacks

Round # of Probability of Secure # of rounds
Attack type Characteristic Characteristic LEA-128 LEA-192 LEA-256

Differential [9] 11 p = 2−98 14 15 16
Truncated Differential [39] 11 p = 2−91.9 14 15 16
Linear [44] 11 |p − 1/2| = 2−62 14 15 16
Zero Correlation [15] 7 |p − 1/2| = 0 11 12 13
Boomerang [54] 14 p2q2 = 2−108 17 18 19
Impossible Differential [6] 10 p = 0 14 15 16
Integral [40] 6 p = 1 10 11 12
Differential-Linear [8] 14 |p − 1/2| < 2−57 17 18 19

LEA: A 128-Bit Block Cipher for Fast Encryption on Common Processors 13

4.1 Differential Attack

As we mentioned in Sect. 3, the probability of the best 12-round differential
characteristic which we have found is estimated at most as 2−128. Since it is not
available for the attack, we searched 11-round differential characteristic with the
same way; firstly find the XOR-linearized differential characteristics with high
probabilities and then optimize it by removing the linearity in the differential
paths of the first and the last rounds. As a result, the best found ones of 11-round
differential characteristics have the probability 2−98 and the following form:

– Input difference: 80000234 α0402214 β0401205 γ0400281, where α ∈ {4, c},
β ∈ {4, c}, and γ = β ⊕ 1,

– Output difference: η800000a 88aaa00a 220202ζ0 00200050, where η ∈
{4, c} and ζ ∈ {2, 6}.

We can apply one of these characteristics to 11 rounds from Round 0 to
Round 10, and attack 12 rounds for 128-bit keys. This attack recovers 96 bits of
the round key RK11 in the last round, Round 11 with very high signal-to-noise
ratio, and requires around 2100 plaintexts, 284 encryptions, and the memory for
276 bytes. Extending it to 13-round attack is not successful because

– If one applies the 11-round characteristic to the first 11 rounds from Round
0 to Round 10 and tries to recover partial bits of RK12, the round key of
Round 12, he will be in trouble with the poor filtering and it leads to the bad
signal-to-noise ratio.

– If one applies the 11-round characteristic to Round 1 to Round 11 and tries to
recover partial bits of RK0, the round key of Round 0 and RK12, the round
key of Round 12, he will face too much guessed key bits or too weak filtering
to attack.

We consider the possibility of 13-round attack for 192-bit keys and 14-round
attack for 256-bit keys, respectively.

Using a set of many differential characteristics with relatively high probabil-
ities instead of a best one, we can increase the probability from 2−98 to 2−91.9.
This is a kind of truncated differential characteristic [39], which can be used
for reducing some of complexities for the above differential attack, but not be
helpful for increasing the number of the attacked rounds. Analyses with other
types of differences [20] have been tried but not found any critical weaknesses.

4.2 Linear Attack

A linear approximation has the following form:

ΓP · P ⊕ ΓC · C = ΓRK · RK, (1)

where RK is a vector composed of all round keys. We denote the probability
that (1) is satisfied, by p, and let ε = p−1/2. ε is called the bias of (1). A linear
attack using a linear approximation has the data complexity of O(ε−2).

14 D. Hong et al.

It is not easy to find a good linear approximation for long rounds of LEA.
Wallén’s work [55] shows that in the masks of a linear approximation for mod-
ular additions the absolute value of the bias tends to decrease as the highest
nonzero bit of the masks is close to the most significant. The combination of
the bitwise rotations in LEA encryption significantly disturbs the appearance of
linear approximations with good biases. We searched the linear approximations
in such a way that the propagation of linear masks is suppressed as strong as
possible. Consequently, we found 10-round linear approximation with ε = 2−46

and 11-round linear approximation with ε = 2−63. We can use Matsui’s algo-
rithm 1 and the 11-round linear approximation to get 1-bit information about
round keys for 11 rounds with O(2126) known plaintexts, and we can use Mat-
sui’s algorithm 2 and the 10-round linear approximation to make a 11-round key
recovery attack with O(292) known plaintexts.

4.3 Zero Correlation Attack

Recently, the attacks using zero correlation approximations have been intro-
duced [15], which is a counter part of the impossible differential attack in linear
cryptanalysis. The best key recovery attacks in single-key setting based on zero
correlation approximations have been made for TEA and XTEA. Since LEA
has the use of ARX operations in common with TEA and XTEA, one may
suspect the vulnerability of LEA against zero correlation attack. However, we
found that a 7-round zero correlation approximation is constructed from 3-round
forward and 4-round backward approximations, and it is difficult to construct
much longer zero correlation approximations than 7 rounds. Based on the 7-
round zero correlation approximations, we consider the possibility of 9-round
attack for 128-bit keys, 10-round attack for 192-bit keys, and 11-round attack
for 256-bit keys, respectively.

4.4 Boomerang Attack

The best differential probability for 7 rounds is 2−27. The best 7-round one has
the following differences of input and output.

– Input difference: 80000014 80400014 80400004 80400080,
– Output difference: 00001200 28000200 80800800 00000008.

We construct a 14-round boomerang characteristic from the best 7-round dif-
ferential characteristic. There are some round-skip techniques maximizing the
number of rounds of the boomerang characteristic [10,24], but they do not work
for LEA. It is the best one which we have found ever. For 128-bit keys, we can
use it to make an attack on at most 15 rounds with 2116.3 plaintexts. We could
not find a proper attack on 16 rounds due to increased data complexity and
worsened filtering. The amplified boomerang [36] or rectangle attacks [7] do not
seem to improve our attacks significantly. We consider the possibility of 16-round
attack for 192-bit keys and 17-round attack for 256-bit keys, respectively.

LEA: A 128-Bit Block Cipher for Fast Encryption on Common Processors 15

4.5 Impossible Differential Attack

Impossible differential attack [6] uses differential characteristics with probability
of 0. They are usually constructed from miss-in-the-middle combination with
forward and backward truncated differential characteristics with probability of
1. For LEA, the best impossible differential characteristics are 10 rounds, con-
structed with 6-round forward and 4-round backward truncated differential char-
acteristics with probability of 1, which is reported in [20].

For 128-bit keys, we can use the 10-round impossible differential characteris-
tics to make a 11-round attack to derive a partial information of the last round
key. one may make a 12-round attack by using a set of specially chosen plaintexts
or constructing a key-recovering process. We consider the possibility of 13-round
attack for 192-bit keys, and 14-round attack for 256-bit keys, respectively.

4.6 Integral Attack

Integral attack [40] for LEA uses a 6-round integral characteristic, which is
reported at [20]. A 6-round integral characteristic of LEA is reported at [20].
It shows that if the 3-th word P [3] of the plaintext P is active, which takes
all 32-bit values for one time, and other words of P are constants, then the
least significant bit of the 1-th word X[1] of the output X after 6 rounds is
ADD-balanced. For 128-bit keys, we can use the 6-round integral characteristic
to make a 9-round attack to derive a partial information of round keys. Adding
rounds to the characteristic at top is impossible because it requires a code book
of all plaintexts. We consider the possibility of 10-round attack for 192-bit keys,
and 11-round attack for 256-bit keys, respectively. We suppose higher order dif-
ferential characteristic [39] is also constructed for 6 rounds at most.

4.7 Differential-Linear Attack

Differential-linear attack [8] uses a combined characteristic from short-round dif-
ferential characteristics and linear approximations. A (r1+r2)-round differential-
linear characteristic based on one r1-round differential characteristic with the
probability pd and two r2-round linear approximations with same masks and the
probability pl = 1/2+ε holds with the probability p = 1/2+2pdε

2. Our analysis
for differential and linear attacks on LEA implies that the available differential-
linear characteristics for LEA can be constructed up to 14 rounds and that the
biasour searching program can find 14-round differential-linear characteristics
with the bias at most 2−57. However, this reasoning is based on the best results
which we can find for differential and linear trails, and so we suppose that the
actually found differential-linear characteristics be much shorter than 14 rounds
or have the bias whose absolute value is significantly smaller than 2−57.

4.8 Attacks Using Weakness of Key Schedule

Slide attack [12] uses a self-similarity in the block cipher. The key schedule
of LEA obstructs it by adding the rotated constants to the key materials.

16 D. Hong et al.

For instance, when the key size is 128 bits, ROLi(δ[i mod 4]) is added for the
leftmost 32 bits of the i-th round key RKi[0]. Although only several 32-bit con-
stants are used, rotations depending on i make the effects of adding different
round constants for every round. Therefore, there is no self-similarity which can
be exploited for any attacks on LEA.

Related-key differential attack [34] and related-key boomerang attack [10,11]
is the most popular ones among the attacks using related keys [5]. In the similar
way to differential cryptanalysis, we searched how many rounds there exists a
key difference having differential characteristics with the probability > 2−128 up
to. The best related-key differential characteristics which we found ever are 11-
round one for 128-bit keys, and 12-round one for 192 and 256-bit keys. However,
those characteristics cannot be used straightforwardly for any attacks because
they hold with only small part of the key space.

Bogdanov et al. [14] has introduced the key recovery attacks in single-key set-
ting, based on biclique techniques with two attack approaches. The first approach
is to use the bicliques constructed from independent related-key differentials and
to search the right key with partial computations based on precomputation. We
checked that it is hard to construct such bicliques for more than one round of
LEA for the key sizes of 128 and 192 bits and for more than two round for the
key size of 256 bits, because LEA uses 192-bit round keys and all key materials
are wasted in one round for 128 and 192-bit keys and in two rounds for 256-bit
keys, and because all additions in the same round are active within two rounds
in backward direction for any key difference. Therefore, the time complexity
of the key recovery attacks based on the first approach would have a negligi-
ble difference with that of exhaustive search. The second approach is to use the
bicliques constructed from interleaving related-key differential trails and to apply
a basic meet-in-the-middle technique for key recovery. Such bicliques would not
be constructed for more than 8 rounds because the propagation of the difference
inserted at key is fast in the encryption of LEA in spite of its simple structure.
Furthermore, the basic meet-in-the-middle technique of the second approach is
applicable to only short rounds. So, the attack based on second approach can
work for only small reduced variants with much less rounds than recommended.

4.9 Other Attacks

Recently, some kinds of meet-in-the-middle attacks have made impressive crypt-
analytic results for block ciphers and hash functions. We checked that meet-
in-the-middle attack techniques are not applicable to LEA very well. A basic
meet-in-the-middle attack [23] is disturbed since there is no separation of long
rounds. The meet-in-the-middle pseudo-preimage attack [1,50] does not work for
even half rounds. The partial-matching and initial-structure techniques are not
efficient in LEA.

Rotational cryptanalysis [38] is attractively available on ARX-based struc-
tures. We examined the resistance of LEA against rotational cryptanalysis for the
single-key model and the related-key model in which two keys form a rotational
pair. We found that key XORs in the encryption procedure and constant XORs

LEA: A 128-Bit Block Cipher for Fast Encryption on Common Processors 17

in the key schedule prevent rotational characteristics from being constructed for
long rounds.

Algebraic attack [19] forms an overdefined system of equations derived from
the block cipher. Several algorithms are proposed for solving it, but they fail to
find a right solution for existing block ciphers. We think they hardly work for
LEA, too.

4.10 Security Margin

We have studied various existing cryptanalytic techniques for block ciphers in
order to analyze the security of LEA. Although some characteristics we men-
tioned can be somewhat upgraded by new technologies, it is unlikely to find a
new attack to improve significantly the results in Table 2, as long as we did not
miss critical weakness of LEA. We determined the number of rounds for LEA-
128 based on the above security analysis such that the security margin to the
whole rounds ratio is greater than 30 %. For LEA-192 and LEA-256, we added 4
and 8 rounds, respectively to the rounds of LEA-128, considering the difference
of key schedules and security criteria.

5 Implementation

5.1 Software Implementation

We have implemented LEA on various 32-bit and 64-bit software platforms. We
have focused on LEA-128 since the speed decreases almost in proportion to the
number of rounds.

On ARM platforms, we can implement LEA without register-spilling and
most of the bit rotations can be processed without costing any clock cycle thanks
to the barrel shifter. Thus we get remarkably high throughput compared to other
block ciphers both in encryption and decryption.

On Intel/AMD platforms, we can also implement LEA without register-
spilling and, due to the highly parallel structure of LEA round function, we
also get high encryption speed. Moreover, by utilizing SIMD(Single Instruction
Multiple Data) instructions inherent in most of recent Intel/AMD platforms, we
can get even higher throughput for parallel modes of LEA.

On ARM and ColdFire platforms, we have measured the compactness of
LEA. Since the round function of LEA consists of a small number ARX oper-
ations without S-box, the code size of LEA on these platforms is quite small
compared to other block ciphers with the same block size.

We have also estimated the efficiency of LEA on some 8-bit platforms and
confirmed that LEA has sound performance on these platforms.

ARM platforms. ARM processors are the most widely used 32-bit embedded
processors. They support rotate, multiple load/store instructions as well as most
arithmetic and logical ones. Comparison with the speed-optimized implementa-
tion of AES on comparable platforms is given in Table 3.

18 D. Hong et al.

Table 4 shows the comparison with the code-size-optimized implementation
of AES.

Intel and AMD Platforms. Most of recent Intel/AMD CPUs have 3 pipelines.
Since LEA consists of 24 rounds and each round can be expressed as a sequence
of 16 instructions, the minimal cycle cost of LEA encryption is expected to be
around 128. Comparison with 32-bit implementation of AES is given in Table 5.

Table 3. Speed of LEA-128 and AES-128 on ARM platform

Algorithm Speed (cycles/byte) Platform

LEA-128 20.06 ARM926EJ-S
AES-128 [47] 34.00 StrongARM SA-1110

Table 4. Code size of LEA-128 and AES-128 on ARM platform

ROM size RAM size Speed
Algorithm (bytes) (bytes) (cycles/byte) Platform

LEA-128 590 32 326.94 ARM926EJ-S
AES-128 [22] 2,164 304 460.50 ARM7TDMI

Decryption is slower than encryption since decryption is processed rather
serially. We note that AES is faster than all other well-known block ciphers with
similar block and key size on these platforms.

Most of recent Intel/AMD processors support SIMD extensions at least up
to SSE2. Thus, basic 32-bit operations like XOR, ADD, SHIFT can be per-
formed very efficiently in parallel. Moreover, the latency and throughput of
SIMD instructions are close to those of corresponding 32-bit-wise instructions
on recent processors. Since LEA is described as a combination of XOR, ADD,
and ROTATE, it is straightforward to implement parallel modes of LEA using
SSE2 to process 4 or 8 blocks simultaneously.

Comparison with SIMD implementations of AES (not using AES instruction
set) is given in Table 6.

ColdFire platforms. ColdFire processors are 32-bit microprocessors targeted
towards embedded systems. LEA shows lower performance here than on ARM
platforms since load/store and rotate operation are performed less efficiently:
They do not support rotate, multiple load/store instructions and the shift instruc-
tion can shift only by up to 8 bits. We have implemented speed-optimized and
size-optimized LEA on MCF5213. Comparison with implementation of AES on
comparable platform is given in Table 7. We note that LEA runs faster than
hardware-accelerated AES.

8-bit and 16-bit Platforms. Though LEA is designed to achieve high performance
in 32-bit platforms. We have also analyzed the performance of LEA on Advanced

LEA: A 128-Bit Block Cipher for Fast Encryption on Common Processors 19

Table 5. Speed (cycles/byte) of LEA-128 and AES-128 on 32-bit Intel/AMD platforms

LEA-128 AES-128
Platform Encryption Decryption Encryption

Intel Core 2 Quad Q6600 9.29 14.83 12.20 [25]
Intel Core i5-2500 9.29 14.52 11.35 [25]
AMD Phenom II X4 965 8.85 14.50 10.35 [25]
AMD Opteron 6176 SE 8.55 14.05 N/A

Table 6. SIMD implementations of LEA-128 and AES-128

Platform LEA CTR AES CTR

Intel Core 2 Quad Q6600 4.51 9.32 [35]
Intel Core i7-860 4.19 6.92 [35]
AMD Opteron 6176SE 4.50 N/A

Virtual RISC(AVR), which are among the most favorable 8-bit platforms. LEA is
estimated to run at around 3,040 cycles for encryption on AVR AT90USB82/162
where AES best record is 1,993 cycles [47]. We suppose that the performance of
LEA is comparable to that of AES on low-end 8-bit or 16-bit platforms, both in
speed and code size.

5.2 Hardware Implementation

We have implemented LEA-128 with Verilog HDL and synthesized to ASIC
with fully verifying the correctness of front-end and back-end design. For HDL
implementation and verification of our design, we have used Mentor Modelsim
6.5f for RTL simulation and Synopsys Design Compiler Ver. B-2008.09-SP5 for
its synthesis. Our RTL level design result of LEA is synthesized to ASIC with
the UMC 0.13µm standard cell library and 100 MHz operating frequency.

Since the LEA consists of the small number of simple operations such as bit
XOR, rotation and 32-bit adder without complex operations such as S-box, it
can be implemented with low hardware resources. The LEA can also achieve high

Table 7. Implementations of LEA-128 and AES-128 on ColdFire Platform

ROM size RAM size Speed
Algorithm (bytes) (bytes) (cycles/byte) Platform

LEA-128 9,674 832 103.59 MCF5213
LEA-128 704 32 829.25 MCF5213
AES-128 [48] 7,996 1,403.51 ColdFire v2

AES-128 [48] 960 160.00 ColdFire v2 with CAU†

†Cryptographic Acceleration Unit

20 D. Hong et al.

performance for its short critical path characteristics. The operational blocks for
the round function and key scheduling are so regular that we can achieve these
operations with low hardware resources by using its basic operational blocks
repetitively.

Table 8 shows the hardware complexity of two different implementations of
LEA-128 encryption module: One is the area-optimized and the other is the
FOM-optimized (throughput/area). The area-optimized implementation of LEA
has 3,826 GE and 168 clock cycles, and the FOM-optimized has 5,426 GE and
24 clock cycles. We can see that the LEA encryption algorithm has relatively
lightweight key scheduling and encryption block (Round Function) from this
table.

Table 9 compares our hardware implementation results of LEA-128 encryp-
tion to other 128-bit key block ciphers with view point of FOM.

Table 8. Hardware feature of LEA-128 encryption module

Block Area(GE)
Area-optimized FOM-optimized

Constants generation 970 964
Control unit 75 54
Key scheduling 400 695
State register 920 1,037
Key register 998 1,037
Round function 450 1,080
Others 23 559
Total block 3,826 5,426

Table 9. Hardware implementation of LEA-128 encryption algorithm and its compar-
ison to that of other 128-bit key block ciphers

Algorithm Size(bits) Cycles T.put† Tech. Area FOM‡

Key block /block (μm) (GE)

LED [30] 128 64 1,872 3.42 0.18 1,265 0.26
CLEFIA [52] 128 128 328 39 0.09 2,488 1.56
PICCOLO [51] 128 64 528 12.12 0.13 758 1.59
LEA-1281 128 128 168 76.19 0.13 3,826 1.9
AES [45] 128 128 226 56.64 0.13 2,400 2.35
HIGHT [31] 128 64 34 188.24 0.25 3,048 6.17
TWINE [53] 128 64 36 178 0.09 1,866 9.53
LEA-1282 128 128 24 533.33 0.13 5,426 9.82
PRESENT [13] 128 64 32 200 0.18 1,570 12.73

†Throughtput@100KHz (Kbps), ‡FOM : (Throughput/Area)×102

1 : Area-optimized implementation of LEA-128
2 : FOM-optimized implementation of LEA-128

LEA: A 128-Bit Block Cipher for Fast Encryption on Common Processors 21

6 Conclusion

We have proposed a new block cipher LEA, which has 128-bit block size and
128, 192, or 256-bit key size. LEA provides a high-speed software encryption
on general-purpose processors. It can be also implemented to have tiny code
size. Its hardware implementation has a competitive throughput per area. It is
secure against all the existing attacks. In spite of the remarkable implementation
results presented in this paper, we believe that the they have room for further
optimizations.

A Differential Characteristic

Let ΔXi be the XOR difference of Xi, and let pi be the probability of ΔXi →
ΔXi+1. The probability p of an r-round differential characteristic is computed
as p =

∏r−1
i=0 pi.

Table 10 shows the 11-round differential characteristic with the probability
of 2−98. The differences in the table are denoted in hexadecimal.

Table 10. 11-round differential characteristic with the probability of 2−98

i ΔXi pi

0 80000234 α0402214 β0401205 γ0400281 2−22

1 80400080 8a000080 82000210 80000234 2−14

2 80000014 80400014 80400004 80400080 2−9

3 80000000 80000000 80000010 80000014 2−3

4 00000000 80000000 80000000 80000000 1
5 00000100 00000000 00000000 00000000 2−1

6 00020000 00000000 00000000 00000100 2−2

7 04000000 00000000 00000020 00020000 2−4

8 00000008 00000001 00004004 04000000 2−8

9 00001200 28000200 80800800 00000008 2−12

10 00200050 05440050 10100101 00001200 2−23

11 η800000a 88aaa00a 220202ζ0 00200050

The 7-round differential characteristic with the probability of 2−27, discard-
ing the first two rounds and the last two rounds is used for constructing a
14-round boomerang characteristic.

B Linear Approximation

Let ΓXi be the mask of Xi, and let εi = pi − 1/2 be the bias of the linear
approximation

ΓXi · Xi ⊕ ΓXi+1 · Xi+1 = ΓKi · RK. (2)

22 D. Hong et al.

Table 11. 11-round linear approximation with the bias ε = 2−62

ΓX0 = 0aff33f0 470032b0 735801c0 15f00080

(α0
0, α

0
1, α

0
2) = (0a0033f0, 0f0033b0, 0a0033b0) εα0 = 2−7

(β0
0 , β0

1 , β0
2) = (48000100, 6c000100, 48000180) εβ0 = −2−4

(γ0
0 , γ0

1 , γ0
2) = (1f5800c0, 15f00080, 15500080) εγ0 = 2−7

ΓX1 = 00676014 0240000c 02aa0010 00ff0000

(α1
0, α

1
1, α

1
2) = (00600014, 00400014, 0040001e) εα1 = 2−4

(β1
0 , β1

1 , β1
2) = (02000018, 02000010, 03000010) εβ1 = −2−3

(γ1
0 , γ1

1 , γ1
2) = (00aa0000, 00ff0000, 00aa0000) εγ1 = 2−5

ΓX2 = 80003c00 80180000 00154000 00076000

(α2
0, α

2
1, α

2
2) = (80000000, 80000000, c0000000) εα2 = −2−2

(β2
0 , β2

1 , β2
2) = (00180000, 00100000, 00100000) εβ2 = 2−2

(γ2
0 , γ2

1 , γ2
2) = (00054000, 00076000, 0005c000) εγ3 = −2−4

ΓX3 = 00000180 00008000 0000b800 00003c00

(α3
0, α

3
1, α

3
2) = (00000000, 00000000, 00000000) εα3 = 2−1

(β3
0 , β3

1 , β3
2) = (00008000, 00008000, 0000c000) εβ3 = −2−2

(γ3
0 , γ3

1 , γ3
2) = (00003800, 00003c00, 00003800) εγ3 = 2−3

ΓX4 = 00000000 00000600 00000700 00000180

(α4
0, α

4
1, α

4
2) = (00000000, 00000000, 00000000) εα4 = 2−1

(β4
0 , β4

1 , β4
2) = (00000600, 00000600, 00000600) εβ4 = 2−2

(γ4
0 , γ4

1 , γ4
2) = (00000100, 00000180, 00000100) εγ4 = 2−2

ΓX5 = 00000000 00000030 00000020 00000000

(α5
0, α

5
1, α

5
2) = (00000000, 00000000, 00000000) εα5 = 2−1

(β5
0 , β5

1 , β5
2) = (00000030, 00000020, 00000020) εβ5 = 2−2

(γ5
0 , γ5

1 , γ5
2) = (00000000, 00000000, 00000000) εγ5 = 2−1

ΓX6 = 00000000 00000001 00000000 00000000

(α6
0, α

6
1, α

6
2) = (00000001, 00000001, 00000001) εα6 = 2−1

(β6
0 , β6

1 , β6
2) = (00000000, 00000000, 00000000) εβ6 = 2−1

(γ6
0 , γ6

1 , γ6
2) = (00000000, 00000000, 00000000) εγ6 = 2−1

ΓX7 = 00000200 00000000 00000000 00000001

(α7
0, α

7
1, α

7
2) = (00000001, 00000001, 00000001) εα7 = 2−1

(β7
0 , β7

1 , β7
2) = (00000001, 00000001, 00000001) εβ7 = 2−1

(γ7
0 , γ7

1 , γ7
2) = (00000001, 00000001, 00000001) εγ7 = 2−1

ΓX8 = 00000200 08000000 20000000 00000201

(α8
0, α

8
1, α

8
2) = (28000201, 38000201, 2c000301) εα8 = 2−4

(β8
0 , β8

1 , β8
2) = (30000201, 20000301, 20000201) εβ8 = 2−3

(γ8
0 , γ8

1 , γ8
2) = (00000301, 00000201, 00000201) εγ8 = 2−2

ΓX9 = 00060258 09000010 20000040 28000001

(α9
0, α

9
1, α

9
2) = (01000059, 01000051, 01800071) εα9 = 2−4

(β9
0 , β9

1 , β9
2) = (08000041, 0c000041, 08000061) εβ9 = −2−3

(γ9
0 , γ9

1 , γ9
2) = (2c000001, 28000001, 38000001) εγ9 = −2−3

ΓX10 = 0000e203 08400003 27000000 01060201

(α10
0 , α10

1 , α10
2) = (3c660203, 3c440202, 3c440302) εα10 = −2−7

(β10
0 , β10

1 , β10
2) = (34040201, 26040201, 24060301) εβ10 = 2−5

(γ10
0 , γ10

1 , γ10
2) = (01040201, 01060201, 01840301) εγ10 = 2−4

ΓX11 = 88060478 09203018 20308060 3c66e000

LEA: A 128-Bit Block Cipher for Fast Encryption on Common Processors 23

Table 12. 10-round impossible differential characteristic

i ΔXi in forward direction ΔXi in backward direction i

X[0] 0 10000000000000000000000000000000
X[1] 10000000000000000000000000000000
X[2] 10000000000000000000000000000000
X[3] 10000000000000000000000000000000
X[0] 1 00000000000000000000000000000000
X[1] 00000000000000000000000000000000
X[2] 00000000000000000000000000000000
X[3] 10000000000000000000000000000000
X[0] 2 00000000000000000000000000000000 00000000000000000000000000000000 10
X[1] 00000000000000000000000000000000 00000000000000000000000000000000
X[2] 00010000000000000000000000000000 00010000000000000000000000000000
X[3] 00000000000000000000000000000000 00000000000000000000000000000000
X[0] 3 00000000000000000000000000000000 00000000000000000000000000000000 9
X[1] 00000xxx100000000000000000000000 00000000000000000000000000000000
X[2] 000xxx10000000000000000000000000 00000000000000000000000000000000
X[3] 00000000000000000000000000000000 10000000000000000000000000000000
X[0] 4 00000000000000000000000xxxxxxxx1 10000000000000000000000000000000 8
X[1] 00000xxxxxxxx1000000000000000000 10000000000000000000000000000000
X[2] 000xxxxxxxx100000000000000000000 10000000000000000000000000000000
X[3] 00000000000000000000000000000000 10000000000000000000000000000000
X[0] 5 xxxxxxxxxxxxxxxxxxxxxx1xxxxxxxxx 10000000000000000000000000000000 7
X[1] 00000xxxxxxxxxxxxx10000000000000 xxxxxxxxx10000000000000000000000
X[2] 000xxxxxxxxx10000000000000000000 xxxxxxxxxxxxxxxxxxxxxxxxxxx10000
X[3] 00000000000000000000000xxxxxxxx1 xxxxxxxxxxxxxxxxxxxxxxxxxxxxx100
X[0] 6 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxx100 6
X[1] 00000xxxxxxxxxxxxxxxxxx100000000 xxxxxxxxxxxxxxxxxxxxxxxxxxxxx100
X[2] xx1xxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
X[3] xxxxxxxxxxxxxxxxxxxxxxx1xxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Equation (2) is XOR-sum of the following approximations:

αi
0 · (Xi[0] ⊕ RKi[0]) ⊕ αi

1 · (Xi[1] ⊕ RKi[1]) = αi
2 · ROR9(Xi+1[0]),

pαi = 1/2 + εαi
, (3)

βi
0 · (Xi[1] ⊕ RKi[2]) ⊕ βi

1 · (Xi[2] ⊕ RKi[3]) = βi
2 · ROL5(Xi+1[1]),

pβi = 1/2 + εβi
, (4)

γi
0 · (Xi[2] ⊕ RKi[4]) ⊕ γi

1 · (Xi[3] ⊕ RKi[5]) = γi
2 · ROL3(Xi+1[2]),

pγi = 1/2 + εγi
. (5)

Let ε be the bias of an r-round linear approximation. Note that εi = 4εαiεβi
εγi

and ε = 2r−1
∏r−1

i=0 εi by Piling-Up Lemma [44].
Table 11 shows the 11-round linear approximation with the biases of 2−62.

The masks in the table are denoted in hexadecimal.

24 D. Hong et al.

C Impossible Differential Characteristic

Table 12 shows one of three 10-round impossible differential characteristic
reported in [20]. ‘1’ and ‘0’ mean the single bits 1 and 0 in the XOR
difference. ‘x’ means an unknown bit.

References

1. Aoki, K., Sasaki, Y.: Meet-in-the-middle preimage attacks against reduced SHA-
0 and SHA-1. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 70–89.
Springer, Heidelberg (2009)

2. Aumasson, J.P., Henzen, L., Meier, W., Phan, R.C.W.: SHA-3 proposal BLAKE.
Submission to NIST (Round 3) (2010)

3. Beaulieu, R., Shors, D., Smith, J., Treatman-Clar, S., Weeks, B., Wingers, L.: The
SIMON and SPECK families of lightweight block ciphers. IACR Cryptology ePrint
Archive. Report 2013/404 (2013)

4. Bernstein, D.J.: The salsa20 stream cipher. In: SKEW 2005 — Symmetric Key
Encryption Workshop (2005)

5. Biham, E.: New types of cryptanalytic attacks using related keys. In: Helleseth,
T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 398–409. Springer, Heidelberg
(1994)

6. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of skipjack reduced to 31
rounds using impossible differentials. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS,
vol. 1592, pp. 12–23. Springer, Heidelberg (1999)

7. Biham, E., Dunkelman, O., Keller, N.: The rectangle attack - rectangling the ser-
pent. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 340–357.
Springer, Heidelberg (2001)

8. Biham, E., Dunkelman, O., Keller, N.: Enhancing differential-linear cryptanalysis.
In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 254–266. Springer,
Heidelberg (2002)

9. Biham, E., Shamir, A.: Differential Cryptanalysis of the Data Encryption Standard.
Springer, Heidelberg (1993)

10. Biryukov, A., Khovratovich, D.: Related-key cryptanalysis of the full AES-192
and AES-256. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 1–18.
Springer, Heidelberg (2009)

11. Biryukov, A., Khovratovich, D., Nikolić, I.: Distinguisher and related-key attack
on the full AES-256. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp.
231–249. Springer, Heidelberg (2009)

12. Biryukov, A., Wagner, D.: Slide attacks. In: Knudsen, L.R. (ed.) FSE 1999. LNCS,
vol. 1636, pp. 245–259. Springer, Heidelberg (1999)

13. Bogdanov, A.A., Knudsen, L.R., Leander, G., Paar, Ch., Poschmann, A., Robshaw,
M., Seurin, Y., Vikkelsoe, C.: PRESENT: An ultra-lightweight block cipher. In:
Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

14. Bogdanov, A., Khovratovich, D., Rechberger, Ch.: Biclique cryptanalysis of the
full AES. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp.
344–371. Springer, Heidelberg (2011)

15. Bogdanov, A., Wang, M.: Zero correlation linear cryptanalysis with reduced data
complexity. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 29–48. Springer,
Heidelberg (2012)

LEA: A 128-Bit Block Cipher for Fast Encryption on Common Processors 25

16. Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knezevic, M., Knudsen,
L.R., Leander, G., Nikov, V., Paar, C., Rechberger, C., Rombouts, P., Thomsen,
S., Yalçın, T.: PRINCE - A low-latency block cipher for pervasive computing appli-
cations. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp.
208–225. Springer, Heidelberg (2012)

17. Canteaut, A., Chabaud, F.: A new algorithm for finding minimum-weight words
in a linear code: application to McEliece’s cryptosystem and to narrow-sense BCH
codes of length 511. IEEE Trans. Inf. Theory 44(1), 367–378 (1998)

18. Certicom White Paper Series. Critical infrastructure protection for AMI using a
comprehensive security platform, Februrary 2009

19. Courtois, N.T., Pieprzyk, J.: Cryptanalysis of block ciphers with overdefined sys-
tems of equations. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp.
267–287. Springer, Heidelberg (2002)

20. COSIC. Final Report: Security Evaluation of the Block Cipher LEA (2011)
21. Daemen, J., Rijmen, V.: The Design of Rijndael: AES. In: The Advanced Encryp-

tion Standard. Springer (2002)
22. Darnall, M., Kuhlman, D.: AES software implementations on ARM7TDMI. In:

Barua, R., Lange, T. (eds.) INDOCRYPT 2006. LNCS, vol. 4329, pp. 424–435.
Springer, Heidelberg (2006)

23. Diffie, W., Hellman, M.: Exhaustive cryptanalysis of the NBS data encryption
standard. Computer 10(6), 74–84 (1977)

24. Dunkelman, O., Keller, N., Shamir, A.: A practical-time related-key attack on
the KASUMI cryptosystem used in GSM and 3G telephony. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 393–410. Springer, Heidelberg (2010)

25. eBACS: ECRYPT Benchmarking of Cryptographic Systems, bench.cr.yp.to.
26. Ferguson, N., Lucks, S., Schneier, B., DougWhiting, Bellare, M., Tadayoshi Kohno,

Callas, J., Jesse Walker, : The skein hash function family, Submission to NIST
(Round 3) (2010)

27. ADVANCED ENCRYPTION STANDARD, (AES), Federal Information Process-
ing Standards, Publication 197, 26 November 2001)

28. Gong, Z., Nikova, S., Law, Y.W.: KLEIN: A new family of lightweight block ciphers.
In: Juels, A., Paar, Ch. (eds.) RFIDSec 2011. LNCS, vol. 7055, pp. 1–18. Springer,
Heidelberg (2012)

29. Mukhopadhyay, D.: An improved fault based attack of the advanced encryption
standard. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 421–
434. Springer, Heidelberg (2009)

30. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED block cipher. In:
Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326–341. Springer,
Heidelberg (2011)

31. Hong, D., Sung, J., Hong, S.H., Lim, J.-I., Lee, S.-J., Koo, B.-S., Lee, C.-H., Chang,
D., Lee, J., Jeong, K., Kim, H., Kim, J.-S., Chee, S.: HIGHT: A new block cipher
suitable for low-resource device. In: Goubin, L., Matsui, M. (eds.) CHES 2006.
LNCS, vol. 4249, pp. 46–59. Springer, Heidelberg (2006)

32. Hong, D., Koo, B., Kwon, D.: Biclique attack on the full HIGHT. In: Kim, H. (ed.)
ICISC 2011. LNCS, vol. 7259, pp. 365–374. Springer, Heidelberg (2012)

33. ISO/IEC 19772, Information technology — Security techniques — Authenticated
encryption (2009)

34. Jakimoski, G., Desmedt, Y.: Related-key differential cryptanalysis of 192-bit key
AES variants. In: Matsui, M., Zuccherato, R. (eds.) SAC 2004. LNCS, vol. 3006,
pp. 208–221. Springer, Heidelberg (2004)

26 D. Hong et al.

35. Käsper, E., Schwabe, P.: Faster and timing-attack resistant AES-GCM. In: Clavier,
C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 1–27. Springer, Heidelberg
(2009)

36. Kelsey, J., Kohno, T., Schneier, B.: Amplified boomerang attacks against reduced-
round MARS and serpent. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp.
75–93. Springer, Heidelberg (2001)

37. Kelsey, J., Schneier, B., Wagner, D.: Related-key cryptanalysis of 3-WAY, biham-
DES, CAST, DES-X, newDES, RC2, and TEA. In: Han, Y., Quing, S. (eds.) ICICS
1997. LNCS, vol. 1334, pp. 233–246. Springer, Heidelberg (1997)

38. Khovratovich, D., Nikolić, I.: Rotational cryptanalysis of ARX. In: Hong, S., Iwata,
T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 333–346. Springer, Heidelberg (2010)

39. Knudsen, L.R.: Truncated and higher order differentials. In: Preneel, B. (ed.) FSE
1994. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995)

40. Knudsen, L.R., Wagner, D.: Integral cryptanalysis. In: Daemen, J., Rijmen, V.
(eds.) FSE 2002. LNCS, vol. 2365, pp. 112–127. Springer, Heidelberg (2002)

41. Koo, B., Hong, D., Kwon, D.: Related-key attack on the full HIGHT. In: Rhee,
K.-H., Nyang, D.H. (eds.) ICISC 2010. LNCS, vol. 6829, pp. 49–67. Springer, Hei-
delberg (2011)

42. Lipmaa, H., Moriai, S.: Efficient algorithms for computing differential properties of
addition. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 336–350. Springer,
Heidelberg (2002)

43. Matsuda, S., Moriai, S.: Lightweight cryptography for the cloud: exploit the power
of bitslice implementation. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS,
vol. 7428, pp. 408–425. Springer, Heidelberg (2012)

44. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

45. Moradi, A., Poschmann, A., Ling, S., Paar, Ch., Wang, H.: Pushing the limits: a
very compact and a threshold implementation of AES. In: Paterson, K.G. (ed.)
EUROCRYPT 2011. LNCS, vol. 6632, pp. 69–88. Springer, Heidelberg (2011)

46. Needham, R.M., Wheeler, D.J.: TEA extensions. computer laboratory, University
of Cambridge, Technical report, October 1997

47. Osvik, D.A., Bos, J.W., Stefan, D., Canright, D.: Fast software AES encryption.
In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 75–93. Springer,
Heidelberg (2010)

48. https://realtimelogic.com/products/sharkssl/Coldfire-80Mhz/
49. Rivest, R.L., Robshaw, M.J.B., Sidney, R., Yin, Y.L.: Thr RC6 block cipher (1998)
50. Sasaki, Y., Aoki, K.: Finding preimages in full MD5 faster than exhaustive search.

In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 282–296. Springer,
Heidelberg (2009)

51. Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai, T.: Piccolo:
an ultra-lightweight blockcipher. In: Preneel, B., Takagi, T. (eds.) CHES 2011.
LNCS, vol. 6917, pp. 342–357. Springer, Heidelberg (2011)

52. Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-bit blockci-
pher CLEFIA (Extended abstract). In: Biryukov, A. (ed.) FSE 2007. LNCS, vol.
4593, pp. 181–195. Springer, Heidelberg (2007)

53. Suzaki, T., Minematsu, K., Morioka, S., Kobayasi, E.: Twine: A lightweight, ver-
satile block cipher. In: Proceedings of ECRYPT Workshop on Lightweight Cryp-
tography (2011)

54. Wagner, D.: The boomerang attack. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol.
1636, pp. 156–170. Springer, Heidelberg (1999)

https://realtimelogic.com/products/sharkssl/Coldfire-80Mhz/

LEA: A 128-Bit Block Cipher for Fast Encryption on Common Processors 27

55. Wallén, J.: On the differential and linear properties of addition, Master’s thesis,
Helsinki University of Technology, Laboratory for Theoretical Computer Science,
November 2003

56. Wheeler, D.J., Needham, R.M.: TEA, a tiny encryption algorithm. In: Preneel, B.
(ed.) FSE 1994. LNCS, vol. 1008, pp. 363–366. Springer, Heidelberg (1995)

57. Wheeler, D.J., Needham, R.M.: Correction of XTEA. Computer Laborarory, Uni-
versity of Cambridge, Technical report (October 1998)

58. Yarrkov, E.: Cryptanalysis of XXTEA, IACR Cryptology ePrint Archive 2010/254
(2010)

	LEA: A 128-Bit Block Cipher for Fast Encryption on Common Processors
	1 Introduction
	1.1 Contribution
	1.2 Organization

	2 Specification of LEA
	2.1 Notations
	2.2 State Representation
	2.3 Key Schedule
	2.4 Encryption Procedure

	3 Design Principles
	4 Security Analysis
	4.1 Differential Attack
	4.2 Linear Attack
	4.3 Zero Correlation Attack
	4.4 Boomerang Attack
	4.5 Impossible Differential Attack
	4.6 Integral Attack
	4.7 Differential-Linear Attack
	4.8 Attacks Using Weakness of Key Schedule
	4.9 Other Attacks
	4.10 Security Margin

	5 Implementation
	5.1 Software Implementation
	5.2 Hardware Implementation

	6 Conclusion
	A Differential Characteristic
	B Linear Approximation
	C Impossible Differential Characteristic
	References

