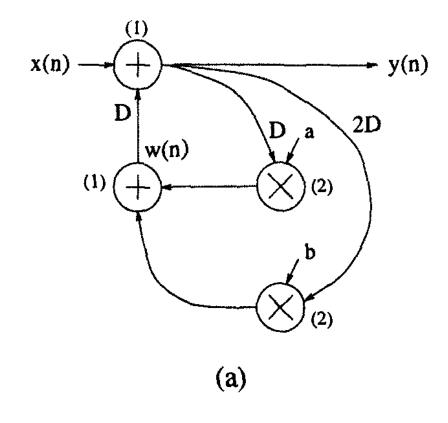
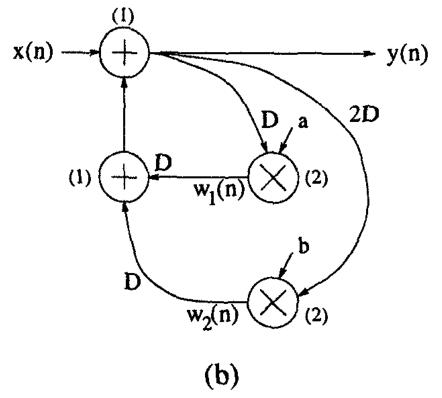
Retiming



$$w(n) = ay(n-1) + by(n-2)$$

 $y(n) = w(n-1) + x(n)$
 $= ay(n-2) + by(n-3) + x(n).$



$$w_1(n) = ay(n-1)$$

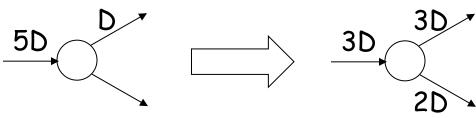
 $w_2(n) = by(n-2)$
 $y(n) = w_1(n-1) + w_2(n-1) + x(n)$
 $= ay(n-2) + by(n-3) + x(n)$.

Retiming

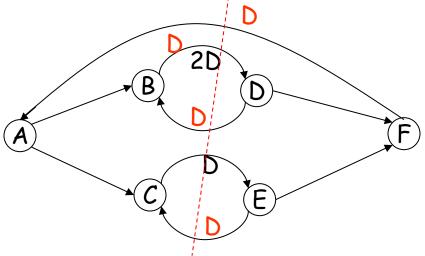
Moving around existing delays

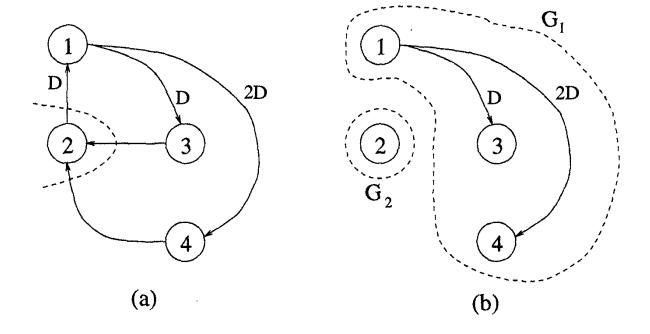
- Does not alter the latency of the system
- Reduces the critical path of the system

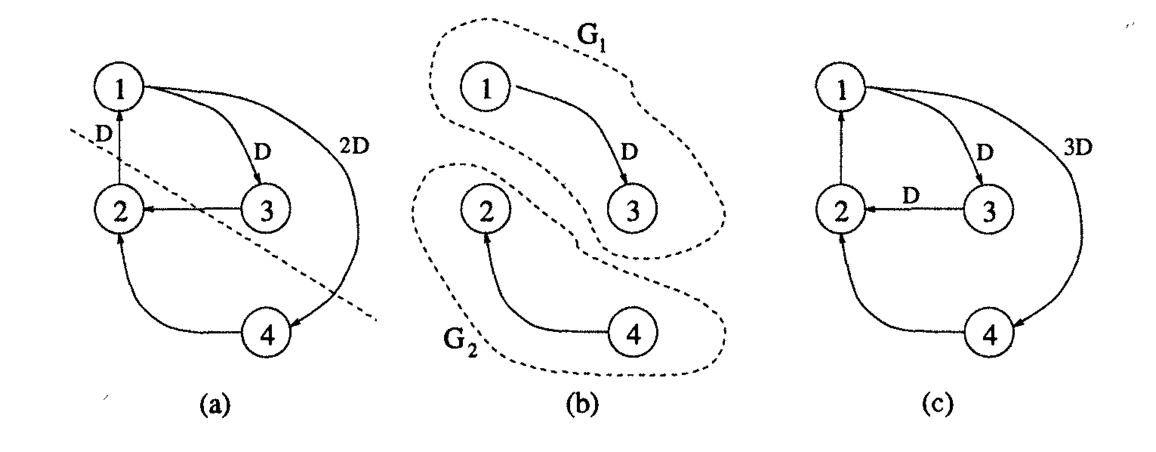
• Node Retiming



Cutset Retiming

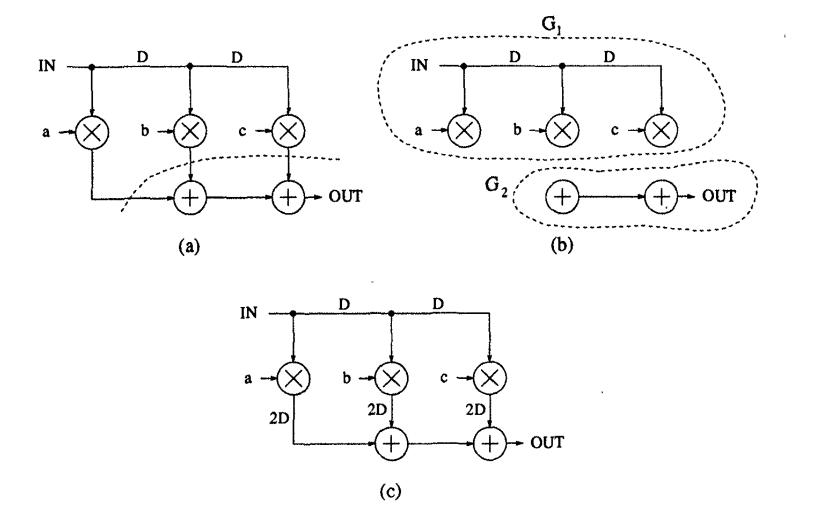




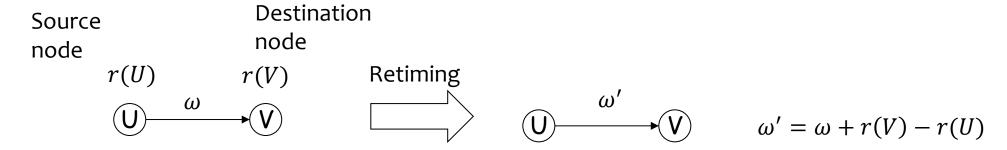


Generalization of pipelining

Pipelining is equivalent to introducing many delays at the input followed by retiming



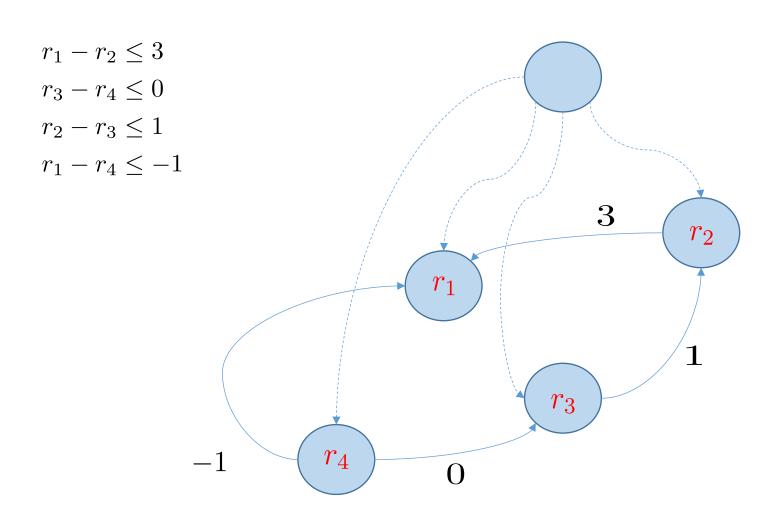
Retiming Formulation



- Properties of retiming
 - The weight of the retimed path $p=V_0 \to V_1 \to \cdots \to V_k$ is given by $\omega_r(p)=\omega(p)+r(V_k)-r(V_0)$
 - Retiming does not change the number of delays in a cycle.
 - Retiming does not alter the iteration bound in a DFG
 - Adding the constant value *j* to the retiming value of each node does not alter the number of delays in the edges of the retimed graph.
- Retiming is done to meet the following
 - Clock period minimization
 - Register minimization
 - Reduce power consumption

Solving a system of inequalities

- Given M inequalities in N variables, where each inequality is of the form $r_i r_j \le k$, for integer values of k: Use a shortest path algorithm:
 - > Draw a constraint graph
 - \triangleright Draw a node i for each of the N variables r_i , i = 1, 2, ..., N.
 - \triangleright Draw a node N+1.
 - ightharpoonup For each inequality $r_i r_j \leq k$, draw the edge $j \rightarrow i$ of length k.
 - For each node i, i = 1, 2, ..., N, draw the edge $N + 1 \rightarrow i$ from the node N + 1 to node i with length 0.
 - > Solve using a shortest path algorithm.
 - > The system of inequalities has a solution, iff the constraint graph contains no negative cycles.
 - \triangleright If a solution exists, one solution is where r_i is the minimum-length path from the node N+1 to node i.



 Solution exists when nonnegative cycles

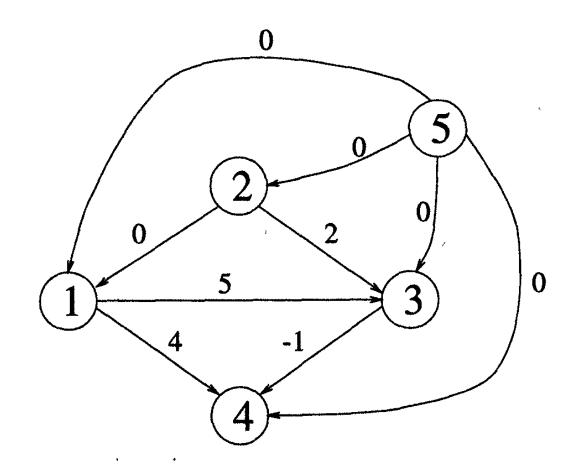
 Solve shortest path problem from root to every node

Solve systems of inequalities

Παράδειγμα

$$r_1 - r_2 \le 0$$
 $r_3 - r_1 \le 5$
 $r_4 - r_1 \le 4$
 $r_4 - r_3 \le -1$
 $r_3 - r_2 \le 2$.

$$\mathbf{R}^{(6)} = \begin{bmatrix} \infty & \infty & 5 & 4 & \infty \\ 0 & \infty & 2 & 1 & \infty \\ \infty & \infty & \infty & -1 & \infty \\ \infty & \infty & \infty & \infty & \infty \\ 0 & 0 & 0 & -1 & \infty \end{bmatrix}$$



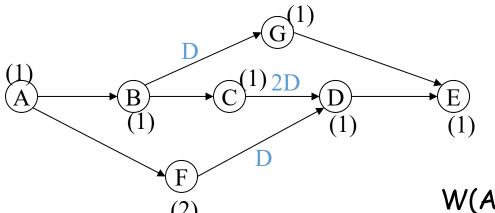
Retiming for Clock Period Minimization

- Feasibility constraint: forces the number of delays on each edge of the retimed graph to be non negative
 - $\omega'(U,V) \geq 0$

causality of the system

• $\omega'(U,V) \ge r(U) - r(V)$ (one inequality per edge)

- Critical Path constraint: enforces that the minimum feasible clock period Φ(G) is less than the target clock period c
 - Define two quantities W(U,V) and D(U,V) as:
 - $W(U,V) = \min\{w(p): U \rightarrow V\}$
 - $D(U,V) = \max\{t(p): U \rightarrow V \text{ and } w(p) = W(U,V)\}$
- Then it should hold that $r(U)-r(V) \leq W(U,V)-1$, for all vertices U and V in the graph, for which D(U,V)>c.

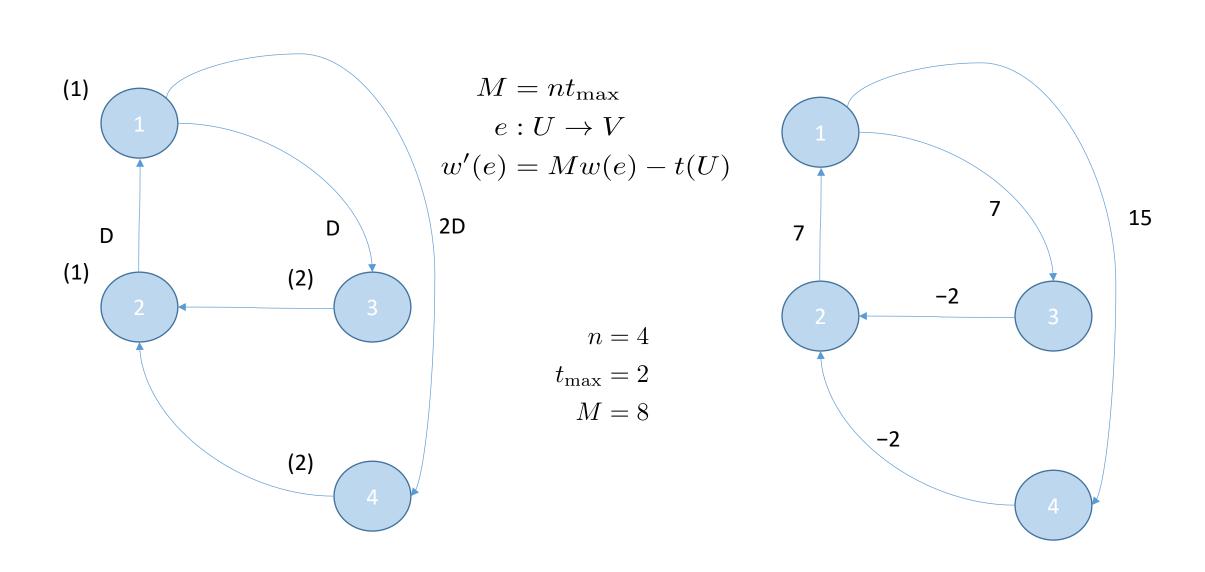


Namely: For those paths for which the computation time exceeds the target clock period c, we demand that they are not critical paths (their retimed version contains at least 1 delay)

$$(A,E) = 1 & D(A,E) =$$

Algorithm to compute W(U, V) and D(U, V)

- Let $M = t_{max}n$, where t_{max} is the maximum computation time of the nodes in G and n is the # of nodes in G.
- Form a new graph G' which is the same as G except the edge weights are replaced by w'(e) = Mw(e) t(U), for all edges $e: U \to V$.
- Solve for all-pairs shortest path problem on G' by using Floyd-Warshall algorithm. Let S'_{UV} be the shortest path from $U \to V$.
- If $U \neq V$, then
 - $W(U,V) = \left[\frac{S'_{UV}}{M}\right]$ and
 - $D(U,V) = MW(U,V) S'_{UV} + t(V)$.
- If U = V, then W(U, V) = 0 and D(U, V) = t(U).
- Using W(U,V) and D(U,V), the **feasibility** and **critical path** constraints are formulated to give certain inequalities.
- The inequalities are solved using constraint graphs, and, if a feasible solution is obtained, then the circuit can be clocked with a period c.



Cutset retiming

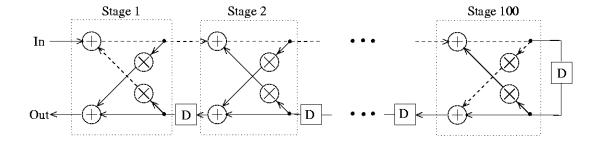
- Special case of retiming: A graphical method that simplifies complex retiming
- Only affects the weights of the cutset edges
- Add k delays to graph G_1 remove k delays from other graph G_2
- Each node in G_1 has a retiming value j and each node in G_2 has j + k
- Pipelining is a special case of cutset retiming (and of retiming):
 - No edges in cutset that go from G_2 to G_1 (feed forward cutsets)
- **Cutset retiming** is often used in combination with slow down:
 - each delay is replaced with N delays to create an N-slow version of the DFG. Note that N-1 null operations must be interleaved after each useful signal sample to preserve the functionality.

A 100-stage **Lattice Filter** (Fig. 4.7)

Critical path: 2 mults and 101 adds.

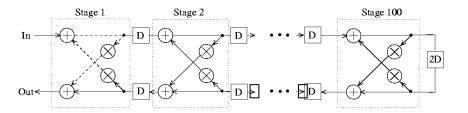
Assume $T_m = 2$ ut and $T_a = 1$ ut

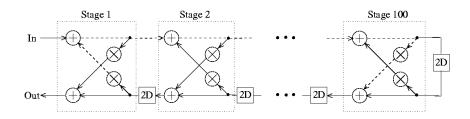
 \rightarrow T_{sample} = T_{clk} = 105 ut



A 2-slow version of the circuit ($T_{clk} = 105 \text{ u.t.}$) (Input new samples every alternate cycle)

- A (cutset) retimed version of the 2-slow circuit (T_{clk} = 6 ut)
- Critical path: 2 multiplications and 2 additions
 → T_{sample} = 2X6 = 12 ut





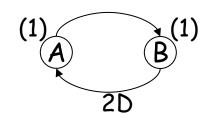
k-slow transformation

• Replace each D by kD (1)

Clock	
0	A0→B0
1	A1→B1
2	A2→B2

$$T_{\text{iter}} = 2 \text{ ut}$$

After 2-slow transformation



Clock	
0	A0→B0
1	
2	A1→B1
3	
4	A2→B2

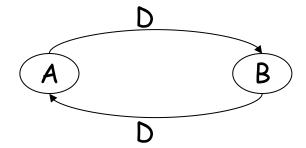
$$T_{\text{clk}} = 2 \text{ ut}$$

 $T_{\text{iter}} = 2 \times 2 = 4 \text{ ut}$

- Input new samples every alternate cycles.
- Null operations account for odd clock cycles.
- Hardware utilized only 50% time

Retiming a 2-slow graph

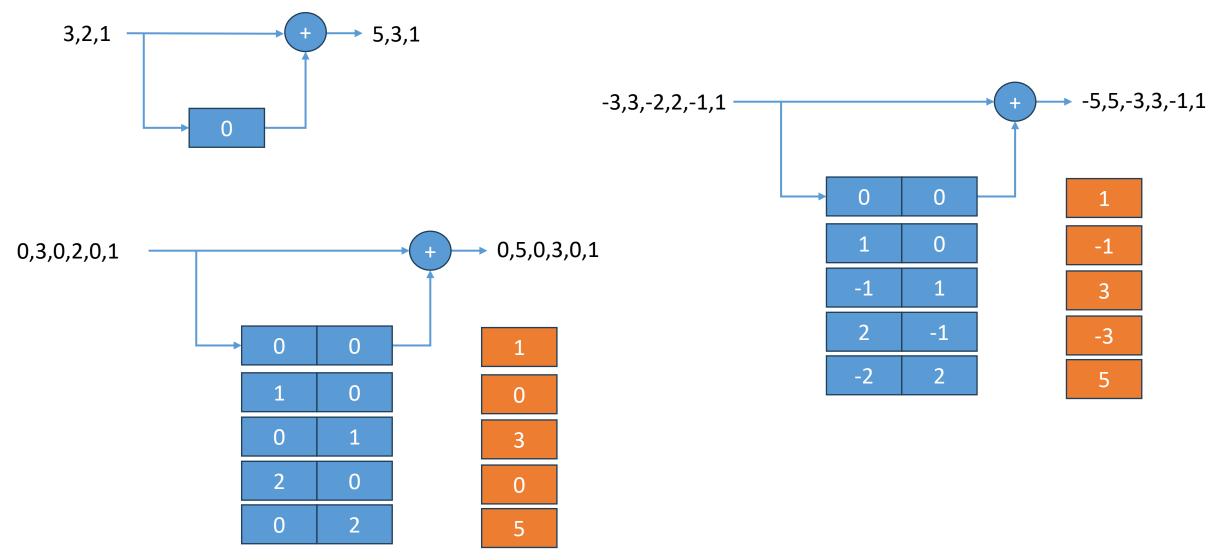
- $T_{clk} = 1$ ut
- $T_{\text{iter}} = 2 \times 1 = 2 \text{ ut}$



Hardware Utilization = 50 %

• Hardware can be fully utilized if two independent operations are available.

Μετασχηματισμός N-slow



Other Applications of Retiming

- Retiming for Register Minimization (Section 4.4.3)
- Retiming for Folding (Chapter 6)
- Retiming for Power Reduction (Chap. 17)
- Retiming for Logic Synthesis (Beyond Scope of This Class)