
Chapter 8 Oscillators 1 

Feedback View of Oscillators 

 An oscillator may be viewed as a “badly-designed” negative-feedback 
amplifier—so badly designed that it has a zero or negative phase margin. 
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Feedback View of Oscillators (II) 

For the above system to oscillate, must the noise at ω1 appear at the input? 
 
 
 
 
 
 
 
 
 

No, the noise can be anywhere in the loop. For example, consider the system shown in 
figure below, where the noise N appears in the feedback path. Here, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Thus, if the loop transmission, 
H1H2H3, approaches -1 at ω1, N is 
also amplified indefinitely. 
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Y/X in the Vicinity of ω = ω1  

Derive an expression for Y/X in figure below in the vicinity of ω = ω1 if H(jω1) = -1. 
 
 
 
 
 
 
 
 
 
 

We can approximate H(jω) by the first two terms in its Taylor series: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Since H(jω1) = -1, we have 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

As expected, Y/X → ∞ as Δω → 0, with a “sharpness” proportional to dH/dω. 
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Barkhausen’s Criteria 

 For the circuit to reach steady state, the signal returning to A must exactly 
coincide with the signal that started at A. We call ∠ H(jω1) a “frequency-
dependent” phase shift to distinguish it from the 180 ° phase due to negative 
feedback. 

 Even though the system was originally configured to have negative feedback, 
H(s) is so “sluggish” that it contributes an additional phase shift of 180 ° at 
ω1, thereby creating positive feedback at this frequency. 
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Significance of |H(jw1)| = 1 

 For a noise component at ω1 to “build up” as it circulates around the loop with 
positive feedback, the loop gain must be at least unity. 

 We call |H(jω1)| = 1 the “startup” condition. 
 
 

 What happens if |H(jω1)| > 1 and ∠H(jω1) = 180°? The growth shown in figure 
above still occurs but at a faster rate because the returning waveform is amplified by 
the loop.  

 Note that the closed-loop poles now lie in the right half plane. 
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Can a Two-Pole System Oscillate? (Ⅰ) 

Can a two-pole system oscillate? 
 
 
 
 
 
 
 
 
 
 

Suppose the system exhibits two coincident real poles at ωp. Figure below (left) shows an 
example, where two cascaded common-source stages constitute H(s) and ωp = (R1C1)-1. This 
system cannot satisfy both of Barkhausen’s criteria because the phase shift associated with 
each stage reaches 90° only at ω = ∞, but |H(∞)| = 0. Figure below (right) plots |H| and ∠H 
as a function of frequency, revealing no frequency at which both conditions are met. Thus, 
the circuit cannot oscillate. 
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Three stage Ring oscillator 
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Can a Two-Pole System Oscillate? (Ⅱ) 

Can a two-pole system oscillate? 
 
 
 
 
 
 
 
 
 
 

But, what if both poles are located at the origin? Realized as two ideal integrators in a loop, 
such a circuit does oscillate because each integrator contributes a phase shift of -90° at 
any nonzero frequency. Shown in figure below (right) are |H| and ∠H for this system. 
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Frequency and Amplitude of Oscillation in Previous 
Example 

The feedback loop of figure above is released at t = 0 with initial conditions of z0 
and y0 at the outputs of the two integrators and x(t) = 0. Determine the frequency 
and amplitude of oscillation. 
 
 
 
 
 
 
 
 
 
 
 

Assuming each integrator transfer function is expressed as K/s, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Substitute x and y, 
 
 
 
 
 
 
 
 
 
 
 
 

Interestingly, the circuit automatically finds the frequency at which the loop gain K2/ω2 
drops to unity. 
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Ring Oscillator 

 Other oscillators may begin to oscillate at a frequency at which the loop gain is 
higher than unity, thereby experiencing an exponential growth in their output 
amplitude. 

 The growth eventually stops due to the saturating behavior of the amplifier(s) 
in the loop. 
 
 

 Each stage operates as an amplifier, leading to an oscillation frequency at 
which each inverter contributes a frequency-dependent phase shift of 60°. 
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Example of Voltage Swings (Ⅰ) 

The inductively-loaded differential pair shown in figure below is driven by a large 
input sinusoid at  
 
 Plot the output waveforms and determine the output swing. 
 
 
 
 
 
 
 
 
 
 
 
 

With large input swings, M1 and M2 experience complete switching in a short transition time, 
injecting nearly square current waveforms into the tanks. Each drain current waveform has 
an average of ISS/2 and a peak amplitude of ISS/2. The first harmonic of the current is 
multiplied by Rp whereas higher harmonics are attenuated by the tank selectivity. 
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Recall from the Fourier expansion of a square wave of peak amplitude A (with 50% duty 
cycle) that the first harmonic exhibits a peak amplitude of (4/π)A (slightly greater than A). 
The peak single-ended output swing therefore yields a peak differential output swing of 
 
 

 
 
 
 
 
 
 

Example of Voltage Swings (Ⅱ) 
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