


 What is association analysis?
› The task of analyzing so called 

“transactions” that indicate the likely 
occurrence of an item based on the 
occurrences of other items in the 
transactions of large datasets 

› The discovered relationships are 
represented in the form of association rules



 Where is it used?

› Biology and bioinformatics

 E.g. Co-occurrence of genes

› Medicine

 Occurrence of symptoms

› Geology

 Relationships between oceans and land 

masses

› Retail

 Market basket analysis 



 Main idea exemplified

Market-Basket transactions i.e. 

what customers have bought

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  

 

Transactions i.e. what a 

customer bought in the 

supermarket

The main task is now to 

analyze transactions and 

come up with association 

rules of the form

{Diaper} → {Beer},

{Milk, Bread} → {Eggs,Coke},

{Beer, Bread} → {Milk},

These mean that e.g. customers that 
bought Diapers also bought Beer, 
customer that bought Beer and Bread 
also bought Milk.



 Association rules

› Rule suggest that a strong relationship exist 

between items of transaction

 Form of rules: Antecedent → Consequent

 Note: rules implies relationship/co-occurrence

not causality!

› Practical issues: Helps in devising sale 

strategies and discounts

 Used heavily by retailers to identify 

opportunities of cross-selling to customers



 Practical issues
› Let a discovered rule be as follows:

 {Bagels,…} → {Potato Chips}

› Potato Chips as consequent: what should be 
done to boost its sales

› Bagels in antecedent: can be used to see which 
products will be affected if the store 
discontinues selling bagels

› Bagels in antecedent and Potato chips in 
consequent: can be used to see what products 
should be sold with bagels to promote sell of 
potato chips



 What problems exist when trying to find 

associations and rules in transactions?

› When number of transactions is huge finding 

such rules is computational expensive

 True even for small/midsized supermarkets

› Some rules may be accidental or no rules at 

all (i.e. simply false)





 Items
› A finite set of atomic elements I = { i1, i2, 

i3,…, id} e.g. {milk, beer, diapers, bagel}

 Transaction t
› is a subset of Ι, i.e.  I which is observed

› Transaction usually have IDs (see column 
TID in the table)

 Transaction Database
› A set of transactions T={t1, t2, t3,…,tn}

 Itemset
› A collection of one or more items

 Example: {Milk, Bread, Diaper}

› k-itemset
 An itemset that contains k items e.g. 

3-itemset: {Milk, Beer, Bagel}, 2-
itemset: {Diaper, Milk}

› Important: itemsets different from 
transactions

 We say that a transaction t 
contains itemset X when X  t.

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  

 

One transaction

One item

Transactions 

database



 Metrics for itemsets

› Support count of 

itemset, σ

 Frequency of 

occurrence of an 

itemset

› Support of itemset, s

 Fraction (pct) of 

transactions that 

contain an itemset

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  

 

Examples of σ and s:

σ({Milk, Bread, Diaper}) = 2

s({Milk, Bread, Diaper}) = 2/5

Note: order of items in itemsets does not 

matter. E.g. σ({Bread, Milk, Diaper}) = 2



 What are association rules?
› An association rule is an implication of the 

form:

X → Y, where X, Y  I, and X Y = 

› Examples of valid rules

 {Milk, Beer} → {Diapers}

 {Beer, Bagel} → {Milk, Diapers, Potato chips}

› Examples of invalid rules

 {Beer, Bagel} → {Beer} (violates X Y  = )



 Metrics for association rules

› Support of association rule X → Y

 Fraction of transactions that contain both X 

and Y:

𝒔𝒖𝒑𝒑𝒐𝒓𝒕, 𝒔 𝑿 → 𝒀 =
𝝈(𝚾 ∩ 𝚼)

𝚴

› Confidence of association rule X → Y

 Fraction of transactions in which every time 

there is X, there also is Y:

𝒄𝒐𝒏𝒇𝒊𝒅𝒆𝒏𝒄𝒆, 𝒄 𝑿 → 𝒀 =
𝝈(𝚾 ∩ 𝚼)

𝛔(𝚾)



 Example of rule metrics

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  

 

 Assume rule

› {Milk, Diaper} → Beer

𝑠( 𝑚𝑖𝑙𝑘, 𝑑𝑖𝑎𝑝𝑒𝑟 → 𝐵𝑒𝑒𝑟}) =
𝜎 𝑚𝑖𝑙𝑘, 𝑑𝑖𝑎𝑝𝑒𝑟, 𝑏𝑒𝑒𝑟

𝑇
=
2

5
= 0.4

𝑐( 𝑚𝑖𝑙𝑘, 𝑑𝑖𝑎𝑝𝑒𝑟 → 𝐵𝑒𝑒𝑟}) =
𝜎 𝑚𝑖𝑙𝑘, 𝑑𝑖𝑎𝑝𝑒𝑟, 𝑏𝑒𝑒𝑟

𝜎( 𝑚𝑖𝑙𝑘, 𝑑𝑖𝑎𝑝𝑒𝑟 )
=
2

3
= 0.67

Support of rule {Milk, Diaper} → Beer:

Confidence of rule {Milk, Diaper} → Beer:



 Problem statement

› Given a set of transactions T, the goal of 

association rule mining is to find all rules 

having 

 support ≥ minsup threshold

 confidence ≥ minconf threshold

› Note: minsup, minconf user specified. E.g. 

minsup = 0.6, minconf = 0.9 given as input



 How to find such rules?

 One solution: Brute force approach
› List all possible association rules

› Compute the support and confidence for 
each rule

› Prune rules that fail the minsup and minconf
thresholds

 Is brute force a good solution?
› No! Computationally prohibitive! 

 Exponential complextity!



 Observations helping in improving the 

situation
TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  

 

Example of Rules:

{Milk,Diaper} → {Beer} (s=0.4, c=0.67)

{Milk,Beer} → {Diaper} (s=0.4, c=1.0)

{Diaper,Beer} → {Milk} (s=0.4, c=0.67)

{Beer} → {Milk,Diaper} (s=0.4, c=0.67) 

{Diaper} → {Milk,Beer} (s=0.4, c=0.5) 

{Milk} → {Diaper,Beer} (s=0.4, c=0.5)

Some observations:

All the above rules are binary partitions of the same itemset: 

{Milk, Diaper, Beer}

Rules originating from the same itemset have identical support but

can have different confidence

Thus, we may decouple the support and confidence requirements !



 Use this to derive a two-step approach for 
finding rules: 
1. Frequent Itemset Generation

 Generate all itemsets whose support  minsup

2. Rule Generation

 Generate high confidence rules from each 
frequent itemset, where each rule is a binary 
partitioning of a frequent itemset. Such rules are 
called strong rules.

 Step 1 i.e. Frequent itemset generation is still 
computationally expensive



 The problem now becomes:

› How to solve step 1 i.e. How to find all 

frequent itemsets?

 How easy is it given a set of transactions to find 

all frequent itemsets?

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  

 

How to find that e.g. 

{Bread, Beer} is a 

frequent itemset i.e. 

above a threshold 

(minsup)

Look at all the 

combinations that 

you have to check!

The problem?



null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Finding frequent 

itemsets not easy. Still 

computationally 

expensive:

Given d items, there 

are 2d possible 

candidate itemsets

Candidate itemset

lattice: All itemsets

generated from 5 

items

One way of dealing with finding the frequent 

itemsets is the Brute force approach: List all 

possible itemsets, called candidate itemsets



 Brute-force approach for finding frequent 
itemsets:
› Each itemset in the lattice is a candidate frequent 

itemset

› Count the support of each candidate by scanning 
the database

› Match each transaction against every candidate

› Complexity ~ O(NMw), where M = 2d -1 and w the 
maximum with of transaction => expensive!!!

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke 

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke 
 

N

Transactions List of

Candidates

M

w



 Given d unique items:
› Total number of itemsets = 2d

› Total number of possible association rules, R: 

This means with d=6 items 

you can generate R=602 

different rules !



 How to conquer this complexity in finding 
the frequent itemsets ?
› Reduce the number of candidate itemsets (M)

 Complete search: M=2d

 Use pruning techniques to reduce M

› Reduce the number of transactions (N)
 Reduce size of N as the size of itemset increases

 Used by DHP and vertical-based mining algorithms

› Reduce the number of comparisons (NM)
 Use efficient data structures to store the 

candidates or transactions

 No need to match every candidate against every 
transaction



 Reduce number of candidates based on 

itemset support

› Prune/ignore itemsets with support lower 

than a threshold

› To do this, use the apriori principle which 

allows to “automatically” prune/ignore some 

itemsets



 Apriori principle

› “If an itemset is frequent, then all of its 

subsets must also be frequent”

› Or equivalently “if itemset not frequent, it’s 

supersets won’t be frequent either”



null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Assume CDE 

frequent

If CDE frequent, 
then also frequent 
will be subsets: DE, 
CE, CD, C, D, E.Assume AB 

not 
frequent

If AB not 

frequent then 

also not 

frequent: 

ABC, ABD, 

ABE, ABCD, …

(all supersets)

Can 
prune/ignore 
these itemsets.

Candidate 
frequent 
itemsets



 Apriori principle allows the pruning of an 
exponential search space (itemset
lattice) based on support
› Hence called support-based pruning

 Support-based pruning possible due to 
an important property of the support 
measure: the anti-monotone property
› The Anti-monotone property: support of an 

itemset never exceeds the support of its 
subsets



 Monotone/anti-monotone property more 

formally defined

› Assume I a set of items and J = 2I its 

powerset. A measure f is said to be 

monotone or upward closed if:

∀ X, Y ∈ J: (X ⊆ Y) → 𝒇 𝑿 ≤ 𝒇(𝒀)

› Measure f is said to be anti-monotone or 

downward-closed if

∀ X, Y ∈ J: (X ⊆ Y) → 𝒇 𝑿 ≥ 𝒇(𝒀)



 In general, every measure that has the 

anti-monotone property can be 

integrated into algorithms and used to 

prune the exponential search space of 

candidate itemsets





 Apriori algorithm uses the apriori 

principle (support-based pruning) to find 

frequent itemsets

 The Apriori algorithm
 Best known algorithms of this category

 Very good results

 Used today in many application domains



 Apriori psudocode
Assume 

Ck : Candidate itemsets of size k (i.e. k-itemsets)

Lk : Frequent itemsets of size k (k-itemsets)

minsup: minimum support count, given

1. L1 = {frequent 1-itemsets} /* 1-itemsets with support >= minsup */

2. for (k=1; Lk != ∅; k++) do begin

3. Ck+1 = generate candidates from Lk /* gen. k+1-itemsets */

4. for each transaction t in Database do

5. increment support count for all candidate itemset in Ck+1

found in t

6. Lk+1 = all candidates in Ck+1 with at least minsup support 

(i.e. prune/ignore all candidates in Ck+1 with support < 

minsup)     

end

7. return ∪k Lk /* List of all frequent itemsets */



TID Transactions

1 I1, I2, I5

2 I2, I4

3 I2, I3

4 I1, I2, I4

5 I1, I3

6 I2, I3

7 I1, I3

8 I1, I2 ,I3, I5

9 I1, I2, I3

 Database with 9 
transactions

 Assume minimum 
support required -
minsup = 2 (i.e. 2/9 
= 22%)

 Applying the Apriori
algorithm to find 
frequent itemsets

 List of items = {I1, I2, 
I3, I4, I5}



 Step 1: find frequent 1-itemsets

Itemset Support count

{I1} 6

{I2} 7

{I3} 6

{I4} 2

{I5} 2

Itemset Support count

{I1} 6

{I2} 7

{I3} 6

{I4} 2

{I5} 2

Scan candidate 1-
itemsets C1 and 
prune/remove all 
itemsets having 
support count < 
minsup (=2). Will 
generate L1C1 : Candidate frequent 

1-itemsets
L1 : Frequent 1-itemsets

L1 generated by removing all itemsets in C1 having support 
count < minsup (=2)



 Step 2: find frequent 2-itemsets generated from L1

Itemsets Support count

{I1, I2} 4

{I1, I3} 4

{I1, I4} 1

{I1, I5} 2

{I2, I3} 4

{I2, I4} 2

{I2, I5} 2

{I3, I4} 0

{I3, I5} 1

{I4, I5} 0

Itemsets Support count

{I1, I2} 4

{I1, I3} 4

{I1, I4} 1

{I1, I5} 2

{I2, I3} 4

{I2, I4} 2

{I2, I5} 2

{I3, I4} 0

{I3, I5} 1

{I4, I5} 0

C2 : Candidate frequent 

2-itemsets
L2 : frequent 2-itemsets 

after pruning C2

Scan candidate 2-
itemsets C2 and 
remove all 
itemsets having 
support count < 
minsup (=2). This 
generates L2

C2 is produced by joining/concatenating itemsets of size 2 from L1 
that generate 3-itemsets. Note: Apriori principle still not used!

Generate 
C2 from L1



 Notes on step 2
› How to join 1-itemsets to produce C2 ?

 Joining means simply concatenating 1-itemsets

Itemset Support count

{I1} 6

{I2} 7

{I3} 6

{I4} 2

{I5} 2

{I1, I2}

{I1, I3}

{I1, I4}

{I1, I5}

{I2, I3}

{I2, I4}

{I2, I5}

{I3, I4}
{I3, I5}

{I4, I5}

Join/concatenate 
1-itemsets

Notes on joining itemsets:
Order does not matter. I.e. {I1, I2} = {I2, I1}
When an item appears 2 times in itemset, it is shows 

up once. I.e. {I1, I2, I2, I3} = {I1, I2, I3}  
2-itemsets



 Step 3: find frequent 3-itemsets generated from L2

Itemsets Support 
count

{I1, I2, I3}

{I1, I2, I5}

{I1, I3, I5}

{I2, I3, I4}

{I2, I3, I5}

{I2, I4, I5}

C3 : Candidate frequent 
3-itemsets BEFORE 
apriori principle

Generate 
C3 from L2

Itemsets Support 
count

{I1, I2, I3} 2

{I1, I2, I5} 2

{I1, I3, I5}

{I2, I3, I4}

{I2, I3, I5}

{I2, I4, I5}

Apply apriori
principle and 
prune!
Then calculate 
support count

Itemsets Support 
count

{I1, I2, I3} 2

{I1, I2, I5} 2

Remove itemsets
with support count 
< minsup (=2)

L3 : frequent 3-itemsets

C3 : Candidate frequent 
3-itemsets AFTER apriori
principle



 Notes on step 3
› From L2 generate all 3-itemsets by joining 2-

itemsets in set L2. But keep only those that 
result in 3-itemsets.

 Example joining {I1, I2} and {I1, I3} results in {I1, 
I1, I2, I3} => {I1, I2, I3} , 3-itemset so keep it. Will 
be in C3.

 Example joining {I1, I5} and {I2, I3} results in {I1, 
I2, I3, I5} which is not a 3-itemset (it’s a 4-
itemset). So won’t be in C3.

› Apply apriori principle on the C3 candidate 
3-itemsets.



 Notes on step 3
› How is the apriori principle applied on C3?

 “If an itemset is frequent then all its subsets must be 
frequent also” OR “if a itemset is not frequent, then all its 
supersets won’t be frequent either”.

 Lets examine one 2-itemset in C3 e.g. {I1, I2, I3} and lets 
check all its 2-itemset subsets i.e. {I1, I2}, {I1, I3}, {I2, I3}. If 
all these subsets are not frequent, then neither {I1, I2, I3} 
will be frequent (apriori principle)
 However all subsets appear in L2, hence are frequent, so {I1, I2, 

I3} will also be frequent. So {I1, I2, I3} will be not pruned and 
should stay in C3 .

 However, examine now 3-itemset {I2, I3, I5} in C3 and its 
2-itemset subsets {I2, I3}, {I2, I5}, {I3, I5}. 2-itemsets {I2, I3}
and {I2, I5} are in L2 and hence frequent. But {I3, I5} is 
not in L2 meaning its not frequent. Hence {I2, I3, I5} won’t 
be frequent either! So prune/remove this from C3



 Step 4: find frequent 4-itemsets generated from L3

Generate 
C4 from L3

Itemsets Support 
count

{I1, I2, I3, I5} ?

Apply 
apriori
principle  to 
see if all 3-
itemset 
subsets 
frequent

Itemsets Support 
count

{I1, I2, I3, I5} ?

C4 : Candidate frequent 
4-itemsets BEFORE 
apriori principle

C4 : Candidate frequent 
4-itemsets. Empty set! 

Apriori algorithm 
terminates

How to apply apriori principle here: for 4-itemset {I1,I2,I3,I5} in C4 list all 3-
itemset subsets: {I1, I2, I3}, {I1, I2, I5}, {I1,I3,I5}, {I2, I3,I5}. See if all these 
subsets are frequent i.e. are in the L3 list. 
Not all are in L3 list. For example subset {I1, I3, I5} is not in L3 meaning it is not 
frequent. Hence {I1,I2,I3,I5} will not be frequent either and must be 
pruned/removed. Since C4 becomes empty, apriori algorithm terminates



 Step 5: List the frequent itemsets found

Frequent itemsets found by the apriori algorithm 

that have the required minimum support of 2 .

Frequent 

1-

Itemsets

Support 

count

{I1} 6

{I2} 7

{I3} 6

{I4} 2

{I5} 2

Frequent 

2-

Itemsets

Support 

count

{I1, I2} 4

{I1, I3} 4

{I1, I5} 2

{I2, I3} 4

{I2, I4} 2

{I2, I5} 2

Frequent 

3-

Itemsets

Support

count

{I1, I2, I3} 2

{I1, I2, I5} 2

Frequent itemsets found by apriori alg. = ∪k Lk , k=1,2,3

Result =



 Methods to join itemsets to produce 
candidate itemsets (C2, C3, C4 in example)?
› Brute force method

 Generate all k-itemsets choose k items from the set 

of items, d. There are 
𝑑
𝑘

number of k-itemsets. 

Complexity O(d 2d-1). Expensive!

› Fk-1 x F1 method
 Increase k-1-itemsets with 1 item each time. 

Complexity O(σ𝒌𝒌 𝑭𝒌−𝟏 𝑭𝟏 ) . Still expensive

› Fk-1 x Fk-1 method
 Join 2 itemsets only if they have  k-2 itemsets in 

common



 Time complexity of apriori algorithm?

› Assume input transactions is N, the threshold 

is M, number of unique elements is R. Then 

time complexity of Apriori algorithm (finding 

frequent itemsets) is:

𝑶 𝑴𝑵+ 

𝒊=𝟏

𝑴

𝑹𝒊 = 𝑶 𝑴𝑵+
𝟏 − 𝑹𝑴

𝟏 − 𝑹



 Until now we have completed step 1 i.e. 

finding frequent itemsets

 Need to complete step 2, finding 

association rules that satisfy a minimum 

confidence threshold, minconf

› How to find such rules? 



 How to generate rules

› Generate rules from frequent itemsets

› Two approaches

 Brute force approach

 Confidence-based pruning approach



 Brute force approach procedure

› Assume you have already all frequent 

itemsets, S 

› For each itemset I in S calculate all 

nonempty subsets of I

› For each non-empty subset s of I output the 

rule : 

s → (I – s)

If confidence of rule is at least minconf i.e. 

c(s → (I-s) ) >= minconf



 Frequent itemsets from previous example
› Assume minimum confidence = 70% (0.7)

Frequent itemsets found by the apriori algorithm 

that have the required minimum support of 2 .

Frequent 

1-Itemsets

Support 

count

{I1} 6

{I2} 7

{I3} 6

{I4} 2

{I5} 2

Frequent 

2-

Itemsets

Support 

count

{I1, I2} 4

{I1, I3} 4

{I1, I5} 2

{I2, I3} 4

{I2, I4} 2

{I2, I5} 2

Frequent 

3-Itemsets

Support

count

{I1, I2, I3} 2

{I1, I2, I5} 2

Take one frequent itemset

e.g. I = {I1, I2,I5}

1) Calculate all 

nonempty subsets of I, 

{I1, I2, I5} => {I1}, {I2}, 

{I5}, {I1, I2}, {I1,I5}, {I2, 

I5} 

2) For each subset s of I, 

devise rule s → (I-s):

1) {I1} → {I2, I5}

2) {I2} → {I1, I5}

3) {I5} → {I1, I2}

4) {I1, I2} → {I5}

5) {I1, I5} → {I2}

6) {I2, I5} → {I1}



 Frequent itemsets from previous example
› Assume minimum confidence = 70% (0.7)

Frequent itemsets found by the apriori algorithm 

that have the required minimum support of 2 .

Frequent 

1-Itemsets

Support 

count

{I1} 6

{I2} 7

{I3} 6

{I4} 2

{I5} 2

Frequent 

2-

Itemsets

Support 

count

{I1, I2} 4

{I1, I3} 4

{I1, I5} 2

{I2, I3} 4

{I2, I4} 2

{I2, I5} 2

Frequent 

3-Itemsets

Support

count

{I1, I2, I3} 2

{I1, I2, I5} 2

3)   Calculate confidence 

for each rule in step 

2). Keep those that 

have confidence >= 

minconf
1) {I1} → {I2, I5}, c= 2/6 

= 0.333 (REJECT!)
2) {I2} → {I1, I5}, c = 2/7 

= 0.28 (REJECT!)
3) {I5} → {I1, I2}, c=2/2 

= 1 (KEEP!)
4) {I1, I2} → {I5}, c=2/4 

= 0.5 (REJECT!)
5) {I1, I5} → {I2}, c=2/2 

= 1 (KEEP!)
6) {I2, I5} → {I1}, c=2/2 

= 1 (KEEP!)



 Found 3 strong association rules satisfying 

threshold of minconf = 0.7

› {I5} → {I1, I2}, confidence = 1 (>= minconf)

› {I1, I5} → {I2}, confidence =1 (>= minconf)

› {I2, I5} → {I1}, confidence =1 (>= minconf)

 Do this process for all frequent itemsets

› I.e. {I1, I2}, {I1, I3}, {I1, I5}, …{I1, I2, I3}

 Output all strong rules (confidence >= 

minconf)



 Brute force looks nice and easy, but has 

an important problem!

› For large databases (usually the case) it’s 

very, very slow

› Complexity of brute force approach?

 If for an itemset I, | I | = k, the number of 

candidate association rules derived from I is:

𝟐𝒌 − 𝟐 = 𝑶(𝟐𝒌)

(ignoring X → ø and ø → X )



 For example

– If {A,B,C,D} is a frequent itemset, 
candidate rules:

ABC →D, ABD →C, ACD →B, BCD →A, 
A →BCD, B →ACD, C →ABD, D →ABC
AB →CD, AC → BD, AD → BC, BC →AD, 
BD →AC, CD →AB

 Brute force in general prohibitive

 Can we do better?
 Yes! Using Confidence-based pruning



 In general, confidence has not the anti-

monotone property

› E.g. c(ABC→ D) can be larger or smaller 

than c(AB→ D) although AB subset of ABC

 HOWEVER, rules generated from the 

same itemset HAVE the anti-monotone 

property!

› Example: X = {A,B,C,D}

 c(ABC→ D)  c(AB → CD)  c(A → BCD)

(WHY?)



 Confidence is anti-monotone w.r.t.

number of items on the RHS of the rule

 Anti-monotone property of confidence

› If an association rule X → S − X has less than 

the minimum confidence threshold, then all 
rules X’ → S − X’, where X’ ⊆ X will have also 

less than the confidence threshold

 Hence, you can “automatically” prune/ignore 

them



 Put this idea into play to prune association rules
› We don’t need to check them all as in the brute 

force approach

ABCD=>{ }

BCD=>A ACD=>B ABD=>C ABC=>D

BC=>ADBD=>ACCD=>AB AD=>BC AC=>BD AB=>CD

D=>ABC C=>ABD B=>ACD A=>BCD

Pruned 

Rules

Lattice of rules

Low 

Confidence 

Rule



 The idea explained

› Suppose frequent itemset S={1,2,3,4} and 

some minconf value

 If rule {1,2,3} → {4} does not have minimum 

confidence (i.e. < minconf) then all these rules 

won’t have minconf either (i.e. < minconf):

{1,2} → {3,4}

{1,3} → {2,4}

{1,4} → {2,3}
{1} → {2,3,4}

{2} → {1,3,4}
{3} → {1,2,4}

Confidence of all 

these rules will be 
less than minconf

also as LHS subset 
of {1,2,3} → {4}.



 Algorithm for building rules on 
confidence-based pruning:
› Generate rules in a level-wise approach 

of the lattice:

1. First find rules of the form {…} → {x}
i.e. only one item in the 
consequent

2. Prune rules of the form {…} → {x}
that do not have minconf

3. Generate/join rules of the form {…} →
{x, y} i.e. two items in the consequent, 
only from rules in step 2 (note: here 
confidence-based pruning is applied)

4. Prune rules {…} →{x,y} that do not 
have minconf

5. Generate/join rules of the form {…} →
{x,y,z}

6. Continue incrementally that way….

ABCD=>{ }

BCD=>A ACD=>B ABD=>C ABC=>D

BC=>ADBD=>ACCD=>AB AD=>BC AC=>BD AB=>CD

D=>ABC C=>ABD B=>ACD A=>BCD



• Candidate rule is generated by joining/merging 
two rules that share the same prefix
in the rule consequent

• join(CD→AB, BD→ AC)
would produce the candidate
rule D →ABC

• Prune rule D→ABC if there exists a
subset (e.g., AD→BC) that does not have
high confidence (minconf)

CD→AB BD→AC

D→ABC



 Take one frequent itemset
found: e.g. {I1, I2, I5}, 
minconf=0.7

 Generate rules with one item 
in the consequent
› {I1, I2} -> {I5}, conf=2/4 = 0.5 < 

0.7 => Prune this (confidence-
based pruning) and don’t 
generate rules out of this.

› {I1, I5} -> {I2}, conf=2/2 = 1

› {I2, I5} -> {I1}, conf=2/2 = 1

TID Transactions

1 I1, I2, I5

2 I2, I4

3 I2, I3

4 I1, I2, I4

5 I1, I3

6 I2, I3

7 I1, I3

8 I1, I2 ,I3, I5

9 I1, I2, I3



 Join/merge rules with 
confidence >= minconf
› Join {I1,I5} →I2 and {I2, I5} 
→I1 resulting in I5 → {I1, I2}

› Confidence for I5 →{I1,I2}

 Confidence = 2/2 = 1, ok!

› Rules from {I1, I2, I5}:

 {I1, I5} -> {I2}

 {I2, I5} -> {I1}

 {I5} → {I1, I2}

 Do this for all frequent 
itemsets found!

TID Transactions

1 I1, I2, I5

2 I2, I4

3 I2, I3

4 I1, I2, I4

5 I1, I3

6 I2, I3

7 I1, I3

8 I1, I2 ,I3, I5

9 I1, I2, I3



#Includes functions for apriori algorithm

library(arules)

#We will be using the Congressional Voting Records Data Set

#From: http://archive.ics.uci.edu/ml/datasets/Congressional+Voting+Records

#First read the data. Note the dataset HAS NO headers, hence set header to FALSE. 

#We well add headers later. NOTE: Change your path to data appropriately!

voteData = read.csv("house-votes-84.data", header=FALSE)

attach(voteData)

#Add headers to data. Makes working with dataset easier

colnames(voteData) <- c("party", "infants", "water-cost", "budgetRes", "PhysicianFr", 

"ElSalvador", "ReligSch", "AntiSat", "NicarAid", "Missile", "Immigration", 

"CorpCutbacks", "EduSpend", "RightToSue", "Crime", "DFExports", "SAExport")

#Take a quick look at the data. Is everything ok?

head(voteData)

#Now we are ready to execute the apriori algorithm for finding association rules

#See next slide…



#Execute now the apriori algorithm without any parameter. 

#This means that no minsup and minconf is provided and 

#that all possible rules will be generated

rules <- apriori(voteData)

#Variable rules has all the rules. Can we see the rules now?

#Yes, but this may take a huge amount of time due to the number

#of rules

#CAVEAT LECTOR: DO THIS ONLY IF YOU HAVE NOTHING BETTER TO DO

#YOU HAVE BEEN WARNED. 

inspect(rules)

#Lets execute apriori with the following parameters: minimum support 20%, 

#minimum confidence=100%, on the LHS we need at least 2 items and on the

#RHS only the party should appear i.e. rules of the form {X,Y}->{republican} or

#{X,Y}->{democrat}

rules <- apriori(voteData, parameter = list(minlen=2, supp=0.2, conf=1), appearance = 

list(rhs=c("party=democrat", "party=republican"), default="lhs"))

#Lets see the rules. Should not be that much. You can also see support and 

#confidence of each rule.

inspect(rules)





 For very large datasets, there may be 

large number of frequent itemsets

› Enumerating, storing them may be very 

costly

› Some frequent itemsets are redundant 

because they have identical support as 

their (frequent) supersets

› Question: Is there a better way to 

represent frequent itemsets?



 Yes. Exploit the notion of border in the 

itemset lattice and find the boundary 

frequent itemsets
null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Itemset lattice: lists 

all combinations 

by proceeding 

level-wise.

We say that e.g. 

immediate subset

of {BE} is {B, E}



all items e.g. {A,B,C,D,E,F,…}

empty set {ø} 

Frequent 
itemsets

Non-frequent 
itemsets

Border/Boundary 

in itemset lattice

separating set of 

frequent and non-

frequent itemsets

Outline of 

itemset lattice



 Defining the Border in an itemset lattice
› Border = set of itemsets whose all their 

immediate subsets are frequent AND all their 
immediate supersets are infrequent (not 
frequent).

› Positive Border, B+(S)= Frequent itemsets
whose all their immediate supersets are not 
frequent

› Negative Border, B-(S)= Non-frequent 
Itemsets (in border) whose all their 
immediate subsets are frequent



null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE
Border

Infrequent 

Itemsets

Above: Negative Border = {AB, ACD, ADE} . E.g. ABD not in 

negative border since not all its immediate subsets frequent.



 Maximal frequent itemsets

› An itemset is maximal frequent if none of its 

immediate supersets is frequent

 Maximal: no superset has this property ( i.e. is 

frequent)



null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE
Border

Infrequent 

Itemsets

Maximal 

frequent 

Itemsets

Above: Maximal Itemsets = {AD, ACE, BCDE} . E.g. AE not in 

maximal itemsets since not all its immediate supersets 

infrequent.

Frequent 

Itemsets



Frequent 1-
Itemsets

Support 
count

{I1} 6

{I2} 7

{I3} 6

{I4} 2

{I5} 2

Frequent 2-
Itemsets

Support 
count

{I1, I2} 4

{I1, I3} 4

{I1, I5} 2

{I2, I3} 4

{I2, I4} 2

{I2, I5} 2

Frequent 3-
Itemsets

Support count

{I1, I2, I3} 2

{I1, I2, I5} 2

Assume these frequent itemsets found

Finding Maximal frequent temsets:

Recap: For each frequent itemset check all its immediate supersets to see if 

they are frequent (=if at least one immediate superset frequent, the itemset is 

NOT MAXIMAL frequent)

{I1} => Immediate supersets = {I1, I2}, {I1,I3}, {I1,I4}, {I1,I5} => {I1, I2} frequent 

hence {I1} not maximal

{I2} => Immediate supersets = {I1, I2}, {I2, I3}, {I2, I4}, {I2, I5} => all frequent 

hence {I2} not maximal



Frequent 1-
Itemsets

Support 
count

{I1} 6

{I2} 7

{I3} 6

{I4} 2

{I5} 2

Frequent 2-
Itemsets

Support 
count

{I1, I2} 4

{I1, I3} 4

{I1, I5} 2

{I2, I3} 4

{I2, I4} 2

{I2, I5} 2

Frequent 3-
Itemsets

Support count

{I1, I2, I3} 2

{I1, I2, I5} 2

Assume these frequent itemsets found

Finding Maximal itemsets (continued):

{I3} => Immediate supersets = {I1, I3}, {I2, I3}, {I3,I4}, {I3,I5} => some frequent 

hence {I3} not maximal

{I4} => Immediate supersets = {I1, I4}, {I2, I4}, {I3, I4}, {I4, I5} => {I2, I4} frequent 

hence {I4} not maximal

{I5} => Immediate supersets = {I1, I5}, {I2, I5}, {I3, I5}, {I4, I5} => {I1, I5}, {I2, I5} 

frequent hence {I5} not maximal



Frequent 1-
Itemsets

Support 
count

{I1} 6

{I2} 7

{I3} 6

{I4} 2

{I5} 2

Frequent 2-
Itemsets

Support 
count

{I1, I2} 4

{I1, I3} 4

{I1, I5} 2

{I2, I3} 4

{I2, I4} 2

{I2, I5} 2

Frequent 3-
Itemsets

Support count

{I1, I2, I3} 2

{I1, I2, I5} 2

Assume these frequent itemsets found

Finding Maximal itemsets (continued):

{I1, I2} => Immediate supersets = {I1, I2, I3}, {I1, I2, I4}, {I1, I2, I5} => some 

frequent ( e.g. {I1,I2,I3}) hence {I1, I2} not maximal

{I1, I3} => Immediate supersets = {I1, I2, I3}, {I1, I3, I4}, I1, I3, I5} => some 

frequent hence {I1, I3} not maximal

{I1, I5} => Immediate supersets = {I1,I2, I5}, {I1, I3, I5}, {I1, I4, I5} => {I1, I2, I5} 

frequent hence {I1, I5} not maximal



Frequent 1-
Itemsets

Support 
count

{I1} 6

{I2} 7

{I3} 6

{I4} 2

{I5} 2

Frequent 2-
Itemsets

Support 
count

{I1, I2} 4

{I1, I3} 4

{I1, I5} 2

{I2, I3} 4

{I2, I4} 2

{I2, I5} 2

Frequent 3-
Itemsets

Support count

{I1, I2, I3} 2

{I1, I2, I5} 2

Assume these frequent itemsets found

Finding Maximal itemsets (continued):

{I1, I2} => Immediate supersets = {I1, I2, I3}, {I1, I2, I4}, {I1, I2, I5} => some 

frequent ( e.g. {I1,I2,I3}) hence {I1, I2} not maximal

{I1, I3} => Immediate supersets = {I1, I2, I3}, {I1, I3, I4}, {I1, I3, I5} => some 

frequent hence {I1, I3} not maximal

{I1, I5} => Immediate supersets = {I1,I2, I5}, {I1, I3, I5}, {I1, I4, I5} => {I1, I2, I5} 

frequent hence {I1, I5} not maximal



Frequent 1-
Itemsets

Support 
count

{I1} 6

{I2} 7

{I3} 6

{I4} 2

{I5} 2

Frequent 2-
Itemsets

Support 
count

{I1, I2} 4

{I1, I3} 4

{I1, I5} 2

{I2, I3} 4

{I2, I4} 2

{I2, I5} 2

Frequent 3-
Itemsets

Support count

{I1, I2, I3} 2

{I1, I2, I5} 2

Assume these frequent itemsets found

Finding Maximal itemsets (continued):

{I2, I3} => not maximal

{I2, I4} => Immediate supersets = {I1, I2, I4}, {I2, I3, I4}, {I2, I3, I5} => all supersets 

not frequent hence {I2, I4} MAXIMAL!

{I2, I5} => not maximal

{I1, I2, I3} => MAXIMAL!

{I1, I2, I5} => MAXIMAL!



Frequent 1-
Itemsets

Support 
count

{I1} 6

{I2} 7

{I3} 6

{I4} 2

{I5} 2

Frequent 2-
Itemsets

Support 
count

{I1, I2} 4

{I1, I3} 4

{I1, I5} 2

{I2, I3} 4

{I2, I4} 2

{I2, I5} 2

Frequent 3-
Itemsets

Support count

{I1, I2, I3} 2

{I1, I2, I5} 2

Assume these frequent itemsets found

Finding Maximal itemsets (continued):

Maximal itemsets = {I2, I4}, {I1, I2, I3}, {I1, I2, I5} Q.E.D



 Important note

› Maximal frequent itemsets = the Positive 

border of the lattice tree



null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE
Border

Infrequent 

Itemsets

Maximal 

Itemsets

Above: Positive border = maximal frequent itemsets (orange 

nodes).

Frequent 

Itemsets

Maximal 

Itemsets



 Why define Border, Negative and 

Positive border (B-(S), B+(S) ) ? Are they 

useful?

› Yes! The Positive or the Negative border is 

sufficient to fully describe all frequent 

itemsets !

 Hence, don’t need to store all frequent 

itemsets. Just B-(S) or B+(S)



 Maximal frequent itemsets look very 

nice!

› They can summarize nicely frequent 

itemsets.

› But, maximal frequent itemsets don’t tell us 

anything about the support measure - σ

 This might be needed

 Define closed itemsets



 Closed itemsets

› An itemset X is closed if none of its 

immediate supersets has exactly the same 

support as the itemset X

› Example

TID Items

1 {A,B}

2 {B,C,D}

3 {A,B,C,D}

4 {A,B,D}

5 {A,B,C,D}

Itemset Support

{A} 4

{B} 5

{C} 3

{D} 4

{A,B} 4

{A,C} 2

{A,D} 3

{B,C} 3

{B,D} 4

{C,D} 3

Itemset Support

{A,B,C} 2

{A,B,D} 3

{A,C,D} 2

{B,C,D} 3

{A,B,C,D} 2

Closed itemsets:

{A}

{B}

{A,B}

{B, C}

{B,D}

{C,D}

{A, B, D}

{A, B, C, D}



 Why are closed itemsets interesting?
› Assume rule {A}→{B} and {A,B} closed 

itemset. Moreover, assume s({A,B}) = s(A).

 Then confidence of rule is: conf( {A}→{B} ) = 1

 In addition, for every itemset X it will hold that
 s( A ∩ {X} ) = s({A,B} ∩ X)

 No need to count the frequencies of sets X ∩ {A,B} 
from the database!

› If there are lots of rules with confidence 1, 
then a significant amount of work can be 
saved



 Closed patterns and their frequencies 
alone are sufficient representation for all 

the frequencies of all frequent patterns



TID Items

1 ABC

2 ABCD

3 BCE

4 ACDE

5 DE

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

124 123 1234 245 345

12 124 24 4 123 2 3 24 34 45

12 2 24 4 4 2 3 4

2 4

Transaction 

Ids

Not 

supported by 

any 

transactions



null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

124 123 1234 245 345

12 124 24 4 123 2 3 24 34 45

12 2 24 4 4 2 3 4

2 4

Minimum support = 2

# Closed = 9

# Maximal = 4

Closed 

and 

maximal

Closed but not 

maximal



Frequent

Itemsets

Closed

Frequent

Itemsets

Maximal

Frequent

Itemsets

 Knowing all 
maximal itemsets
(and their 
frequencies) allows 
us to reconstruct the 
set of frequent 
itemsets

 Knowing all closed 
itemsets and their 
frequencies allows 
us to reconstruct the 
set of all frequent 
itemsets and their 
frequencies





 Are all the rules discovered interesting to the 
user?
› How to measure “interestingness” of a rule?

 When is a discovered association rule 
interesting (subjective measure)?
› It is unexpected (surprising to the user)

 E.g. {Cigarettes} → {Lighter} not unexpected. But 
{Cigarettes} → {Barbie Doll} unexpected

› It is actionable (i.e. user can do something with 
it, lead to profitable actions)

› Only the user can judge the interestingness of a 
rule (subjective)



 In general, algorithms (like Apriori) tend 
to produce many rules
› Many of them not interesting or redundant

› Example of redundant rule:

 Redundant if discovered rules {A,B,C} → {D}
and {A,B} → {D} have same support & 
confidence

 The original formulation of the problem 
of finding association rules is only based 
on support and confidence of rules



 Idea
› Use some form of correlation measure for 

rules i.e. given rule A → B measure the 
correlation between itemsets A and B

› In essence, find a way of comparing co-
occurrence of itemsets A and B with the 
probability of itemsets A and B appearing 
together by chance (at random)

 Hence see if a rule is discovered randomly

 Or check if two itemset A, B are statistically 
independent



 Assume some students, where some can 

swim (S), some can Bike (B), some can 

Swim and Bike (S ∩ B) and some can neither

› Q: Are events “know how to swim (S)” and 

“know how to bike (B)” independent or not?

 I.e. Does occurrence of event S influence the 

occurrence of event B (and vice versa) or not?

› To check for statistical independence between S 

and B, check if P(S ∩ B) = P(S) P(B) . If this holds 

then event S, B independent. If not, not 

independent and hence somehow correlated.



 Assume population of 1000 students
› 600 students know how to swim (S)

› 700 students know how to bike (B)

› 420 students know how to swim and bike (S ∩ 
B)

 P(S ∩ B) = 420/1000 = 0.42

 P(S) = 600/1000 = 0.6

 P(B) = 700/1000 = 0.7

 P(S)P(B) = 0.6 x 0.7 = 0.42

 Since P(S ∩ B) = P(S) P(B) => S, B Statistical 
independence



 Population of 1000 students
› 600 students know how to swim (S)

› 700 students know how to bike (B)

› 500 students know how to swim and bike (S ∩ 
B)

 P(S ∩ B) = 500/1000 = 0.5

 P(S) P(B) = 0.6 x 0.7 = 0.42

 Since P(S ∩ B) > P(S) P(B) => S,B positively 
correlated
 This means that if S increases, so will B. If S decreases, 

so will B.



 Population of 1000 students
› 600 students know how to swim (S)

› 700 students know how to bike (B)

› 300 students know how to swim and bike (S ∩ 
B)

 P(S ∩ B) = 300/1000 = 0.3

 P(S) P(B) = 0.6 x 0.7 = 0.42

 Since P(S ∩ B) < P(S) P(B) => S,B negatively 
correlated
 This means that if S increases, B will decrease. If S 

decreases, B will increase.



 Build “interestingness”/correlation 

measures of rules around statistical 

independence

› Many available like χ2, Φ-coefficient etc

› However in Association rule mining, 

Lift/Interest is used



 Idea of Lift based on Contingency table
› Given a rule X → Y, information needed to compute 

rule interestingness can be obtained from a 
contingency table

𝑌 ത𝑌

𝑋 f11 f10 f1+

ത𝑋 f01 f00 f0+

f+1 f+0 N

Contingency table for X → Y f11: support of X and Y

f10: support of X and Y

f01: support of X and Y

f00: support of X and Y

Used to define various 

measures support, 

confidence, lift, Gini, J-

measure etc.

𝑋: itemset X appears in tuple

𝑌: itemset Y appears in tuple
ത𝑋: itemset X does not appear in tuple
ത𝑌: itemset Y does not appear in tuple



Coffee Coffee

Tea 15 5 20

Tea 75 5 80

90 10 100

Association Rule: Tea → Coffee

Confidence= P(Coffee|Tea) = 
𝟏𝟓

𝟐𝟎
= 0.75

but P(Coffee) = 
𝟗𝟎

𝟏𝟎𝟎
= 0.9

• Although confidence is high, rule is misleading

• Because: P(Coffee|Tea) = 0.9375

Number of people 

that drink coffee and

tea

Number of people 

that drink coffee but 

not tea

Number of people 

that drink coffee

Number of people 

that drink tea

Important note:
P(Tea) = support {Tea}
P(Coffee|Tea) = conf {Tea → Coffee}



 Definition of Lift/Interest measure

𝐋𝐢𝐟𝐭 𝐗 → 𝐘 =
𝐏(𝐘|𝐗)

𝐏(𝐘)
=
𝐏(𝐗 ∩ 𝐘)

𝐏 𝐗 𝐏(𝐘)

If Lift = 1, this means P(X ∩ Y) = P(X)P(Y) i.e. statistical 
independence

If Lift < 1, this means P(X ∩ Y ) < P(X)P(Y) i.e. negative 
correlation

If Lift > 1, this means P(X ∩ Y ) > P(X)P(Y) i.e. positive 
correlation

How to use Lift? Use Lift to find interesting rules. In 
particular, rules for which Lift > 1 .



 Interpretation of Lift in a different way
› P(X)P(Y) = probability of appearing X, Y together 

by chance/at random (expected co-
occurrence)
 If P(X ∩ Y ) = P(X)P(Y) this means that X,Y appear 

together as expected (not interesting). Not 
interesting.

 If P(X ∩ Y ) < P(X)P(Y) this means that X,Y appear 
less times together than expected (negative 
correlation). Not interesting

 If P(X ∩ Y ) > P(X)P(Y) this means that X,Y appear 
more often together than expected (positive 
correlation)
 This is interesting!



 Interesting rule? Calculate Lift to see:
› Lift = P(Coffee |Tea) / P(Coffee)  = 0.75/0.9 = 

0.8333. 

› Since Lift < 1, Tea, Coffee negatively correlated
hence not interesting rule!

Coffee Coffee

Tea 15 5 20

Tea 75 5 80

90 10 100

Assume rule:
Tea → Coffee



Diapers,Flowers Diapers,Flowers

Gun,Milk 22 23 45

Gun,Milk 61 8 69

83 31 114

Assume more complex rule:
Gun,Milk → Diapers, Flowers 

Contingency table would be e.g.:

Calculate Lift of above rule as: 

Lift = P(Diaper,Flowers |Gun,Milk) / P(Diaper,Flowers)



 Instead of lift/Interest?

 Sure! Can use χ2

› Use again contingency table

Coffee Coffee

Tea 15 5 20

Tea 75 5 80

90 10 100

Assume rule:
Tea → Coffee
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