Managing Big Data

Association Analysis: Basic Concepts and Algorithms

Manolis Tzagarakis
Assistant Professor
Department of Economics
University of Patras
tzagara@upatras.gr
2610969845
google:tzagara
Facebook: tzagara
SkypelD: tzagara
QuakeLive: DeusEx

Association analysis

- What is association analysis?
> The task of analyzing so called "transactions" that indicate the likely occurrence of an item based on the occurrences of other items in the transactions of large datasets
> The discovered relationships are represented in the form of association rules

Association analysis

o Where is it used?
> Biology and bioinformatics

- E.g. Co-occurrence of genes
> Medicine
- Occurrence of symptoms
> Geology
- Relationships between oceans and land masses
Rełail
Market basket analysis

Association analysis - Main idea

- Main idea exemplified

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Market-Basket transactions i.e. what customers have bought

Transactions i.e. what a customer bought in the supermarkeł

The main task is now to analyze transactions and come up with association rules of the form
$\{$ Diaper $\} \rightarrow\{$ Beer $\}$, $\{$ Milk, Bread $\rightarrow\{$ Eggss,Coke\}, $\{$ Beer, Bread $\} \rightarrow\{$ Milk\},

These mean that e.g. customers that bought Diapers also bought Beer, customer that bought Beer and Bread also bought Milk.

Association analysis - Main idea

- Association rules
> Rule suggest that a strong relationship exist between items of transaction
- Form of rules: Antecedent \rightarrow Consequent
- Note: rules implies relationship/co-occurrence not causality!
> Practical issues: Helps in devising sale strategies and discounts

Used heavily by retailers to identify opportunities of cross-selling to customers

Association analysis - Main idea

- Practical issues
> Let a discovered rule be as follows:
- \{Bagels,...\} \rightarrow \{Potato Chips\}
> Potato Chips as consequent: what should be done to boost its sales
> Bagels in antecedent: can be used to see which products will be affected if the store discontinues selling bagels
> Bagels in antecedent and Potato chips in consequent: can be used to see what products should be sold with bagels to promote sell of potato chips

Association analysis

- What problems exist when trying to find associafions and rules in transactions?
> When number of transactions is huge finding such rules is computational expensive
- True even for small/midsized supermarkets
> Some rules may be accidental or no rules af all (i.e. simply false)

Basic Concepts - problem definition

Basic concepts

- Items

One ifem
$>$ A finite set of atomic elements $I=\left\{i_{1}, i_{2}\right.$, $\left.i_{3}, \ldots, i_{d}\right\}$ e.g. $\{$ milk, beer, diapers, bagel\}

- Transaction †
> is a subset of I, i.e. \subseteq I which is observed
> Transaction usually have IDs (see column TID in the table)
- Transaction Database

入 A set of transactions $\mathrm{T}=\left\{\mathrm{t}_{1}, \mathrm{t}_{2}, \mathrm{t}_{3}, \ldots, \mathrm{t}_{n}\right\}$

- Itemseł
> A collection of one or more items - Example: \{Milk, Bread, Diaper\}
> k-itemset
- An itemset that contains k items e.g. 3-itemset: \{Milk, Beer, Bagel\}, 2itemset: \{Diaper, Milk\}
Important: itemsets different from transactions
We say that a transaction \dagger contains itemset X when $X \subseteq t$.

Basic concepts

TID Items

1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Examples of σ and s :
$\sigma(($ Milk, Bread, Diaper\}) $=2$
s(\{Milk, Bread, Diaper\}) $=2 / 5$
Note: order of items in itemsets does not matter. E.g. $\sigma(\{$ Bread, Milk, Diaper\} $)=2$
o Metrics for itemsets
> Support count of itemset, σ

- Frequency of occurrence of an itemset
> Support of itemset, s Fraction (pct) of transactions that contain an itemset

Basic concepts

o What are association rules?
> An association rule is an implication of the form:
$X \rightarrow Y$, where $X, Y \subset I$, and $X \cap Y=\varnothing$
> Examples of valid rules

- \{Milk, Beer\} \rightarrow \{Diapers\}
- \{Beer, Bagel\} \rightarrow \{Milk, Diapers, Połało chips\}

Examples of invalid rules
$\{B e e r$, Bagel $\} \rightarrow\{$ Beer $\}$ (violates $\mathrm{X} \cap Y=\varnothing$)

Basic concepts

- Metrics for association rules
> Support of association rule $\mathrm{X} \rightarrow \mathrm{Y}$
- Fraction of transactions that contain both X and Y :

$$
\text { support, } s(X \rightarrow Y)=\frac{\sigma(\mathbf{X} \cap \mathbf{Y})}{\mathrm{N}}
$$

> Confidence of association rule $\mathbf{X} \rightarrow \mathbf{Y}$

- Fraction of transactions in which every time there is X, there also is Y :

$$
\text { confidence, } c(X \rightarrow Y)=\frac{\sigma(X \cap Y)}{\sigma(X)}
$$

Basic concepts

o Example of rule metrics

TID	Items
$\mathbf{1}$	Bread, Milk
2	Bread, Diaper, Beer, Eggs
$\mathbf{3}$	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
$\mathbf{5}$	Bread, Milk, Diaper, Coke

o Assume rule
 > \{Milk, Diaper\} \rightarrow Beer

Support of rule \{Milk, Diaper\} \rightarrow Beer:
$s(\{$ milk, diaper $\} \rightarrow$ Beer $\})=\frac{\sigma(\{\text { milk, diaper, beer }\})}{|T|}=\frac{2}{5}=0.4$
Confidence of rule $\{$ Milk, Diaper $\} \rightarrow$ Beer:
$c(\{$ milk, diaper $\} \rightarrow$ Beer $\})=\frac{\sigma(\{\text { milk, diaper, beer }\})}{\sigma(\{\text { milk, diaper }\})}=\frac{2}{3}=0.67$

Basic concepts

- Problem statement
> Given a set of transactions T, the goal of association rule mining is to find all rules having
- support \geq minsup threshold
- confidence \geq minconf threshold Note: minsup, minconf user specified. E.g. minsup $=0.6$, minconf $=0.9$ given as input

Basic concepts

o How to find such rules?
o One solution: Brułe force approach
> List all possible association rules
> Compute the support and confidence for each rule
> Prune rules that fail the minsup and minconf thresholds
o Is brute force a good solution? No! Computationally prohibitive!

Exponential complextity!

Basic concepts

- Observations helping in improving the

 situation| TID | Items |
| :--- | :--- |
| 1 | Bread, Milk |
| 2 | Bread, Diaper, Beer, Eggs |
| 3 | Milk, Diaper, Beer, Coke |
| 4 | Bread, Milk, Diaper, Beer |
| 5 | Bread, Milk, Diaper, Coke |

Example of Rules:

\{Milk,Diaper\} \rightarrow \{Beer\} (s=0.4, $\mathrm{c}=0.67$) \{Milk,Beer\} \rightarrow \{Diaper\} (s=0.4, c=1.0)
$\{$ Diaper,Beer $\} \rightarrow\{$ Milk $(s=0.4, c=0.67)$ \{Beer\} \rightarrow \{Milk,Diaper\} (s=0.4, c=0.67) \{Diaper\} \rightarrow \{Milk,Beer\} (s=0.4, c=0.5) \{Milk\} \rightarrow \{Diaper,Beer\} (s=0.4, c=0.5)

Some observations:
All the above rules are binary partitions of the same itemset: \{Milk, Diaper, Beer\}
Rules originating from the same itemset have identical support but can have different confidence

Thus, we may decouple the support and confidence requirements !

Basic concepts

- Use this to derive a two-step approach for finding rules:

1. Frequent ltemset Generation

- Generate all itemsets whose support \geq minsup

2. Rule Generation

- Generate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset. Such rules are called strong rules.

Step 1 i.e. Frequent itemset generation is still computationally expensive

Basic concepts

o The problem now becomes:
> How to solve step 1 i.e. How to find all frequent itemsets?

- How easy is it given a set of transactions to find all frequent itemsets?

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

How to find that e.g. \{Bread, Beer\} is a frequent itemset i.e. above a threshold (minsup)

The problem? Look at all the combinations that you have to check!

Basic concepts

One way of dealing with finding the frequent itemsets is the Brute force approach: List all possible itemsets, called candidate itemsets

Candidate itemset lattice: All itemsets generated from 5 items

Finding frequent itemsets not easy. Still computationally expensive:

Given d items, there are $2^{\text {d }}$ possible candidate itemsets

Basic concepts

o Brute-force approach for finding frequent itemsets:
> Each itemset in the lattice is a candidate frequent itemset
> Count the support of each candidate by scanning the database

Match each transaction against every candidate Complexity $\sim \mathrm{O}$ (NMw), where $\mathrm{M}=2^{\mathrm{d}}-1$ and w the maximum with of transaction $\Rightarrow>$ expensivell!

Basic concepts

- Given d unique items:
> Total number of itemsets = $\mathbf{2}^{\text {d }}$
> Total number of possible association rules, R :

$$
\begin{aligned}
R & =\sum_{k=1}^{d=1}\left[\binom{d}{k} \times \sum_{j=1}^{d+k}\binom{d-k}{j}\right] \\
& =3^{d}-2^{d+1}+1
\end{aligned}
$$

This means with $\mathrm{d}=6$ items you can generate $\mathrm{R}=602$ different rules !

Basic concepts

o How to conquer this complexity in finding the frequent iłemsets ?
> Reduce the number of candidate itemsets (M)

- Complete search: $M=2^{\text {d }}$
- Use pruning techniques to reduce M
> Reduce the number of transactions (N)
- Reduce size of N as the size of itemset increases
- Used by DHP and vertical-based mining algorithms
> Reduce the number of comparisons (NM) Use efficient data structures to store the candidates or transactions No need to match every candidate against every transaction

Apriori principle

- Reduce number of candidates based on itemset support
> Prune/ignore itemsets with support lower than a threshold
> To do this, use the apriori principle which allows to "aułomatically" prune/ignore some itemsets

Apriori principle

- Apriori principle
> "If an itemset is frequent, then all of its subsets must also be frequent"
> Or equivalently "if itemset not frequent, it's supersets won't be frequent either"

Apriori principle illustrated

Apriori principle

- Apriori principle allows the pruning of an exponential search space (itemset lattice) based on support
> Hence called support-based pruning
o Support-based pruning possible due to an important property of the support measure: the anti-monotone property

The Anti-monotone property: support of an
itemset never exceeds the support of its subsets

Apriori principle

- Monołone/anti-monotone property more formally defined
> Assume la set of items and $\mathrm{J}=21$ its powerset. A measure f is said to be monotone or upward closed if:

$$
\forall X, Y \in J:(X \subseteq Y) \rightarrow f(X) \leq f(Y)
$$

Measure f is said to be anti-monotone or downward-closed if

$$
\forall X, Y \in J:(X \subseteq Y) \rightarrow f(X) \geq f(Y)
$$

Apriori principle

- In general, every measure that has the anti-monotone property can be integrated into algorithms and used to prune the exponential search space of candidate itemsets

Apriori algorithm

Apriori algorithm

- Apriori algorithm uses the apriori principle (support-based pruning) to find frequent itemsets
- The Apriori algorithm
- Best known algorithms of this category
- Very good results
- Used today in many application domains

Apriori algorithm

o Apriori psudocode

```
Assume
C
L
minsup: minimum support count, given
1. }\mp@subsup{L}{1}{}={frequent 1-itemsets} /* 1-itemsets with support >= minsup */\,
2. for (k=1; L_
3. }\mp@subsup{\textrm{C}}{\textrm{k}+1}{}=\mathrm{ generate candidates from Luk /* gen. k+1-itemsets */
4. for each transaction t in Database do
5. increment support count for all candidate itemset in C C 
        found in t
6. }\mp@subsup{L}{k+1}{}=\mathrm{ all candidates in }\mp@subsup{C}{k+1}{}\mathrm{ with at least minsup support
    (i.e. prune/ignore all candidates in }\mp@subsup{C}{k+1}{}\mathrm{ with support <
    minsup)
    end
7. return }\mp@subsup{U}{k}{}\mp@subsup{L}{k}{}/* List of all frequent itemsets */
```

Apriori algorithm: example

TID	Transactions
1	$11,12,15$
2	12,14
3	12,13
4	$11,12,14$
5	11,13
6	12,13
7	11,13
8	$11,12,13,15$
9	$11,12,13$

- Database with 9 transactions
- Assume minimum support required minsup = 2 (i.e. 2/9
= 22\%)
- Applying the Apriori algorithm to find frequent itemsets
- List of iłems = \{11, |2, 13, 14, I5\}

Apriori algorithm: example

- Step 1: find frequent 1-itemsets

Itemset	Support count
$\{11\}$	6
$\{12\}$	7
$\{13\}$	6
$\{14\}$	2
$\{15\}$	2

C_{1} : Candidate frequent 1-itemsets

Itemset	Support count
$\{11\}$	6
$\{12\}$	7
$\{13\}$	6
$\{14\}$	2
$\{15\}$	2

L_{1} : Frequent 1-itemsets
L_{1} generated by removing all itemsets in C_{1} having support count < minsup (=2)

Apriori algorithm: example

- Step 2: find frequent 2-itemsets generated from L_{1}

	Itemsets	Support count		Itemsets	Support count
	\{11, 12\}	4		\{11, 12\}	4
	$\{11,13\}$	4		$\{11,13\}$	4
	$\{11,14\}$	1		$\{11,14\}$	+
	$\{11,15\}$	2		\{11, 15\}	2
	\{12, 13\}	4		\{12, I3\}	4
Generate	$\{12,14\}$	2	Scan candidate 2itemsets C_{2} and	\{12, 14\}	2
C_{2} from L_{1}	$\{12,15\}$	2	remove all itemsets having	\{12, 15\}	2
	$\{13,14\}$	0	support count <	[13, $14{ }^{\text {d }}$	θ
	$\{13,15\}$	1	minsup ($=2$). This generates L_{2}	\{43,15\}	\ddagger
	\{14, 15\}	0		[44,15]	θ
C_{2} : Candidate frequent				L_{2} : frequent 2-itemsets	
2-itemsets				after pruning C_{2}	

C_{2} is produced by joining/concatenating itemsets of size 2 from L_{1} that generate 3 -itemsets. Note: Apriori principle still not used!

Apriori algorithm: example

- Notes on step 2
$>$ How to join 1-itemsets to produce C_{2} ?
- Joining means simply concatenating 1 -itemsets

Itemset	Support count
$\{11\}$	6
$\{12\}$	7
$\{13\}$	6
$\{14\}$	2
$\{15\}$	2

$\{11,12\}$

Join/concatenate 1-iłemsets
$\{\mid 1,13\}$
$\{11,14\}$
$\{11,15\}$
$\{\mid 2,13\}$
$\{\mid 2,14\}$
$\{12,15\}$
$\{\mid 3,14\}$
Notes on joining itemsets:
Order does not matter. I.e. $\{|1| 2\}=,\{|2| 1$,
When an item appears 2 times in itemset, it is shows up once. I.e. $\{11, \mid 2,12,13\}=\{\mid 1,12,13\}$

Apriori algorithm: example

- Step 3: find frequent 3-itemsets generated from L_{2}

Apriori algorithm: example

- Notes on step 3
> From L_{2} generate all 3-itemsets by joining 2ifemsets in set L_{2}. But keep only those that result in 3 -itemsets.
- Example joining $\{11,12\}$ and $\{11,13\}$ results in $\{11$, I1, 12, 13$\}=>\{11, \mid 2,13\}$, 3-itemset so keep it. Will be in C_{3}.
- Example joining $\{11, \mid 5\}$ and $\{\mid 2, I 3\}$ results in $\{11$, 12, 13, 15\} which is not a 3 -itemset (it's a 4itemset). So won't be in C_{3}.
Apply apriori principle on the C_{3} candidate 3-itemsets.

Apriori algorithm: example

- Notes on step 3
$>$ How is the apriori principle applied on C_{3} ?
- "If an itemset is frequent then all its subsets must be frequent also" OR "if a itemset is not frequent, then all its supersets won't be frequent either".
- Lets examine one 2-ifemset in C_{3} e.g. $\{11,12,13\}$ and lets check all its 2 -itemset subsets i.e. $\{11,12\},\{11,13\},\{\mid 2,13\}$. If all these subsets are not frequent, then neither $\{11,12,13\}$ will be frequent (apriori principle)
- However all subsets appear in L2, hence are frequent, so \{11, I2, $13\}$ will also be frequent. So $\{11,12,13\}$ will be not pruned and should stay in C_{3}.
However, examine now 3 -itemset $\{12,13,15\}$ in C_{3} and its 2 -itemset subsets $\{12,13\},\{12,15\},\{13,15\}$. 2-itemsets $\{12,13\}$ and $\{12,15\}$ are in L_{2} and hence frequent. But $\{13,15\}$ is not in L_{2} meaning ifs not frequent. Hence $\{12,13,15\}$ won't be frequent either! So prune/remove this from C_{3}

Apriori algorithm: example

- Step 4: find frequent 4-itemsets generated from L_{3}

Generate C_{4} from L_{3}

C_{4} : Candidate frequent 4-itemsets BEFORE apriori principle

Apply apriori principle to see if all 3itemseł subsets frequent

C_{4} : Candidate frequent 4-itemsets. Empły set!
Apriori algorithm terminates

How to apply apriori principle here: for 4-itemset $\{11, \mid 2, I 3, I 5\}$ in C_{4} list all 3itemset subsets: $\{1,12,13\},\{11,12,15\},\{11, \mid 3,15\},\{12, \mid 3,15\}$. See if all these subsets are frequent i.e. are in the L_{3} list.
Not all are in L_{3} list. For example subset $\{11, \mid 3, I 5\}$ is not in L_{3} meaning it is not frequent. Hence $\{11, \mid 2,13,15\}$ will not be frequent either and must be pruned/removed. Since C_{4} becomes empty, apriori algorithm terminates

Apriori algorithm: example

o Step 5: List the frequent itemsets found

Frequent itemsets found by apriori alg. $=U_{k} L_{k}, k=1,2,3$
Result =

Frequent 1- Itemsets	Support count
$\{11\}$	6
$\{12\}$	7
$\{13\}$	6
$\{14\}$	2
$\{15\}$	2

Frequent 2Itemsets	Support count	Frequent 3Itemsets	Support count
$\{11,12\}$	4	$\{11,12,13\}$	2
$\{11,13\}$	4	$\{11,12,15\}$	2
$\{11,15\}$	2		
$\{12,13\}$	4		
$\{12,14\}$	2		
$\{12,15\}$	2		

Frequent itemsets found by the apriori algorithm that have the required minimum support of 2 .

Apriori algorithm

- Methods to join itemsets to produce candidate itemsets ($\mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}$ in example)? > Brute force method
- Generate all k-itemsets choose k items from the set of items, d. There are $\binom{d}{k}$ number of k-itemsets.
Complexity $O\left({ }^{2} 2^{d-1}\right)$. Expensive!
$>F_{k-1} \times F_{1}$ method
- Increase k - 1 -itemsets with 1 item each time. Complexity $O\left(\sum_{k} k\left|F_{k-1}\right|\left|F_{1}\right|\right)$. Still expensive
$\mathrm{F}_{\mathrm{k}-1} \times \mathrm{F}_{\mathrm{k}-1}$ method
Join 2 itemsets only if they have k - 2 itemsets in common

Apriori algorithm

- Time complexity of apriori algorithm?
> Assume input transactions is N , the threshold is M, number of unique elements is R. Then time complexity of Apriori algorithm (finding frequent itemsets) is:

$$
O\left(M N+\sum_{i=1}^{M} R^{i}\right)=O\left(M N+\frac{1-R^{M}}{1-R}\right)
$$

Apriori algorithm

- Until now we have completed step 1 i.e. finding frequent itemsets
- Need to complete step 2, finding association rules that satisfy a minimum confidence threshold, minconf
> How to find such rules?

Apriori algorithm

o How to generate rules
> Generate rules from frequent itemsets
> Two approaches

- Brute force approach
- Confidence-based pruning approach

Apriori algorithm

- Brute force approach procedure
> Assume you have already all frequent itemsets, S
> For each itemset I in S calculate all nonempty subsets of I
> For each non-empty subset s of I output the rule :

$$
s \rightarrow(1-s)
$$

If confidence of rule is at least minconf i.e. $c(s \rightarrow(l-s))>=$ minconf

Brute force rule generationExample

- Frequent itemsets from previous example > Assume minimum confidence $=70 \%$ (0.7)

Frequent 1-Itemsets	Support count	Frequent 2- Itemsets	Support count	Frequent 3-Ifemsets	Support count
\{11\}	6				
		$\{11,12\}$	4	$\{11,12,13\}$	2
\{12\}	7	$\{11,13\}$	4	$\{11,12,15\}$	2
\{13\}	6	$\{11,15\}$	2		
\{14\}	2	$\{12,13\}$	4		
$\{15\}$	2	\{ 12,14$\}$	2		
		$\{12,15\}$	2		

Frequent itemsets found by the apriori algorithm that have the required minimum support of 2 .

Take one frequent itemset e.g. $1=\{11,12,15\}$

1) Calculate all nonempty subsets of I, $\{|1| 2,15\}=,>\{11\},\{\mid 2\}$, $\{\mid 5\},\{|1| 2\},,\{11,15\},\{12$, 15\}
2) For each subset s of I, devise rule $s \rightarrow$ (I-s):
3) $\{11\} \rightarrow\{\{2,15\}$
4) $\{12\} \rightarrow\{11,15\}$
5) $\{15\} \rightarrow\{11,12\}$
6) $\{11,12\} \rightarrow\{15\}$
7) $\{11,15\} \rightarrow\{12\}$
8) $\{12,15\} \rightarrow\{11\}$

Brute force rule generation-

 Example- Frequent itemsets from previous example > Assume minimum confidence = 70\% (0.7)

Frequent 1 -Itemsets	Support count
$\{11\}$	6
$\{\mid 2\}$	7
$\{\mid 3\}$	6
$\{\mid 4\}$	2
$\{\mid 5\}$	2

Frequent 2- Itemsets	Support count
$\{\|1\| 2\}$,	4
$\{\|1\| 3\}$,	4
$\{\|1\| 5\}$,	2
$\{\|2\| 3\}$,	4
$\{\|2\| 4\}$,	2
$\{\|2\| 5\}$,	2

Frequent 3-Itemsets	Support count
$\{11,\|2\| 3\}$,	2
$\{I 1,\|2\| 5\}$,	2

Frequent itemsets found by the apriori algorithm that have the required minimum support of 2 .
3) Calculate confidence for each rule in step 2). Keep those that have confidence >= minconf

1) $\{11\} \rightarrow\{\mid 2, I 5\}, c=2 / 6$ $=0.333$ (REJECT!)
2) $\{12\} \rightarrow\{|1| 5\},, c=2 / 7$
= 0.28 (REJECT!)
3) $\{\mid 5\} \rightarrow\{|1| 2\},, c=2 / 2$ = 1 (KEEP!)
4) $\{11,12\} \rightarrow\{\mid 5\}, c=2 / 4$
= 0.5 (REJECT!)
5) $\{11,15\} \rightarrow\{\mid 2\}, c=2 / 2$ $=1$ (KEEP!)
6) $\{12,15\} \rightarrow\{11\}, c=2 / 2$ $=1$ (KEEP!)

Brute force rule generationExample

- Found 3 strong association rules satisfying threshold of minconf $=0.7$
$>\{15\} \rightarrow\{11, \mid 2\}$, confidence $=1$ (>= minconf)
$>\{11,15\} \rightarrow\{12\}$, confidence $=1$ (>= minconf)
$>\{|2| 5,\} \rightarrow\{11\}$, confidence $=1$ (>= minconf)
- Do this process for all frequent itemsets
I.e. $\{11,12\},\{11,13\},\{11, \mid 5\}, \ldots\{|1| 2,13$,

Output all strong rules (confidence >= minconf)

Brute force rule generation

- Brute force looks nice and easy, but has an important problem!
> For large databases (usually the case) it's very, very slow
> Complexity of brute force approach?
- If for an itemset l, | | | = k, the number of candidate association rules derived from I is:

$$
2^{k}-2=O\left(2^{k}\right)
$$

(ignoring $X \rightarrow \varnothing$ and $\boldsymbol{\varnothing} \rightarrow \mathrm{X}$)

Brute force rule generation

o For example

- If $\{A, B, C, D\}$ is a frequent itemset, candidate rules:

$$
\begin{array}{llll}
\mathrm{ABC} \rightarrow \mathrm{D}, & \mathrm{ABD} \rightarrow \mathrm{C}, & \mathrm{ACD} \rightarrow \mathrm{~B}, & \mathrm{BCD} \rightarrow \mathrm{~A}, \\
\mathrm{~A} \rightarrow \mathrm{BCD}, & \mathrm{~B} \rightarrow \mathrm{ACD}, & \mathrm{C} \rightarrow \mathrm{ABD}, & \mathrm{D} \rightarrow \mathrm{ABC} \\
\mathrm{AB} \rightarrow \mathrm{CD}, & \mathrm{AC} \rightarrow \mathrm{BD}, & \mathrm{AD} \rightarrow \mathrm{BC}, & \mathrm{BC} \rightarrow \mathrm{AD}, \\
\mathrm{BD} \rightarrow \mathrm{AC}, & \mathrm{CD} \rightarrow \mathrm{AB} & &
\end{array}
$$

o Brute force in general prohibitive

- Can we do better?

Yes! Using Confidence-based pruning

Confidence-based pruning

o In general, confidence has not the antimonotone property
> E.g. $\mathbf{c}(\mathrm{ABC} \rightarrow \mathrm{D})$ can be larger or smaller than $\mathbf{c}(\mathbf{A B} \rightarrow \mathrm{D})$ although AB subset of ABC
o HOWEVER, rules generated from the same itemset HAVE the anti-monotone property!

Example: $X=\{A, B, C, D\}$
$c(A B C \rightarrow D) \geq c(A B \rightarrow C D) \geq c(A \rightarrow B C D)$
(WHY?)

Confidence-based pruning

- Confidence is anti-monotone w.r.t. number of items on the RHS of the rule
- Anti-monotone property of confidence
$>$ If an association rule $\mathrm{X} \rightarrow \boldsymbol{S}-\mathrm{X}$ has less than the minimum confidence threshold, then all rules $\mathbf{X}^{\prime} \rightarrow \boldsymbol{S}-\mathbf{X}^{\prime}$, where $\mathbf{X}^{\prime} \subseteq \mathbf{X}$ will have also less than the confidence threshold
Hence, you can "automatically" prune/ignore them

Confidence-based pruning

- Put this idea into play to prune association rules
> We don't need to check them all as in the brute force approach
Lattice of rules

Confidence-based pruning

- The idea explained
> Suppose frequent itemset $S=\{1,2,3,4\}$ and some minconf value
- If rule $\{1,2,3\} \rightarrow\{4\}$ does not have minimum confidence (i.e. < minconf) then all these rules won't have minconf either (i.e. < minconf):

$$
\begin{aligned}
& \{1,2\} \rightarrow\{3,4\} \\
& \{1,3\} \rightarrow\{2,4\} \\
& \{1,4\} \rightarrow\{2,3\} \\
& \{1\} \rightarrow\{2,3,4\} \\
& \{2\} \rightarrow\{1,3,4\} \\
& \{3\} \rightarrow\{1,2,4\}
\end{aligned}
$$

Confidence of all these rules will be less than minconf also as LHS subset of $\{1,2,3\} \rightarrow\{4\}$.

Confidence-based pruning

- Algorithm for building rules on confidence-based pruning:
> Generate rules in a level-wise approach of the lattice:

1. First find rules of the form $\{\ldots\} \rightarrow\{x\}$
i.e. only one item in the consequent
2. Prune rules of the form $\{\ldots\} \rightarrow\{x\}$ that do not have minconf
3. Generate/join rules of the form $\{\ldots\} \rightarrow$ $\{x, y\}$ i.e. two items in the consequent, only from rules in step 2 (note: here confidence-based pruning is applied)
4. Prune rules $\{\ldots\} \rightarrow\{x, y\}$ that do not have minconf
Generate/join rules of the form $\{\ldots\} \rightarrow$ $\{x, y, z\}$
Continue incrementally that way....

Confidence-based pruning

- Candidate rule is generated by joining/merging two rules that share the same prefix in the rule consequent
- join(CD $\rightarrow \mathrm{AB}, \mathrm{BD} \rightarrow \mathrm{AC})$ would produce the candidate rule $\mathrm{D} \rightarrow \mathrm{ABC}$
- Prune rule $D \rightarrow A B C$ if there exists a subset (e.g., $A D \rightarrow B C$) that does not have high confidence (minconf)

Confidence-based pruning -

 Example| TID | Transactions |
| :--- | :--- |
| 1 | $11,12,15$ |
| 2 | 12,14 |
| 3 | 12,13 |
| 4 | $11,12,14$ |
| 5 | 11,13 |
| 6 | 12,13 |
| 7 | 11,13 |
| 8 | $11,12,13,15$ |
| 9 | $11,12,13$ |
| | |

o Take one frequent itemset found: e.g. \{11, 12, 15\}, minconf=0.7
o Generate rules with one item in the consequent
> $\{11,12\}->\{15\}$, conf=2/4 $=0.5<$ 0.7 => Prune this (confidencebased pruning) and don'† generate rules out of this.
$\{11, \mid 5\}->\{\mid 2\}$, conf=2/2 = 1
$\{\mid 2,15\}->\{11\}$, conf=2/2 = 1

Confidence-based pruning -

 Example| TID | Transactions |
| :--- | :--- |
| 1 | $11,12,15$ |
| 2 | 12,14 |
| 3 | 12,13 |
| 4 | $11,12,14$ |
| 5 | 11,13 |
| 6 | 12,13 |
| 7 | 11,13 |
| 8 | $11,12,13,15$ |
| 9 | $11,12,13$ |

o Join/merge rules with confidence >= minconf
$>$ Join $\{11,15\} \rightarrow$ I2 and $\{12,15\}$ \rightarrow I1 resulting in $\mathbf{I 5} \rightarrow\{11,12\}$
$>$ Confidence for $\mathrm{I} 5 \rightarrow\{11$, 2$\}$

- Confidence = 2/2 = 1, ok!
> Rules from \{|1, 12, I5\}:
- $\{11,15\}->\{12\}$
$\{12,15\}->\{11\}$
$\{15\} \rightarrow\{11,12\}$
Do this for all frequent itemsets found!

Apriori algorithm in R

```
#Includes functions for apriori algorithm
library(arules)
#We will be using the Congressional Voting Records Data Set
#From: http://archive.ics.uci.edu/ml/datasets/Congressional+Voting+Records
#First read the data. Note the dataset HAS NO headers, hence set header to FALSE.
#We well add headers later. NOTE: Change your path to data appropriately!
voteData = read.csv("house-votes-84.data", header=FALSE)
attach(voteData)
#Add headers to data. Makes working with dataset easier
colnames(voteData) <- c("party", "infants", "water-cost", "budgetRes", "PhysicianFr",
"ElSalvador", "ReligSch", "AntiSat", "NicarAid", "Missile", "Immigration",
"CorpCutbacks", "EduSpend", "RightToSue", "Crime", "DFExports", "SAExport")
#Take a quick look at the data. Is everything ok?
head(voteData)
#Now we are ready to execute the apriori algorithm for finding association rules
#See next slide...
```


Apriori algorithm in R

```
#Execute now the apriori algorithm without any parameter.
#This means that no minsup and minconf is provided and
#that all possible rules will be generated
rules <- apriori(voteData)
#Variable rules has all the rules. Can we see the rules now?
#Yes, but this may take a huge amount of time due to the number
#of rules
#CAVEAT LECTOR: DO THIS ONLY IF YOU HAVE NOTHING BETTER TO DO
#YOU HAVE BEEN WARNED.
inspect(rules)
#Lets execute apriori with the following parameters: minimum support 20%,
#minimum confidence=100%, on the LHS we need at least 2 items and on the
#RHS only the party should appear i.e. rules of the form {X,Y}->{republican} or
# {X,Y} -> {democrat }
rules <- apriori(voteData, parameter = list(minlen=2, supp=0.2, conf=1), appearance=}
list(rhs=c("party=democrat", "party=republican"), default="lhs"))
#Lets see the rules. Should not be that much. You can also see support and
#confidence of each rule.
inspect(rules)
```


Alternative representations of frequent itemsets

Alternative representations

o For very large datasets, there may be large number of frequent itemsets
> Enumerating, storing them may be very costly
> Some frequent itemsets are redundant because they have identical support as their (frequent) supersets
Question: Is there a better way to represent frequent itemsets?

Alternative representations

- Yes. Exploit the notion of border in the itemset lattice and find the boundary frequent itemsets

Itemset lattice: lists
all combinations by proceeding level-wise.
We say that e.g. immediate subset of $\{B E\}$ is $\{B, E\}$

Alternative representations

Alternative representations

- Defining the Border in an itemset lattice
> Border = set of itemsets whose all their immediate subsets are frequent AND all their immediate supersets are infrequent (not frequent).
> Positive Border, $\mathrm{B}+(\mathrm{S})=$ Frequent itemsets whose all their immediate supersets are not frequent
Negative Border, B-(S)= Non-frequent Itemsets (in border) whose all their immediate subsets are frequent

Alternative representations

Above: Negative Border = $\{\mathrm{AB}, \mathrm{ACD}, \mathrm{ADE}\}$. E.g. ABD not in negative border since not all its immediate subsets frequent.

Alternative representations

- Maximal frequent itemsets
> An itemset is maximal frequent if none of its immediate supersets is frequent
- Maximal: no superset has this property (i.e. is frequent)

Alternative representations

Above: Maximal ltemsets = \{AD, ACE, BCDE\} . E.g. AE not in maximal itemsets since not all its immediate supersets infrequent.

Finding maximal frequent itemsets-Example

Assume these frequent itemsets found

Frequent 1- Itemsets	Support count
$\{I 1\}$	6
$\{\mid 2\}$	7
$\{\mid 3\}$	6
$\{\mid 4\}$	2
$\{I 5\}$	2

Frequent 2- Itemsets	Support count
$\{\|1\| 2\}$,	4
$\{\|1\| 3\}$,	4
$\{\|1\| 5\}$,	2
$\{\|2\| 3\}$,	4
$\{\|2\| 4\}$,	2
$\{\|2\| 5\}$,	2

Frequent 3- Ifemsets	Support count
$\{I 1,\|2\| 3\}$,	2
$\{I 1,\|2\| 5\}$,	2

Finding Maximal frequent temsets:

Recap: For each frequent itemset check all its immediate supersets to see if they are frequent (=if at least one immediate superset frequent, the itemset is NOT MAXIMAL frequent)
$\{11\}$ => Immediate supersets $=\{|1| 2\},,\{11, \mid 3\},\{11, \mid 4\},\{11, \mid 5\}=>\{|1| 2$,$\} frequent$ hence \{11\} not maximal
$\{12\}=>$ Immediate supersets $=\{|1| 2\},,\{|2| 3\},,\{12, \mid 4\},\{|2| 5\}=,>$ all frequent hence $\{12\}$ not maximal

Finding maximal frequent itemsets-Example

Assume these frequent itemsets found

Frequent 1- Itemsets	Support count
$\{\mid 1\}$	6
$\{\mid 2\}$	7
$\{\mid 3\}$	6
$\{\mid 4\}$	2
$\{\mid 5\}$	2

Frequent 2- Itemsets	Support count
$\{\|1\| 2\}$,	4
$\{\|1\| 3\}$,	4
$\{\|1\| 5\}$,	2
$\{\|2\| 3\}$,	4
$\{\|2\| 4\}$,	2
$\{\|2\| 5\}$,	2

Frequent 3- Itemsets	Support count
$\{I 1,\|2\| 3\}$,	2
$\{I 1,\|2\| 5\}$,	2

Finding Maximal itemsets (continued): $\{\mid 3\}=>$ Immediate supersets $=\{|1| 3\},,\{|2| 3\},,\{|3| 4\},,\{|3| 5\}=,>$ some frequent hence $\{13\}$ not maximal $\{\mid 4\}=>$ Immediate supersets $=\{|1| 4\},,\{|2| 4\},,\{|3| 4\},,\{|4| 5\}=,>\{|2| 4$,$\} frequent$ hence $\{14\}$ not maximal $\{\mid 5\}=>$ Immediate supersets $=\{|1| 5\},,\{|2| 5\},,\{|3| 5\},,\{|4| 5\}=,>\{|1| 5\},,\{|2| 5$, frequent hence $\{15\}$ not maximal

Finding maximal frequent itemsets-Example

Assume these frequent itemsets found

Frequent 1- Itemsets	Support count
$\{11\}$	6
$\{\mid 2\}$	7
$\{\mid 3\}$	6
$\{14\}$	2
$\{15\}$	2

Frequent 2- Itemsets	Support count
$\{\|1\| 2\}$,	4
$\{\|1\| 3\}$,	4
$\{\|1\| 5\}$,	2
$\{\|2\| 3\}$,	4
$\{\|2\| 4\}$,	2
$\{\|2\| 5\}$,	2

Frequent 3- Itemsets	Support count
$\{I 1,\|2\| 3\}$,	2
$\{I 1,\|2\| 5\}$,	2

Finding Maximal itemsets (continued): $\{11,12\}=>$ Immediate supersets $=\{11,|2| 3\},,\{11,|2| 4\},,\{|1| 2,15\}=,>$ some frequent (e.g. $\{|1| 2,, I 3\}$) hence $\{11, \mid 2\}$ not maximal $\{11,13\}=>$ Immediate supersets $=\{11,|2| 3\},,\{|1,|3| 4\}, 11,13,, \mid 5\}=>$ some frequent hence $\{11,13\}$ not maximal $\{11,15\}=>$ Immediate supersets $=\{11,12,15\},\{11,13,15\},\{11,|4| 5\}=,>\{11,12,15\}$ frequent hence $\{11,15\}$ not maximal

Finding maximal frequent itemsets-Example

Assume these frequent itemsets found

Frequent 1- Itemsets	Support count
$\{I 1\}$	6
$\{\mid 2\}$	7
$\{\mid 3\}$	6
$\{\mid 4\}$	2
$\{I 5\}$	2

Frequent 2- Itemsets	Support count
$\{\|1\| 2\}$,	4
$\{\|1\| 3\}$,	4
$\{\|1\| 5\}$,	2
$\{\|2\| 3\}$,	4
$\{\|2\| 4\}$,	2
$\{\|2\| 5\}$,	2

Frequent 3- Itemsets	Support count
$\{I 1,\|2\| 3\}$,	2
$\{I 1,\|2\| 5\}$,	2

Finding Maximal itemsets (continued): $\{11,12\}=>$ Immediate supersets $=\{11,|2| 3\},,\{|1,|2| 4\},,\{|1| 2,15\}=,>$ some frequent (e.g. $\{|1| 2,, I 3\}$) hence $\{11, \mid 2\}$ not maximal $\{\mid 1,13\}=>$ Immediate supersets $=\{|1,|2| 3\},,\{|1,|3| 4\},,\{|1,|3| 5\}=,>$ some frequent hence $\{11,13\}$ not maximal $\{11,15\}=>$ Immediate supersets $=\{11, \mid 2,15\},\{11, \mid 3,15\},\{|1,|4| 5\}=,>\{11, \mid 2,15\}$ frequent hence $\{11,15\}$ not maximal

Finding maximal frequent itemsets-Example

Assume these frequent itemsets found

Frequent 1- Itemsets	Support count
$\{I 1\}$	6
$\{\mid 2\}$	7
$\{\mid 3\}$	6
$\{\mid 4\}$	2
$\{I 5\}$	2

Frequent 2- Itemsets	Support count
$\{\|1\| 2\}$,	4
$\{\|1\| 3\}$,	4
$\{\|1\| 5\}$,	2
$\{\|2\| 3\}$,	4
$\{\|2\| 4\}$,	2
$\{\|2\| 5\}$,	2

Frequent $3-$ Itemsets	Support count
$\{\|1,\|2\| 3\}$,	2
$\{\|1,\|2\| 5\}$,	2

Finding Maximal itemsets (continued):
$\{12,13\}$ => not maximal
$\{12,14\}=>$ Immediate supersets $=\{11,12,14\},\{\mid 2,13,14\},\{12,13,15\}=>$ all supersets not frequent hence $\{12,14\}$ MAXIMAL!
$\{12,15\}=>$ not maximal
$\{11,12,13\}=>$ MAXIMAL!
$\{11,12,15\}=>$ MAXIMAL!

Finding maximal frequent itemsets-Example

Assume these frequent itemsets found

Frequent 1- Itemsets	Support count
$\{11\}$	6
$\{\mid 2\}$	7
$\{\mid 3\}$	6
$\{\mid 4\}$	2
$\{15\}$	2

Frequent 2- Itemsets	Support count
$\{I 1, \mid 2\}$	4
$\{\|1\| 3\}$,	4
$\{\|1\| 5\}$,	2
$\{\|2\| 3\}$,	4
$\{\|2\| 4\}$,	2
$\{\|2\| 5\}$,	2

Frequent 3- Itemsets	Support count
$\{\|1,\|2\| 3\}$,	2
$\{\|1,\|2\| 5\}$,	2

Finding Maximal itemsets (continued):
Maximal itemsets $=\{12,14\},\{11,|2| 3\},,\{11,|2| 5$,$\} \quad Q.E.D$

Alternative representations

- Important note
> Maximal frequent itemsets = the Positive border of the lattice tree

Alternative representations

Above: Positive border = maximal frequent itemsets (orange nodes).

Alternative representations

o Why define Border, Negative and Positive border (B-(S), B+(S)) ? Are they useful?
> Yes! The Positive or the Negative border is sufficient to fully describe all frequent itemsets!

- Hence, don'† need to store all frequent itemsets. Just B-(S) or B+(S)

Alternative representations

o Maximal frequent itemsets look very nice!
> They can summarize nicely frequent itemsets.
> But, maximal frequent itemsets don't tell us anything about the support measure - σ

- This might be needed
- Define closed itemsets

Alternative representations

- Closed itemsets
> An itemset X is closed if none of its immediate supersets has exactly the same support as the itemset X
> Example

TID	Items
1	$\{A, B\}$
2	$\{B, C, D\}$
3	$\{A, B, C, D\}$
4	$\{A, B, D\}$
5	$\{A, B, C, D\}$

Itemset	Support
$\{A\}$	4
$\{B\}$	5
$\{C\}$	3
$\{D\}$	4
$\{A, B\}$	4
$\{A, C\}$	2
$\{A, D\}$	3
$\{B, C\}$	3
$\{B, D\}$	4
$\{C, D\}$	3

Itemset	Support	Closed itemsets:
$\{\mathrm{A}, \mathrm{B}, \mathrm{C}\}$	2	
$\{\mathrm{A}, \mathrm{B}, \mathrm{D}\}$	3	\{B
$\{\mathrm{A}, \mathrm{C}, \mathrm{D}\}$	2	$\{\mathrm{A}, \mathrm{B}\}$ $\{B, C\}$
\{B,C,D\}	3	$\{\mathrm{B}, \mathrm{D}\}$
\{A,B,C,D\}	2	\{C, D\}
		\{A, B, D\} $\{A, B, C, D\}$

Alternative representations

o Why are closed itemsets interesting?
$>$ Assume rule $\{A\} \rightarrow\{B\}$ and $\{A, B\}$ closed itemset. Moreover, assume $s(\{A, B\})=s(A)$.

- Then confidence of rule is: $\operatorname{conf}(\{A\} \rightarrow\{B\})=1$
- In addition, for every itemset X it will hold that
- $s(A \cap\{X\})=s(\{A, B\} \cap X)$
- No need to count the frequencies of sets $X \cap\{A, B\}$ from the database!
If there are lots of rules with confidence 1, then a significant amount of work can be saved

Alternative representations

- Closed patterns and their frequencies alone are sufficient representation for all the frequencies of all frequent patterns

Maximal vs Closed Itemsets

transactions

Maximal vs Closed Frequent Ifemsets

Maximal vs Closed Frequent Ifemsets

- Knowing all maximal itemsets (and their frequencies) allows us to reconstruct the set of frequent itemsets
- Knowing all closed fitemsets and their frequencies allows us to reconstruct the set of all frequent itemsets and their frequencies

Interestingness measures of association rules

Rule interestingness measures

- Are all the rules discovered interesting to the user?
> How to measure "interestingness" of a rule?
o When is a discovered association rule interesting (subjective measure)?
> It is unexpected (surprising to the user)
- E.g. \{Cigarettes\} \rightarrow \{Lighter\} not unexpected. But \{Cigarettes\} \rightarrow \{Barbie Doll\} unexpected
It is actionable (i.e. user can do something with
it, lead to profitable actions)
Only the user can judge the interestingness of a
rule (subjective)

Rule interestingness measures

- In general, algorithms (like Apriori) tend to produce many rules
> Many of them not interesting or redundant
> Example of redundant rule:
- Redundant if discovered rules $\{\mathbf{A}, \mathbf{B}, \mathbf{C}\} \rightarrow\{\mathrm{D}\}$ and $\{\mathbf{A}, \mathbf{B}\} \rightarrow\{\mathrm{D}\}$ have same support \& confidence
- The original formulation of the problem of finding association rules is only based on support and confidence of rules

Rule interestingness measures

o Idea
> Use some form of correlation measure for rules i.e. given rule A \rightarrow B measure the correlation between itemsets A and B
> In essence, find a way of comparing cooccurrence of itemsets A and B with the probability of itemsets A and B appearing together by chance (at random)

Hence see if a rule is discovered randomly
Or check if two itemset A, B are statistically independent

Recall: Statistical independence

- Assume some students, where some can swim (S), some can Bike (B), some can Swim and Bike ($\mathrm{S} \cap \mathrm{B}$) and some can neither
> Q: Are events "know how to swim (S)" and "know how to bike (B)" independent or not?
- I.e. Does occurrence of event S influence the occurrence of event B (and vice versa) or not?
To check for statistical independence between S and B, check if $P(S \cap B)=P(S) P(B)$. If this holds then event S, B independent. If not, not independent and hence somehow correlated.

Recall: Statistical independence

- Assume population of 1000 students
> 600 students know how to swim (S)
> 700 students know how to bike (B)
> 420 students know how to swim and bike ($\mathrm{S} \cap$ B)
- $P(S \cap B)=420 / 1000=0.42$
- $P(S)=600 / 1000=0.6$
- P(B) = 700/1000 = 0.7
$P(S) P(B)=0.6 \times 0.7=0.42$
Since $P(S \cap B)=P(S) P(B)=>S$, B Statistical independence

Recall: Statistical independence

- Population of 1000 students
> 600 students know how to swim (S)
> 700 students know how to bike (B)
> 500 students know how to swim and bike ($\mathrm{S} \cap$ B)
- $P(S \cap B)=500 / 1000=0.5$
- P(S) P(B) $=0.6 \times 0.7=0.42$

Since $P(S \cap B)>P(S) P(B)=>S, B$ positively
correlated
This means that if S increases, so will B. If S decreases, so will B.

Recall: Statistical independence

- Population of 1000 students
> 600 students know how to swim (S)
> 700 students know how to bike (B)
> 300 students know how to swim and bike ($\mathrm{S} \cap$ B)
- $P(S \cap B)=300 / 1000=0.3$
- P(S) P(B) $=0.6 \times 0.7=0.42$

Since $P(S \cap B)<P(S) P(B)=>S, B$ negatively correlated
This means that if S increases, B will decrease. If S decreases, B will increase.

Rule interestingness measures

- Build "interestingness"/correlation measures of rules around statistical independence
> Many available like X2, Ф-coefficient etc
> However in Association rule mining, Lift/Interest is used

Rule interestingness

measures

- Idea of Lift based on Contingency table
> Given a rule $\mathbf{X} \rightarrow \mathbf{Y}$, information needed to compute rule interestingness can be obtained from a contingency table
Contingency fable for $\mathbf{X} \rightarrow \mathbf{Y}$

	Y	\bar{Y}	
X	f_{11}	f_{10}	f_{1+}
\bar{X}	f_{01}	f_{00}	f_{0+}
	f_{+1}	f_{+0}	N

X : itemset X appears in tuple Y : itemset Y appears in tuple
\bar{X} : itemset X does not appear in tuple \bar{Y} : itemset Y does not appear in tuple
f_{11} : support of X and Y f_{10} : support of X and \bar{Y} f_{01} : support of X and Y f_{00} : support of X and Y

Drawback of Confidence

Tea	15	5	
Coffee		20	
Tea	75	5	80
	90	10	100

Association Rule: Tea \rightarrow Coffee

Number of people that drink tea

Number of people that drink coffee and tea

Number of people that drink coffee but not tea

Number of people that drink coffee

Confidence $=P($ Coffee \mid Tea $)=\frac{15}{20}=0.75$
but $P($ Coffee $)=\frac{90}{100}=0.9$

```
Important nołe:
P(Tea) = support {Tea}
P(Coffee | Tea) = conf {Tea }->\mathrm{ Coffee}
```

- Although confidence is high, rule is misleading
- Because: $\mathrm{P}($ Coffee|Tea $)=\mathbf{0 . 9 3 7 5}$

Lift/Interest

- Definition of Lift/Interest measure

$$
\operatorname{Lift}(\mathbf{X} \rightarrow \mathbf{Y})=\frac{\mathbf{P}(\mathbf{Y} \mid \mathbf{X})}{\mathbf{P}(\mathbf{Y})}=\frac{\mathbf{P}(\mathbf{X} \cap \mathbf{Y})}{\mathbf{P}(\mathbf{X}) \mathbf{P}(\mathbf{Y})}
$$

If Lift $=1$, this means $P(X \cap Y)=P(X) P(Y)$ i.e. statistical independence If Lift < 1, this means $P(X \cap Y)<P(X) P(Y)$ i.e. negative correlation
If Lift >1, this means $P(X \cap Y)>P(X) P(Y)$ i.e. positive correlation
How to use Lift? Use Lift to find interesting rules. In particular, rules for which Lift > 1 .

Lift/Interest

o Interpretation of Lift in a different way
> $P(X) P(Y)=$ probability of appearing X, Y together by chance/at random (expected cooccurrence)

- If $P(X \cap Y)=P(X) P(Y)$ this means that X, Y appear together as expected (not interesting). Not interesting.
- If $P(X \cap Y)<P(X) P(Y)$ this means that X, Y appear less times fogether than expected (negative correlation). Not interesting If $P(X \cap Y)>P(X) P(Y)$ this means that X, Y appear more often together than expected (positive correlation)

This is interesting!

Lift examples

	Coffee	Coffee	
Tea	15	5	20
Tea	75	5	80
	90	10	100

Assume rule: Tea \rightarrow Coffee

o Interesting rule? Calculate Lift to see: Lift = P(Coffee |Tea) / P(Coffee) $=0.75 / 0.9=$ 0.8333 .

Since Lift < 1, Tea, Coffee negatively correlated hence not interesting rule!

Lift examples: more complex

 rules?
Assume more complex rule: Gun,Milk \rightarrow Diapers, Flowers

Contingency fable would be e.g.:

	Diapers,Flowers	Diapers,Flowers	
Gun,Milk	22	23	45
$\overline{\text { Gun,Milk }}$	61	8	69
	83	31	114

Calculate Lift of above rule as:
Lift = P(Diaper,Flowers | Gun,Milk) / P(Diaper,Flowers)

Other metrics?

o Instead of lift/Interest?

- Sure! Can use X 2
> Use again contingency table

	Coffee		
	Coffee		
Tea	15	5	20
$\overline{\text { Tea }}$	75	5	80
	90	10	100

Assume rule: Tea \rightarrow Coffee

Appendices

Appendix A: Bibliography

- R. Agrawal, T. Imielinski and A. Swami. Mining association rules between sets of items in large databases, Proceedings of the 1993 ACM SIGMOD international conference on Management of data, SIGMOD '93. pg: 207216)
- J. Han and M. Kamber. Data Mining Concepts and Techniques. 2001. Morgan Kaufmann.
- M. Kantardzic. Data Mining - Concepts, Models, Methods, and Algorithms. 2003. IEEE.
- M. H. Dunham. Data Mining - Introductory and Advanced Topics.
- I.H. Witten and E. Frank. Data Mining - Practical Machine Learning Tools and Techniques with Java Implementations. 2000. Morgan Kaufmann.

Appendix A: Bibliography

- M.J. Zaki. Scalable Algorithms for Association Mining, IEEE Transactions on Knowledge and Data Engineering, Volume 12, Issue 3 (2000), Page 372-390)
- Heikki Mannila, Hannu Toivonen, and A. Inkeri Verkamo. Efficient algorithms for discovering association rules. In Usama M. Fayyad and Ramasamy Uthurusamy, editors, AAAI Workshop on Knowledge Discovery in Databases (KDD-94), pages 181--192, Seattle, Washington, 1994. AAAI Press.
- Jochen Hipp, Ulrich Güntzer, and Gholamreza Nakhaeizadeh. Algorithms for association rule mining -- A general survey and comparison. SIGKDD Explorations, 2(2):1--58, 2000.
J. Han, H. Cheng, D. Xin, and X. Yan. Frequent pattern mining: Current status and future directions. Data Mining and Knowledge Discovery, 14(1), 2007

Appendix A: Bibliography

- Julien Blanchard, Fabrice Guillet, Henri Briand, and Regis Gras. Assessing rule interestingness with a probabilistic measure of deviation from equilibrium. In Proceedings of the 11 th international symposium on Applied Stochastic Models and Data Analysis ASMDA-2005, pages 191--200. ENST, 2005.
o Edith Cohen, Mayur Datar, Shinji Fujiwara, Aristides Gionis, Piotr Indyk, Rajeev Motwani, Jeffrey D. Ullman, and Cheng Yang. Finding interesting associations without support pruning. IEEE Transactions on Knowledge and Data Engineering, 13(1):64--78, 2001.

