

 What is association analysis?
› The task of analyzing so called

“transactions” that indicate the likely
occurrence of an item based on the
occurrences of other items in the
transactions of large datasets

› The discovered relationships are
represented in the form of association rules

 Where is it used?

› Biology and bioinformatics

 E.g. Co-occurrence of genes

› Medicine

 Occurrence of symptoms

› Geology

 Relationships between oceans and land

masses

› Retail

 Market basket analysis

 Main idea exemplified

Market-Basket transactions i.e.

what customers have bought

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

Transactions i.e. what a

customer bought in the

supermarket

The main task is now to

analyze transactions and

come up with association

rules of the form

{Diaper} → {Beer},

{Milk, Bread} → {Eggs,Coke},

{Beer, Bread} → {Milk},

These mean that e.g. customers that
bought Diapers also bought Beer,
customer that bought Beer and Bread
also bought Milk.

 Association rules

› Rule suggest that a strong relationship exist

between items of transaction

 Form of rules: Antecedent → Consequent

 Note: rules implies relationship/co-occurrence

not causality!

› Practical issues: Helps in devising sale

strategies and discounts

 Used heavily by retailers to identify

opportunities of cross-selling to customers

 Practical issues
› Let a discovered rule be as follows:

 {Bagels,…} → {Potato Chips}

› Potato Chips as consequent: what should be
done to boost its sales

› Bagels in antecedent: can be used to see which
products will be affected if the store
discontinues selling bagels

› Bagels in antecedent and Potato chips in
consequent: can be used to see what products
should be sold with bagels to promote sell of
potato chips

 What problems exist when trying to find

associations and rules in transactions?

› When number of transactions is huge finding

such rules is computational expensive

 True even for small/midsized supermarkets

› Some rules may be accidental or no rules at

all (i.e. simply false)

 Items
› A finite set of atomic elements I = { i1, i2,

i3,…, id} e.g. {milk, beer, diapers, bagel}

 Transaction t
› is a subset of Ι, i.e. I which is observed

› Transaction usually have IDs (see column
TID in the table)

 Transaction Database
› A set of transactions T={t1, t2, t3,…,tn}

 Itemset
› A collection of one or more items

 Example: {Milk, Bread, Diaper}

› k-itemset
 An itemset that contains k items e.g.

3-itemset: {Milk, Beer, Bagel}, 2-
itemset: {Diaper, Milk}

› Important: itemsets different from
transactions

 We say that a transaction t
contains itemset X when X t.

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

One transaction

One item

Transactions

database

 Metrics for itemsets

› Support count of

itemset, σ

 Frequency of

occurrence of an

itemset

› Support of itemset, s

 Fraction (pct) of

transactions that

contain an itemset

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

Examples of σ and s:

σ({Milk, Bread, Diaper}) = 2

s({Milk, Bread, Diaper}) = 2/5

Note: order of items in itemsets does not

matter. E.g. σ({Bread, Milk, Diaper}) = 2

 What are association rules?
› An association rule is an implication of the

form:

X → Y, where X, Y I, and X Y =

› Examples of valid rules

 {Milk, Beer} → {Diapers}

 {Beer, Bagel} → {Milk, Diapers, Potato chips}

› Examples of invalid rules

 {Beer, Bagel} → {Beer} (violates X Y =)

 Metrics for association rules

› Support of association rule X → Y

 Fraction of transactions that contain both X

and Y:

𝒔𝒖𝒑𝒑𝒐𝒓𝒕, 𝒔 𝑿 → 𝒀 =
𝝈(𝚾 ∩ 𝚼)

𝚴

› Confidence of association rule X → Y

 Fraction of transactions in which every time

there is X, there also is Y:

𝒄𝒐𝒏𝒇𝒊𝒅𝒆𝒏𝒄𝒆, 𝒄 𝑿 → 𝒀 =
𝝈(𝚾 ∩ 𝚼)

𝛔(𝚾)

 Example of rule metrics

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

 Assume rule

› {Milk, Diaper} → Beer

𝑠(𝑚𝑖𝑙𝑘, 𝑑𝑖𝑎𝑝𝑒𝑟 → 𝐵𝑒𝑒𝑟}) =
𝜎 𝑚𝑖𝑙𝑘, 𝑑𝑖𝑎𝑝𝑒𝑟, 𝑏𝑒𝑒𝑟

𝑇
=
2

5
= 0.4

𝑐(𝑚𝑖𝑙𝑘, 𝑑𝑖𝑎𝑝𝑒𝑟 → 𝐵𝑒𝑒𝑟}) =
𝜎 𝑚𝑖𝑙𝑘, 𝑑𝑖𝑎𝑝𝑒𝑟, 𝑏𝑒𝑒𝑟

𝜎(𝑚𝑖𝑙𝑘, 𝑑𝑖𝑎𝑝𝑒𝑟)
=
2

3
= 0.67

Support of rule {Milk, Diaper} → Beer:

Confidence of rule {Milk, Diaper} → Beer:

 Problem statement

› Given a set of transactions T, the goal of

association rule mining is to find all rules

having

 support ≥ minsup threshold

 confidence ≥ minconf threshold

› Note: minsup, minconf user specified. E.g.

minsup = 0.6, minconf = 0.9 given as input

 How to find such rules?

 One solution: Brute force approach
› List all possible association rules

› Compute the support and confidence for
each rule

› Prune rules that fail the minsup and minconf
thresholds

 Is brute force a good solution?
› No! Computationally prohibitive!

 Exponential complextity!

 Observations helping in improving the

situation
TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

Example of Rules:

{Milk,Diaper} → {Beer} (s=0.4, c=0.67)

{Milk,Beer} → {Diaper} (s=0.4, c=1.0)

{Diaper,Beer} → {Milk} (s=0.4, c=0.67)

{Beer} → {Milk,Diaper} (s=0.4, c=0.67)

{Diaper} → {Milk,Beer} (s=0.4, c=0.5)

{Milk} → {Diaper,Beer} (s=0.4, c=0.5)

Some observations:

All the above rules are binary partitions of the same itemset:

{Milk, Diaper, Beer}

Rules originating from the same itemset have identical support but

can have different confidence

Thus, we may decouple the support and confidence requirements !

 Use this to derive a two-step approach for
finding rules:
1. Frequent Itemset Generation

 Generate all itemsets whose support minsup

2. Rule Generation

 Generate high confidence rules from each
frequent itemset, where each rule is a binary
partitioning of a frequent itemset. Such rules are
called strong rules.

 Step 1 i.e. Frequent itemset generation is still
computationally expensive

 The problem now becomes:

› How to solve step 1 i.e. How to find all

frequent itemsets?

 How easy is it given a set of transactions to find

all frequent itemsets?

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

How to find that e.g.

{Bread, Beer} is a

frequent itemset i.e.

above a threshold

(minsup)

Look at all the

combinations that

you have to check!

The problem?

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Finding frequent

itemsets not easy. Still

computationally

expensive:

Given d items, there

are 2d possible

candidate itemsets

Candidate itemset

lattice: All itemsets

generated from 5

items

One way of dealing with finding the frequent

itemsets is the Brute force approach: List all

possible itemsets, called candidate itemsets

 Brute-force approach for finding frequent
itemsets:
› Each itemset in the lattice is a candidate frequent

itemset

› Count the support of each candidate by scanning
the database

› Match each transaction against every candidate

› Complexity ~ O(NMw), where M = 2d -1 and w the
maximum with of transaction => expensive!!!

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

N

Transactions List of

Candidates

M

w

 Given d unique items:
› Total number of itemsets = 2d

› Total number of possible association rules, R:

This means with d=6 items

you can generate R=602

different rules !

 How to conquer this complexity in finding
the frequent itemsets ?
› Reduce the number of candidate itemsets (M)

 Complete search: M=2d

 Use pruning techniques to reduce M

› Reduce the number of transactions (N)
 Reduce size of N as the size of itemset increases

 Used by DHP and vertical-based mining algorithms

› Reduce the number of comparisons (NM)
 Use efficient data structures to store the

candidates or transactions

 No need to match every candidate against every
transaction

 Reduce number of candidates based on

itemset support

› Prune/ignore itemsets with support lower

than a threshold

› To do this, use the apriori principle which

allows to “automatically” prune/ignore some

itemsets

 Apriori principle

› “If an itemset is frequent, then all of its

subsets must also be frequent”

› Or equivalently “if itemset not frequent, it’s

supersets won’t be frequent either”

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Assume CDE

frequent

If CDE frequent,
then also frequent
will be subsets: DE,
CE, CD, C, D, E.Assume AB

not
frequent

If AB not

frequent then

also not

frequent:

ABC, ABD,

ABE, ABCD, …

(all supersets)

Can
prune/ignore
these itemsets.

Candidate
frequent
itemsets

 Apriori principle allows the pruning of an
exponential search space (itemset
lattice) based on support
› Hence called support-based pruning

 Support-based pruning possible due to
an important property of the support
measure: the anti-monotone property
› The Anti-monotone property: support of an

itemset never exceeds the support of its
subsets

 Monotone/anti-monotone property more

formally defined

› Assume I a set of items and J = 2I its

powerset. A measure f is said to be

monotone or upward closed if:

∀ X, Y ∈ J: (X ⊆ Y) → 𝒇 𝑿 ≤ 𝒇(𝒀)

› Measure f is said to be anti-monotone or

downward-closed if

∀ X, Y ∈ J: (X ⊆ Y) → 𝒇 𝑿 ≥ 𝒇(𝒀)

 In general, every measure that has the

anti-monotone property can be

integrated into algorithms and used to

prune the exponential search space of

candidate itemsets

 Apriori algorithm uses the apriori

principle (support-based pruning) to find

frequent itemsets

 The Apriori algorithm
 Best known algorithms of this category

 Very good results

 Used today in many application domains

 Apriori psudocode
Assume

Ck : Candidate itemsets of size k (i.e. k-itemsets)

Lk : Frequent itemsets of size k (k-itemsets)

minsup: minimum support count, given

1. L1 = {frequent 1-itemsets} /* 1-itemsets with support >= minsup */

2. for (k=1; Lk != ∅; k++) do begin

3. Ck+1 = generate candidates from Lk /* gen. k+1-itemsets */

4. for each transaction t in Database do

5. increment support count for all candidate itemset in Ck+1

found in t

6. Lk+1 = all candidates in Ck+1 with at least minsup support

(i.e. prune/ignore all candidates in Ck+1 with support <

minsup)

end

7. return ∪k Lk /* List of all frequent itemsets */

TID Transactions

1 I1, I2, I5

2 I2, I4

3 I2, I3

4 I1, I2, I4

5 I1, I3

6 I2, I3

7 I1, I3

8 I1, I2 ,I3, I5

9 I1, I2, I3

 Database with 9
transactions

 Assume minimum
support required -
minsup = 2 (i.e. 2/9
= 22%)

 Applying the Apriori
algorithm to find
frequent itemsets

 List of items = {I1, I2,
I3, I4, I5}

 Step 1: find frequent 1-itemsets

Itemset Support count

{I1} 6

{I2} 7

{I3} 6

{I4} 2

{I5} 2

Itemset Support count

{I1} 6

{I2} 7

{I3} 6

{I4} 2

{I5} 2

Scan candidate 1-
itemsets C1 and
prune/remove all
itemsets having
support count <
minsup (=2). Will
generate L1C1 : Candidate frequent

1-itemsets
L1 : Frequent 1-itemsets

L1 generated by removing all itemsets in C1 having support
count < minsup (=2)

 Step 2: find frequent 2-itemsets generated from L1

Itemsets Support count

{I1, I2} 4

{I1, I3} 4

{I1, I4} 1

{I1, I5} 2

{I2, I3} 4

{I2, I4} 2

{I2, I5} 2

{I3, I4} 0

{I3, I5} 1

{I4, I5} 0

Itemsets Support count

{I1, I2} 4

{I1, I3} 4

{I1, I4} 1

{I1, I5} 2

{I2, I3} 4

{I2, I4} 2

{I2, I5} 2

{I3, I4} 0

{I3, I5} 1

{I4, I5} 0

C2 : Candidate frequent

2-itemsets
L2 : frequent 2-itemsets

after pruning C2

Scan candidate 2-
itemsets C2 and
remove all
itemsets having
support count <
minsup (=2). This
generates L2

C2 is produced by joining/concatenating itemsets of size 2 from L1
that generate 3-itemsets. Note: Apriori principle still not used!

Generate
C2 from L1

 Notes on step 2
› How to join 1-itemsets to produce C2 ?

 Joining means simply concatenating 1-itemsets

Itemset Support count

{I1} 6

{I2} 7

{I3} 6

{I4} 2

{I5} 2

{I1, I2}

{I1, I3}

{I1, I4}

{I1, I5}

{I2, I3}

{I2, I4}

{I2, I5}

{I3, I4}
{I3, I5}

{I4, I5}

Join/concatenate
1-itemsets

Notes on joining itemsets:
Order does not matter. I.e. {I1, I2} = {I2, I1}
When an item appears 2 times in itemset, it is shows

up once. I.e. {I1, I2, I2, I3} = {I1, I2, I3}
2-itemsets

 Step 3: find frequent 3-itemsets generated from L2

Itemsets Support
count

{I1, I2, I3}

{I1, I2, I5}

{I1, I3, I5}

{I2, I3, I4}

{I2, I3, I5}

{I2, I4, I5}

C3 : Candidate frequent
3-itemsets BEFORE
apriori principle

Generate
C3 from L2

Itemsets Support
count

{I1, I2, I3} 2

{I1, I2, I5} 2

{I1, I3, I5}

{I2, I3, I4}

{I2, I3, I5}

{I2, I4, I5}

Apply apriori
principle and
prune!
Then calculate
support count

Itemsets Support
count

{I1, I2, I3} 2

{I1, I2, I5} 2

Remove itemsets
with support count
< minsup (=2)

L3 : frequent 3-itemsets

C3 : Candidate frequent
3-itemsets AFTER apriori
principle

 Notes on step 3
› From L2 generate all 3-itemsets by joining 2-

itemsets in set L2. But keep only those that
result in 3-itemsets.

 Example joining {I1, I2} and {I1, I3} results in {I1,
I1, I2, I3} => {I1, I2, I3} , 3-itemset so keep it. Will
be in C3.

 Example joining {I1, I5} and {I2, I3} results in {I1,
I2, I3, I5} which is not a 3-itemset (it’s a 4-
itemset). So won’t be in C3.

› Apply apriori principle on the C3 candidate
3-itemsets.

 Notes on step 3
› How is the apriori principle applied on C3?

 “If an itemset is frequent then all its subsets must be
frequent also” OR “if a itemset is not frequent, then all its
supersets won’t be frequent either”.

 Lets examine one 2-itemset in C3 e.g. {I1, I2, I3} and lets
check all its 2-itemset subsets i.e. {I1, I2}, {I1, I3}, {I2, I3}. If
all these subsets are not frequent, then neither {I1, I2, I3}
will be frequent (apriori principle)
 However all subsets appear in L2, hence are frequent, so {I1, I2,

I3} will also be frequent. So {I1, I2, I3} will be not pruned and
should stay in C3 .

 However, examine now 3-itemset {I2, I3, I5} in C3 and its
2-itemset subsets {I2, I3}, {I2, I5}, {I3, I5}. 2-itemsets {I2, I3}
and {I2, I5} are in L2 and hence frequent. But {I3, I5} is
not in L2 meaning its not frequent. Hence {I2, I3, I5} won’t
be frequent either! So prune/remove this from C3

 Step 4: find frequent 4-itemsets generated from L3

Generate
C4 from L3

Itemsets Support
count

{I1, I2, I3, I5} ?

Apply
apriori
principle to
see if all 3-
itemset
subsets
frequent

Itemsets Support
count

{I1, I2, I3, I5} ?

C4 : Candidate frequent
4-itemsets BEFORE
apriori principle

C4 : Candidate frequent
4-itemsets. Empty set!

Apriori algorithm
terminates

How to apply apriori principle here: for 4-itemset {I1,I2,I3,I5} in C4 list all 3-
itemset subsets: {I1, I2, I3}, {I1, I2, I5}, {I1,I3,I5}, {I2, I3,I5}. See if all these
subsets are frequent i.e. are in the L3 list.
Not all are in L3 list. For example subset {I1, I3, I5} is not in L3 meaning it is not
frequent. Hence {I1,I2,I3,I5} will not be frequent either and must be
pruned/removed. Since C4 becomes empty, apriori algorithm terminates

 Step 5: List the frequent itemsets found

Frequent itemsets found by the apriori algorithm

that have the required minimum support of 2 .

Frequent

1-

Itemsets

Support

count

{I1} 6

{I2} 7

{I3} 6

{I4} 2

{I5} 2

Frequent

2-

Itemsets

Support

count

{I1, I2} 4

{I1, I3} 4

{I1, I5} 2

{I2, I3} 4

{I2, I4} 2

{I2, I5} 2

Frequent

3-

Itemsets

Support

count

{I1, I2, I3} 2

{I1, I2, I5} 2

Frequent itemsets found by apriori alg. = ∪k Lk , k=1,2,3

Result =

 Methods to join itemsets to produce
candidate itemsets (C2, C3, C4 in example)?
› Brute force method

 Generate all k-itemsets choose k items from the set

of items, d. There are
𝑑
𝑘

number of k-itemsets.

Complexity O(d 2d-1). Expensive!

› Fk-1 x F1 method
 Increase k-1-itemsets with 1 item each time.

Complexity O(σ𝒌𝒌 𝑭𝒌−𝟏 𝑭𝟏) . Still expensive

› Fk-1 x Fk-1 method
 Join 2 itemsets only if they have k-2 itemsets in

common

 Time complexity of apriori algorithm?

› Assume input transactions is N, the threshold

is M, number of unique elements is R. Then

time complexity of Apriori algorithm (finding

frequent itemsets) is:

𝑶 𝑴𝑵+

𝒊=𝟏

𝑴

𝑹𝒊 = 𝑶 𝑴𝑵+
𝟏 − 𝑹𝑴

𝟏 − 𝑹

 Until now we have completed step 1 i.e.

finding frequent itemsets

 Need to complete step 2, finding

association rules that satisfy a minimum

confidence threshold, minconf

› How to find such rules?

 How to generate rules

› Generate rules from frequent itemsets

› Two approaches

 Brute force approach

 Confidence-based pruning approach

 Brute force approach procedure

› Assume you have already all frequent

itemsets, S

› For each itemset I in S calculate all

nonempty subsets of I

› For each non-empty subset s of I output the

rule :

s → (I – s)

If confidence of rule is at least minconf i.e.

c(s → (I-s)) >= minconf

 Frequent itemsets from previous example
› Assume minimum confidence = 70% (0.7)

Frequent itemsets found by the apriori algorithm

that have the required minimum support of 2 .

Frequent

1-Itemsets

Support

count

{I1} 6

{I2} 7

{I3} 6

{I4} 2

{I5} 2

Frequent

2-

Itemsets

Support

count

{I1, I2} 4

{I1, I3} 4

{I1, I5} 2

{I2, I3} 4

{I2, I4} 2

{I2, I5} 2

Frequent

3-Itemsets

Support

count

{I1, I2, I3} 2

{I1, I2, I5} 2

Take one frequent itemset

e.g. I = {I1, I2,I5}

1) Calculate all

nonempty subsets of I,

{I1, I2, I5} => {I1}, {I2},

{I5}, {I1, I2}, {I1,I5}, {I2,

I5}

2) For each subset s of I,

devise rule s → (I-s):

1) {I1} → {I2, I5}

2) {I2} → {I1, I5}

3) {I5} → {I1, I2}

4) {I1, I2} → {I5}

5) {I1, I5} → {I2}

6) {I2, I5} → {I1}

 Frequent itemsets from previous example
› Assume minimum confidence = 70% (0.7)

Frequent itemsets found by the apriori algorithm

that have the required minimum support of 2 .

Frequent

1-Itemsets

Support

count

{I1} 6

{I2} 7

{I3} 6

{I4} 2

{I5} 2

Frequent

2-

Itemsets

Support

count

{I1, I2} 4

{I1, I3} 4

{I1, I5} 2

{I2, I3} 4

{I2, I4} 2

{I2, I5} 2

Frequent

3-Itemsets

Support

count

{I1, I2, I3} 2

{I1, I2, I5} 2

3) Calculate confidence

for each rule in step

2). Keep those that

have confidence >=

minconf
1) {I1} → {I2, I5}, c= 2/6

= 0.333 (REJECT!)
2) {I2} → {I1, I5}, c = 2/7

= 0.28 (REJECT!)
3) {I5} → {I1, I2}, c=2/2

= 1 (KEEP!)
4) {I1, I2} → {I5}, c=2/4

= 0.5 (REJECT!)
5) {I1, I5} → {I2}, c=2/2

= 1 (KEEP!)
6) {I2, I5} → {I1}, c=2/2

= 1 (KEEP!)

 Found 3 strong association rules satisfying

threshold of minconf = 0.7

› {I5} → {I1, I2}, confidence = 1 (>= minconf)

› {I1, I5} → {I2}, confidence =1 (>= minconf)

› {I2, I5} → {I1}, confidence =1 (>= minconf)

 Do this process for all frequent itemsets

› I.e. {I1, I2}, {I1, I3}, {I1, I5}, …{I1, I2, I3}

 Output all strong rules (confidence >=

minconf)

 Brute force looks nice and easy, but has

an important problem!

› For large databases (usually the case) it’s

very, very slow

› Complexity of brute force approach?

 If for an itemset I, | I | = k, the number of

candidate association rules derived from I is:

𝟐𝒌 − 𝟐 = 𝑶(𝟐𝒌)

(ignoring X → ø and ø → X)

 For example

– If {A,B,C,D} is a frequent itemset,
candidate rules:

ABC →D, ABD →C, ACD →B, BCD →A,
A →BCD, B →ACD, C →ABD, D →ABC
AB →CD, AC → BD, AD → BC, BC →AD,
BD →AC, CD →AB

 Brute force in general prohibitive

 Can we do better?
 Yes! Using Confidence-based pruning

 In general, confidence has not the anti-

monotone property

› E.g. c(ABC→ D) can be larger or smaller

than c(AB→ D) although AB subset of ABC

 HOWEVER, rules generated from the

same itemset HAVE the anti-monotone

property!

› Example: X = {A,B,C,D}

 c(ABC→ D) c(AB → CD) c(A → BCD)

(WHY?)

 Confidence is anti-monotone w.r.t.

number of items on the RHS of the rule

 Anti-monotone property of confidence

› If an association rule X → S − X has less than

the minimum confidence threshold, then all
rules X’ → S − X’, where X’ ⊆ X will have also

less than the confidence threshold

 Hence, you can “automatically” prune/ignore

them

 Put this idea into play to prune association rules
› We don’t need to check them all as in the brute

force approach

ABCD=>{ }

BCD=>A ACD=>B ABD=>C ABC=>D

BC=>ADBD=>ACCD=>AB AD=>BC AC=>BD AB=>CD

D=>ABC C=>ABD B=>ACD A=>BCD

Pruned

Rules

Lattice of rules

Low

Confidence

Rule

 The idea explained

› Suppose frequent itemset S={1,2,3,4} and

some minconf value

 If rule {1,2,3} → {4} does not have minimum

confidence (i.e. < minconf) then all these rules

won’t have minconf either (i.e. < minconf):

{1,2} → {3,4}

{1,3} → {2,4}

{1,4} → {2,3}
{1} → {2,3,4}

{2} → {1,3,4}
{3} → {1,2,4}

Confidence of all

these rules will be
less than minconf

also as LHS subset
of {1,2,3} → {4}.

 Algorithm for building rules on
confidence-based pruning:
› Generate rules in a level-wise approach

of the lattice:

1. First find rules of the form {…} → {x}
i.e. only one item in the
consequent

2. Prune rules of the form {…} → {x}
that do not have minconf

3. Generate/join rules of the form {…} →
{x, y} i.e. two items in the consequent,
only from rules in step 2 (note: here
confidence-based pruning is applied)

4. Prune rules {…} →{x,y} that do not
have minconf

5. Generate/join rules of the form {…} →
{x,y,z}

6. Continue incrementally that way….

ABCD=>{ }

BCD=>A ACD=>B ABD=>C ABC=>D

BC=>ADBD=>ACCD=>AB AD=>BC AC=>BD AB=>CD

D=>ABC C=>ABD B=>ACD A=>BCD

• Candidate rule is generated by joining/merging
two rules that share the same prefix
in the rule consequent

• join(CD→AB, BD→ AC)
would produce the candidate
rule D →ABC

• Prune rule D→ABC if there exists a
subset (e.g., AD→BC) that does not have
high confidence (minconf)

CD→AB BD→AC

D→ABC

 Take one frequent itemset
found: e.g. {I1, I2, I5},
minconf=0.7

 Generate rules with one item
in the consequent
› {I1, I2} -> {I5}, conf=2/4 = 0.5 <

0.7 => Prune this (confidence-
based pruning) and don’t
generate rules out of this.

› {I1, I5} -> {I2}, conf=2/2 = 1

› {I2, I5} -> {I1}, conf=2/2 = 1

TID Transactions

1 I1, I2, I5

2 I2, I4

3 I2, I3

4 I1, I2, I4

5 I1, I3

6 I2, I3

7 I1, I3

8 I1, I2 ,I3, I5

9 I1, I2, I3

 Join/merge rules with
confidence >= minconf
› Join {I1,I5} →I2 and {I2, I5}
→I1 resulting in I5 → {I1, I2}

› Confidence for I5 →{I1,I2}

 Confidence = 2/2 = 1, ok!

› Rules from {I1, I2, I5}:

 {I1, I5} -> {I2}

 {I2, I5} -> {I1}

 {I5} → {I1, I2}

 Do this for all frequent
itemsets found!

TID Transactions

1 I1, I2, I5

2 I2, I4

3 I2, I3

4 I1, I2, I4

5 I1, I3

6 I2, I3

7 I1, I3

8 I1, I2 ,I3, I5

9 I1, I2, I3

#Includes functions for apriori algorithm

library(arules)

#We will be using the Congressional Voting Records Data Set

#From: http://archive.ics.uci.edu/ml/datasets/Congressional+Voting+Records

#First read the data. Note the dataset HAS NO headers, hence set header to FALSE.

#We well add headers later. NOTE: Change your path to data appropriately!

voteData = read.csv("house-votes-84.data", header=FALSE)

attach(voteData)

#Add headers to data. Makes working with dataset easier

colnames(voteData) <- c("party", "infants", "water-cost", "budgetRes", "PhysicianFr",

"ElSalvador", "ReligSch", "AntiSat", "NicarAid", "Missile", "Immigration",

"CorpCutbacks", "EduSpend", "RightToSue", "Crime", "DFExports", "SAExport")

#Take a quick look at the data. Is everything ok?

head(voteData)

#Now we are ready to execute the apriori algorithm for finding association rules

#See next slide…

#Execute now the apriori algorithm without any parameter.

#This means that no minsup and minconf is provided and

#that all possible rules will be generated

rules <- apriori(voteData)

#Variable rules has all the rules. Can we see the rules now?

#Yes, but this may take a huge amount of time due to the number

#of rules

#CAVEAT LECTOR: DO THIS ONLY IF YOU HAVE NOTHING BETTER TO DO

#YOU HAVE BEEN WARNED.

inspect(rules)

#Lets execute apriori with the following parameters: minimum support 20%,

#minimum confidence=100%, on the LHS we need at least 2 items and on the

#RHS only the party should appear i.e. rules of the form {X,Y}->{republican} or

#{X,Y}->{democrat}

rules <- apriori(voteData, parameter = list(minlen=2, supp=0.2, conf=1), appearance =

list(rhs=c("party=democrat", "party=republican"), default="lhs"))

#Lets see the rules. Should not be that much. You can also see support and

#confidence of each rule.

inspect(rules)

 For very large datasets, there may be

large number of frequent itemsets

› Enumerating, storing them may be very

costly

› Some frequent itemsets are redundant

because they have identical support as

their (frequent) supersets

› Question: Is there a better way to

represent frequent itemsets?

 Yes. Exploit the notion of border in the

itemset lattice and find the boundary

frequent itemsets
null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Itemset lattice: lists

all combinations

by proceeding

level-wise.

We say that e.g.

immediate subset

of {BE} is {B, E}

all items e.g. {A,B,C,D,E,F,…}

empty set {ø}

Frequent
itemsets

Non-frequent
itemsets

Border/Boundary

in itemset lattice

separating set of

frequent and non-

frequent itemsets

Outline of

itemset lattice

 Defining the Border in an itemset lattice
› Border = set of itemsets whose all their

immediate subsets are frequent AND all their
immediate supersets are infrequent (not
frequent).

› Positive Border, B+(S)= Frequent itemsets
whose all their immediate supersets are not
frequent

› Negative Border, B-(S)= Non-frequent
Itemsets (in border) whose all their
immediate subsets are frequent

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE
Border

Infrequent

Itemsets

Above: Negative Border = {AB, ACD, ADE} . E.g. ABD not in

negative border since not all its immediate subsets frequent.

 Maximal frequent itemsets

› An itemset is maximal frequent if none of its

immediate supersets is frequent

 Maximal: no superset has this property (i.e. is

frequent)

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE
Border

Infrequent

Itemsets

Maximal

frequent

Itemsets

Above: Maximal Itemsets = {AD, ACE, BCDE} . E.g. AE not in

maximal itemsets since not all its immediate supersets

infrequent.

Frequent

Itemsets

Frequent 1-
Itemsets

Support
count

{I1} 6

{I2} 7

{I3} 6

{I4} 2

{I5} 2

Frequent 2-
Itemsets

Support
count

{I1, I2} 4

{I1, I3} 4

{I1, I5} 2

{I2, I3} 4

{I2, I4} 2

{I2, I5} 2

Frequent 3-
Itemsets

Support count

{I1, I2, I3} 2

{I1, I2, I5} 2

Assume these frequent itemsets found

Finding Maximal frequent temsets:

Recap: For each frequent itemset check all its immediate supersets to see if

they are frequent (=if at least one immediate superset frequent, the itemset is

NOT MAXIMAL frequent)

{I1} => Immediate supersets = {I1, I2}, {I1,I3}, {I1,I4}, {I1,I5} => {I1, I2} frequent

hence {I1} not maximal

{I2} => Immediate supersets = {I1, I2}, {I2, I3}, {I2, I4}, {I2, I5} => all frequent

hence {I2} not maximal

Frequent 1-
Itemsets

Support
count

{I1} 6

{I2} 7

{I3} 6

{I4} 2

{I5} 2

Frequent 2-
Itemsets

Support
count

{I1, I2} 4

{I1, I3} 4

{I1, I5} 2

{I2, I3} 4

{I2, I4} 2

{I2, I5} 2

Frequent 3-
Itemsets

Support count

{I1, I2, I3} 2

{I1, I2, I5} 2

Assume these frequent itemsets found

Finding Maximal itemsets (continued):

{I3} => Immediate supersets = {I1, I3}, {I2, I3}, {I3,I4}, {I3,I5} => some frequent

hence {I3} not maximal

{I4} => Immediate supersets = {I1, I4}, {I2, I4}, {I3, I4}, {I4, I5} => {I2, I4} frequent

hence {I4} not maximal

{I5} => Immediate supersets = {I1, I5}, {I2, I5}, {I3, I5}, {I4, I5} => {I1, I5}, {I2, I5}

frequent hence {I5} not maximal

Frequent 1-
Itemsets

Support
count

{I1} 6

{I2} 7

{I3} 6

{I4} 2

{I5} 2

Frequent 2-
Itemsets

Support
count

{I1, I2} 4

{I1, I3} 4

{I1, I5} 2

{I2, I3} 4

{I2, I4} 2

{I2, I5} 2

Frequent 3-
Itemsets

Support count

{I1, I2, I3} 2

{I1, I2, I5} 2

Assume these frequent itemsets found

Finding Maximal itemsets (continued):

{I1, I2} => Immediate supersets = {I1, I2, I3}, {I1, I2, I4}, {I1, I2, I5} => some

frequent (e.g. {I1,I2,I3}) hence {I1, I2} not maximal

{I1, I3} => Immediate supersets = {I1, I2, I3}, {I1, I3, I4}, I1, I3, I5} => some

frequent hence {I1, I3} not maximal

{I1, I5} => Immediate supersets = {I1,I2, I5}, {I1, I3, I5}, {I1, I4, I5} => {I1, I2, I5}

frequent hence {I1, I5} not maximal

Frequent 1-
Itemsets

Support
count

{I1} 6

{I2} 7

{I3} 6

{I4} 2

{I5} 2

Frequent 2-
Itemsets

Support
count

{I1, I2} 4

{I1, I3} 4

{I1, I5} 2

{I2, I3} 4

{I2, I4} 2

{I2, I5} 2

Frequent 3-
Itemsets

Support count

{I1, I2, I3} 2

{I1, I2, I5} 2

Assume these frequent itemsets found

Finding Maximal itemsets (continued):

{I1, I2} => Immediate supersets = {I1, I2, I3}, {I1, I2, I4}, {I1, I2, I5} => some

frequent (e.g. {I1,I2,I3}) hence {I1, I2} not maximal

{I1, I3} => Immediate supersets = {I1, I2, I3}, {I1, I3, I4}, {I1, I3, I5} => some

frequent hence {I1, I3} not maximal

{I1, I5} => Immediate supersets = {I1,I2, I5}, {I1, I3, I5}, {I1, I4, I5} => {I1, I2, I5}

frequent hence {I1, I5} not maximal

Frequent 1-
Itemsets

Support
count

{I1} 6

{I2} 7

{I3} 6

{I4} 2

{I5} 2

Frequent 2-
Itemsets

Support
count

{I1, I2} 4

{I1, I3} 4

{I1, I5} 2

{I2, I3} 4

{I2, I4} 2

{I2, I5} 2

Frequent 3-
Itemsets

Support count

{I1, I2, I3} 2

{I1, I2, I5} 2

Assume these frequent itemsets found

Finding Maximal itemsets (continued):

{I2, I3} => not maximal

{I2, I4} => Immediate supersets = {I1, I2, I4}, {I2, I3, I4}, {I2, I3, I5} => all supersets

not frequent hence {I2, I4} MAXIMAL!

{I2, I5} => not maximal

{I1, I2, I3} => MAXIMAL!

{I1, I2, I5} => MAXIMAL!

Frequent 1-
Itemsets

Support
count

{I1} 6

{I2} 7

{I3} 6

{I4} 2

{I5} 2

Frequent 2-
Itemsets

Support
count

{I1, I2} 4

{I1, I3} 4

{I1, I5} 2

{I2, I3} 4

{I2, I4} 2

{I2, I5} 2

Frequent 3-
Itemsets

Support count

{I1, I2, I3} 2

{I1, I2, I5} 2

Assume these frequent itemsets found

Finding Maximal itemsets (continued):

Maximal itemsets = {I2, I4}, {I1, I2, I3}, {I1, I2, I5} Q.E.D

 Important note

› Maximal frequent itemsets = the Positive

border of the lattice tree

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE
Border

Infrequent

Itemsets

Maximal

Itemsets

Above: Positive border = maximal frequent itemsets (orange

nodes).

Frequent

Itemsets

Maximal

Itemsets

 Why define Border, Negative and

Positive border (B-(S), B+(S)) ? Are they

useful?

› Yes! The Positive or the Negative border is

sufficient to fully describe all frequent

itemsets !

 Hence, don’t need to store all frequent

itemsets. Just B-(S) or B+(S)

 Maximal frequent itemsets look very

nice!

› They can summarize nicely frequent

itemsets.

› But, maximal frequent itemsets don’t tell us

anything about the support measure - σ

 This might be needed

 Define closed itemsets

 Closed itemsets

› An itemset X is closed if none of its

immediate supersets has exactly the same

support as the itemset X

› Example

TID Items

1 {A,B}

2 {B,C,D}

3 {A,B,C,D}

4 {A,B,D}

5 {A,B,C,D}

Itemset Support

{A} 4

{B} 5

{C} 3

{D} 4

{A,B} 4

{A,C} 2

{A,D} 3

{B,C} 3

{B,D} 4

{C,D} 3

Itemset Support

{A,B,C} 2

{A,B,D} 3

{A,C,D} 2

{B,C,D} 3

{A,B,C,D} 2

Closed itemsets:

{A}

{B}

{A,B}

{B, C}

{B,D}

{C,D}

{A, B, D}

{A, B, C, D}

 Why are closed itemsets interesting?
› Assume rule {A}→{B} and {A,B} closed

itemset. Moreover, assume s({A,B}) = s(A).

 Then confidence of rule is: conf({A}→{B}) = 1

 In addition, for every itemset X it will hold that
 s(A ∩ {X}) = s({A,B} ∩ X)

 No need to count the frequencies of sets X ∩ {A,B}
from the database!

› If there are lots of rules with confidence 1,
then a significant amount of work can be
saved

 Closed patterns and their frequencies
alone are sufficient representation for all

the frequencies of all frequent patterns

TID Items

1 ABC

2 ABCD

3 BCE

4 ACDE

5 DE

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

124 123 1234 245 345

12 124 24 4 123 2 3 24 34 45

12 2 24 4 4 2 3 4

2 4

Transaction

Ids

Not

supported by

any

transactions

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

124 123 1234 245 345

12 124 24 4 123 2 3 24 34 45

12 2 24 4 4 2 3 4

2 4

Minimum support = 2

Closed = 9

Maximal = 4

Closed

and

maximal

Closed but not

maximal

Frequent

Itemsets

Closed

Frequent

Itemsets

Maximal

Frequent

Itemsets

 Knowing all
maximal itemsets
(and their
frequencies) allows
us to reconstruct the
set of frequent
itemsets

 Knowing all closed
itemsets and their
frequencies allows
us to reconstruct the
set of all frequent
itemsets and their
frequencies

 Are all the rules discovered interesting to the
user?
› How to measure “interestingness” of a rule?

 When is a discovered association rule
interesting (subjective measure)?
› It is unexpected (surprising to the user)

 E.g. {Cigarettes} → {Lighter} not unexpected. But
{Cigarettes} → {Barbie Doll} unexpected

› It is actionable (i.e. user can do something with
it, lead to profitable actions)

› Only the user can judge the interestingness of a
rule (subjective)

 In general, algorithms (like Apriori) tend
to produce many rules
› Many of them not interesting or redundant

› Example of redundant rule:

 Redundant if discovered rules {A,B,C} → {D}
and {A,B} → {D} have same support &
confidence

 The original formulation of the problem
of finding association rules is only based
on support and confidence of rules

 Idea
› Use some form of correlation measure for

rules i.e. given rule A → B measure the
correlation between itemsets A and B

› In essence, find a way of comparing co-
occurrence of itemsets A and B with the
probability of itemsets A and B appearing
together by chance (at random)

 Hence see if a rule is discovered randomly

 Or check if two itemset A, B are statistically
independent

 Assume some students, where some can

swim (S), some can Bike (B), some can

Swim and Bike (S ∩ B) and some can neither

› Q: Are events “know how to swim (S)” and

“know how to bike (B)” independent or not?

 I.e. Does occurrence of event S influence the

occurrence of event B (and vice versa) or not?

› To check for statistical independence between S

and B, check if P(S ∩ B) = P(S) P(B) . If this holds

then event S, B independent. If not, not

independent and hence somehow correlated.

 Assume population of 1000 students
› 600 students know how to swim (S)

› 700 students know how to bike (B)

› 420 students know how to swim and bike (S ∩
B)

 P(S ∩ B) = 420/1000 = 0.42

 P(S) = 600/1000 = 0.6

 P(B) = 700/1000 = 0.7

 P(S)P(B) = 0.6 x 0.7 = 0.42

 Since P(S ∩ B) = P(S) P(B) => S, B Statistical
independence

 Population of 1000 students
› 600 students know how to swim (S)

› 700 students know how to bike (B)

› 500 students know how to swim and bike (S ∩
B)

 P(S ∩ B) = 500/1000 = 0.5

 P(S) P(B) = 0.6 x 0.7 = 0.42

 Since P(S ∩ B) > P(S) P(B) => S,B positively
correlated
 This means that if S increases, so will B. If S decreases,

so will B.

 Population of 1000 students
› 600 students know how to swim (S)

› 700 students know how to bike (B)

› 300 students know how to swim and bike (S ∩
B)

 P(S ∩ B) = 300/1000 = 0.3

 P(S) P(B) = 0.6 x 0.7 = 0.42

 Since P(S ∩ B) < P(S) P(B) => S,B negatively
correlated
 This means that if S increases, B will decrease. If S

decreases, B will increase.

 Build “interestingness”/correlation

measures of rules around statistical

independence

› Many available like χ2, Φ-coefficient etc

› However in Association rule mining,

Lift/Interest is used

 Idea of Lift based on Contingency table
› Given a rule X → Y, information needed to compute

rule interestingness can be obtained from a
contingency table

𝑌 ത𝑌

𝑋 f11 f10 f1+

ത𝑋 f01 f00 f0+

f+1 f+0 N

Contingency table for X → Y f11: support of X and Y

f10: support of X and Y

f01: support of X and Y

f00: support of X and Y

Used to define various

measures support,

confidence, lift, Gini, J-

measure etc.

𝑋: itemset X appears in tuple

𝑌: itemset Y appears in tuple
ത𝑋: itemset X does not appear in tuple
ത𝑌: itemset Y does not appear in tuple

Coffee Coffee

Tea 15 5 20

Tea 75 5 80

90 10 100

Association Rule: Tea → Coffee

Confidence= P(Coffee|Tea) =
𝟏𝟓

𝟐𝟎
= 0.75

but P(Coffee) =
𝟗𝟎

𝟏𝟎𝟎
= 0.9

• Although confidence is high, rule is misleading

• Because: P(Coffee|Tea) = 0.9375

Number of people

that drink coffee and

tea

Number of people

that drink coffee but

not tea

Number of people

that drink coffee

Number of people

that drink tea

Important note:
P(Tea) = support {Tea}
P(Coffee|Tea) = conf {Tea → Coffee}

 Definition of Lift/Interest measure

𝐋𝐢𝐟𝐭 𝐗 → 𝐘 =
𝐏(𝐘|𝐗)

𝐏(𝐘)
=
𝐏(𝐗 ∩ 𝐘)

𝐏 𝐗 𝐏(𝐘)

If Lift = 1, this means P(X ∩ Y) = P(X)P(Y) i.e. statistical
independence

If Lift < 1, this means P(X ∩ Y) < P(X)P(Y) i.e. negative
correlation

If Lift > 1, this means P(X ∩ Y) > P(X)P(Y) i.e. positive
correlation

How to use Lift? Use Lift to find interesting rules. In
particular, rules for which Lift > 1 .

 Interpretation of Lift in a different way
› P(X)P(Y) = probability of appearing X, Y together

by chance/at random (expected co-
occurrence)
 If P(X ∩ Y) = P(X)P(Y) this means that X,Y appear

together as expected (not interesting). Not
interesting.

 If P(X ∩ Y) < P(X)P(Y) this means that X,Y appear
less times together than expected (negative
correlation). Not interesting

 If P(X ∩ Y) > P(X)P(Y) this means that X,Y appear
more often together than expected (positive
correlation)
 This is interesting!

 Interesting rule? Calculate Lift to see:
› Lift = P(Coffee |Tea) / P(Coffee) = 0.75/0.9 =

0.8333.

› Since Lift < 1, Tea, Coffee negatively correlated
hence not interesting rule!

Coffee Coffee

Tea 15 5 20

Tea 75 5 80

90 10 100

Assume rule:
Tea → Coffee

Diapers,Flowers Diapers,Flowers

Gun,Milk 22 23 45

Gun,Milk 61 8 69

83 31 114

Assume more complex rule:
Gun,Milk → Diapers, Flowers

Contingency table would be e.g.:

Calculate Lift of above rule as:

Lift = P(Diaper,Flowers |Gun,Milk) / P(Diaper,Flowers)

 Instead of lift/Interest?

 Sure! Can use χ2

› Use again contingency table

Coffee Coffee

Tea 15 5 20

Tea 75 5 80

90 10 100

Assume rule:
Tea → Coffee

 R. Agrawal, T. Imielinski and A. Swami. Mining
association rules between sets of items in large
databases, Proceedings of the 1993 ACM
SIGMOD international conference on
Management of data, SIGMOD '93. pg: 207-
216)

 J. Han and M. Kamber. Data Mining –
Concepts and Techniques. 2001. Morgan
Kaufmann.

 M. Kantardzic. Data Mining – Concepts,
Models, Methods, and Algorithms. 2003. IEEE.

 M. H. Dunham. Data Mining – Introductory and
Advanced Topics.

 I.H. Witten and E. Frank. Data Mining – Practical
Machine Learning Tools and Techniques with
Java Implementations. 2000. Morgan
Kaufmann.

 M.J. Zaki. Scalable Algorithms for Association Mining, IEEE
Transactions on Knowledge and Data Engineering,
Volume 12, Issue 3 (2000), Page 372-390)

 Heikki Mannila, Hannu Toivonen, and A. Inkeri Verkamo.
Efficient algorithms for discovering association rules. In
Usama M. Fayyad and Ramasamy Uthurusamy, editors,
AAAI Workshop on Knowledge Discovery in Databases
(KDD-94), pages 181--192, Seattle, Washington, 1994. AAAI
Press.

 Jochen Hipp, Ulrich Güntzer, and Gholamreza
Nakhaeizadeh. Algorithms for association rule mining -- A
general survey and comparison. SIGKDD Explorations,
2(2):1--58, 2000.

 J. Han, H. Cheng, D. Xin, and X. Yan. Frequent pattern
mining: Current status and future directions. Data Mining
and Knowledge Discovery, 14(1), 2007

 Julien Blanchard, Fabrice Guillet, Henri Briand,
and Regis Gras. Assessing rule interestingness
with a probabilistic measure of deviation from
equilibrium. In Proceedings of the 11th
international symposium on Applied Stochastic
Models and Data Analysis ASMDA-2005, pages
191--200. ENST, 2005.

 Edith Cohen, Mayur Datar, Shinji Fujiwara,
Aristides Gionis, Piotr Indyk, Rajeev Motwani,
Jeffrey D. Ullman, and Cheng Yang. Finding
interesting associations without support
pruning. IEEE Transactions on Knowledge and
Data Engineering, 13(1):64--78, 2001.

