\ ~ Managing Big Data

Association Analy5|s Basic Concepts and
Algorithms

Manolis Tzagarakis
Assistant Professor
Department of Economics
University of Patras

tzagara@upatras.gr
2610 969845
google:tzagara
Facebook: tzagara
SkypelD: tzagara

Quakelive: DeusEx

Associaftion analysis

What is association analysis?

The task of analyzing so called
“transactions” that indicate the likely
occurrence of an item based on the
occurrences of other items in the
transactions of large datasets

The discovered relationships are
represented in the form of association rules

-

Yeleilelile]aRelgle VAR

N

© Where is it used?

> Biology and bioinformatics

- E.g. Co-occurrence of genes
> Medicine

- Occurrence of symptom
> Geology

- Relationships between oceans @
S

Main idea exemplified

Items

- Bread, Milk
- Bread, Diaper, Beer, Eggs
Milk, Diaper, Beer, Coke

Bread, Milk, Diaper, Beer
Bread, Milk, Diaper, Coke

Market-Basket transactions i.e.
what customers have bought

Transactions i.e. what a
customer bought in the
supermarket

The main task is now to
analyze transactions and
come up with association
rules of the form

{Diaper} — {Beer},
{Milk, Bread} — {Eggs,Coke},
{Beer, Bread} —» {Milk},

These mean that e.g. customers that
bought Diapers also bought Beer,
customer that bought Beer and Bread
also bought Milk.

7

Association analysis — Main
ided

Association rules
Rule suggest that a strong relationship exist
between items of fransaction
Form of rules: Antecedent - Consequent

Nofte: rules implies relationship/co-occurrence
not causality!

Practical issues: Helps in devising sale
stfrategies and discounts

Used heavily by retailers to idenfify

opportunities of cross-selling to cus’ro?us

Association analysis — Main
ided

Practical issues
Let a discovered rule be as follows:
{Bagels,...} > {Potato Chips}
Potato Chips as consequent: what should be
done to boost its sales

Bagels in antecedent. can be used to see which
products will be affected if the store
discontinues selling bagels

Bagels in antfecedent and Potato chips in
consequent: can be used to see what products
should be sold with bagels to promote sell of

potato chips /

Associaftion analysis

What problems exist when trying to find
associations and rules in transactionse

When number of transactions is huge finding
such rules is computational expensive

True even for small/midsized supermarkets
Some rules may be accidental or no rules at

all (i.e. simply false)

One item

Items

R >

—— Bread Diaper, Beer, Eggs
R Milk, Diaper, Beer, Coke
Bread, Milk, Diaper, Beer

Bread, Milk, Diaper, Co

One transaction

ltems
A finite set of atomic elements | = {i,,
. g} €.9. {milk, beer, diapers, bogeﬁ}

Transachon i
is a subset of I, i.e. < | which is observed

Transaction usually have IDs (see column
TID in the table)

Transaction Database
A set of fransactions T={t,, t,, 15,....1.}

lfemset
A collection of one or more items
Example: {Milk, Bread, Diaper}

k-itemset

An itemset that contains k items e.q.
3-itemseft: {Milk, Beer, Bagel}, 2-
itemset: {Diaper, Milk}

Important: itemsets different from
transactions
We say that a transaction t
contains itemset X when X c 1.

ltems Metrics for itemsets

TID
Suoport count of
-~

temset, o
Frequency of
oocumence of ar
Examples of o and s: ifemset
o({Milk, Bread, Diaper}) = 2 SUppor’r of |femsei, S

Note: order of items in itemsets does not TI’CIHSO.CTIOHS. that
matter. E.g. o({Bread, Milk, Diaper}) = 2 contain an irtemset

Basic concepfs

What are association rules?

An association rule is an implication of the
form:

X—>Y,whereX,Ycland XnY =
Examples of valid rules

{Milk, Beer} — {Diapers}

{Beer, Bagel} - {Milk, Diapers, Potato chips}
Examples of invalid rules

{Beer, Bagel} —» {Beer} (violates X nY = &)

-y

Basic concepfs

Metrics for association rules

Support of associationrule X - Y

Fraction of fransactions that contain both X
and Y:

oXNY)
\\

Confidence of associationrule X - Y

Fraction of fransactions in which every time
there is X, there also is Y:

support,s(X - Y) =

_oXNY)

y,

confidence,c(X - Y)

Example of rule metrics

TID Items

Assume rule
{Milk, Diaper} —> Beer

Bread, Milk, Diaper, Beer
Bread, Milk, Diaper, Coke

Support of rule {Milk, Diaper} — Beer:

o({milk, diaper, beer})
7| _

2
s({milk, diaper} — Beer}) = T = 0.4

Confidence of rule {Milk, Diaper} — Beer:

o({milk, diaper, beer}) _ 2

o({milk, diaper}) 3 = 0:67

c({milk, diaper} — Beer}) =

Basic concepfs

Problem statement

Given a set of fransactions T, the goal of
association rule mining is to find all rules
having

support 2 minsup threshold

confidence 2 minconf threshold

Note: minsup, minconf user specified. E.Q.
minsup = 0.6, minconf = 0.9 given as input

-

How to find such rules?¢

One solution: Brute force approach
List all possible association rules

Compute the support and confidence for
each rule

Prune rules that fail the minsup and minconf
thresholds

s brute force a good solution?

No! Computationally prohibitive!
Exponential complextity!

Observations helping in improving the

sifuation Example of Rules:
L {Milk,Diaper} — {Beer} (s=0.4, c=0.67)
{Milk,Beer} — {Diaper} (s=0.4, c=1.0)
{Diaper,Beer} —» {Milk} (s=0.4, c=0.67)
3 Milk, Diaper, Beer, Coke {Beer} - {Milk,Diaper} (s=0.4, c=0.67)
Bread, Milk, Diaper, Beer {Diaper} —» {Milk,Beer} (s=0.4, c=0.5)
Bread, Milk, Diaper, Coke {Milk} — {Diaper,Beer} (s=0.4, c=0.5)

Some observations:

All the above rules are binary partitions of the same itemset:
{Milk, Diaper, Beer}

Rules originating from the same itemset have identical support but
can have different confidence

Thus, we may decouple the support and confidence requirements !

e

Use this to derive a two-step approach for
finding rules:

Frequent ltemset Generation
Generate all itemsets whose support > minsup

Rule Generation

Generate high confidence rules from each
frequent itemset, where each rule is a binary
partitioning of a frequent itemset. Such rules are
called strong rules.

Step 1 i.e. Frequent itemset generation is sfill
computationally expensive

The problem now becomes:

How to solve step 1 i.e. How to find ali
frequent itemsets?

How easy is It given a set of transactions to find
all frequent itemsets?

Items How to find tthi e.g.
{Bread, Beer}is a

TID
Bread, Milk frequent itemset i.e.
Bread, Diaper, Beer, Eggs above a threshold

Milk, Diaper, Beer, Coke (minsup)
CIEEORV TSI ETdN The problem? Look at all the
Bread, Milk, Diaper, Coke combinations that

you/have to check!

Basic concepfs

One way of dealing with finding the frequent Candidate itemset

itemsets is the Brute force approach: List all lattice: All itemsets

possible itemsets, called candidate itemsets generated from 5
items

Finding frequent
itemsets not easy. Sfill
computationally
expensive:

Given d items, there
are 29 possible
candidate itemsets

(mece) (ABDE) (ACDE)

(ABCDE)

Brute-force approach for finding frequent
itemsets:

Each itemset in the latfice is a candidate frequent
ifemset

Count the support of each candidate by scanning
the database

Bread, Milk
Bread, Diaper, Beer, Eggs

Milk, Diaper, Beer, Coke
Bread, Milk, Diaper, Beer

Bread, Milk, Diaper, Coke

Match each transaction against every candidate

Complexity ~ O(NMw), where M = 29 -1 and w the
maximum with of tfransaction => expensive!!l

Given d unique items:
Total number of itemsets = 24
Total number of possible association rules, R:

“n
Q
=
L=
LT
=
hj
]
L
£
=
= <

This means with d=6 items
you can generate R=602
different rules !

e

How to conqguer this complexity in finding
the frequent itemsets ¢
Reduce the number of candidate itemsets (M)
Complete search: M=24
Use pruning techniques to reduce M
Reduce the number of tfransactions (N)
Reduce size of N as the size of itemset increases
Used by DHP and vertical-based mining algorithms
Reduce the number of comparisons (NM)

Use efficient data structures to store the
candidates or fransactions

No need to match every candidate against every
transaction

e

Apriori principle

Reduce number of candidates based on
itemset support

Prune/ignore itemsets with support lower
than a threshold

To do this, use the apriori principle which
allows to “auvtomatically” prune/ignore some
itemsets

-

‘Apriori principle

® Apriori prln iple
> “If an itemset is frequent, then all of its

> Or equivalently “if itemset not frequent, it’s
supersets won't be frequent either”

Apriorl principle illustrated

If CDE frequent,
then also frequent

Coul) will be subsets: DE,

Assume AB — CE,CD,C, D, E.
(e o) /
DE)

frequent c

(cE) |

DI

-

\

\ Candidate

(oE) ™ (CDE) frequent

- \ itemsets

ABC, ABD, AN N\ A <sume CDE
ABE, ABCD ~. (aBCD)
, 1) frequent

\ " 4 A ya '\\177 7// / '\\177 //,,"
N\
(all supersets) Mo
- p ~ / >
Can TS~a___-

prune/ignore
these itemsets.

If AB not

frequent then
also not

frequent:

Apriori principle allows the pruning of an
exponential search space (itemset
lattice) based on support

Hence called support-based pruning

Support-based pruning possible due to

an important property of the support

measvure: the anti-monotone property
The Anfi-monotone property: support of an

itemset never exceeds the support of its
subsets

e

Apriori principle

Monotone/anti-monotone property more
formally defined

Assume | a set of items and J = 2! its
powerset. A measure f is said to be
monotone or upward closed if:

VX, YeEJ(XSY)> F(X) < f(Y)

Measure f is said to be anti-monotone or
downward-closed if

VX,YEJ:(XEY)af(X)zf(Y)/

In general, every measure that has the
anti-monotone property can be
integrated into algorithms and used to
prune the exponential search space of
candidate itemsets

Apriorl algorithm

Apriori algorithm uses the apriori
principle (support-based pruning) to find
frequent itemsets

The Apriori algorithm
Best known algorithms of this category
Very good results
Used today in many application domains

-

Apriori algorithm

@ Apriori psudocode

Assume

C, : Candidate itemsets of size k (i.e. k-itemsets)
L, : Frequent itemsets of size k (k-itemsefts)
minsup: mMinimum support count, given

1. L, = {frequent l-itemsets} /* itemsets with support >= minsup */
2. for (k=1; L, != @; k++) do begin

3. Cy,; = generate candidates from /* gen. kt+l-itemsets */

4. for each transaction t in Database do

5. increment support count for all candidate itemset in C,

found in t

6. L,,, = all candidates in C,,; with at least minsup support
(1.e. ' ' '

orune gnore naldate g

with support

Apriorl algorithm: example

TID

|
2
3
4
5
6
/
8
9

Transactions

11,12, 15

12, 14

12, 13

11,12, 14

1T, 13

12, 13

1T, 13

11,12 ,13, 15

11,12, 13

Database with 9
fransactions

Assume minimum
support required -
minsup = 2 (i.e. 2/9
= 22%)

Applying the Apriori
algorithm to find
frequent itemsets

List of items = {I1, 12,

13, 14, 15)
/

Apriorl algorithm: example

Step 1: find frequent 1-itemsets

ltemset Support count | IEE | Support count

R

Scan candidate 1-
itemsets C, and

prune/remove all
itemsets having
support count <

. minsup (=2). Will
C] . CCH’\dIdC]Te frequenT generate L, L] . Frequen-l- '|_|-|-emse1-s

I-itemsets

L, generated by removing all itemsets in C; having support

count < minsup (=2) /

Apriorl algorithm: example

Step 2: find frequent 2-itemsets generated from L,

ltemsets Support count Itemsets Support count
i, 12} n,12) 4
1, 13} {1, 13} 4
{11, 14} {1, 14} +
‘ {n, 15} ‘ {n, 15} 2
{12, 13} {12, 13} 4
Generate {12, 14} ﬁg;’lgggzﬂf o (2, 14) 2
C2 from L'I {12, 15} remove all {12, 15} 2
itemsets having ’
{13, 14} support count < 8
minsup (=2). This
{13, 15} generates L, 5
{14, 15} 0
C, : Candidate frequent L, : frequent 2-itemsets
2-itfemsets after pruning C,

C, is produced by joining/concatenating itemsets of size 2 from L,
that generate 3-itemsets. Note: Apriori principle sfill not used!

Apriorl algorithm: example

Notes on step 2

How fo join 1-itemsets to produce C, ¢
Joining means simply concatenating 1-itemsets

{11, 12}
ltemset Support count {1, 13}
{11, 14}
) (115
Join/concatenate {|2, |3}
1-itemsets {12, 14}
{12, 15}
{13, 14}
Notes on joining itemsets: {I3, 15}
Order does not matter. L.e. {I1,12} = {I2, 11} {14, 15}
When an item appears 2 tfimes in itemset, it is shows 2_itemsets
up once. l.e. {I1,12,12, I3} = {I1, 12, I3}

Apriorl algorithm: example

Step 3: find frequent 3-itemsets generated from L,

ltemsets Support ltemsets Support
count
{1,12, 13} {1, 12, 13}
‘ {11, 12, 15} {11, 12, 15}
15,1 I
Generate RUEAEALY Apply apriori
C, from L, 12,13, 15) principle and
prune!
{12, 14, 15} Then calculate

support count C; : Candidate frequent

C, : Candidate frequent
3-itemsets BEFORE 3-itemsets AFTER apriori

apriori principle principle

Remove itemsets
with support count
< minsup (=2)

Itemsets Support
count

L5 : frequent 3-itemsets

Apriorl algorithm: example

Notes on step 3

From L, generate all 3-itemsets by joining 2-
itemsets in set L,. But keep only those that
result in 3-itemsets.
Example joining {I1, 12} and {I1, 13} results in {I1,
11, 12, 13} => {I1, 12, 13} , 3-itemset so keep it. Will
be in C,.
Example joining {I1, 15} and {I2, 13} results in {I1,
12, 13, 15} which is not a 3-itemset (it's a 4-
itemset). So won'’t be in C,.

Apply apriori principle on the C; candidate
3-itemsets.

Apriorl algorithm: example

Notes on step 3
How is the apriori principle applied on C52
“If an itemset is frequent then all its subsets must be

frequent also” OR “if a itemset is not frequent, then all its
supersets won't be frequent either’.

Lets examine one 2-itemset in C; e.g. {I1, 12, I3} and lefs
check all its 2-itemset subsets i.e. {I1, 12}, {I1, 13}, {12, I3}. If
all these subsets are not frequent, then neither {I1, 12, I3}
will be frequent (apriori principle)
However all subsets appear in L2, hence are frequent, so {I1, |12,
13} will also be frequent. So {I1, 12, I3} will be not pruned and
should stay in C; .
However, examine now 3-itemset {12, 13, 15} in C; and its
2-itemset subsets {12, 13}, {12, 15}, §I3, 15}. 2-itemsets {12, 13}
and {I2, 15} are in L, and hence frequent. But {I3, 15} is
not in L, meaning its not frequent. Hence §I2, 13, |
be frequent either! So prune/remove this fro

won't

Apriorl algorithm: example

Step 4: find frequent 4-itfemsets generated from L;

Itemsets Support

Itemsets Support
count count
{11, 12, 13, 15} 2 24315} 2
Generate

Apply
C,from L, C, : Candidate frequent apriori C, : Candidate frequent
4-itemsets BEFORE principle to 4-itemsets. Empty set!
apriori principle see if all 3- Apriori algorithm
itemset terminates
subsets
frequent

How to apply apriori principle here: for 4-itemset {I1,12,13,15} in C, list all 3-
itemset subsets: {I1, 12, 13}, {I1, 12, 15}, ill 13,15}, {12, 13,15}. See if qIIAthese
subsets are frequent i.e. are in the L, list.

Not all are in L; list. For example subset {I1, I3, 15} is not in Ly meaning itis noft
frequent. Hence {I1,12,13,15} will not be frequent either and must be
pruned/removed. Since C, becomes empty, apriori algorithm terminates

Step 5: List the frequent itemsets found

Frequent itemsets found by apriori alg. = u, L, k=1,2,3

ReSU" = | Frequent | Support Frequent | Support Frequent | Support
1- count 2- count 3- count
ltemsets ltemsets ltemsets

Frequent itemsets found by the apriori algorithm
that have the required minimum support of 2.

e

Methods o join itemsets to produce
candidafe itemsets (C,, Cj, C,In example)?
Brute force method
Generate dll k-itemsets choose k items from the set
of items, d. There are (d) number of k-itemsets.
Complexity O(d 29-1). I&pensive!
F..; X F; method

Increase k-1-itemsets with 1 item each time.
Complexity O(>; k|F_1| |F41]) . Still expensive

F.., X F,._., method

Join 2 itemsets only if they have k-2 itemsets in
common

P

Time complexity of apriori algorithm®e

Assume input fransactions is N, the threshold
IS M, number of unigue elements is R. Then
time complexity of Apriori algorithm (finding
frequent itemsets) is:

M
ol MN + ZRi -0 MN+1_RM
_ 1—R

i=1

P

Apriorl algorithm

Until now we have completed step 1 i.e.
finding frequent itemsets

Need to complete step 2, finding
association rules that satisty a minimum
confidence threshold, minconf

How to find such rules?¢

-

Apriort algorithm

® How to generate rules
> Generate rules from frequent itemsets

> Two approaches
- Brute force approact
- Confidence-based pruning approach

Brute force approach procedure

Assume you have already all frequent
itemsets, S

For each itemset | in S calculate all
nonempty subsets of |

For each non-empty subset s of | output the
rule :

s > (I -5s)

If confidence of rule is at least minconf i.e.
c(s — (I-s)) >= minconf
s

Frequent itemsets from previous example
Assume minimum confidence = 70% (0.7)

Frequent | Support Frequent | Support Frequent | Support Take one frequent itemset

1-ltemsets count 2- count 3-ltemsets | count e.g. | ={l1,1215}
ltemsets
1,12} 1) Calculate all
{1, 13} nonempty subsets of |,
{1, 15) {1, 12,15} => {11}, {12},
{15}, {11, 12}, {I1,15}, {12,
{12, 13} 15)
{12, 14} 2) For each subset s of |,
{12, 15} devise rule s — (I-s):

1) {11} > {12, 15}

2) {12} - {11, 15}

: . : 3) {15} —» {1, 12}
Frequent itemsets found by the apriori algorithm 4) {1, 12} - {15
that have the required minimum support of 2 . 5) {1, 15} > {12}

})uz, 15} — {11}

Brute force rule generation-

Example

Frequent itemsets from previous example
Assume minimum confidence = 70% (0.7)

Frequent Support Frequent | Support Frequent | Support 3) Calculate confidence
1-ltemsets count 2- count 3-ltemsets count for each rule in sTep

AL 2). Keep those that
have confidence >=

(1,12}

{11, 13} minconf
{1, 15) 1) {11} > {12, 15}, c= 2/6
12,13) = 0.333 (REJECT!)
2) {12} > {11, 15}, c =2/7
{12, 14} = 0.28 (REJECT!)
{12, 15} 3) {15} > {11, 12}, c=2/2
= 1 (KEEP!)
4) {11,12} > {I5}, c=2/4
= 0.5 (REJECT!)

Frequent itemsets found by the apriori algorithm 5) {11, 15} {12}, c=2/2

= 1 (KEEP!
that have the required minimum support of 2 . /6)“{:?}_,{)”}, c=2/2
= 1 (KEEP!)

Brute force rule generation-
Example

Found 3 strong association rules satistying
threshold of minconf = 0.7

{15} > {I1, 12}, confidence = 1 (>= minconf)
{I1, 15} — {12}, confidence =1 (>= minconf)
{12, 15} — {lI1}, confidence =1 (>= minconf)

Do this process for all frequent itemsets
e, {11, 12}, {11, 13}, {11, 15}, ...{11, 12, 13}

Output all strong rules (confidence >=
minconf)

Brute force rule generation

Brute force looks nice and easy, but has
an important problem!

For large databases (usually the case) it's
very, very slow

Complexity of brute force approache

If for anitemset |, | | | =k, the number of
candidate association rules derived from | is:
2k — 2 = 0(2%)

(ignoring X > @ and & — X) /

Brute force rule generation

For example

If {A,B,C,D} is a frequent itemset,
candidafte rules:

ABC —-D, ABD -C, ACD -8B, BCD —A,
A -BCD, B—->ACD, C->ABD, D —>ABC
AB -CD, AC->BD, AD-—->BC, BC->AD,
BD -AC, CD —>AB

Brute force in general prohibitive

Can we do better?

Yes! Using Confidence-based pruning

Confidence-based pruning

In general, confidence has not the anti-
monotone property

E.g. c(ABC — D) can be larger or smaller
than ¢(AB — D) although AB subset of ABC

HOWEVER, rules generated from the
same itemset HAVE the anti-monotone
property!
Example: X = {A,B,C,D}
c(ABC — D) > ¢(AB —» CD) > ¢(A —» BCD)

(WHY?) /

Confidence-based pruning

Confidence is anti-monotone w.r.i.
number of items on the RHS of the rule

Anti-monotone property of confidence

If an association rule X — S = X has less than
the minimum confidence threshold, then all
rules X’ - S = X', where X’ € X will have also
less than the confidence threshold

Hence, you can “automatically” prune/ignore

them

Confidence-based pruning

® Put ’rh|5|deo iIntfo play to prune association rules

> We don't need to check them all as in the brute
force GppI’O\Q\C\:h

Lattice of rules

Low
Confidence
Rule

—— o

I
I
|] I BD=>AC I BC=>AD JN AD=>BC BN AC=>BD M AB=>CD)

\

Confidence-based pruning

The idea explained

Suppose frequent itemset $={1,2,3,4} and

some minconf value

If rule {1,2,3} > {4} does not have minimum

confidence (i.e. < minconf) then all these rules

won’t have minconf either (i.e. < minconf):

{1,2} > {3.4}
{1,3} 2 {2,4}
{1.4} > {2,3}
{1} > {2,3,4}
{2} > {1,3,4}
{3} 2 {1.2,4}

Confidence of all
these rules will be
less than minconf

also as LHS subset
of {1,2,3} 2> {4}.

Confidence-based pruning

® Algorithm for building rules on
confidence-based pruning:

> Generate rules in a level-wise approach
of the lattice:

1. First find rules of the form {...} = {x}
l.e. only one item in the
D @ W & consequent
2. Prune rules of the form {...} 2 {x}
- that do not have minconf

3. Generate/join rules of the form {...} 2>
[co:>B Y 20=>AC N BC=>AD Y AD=>5C T AC=>8D Y AB=>CD) {X%WO items in the consequent,
only from rules in step 2 (note: here
2-based pruning is applied)
-2>{x,y} that do not

confidenc

4. Prunerules{...
have minconf

Generate/join rules

¢ € G ED

Confidence-based pruning

* Candidate rule is generated by joining/merging
two rules that share the same prefix
in the rule consequent

* join(CD>AB, BD -2 A(C)
would produce the candidate
rule D 2ABC

* Prune rule D> ABC if there exists a
subset (e.g., AD—>BC) that does not have

high confidence (minconf) /

Confidence-based pruning —

Example

TID

|
2
3
4
S
6
/
8
9

Transactions

11,12, 15

12, 14

12, 13

11,12, 14

1T, 13

12, 13

11,13

11,12 ,13, 15

11,12, 13

Take one frequent itemset
found: e.g. {l1, 12, 15},
minconf=0.7

Generate rules with one item
in the consequent
{11, 12} -> {I5}, conf=2/4=0.5 <
0.7 => Prune this (confidence-

based pruning) and don't
generate rules out of this.

{11, 15} -> {12}, conf=2/2 = 1
{12, 15} -> {I1}, conf=2/2 =1

.

Confidence-based pruning —

Example

TID

|
2
3
4
5
6
/
8
9

Transactions

11,12, 15

12, 14

12, 13

11,12, 14

1T, 13

12, 13

1T, 13

11,12 ,13, 15

11,12, 13

Join/merge rules with
confidence >= minconf
Join {11,15} ©12 and {12, 15}
211 resulting in 15 =2 {I1, 12}
Confidence for 15 2{I1,12}
Confidence = 2/2 =1, okl
Rules from {I1, 12, I5}:
{11, 15} -> {12}
{12, 15} -> {11}
{15} > {11, 12}
Do this for all frequent
itemsets found!

Apriori algorithm in R

#Includes functions for apriori algorithm

library (arules)

#We will be using the Congressional Voting Records Data Set

#From: http://archive.ics.uci.edu/ml/datasets/Congressional+Voting+Records

#First read the data. Note the dataset HAS NO headers, hence set header to FALSE.
#We well add headers later. NOTE: Chan your path to data appropriately!
voteData = read.csv ("house-votes-84.data", eader=FALSE)

attach (voteData)

#Add headers to data. Makes working with dataset easier

colnames (voteData) <- c("party", "infants", "water-cost", "budgetRes", "PhysicianFr",
"ElSalvador", "ReligSch", "AntiSat", "NicarAid", "Missile "Immigration",
"CorpCutbacks", "EduSpend", "RightToSue", "Crime", "DFExports", "SAExport")

#Take

Apriori algorithm in R

#Execute now the apriori algorithm without any parameter.
#This means that no minsup and minconf is provided and
#that all possible rules will be generated

rules <- apriori (voteData)

#Variable rules has all the rule Can we see the rules now?
#Yes, but this may take a huge amou of time due to the number
#of rules

#CAVEAT LECTOR: DO THIS ONLY IF YOU HAVE THING BETTER TO DO
#YOU HAVE BEEN WARNED.

inspect (rules)

#lLets execute apriori with the following parameters: minimum support 20%,

#minimum confidence=100%, on the LHS we need at least 2 items and on the

#RHS only the party should appear i.e. rules of the form {X,Y}->{republican} or
#{X,Y}->{democrat}

appearanc

For very large datasets, there may be
large number of frequent itemsets

Enumerating, storing them may be very
costly

Some frequent itemsets are redundant
because they have identical support as
their (frequent) supersets

Question: Is there a better way to
represent frequent itemsetse

e

Alternative representations

Yes. Exploit the notion of border in the
itemset lattice and find the boundary
frequent itemsets

ltemset lattice: lists
VAT S VeV VNN — all combinations
level-wise.
SN We say that e.g.
(ABCE) (ABDE) (ACDE) imm ediq)'é subset

y&ﬁs BE
\

Alternative representations

Outline of

itemset lattice

~

Border/Boundary
in itemset lattice
separating set of

frequent itemse

frequent and non-

empty set {@}

~ Frequent

2
s®
.......

Non frequen

Alternative representations

Defining the Border in an itemset lattice

Border = set of itemsets whose all their
immediate subsets are frequent AND all their
immediate supersets are infrequent (not
frequent).

Positive Border, B+(S)= Frequent itemsets
whose all their immediate supersets are not
frequent

Negative Border, B-(S)= Non-frequent
Itemsets (in border) whose all their

immediatfe subsets are frequen’r//

V9
C
O
O
C
O
o8
O
Q
O
O
2
e
O
-
w
<

‘Alternative representations

N

® Maximal frequent itemsets

> An itemset is maximal frequent if none of its
immediate supersets is frequent

- Maximal: no superset has this property (1.e.is
frequent)

Alternative representations

Above: Maximal ltemsets = {AD, ACE, BCDE} . E.g. AE not i |
maximal itemsets since not all its immediate superse
infrequent.

FINnding maximal frequent
itfemsets-Example

Assume these frequent itemsets found

Frequent 1- Support Frequent 2- Support Frequent 3- Support count
ltemsets count ltemsets count ltemsets

1,12
{1, 13}
{11, 15}

{12, 13}
{12, 14)
{12, 15}

Finding Maximal frequent temsets:

Recap: For each frequent itemset check all its immediate supersets to see if
they are frequent (=if at least one immediate superset frequent, the itemset is
NOT MAXIMAL frequent)

{11} => Immediate supersets = {I1, 12}, {I1,13}, {I1,14}, {I1,15} => {I1, 12} frequen’r

hence {I1} not maximal
{12} => Immediate supersets = {I1, 12}, {12, 13}, {I12, 14}, {2, I5}7@'ﬂf/requen’r

hence {12} not maximal

Assume these frequent itemsets found

Frequent 1- Support Frequent 2- Support Frequent 3- Support count
Itemsets count ltemsets count ltemsets

1,12
{11,13}
1,15}

{12, 13}
{12, 14)
{12, 15}

Finding Maximal itemsets (confinued):

{13} => Immediate supersets = {I1, I3}, {12, 13}, {I13,14}, {I3,15} => some frequent
hence {13} not maximal

{14} => Immediate supersets = {I1, 14}, {12, 14}, {I3, 14}, {I4, 15} => {I2, |4} frequent
hence {14} not maximal

{15} => Immediate supersets = {I1, |15}, {12, 15}, {I3, 15}, {I4, 15} => {I1, 15}, {12, 15}
frequent hence {15} not maximal

Assume these frequent itemsets found

Frequent 1- Support Frequent 2- Support Frequent 3- Support count
Itemsets count ltemsets count ltemsets

1,12
{11,13}
1,15}

{12, 13}
{12, 14)
{12, 15}

Finding Maximal itemsets (confinued):

{11, 12} => Immediate supersets = {I1, 12, I3}, {I1, 12, 14}, {I1, 12, |15} => some
frequent (e.g. {I1.12,13}) hence {I1, 12} not maximal

{11, 13} => Immediate supersets = {I1, 12, I3}, {I1, |13, 14}, 11, 13, 15} => some
frequent hence {I1, I3} not maximal

{11, 15} => Immediate supersets = {I1,12, 15}, {I1, 13, 15}, {I1, 14, 15} => {I1, 12, |15}
frequent hence {I1, 15} not maximal

Assume these frequent itemsets found

Frequent 1- Support Frequent 2- Support Frequent 3- Support count
Itemsets count ltemsets count ltemsets

1,12
{11,13}
1,15}

{12, 13}
{12, 14)
{12, 15}

Finding Maximal itemsets (confinued):

{11, 12} => Immediate supersets = {I1, 12, I3}, {I1, 12, 14}, {I1, 12, |15} => some
frequent (e.g. {I1.12,13}) hence {I1, 12} not maximal

{11, 13} => Immediate supersets = {I1, 12, 13}, {I1, 13, 14}, {I1, 13, 15} => some
frequent hence {I1, I3} not maximal

{11, 15} => Immediate supersets = {I1,12, 15}, {I1, 13, 15}, {I1, 14, 15} => {I1, 12, |15}
frequent hence {I1, 15} not maximal

Assume these frequent itemsets found

Frequent 1- Support Frequent 2- Support Frequent 3- Support count
Itemsets count ltemsets count ltemsets

1,12
{11,13}
1,15}

{12, 13}
{12, 14)
{12, 15}

Finding Maximal itemsets (confinued):

{12, 13} => not maximal

{12, 14} => Immediate supersets = {I1, 12, 14}, {12, 13, 14}, {12, 13, 15} => all supersets
not frequent hence {12, 14} MAXIMAL!

{12, 15} => not maximal

{11, 12, 13} => MAXIMAL!

{11, 12, 15} => MAXIMAL! /

Assume these frequent itemsets found

Frequent 1- Support Frequent 2- Support
ltemsets count ltemsets count

1,12
{11,13}
1,15}

{12, 13}
{12, 14)
{12, 15}

Finding Maximal itemsets (confinued):

Frequent 3-
Itemsets

Support count

Maximal itemsets = {12, 14}, {I1, 12, 13}, {I1, 12,15} Q.E.D

»

Alternative representations

® Important note

> Maximal frequent itemsets = the Positive
border of the lattice free

N

maximal frequent ite

Above: Positive border

nodes).

Ve
C
O
O
C
O
)
=
ol
=
©
=
O
S
L2
<

Alternative representations

Why define Border, Negative and
Positive border (B-(S), B+(S)) ¢ Are they
usefule

Yes! The Positive or the Negative border is
sufficient to fully describe all frequent
itemsets !

Hence, don't need to store all frequent

itemsets. Just B-(S) or B+(S)

Alternative representations

Maximal frequent itemsets look very
nice!

They can summarize nicely frequent
itemsets.

But, maximal frequent itemsets don't tell us
anything about the support measure - o

This might be needed

Define closed itemsets

Alternative representations

Closed itemsets

An itemset X is closed if none of its
immediate supersets has exactly the same
support as the itemset X

Example
4
5 Closed lemsets
{A,B} 3
{B,C,D} 4 Ez} B
{A,B,C,D} 4 vl
{A,B,D} 2 8.D)
{A,B,C,D} 3 1.0}
3 {A, B, D}
4 {A, B, C, D}
3

e B

Alternative representations

Why are closed itemsets inferestinge
Assume rule {A}->{B} and {A,B} closed
itemset. Moreover, assume s({A,B}) = s(A).

Then confidence of rule is: conf({A}>{B}) = 1

In addition, for every itemset X it will hold that
s(AN{X})=s({A,B} N X)
No need to count the frequencies of sets X N {A,B}
from the database!

If there are lots of rules with confidence 1,
then a significant amount of work can be

saved ///////

Alternafive representations

@ Closed paﬂerns and their frequencies
alone are sufficient representation for all
the frequencies of all frequent patterns

=

cos

=

S\
D D
=

<>

aA\

?@g'

eloi
AR

A
S A A

X

transactions

0

-

o

k>)
B
@,

3

O

g

) 4

@)

>

maximal

c
O
D
]
L
-
O
O
9
O
O
"N
>
[e
=
X
O
>

2
0
"N
-
L

Maximal vs Closed Frequent
[femserts

Knowing all
maximal itemsets

and their Frequent
ltemsets

requencies) allows
us to reconstruct the
set of frequent Closed
itemsets Frequent

[temsets

Knowing all closed
itemsets and their
frequencies allows Maximal
us to reconstruct the Frequent
set of all frequent ltemsets
itemsets and their
frequencies

Are all the rules discovered interesting to the
user?

How to measure “interestingness” of a rule?

When is a discovered association rule
Interesting (subjective measure)e¢
It is unexpected (surprising o the user)

E.g. {Cigarettes} - {Lighter} not unexpected. But
{Cigarettes} —» {Barbie Doll} unexpected

It is actionable (i.e. user can do something with
it, lead to profitable actions)

Only the user can judge the interestingness of a
rule (subjective)

Rule Inferestingness
MeQsuUres

In general, algorithms (like Apriori) tend
to produce many rules
Many of them not interesting or redundant

Example of redundant rule:
Redundant if discovered rules {A,B,C} —» {D}
and {A,B} —» {D} have same support &
confidence
The original formulation of the problem
of finding association rules is only based

on support and confidence of rules

.

Rule Inferestingness
MeQsuUres

ldea

Use some form of correlation measure for
rules i.e. given rule A —> B measure the
correlation between itemsets A and B

In essence, find a way of compadaring co-
occurrence of itemsets A and B with the
probability of itemsets A and B appearing
together by chance (at random)

Hence see if arule is discovered randomly

Or check if two itemset A, B are statistically

iIndependent ///////

Recall: Statistical
Independence

Assume some students, where some can
swim (S), some can Bike (B), some can
Swim and Bike (S N B) and some can neither

Q: Are events “know how to swim (S)” and
“know how to bike (B)” independent or not?

l.e. Does occurrence of event S influence the
occurrence of event B (and vice versa) or note

To check for statistical independence between S
and B, check if P(S N B) = P(S) P(B) . If this holds
then event §, B independent. If not, not

independent and hence somehowy@cﬁed.

Recall: Statistical

Independence

Assume population of 1000 students
600 students know how 1o swim (S)
/00 students know how to bike (B)
4?0 students know how to swim and bike (S N
B
P(S N B) = 420/1000 = 0.42
P(S) = 600/1000 = 0.6
P(B) = 700/1000 = 0.7
P(S)P(B) = 0.6 x 0.7 = 0.42
Since P(S N B) = P(S) P(B) => S, B Statistical

independence ///////

Recall: Staf
Independe

stical
nce

Population of 1000 students

600 s
/00 sf

uden|
'uden:

's know
'S know

500 students know

B)

P(S N B) = 500/1000 = 0.5

NOW
NOW

NOW

to swim (8)
to bike (B)

to swim and bike (S N

P(S) P(B) =0.6 x 0.7 = 0.42
Since P(S N B) > P(S) P(B) => $,B positively
correlated

This means that if S increases, so will B. If S decreases,

SO

will B.

.

Recall: Staf
Independe

stical
nce

Population of 1000 students

600 s
/00 sf

uden|
'uden:

's know
'S know

300 students know

B)

P(S N B) = 300/1000 = 0.3

NOW
NOW

NOW

to swim (8)
to bike (B)

to swim and bike (S N

P(S) P(B) =0.6 x 0.7 = 0.42
Since P(S N B) < P(S) P(B) => S,B neqgatively
correlated

This means that if S increases, B will decrease. If S

decreases, B will increase.

.

Rule interestingness

® Build “interestingness”/correlation
measures of rules around statistical
Independence
> Many available like x¢, ®-coefficient etfc

> However in Association rule mining,
Lift/Interest is used

ldea of Liftf based on Contingency table

Given arule X = Y, information needed to compute
rule interestingness can be obtained from a
contingency table

Contingency table for X —> Y f..: support of X and
Y Y f,o: SUpport of X and
X f, 1 f,, fq,: SUpport of X and
7 f fo i, foo: SUPpPOrt of X and
1:+1 f+0 N
X: itemset X appears in tuple Used to define various
Y: itemset Y appears in tuple measures support,
X: itemset X does not appear in tuple confidence, lift, Gini, J-

Y: itemset Y does not appear in tuple measure etc.

Number of people

that drink tea
Number of people
Coffee | Coffee that drink coffee
Tea 15 5 20 fea
Tea 75 B 80 Number of people
90 ~\10\‘F\> that drink coffee

X tea
Number of people

Association Rule: Tea — Coffee ;
that drink coffee

Confidence= P(Coffee|Tea) = L -0.75

20 Important note:
90 P(Tea) = support {Tea}
but P(COffee) = — = 0.9 P(Coffee |Tea) = conf {Tea — Coffee}

100
« Although confidence is high, rule is misleading

- Because: P(Coffee|Tea) = 0.9375

»

Lift/Interest

Definition of Lift/Interest measure

P(YX) PXNY)

Lift(X - Y) = P(Y) PXP(Y)

If Lift = 1, this means P(X N Y) = P(X)P(Y) i.e. stafistical
independence

If Lift < 1, this means P(X N Y) < P(X)P(Y) i.e. negative
correlation

If Lift > 1, this means P(X N Y) > P(X)P(Y) i.e. positive
correlation

How to use Lift? Use Lift to find interesting rules. In-
particular, rules for which Lift > 1. /

Lift/Interest

Interpretation of Liff in a different way
P(X)P(Y) = probability of appearing X, Y together
by chance/at random (expected co-
occurrence)

If P(X NY)= P(X)P(Y) this means that X,Y appear
together as expected (not interesting). Not
interesting.

If P(X NY) <P(X)P(Y) this means that X,Y appear
less times together than expected (negative
correlation). Not interesting

If P(X NY)>P(X)P(Y) this means that X,Y appear
more often together than expected (positive

correlation)

This is interesting!

Lift examples

Cottee | Coffee Assume rule:
Ti 15 5
g‘ Tea — Coffee
ea 75 5

B 0 | 100

Interesting rule? Calculate Lift to see:

Lift = P(Coffee |Tea) / P(Coffee) =0.75/0.9 =
0.8333.

Since Lift < 1, Tea, Coffee negatively correlated
hence not interesting rule!

LiIft examples: more complex
rulese

Assume more complex rule:
Gun,Milk — Diapers, Flowers

Contingency table would be e.g.:

Diapers,Flowers | Diapers,Flowers

Gun,Milk 29 23 45
Gun,Milk 61 38 69
83 31 114

Calculate Lift of above rule as:

Lift = P(Diaper,Flowers | Gun,Milk) / PWIowers)

Instead of lift/Intereste

Sure! Can use x2
Use again contingency table

Coffee | Coffee
Tea 15 5 20
Tea 75 5 80
90 10 100

Assume rule:
Tea — Coffee

P

R. Agrawal, T. Imielinski and A. Swami. Mining
association rules between sets of items in large
databases, Proceedings of the 1993 ACM
SIGMOD international Conference on
%%?ogemen’r of data, SIGMOD '93. pg: 207-

J. Han and M. Kamber. Data Mining —
Concepts and Technigues. 2001. Morgan
Kaufmann.

M. Kantardzic. Data Mining — Concepfs,
Models, Methods, and Algorithms. 2003. |EEE.

M. H. Dunham. Data Mining — Introductory and
Advanced Topics.

|.H. Witten and E. Frank. Data Mining — Practical
Machine Learning Tools and Techniques with
Java Implementations. 2000. Morgan
Kaufmann.

M.J. Zaki. Scalable Algorithms for Association Mining, IEEE
Transactions on Knowledge and Data Engineering,
Volume 12, Issue 3 (2000), Page 372-3%0)

Heikki Mannila, Hannu Toivonen, and A. Inkeri Verkamo.

Efficient algorithms for discovering association rules. In

Usama M. Fayyad and Ramasamy Uthurusamy, editors,

AAAI Workshop on Knowledge Discovery in Databases

éKDD—‘M), pages 181--192, Seattle, Washington, 1994. AAAl
ress.

Jochen Hipp, Ulrich GUntzer, and Gholamreza
Nakhaeizadeh. Algorithms for association rule mining -- A
general survey and comparison. SIGKDD Explorations,
2(2):1--58, 2000.

J. Han, H. Cheng, D. Xin, and X. Yan. Frequent pattern
mining: Current status and future directions. Data Mining
and Knowledge Discovery, 14(1), 2007

Julien Blanchard, Fabrice Guillet, Henri Briand,
and Regis Gras. Assessing rule interestingness
with a probabilistic measure of deviation from
equilibrium. In Proceedings of the 11th
Infernational symposium on Applied Stochasftic
Models and Data Analysis AAMDA-2005, pages
191--200. ENST, 2005.

Edith Cohen, Mayur Datar, Shinji Fujiwara,
Aristides Gionis, Piotr Indyk, Rajeev Motwani,
Jeffrey D. Ullman, and Cheng Yang. Finding
INnteresting associations without support
pruning. IEEE Transactions on Knowledge and
Data Engineering, 13(1):64--78, 2001.

W

