

 What is cluster analysis?
› Finding groups/sets of objects such that the

objects in a group/set will be similar (or
related) to one another and different from (or
unrelated to) the objects in other groups

Inter-cluster
distances are
maximized

Intra-cluster
distances are

minimized

Cluster: group/set
of objects/items

Individual
object/item/data

Individual
object/item/data

 What is cluster analysis?
› Clustering is an (somehow) endemic

characteristic of humans

 E.g. even children can make groups out of photos
(buildings, cars, humans, plants etc)

› In clustering, discovered groups (also called
clusters) are potential categories and can be
assigned class labels

› The basic approach is to create such groupings
solely based on the values of attributes of the
data

 Assuming data represented as (a1, a2, a3, … an)

 What is cluster analysis?

› The idea is that items/data/objects in the

same group share some conceptual

similarity

 Hence, can be (somehow) classified

 Why use cluster analysis (aka clustering)
› Understanding

 E.g. Group related documents for browsing

 E.g. group genes and proteins that have similar
functionality

 E.g. group stocks with similar price fluctuations

› Summarization

 Reduce the size of large data sets (a preprocessing
step)

› Data Exploration

 Get some insights into distribution of data

 Understand patterns in data

 Early applications: John Snow (father of

Epidemiology), London, 1854

Tracing Cholera

cases in Soho,

London in 1854.

Inspired

fundamental

changes in the

water and waste

systems of

London

 Application domains (where it’s useful)
› Marketing: finding groups of customers with similar

behavior given a large database of customer data
containing their properties and past buying records

› Insurance: identifying groups of motor insurance
policy holders with a high average claim cost;
identifying frauds

› City-planning: identifying groups of houses
according to their house type, value and
geographical location

› Earthquake studies: clustering observed earthquake
epicenters to identify dangerous zones

› Tax evasion: case selection of taxpayers with high
probability of cheating

› Recommendation Systems: providing personalized
services to users based on the preferences of similar
users

 Classification
› Classification has an existing labeled (i.e. class

known) set as training set. Grouping structure is
learned => Supervised learning

 Supervised = existing classes distinct and already known

› Classification tries to predict the class of (unknown)
data based on the model

 Clustering
› Clustering, classes of data items in the beginning

unknown => Unsupervised learning

 Unsupervised = classes unknown in the beginning

› Clustering attempts to group items/objects into
“natural” classes, when no classes are available

› Clustering automatically decides on the grouping
structure i.e. automatically tries to find the classes

 Simple segmentation

› E.g. dividing students into different registration

groups alphabetically, by last name

 Results of a query

› Groupings are a result of an external

specification

 i.e. not based on attributes of data

 Graph partitioning

› Some mutual relevance and synergy, but areas

are not identical

 Identifying clusters (i.e. groups of

objects) not always easy

How many clusters do you see?
Two Clusters ?

Four Clusters ? Six Clusters ?

Depends on

“resolution” !

 Clusters are in general fuzzy (i.e. with not

clear, well defined boundaries)

› Properly defining clusters depends on the

nature of the problem and the desired

outcome (what the goal of our clustering is)

 A clustering is a set of clusters (groups)

 Different types of clustering, based on

the kind of clustering (at large scale) the
algorithms produce:

› Partitional clustering

› Hierarchical clustering

 Partitional clustering
› A division of items/data objects into non-

overlapping subsets (clusters) such that each
item/data object is in exactly one subset

Original points/data
Partitional clustering

Clusters

Note how each
data item
belongs to
exactly one
cluster only

 Hierarchical clustering

› Creates a set of nested clusters organized as

a hierarchical tree

 Tree visualized as dendrogram

 Examples of Hierarchical Clustering

p4

p1
p3

p2

p4p1 p2 p3
Traditional Hierarchical

Clustering
Traditional Dendrogram

p1

p2

p3 p4

p4

p1
p3

p2

p4p1 p2 p3

Non-traditional Hierarchical
Clustering Non-traditional Dendrogram

p1

p2

p3 p4

Original points/data

Original points/data

 Other types of clustering

› Exclusive versus non-exclusive

 In non-exclusive clustering, points may belong to

multiple clusters

 Can represent multiple classes or ‘border’ points

› Fuzzy vs non-fuzzy

 In fuzzy clustering, a point belongs to every cluster

with some weight between 0 and 1

 Weights must sum to 1

 Probabilistic clustering has similar characteristics

 Other types of clustering (cont.)

› Partial versus complete

 In some cases, we only want to cluster some

(subset) of the data

 Some data into clusters; others not

 Some data maybe noise, outliers etc

› Heterogeneous versus homogeneous

 Cluster of widely different sizes, shapes, and

densities

 We talked about types of clustering.
There are also types of clusters, based on
what kind of clusters the algorithms look
for:
› Well separated

› Center-based

› Contiguous (Nearest neighbor/Transitive)

› Density-based

› Property or Conceptual

› Described by an Objective Function

 Well separated clusters
› A cluster is a set of points such that any point in

a cluster is closer (or more similar) to every other
point in the cluster than to any point not in the
cluster

3 well-separated clusters

 Center-based clusters
› A cluster is a set of objects such that an object in

a cluster is closer (more similar) to the “center” of
a cluster, than to the center of any other cluster

› The center of a cluster is often a centroid, the
average of all the points in the cluster, or a
medoid, the most “representative” point of a
cluster

4 center-based clusters

Center/

medoid

Center/

medoid

 Contiguous (Nearest neighbor/Transitive)

› A cluster is a set of points such that a point in

a cluster is closer (or more similar) to one or
more other points in the cluster than to any

point not in the cluster.

8 contiguous clusters

 Density-based
› A cluster is a dense region of points, which is

separated by low-density regions, from other
regions of high density.

› Used when the clusters are irregular or
intertwined, and when noise and outliers are
present.

6 density-based clusters

 Property or Conceptual

› Finds clusters that share some common

property or represent a particular

concept

 Clusters Defined by an Objective Function
› Finds clusters that minimize or maximize an objective

function.

› How? Enumerate all possible ways of dividing the points into
clusters and evaluate the `goodness' of each potential set
of clusters by using the given objective function. (NP Hard)

› Can have global or local objectives.

 Hierarchical clustering algorithms typically have local
objectives

 Partitional algorithms typically have global objectives

› A variation of the global objective function approach is to
fit the data to a parameterized model.

 Parameters for the model are determined from the data.

 Mixture models assume that the data is a ‘mixture' of a number
of statistical distributions.

 Objective Function: Map the clustering
problem to a different domain and solve a
related problem in that domain
› Proximity matrix defines a weighted graph,

where the nodes are the points being clustered,
and the weighted edges represent the
proximities between points

› Clustering is equivalent to breaking the graph into
connected components, one for each cluster.

› Want to minimize the edge weight between
clusters and maximize the edge weight within
clusters

 Characteristics of input data are very
important
› Type of proximity or density measure

 This is a derived measure, but central to clustering

› Sparseness
 Dictates type of similarity

 Adds to efficiency

› Attribute type
 Dictates type of similarity and similarity function

› Type of Data
 Dictates type of similarity

 Other characteristics, e.g., autocorrelation

› Dimensionality

› Noise and Outliers

› Type of Distribution

 Overview: Basic ingredients needed for cluster
analysis
› Objects/Items/Data (of course)

 In the form of attribute/values: (a1, a2, a3,…an)

 Attributes can be of any type: nominal, ordinal, interval,
ratio

› Distance measure
 To measure similarity/distance and decide when two

items are close together

› Clustering algorithm
 Attempts to minimize distances of items within

groups/clusters and maximize distances between
groups/clusters

› Preprocessing
 Scaling: Normalize/Standardize attributes (e.g. min-max,

z-score) to avoid influence of some attributes on the
distance measure (similar to the issues in k-NN
classification)

 Distance measure
› Must be a metric, i.e. satisfying

› Using the same distance measures seen in
classification problems

 Manhattan

 Euclidean (most common)

 Cosine similarity

 Jaccard coefficient, etc….

),(),(),(4.

),(),(3.

 iff 0),(2.

0),(1.

zydyxdzxd

xydyxd

yxyxd

yxd

 Distance measure (cont.)

› When data has attributes of all types e.g.

(Steak, Blue, 1.78, 67, 0.5)

 Normalize/standardize using min-max, z-score

(like in the case of e.g. K-NN)

 Calculate distance for each attribute with the

proper distance metric

 Use weighted formula to combine effects

 Clustering Algorithms

› K-means and variants

› Hierarchical clustering

› Density-based clustering

 K-means is a partitional, center-based
clustering algorithm
› Partitional = no hierarchies, data point belongs

to exactly one cluster

› Center-based = data points closest to “center”
of cluster

 K-means uses the Euclidean distance as a
distance metric
› Hence, appropriate only for numerical vectors

› Note: Variations of K-means for vectors with
qualitative attributes available e.g. K-modes

 The “K” in “K-means” is the number of
desired clusters
› Given as input to the algorithm by the user e.g.

K=3, K=4 etc

 Basic idea of K-means:
› Choose initially K centers (centroids) at random

and cluster data around these centers

› Iteratively, calculate new centers of clusters
(centers shift in data space!)

› Stop when centers do not shift anymore

 Or shift below a threshold

 K-means algorithm in a nutshell

 Initial centroids are often chosen randomly.
› Clusters produced vary from one run to another.

 The centroid is (typically) the mean of the points in
the cluster.

 “Closeness” is measured by Euclidean distance,
cosine similarity, correlation, etc.

› Most of the time it’s the Euclidean distance

 K-means will converge for common similarity
measures mentioned above.

 Most of the convergence happens in the first few
iterations.

› Often the stopping condition is changed to ‘Until relatively few points change
clusters’

 Complexity is O(n * K * I * d)
› n = number of points, K = number of clusters,

I = number of iterations, d = number of attributes

 How to calculate the various steps?
Euclidean distance

of each point to centroid:

Find new centroid by computing mean of points
belonging to cluster (mi number of items in cluster,

Ci old cluster) :

𝒄𝒊 =
𝟏

𝒎𝒊

𝒙 ∈ 𝑪𝒊

𝒙

Example: if (1,1), (2,3), (6,2) in cluster,

the mean is:

(1+2+6)/3 = 3 /*avg 1st dimension*/

(1+3+2)/3 = 2 /*avg 2nd dimension*/

Hence new mean of cluster is point:

(3,2)

Height Weight

185 72

170 56

168 60

179 68

182 72

Data set (Height, Weight)

 Example: K-means, K=2

 Assume K=2, i.e. cluster data set of
people into 2 (K=2) clusters
› K always given as input

 Step 1: select 2 initial centroids.
› Various ways to do it

 Select 2 (=K) points of the data space
randomly e.g. Height=190, Weight=102 and
Height=169, Weight=59 (note: not in
dataset)

 Select 2 (=K) arbitrary points from the
dataset
 E.g. select first two observation as centroids,

Height=185, Weight=72 and Height=170,
Weight=56

 We use this!

Centroids

Height Width

Cluster 1 185 72

Cluster 2 170 56

 Example: K-means, K=2

 Step 2: Calculate distance of all other
data points from the 2 centroids and
add data to closest cluster
› Use Euclidean distance

Height Weight

185 72

170 56

168 60

179 68

182 72

Data set (Height, Weight)

Centroids

Height Width Data in
cluster

Cluster 1 185 72 (185, 72)
,(179,68),
(182,72)

Cluster 2 170 56 (170,56),
(168,60)

168,60: distance from cluster 1 = sqrt((185-168)^2 + (72-60)^2) = 20.82
168,60: distance from cluster 2 = sqrt((170-168)^2 + (56-60)^2) = 4.47 (PUT in this cluster)
179, 68: distance from cluster 1 = sqrt((185-179)^2 + (72-68)^2) = 7.21 (Put in this cluster)
179, 68: distance from cluster 2 = sqrt((170-179)^2 + (56-68)^2) = 15
182,72: distance from cluster 1 = sqrt((185-182)^2 + (72-72)^2) = 3 (PUT in this cluster)
182,72: distance from cluster 2 = sqrt((170-182)^2 + (56-72)^2) = 20

 Example: K-means, K=2

Height Weight

185 72

170 56

168 60

179 68

182 72

Data set (Height, Weight)

Centroids

Height Width Data in
cluster

Cluster 1 185 72 (185, 72),
(179,68),
(182,72)

Cluster 2 170 56 (170,56),
(168,60)

 Step 3: Calculate new

centroids from data in cluster

Cluster 1: Height : (185+179+182)/3 = 182, Weight: (72+68+72)/3 = 70.6
Cluster 2: Height: (170+168)/2 = 169, Weight: (56+60)/2 = 58

NEW Centroids

Height Width

Cluster 1 182 70.6

Cluster 2 169 58

 Example: K-means, K=2

Height Weight

185 72

170 56

168 60

179 68

182 72

Data set (Height, Weight)

NEW Centroids

Height Width

Cluster 1 182 70.6

Cluster 2 169 58

 Step 4: Have centroids moved

(or has data moved clusters)?

Yes. Hence continue iteration

 Example: K-means, K=2

Height Weight

185 72

170 56

168 60

179 68

182 72

Data set (Height, Weight)

Centroids

Height Width Data in cluster

Cluster 1 182 70.6 (185,72), (179,68),

(182,72)

Cluster 2 169 58 (170,56), (168,60)

 Step 5: : Calculate distance of all
other data points from the 2 new
centroids and add data to closest
cluster

185,72: distance from cluster 1 = sqrt((182-185)^2 + (70.6-72)^2) = 3.31 (PUT in this cluster)
185,72: distance from cluster 2 = sqrt((169-185)^2 + (58-72)^2) = 21.26
170, 56: distance from cluster 1 = sqrt((182-170)^2 + (70.6-56)^2) = 18.89

170, 56: distance from cluster 2 = sqrt((169-170)^2 + (58-56)^2) = 2.23 (PUT in this cluster)
168,60: distance from cluster 1 = sqrt((182-168)^2 + (70.6-60)^2) = 17.56
168,60: distance from cluster 2 = sqrt((169-168)^2 + (58-60)^2) = 2.23 (PUT in this cluster)
179,68: distance from cluster 1 = sqrt((182-179)^2 + (70.6-68)^2) = 3.96 (PUT in this cluster)
179,68: distance from cluster 2 = sqrt((169-179)^2 + (58-68)^2) = 14.14
182,72: distance from cluster 1 = sqrt((182-182)^2 + (70.6-72)^2) = 1.4 (PUT in this cluster)
182,72: distance from cluster 2 = sqrt((169-182)^2 + (58.6-72)^2) = 18.66

Height Weight

185 72

170 56

168 60

179 68

182 72

Data set (Height, Weight)

Centroids

Height Width Data in cluster

Cluster 1 182 70.6 (185,72), (179,68),

(182,72)

Cluster 2 169 58 (170,56), (168,60)

 Step 6: Calculate new

centroids from data in cluster

Cluster 1: Height : (185+179+182)/3 = 182, Weight: (72+68+72)/3 = 70.6
Cluster 2: Height: (170+168)/2 = 169, Weight: (56+60)/2 = 58

NEW Centroids

Height Width

Cluster 1 182 70.6

Cluster 2 169 58

 Example: K-means, K=2

 Example: K-means, K=2

Height Weight

185 72

170 56

168 60

179 68

182 72

Data set (Height, Weight)

NEW Centroids

Height Width

Cluster 1 182 70.6

Cluster 2 169 58

 Step 7: Have centroids moved

(or has data moved clusters)?

NO. Sweet! K-means terminates

The final two clusters of our data set are:

Cluster 1: (185,72), (179,68), (182,72)

Cluster 2: (170,56), (168,60)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 3

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 4

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 6

Centroids

Note how centroids shift/move at each iteration as a result of step 4 of algorithm i.e.
recomputing the centroid of each cluster by calculating the mean of points of cluster.

 Why does K-means work?

› It minimizes an objective function

 Objective function = equation to be optimized

(i.e. minimized, maximized) given some

constraints

› K-means attempts to minimize the Sum of

Squared Error (SSE) i.e. minimize:

𝑺𝑺𝑬 =

𝒊=𝟏

𝒌

𝒙 ∈ 𝑪𝒊

𝒅𝒊𝒔𝒕𝟐(𝒎𝒊, 𝒙)

 SSE

› dist = Euclidean distance of point from

nearest center ci (center of cluster Ci)

𝑺𝑺𝑬 =

𝒊=𝟏

𝒌

𝒙 ∈ 𝑪𝒊

𝒅𝒊𝒔𝒕𝟐(𝒎𝒊, 𝒙)

Looks familiar? Yup, basically

variance across all clusters

› In essence SSE attempts to minimize variance

across all clusters

› Way to define the quality of clustering

 SSE

› We can use SSE as away to evaluate

clustering

 E.g. Given two clusters, we can choose the

one with the smallest error

› Technique to reduce SSE: increase number

of clusters K

 A good clustering with smaller K can have a

lower SSE than a poor clustering with higher K

 Really, no good way to pick appropriate K

› Depends on the level of granularity you look at

the data!

How many clusters do you see

here? 2, 3, 4 or 20?

Depends on the level you look at it

1) Look at it from a very top level? Then

probably you’ll say 2 clusters

2) Look at it from a lower level? Then

probably you’ll say 4 clusters

3) Look at it from an even lower level?

Then probably you’ll say 20 clusters

(each point defines its own)

In terms of a dataset: you can view the

same dataset from very different levels.

Are you interested in big-effects on

your data (top level view) or are you

interested at fine grained effects (lower

levels)?

Reasoning to
chose K

 But there is one empirical way of
somehow estimating a suitable K value
› The “Elbow method”

› “Elbow method”

 Calculate the percentage of variance
explained as a function of the number of
clusters K. Choose a number of clusters K so
that adding another cluster doesn't give much
better modeling (i.e. does not explain a lot
better) of the data.

 But why the name “Elbow method” ???
 Because the graph makes an elbow (see next slides)

 Which metric to use to assess quality of

clustering? In R and Python you may see:

› Within-Sum-of-Squares (WSS): Total distance

of data points from respective cluster

centroid.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 6

For each cluster, add all

distances between data

points and cluster it

belongs to.

Do this for all clusters and

add up the individual

Within cluster distances.

 Which metric to use to assess quality of

clustering? In R and Python you may see:

› Total-Sum-of-Squares (TSS): Total distance of

data points from global mean of data

 for a given dataset this is constant!

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 6

Position of global mean

of data.

TSS calculates the

distances of ALL data

points from the global

mean, and then adds

these distances up.

X

Cluster centroid

 Which metric to use to assess quality of

clustering? In R and Python you may see:

› Between-Sum-of-Squares (TSS): total

weighted distance of various cluster

centroids to the global mean of data

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 6

Position of global mean

of data.

BSS sums up distances

between CENTROIDS and

GLOBAL MEANX

Cluster centroid

 Which metric to use to assess quality of

clustering? In R and Python you may see:

› R2 (R-squared): defined as BSS / TSS

May use this metric to evaluate clustering and apply

“ELBOW” method
NOTE: if this increases, this means better clustering.

Using R-squared, elbow

method will look like this.

Don’t get confused. This is

normal since the ratio

BSS/TSS captures the

variance explained.

Hence, higher is better.

 “Elbow” because when you plot the pct of
variance explained for various K you’ll see
an elbow (“knick”) in the graph. That’s one
ok-ish value for K

Look an Elbow!

Hence 4 is ok-ish

for K.

 In the “Elbow method”, pct of variance
explained not the only measure. You can use
others as well (e.g. Avg dispersion, Within-SS,
BSS, ratio Between SS / Total SS etc)

Here: Avg DispersionElbow. Hence

chose K=2
Elbow hence
chose K=4

Here: Within SS

 How to implement the “Elbow method”?
› Simple: Execute K-means clustering for your

data for all values of K from 2 until some max
that you set (say 200). After each execution of
K-means, store your desired metric (e.g. SSE,
average dispersion, Pct of variance explained
etc)

› Plot these values that you got from each
execution of K-means

› Look for the Elbow is.

› Choose value K corresponding to Elbow.

› Execute K-means again with the choosen K
value

 How to solve the problem of choosing

the proper K value?

› Sorry, can’t. No convincing algorithms exist

for selecting the exactly appropriate value of

K

 “Elbow method” is just one method to

somehow get an approximation of K.

› However, Hierarchical Clustering is a way of

addressing this concern

 In a different way though

 Application of K-means involves pre- and

post-processing steps

› Pre-processing

 Normalize the data

 Eliminate outliers

› Post-processing

 Eliminate small clusters that may represent outliers

 Split ‘loose’ clusters, i.e., clusters with relatively high

SSE

 Merge clusters that are ‘close’ and that have

relatively low SSE

 Can use these steps during the clustering process

 Pros/Cons of K-means?
› Pros

 Simple
 Computationally fast, even for many variables

(than hierarchical clustering)

 Produces in general tighter clusters

› Cons
 Sensitive to initial K values
 Different initial partitions can produce different

clusters

 Does not work well with clusters of different sizes
and densities

 In it’s current form, works only for numerical data
(not nominal or ordinal values)
 Although variations have been proposed e.g. K-modes

 Produces a set of nested clusters

organized as a hierarchical tree

 Can be visualized as a dendrogram

› A tree like diagram that records the

sequences of merges or splits

1 3 2 5 4 6
0

0.05

0.1

0.15

0.2

1

2

3

4

5

6

1

2
3 4

5

Dendrogram Nested clusters

 Strengths of Hierarchical Clustering
› Do not have to assume any particular number

of clusters (in contrast to K-means) i.e. solves
the problem of choosing the appropriate
value for K, for which no good solutions exist.

 Interesting fact: you can create any desired
number of partitional clusters by ‘cutting’ the
dendogram at the proper level

› They may correspond to meaningful
taxonomies

 Example in biological sciences (e.g., animal
kingdom, phylogeny reconstruction, …)

 Strengths of Hierarchical Clustering
(cont)
› More informative than “flat” clusters

(partitional)

Taxonomies
Phylogeni reconstruction

 Types of Hierarchical Clustering
› Based on the way they proceed to create

clusters and clusters of clusters

 Agglomerative (Bottom-up)
 Basic idea

 Start with the points as individual clusters (i.e. each point is
one cluster)

 At each step, merge the closest pair of clusters until only
one cluster (or k clusters) left

 Divisive (Up-Down)
 Basic idea

 Start with one, all-inclusive, big cluster

 At each step, split a cluster until each cluster contains
a point (or there are k clusters)

 General outline of Agglomerative

Clustering algorithm:

1. Compute the proximity/distance matrix

2. Let each data point be a cluster

3. Repeat

4. Merge the two closest clusters

5. Update the proximity/distance matrix

6. Until only a single cluster remains

 Important step is the computation of the
proximity/distance matrix and distance between
clusters
› There are many possible ways

 Proximity/Distance matrix?

› A two dimensional matrix containing the

distances, taken pairwise, between the
elements of a set

p1 p2 p3

p1 0 13.3 3.9

p2 13.3 0 5.6

p3 3.9 5.6 0
Proximity/Distance matrix of

3 points. Here distance

measure e.g. Euclidean

d(p1,p2) = 13.3

d(p3,p2) = 5.6

etc

In general, distance measure can be anything

appropriate: Euclidean, Manhattan, Minkowski etc

 Distance matrix between points is easy. But
Agglomerative clustering requires also
distance between clusters (see steps 4 and
5 of algorithm) – Inter-cluster distance
› How to define inter-cluster distance i.e. distance

between set of points?

› Many different ways

Distance?

Cluster A Cluster B

 Measuring distance between clusters
› Minimum distance/MIN method (or Single Link)

 Distance between clusters is the distance of the two
closest points in the different clusters

Cluster A Cluster B

Distance between the two closest points
in the two clusters defines the distance of
the clusters. Hence the name Single Link

To find these points,
determine distance of all
pairs of points in the two
clusters and get pair with
minimum distance. This
distance will be the
distance of the clusters.

 Measuring distance between clusters

› Maximum distance (or Complete linkage)

 Distance of two clusters is based on the two

most distant points in the different clusters

Distance between the two most distant
points in the two clusters defines the
distance of the clusters.

To find these points,
determine distance of all
pairs of points in the two
clusters and get pair with
maximum distance. This
will be the distance of the
clusters

Cluster A Cluster B

 Measuring distance between clusters

› Group Average

 The average distance between any pair of

points in the two clusters

Cluster A Cluster B

𝒅 𝑨,𝑩 =
σ𝒙∈𝑨,𝒚∈𝑩𝒅(𝒙, 𝒚)

𝑨 𝑩

Formula for Group

Average distance of

clusters A and B

 Measuring distance between clusters

› Centroid distance

 The distance between the centroids of the two

clusters

Cluster A Cluster B

 Measuring distance between clusters

› Other methods driven by an objective

function

 E.g. Ward’s method which aims to minimize

squared error

 Does distance measuring method influence

outcome of hierarchical clustering?

› Yes!

3 6 4 1 2 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

3 6 2 5 4 1
0

0.05

0.1

0.15

0.2

Using MIN (Single Link) Using MAX (Complete Link)

Hierarchical clustering of the same dataset

with different distance measures

 Pro and Cons of cluster distance measures
› MIN

 Pro : Can handle non-elliptical shapes

 Cons: Sensitive to noise and outliers

› MAX

 Pro : Less susceptible to noise and outliers

 Con: Breaks large clusters, Biased towards globular
(=spherical) clusters

› GROUP AVERAGE

 Pro: Less susceptible to noise and outliers

 Con: Biased towards globular clusters

 Demonstrating the idea of Agglomerative
Clustering and how to construct the
dendrogram (note: no numbers yet)
› Assume MIN (Single Link) method for cluster

distance measure

a b

c

d
e

f

g
h i

j
k

l m
n

a b c d e f g h i j k lm n

Resulting Dendrogram
Dataset

D

i

s

t

a

n

c

e

 Initially, each point is its own cluster. Then find two
points who are the closest and merge them. Lets say
a, b closest. Connect them in the dendrogram

a b

c

d
e

f

g
h i

j
k

l m
n

a b c d e f g h i j k lm n

Resulting Dendrogram
Dataset

D

i

s

t

a

n

c

e

Important! The height at

we connect a and b in the

dendrogram corresponds

to the distance between a

and b

 Look for next closest pair of clusters and
connect them in the dendrogram e.g. j and k

a b

c

d
e

f

g
h i

j
k

l m
n

a b c d e f g h i j k lm n

Resulting Dendrogram
Dataset

D

i

s

t

a

n

c

e

 Next closest pair, e.g. c and d

a b

c

d
e

f

g
h i

j
k

l m
n

a b c d e f g h i j k lm n

Resulting Dendrogram
Dataset

D

i

s

t

a

n

c

e

 Next closest pair, e.g. b and d. But these belong to
clusters already hence merge clusters in dendrogram

a b

c

d
e

f

g
h i

j
k

l m
n

a b c d e f g h i j k lm n

Resulting Dendrogram
Dataset

D

i

s

t

a

n

c

e

 Next closest pair, e.g. e and a (merge clusters)

a b

c

d
e

f

g
h i

j
k

l m
n

a b c d e f g h i j k lm n

Resulting Dendrogram
Dataset

D

i

s

t

a

n

c

e

 Next closest pair, e.g. h and i

a b

c

d
e

f

g
h i

j
k

l m
n

a b c d e f g h i j k lm n

Resulting Dendrogram
Dataset

D

i

s

t

a

n

c

e

 Next closest pair, m and n

a b

c

d
e

f

g
h i

j
k

l m
n

a b c d e f g h i j k lm n

Resulting Dendrogram
Dataset

D

i

s

t

a

n

c

e

 Next closest pair, i and j (merge clusters)

a b

c

d
e

f

g
h i

j
k

l m
n

a b c d e f g h i j k lm n

Resulting Dendrogram
Dataset

D

i

s

t

a

n

c

e

 Next closest pair, e.g. f and d (merge clusters)

a b

c

d
e

f

g
h i

j
k

l m
n

a b c d e f g h i j k lm n

Resulting Dendrogram
Dataset

D

i

s

t

a

n

c

e

 Next closest pair, e.g. n and i (merge clusters)

a b

c

d
e

f

g
h i

j
k

l m
n

a b c d e f g h i j k lm n

Resulting Dendrogram
Dataset

D

i

s

t

a

n

c

e

 Next closest pair, e.g. g and a (merge clusters)

a b

c

d
e

f

g
h i

j
k

l m
n

a b c d e f g h i j k lm n

Resulting Dendrogram
Dataset

D

i

s

t

a

n

c

e

 Next closest pair, e.g. f and h

a b

c

d
e

f

g
h i

j
k

l m
n

a b c d e f g h i j k lm n

Resulting Dendrogram

Dataset

D

i

s

t

a

n

c

e

 Next closest pair, l and m

a b

c

d
e

f

g
h i

j
k

l m
n

a b c d e f g h i j k lm n

Resulting Dendrogram

Dataset

D

i

s

t

a

n

c

e

Single “Big” Cluster

created!

Process terminates

 Interesting aspect of Dendrograms
› You can create “flat”/partitional clusters by

choosing a distance threshold in the
dendrogram!

a b c d e f g h i j k lm n

D

i

s

t

a

n

c

e

a b

c

d
e

f

g
h i

j
k

l m
n

Dataset

Arbitrary Chosen

distance threshold

(you do it)

Every “node”/cluster that

comes up to the threshold

line, forms “flat” clusters.

 Concrete example of Agglomerate clustering
algorithm with distance matrix (yes, with
numbers)
› Assume 6 points in a two dimensional space, on

which we execute agglomerative clustering

› Assume MIN (single linkage) method for cluster
proximity

X Y

A 1 1

B 1.5 1.5

C 5 5

D 3 4

E 4 4

F 3 3.5

 Example: Step 1 of algorithm

› Calculate distance matrix for these 6 points

 Initially use Euclidean distance

A B C D E F

A 0 0.71 5.66 3.61 4.24 3.20

B 0.71 0 4.95 2.92 3.54 2.50

C 5.66 4.95 0 2.24 1.41 2.50

D 3.61 2.92 2.24 0 1.00 0.50

E 4.24 3.54 1.41 1.00 0 1.12

F 3.20 2.50 2.50 0.50 1.12 0

Proximity/Distance matrix – INITIAL DISTANCE MATRIX

NOTE: We call points
A,B,C… clusters now
as each point
defines a cluster
(with a single point
in it) and
agglomerative
clustering proceeds
bottom-up.

 Example: Step 2 of algorithm
› All points A,B,C,D,…. are considered clusters

now, with exactly 1 point in each, as each point
defines a cluster and agglomerative clustering
proceeds bottom-up

A B C D E F

A 0 0.71 5.66 3.61 4.24 3.20

B 0.71 0 4.95 2.92 3.54 2.50

C 5.66 4.95 0 2.24 1.41 2.50

D 3.61 2.92 2.24 0 1.00 0.50

E 4.24 3.54 1.41 1.00 0 1.12

F 3.20 2.50 2.50 0.50 1.12 0

Proximity/Distance matrix

Called

“clusters”

now

Total of 6 clusters

 Example: Inside step 3 repeat. Execute step
4 of algorithm
› Find in distance matrix clusters with minimum

distance. Here F,D

A B C D E F

A 0 0.71 5.66 3.61 4.24 3.20

B 0.71 0 4.95 2.92 3.54 2.50

C 5.66 4.95 0 2.24 1.41 2.50

D 3.61 2.92 2.24 0 1.00 0.50

E 4.24 3.54 1.41 1.00 0 1.12

F 3.20 2.50 2.50 0.50 1.12 0

Minimum distance

 Example: Inside step 3. Execute step 4 of
algorithm
› Merge clusters D and F to create one new

cluster (D, F)

A B C (D,F) E

A 0 0.71 5.66 ??? 4.24

B 0.71 0 4.95 ??? 3.54

C 5.66 4.95 0 ??? 1.41

(D,F) ??? ??? ??? 0 ???

E 4.24 3.54 1.41 ??? 0

Unknown distances. Need

to calculate them

 Example: Inside step 3. Execute step 5 of
algorithm
› Update distance matrix with new distances

 Using the MIN method! Look up initial distance matrix

A B C (D,F) E

A 0 0.71 5.66 3.20 4.24

B 0.71 0 4.95 2.50 3.54

C 5.66 4.95 0 2.24 1.41

(D,F) 3.20 2.50 2.24 0 1.00

E 4.24 3.54 1.41 1.00 0

d(DF, A) = min(d(D,A), d(F,A)) = min(3.61, 3.20) = 3.20

d(DF, B) = min(d(D,B), d(F,B)) = min(2.92, 2.50) = 2.50

d(DF, C) = min(d(D,C), d(F,C)) = min(2.24, 2.50) = 2.24

d(E, DF) = min(d(E,D) , d(E,F)) = min(1.00, 1.12) = 1.00

Calculated using MIN
method. Look up distance
of every combination of
points from the initial
distance matrix

 Example: Inside step 3. Execute step 6 of

algorithm

› Do we have one single cluster? No! We have

5. Hence continue

A B C (D,F) E

A 0 0.71 5.66 3.20 4.24

B 0.71 0 4.95 2.50 3.54

C 5.66 4.95 0 2.24 1.41

(D,F) 3.20 2.50 2.24 0 1.00

E 4.24 3.54 1.41 1.00 0

 Example: Inside step 3. Execute step 4 of

algorithm

› Find in distance matrix clusters with minimum

distance. Here A,B

A B C (D,F) E

A 0 0.71 5.66 3.20 4.24

B 0.71 0 4.95 2.50 3.54

C 5.66 4.95 0 2.24 1.41

(D,F) 3.20 2.50 2.24 0 1.00

E 4.24 3.54 1.41 1.00 0

 Example: Inside step 3. Execute step 4 of

algorithm

› Merge clusters A and B to create one new

cluster (A, B)

(A,B) C (D,F) E

(A,B) 0 ??? ??? ???

C ??? 0 2.24 1.41

(D,F) ??? 2.24 0 1.0

E ??? 1.41 1.00 0

 Example: Inside step 3. Execute step 5 of

algorithm

› Update distance matrix with new distances

(A,B) C (D,F) E

(A,B) 0 4.95 2.50 3.54

C 4.95 0 2.24 1.41

(D,F) 2.50 2.24 0 1.0

E 3.54 1.41 1.00 0

d(C, AB) = min(d(C,A), d(C,B)) = min(5.66, 4.95) = 4.95

d(DF, AB) = min(d(D,A), d(D,B), d(FA), d(FB)) = min(3.61, 2.92,

3.20, 2.50) = 2.50

d(DF, C) = min(d(D,C), d(F,C)) = min(2.24, 2.50) = 2.24

d(E, AB) = min(d(E,A) , d(E,B)) = min(4.24, 3.54) = 3.54

Using MIN method. Look
up distance of every
combination of points from
the initial distance matrix

 Example: Inside step 3. Execute step 6 of
algorithm
› Do we have one single cluster? No! We have 4.

Hence continue

(A,B) C (D,F) E

(A,B) 0 4.95 2.50 3.54

C 4.95 0 2.24 1.41

(D,F) 2.50 2.24 0 1.0

E 3.54 1.41 1.00 0

 Example: Inside step 3. Execute step 4 of

algorithm

› Find in distance matrix clusters with minimum

distance. Here (D,F) , E

(A,B) C (D,F) E

(A,B) 0 4.95 2.50 3.54

C 4.95 0 2.24 1.41

(D,F) 2.50 2.24 0 1.0

E 3.54 1.41 1.00 0

 Example: Inside step 3. Execute step 4 of
algorithm
› Merge two cluster (D,F) and E (note: keep

subclusters!)

(A,B) C ((D,F), E)

(A,B) 0 4.95 ???

C 4.95 0 ???

((D,F), E) ??? ??? 0

 Example: Inside step 3. Execute step 5 of
algorithm
› Update distance matrix with new distances using

MIN method

(A,B) C ((D,F), E)

(A,B) 0 4.95 2.50

C 4.95 0 1.41

((D,F), E) 2.50 1.41 0

d(AB, (DF)E) = min(d(A,D), d(A,F), d(A,E), d(B,D), d(B,F), d(B,E)) = min(3.61,

3.20, 4.24, 2.92, 2.50, 3.54) = 2.50

d((DF)E, C) = min(d(D,C), d(F,C), d(E,C)) = min(2.24, 2.50,1.41) = 1.41

 Example: Inside step 3. Execute step 6 of
algorithm
› Do we have one single cluster? No! We have 3.

Hence continue

(A,B) C ((D,F), E)

(A,B) 0 4.95 2.50

C 4.95 0 1.41

((D,F), E) 2.50 1.41 0

 Example: Inside step 3. Execute step 4 of

algorithm

› Find in distance matrix clusters with minimum

distance. Here ((D,F) , E) and C

(A,B) C ((D,F), E)

(A,B) 0 4.95 2.50

C 4.95 0 1.41

((D,F), E) 2.50 1.41 0

 Example: Inside step 3. Execute step 4 of

algorithm

› Merge two cluster ((D,F) , E) and C (note:

keep subclusters!)

(A,B) (((D,F), E), C)

(A,B) 0 ???

(((D,F), E), C) ??? 0

 Example: Inside step 3. Execute step 5 of

algorithm

› Update distance matrix with new distances

using MIN method

(A,B) (((D,F), E), C)

(A,B) 0 2.50

(((D,F), E), C) 2.50 0

d((((DF)E)C), (AB)) = min(d(D,A), d(D,B), d(F,A), d(F,B), d(E,A), d(E,B),

d(C,A),d(C,B)) = min(3.61, 2.92, 3.20, 2.50, 4.24, 3.54, 5.66, 4.95) = 2.50

 Example: Inside step 3. Execute step 6 of
algorithm
› Do we have one single cluster? No! We have 2.

Hence continue

(A,B) (((D,F), E), C)

(A,B) 0 2.50

(((D,F), E), C) 2.50 0

 Example: Inside step 3. Execute step 4 of
algorithm
› Find in distance matrix clusters with minimum

distance. Note: Don’t need to because only 2
clusters left. Simply merge them into a single
one. Algorithm terminates.

((((D,F), E), C), (A,B))

((((D,F), E), C), (A,B)) 0

Important: Distance of clusters (((D,F), E), C) and (A,B) is 2.50 (see previous

distance matrix)

 Example: Based on distance matrix draw now
dendrogram or Nested classes

Result of hierarchical clustering of dataset: ((((D,F), E), C), (A,B))
Note: Parentheses indicate subclusters

Again, height at which clusters

merge in dendrogram is the
clusters’ distance! This line indicates cluster (A,B)

 Time and Space complexity
› O(n2) space complexity since it uses the

proximity matrix

 n = number of points

› O(n3) time complexity in many cases

 n = number of points

 There are n steps; and at each step the size,
n2, proximity matrix must be updated and
searched

 Complexity can be reduced to O(n2 log(n))
time in some situations

 Problems and limitations of Hierarchical
Clustering
› Once a decision is made to combine two

clusters, it cannot be undone

› No objective function is directly minimized

› Different schemes (e.g. different distance
measures) have problems with one or more of
the following:

 Sensitivity to noise and outliers

 Difficulty handling different sized clusters and
convex shapes

 Breaking large clusters

Agglomerate Hierarchical Clustering (file hierarchicalClustering.R)

#

Read the file that contains taxpayers' data.

IMPORTANT! Change path to file if it resides on a different folder on

your machine.

#

taxpayers <- read.csv("taxpayers.csv")

#

Take a quick look at some descriptive statistics of the data to see

if our data looks fine for hierarchical clustering

#

summary(taxpayers)

Something is not ok. Attributes/Variables have different scales. Since

we will be using Euclidean distance in the distance matrix, this may

introduce bias. Hence, try to normalize each value of attribute to an

a scale from 0 to 1.

We will use min-max normalization. It's easy ans works (for most cases).

Define the function norm that will normalize a value using the min-max

method

#

norm <- function(x){ return((x-min(x)) / (max(x)-min(x))) }

continued on next slide…

Part 1/4

#

Pass now each attribute of the dataset through the norm function

#

This will normalize attibute Income

taxpayers[,"Income"] <-norm(taxpayers$Income)

This will normalize attibute Spending

taxpayers[,"Spending"] <-norm(taxpayers$Spending)

This will normalize attibute YearsWorking

taxpayers[,"YearsWorking"] <-norm(taxpayers$YearsWorking)

This will normalize attibute NumChildren

taxpayers[,"NumChildren"] <-norm(taxpayers$NumChildren)

#

#Take a look again. Are we ok?

#

summary(taxpayers)

#

Hey nice! Seems we are ok. Data has been normalized.

#

continued on next slide…

Part 2/4

#

Now, calculate first the initial distance matrix for all data points,

but remove attribute Name, which is the first attribute.

Use the R function dist() to calculate the entire distance matrix based on the Euclidean

distance. To tell R to take into consideration all attributes except

the first one (which is the Name), we simply say taxpayers[-1] meaning "all except first".

#

distanceMatrix <- dist(taxpayers[-1])

#

Distance matrix calculated. We can now proceed to execute

Agglomerate hierarchical clustering using the hclust function

#

#

The hclust() function executes hierarchical clustering.

hclust() takes a shitload of arguments, but the important ones

are two: 1) the distance matrix and 2) the distance measure for clusters

First argument of hclust is the distanceMatrix that has been calculated previously.

If no argument for the distance measure of clusters is given,

the "Complete Linkage" measure is assumed (i.e. the default).

If you want to use a different method, e.g. MIN, provide argument method="single"

See help (?hclust) for more options

taxpayersHClustering <-hclust(distanceMatrix)

continued on next slide…

Part 3/4

#

Hierarchical clustering finished. Plot the dendrogram using the

plot() function. Second parameter labels= tells R to display labels

(in our case the Names) on the horizontal axis.

#

plot(taxpayersHClustering, labels=taxpayers$Name)

#

You can also get more fancy and add rectangles identifying more clearly

the clusters like so

Argument 8 tells rect.hclust() how many clusters to wrap in rectangles or

equivalently at which height of the dendrogram to indicate clusters

rect.hclust(taxpayersHClustering, 8)

Part 4/4

“This is Ripley, last survivor of

the Nostromo, signing off.”

