


 What is cluster analysis?
› Finding groups/sets of objects such that the 

objects in a group/set will be similar (or 
related) to one another and different from (or 
unrelated to) the objects in other groups

Inter-cluster 
distances are 
maximized

Intra-cluster 
distances are 

minimized

Cluster: group/set  
of objects/items

Individual
object/item/data

Individual
object/item/data



 What is cluster analysis?
› Clustering is an (somehow) endemic 

characteristic of humans

 E.g. even children can make groups out of photos 
(buildings, cars, humans, plants etc)

› In clustering, discovered groups (also called 
clusters) are potential categories and can be 
assigned class labels

› The basic approach is to create such groupings 
solely based on the values of attributes of the 
data

 Assuming data represented as (a1, a2, a3, … an)



 What is cluster analysis?

› The idea is that items/data/objects in the 

same group share some conceptual 

similarity

 Hence, can be (somehow) classified



 Why use cluster analysis ( aka clustering)
› Understanding

 E.g. Group related documents for browsing

 E.g. group genes and proteins that have similar 
functionality

 E.g. group stocks with similar price fluctuations

› Summarization

 Reduce the size of large data sets (a preprocessing 
step)

› Data Exploration

 Get some insights into distribution of data

 Understand patterns in data



 Early applications: John Snow (father of 

Epidemiology), London, 1854

Tracing Cholera 

cases in Soho, 

London in 1854.

Inspired 

fundamental 

changes in the 

water and waste 

systems of 

London



 Application domains (where it’s useful)
› Marketing: finding groups of customers with similar 

behavior given a large database of customer data 
containing their properties and past buying records

› Insurance: identifying groups of motor insurance 
policy holders with a high average claim cost; 
identifying frauds

› City-planning: identifying groups of houses 
according to their house type, value and 
geographical location

› Earthquake studies: clustering observed earthquake 
epicenters to identify dangerous zones

› Tax evasion: case selection of taxpayers with high 
probability of cheating

› Recommendation Systems: providing personalized 
services to users based on the preferences of similar 
users



 Classification
› Classification has an existing labeled (i.e. class 

known) set as training set. Grouping structure is 
learned => Supervised learning

 Supervised = existing classes distinct and already known

› Classification tries to predict the class of (unknown) 
data based on the model

 Clustering
› Clustering, classes of data items in the beginning 

unknown => Unsupervised learning

 Unsupervised = classes unknown in the beginning

› Clustering attempts to group items/objects into 
“natural” classes, when no classes are available

› Clustering automatically decides on the grouping 
structure i.e. automatically tries to find the classes



 Simple segmentation

› E.g. dividing students into different registration 

groups alphabetically, by last name

 Results of a query

› Groupings are a result of an external 

specification

 i.e. not based on attributes of data

 Graph partitioning

› Some mutual relevance and synergy, but areas 

are not identical



 Identifying clusters (i.e. groups of 

objects) not always easy

How many clusters do you see?
Two Clusters ?

Four Clusters ? Six Clusters ?

Depends on 

“resolution” !



 Clusters are in general fuzzy (i.e. with not 

clear, well defined boundaries)

› Properly defining clusters depends on the 

nature of the problem and the desired 

outcome (what the goal of our clustering is)



 A clustering is a set of clusters (groups)

 Different types of clustering, based on 

the kind of clustering (at large scale) the 
algorithms produce:

› Partitional clustering

› Hierarchical clustering



 Partitional clustering
› A division of items/data objects into non-

overlapping subsets (clusters) such that each 
item/data object is in exactly one subset

Original points/data
Partitional clustering

Clusters

Note how each 
data item 
belongs to 
exactly one 
cluster only



 Hierarchical clustering

› Creates a set of nested clusters organized as 

a hierarchical tree 

 Tree visualized as dendrogram



 Examples of Hierarchical Clustering
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 Other types of clustering

› Exclusive versus non-exclusive

 In non-exclusive clustering, points may belong to 

multiple clusters

 Can represent multiple classes or ‘border’ points

› Fuzzy vs non-fuzzy

 In fuzzy clustering, a point belongs to every cluster 

with some weight between 0 and 1

 Weights must sum to 1

 Probabilistic clustering has similar characteristics



 Other types of clustering (cont.)

› Partial versus complete

 In some cases, we only want to cluster some 

(subset) of the data

 Some data into clusters; others not

 Some data maybe noise, outliers etc

› Heterogeneous versus homogeneous

 Cluster of widely different sizes, shapes, and 

densities



 We talked about types of clustering. 
There are also types of clusters, based on 
what kind of clusters the algorithms look 
for:
› Well separated

› Center-based

› Contiguous (Nearest neighbor/Transitive)

› Density-based

› Property or Conceptual

› Described by an Objective Function



 Well separated clusters
› A cluster is a set of points such that any point in 

a cluster is closer (or more similar) to every other 
point in the cluster than to any point not in the 
cluster

3 well-separated clusters



 Center-based clusters
› A cluster is a set of objects such that an object in 

a cluster is closer (more similar) to the “center” of 
a cluster, than to the center of any other cluster  

› The center of a cluster is often a centroid, the 
average of all the points in the cluster, or a 
medoid, the most “representative” point of a 
cluster

4 center-based clusters

Center/

medoid

Center/

medoid



 Contiguous (Nearest neighbor/Transitive)

› A cluster is a set of points such that a point in 

a cluster is closer (or more similar) to one or 
more other points in the cluster than to any 

point not in the cluster.

8 contiguous clusters



 Density-based
› A cluster is a dense region of points, which is 

separated by low-density regions, from other 
regions of high density. 

› Used when the clusters are irregular or 
intertwined, and when noise and outliers are 
present.

6 density-based clusters



 Property or Conceptual

› Finds clusters that share some common 

property or represent a particular 

concept



 Clusters Defined by an Objective Function
› Finds clusters that minimize or maximize an objective 

function. 

› How? Enumerate all possible ways of dividing the points into 
clusters and evaluate the `goodness' of each potential set 
of clusters by using the given objective function.  (NP Hard)

› Can have global or local objectives.

 Hierarchical clustering algorithms typically have local 
objectives

 Partitional algorithms typically have global objectives

› A variation of the global objective function approach is to 
fit the data to a parameterized model. 

 Parameters for the model are determined from the data. 

 Mixture models assume that the data is a ‘mixture' of a number 
of statistical distributions.  



 Objective Function: Map the clustering 
problem to a different domain and solve a 
related problem in that domain
› Proximity matrix defines a weighted graph, 

where the nodes are the points being clustered, 
and the weighted edges represent the 
proximities between points

› Clustering is equivalent to breaking the graph into 
connected components, one for each cluster. 

› Want to minimize the edge weight between 
clusters and maximize the edge weight within 
clusters 



 Characteristics of input data are very 
important
› Type of proximity or density measure

 This is a derived measure, but central to clustering

› Sparseness
 Dictates type of similarity

 Adds to efficiency

› Attribute type
 Dictates type of similarity and similarity function

› Type of Data
 Dictates type of similarity

 Other characteristics, e.g., autocorrelation

› Dimensionality

› Noise and Outliers

› Type of Distribution



 Overview: Basic ingredients needed for cluster 
analysis
› Objects/Items/Data (of course)

 In the form of attribute/values: (a1, a2, a3,…an)

 Attributes can be of any type: nominal, ordinal, interval, 
ratio

› Distance measure
 To measure similarity/distance and decide when two 

items are close together

› Clustering algorithm
 Attempts to minimize distances of items within 

groups/clusters and maximize distances between 
groups/clusters 

› Preprocessing
 Scaling: Normalize/Standardize attributes (e.g. min-max, 

z-score) to avoid influence of some attributes on the 
distance measure (similar to the issues in k-NN 
classification)



 Distance measure
› Must be a metric, i.e. satisfying

› Using the same distance measures seen in 
classification problems

 Manhattan

 Euclidean (most common)

 Cosine similarity

 Jaccard coefficient, etc….
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 Distance measure (cont.)

› When data has attributes of all types e.g. 

(Steak, Blue, 1.78, 67, 0.5)

 Normalize/standardize using min-max, z-score 

(like in the case of e.g. K-NN)

 Calculate distance for each attribute with the 

proper distance metric

 Use weighted formula to combine effects



 Clustering Algorithms

› K-means and variants

› Hierarchical clustering

› Density-based clustering





 K-means is a partitional, center-based
clustering algorithm
› Partitional = no hierarchies, data point belongs 

to exactly one cluster

› Center-based = data points closest to “center” 
of cluster

 K-means uses the Euclidean distance as a 
distance metric
› Hence, appropriate only for numerical vectors

› Note: Variations of K-means for vectors with 
qualitative attributes available e.g. K-modes



 The “K” in “K-means” is the number of 
desired clusters
› Given as input to the algorithm by the user e.g. 

K=3, K=4 etc

 Basic idea of K-means:
› Choose initially K centers (centroids)  at random

and cluster data around these centers

› Iteratively, calculate new centers of clusters 
(centers shift in data space!)

› Stop when centers do not shift anymore

 Or shift below a threshold



 K-means algorithm in a nutshell



 Initial centroids are often chosen randomly.
› Clusters produced vary from one run to another.

 The centroid is (typically) the mean of the points in 
the cluster.

 “Closeness” is measured by Euclidean distance, 
cosine similarity, correlation, etc.

› Most of the time it’s the Euclidean distance

 K-means will converge for common similarity 
measures mentioned above.

 Most of the convergence happens in the first few 
iterations.

› Often the stopping condition is changed to ‘Until relatively few points change 
clusters’

 Complexity is O( n * K * I * d )
› n = number of points, K = number of clusters, 

I = number of iterations, d = number of attributes



 How to calculate the various steps?
Euclidean distance

of each point to centroid:

Find new centroid by computing mean of points 
belonging to cluster (mi number of items in cluster, 

Ci old cluster) : 

𝒄𝒊 =
𝟏

𝒎𝒊


𝒙 ∈ 𝑪𝒊

𝒙

Example: if (1,1), (2,3), (6,2) in cluster, 

the mean is:

(1+2+6)/3 = 3 /*avg 1st dimension*/

(1+3+2)/3 = 2 /*avg 2nd dimension*/

Hence new mean of cluster is point: 

(3,2)



Height Weight

185 72

170 56

168 60

179 68

182 72

Data set (Height, Weight)

 Example: K-means, K=2

 Assume K=2, i.e. cluster data set of 
people into 2  (K=2) clusters
› K always given as input

 Step 1: select 2 initial centroids.
› Various ways to do it

 Select 2 (=K) points of the data space 
randomly e.g. Height=190, Weight=102 and 
Height=169, Weight=59 (note: not in 
dataset)

 Select 2 (=K) arbitrary points from the 
dataset
 E.g. select first two observation as centroids, 

Height=185, Weight=72 and Height=170, 
Weight=56

 We use this!

Centroids

Height Width

Cluster 1 185 72

Cluster 2 170 56



 Example: K-means, K=2

 Step 2: Calculate distance of all other 
data points from the 2 centroids and 
add data to closest cluster
› Use Euclidean distance

Height Weight

185 72

170 56

168 60

179 68

182 72

Data set (Height, Weight)

Centroids

Height Width Data in 
cluster

Cluster 1 185 72 (185, 72) 
,(179,68), 
(182,72)

Cluster 2 170 56 (170,56), 
(168,60)

168,60: distance from cluster 1 = sqrt( (185-168)^2 + (72-60)^2) = 20.82
168,60: distance from cluster 2 = sqrt( (170-168)^2 + (56-60)^2) = 4.47 (PUT in this cluster)
179, 68: distance from cluster 1 = sqrt( (185-179)^2 + (72-68)^2) = 7.21 (Put in this cluster)
179, 68: distance from cluster 2 = sqrt( (170-179)^2 + (56-68)^2) = 15
182,72: distance from cluster 1 = sqrt( (185-182)^2 + (72-72)^2) = 3 (PUT in this cluster)
182,72: distance from cluster 2 = sqrt( (170-182)^2 + (56-72)^2) = 20



 Example: K-means, K=2

Height Weight

185 72

170 56

168 60

179 68

182 72

Data set (Height, Weight)

Centroids

Height Width Data in 
cluster

Cluster 1 185 72 (185, 72), 
(179,68), 
(182,72)

Cluster 2 170 56 (170,56), 
(168,60)

 Step 3: Calculate new 

centroids from data in cluster

Cluster 1: Height : (185+179+182)/3 = 182, Weight: (72+68+72)/3 = 70.6  
Cluster 2: Height: (170+168)/2 = 169, Weight: (56+60)/2 = 58

NEW Centroids

Height Width

Cluster 1 182 70.6

Cluster 2 169 58



 Example: K-means, K=2

Height Weight

185 72

170 56

168 60

179 68

182 72

Data set (Height, Weight)

NEW Centroids

Height Width

Cluster 1 182 70.6

Cluster 2 169 58

 Step 4: Have centroids moved 

(or has data moved clusters)? 

Yes. Hence continue iteration



 Example: K-means, K=2

Height Weight

185 72

170 56

168 60

179 68

182 72

Data set (Height, Weight)

Centroids

Height Width Data in cluster

Cluster 1 182 70.6 (185,72), (179,68), 

(182,72)

Cluster 2 169 58 (170,56), (168,60)

 Step 5: : Calculate distance of all 
other data points from the 2 new 
centroids and add data to closest 
cluster

185,72: distance from cluster 1 = sqrt( (182-185)^2 + (70.6-72)^2) = 3.31 (PUT in this cluster)
185,72: distance from cluster 2 = sqrt( (169-185)^2 + (58-72)^2) = 21.26
170, 56: distance from cluster 1 = sqrt( (182-170)^2 + (70.6-56)^2) = 18.89

170, 56: distance from cluster 2 = sqrt( (169-170)^2 + (58-56)^2) = 2.23 (PUT in this cluster)
168,60: distance from cluster 1 = sqrt( (182-168)^2 + (70.6-60)^2) = 17.56
168,60: distance from cluster 2 = sqrt( (169-168)^2 + (58-60)^2) = 2.23 (PUT in this cluster)
179,68: distance from cluster 1 = sqrt( (182-179)^2 + (70.6-68)^2) = 3.96 (PUT in this cluster)
179,68: distance from cluster 2 = sqrt( (169-179)^2 + (58-68)^2) = 14.14
182,72: distance from cluster 1 = sqrt( (182-182)^2 + (70.6-72)^2) = 1.4 (PUT in this cluster)
182,72: distance from cluster 2 = sqrt( (169-182)^2 + (58.6-72)^2) = 18.66



Height Weight

185 72

170 56

168 60

179 68

182 72

Data set (Height, Weight)

Centroids

Height Width Data in cluster

Cluster 1 182 70.6 (185,72), (179,68), 

(182,72)

Cluster 2 169 58 (170,56), (168,60)

 Step 6: Calculate new 

centroids from data in cluster

Cluster 1: Height : (185+179+182)/3 = 182, Weight: (72+68+72)/3 = 70.6  
Cluster 2: Height: (170+168)/2 = 169, Weight: (56+60)/2 = 58

NEW Centroids

Height Width

Cluster 1 182 70.6

Cluster 2 169 58

 Example: K-means, K=2



 Example: K-means, K=2

Height Weight

185 72

170 56

168 60

179 68

182 72

Data set (Height, Weight)

NEW Centroids

Height Width

Cluster 1 182 70.6

Cluster 2 169 58

 Step 7: Have centroids moved 

(or has data moved clusters)? 

NO. Sweet! K-means terminates

The final two clusters of our data set are:

Cluster 1: (185,72), (179,68), (182,72)

Cluster 2: (170,56), (168,60)
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Centroids

Note how centroids shift/move at each iteration as a result of step 4 of algorithm i.e. 
recomputing the centroid of each cluster by calculating the mean of points of cluster.



 Why does K-means work?

› It minimizes an objective function

 Objective function = equation to be optimized 

(i.e. minimized, maximized) given some 

constraints

› K-means attempts to minimize the Sum of 

Squared Error (SSE) i.e. minimize:

𝑺𝑺𝑬 = 

𝒊=𝟏

𝒌



𝒙 ∈ 𝑪𝒊

𝒅𝒊𝒔𝒕𝟐(𝒎𝒊, 𝒙)



 SSE

› dist = Euclidean distance of point from 

nearest center ci (center of cluster Ci)

𝑺𝑺𝑬 = 

𝒊=𝟏

𝒌



𝒙 ∈ 𝑪𝒊

𝒅𝒊𝒔𝒕𝟐(𝒎𝒊, 𝒙)

Looks familiar? Yup, basically 

variance across all clusters

› In essence SSE attempts to minimize variance 

across all clusters

› Way to define the quality of clustering



 SSE

› We can use SSE as away to evaluate 

clustering

 E.g. Given two clusters, we can choose the 

one with the smallest error

› Technique to reduce SSE: increase number 

of clusters K

 A good clustering with smaller K can have a 

lower SSE than a poor clustering with higher K



 Really, no good way to pick appropriate K

› Depends on the level of granularity you look at 

the data!

How many clusters do you see 

here? 2, 3, 4 or 20?

Depends on the level you look at it

1) Look at it from a very top level? Then 

probably you’ll say 2 clusters

2) Look at it from a lower level? Then 

probably you’ll say 4 clusters

3) Look at it from an even lower level? 

Then probably you’ll say 20 clusters 

(each point defines its own)

In terms of a dataset: you can view the 

same dataset from very different levels. 

Are you interested in big-effects on 

your data (top level view) or are you 

interested at fine grained effects (lower 

levels)?

Reasoning to 
chose K



 But there is one empirical  way of 
somehow estimating a suitable K value
› The “Elbow method”

› “Elbow method”

 Calculate the percentage of variance 
explained as a function of the number of 
clusters K. Choose a number of clusters K so 
that adding another cluster doesn't give much 
better modeling (i.e. does not explain a lot 
better) of the data.

 But why the name “Elbow method” ???
 Because the graph makes an elbow (see next slides)



 Which metric to use to assess quality of 

clustering? In R and Python you may see:

› Within-Sum-of-Squares (WSS): Total distance 

of data points from respective cluster 

centroid.
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Iteration 6

For each cluster, add all 

distances between data 

points and cluster it 

belongs to. 

Do this for all clusters and 

add up the individual 

Within cluster distances.



 Which metric to use to assess quality of 

clustering? In R and Python you may see:

› Total-Sum-of-Squares (TSS): Total distance of 

data points from global mean of data 

 for a given dataset this is constant!
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Position of global mean 

of data.

TSS calculates the 

distances of ALL data 

points from the global 

mean, and then adds 

these distances up.

X

Cluster centroid



 Which metric to use to assess quality of 

clustering? In R and Python you may see:

› Between-Sum-of-Squares (TSS): total 

weighted distance of various cluster 

centroids to the global mean of data 
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Position of global mean 

of data.

BSS sums up distances 

between CENTROIDS and 

GLOBAL MEANX

Cluster centroid



 Which metric to use to assess quality of 

clustering? In R and Python you may see:

› R2 (R-squared): defined as BSS / TSS

May use this metric to evaluate clustering and apply 

“ELBOW” method
NOTE: if this increases, this means better clustering. 

Using R-squared, elbow 

method will look like this.

Don’t get confused. This is 

normal since the ratio 

BSS/TSS captures the 

variance explained. 

Hence, higher is better.



 “Elbow” because when you plot the pct of 
variance explained for various K you’ll see 
an elbow (“knick”) in the graph. That’s one 
ok-ish value for K

Look an Elbow! 

Hence 4 is ok-ish

for K.



 In the “Elbow method”, pct of variance 
explained not the only measure. You can use 
others as well (e.g. Avg dispersion, Within-SS, 
BSS, ratio Between SS / Total SS etc)

Here: Avg DispersionElbow. Hence 

chose K=2
Elbow hence 
chose K=4

Here: Within SS



 How to implement the “Elbow method”?
› Simple: Execute K-means clustering for your 

data for all values of K from 2 until some max 
that you set (say 200). After each execution of 
K-means, store your desired metric (e.g. SSE, 
average dispersion, Pct of variance explained 
etc)

› Plot these values that you got from each 
execution of K-means

› Look for the Elbow is.

› Choose value K corresponding to Elbow.

› Execute K-means again with the choosen K 
value



 How to solve the problem of choosing 

the proper K value?

› Sorry, can’t. No convincing algorithms exist 

for selecting the exactly appropriate value of 

K

 “Elbow method” is just one method to 

somehow get an approximation of K.

› However, Hierarchical Clustering is a way of 

addressing this concern

 In a different way though



 Application of K-means involves pre- and 

post-processing steps

› Pre-processing

 Normalize the data

 Eliminate outliers

› Post-processing

 Eliminate small clusters that may represent outliers

 Split ‘loose’ clusters, i.e., clusters with relatively high 

SSE

 Merge clusters that are ‘close’ and that have 

relatively low SSE

 Can use these steps during the clustering process



 Pros/Cons of K-means?
› Pros

 Simple
 Computationally fast, even for many variables 

(than hierarchical clustering)

 Produces in general tighter clusters

› Cons
 Sensitive to initial K values
 Different initial partitions can produce different 

clusters

 Does not work well with clusters of different sizes 
and densities

 In it’s current form, works only for numerical data 
(not nominal or ordinal values)
 Although variations have been proposed e.g. K-modes





 Produces a set of nested clusters 

organized as a hierarchical tree

 Can be visualized as a dendrogram

› A tree like diagram that records the 

sequences of merges or splits
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 Strengths of Hierarchical Clustering
› Do not have to assume any particular number 

of clusters (in contrast to K-means) i.e. solves 
the problem of choosing the appropriate 
value for K, for which no good solutions exist. 

 Interesting fact: you can create any desired 
number of partitional clusters by ‘cutting’ the 
dendogram at the proper level

› They may correspond to meaningful 
taxonomies

 Example in biological sciences (e.g., animal 
kingdom, phylogeny reconstruction, …)



 Strengths of Hierarchical Clustering 
(cont)
› More informative than “flat” clusters 

(partitional)

Taxonomies
Phylogeni reconstruction



 Types of Hierarchical Clustering
› Based on the way they proceed to create 

clusters and clusters of clusters

 Agglomerative (Bottom-up)
 Basic idea

 Start with the points as individual clusters (i.e. each point is 
one cluster)

 At each step, merge the closest pair of clusters until only 
one cluster (or k clusters) left

 Divisive (Up-Down)
 Basic idea

 Start with one, all-inclusive, big cluster

 At each step, split a cluster until each cluster contains 
a point (or there are k clusters)



 General outline of Agglomerative 

Clustering algorithm:

1. Compute the proximity/distance matrix

2. Let each data point be a cluster

3. Repeat

4. Merge the two closest clusters

5. Update the proximity/distance matrix

6. Until only a single cluster remains

 Important step is the computation of the 
proximity/distance matrix and distance between 
clusters
› There are many possible ways



 Proximity/Distance matrix?

› A two dimensional matrix containing the 

distances, taken pairwise, between the 
elements of a set

p1 p2 p3

p1 0 13.3 3.9

p2 13.3 0 5.6

p3 3.9 5.6 0
Proximity/Distance matrix of 

3 points. Here distance 

measure e.g. Euclidean

d(p1,p2) = 13.3

d(p3,p2) = 5.6

etc

In general, distance measure can be anything 

appropriate: Euclidean, Manhattan, Minkowski etc



 Distance matrix between points is easy. But 
Agglomerative clustering requires also 
distance between clusters (see steps 4 and 
5 of algorithm) – Inter-cluster distance
› How to define inter-cluster distance i.e. distance 

between set of points?

› Many different ways

Distance?

Cluster A Cluster B



 Measuring distance between clusters
› Minimum distance/MIN method (or Single Link)

 Distance between clusters is the distance of the two 
closest points in the different clusters 

Cluster A Cluster B

Distance between the two closest points 
in the two clusters defines the distance of 
the clusters. Hence the name Single Link

To find these points, 
determine distance of all 
pairs of points in the two 
clusters and get pair with 
minimum distance. This 
distance will be the 
distance of the clusters.



 Measuring distance between clusters

› Maximum distance (or Complete linkage)

 Distance of two clusters is based on the two 

most distant points in the different clusters

Distance between the two most distant 
points in the two clusters defines the 
distance of the clusters. 

To find these points, 
determine distance of all 
pairs of points in the two 
clusters and get pair with 
maximum distance. This 
will be the distance of the 
clusters

Cluster A Cluster B



 Measuring distance between clusters

› Group Average

 The average distance between any pair of 

points in the two clusters

Cluster A Cluster B

𝒅 𝑨,𝑩 =
σ𝒙∈𝑨,𝒚∈𝑩𝒅(𝒙, 𝒚)

𝑨 𝑩

Formula for Group 

Average distance of 

clusters A and B



 Measuring distance between clusters

› Centroid distance

 The distance between the centroids of the two 

clusters 

 

Cluster A Cluster B



 Measuring distance between clusters

› Other methods driven by an objective 

function

 E.g. Ward’s method which aims to minimize 

squared error



 Does distance measuring method influence 

outcome of hierarchical clustering?

› Yes!
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Using MIN (Single Link) Using MAX (Complete Link)

Hierarchical clustering of the same dataset 

with different distance measures



 Pro and Cons of cluster distance measures
› MIN

 Pro : Can handle non-elliptical shapes

 Cons: Sensitive to noise and outliers

› MAX

 Pro : Less susceptible to noise and outliers

 Con: Breaks large clusters, Biased towards globular 
(=spherical) clusters

› GROUP AVERAGE

 Pro: Less susceptible to noise and outliers

 Con: Biased towards globular clusters



 Demonstrating the idea of Agglomerative 
Clustering and how to construct the 
dendrogram (note: no numbers yet)
› Assume MIN (Single Link) method for cluster 

distance measure
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 Initially, each point is its own cluster. Then find two 
points who are the closest and merge them. Lets say 
a, b closest. Connect them in the dendrogram
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Important! The height at 

we connect a and b in the 

dendrogram corresponds 

to the distance between a 

and b



 Look for next closest pair of clusters and 
connect them in the dendrogram e.g. j and k
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 Next closest pair, e.g. c and d
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 Next closest pair, e.g. b and d. But these belong to 
clusters already hence merge clusters in dendrogram
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 Next closest pair, e.g. e and a (merge clusters)
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 Next closest pair, e.g. h and i
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 Next closest pair, m and n
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 Next closest pair, i and j (merge clusters)
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 Next closest pair, e.g. f and d (merge clusters)
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 Next closest pair, e.g. n and i (merge clusters)
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 Next closest pair, e.g. g and a (merge clusters)
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 Next closest pair, e.g. f and h
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 Next closest pair, l and m
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Single “Big” Cluster 

created!

Process terminates 



 Interesting aspect of Dendrograms
› You can create “flat”/partitional clusters by 

choosing a distance threshold in the 
dendrogram!

a b c d e f g h i j k lm n

D

i

s

t

a

n

c

e

a b

c

d
e

f

g
h i

j
k

l m
n

Dataset

Arbitrary Chosen 

distance threshold 

(you do it)

Every “node”/cluster that 

comes up to the threshold 

line, forms “flat” clusters.



 Concrete example of Agglomerate clustering 
algorithm with distance matrix (yes, with 
numbers)
› Assume 6 points in a two dimensional space, on 

which we execute agglomerative clustering

› Assume MIN (single linkage) method for cluster 
proximity

X Y

A 1 1

B 1.5 1.5

C 5 5

D 3 4

E 4 4

F 3 3.5



 Example: Step 1 of algorithm

› Calculate distance matrix for these 6 points

 Initially use Euclidean distance

A B C D E F

A 0 0.71 5.66 3.61 4.24 3.20

B 0.71 0 4.95 2.92 3.54 2.50

C 5.66 4.95 0 2.24 1.41 2.50

D 3.61 2.92 2.24 0 1.00 0.50

E 4.24 3.54 1.41 1.00 0 1.12

F 3.20 2.50 2.50 0.50 1.12 0

Proximity/Distance matrix – INITIAL DISTANCE MATRIX

NOTE: We call points 
A,B,C… clusters now 
as each point 
defines a cluster 
(with a single point 
in it) and 
agglomerative 
clustering proceeds 
bottom-up.



 Example: Step 2 of algorithm
› All points A,B,C,D,…. are considered clusters 

now, with exactly 1 point in each, as each point 
defines a cluster and agglomerative clustering 
proceeds bottom-up

A B C D E F

A 0 0.71 5.66 3.61 4.24 3.20

B 0.71 0 4.95 2.92 3.54 2.50

C 5.66 4.95 0 2.24 1.41 2.50

D 3.61 2.92 2.24 0 1.00 0.50

E 4.24 3.54 1.41 1.00 0 1.12

F 3.20 2.50 2.50 0.50 1.12 0

Proximity/Distance matrix

Called 

“clusters” 

now

Total of 6 clusters



 Example: Inside step 3 repeat. Execute step 
4 of algorithm
› Find in distance matrix clusters with minimum 

distance. Here F,D

A B C D E F

A 0 0.71 5.66 3.61 4.24 3.20

B 0.71 0 4.95 2.92 3.54 2.50

C 5.66 4.95 0 2.24 1.41 2.50

D 3.61 2.92 2.24 0 1.00 0.50

E 4.24 3.54 1.41 1.00 0 1.12

F 3.20 2.50 2.50 0.50 1.12 0

Minimum distance



 Example: Inside step 3. Execute step 4 of 
algorithm
› Merge clusters D and F to create one new 

cluster (D, F)

A B C (D,F) E

A 0 0.71 5.66 ??? 4.24

B 0.71 0 4.95 ??? 3.54

C 5.66 4.95 0 ??? 1.41

(D,F) ??? ??? ??? 0 ???

E 4.24 3.54 1.41 ??? 0

Unknown distances. Need 

to calculate them



 Example: Inside step 3. Execute step 5 of 
algorithm
› Update distance matrix with new distances

 Using the MIN method! Look up initial distance matrix

A B C (D,F) E

A 0 0.71 5.66 3.20 4.24

B 0.71 0 4.95 2.50 3.54

C 5.66 4.95 0 2.24 1.41

(D,F) 3.20 2.50 2.24 0 1.00

E 4.24 3.54 1.41 1.00 0

d( DF, A ) = min( d(D,A), d(F,A) ) = min(3.61, 3.20) = 3.20

d( DF, B) = min( d(D,B), d(F,B) ) = min( 2.92, 2.50 ) = 2.50

d( DF, C) = min( d(D,C), d(F,C) ) = min(2.24, 2.50) = 2.24

d( E, DF ) = min( d(E,D) , d(E,F) ) = min(1.00, 1.12) = 1.00 

Calculated using MIN 
method. Look up distance 
of every combination of 
points from the initial 
distance matrix



 Example: Inside step 3. Execute step 6 of 

algorithm

› Do we have one single cluster? No! We have 

5. Hence continue

A B C (D,F) E

A 0 0.71 5.66 3.20 4.24

B 0.71 0 4.95 2.50 3.54

C 5.66 4.95 0 2.24 1.41

(D,F) 3.20 2.50 2.24 0 1.00

E 4.24 3.54 1.41 1.00 0



 Example: Inside step 3. Execute step 4 of 

algorithm

› Find in distance matrix clusters with minimum 

distance. Here A,B

A B C (D,F) E

A 0 0.71 5.66 3.20 4.24

B 0.71 0 4.95 2.50 3.54

C 5.66 4.95 0 2.24 1.41

(D,F) 3.20 2.50 2.24 0 1.00

E 4.24 3.54 1.41 1.00 0



 Example: Inside step 3. Execute step 4 of 

algorithm

› Merge clusters A and B to create one new 

cluster (A, B)

(A,B) C (D,F) E

(A,B) 0 ??? ??? ???

C ??? 0 2.24 1.41

(D,F) ??? 2.24 0 1.0

E ??? 1.41 1.00 0



 Example: Inside step 3. Execute step 5 of 

algorithm

› Update distance matrix with new distances

(A,B) C (D,F) E

(A,B) 0 4.95 2.50 3.54

C 4.95 0 2.24 1.41

(D,F) 2.50 2.24 0 1.0

E 3.54 1.41 1.00 0

d( C, AB ) = min( d(C,A), d(C,B) ) = min(5.66, 4.95) = 4.95

d( DF, AB) = min( d(D,A), d(D,B), d(FA), d(FB) ) = min( 3.61, 2.92, 

3.20, 2.50) = 2.50

d( DF, C) = min( d(D,C), d(F,C) ) = min(2.24, 2.50) = 2.24

d( E, AB) = min( d(E,A) , d(E,B) ) = min(4.24, 3.54) = 3.54 

Using MIN method. Look 
up distance of every 
combination of points from 
the initial distance matrix



 Example: Inside step 3. Execute step 6 of 
algorithm
› Do we have one single cluster? No! We have 4. 

Hence continue

(A,B) C (D,F) E

(A,B) 0 4.95 2.50 3.54

C 4.95 0 2.24 1.41

(D,F) 2.50 2.24 0 1.0

E 3.54 1.41 1.00 0



 Example: Inside step 3. Execute step 4 of 

algorithm

› Find in distance matrix clusters with minimum 

distance. Here (D,F) , E

(A,B) C (D,F) E

(A,B) 0 4.95 2.50 3.54

C 4.95 0 2.24 1.41

(D,F) 2.50 2.24 0 1.0

E 3.54 1.41 1.00 0



 Example: Inside step 3. Execute step 4 of 
algorithm
› Merge two cluster (D,F) and E (note: keep 

subclusters!)

(A,B) C ( (D,F), E )

(A,B) 0 4.95 ???

C 4.95 0 ???

( (D,F), E ) ??? ??? 0



 Example: Inside step 3. Execute step 5 of 
algorithm
› Update distance matrix with new distances using 

MIN method

(A,B) C ( (D,F), E )

(A,B) 0 4.95 2.50

C 4.95 0 1.41

( (D,F), E ) 2.50 1.41 0

d( AB, (DF)E ) = min( d(A,D), d(A,F), d(A,E), d(B,D), d(B,F), d(B,E) ) = min( 3.61, 

3.20, 4.24, 2.92, 2.50, 3.54) = 2.50

d( (DF)E, C) = min( d(D,C), d(F,C), d(E,C) ) = min(2.24, 2.50,1.41) = 1.41



 Example: Inside step 3. Execute step 6 of 
algorithm
› Do we have one single cluster? No! We have 3. 

Hence continue

(A,B) C ( (D,F), E )

(A,B) 0 4.95 2.50

C 4.95 0 1.41

( (D,F), E ) 2.50 1.41 0



 Example: Inside step 3. Execute step 4 of 

algorithm

› Find in distance matrix clusters with minimum 

distance. Here ((D,F) , E) and C

(A,B) C ( (D,F), E )

(A,B) 0 4.95 2.50

C 4.95 0 1.41

( (D,F), E ) 2.50 1.41 0



 Example: Inside step 3. Execute step 4 of 

algorithm

› Merge two cluster ((D,F) , E) and C (note: 

keep subclusters!)

(A,B) (( (D,F), E ), C)

(A,B) 0 ???

(( (D,F), E ), C) ??? 0



 Example: Inside step 3. Execute step 5 of 

algorithm

› Update distance matrix with new distances 

using MIN method

(A,B) (( (D,F), E ), C)

(A,B) 0 2.50

(( (D,F), E ), C) 2.50 0

d( (((DF)E)C), (AB) ) = min( d(D,A), d(D,B), d(F,A), d(F,B), d(E,A), d(E,B), 

d(C,A),d(C,B) ) = min(3.61, 2.92, 3.20, 2.50, 4.24, 3.54, 5.66, 4.95) = 2.50



 Example: Inside step 3. Execute step 6 of 
algorithm
› Do we have one single cluster? No! We have 2. 

Hence continue

(A,B) (( (D,F), E ), C)

(A,B) 0 2.50

(( (D,F), E ), C) 2.50 0



 Example: Inside step 3. Execute step 4 of 
algorithm
› Find in distance matrix clusters with minimum 

distance. Note: Don’t need to because only 2 
clusters left. Simply merge them into a single 
one. Algorithm terminates.

( (( (D,F), E ), C), (A,B) )

( (( (D,F), E ), C), (A,B) ) 0

Important: Distance of clusters (( (D,F), E ), C) and (A,B) is 2.50 (see previous 

distance matrix) 



 Example: Based on distance matrix draw now 
dendrogram or Nested classes

Result of hierarchical clustering of dataset: ( (( (D,F), E ), C), (A,B) )
Note: Parentheses indicate subclusters

Again, height at which clusters 

merge in dendrogram is the 
clusters’ distance! This line indicates cluster (A,B)



 Time and Space complexity
› O(n2) space complexity since it uses the 

proximity matrix

 n = number of points

› O(n3) time complexity in many cases

 n = number of points

 There are n steps; and at each step the size, 
n2, proximity matrix must be updated and 
searched

 Complexity can be reduced to O(n2 log(n) ) 
time in some situations



 Problems and limitations of Hierarchical 
Clustering
› Once a decision is made to combine two 

clusters, it cannot be undone

› No objective function is directly minimized

› Different schemes (e.g. different distance 
measures) have problems with one or more of 
the following:

 Sensitivity to noise and outliers

 Difficulty handling different sized clusters and 
convex shapes

 Breaking large clusters



#### Agglomerate Hierarchical Clustering (file hierarchicalClustering.R) ####

#

# Read the file that contains taxpayers' data.

# IMPORTANT! Change path to file if it resides on a different folder on

# your machine.

#

taxpayers <- read.csv("taxpayers.csv")

#

# Take a quick look at some descriptive statistics of the data to see

# if our data looks fine for hierarchical clustering 

#

summary(taxpayers)

# Something is not ok. Attributes/Variables have different scales. Since

# we will be using Euclidean distance in the distance matrix, this may

# introduce bias. Hence, try to normalize each value of attribute to an

# a scale from 0 to 1.

# We will use min-max normalization. It's easy ans works (for most cases).

# Define the function norm that will normalize a value using the min-max

# method

#

norm <- function(x){ return( (x-min(x)) / (max(x)-min(x)) ) }

# continued on next slide…
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#

# Pass now each attribute of the dataset through the norm function

#

# This will normalize attibute Income

taxpayers[,"Income"] <-norm(taxpayers$Income)

# This will normalize attibute Spending

taxpayers[,"Spending"] <-norm(taxpayers$Spending)

# This will normalize attibute YearsWorking

taxpayers[,"YearsWorking"] <-norm(taxpayers$YearsWorking)

# This will normalize attibute NumChildren

taxpayers[,"NumChildren"] <-norm(taxpayers$NumChildren)

#

#Take a look again. Are we ok? 

#

summary(taxpayers)

#

# Hey nice! Seems we are ok. Data has been normalized.

#

# continued on next slide…
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#

# Now, calculate first the initial distance matrix for all data points,

# but remove attribute Name, which is the first attribute. 

# Use the R function dist() to calculate the entire distance matrix based on the Euclidean

# distance. To tell R to take into consideration all attributes except

# the first one (which is the Name), we simply say taxpayers[-1] meaning "all except first".

#

distanceMatrix <- dist(taxpayers[-1])

#

# Distance matrix calculated. We can now proceed to execute 

# Agglomerate hierarchical clustering using the hclust function

#

#

# The hclust() function executes hierarchical clustering.

# hclust() takes a shitload of arguments, but the important ones

# are two: 1) the distance matrix and 2) the distance measure for clusters

# First argument of hclust is the distanceMatrix that has been calculated previously. 

# If no argument for the distance measure of clusters is given, 

# the "Complete Linkage" measure is assumed (i.e. the default).

# If you want to use a different method, e.g. MIN, provide argument method="single"

# See help (?hclust) for more options

taxpayersHClustering <-hclust(distanceMatrix)

# continued on next slide…
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#

# Hierarchical clustering finished. Plot the dendrogram using the

# plot() function. Second parameter labels= tells R to display labels

# (in our case the Names) on the horizontal axis.

#

plot(taxpayersHClustering, labels=taxpayers$Name)

#

# You can also get more fancy and add rectangles identifying more clearly

# the clusters like so

# Argument 8 tells rect.hclust() how many clusters to wrap in rectangles or

# equivalently at which height of the dendrogram to indicate clusters 

rect.hclust(taxpayersHClustering, 8)
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“This is Ripley, last survivor of 

the Nostromo, signing off.”


