

 Given a collection of records (training
set)
› Each record contains a set of attributes, one of

the attributes is (always) the class.

 Find a model for class attribute as a
function of the values of other
attributes.

 Goal: previously unseen records should
be assigned a class as accurately as
possible.

Classification

Frequency
table

ZeroR
/OneR

Covariance
matrix

Similarity
function

Other

Rule
based

Naïve
Bayesian

Decision
Trees

Linear

Disc. Anal.

Log.

Regression

K Nearest

Neighbor

Art. Neural

Network
Support Vect.

Machines

 Rule-based classifiers

 k-Nearest Neighbors (k-NN)

 Naïve Bayes

 Classify records by using a collection of
“if…then…” rules

 General form of rule: (Condition) y
› where

 Condition is a conjunctions (logical AND/) of attributes

 y is the class label

› LHS: rule antecedent or condition (Left-hand side)

› RHS: rule consequent (Right-hand side)

› Examples of classification rules:
 (Blood Type=Warm) (Lay Eggs=Yes) Birds

Antecedent/LHS Consequent/RHS

R1: (Give Birth = no) (Can Fly = yes) Birds

R2: (Give Birth = no) (Live in Water = yes) Fishes

R3: (Give Birth = yes) (Blood Type = warm) Mammals

R4: (Give Birth = no) (Can Fly = no) Reptiles

R5: (Live in Water = sometimes) Amphibians

Name Blood Type Give Birth Can Fly Live in Water Class

human warm yes no no mammals

python cold no no no reptiles

salmon cold no no yes fishes

whale warm yes no yes mammals

frog cold no no sometimes amphibians

komodo cold no no no reptiles

bat warm yes yes no mammals

pigeon warm no yes no birds

cat warm yes no no mammals

leopard shark cold yes no yes fishes

turtle cold no no sometimes reptiles

penguin warm no no sometimes birds

porcupine warm yes no no mammals

eel cold no no yes fishes

salamander cold no no sometimes amphibians

gila monster cold no no no reptiles

platypus warm no no no mammals

owl warm no yes no birds

dolphin warm yes no yes mammals

eagle warm no yes no birds

Set of rules for

above dataset

Records (also

called

instances)

 Say that a rule r covers an instance or record

x if the attributes of the instance satisfy the

condition of the rule (result TRUE)

Name Blood Type Give Birth Can Fly Live in Water Class

hawk warm no yes no ?
grizzly bear warm yes no no ?

R1: (Give Birth = no) (Can Fly = yes) Birds

R2: (Give Birth = no) (Live in Water = yes) Fishes

R3: (Give Birth = yes) (Blood Type = warm) Mammals

R4: (Give Birth = no) (Can Fly = no) Reptiles

R5: (Live in Water = sometimes) Amphibians

Set of rules

Above rules cover instances (look at conditions):

The rule R1 covers a instance “hawk” => Bird (class)

The rule R3 covers the instance “grizzly bear” => Mammal (class)

 Assume classification rule A y, where A an
expression of any number on conjunctions on
attributes, y class attribute and a dataset D

 Coverage of a rule:
› Fraction of records that satisfy only the antecedent (LHS or

expression A) of a rule

Accuracy of rule

› Fraction of records that satisfy both the antecedent and

consequent of a rule

 Rule: (Status=Single) No

› Coverage of rule = 4/10 = 40%

› Accuracy of rule = 2/4 = 50%

 Rule: (Refund=Yes) Yes
› Coverage of rule = 3/10 = 30%

› Accuracy rule = 0/3 = 0%

 Rule: (Status=Married) (TaxInc. < 70k)

 No
› Coverage of rule = 1/10 = 10%

› Accuracy or fule = 1/1 = 100%

 Rule: (Refund=No) (TaxInc. > 65K)

Yes
› Coverage of rule = 6/10 = 60%

› Accuracy or rule = 3/6 = 50%

Tid Refund Marital
Status

Taxable
Income Class

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

Dataset, |D|=10

R1: (Give Birth = no) (Can Fly = yes) Birds

R2: (Give Birth = no) (Live in Water = yes) Fishes

R3: (Give Birth = yes) (Blood Type = warm) Mammals

R4: (Give Birth = no) (Can Fly = no) Reptiles

R5: (Live in Water = sometimes) Amphibians

Name Blood Type Give Birth Can Fly Live in Water Class

lemur warm yes no no ?
turtle cold no no sometimes ?
dogfish shark cold yes no yes ?

 Rules are triggered by each instance i.e. starts the
execution. Example:

What rules are triggered by the above data?

A lemur triggers rule R3, so it is classified as a mammal

A turtle triggers both R4 and R5

A dogfish shark triggers none of the above rules

 Mutually exclusive rules

› Classifier contains mutually exclusive rules if

the rules are independent of each other

› Every record is covered by at most one rule

 Exhaustive rules

› Classifier (i.e. set of rules) has exhaustive

coverage if it accounts for every possible

combination of attribute values

› Each record is covered by at least one rule

 Example

name Body

Temp

Skin Gives

birth

Lives in

water

Flys Has legs Hibernat

es

Type

(class)

Lemour warm fur yes no no yes yes mammal

Turtle cold scales no sometimes no yes Yes Not

mammal

Dogfish

shark

cold scales yes yes no no no Not

mammal

R1: (Body Temp = cold) Not mammal

R2: (Body Temp = warm) (Gives birth = yes) Mammal

R3: (Body Temp = warm) (Gives birth = no) Not mammal

This rule set is i)
mutual exclusive
and ii) exhaustive

 Two ways

› Direct Method

 Extract rules directly from training data

 Algorithms: RIPPER, CN2, Holte’s 1R

› Indirect Method

 Extract rules from other classification models

(e.g. decision trees, neural networks, etc).

 Algorithms: C4.5rules

 Sequential covering algorithm

1. Start from an empty rule

2. Grow a rule using the Learn-One-Rule
function
• Grow a rule, by adding attributes

in a greedy way
3. Remove training records covered by

the rule

4. Repeat Step (2) and (3) until stopping
criterion is met

 Sequential covering algorithm

› Extracts rule for each value of class

sequentially.

› Learn-one-rule returns one new rule based

on its efficiency:

 Large positive rate

 Small negative rate

 How are rules “grown”?

(i) Original Data (ii) Step 1

Start by finding instances with attributes/conditions

that have great positive cover by rule. Remove

these instances

(iii) Step 2

R1

(iv) Step 3

R1

R2

Continue finding the next rule which covers as

much of the space as possible.

 How do rules grow i.e. get “bigger” by

enclosing more conditions?

 Two Strategies

› General to specific

› Specific to general

 General to specific

Status =

Single

Status =

Divorced
Status =

Married

Income

> 80K
...

Yes: 3

No: 4{ }

Yes: 0

No: 3

Refund=

No

Yes: 3

No: 4

Yes: 2

No: 1

Yes: 1

No: 0

Yes: 3

No: 1

(a) General-to-specific

1. Start with empty
rule

{} y

2. Add conjunctions
for various
attributes

• Select greedy
the best
attribute
(calculating
gains)

3. Continue until gain
not improved

 Specific to general

Refund=No,

Status=Single,

Income=85K

(Class=Yes)

Refund=No,

Status=Single,

Income=90K

(Class=Yes)

Refund=No,

Status = Single

(Class = Yes)

(b) Specific-to-general

1. Select one
random instance

2. Create rule out of
instance, by
forming
conjunctions from
attributes of
instance

3. Start removing
conjunctions until
it starts covering
negative
instances

 Grow a single rule

• Using general-to-specific or specific-

to general strategies

 Remove Instances satisfying rule

 Prune the rule (if necessary)

 Add rule to Current Rule Set

 Repeat

 Use Decision Tree to extract rules

Rule Set

r1: (P=No,Q=No) ==> -
r2: (P=No,Q=Yes) ==> +

r3: (P=Yes,R=No) ==> +

r4: (P=Yes,R=Yes,Q=No) ==> -

r5: (P=Yes,R=Yes,Q=Yes) ==> +

P

Q R

Q- + +

- +

No No

No

Yes Yes

Yes

No Yes

 Add rules by forming conjunctions at each
node. Braches/Paths to leaves represent one
rule

R1: (Refund=Yes) No

R2: (Refund=No) (MarSt=Married) No

R3: (Refund=No) (MarSt = Single, Divorced) (TaxInc < 80K)
 Yes
….

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

MarriedSingle, Divorced

< 80K > 80K

Derived rules

 As highly expressive as decision trees

 Easy to interpret

 Easy to generate

 Can classify new instances rapidly

 Performance comparable to decision

trees

Atr1 ……... AtrN Class

A

B

B

C

A

C

B

Set of Stored Cases

Atr1 ……... AtrN

Unseen Case

• Instance based classifier?
• Just store the training records

forever

• Do not process training

records at all to learn

something (in contrast to e.g.

decision trees)

• Use stored training records to

predict class label of unseen
recordsTraining

records,
also
called
Instances

 Instance-based are among the simplest

classifiers in existens

 Examples methods:

› Rote-learner

 Memorizes (i.e. stores) entire training data and

performs classification only if attributes of record

match one of the training examples exactly

› k-Nearest neighbor (k-NN)

 Uses k “closest” points (nearest neighbors) for

performing classification

 For categorical class vars: majority vote of k closest points

 Basic idea of k-NN (aka duck-typing):

› If it walks like a duck, quacks like a duck,

then it’s probably a duck

Training

Records

Test

Record

Compute

Distance

Choose k (here k=2)

of the “nearest”

records

 Outline of k-NN algorithm (quite simple)
› Calculate distance between new (unclassified)

record and all other records in dataset (training
set)

› Find the k records in dataset with the closest
distances to new record
 k is always given, input of algorithm

› Look at the class of these k nearest records

› If majority of the k records belong to class C,
then new record is assigned class C (one way)
 k usually chosen odd

› k-NN is a non-parametric method (in contrast to
decision trees)
 Non-parametric? Does not care at all about he

distribution of records

 Historical note

› One of the earliest methods to classify

records (and one of the simplest)

 1956

 NN requires three things

– The set of stored records

– Distance Metric to compute

distance between records

– The value of k, the number

of nearest neighbors to

retrieve

 To classify an unknown record:

– Compute distance to all

other training records

– Identify k nearest neighbors

i.e. smallest distance

– Use class labels of nearest

neighbors to determine the

class label of unknown record

(e.g., by taking majority

vote)

Unknown record

X X X

(a) 1-nearest neighbor (b) 2-nearest neighbor (c) 3-nearest neighbor

k-Nearest Neighbors of a record x are data points

that have the k smallest distance to x

k=1 k=2 k=3

1-NN (k=1) aka Voronoi Diagram

In a Voronoi

diagram:

-Points are training

records

-Areas represent

“regions” where

the training record

is the closest point

and hence defines

the class

Training

records

If unknown record falls

in this area, then class

of unknown record is

the class of training

record defining the

area

 Based on the notion of distance between
records (or “points”)

 How to calculate distance between records?
› Many, many ways depending on attribute types and

objective

 For records with numerical attributes, variations
of the Minkowski distance:

 If r=1, Minkowski distance becomes the

Manhattan distance

… where p, q vectors i.e. (p1, p2, p3, …., pk)

of numericals.

… where p, q vectors i.e. (p1, p2, p3, …., pk)

of numericals.

 If r=2, Minkowski distance becomes the

Euclidean distance

 3 most popular distance measures in use for
numerical records in k-NN:
1. Euclidean distance

2. Manhattan or City block distance

3. Supremum or L norm, i.e. Minkowski
distance when r . What does that
mean?
 As r , the Minkowski formula is dominated by

the term with the biggest difference

 A fancy way of saying: “ignore all other
attributes/dimensions except the ones with the
biggest difference”.

 Problem with Euclidean measure:

› High dimensional data

 curse of dimensionality

› Can produce counter-intuitive results

1 1 1 1 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1 1 1 1 1

1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1

vs

d = 1.4142 d = 1.4142

 Solution: Normalize the vectors to unit length

 Curse of dimensionality

› In general when large number of attributes

present, all records become close i.e.

distances shrink.

 What about records with nominal
attributes?
› E.g. (blue, Spaghetti, skirt)

› Compute Overlap (or Hamming) measure:

… where p, q vectors with nominal values

d(pi, qi) = 1 if pi <>qi and d(pi, qi)=0 if pi = qi

i.e. distance is 1 if they differ and 0 otherwise

1. (a, b, a, c) A

2. (a, b, c, a) B

3. (b, a, c, c) C

4. (c, a, b, c) A

Training records/dataset –

stored permanently

5. (a, b, b, a)

New record.

Class?

 Overlap distances

› d(1,5) = d(a,a) + d(b,b) +

d(a,b) + d(c,a) = 0+0+1+1

= 2

› d(2,5) = 0+0+1+0 = 1

› d(3,5) = 1+1+1+1 = 4

› d(3,5) = 1+1+0+1 = 3

 Classification of new data? Based on overlap
(Hamming) distances:
› If k=1, then new record belongs to class B

› If k=2, then new record belongs to classes A or B (?)

› If k=3, then new record belongs to class A

› If k=4, then new record belongs to class A

Class!

 Overlap (Hamming) distance not the

only way to measure distance for

nominal attributes

 More clever ways to calculate distances

of nominal attributes, which give much

better results

› For example Value Difference Measure VDM

 Value Difference Measure
› Takes into consideration the class(!)

› Gives much better results than the Hamming
distance

› Defined as:

… where p, q nominal values, n=number of
classes, P(ci|p) = probability of class ci given
the presence of value p (Bayesian prob.)

Note: The Modified Value Difference Measure does not
raise to power n the difference.

 Example of VDM
› Assume cars sold in various colors: red,

green, blue etc

› For Overlap measure, difference between
red and green is the same as the difference
red and blue

› However, red and blue cars may sell more
than green cars which somehow implies that
red is closer to blue than to green

 VDM aims to capture this

 Measures always depend on the objective!

 How to calculate distance when vectors have
numerical and nominal attributes (mixed data
types) ?
› e.g. (43, blue, Married, 50901, Good, Peking Duck,

0.87) ?

› Not always an easy task!
› Find yourself one measure that makes sense

 You can come up with your own that makes sense for
your context

 Although there are many available e.g. Gower's
General Similarity Coefficient

› You may also combine different measures into a
single measure. E.g.
 Euclidean distance for numerical attributes
 Other measure for nominal values

 Combine (somehow) the above two

 In general

› You design your own distance measure

function

› Put your knowledge of the domain in

› Reason about what makes things similar and

what not

 Depends on the domain, objective etc

 Aren’t there any properties that the
distance function must have? Yes there
are

 A metric or distance function D(·, ·) for all
points x, y and z, must satisfy the
following properties:
› Nonnegativity: D(x, y) ≥ 0

› Reflexivity: D(x, y) = 0 if and only if x = y

› Symmetry: D(x, y) = D(y, x)

› Triangle inequality: D(x,y)+D(y,z) ≥ D(x,z)

Name Debt? Income? Married? Risk

Joe High High Yes Good

Amber Low High Yes Good

Harry Low High No Poor

Lindsay High Low Yes Poor

Kaley Low Low Yes Poor

 Credit risk data

 How would Maria who is single, high-income

earner, and low in debt be classified?

› Record for Maria: (Low, High, No)

Training records

(stored)

Class

 Assume k=3

 Proper distance metric?
› Using Overlap (Hamming): 0=same, 1=different and sum

Name Debt? Income? Married? Risk

Joe High High Yes Good

Amber Low High Yes Good

Harry Low High No Poor

Lindsay High Low Yes Poor

Kaley Low Low Yes Poor

d(Maria, Joe) = 1 + 0 + 1 = 2
d(Maria, Amber) = 0 + 0 + 1 = 1
d(Maria, Harry) = 0 + 0 + 0 = 0
d(Maria, Lindsay) = 1 + 1 + 1 = 3
d(Maria, Kaley) = 0 + 1 + 0 = 1

Step 1.
Calculate distance of

Maria from all other

records of the training set.

Maria: (Low, High, No, ????)

 Assume k=3

 Proper distance metric?
› Using Overlap (Hamming): 0=same, 1=different and sum

Name Debt? Income? Married? Risk

Joe High High Yes Good

Amber Low High Yes Good

Harry Low High No Poor

Lindsay High Low Yes Poor

Kaley Low Low Yes Poor

Step 2.
Sort distances in

ascending order

d(Maria, Harry) = 0
d(Maria, Amber) = 1
d(Maria, Kaley) = 1
d(Maria, Joe) = 2
d(Maria, Lindsay) = 3

Maria: (Low, High, No, ????)

 Assume k=3

 Proper distance metric?
› Using Overlap (Hamming): 0=same, 1=different and sum

Name Debt? Income? Married? Risk

Joe High High Yes Good

Amber Low High Yes Good

Harry Low High No Poor

Lindsay High Low Yes Poor

Kaley Low Low Yes Poor

Step 3.
Keep the k closest

records to Maria

(here, k=3)

The k-neighborhood of

Maria

d(Maria, Harry) = 0
d(Maria, Amber) = 1
d(Maria, Kaley) = 1

Maria: (Low, High, No, ????)

 Assume k=3

 Proper distance metric?
› Using Overlap (Hamming): 0=same, 1=different and sum

Name Debt? Income? Married? Risk

Joe High High Yes Good

Amber Low High Yes Good

Harry Low High No Poor

Lindsay High Low Yes Poor

Kaley Low Low Yes Poor

Step 4.
Look at the class of

the 3 closest record

to Maria

d(Maria, Harry) Poor (=class of Harry)

d(Maria, Amber) Good (=class of Amber)

d(Maria, Kaley) Poor (=class of Kaley)

Maria: (Low, High, No, ????)

 Assume k=3

 Proper distance metric?
› Using Overlap (Hamming): 0=same, 1=different and sum

Name Debt? Income? Married? Risk

Joe High High Yes Good

Amber Low High Yes Good

Harry Low High No Poor

Lindsay High Low Yes Poor

Kaley Low Low Yes Poor

Step 5.
Assign to Maria the

most frequent class

(majority vote)

Class of
Maria: POOR

Maria: (Low, High, No, POOR)

d(Maria, Harry) Poor

d(Maria, Amber) Good

d(Maria, Kaley) Poor

 Calculate distances using the Modified

value difference metric (MVDM)

Tid Refund Marital
Status

Taxable
Income Cheat

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

d(Single, Married) = | P(Yes|Single) –

P(Yes|Married) | + |P(No|Single) –

P(No|Married) | = | (2/10)/(4/10) –

(0/10)/(4/10)| + |(2/10)/(4/10) –

(4/10)/(4/10)| = 1

d(Single, Divorces) = | 2/4 – 1/2 | + | 2/4 –

1/2 | = 0

d(Married, Divorced) = | 0/4 – 1/2 | + | 4/4 –

1/2 | = 1

d(Refund=Yes, Refund=No) = | 0/3 – 3/7 | +

| 3/3 – 4/7 | = 6/7

Class

Name Debt? Income? Married? Risk

Joe High High Yes Good

Amber Low High Yes Good

Harry Low High No Poor

Lindsay High Low Yes Poor

Kaley Low Low Yes Poor

 Credit risk data

 How would Maria who is single, high-income
earner, and low in debt be classified? NOTE:
Using MVDM

› Record for Maria: (Low, High, No)

Training records

(stored)

Class

 Assume k=3

 Distance metric?
› Using MVDM

Name Debt? Income? Married? Risk

Joe High High Yes Good

Amber Low High Yes Good

Harry Low High No Poor

Lindsay High Low Yes Poor

Kaley Low Low Yes Poor

Dept?: d(High, Low) = |P(Good|High) – P(Good|Low) | + |P(Poor|High) –
P(Poor|Low)| = |1/2 – 1/3| + |1/2 – 2/3| = 0.33333

Incomme? d(High, Low) = |P(Good|High) – P(Good|Low)| +
|P(Poor|High) – P(Poor|Low)| = |(2/5)-(0/5)| + |(1/5)-(2/5)| = 0.6

Married?d(Yes, No) = |P(Good|Yes) – P(Good|No)| + |P(Poor|Yes) –
P(Poor|No)| = |(1/2) – 0| + ||(1/2) – 1 | = 1

Step 1.
Calculate distance of Maria
from all other records of the
training set using MVDM.
Hence calculate first
differences between
nominal values of all
attributes.

Maria: (Low, High, No, ????)

 Assume k=3

 Proper distance metric?
› Using MVDM

Name Debt? Income? Married? Risk

Joe High High Yes Good

Amber Low High Yes Good

Harry Low High No Poor

Lindsay High Low Yes Poor

Kaley Low Low Yes Poor

Step 2.
Calculate actual

distances. Based on

previous slide

d(Maria, Harry) = d(Low, Low) + d(High, High) + d(No, No) = 0

d(Maria, Amber) = d(Low,Low) + d(High, High) + d(No,Yes) = 0 + 0 + 1 = 1

d(Maria, Kaley) = d(Low, Low) + d(High,Low) + d(No,Yes) = 0 + 0.6 + 1 = 1.6

d(Maria, Joe) = d(Low,High) + d(High,High) + d(No,Yes) = 0.333 + 0 + 1 = 1.333

d(Maria, Lindsay) = d(Low,High) + d(High,Low) + d(No,Yes) = 0.333 + 0.6 + 1 =
1.933

Maria: (Low, High, No, ????)

 Assume k=3

 Proper distance metric?
› Using MVDM

Name Debt? Income? Married? Risk

Joe High High Yes Good

Amber Low High Yes Good

Harry Low High No Poor

Lindsay High Low Yes Poor

Kaley Low Low Yes Poor

Step 3.
Sort distances in

ascending order

d(Maria, Harry) = 0
d(Maria, Amber) = 1
d(Maria, Joe) = = 1.333
d(Maria, Kaley) = 1.6
d(Maria, Lindsay) = 1.933

Maria: (Low, High, No, ????)

 Assume k=3

 Proper distance metric?
› Using MVDM

Name Debt? Income? Married? Risk

Joe High High Yes Good

Amber Low High Yes Good

Harry Low High No Poor

Lindsay High Low Yes Poor

Kaley Low Low Yes Poor

Step 4.
Keep the k (=3)

closest records to

Maria

d(Maria, Harry) = 0

d(Maria, Amber) = 1

d(Maria, Joe) = = 1.333

Maria: (Low, High, No, ????)

 Assume k=3

 Proper distance metric?
› Using MVDM

Name Debt? Income? Married? Risk

Joe High High Yes Good

Amber Low High Yes Good

Harry Low High No Poor

Lindsay High Low Yes Poor

Kaley Low Low Yes Poor

Step 5.
Get class of the k

(=3) closest records

to Maria

d(Maria, Harry) = 0 Poor (=class of Harry)

d(Maria, Amber) = 1 Good (=class of Amber)

d(Maria, Joe) = 1.333 Good (=class of Joe)

Maria: (Low, High, No, ????)

 Assume k=3

 Proper distance metric?
› Using MVDM

Name Debt? Income? Married? Risk

Joe High High Yes Good

Amber Low High Yes Good

Harry Low High No Poor

Lindsay High Low Yes Poor

Kaley Low Low Yes Poor

Step 6.
Assign to Maria the

most frequent class

(majority vote)

d(Maria, Harry) = 0 Poor

d(Maria, Amber) = 1 Good

d(Maria, Joe) = 1.333 Good

Maria: (Low, High, No, Good)

Class of
Maria: GOOD

 How to reach decision based on k

nearest neighbors?

› Many different approaches

 Un-weighted votes: count simply the most

frequent class among k nearest neighbors

 Distance weighted votes: weigh each vote by

some factor that takes into consideration e.g.

the distance

 Hence, records further away have less influence in the

voting process

 Choosing the value of k:
› If k is too small, sensitive to noise points

› If k is too large, neighborhood may include

points from other classes

› Rule of thumb: k ~= sqrt(number of observations)

X

 Very important! Scaling issues for numerical
attributes
› Attributes may have to be scaled to prevent

distance measures from being dominated by
one of the attributes

› Example:
 height of a person may vary from 1.5m to 1.8m

 weight of a person may vary from 90lb to 300lb

 income of a person may vary from $10K to $1M

 Assume all above in record data. Difference in
income a lot greater than height difference, which
influences (dominates) the distance measure.

› In practice, all numerical attributes are usually
scaled to the (0,1) range (other ranges possible
too)

 Why scaling – Example

› Assume vector representing visitors/customer

to a website with attributes: Age, Income,

Number of visits .

Jim: (75, 55000, 35) => Jim is old and visits site often

Alice: (22, 54000, 0) => Alice is young and never

visited the site

k-NN distance measure may

calculate that Alice is closest to Jim,

because income dominates

But this does not sound “reasonable”. Other attributes differences

have been masked by income

 How to scale? Many different ways

› Calculate what portion of the range a value

accounts for (called min-max normalization)

𝐍𝐞𝐰 𝐯𝐚𝐥𝐮𝐞 =
𝐎𝐥𝐝 𝐯𝐚𝐥𝐮𝐞 − 𝐱𝐦𝐢𝐧𝐢𝐦𝐮𝐦
𝐱𝐦𝐚𝐱𝐢𝐦𝐮𝐦 − 𝐱𝐦𝐢𝐧𝐢𝐦𝐮𝐦

…where “Old value” current value of an attribute, xminimum =
the minimum value of the attribute and xmaximum = the

maximum value of the attribute

Ranges from 0 to 1.

Do this for all attributes.

 How to scale? Many different ways
› Express each value in terms of z scores i.e. how

many std. deviations σ it is away from the mean
of attribute (called standardization):

𝒛𝒗𝒂𝒍 =
(𝒗𝒂𝒍 − 𝒚𝒗𝒂𝒍)

𝝈

…where “val” a value of an attribute, 𝒚𝒗𝒂𝒍 = mean of attribute y

for which val is a value and σ the std deviation of attribute y
Ranges aprox. from -3 to 3

Apply this to all numerical attributes

 k-NN classifiers are lazy learners
› It does not build models explicitly

 Instead stores training data and computes
distances every time (wtf!). Does not build model.

› Unlike eager learners such as decision tree
induction and rule-based systems

› Classifying unknown records is relatively
expensive
 Always compute again distances instances for

each new record

 Decision Trees/Rule-based are eager
learners
› They build model out of training data

 kNN prone to overfitting

› Overfitting when k small (k=1). Why?

When k small then

classification prone to noise.

E.g consider a space where

most points are class A, few

class B. Test records

happens to be near record
of class B. If k=1 probably
misclassified as B, which is

counterintuitive.

 Using the iris dataset to classify different
species of iris plant
› 3 species: virginica, setosa, versicolor

› Determine species (class) based on some
characteristics, length and width- of petals and
sepals. Will use k-nn algorithm

Iris virginica Iris setosa

Iris versicolor

#includes the class package, containing the necessary functions for k-nn

library(class)

#Add the Iris dataset. Note: iris dataset is build-in and comes with R

data(iris)

#Take a quick look at the data (peek at data)

head(iris)

Something strange things can be seen. The iris dataset is sorted on class. i.e.

50 first records are all the same species, next 50 are the same etc.

This does not help us in getting a good training dataset which should contain

a good mix of each species.

Hence, first shuffle iris dataset. There are many ways to do it, but this is one

Initialize random number generator

set.seed(9850)

Get 150 random numbers from 0 to 1 from a uniform distribution

gp <- runif(nrow(iris))

Now, use the outcome of order on gp, to get the rankings of the random numbers

and use these to shuffle iris records

iris <-iris[order(gp),]

#Take a look at the values of each attribute.

summary(iris)

There is an issue. Attributes have different ranges. This may introduce bias. So,

try to normalize each value of attribute in the range 0 to 1. One easy way to do

this is to normalize is to use min-max normalization :

new_value = (old_value – col_min())/ (col_max() – col_min()) . To do this, we will use a

function. Makes things easier. …Continued on next slide…

 The k-NN algorithm in R

Continued from previous slide

Define a function to normalize all attributes. Yes, in R you can define function and

store the definition of function in variables (whaaaat???)

norm <- function(x){ return((x-min(x)) / (max(x)-min(x))) }

Now normalize each attribute by applying norm i.e. make each value from 0 to 1

iris[,"Sepal.Length"] <- norm(iris$Sepal.Length)

iris[,"Sepal.Width"] <- norm(iris$Sepal.Width)

iris[,"Petal.Length"] <- norm(iris$Petal.Length)

iris[,"Petal.Width"] <- norm(iris$Petal.Width)

#Take a look at the data again

summary(iris)

Looks cool! Create now training dataset We will use first 129 records as training

set and the rest as testing set

iris_train <- iris[1:129,]

iris_test <- iris[130:150,]

Single out, i.e. keep separately the class of each record. This will help us make

some tests easier. Also, the R function for knn requires it.

iris_train_target <-iris[1:129, 5]

iris_test_target <-iris[130:150, 5]

This is advance ninja techniques vol 4: without the next lines, R;s knn function

goes berserk.

iris_train <-iris_train[, -5]

iris_test <-iris_test[, -5]

Now we are ready to apply the k-NN algorithm. See next slide…

Continued from previous slide

Call R’s knn function which does our job. Set as k the square root of

number of records in dataset (a rule of thumb)

model1 <- knn(train=iris_train, test=iris_test, cl=iris_train_target, k=13)

Ok done! At this point we have calculated the k-nearest neighbors

and assigned class by majority vote for each one of the records in the iris_test

dataset. I.e. we have predicted a class for each record in the testing set.

Print the confusion matrix to see how our model has performed

table(iris_test_target, model1)

 Suppose we have training set of size d and

dimension d and require k closest neighbors

› Complexity to compute distance to one training

record: O(d)

› Complexity to compute distance to all training

records: O(nd)

› Complexity to find k closest distances: O(nk)

› Total time (complexity): O(nd + nk)

› For large training set (usually the case)

expensive!

 Classification

 Regression

{ }1
ˆ most common class in set ,..., Ky y y=

K

k

k
y

K
y

1

^ 1
In regression, take the

average of values of k

nearest neighbors. This will

be the “class” or

dependent value for

unknown record

 Weighted by distance

› Classification

› Regression

() (){ }1 1

ˆ most common class in wieghted set

, ,..., , K K

y

D y D y

=

x x x x

K

k

k

K

k

k

xxD

yxxD

y
k

1

1
^

),(

),(

 Advantages
› “Learning” is very, very fast

 If you can call it “learning” (well, it’s not learning actually)

› Can “learn” complex target functions/models easily
 Because there is no model to learn.

› Does not lose any information
 Compare with decision tree

 Disadvantages
› Computationally expensive, slow query time i.e. slow to classify

unknown records
 Due to number of times the distance has to be calculated training

sets generally large

› Requires lots of storage
 Not a problem anymore (in 1956 was great problem)

› Easily fooled by irrelevant attributes (most important problem) –
Curse of dimensionality.
 Signal of important attributes may be masked by the noise of many

irrelevant attributes

 Naïve Bayes classifiers?

› A probabilistic framework for solving

classification problems

 Probabilistic? Calculate some probabilities and

decide class based on these

 Record belongs to a class with some probability

 Can calculate probability for any class (!)

 We don’t assert with certainty the class a record belongs

to

› Based on conditional probabilities

› Based on Bayes theorem

 Conditional probability
› Probability of event A given that event B has

occurred

𝑷 𝑨 𝑩 =
𝑷(𝑨 ∩ 𝑩)

𝑷(𝑩)

Tells us how the probability of events A and B

occurring wrt Ω (S). Measures how big/pct the

common area is between A and B with respect

to Ω (S)

Tells us the probability of event A given that B

occurred. Measures how big/pct the common

area between A and B with respect to B

 Bayes theorem

› Tells us how conditions are related to events:

𝑷 𝑨 𝑩 =
𝑷 𝑩 𝑨 𝑷(𝑨)

𝑷(𝑩)

 Derives straight from conditional
probabilities:

𝑃 𝐴 𝐵 =
𝑃(𝐴 ∩ 𝐵)

𝑃(𝐵)
, 𝑏𝑢𝑡 𝑠𝑖𝑛𝑐𝑒 𝑃 𝐵 𝐴 =

𝑃(𝐴 ∩ 𝐵)

𝑃(𝐵)
→ P A ∩ B = P B A P A

ℎ𝑒𝑛𝑐𝑒 𝑷 𝑨 𝑩 =
𝑷 𝑩 𝑨 𝑷(𝑨)

𝑷(𝑩)

 Intuitively understanding the elements in

Bayes’ theorem

𝑷 𝑨 𝑩 =
𝑷 𝑩 𝑨 𝑷(𝑨)

𝑷(𝑩)

 P(A): Prior belief. Probability of event A before seeing any
data. The hypothesis.

 P(B|A): Likelihood. Probability of the data if event B is true

 P(B): Data evidence. Marginal probability of the data

 P(A|B): Posterior probability. Probability of event A after
having seen data of event B

 Bayes theorem

› Alternative forms of Bayes’ theorem, based on

Law of Total Probability

› Law of total probability? Assume space Ω is

partitioned into n partitions Ai such that Ai ∩ Aj =

ø (mutual exclusive) and ∪ Ai = Ω (exhaustive),

then probability of event B occurring is:

𝑷 𝑩 =

𝒊=𝟏

𝒏

𝑷 𝑨𝒊 ∩ 𝑩 =

𝒊=𝟏

𝒏

𝑷 𝑩 𝑨𝒊 𝑷(𝑨𝒊)

 Bayes theorem

› Visualizing Law of Total Probability

Partitions of

space. Event B

spawns/crosses

partitions.

 Bayes theorem

› Based on Law of total probability, Bayes

theorem becomes:

𝑷 𝑨 𝑩 =
𝑷 𝑩 𝑨 𝑷(𝑨)

 𝒊=𝟏
𝒏 𝑷 𝑩 𝑨𝒊 𝑷(𝑨𝒊)

…assuming that space B is partitioned in n

partitions Ai with the same properties (i.e.

Ai mutual exclusive and exhaustive)

 Assume the following:

› Breast cancer affects 1% of women

› A test (e.g. mammogram) detects breast

cancer 80% if the person has breast cancer

› 9.1% of the test detects breast cancer when

the person has not cancer (false positive)

› Question: Given that a woman takes the test

and the test reveals cancer (i.e. indicated

that the woman has cancer) what is the

probability that she really has cancer?

 What do we have?

› P(has breast cancer) = 0.01

› P(Test says br. cancer | has br. cancer) = 0.8

› P(Test says br. cancer | has not br. cancer) =

0.096

› For the woman which took the test and it

revealed breast cancer, we are actually looking

for this:

 P(has breast cancer | test says br. cancer) = ?

 The basic idea here is that it’s different for a test to say it

and actually having it!

 Applying Bayes Theorem

𝑃 ℎ𝑎𝑠 𝑏𝑟. 𝑐𝑎𝑛𝑐𝑒𝑟 𝑡𝑒𝑠𝑡 𝑠𝑎𝑦𝑠 𝑏𝑟. 𝑐𝑎𝑛𝑐𝑒𝑟) =
𝑃 𝑡𝑒𝑠𝑡 𝑠𝑎𝑦𝑠 𝑏𝑟. 𝑐𝑎𝑛𝑐𝑒𝑟 | ℎ𝑎𝑠 𝑏𝑟. 𝑐𝑎𝑛𝑐𝑒𝑟 𝑃(ℎ𝑎𝑠 𝑏𝑟. 𝑐𝑎𝑛𝑐𝑒𝑟)

𝑃(𝑡𝑒𝑠𝑡 𝑠𝑎𝑦𝑠 𝑏𝑟. 𝑐𝑎𝑛𝑐𝑒𝑟)

P(test says br. Cancer | has br. Cancer) known = 0.8, P(has br. cancer) also
known = 0.01 . For P(test says br. cancer) we can apply the Law of total
probability: we have two partitions -br. Cancer and no br. Cancer- that are
mutual exclusive and exhaustive and “test says br. cancer” crosses both areas.
Hence

P(test says br. cancer) = P(test says br. cancer|has cancer)P(has cancer) +
P(test says br. cancer| has no cancer)P(has no cancer) = 0.8*0.01 + 0.096*(1-
0.01) = 0. 10304

Answering the question:

P(has br. Cancer | test says br. Cancer) = (0.8*0.01)/0.10304 = 0.077 (or 7.7%)

NOTE: Quite small chance, even test came out positive for breast cancer.

 Assume that X are all the values of some

attributes of a record r (x1,x2,x3,…,xd)

and Y the class label of the record

› Note: X will stand in next sections as the set

of all values of attributes of a record (except

class of course)

 Further assume that the class label Y is

non-deterministically related to X

› Non-deterministically? Simply means you

can not associate values of X with a

particular value of Y with certainty 100%

 Then, we can treat X and Y as random

variables and calculate P(Y | X) i.e. the

probability that record r, with these

values X on its attributes belongs to class

Y.

› The problem of classifying record r becomes

then to find Y (class) that maximizes P(Y|X)

 This is the main idea of Bayesian

classifiers

 P(Y|X) known as posterior probability

 P(Y) known as prior probability

 As with all classification methods, 2
phases
› Training phase: Try to calculate P(Y|X)

based on the records of the training set

› Testing phase: Given a record X’ with
unknown class, and find P(Y’|X’) which
maximizes this probability. If Y’ maximizes,
say record X’ belongs to class Y’

 How to compute P(Y|X) ?

› More clearly P(Y|X) is actually P(Y|x1 ∩ x2 ∩
x3 ∩… ∩ xd) where xi values on attributes of

record with dimension d. (Remember X

attribute values)

› Use Bayes Theorem to calculate posterior

probability:

𝑷 𝒀 𝑿 =
𝑷 𝑿 𝒀 𝑷(𝒀)

𝑷(𝑿)

 How to compute P(Y|X) ?

𝑷 𝒀 𝑿 =
𝑷 𝑿 𝒀 𝑷(𝒀)

𝑷(𝑿)

…calculates posterior probability based on prior probability P(Y),
conditional dependence P(X|Y) and P(X) called the evidence.

Now, given a record r, with unknown class Y, in order to see which
class it belongs, try to maximize P(Y|X) or maximize P(X|Y)P(Y)
since P(X) for record r always constant (and not always
computable). Record belongs to class Y that maximizes this
probability,

 How to calculate P(Y|X)?
› It’s easy to calculate prior P(Y) based on training

set

› Calculating P(X|Y) not that easy.

 Note: For record r with dimension d and attribute
values (x1, x2, x3, … ,xd), P(X|Y) = P(x1 ∩ x2 ∩ x3 ∩…
∩ xd | Y)

› Bayes classifiers differ in their way they deal with
calculating P(X|Y) and what assumptions they
make

 Naïve Bayes classifier

 Artificial Neural Networks (ANN)

 Naïve Bayes classifier assumes that the

attributes X of record r are conditionally

independent of class Y. I.e.

𝑷 𝑿 𝒀 = 𝒚 = 𝑷 𝒙𝟏 ∩ 𝒙𝟐 ∩⋯∩ 𝒙𝒅 𝒀 = 𝒚 =

𝒊=𝟏

𝒅

𝑷(𝒙𝒊|𝒀 = 𝒚)

In Naïve Bayes, new record r is classified to class y if

P(y) P(xi| Y=y) is maximal.

 Conditional independence

› Let there be three events X, Y, Z. We say that

event X is conditionally independent of Z

given Y when:

P(X|Y ∩ Z) = P(X|Y) or equivalent

P(X ∩ Z | Y) = P(X|Y)P(Z|Y)

 For discrete attributes:
› P(Y) = Ny / N, Y class

attribute

 P(Yes) = 3/10

 P(No) = 7/10

› P(Xi|Yk) = |Xik| / Nyk

Where |Xik| number of
attributes having value xi

and belong to class Yk .
E.g.

 P(Status=Married|No) =
4/7

 P(Refund=Yes|Yes) = 0

Tid Refund Marital
Status

Taxable
Income Evade

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

cate
goric

al

cate
goric

al

contin
uous

cla
ss

 Given record X =(M2, N3,
Q1). What is it’s class?
› P(R1) = 1/3

› P(R2) = 2/3

› Calculate P(R1|X) . Note:
Can’t and don’t need to
calculate P(X). P(X|R1)P(R1)=
P(M2|R1)P(N3|R1)P(Q1|R1)P(
R1) =1*(1/2)*(1/2)(1/3)= 0.083

› Calculate P(R2|X).
P(M2|R2)P(N3|R2)P(Q1|R2)P(
R2) =
(1/4)*(1/4)*(1/4)*(2/3)=0.0104

› Since P(R1|X) > P(R2|X),
record X belongs to class R1

ID M N Q R

1 M1 N3 Q2 R2

2 M2 N3 Q2 R1

3 M2 N2 Q1 R1

4 M1 N2 Q1 R2

5 M2 N1 Q3 R2

6 M1 N1 Q3 R2

Training Data

Assume all attributes categorical.
Assume conditional independence
of class

Class!

Name Give Birth Can Fly Live in Water Have Legs Class

human yes no no yes mammals

python no no no no non-mammals

salmon no no yes no non-mammals

whale yes no yes no mammals

frog no no sometimes yes non-mammals

komodo no no no yes non-mammals

bat yes yes no yes mammals

pigeon no yes no yes non-mammals

cat yes no no yes mammals

leopard shark yes no yes no non-mammals

turtle no no sometimes yes non-mammals

penguin no no sometimes yes non-mammals

porcupine yes no no yes mammals

eel no no yes no non-mammals

salamander no no sometimes yes non-mammals

gila monster no no no yes non-mammals

platypus no no no yes mammals

owl no yes no yes non-mammals

dolphin yes no yes no mammals

eagle no yes no yes non-mammals

Give Birth Can Fly Live in Water Have Legs Class

yes no yes no ?

Unknown record. Find class

 Assume
› A: all attributes of

unknown record

› M: Mammals

› N: Non-Mammal

 P(A|M) =
(6/7)*(6/7)*(2/7)*(2/7)=
0.06

 P(A|N) = 0.0042

 P(A|M)*P(M) = 0.021

 P(A|N)*P(N) = 0.0027
 Hence, since

P(A|M)*P(M) >
P(A|N)*P(N) unknown is
classified as “Mammal”.

Training data

 For continuous attributes:
› Discretize the range into bins

 one ordinal attribute per bin (e.g. poor, good,
better, very good etc. Note: have ordering)

 violates independence assumption
 Discretization may mask discriminating factors of

attribute (loss of information)

› Two-way split: (A < v) or (A > v)
 choose only one of the two splits as new attribute

› Probability density estimation:
 Assume attribute follows a normal distribution

 Use data to estimate parameters of distribution
(e.g., mean and standard deviation)

 Once probability distribution is known, can use it to
estimate the conditional probability P(Ai|c)

 Probability density estimation method

› Assume every continuous attribute normally

distributed.

› Calculate mean, variance for each attribute

given class

› Calculate P(xi|Yj) for each (xi, Yj) pair as

follows, using the normal distribution’s PDF:

𝐏 𝐱𝐢 𝐘𝐣 =
𝟏

𝟐𝛑𝛔𝐢𝐣
𝟐

𝐞
−
𝐱𝐢−𝛍𝐢𝐣

𝟐

𝟐𝛔𝐢𝐣
𝟐

 PDF of normal distribution of attributes

assumption in Naïve Bayes
Some notes:

The PDF (Probability

Density Function) does not
calculate probabilities(!).

For continuous variable X

P(X=x0) = 0. The PDF tells us
the “density” at this point

i.e. how common are

samples (i.e. observed

values) at exactly this

value X=x0

 Assume Income (cont. var)
normally distributed

 Calculate P(xi|ci) for each pair
(xi|ci) using normal distribution’s
PDF

 To do this, calculate for each
class (yes/no), mean and
variance
› For Class=no

 Sample mean μ of “no” class = 110K
(add all income where class=no and
divide by # of “no” classes). Note: will
use value 110, as we take each
income as measured in K. i.e. 125
instead of 125000 (125K)

 Sample variance σ2 of “no” class =
2975

Tid Refund Marital
Status

Taxable
Income Evade

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

cate
goric

al

cate
goric

al

contin
uous

cla
ss

Training Data

P(Income=120 | No) =
𝟏

𝟓𝟒. 𝟓𝟒 𝟐𝝅
𝒆−
(𝟏𝟐𝟎−𝟏𝟏𝟎)𝟐

𝟐∗𝟐𝟗𝟕𝟓 = 𝟎. 𝟎𝟎𝟕𝟐

 Assume previous training data

 We are given new, unclassified
record X=(No, Married, 120K).
Class=?? Mixed: discrete and
continuous attributes.

 Calculate P(X|Class=No) and
P(X|Class=Yes) for record X

 P(X|Class=No) =
P(Ref=No|No)*P(Married|No)*P(120
K|Class=No) = (4/7)*(4/7)*0.0072 =
0.0024

 P(X|Class=Yes) =
P(Ref=No|Class=Yes)*P(Married|
Class=Yes)*P(Income=120K|
Class=Yes) = 1 0 1.2 10-9 = 0

 Calculate now P(X|Class=No)*P(No)
and P(X|Class=Yes)*P(Yes)
› P(X|Class=No)*P(No) = 0.0024 *(7/10) =

0.00168

› P(X|Class=Yes)*P(Yes) = 0

 Since P(X|Class=No)*P(No) >
P(X|Class=Yes)*P(Yes), given
record X is classified as “No”

P(Refund=Yes|No) = 3/7

P(Refund=No|No) = 4/7

P(Refund=Yes|Yes) = 0

P(Refund=No|Yes) = 1

P(Marital Status=Single|No) = 2/7

P(Marital Status=Divorced|No)=1/7

P(Marital Status=Married|No) = 4/7

P(Marital Status=Single|Yes) = 2/7

P(Marital Status=Divorced|Yes)=1/7

P(Marital Status=Married|Yes) = 0

For taxable income:

If class=No: sample mean=110

sample variance=2975

If class=Yes: sample mean=90

sample variance=25

naive Bayes Classifier:

Conditional prob for discrete attributes

from training data

Data needed to calculate continuous

variables assuming normal distribution,

via PDF

 If one of the conditional probability is
zero, then the entire expression becomes

zero

 Other probability estimation:

mN

mpN
CAP

cN

N
CAP

N

N
CAP

c

ic
i

c

ic
i

c

ic
i

)|(:estimate-m

1
)|(:Laplace

)|(:Original c: number of classes

p: prior probability

m: parameter

#Includes functions for Naïve Bayes

library(e1071)

#We will be using the Congressional Voting Records Data Set

#From: http://archive.ics.uci.edu/ml/datasets/Congressional+Voting+Records

#First read the data. Note the dataset HAS NO headers, hence set header to FALSE.

#We well add headers later. NOTE: Change your path to data appropriately!

voteData = read.csv("house-votes-84.data", header=FALSE)

attach(voteData)

#Add headers to data. Makes working with dataset easier

colnames(voteData) <- c("party", "infants", "water-cost", "budgetRes", "PhysicianFr",
"ElSalvador", "ReligSch", "AntiSat", "NicarAid", "Missile", "Immigration", "CorpCutbacks",
"EduSpend", "RightToSue", "Crime", "DFExports", "SAExport")

#Take a quick look at the data. Is everything ok?

head(voteData)

#Looks fine. We are now ready to train our model and derive our Naïve Bayes

#classifier. We want to predict the party based on how a congress delegate

#has voted on various issues.

NaiveBayesModel <- naiveBayes (party ~ ., data = voteData)

#Done! Model created. Variable NaiveBayesModel contains now our naïve bayes model

#as it resulted from the training data (voting records dataset)

#Now, try to predict the party based on the voting history of some congressman. See next
slide

#Now, try to apply the Naïve Bayes model to an unknown record.

#Add a new unknown record to existing voteData. Note that first attribute (party) has

#value ? meaning we don’t know it and try to guess it from all the other

#attributes. NOTE: we will get a warning but we ignore it.

voteData[nrow(voteData)+1,] <-

c("?","n","n","y","y","y","n","n","y","n","n","y","n","y","y","y","y")

#Apply Naive Bayes model to unknown record i.e. to last record that was

#added to voteData

unknownRecordClass = predict(NaiveBayesModel, voteData[nrow(voteData),])

#Now unknownRecordClass has the class i.e. party predicted for unknown record.

#Let’s see it

unknownRecordClass

#You can also plot it (sigh)

plot(unknownRecordClass)

 Advantages
› Robust to isolated noise points

› Can handle missing values by ignoring the
instance during probability estimate
calculations

› Robust to irrelevant attributes

 Disadvantages
› Assumption: class conditional independence, which may

cause loss of accuracy

› Independence assumption may not hold for some
attribute. Practically, dependencies exist among variables
 Use other techniques such as Bayesian Belief Networks

(BBN)

 Cover, T., and P. Hart. 1967. Nearest neighbor pattern
classification. IEEE Transactions on Information Theory. 13(1):
21-7.

 S. Arya, D. N. Mount, S. Netanyahu, R. Silverman, A. Y. Wu,
An optimal algorithm for approximate nearest neighbor
searching, Journal of the ACM, 1998

 A. Broder, S. Glassman, M. Manasse, G. Zweig, Syntactic
clustering of the Web , WWW6.

 S. B. Imandoust, M. Bolandraftar, Application of K-
Nearest Neighbor (KNN) Approach for Predicting
Economic Events: Theoretical Background, Int. Journal of
Engineering Research and Applications, 2013

 D. Guegan, P. Rakotomarolahy, The Multivariate k-Nearest
Neighbor Model for Dependent Variables: One-Sided
Estimation and Forecasting, Working paper
http://econpapers.repec.org/paper/msecesdoc/09050.htm

 Brandts, Jordi, Jacob K. Goeree, and Charles
A. Holt “Naive Bayesian Learning and
Adjustment to Equilibrium in Signaling Games,”
University of Virginia, Discussion Paper, (1996,
revised 1999)

 Kim J, Le DX, Thoma GR. Naive Bayes Classifier for Extracting
Bibliographic Information From Biomedical Online Articles
Proc 2008 International Conference on Data Mining. Las
Vegas, Nevada, USA. July 2008;II:373-8

 Ng, A., M. Jordan, “On discriminative vs.
generative classifiers: A comparison of logistic
regression and naive Bayes,” in Advances in
Neural Information Processing Systems 14.
Cambridge, MA: MIT Press, 2002.

