Managing Big Data Classification: Alternative Methods

Manolis Tzagarakis Assistant Professor Department of Economics University of Patras

> tzagara@upatras.gr 2610969845 google:tzagara Facebook: tzagara SkypelD: tzagara **QuakeLive: DeusEx**

Reminder of the classification problem Given a collection of records **(training set)**

› Each record contains a set of *attributes*, one of the attributes is (always) the *class*.

 Find a *model* **for class attribute** as a function of the values of other attributes.

 Goal: **previously unseen** records should be **assigned a class** as accurately as possible.

A big picture of classification methods

Alternative methods

 Rule-based classifiers k-Nearest Neighbors (k-NN) **• Naïve Bayes**

Rule-based classifiers

- **Classify records** by using a collection of **"if…then…" rules**
- General form of rule: **(***Condition***)** *y*
	- › where
		- *Condition* is a **conjunctions (logical AND/)** of attributes
		- *y* is the **class label**
	- › *LHS*: rule **antecedent or condition (Left-hand side)**
	- › *RHS*: rule **consequent (Right-hand side)**
	- › **Examples** of classification rules:

(Blood Type=Warm) (Lay Eggs=Yes) Birds

Antecedent/LHS Consequent/RHS

Rule-based classifier (Example)

Records (also called *instances***)**

Set of rules for above dataset

R1: (Give Birth = no) \land (Can Fly = yes) \rightarrow Birds **R2: (Give Birth = no)** \wedge (Live in Water = yes) \rightarrow Fishes **R3: (Give Birth = yes) (Blood Type = warm) Mammals R4: (Give Birth = no)** \wedge (Can Fly = no) \rightarrow Reptiles **R5: (Live in Water = sometimes) Amphibians**

Applying rule-based classifier Say that a rule *r* **covers an instance or record x** if the **attributes** of the instance **satisfy the condition of the rule (result TRUE)**

R1: (Give Birth = no) \land (Can Fly = yes) \rightarrow Birds R2: (Give Birth = no) \wedge (Live in Water = yes) \rightarrow Fishes R3: (Give Birth = yes) \land (Blood Type = warm) \rightarrow Mammals R4: (Give Birth = no) \land (Can Fly = no) \rightarrow Reptiles R5: (Live in Water = sometimes) \rightarrow Amphibians **Set of rules**

Above rules cover instances (look at conditions):

The rule R1 covers a instance "hawk" => Bird (class)

The rule R3 covers the instance "grizzly bear" => Mammal (class)

Measuring "quality" of rule?

- **Assume classification rule A → y**, where A an expression of any number on conjunctions on attributes, y class attribute and a dataset D
- **Coverage of a rule:**
	- › **Fraction of records** that **satisfy only the antecedent** (LHS or expression A) of a rule

Coverage(r) = $\frac{|A|}{|D|}$,

 $|A|$ = number of inst. satisf. antecedent,

 $|D|$ = number of inst. in dataset

Accuracy of rule

› **Fraction of records** that **satisfy both the antecedent and consequent of a rule**

 $Accuracy(r) = \frac{|A \cap y|}{|A|}$,

 $|A \cap y|$ = number of inst. satisf. antecedent and consequent

Measuring "quality" of rule? Examples

- Rule: **(Status=Single) No**
	- \geq Coverage of rule = 4/10 = 40%
	- \rightarrow Accuracy of rule = 2/4 = 50%
- Rule: **(Refund=Yes) Yes**
	- Coverage of rule = $3/10 = 30\%$
	- Accuracy rule = $0/3 = 0\%$
- Rule: **(Status=Married) (TaxInc. < 70k)** \rightarrow No
	- Coverage of rule = $1/10 = 10\%$
	- Accuracy or fule = $1/1 = 100\%$
- Rule: **(Refund=No) (TaxInc. > 65K) Yes**
	- Coverage of rule = $6/10 = 60\%$
	- Accuracy or rule = $3/6 = 50\%$

Dataset, |D|=10

How do rules work?

• Rules are triggered by each instance i.e. starts the execution. Example:

R1: (Give Birth = no) \land (Can Fly = yes) \rightarrow Birds

R2: (Give Birth = no) \land (Live in Water = yes) \rightarrow Fishes

R3: (Give Birth = yes) \land (Blood Type = warm) \rightarrow Mammals

R4: (Give Birth = no) \land (Can Fly = no) \rightarrow Reptiles

R5: (Live in Water = sometimes) \rightarrow Amphibians

What rules are triggered by the above data?

- **A lemur triggers rule R3, so it is classified as a mammal**
- **A turtle triggers both R4 and R5**
- **A dogfish shark triggers none of the above rules**

Characteristics of rules

Mutually exclusive rules

- › Classifier contains mutually exclusive rules if the rules are independent of each other
- › Every record is covered by at most one rule

Exhaustive rules

› Classifier (i.e. set of rules) has **exhaustive coverage** if it **accounts for every possible combination** of attribute values

Each record is covered by at least one rule

Examples of characteristics

Example

R1: (Body Temp = cold) \rightarrow Not mammal R2: (Body Temp = warm) \land (Gives birth = yes) \rightarrow Mammal R3: (Body Temp = warm) \land (Gives birth = no) \rightarrow Not mammal

This rule set is i) mutual exclusive and ii) exhaustive

Building classification rules

Two ways

- › **Direct Method**
	- **Extract rules directly from training data**
	- Algorithms: RIPPER, CN2, Holte's 1R

› **Indirect Method**

- **Extract rules from other classification models** (e.g. decision trees, neural networks, etc).
- Algorithms: C4.5rules

Direct method

Sequential covering algorithm

- 1. Start from an empty rule
- 2. Grow a rule using **the Learn-One-Rule function**
	- Grow a rule, by **adding attributes in a greedy way**
- 3. Remove training records covered by the rule
- 4. Repeat Step (2) and (3) until stopping criterion is met

Direct method

Sequential covering algorithm

- › Extracts rule for each value of class sequentially.
- › Learn-one-rule returns one new rule based on its efficiency:
	- Large positive rate
	- Small negative rate
- How are rules "grown"?

Example of Sequential Covering

(i) Original Data (ii) Step 1

Start by finding instances with attributes/conditions that have great positive cover by rule. Remove these instances

Example of Sequential Covering

(iii) Step 2

R1 R2

(iv) Step 3

Continue finding the next rule which covers as much of the space as possible.

Strategies for growing rules

 How do rules grow i.e. get "bigger" by enclosing more conditions?

- Two Strategies
	- › **General to specific**
	- › **Specific to general**

Strategies for growing rules

Strategies for growing rules

Specific to general

1. Select one random instance

2. Create rule out of instance, by forming conjunctions **from attributes of instance**

3. **Start removing conjunctions** until it starts covering negative instances

Summary of Direct Method

Grow **a single rule**

- Using general-to-specific or specificto general strategies
- **Remove Instances** satisfying rule
- Prune the rule (if necessary)
- **Add rule** to Current Rule Set
- **⊙ Repeat**

Indirect Method Use Decision Tree to extract rules

 Add rules by **forming conjunctions at each node**. **Braches/Paths to leaves represent one rule**

Indirect Method - Example

R1: (Refund=Yes) \rightarrow No **R2:** (Refund=No) \land (MarSt=Married) \rightarrow No **R3:** (Refund=No) \land (MarSt = Single, Divorced) \land (TaxInc < 80K) \rightarrow Yes

Advantages of Rule based classifiers

- As **highly expressive** as decision trees
- Easy to **interpret**
- Easy to **generate**
- Can classify new instances **rapidly**
- Performance **comparable to decision trees**

k-Nearest Neighbors

Instance-based classifiers

also

- **Instance based classifier?**
	- **Just store** the training records forever
	- **Do not process** training records at all to learn something (in contrast to e.g. decision trees)
	- **Use stored training records** to predict class label of unseen

Unseen Case

Instance-based classifiers

- Instance-based are among the simplest classifiers in existens
- Examples methods:
	- › **Rote-learner**
		- **Memorizes (i.e. stores)** entire training data and performs **classification only** if attributes of record **match** one of the training examples **exactly**
	- › **k-Nearest neighbor (k-NN)**
		- Uses **k "closest" points (nearest neighbors)** for performing classification
			- **For categorical class vars: majority vote** of k closest points

Nearest Neighbor Classifiers Basic idea of k-NN (aka duck-typing): › If it **walks like a duck**, **quacks like a duck**, then **it's probably a duck**

k-Nearest Neighbors Classifiers

- Outline of k-NN algorithm (quite simple)
	- › **Calculate distance** between **new (unclassified) record** and **all other records in dataset (training set)**
	- › Find the **k records in dataset with the closest distances to new record**
		- **k is always given, input of algorithm**
	- › **Look** at the **class of these k nearest records**
	- › If **majority** of the k records **belong to class C**, then **new record** is assigned **class C (one way)**
		- **k** usually chosen odd
	- › k-NN is a **non-parametric method** (in contrast to decision trees)
		- **Non-parametric?** Does not care at all about he distribution of records

k-Nearest Neighbor Classifiers

$\overline{\bullet}$ Historical note

› One of the **earliest methods** to classify records (and one of the simplest)

1956

Nearest-Neighbor (NN) Classifiers

- NN **requires three things**
	- The **set of stored records**
	- **Distance Metric to compute** distance between records
	- The **value of** *k*, the number of nearest neighbors to retrieve
	- To classify an unknown record:
		- Compute **distance to all other training records**
		- Identify *k* **nearest neighbors i.e. smallest distance**
			- Use **class labels of nearest neighbors** to determine the class label of unknown record (e.g., by taking **majority vote**)

Defining Neighbors

(a) 1-nearest neighbor (b) 2-nearest neighbor (c) 3-nearest neighbor **k=1 k=2 k=3**

k-Nearest Neighbors of a record x are data points that have **the k smallest distance to x**

1 nearest-neighbor

1-NN (k=1) **aka Voronoi Diagram**

If unknown record falls in this area, then class of unknown record is the class of training record defining the area

In a Voronoi diagram: -Points are training records -Areas represent "regions" where the training record is the closest point and hence defines the class

> **Training records**

Nearest Neighbor Classification

- Based on the **notion of distance** between records (or "points")
- How to **calculate distance between records?**
	- › **Many, many ways depending on attribute types and objective**
- For **records with numerical attributes**, variations of the Minkowski distance:

$$
d(x,y) = \sqrt{\sum_{k=1}^n |(x_k - y_k)|^r}
$$

Nearest Neighbor Classification If **r=1**, Minkowski distance becomes the Manhattan distance

$$
d(p,q) = \sum_{i=1}^k |p_i - q_i|
$$

... where **p**, **q** vectors i.e. $\left[\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3, ..., \mathbf{p}_k\right)$ **of numericals**.

Nearest Neighbor Classification If **r=2**, Minkowski distance becomes the **Euclidean distance**

$$
d(p,q)=\sqrt{\sum_{i=k}^k (p_i-q_i)^2}
$$

... where **p**, **q** vectors i.e. $\left[\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3, ..., \mathbf{p}_k\right)$ **of numericals**.
- **3 most popular distance measures** in use for numerical records in k-NN:
	- **1. Euclidean** distance
	- **2. Manhattan** or **City block** distance
	- **3. Supremum or L_n norm**, i.e. Minkowski distance when $\mathbf{r} \rightarrow \infty$. What does that mean?
		- **As r** $\rightarrow \infty$, the Minkowski formula is **dominated by the term with the biggest difference**
		- A fancy way of saying: "*ignore all other attributes/dimensions except the ones with the biggest difference*".

Solution: Normalize the vectors to unit length

Curse of dimensionality

› In general when large number of attributes present, **all records become close i.e. distances shrink**.

- What about records with **nominal attributes?**
	- › E.g. (blue, Spaghetti, skirt)
	- › Compute **Overlap (or Hamming) measure**:

$$
d(p,q) = \sum_{i=1}^m d(p_i,q_i)
$$

… where **p, q** vectors with nominal values $d(p_i, q_i) = 1$ if $p_i \ll q_i$ and $d(p_i, q_i) = 0$ if $p_i = q_i$ i.e. distance is 1 if they differ and 0 otherwise

Nearest Neighbor Classification - Overlap measure example

Training records/dataset – stored permanently

 Classification of new data? Based on overlap (Hamming) distances:

- › If k=1, then new record belongs to **class B**
- › If k=2, then new record belongs to **classes A or B (?)**
- › If k=3, then new record belongs to **class A**
- › If k=4, then new record belongs to **class A**

- Overlap (Hamming) distance **not the only way** to measure distance **for nominal attributes**
- More clever ways to calculate distances of nominal attributes, which give much better results
	- › For example **Value Difference Measure VDM**

Value Difference Measure

- › Takes into consideration the class(!)
- › Gives much better results than the Hamming distance
- › Defined as:

$$
d(p,q) = \sum_{i=1}^n |P(c_i|p) - P(c_i|q)|^n
$$

… where **p, q nominal values**, **n=number of classes**, **P(ci|p) = probability of class cⁱ given the presence of value p (Bayesian prob.)**

Note: The **Modified Value Difference Measure** does **not raise to power n** the difference.

- Example of VDM
	- › Assume cars sold in various colors: **red**, **green**, **blue** etc
	- › For Overlap measure, difference between **red and green** is the same as the difference **red and blue**

› However, **red and blue cars may sell more** than green cars which somehow implies that **red is closer to blue than to green**

- VDM aims to capture this
- Measures always depend on the objective!

- How to calculate **distance** when vectors have **numerical and nominal attributes** (mixed data types) ?
	- › e.g. **(43, blue, Married, 50901, Good, Peking Duck, 0.87)** ?
	- › **Not always an easy task!**
	- › **Find yourself** one measure that makes sense
		- You can come up with your own **that makes sense for your context**
		- Although there are many available e.g. Gower's General Similarity Coefficient
	- › You may also **combine different measures into a single measure. E.g.**
		- Euclidean distance for numerical attributes
		- Other measure for nominal values
		- Combine (somehow) the above two

• In general

- › **You design** your own distance measure function
- › Put your knowledge of the domain in
- › **Reason about what makes things similar and what not**
	- Depends on the domain, objective etc

- Aren't there **any properties that the distance function must have**? Yes there are
- A metric or distance function D(·, ·) for all points x, y and z, must satisfy the following properties:
	- \triangleright **Nonnegativity**: $D(x, y) \ge 0$
	- \triangleright **Reflexivity:** $D(x, y) = 0$ if and only if $x = y$
	- \triangleright **Symmetry:** $D(x, y) = D(y, x)$
	- **Triangle inequality:** $D(x,y)+D(y,z) \ge D(x,z)$

Example of k-nn: ordinal and nominal values **Training records (stored)** Credit risk data

Class

 How would Maria who is **single, high-income earner, and low in debt be classified**? Record for Maria: *(Low, High, No)*

- Assume **k=3**
- Proper distance metric?
	- Using Overlap (Hamming): 0=same, 1=different and sum

Maria: **(Low, High, No, ????)**

Step 1.

Calculate distance of Maria from all other records of the training set. **d(Maria, Joe) = 1 + 0 + 1 = 2 d(Maria, Amber) = 0 + 0 + 1 = 1 d(Maria, Harry) = 0 + 0 + 0 = 0 d(Maria, Lindsay) = 1 + 1 + 1 = 3 d(Maria, Kaley) = 0 + 1 + 0 = 1**

Assume **k=3**

• Proper distance metric?

Using Overlap (Hamming): 0=same, 1=different and sum

Maria: **(Low, High, No, ????)**

Step 2. Sort distances in ascending order **d(Maria, Harry) = 0 d(Maria, Amber) = 1 d(Maria, Kaley) = 1 d(Maria, Joe) = 2 d(Maria, Lindsay) = 3**

Assume **k=3**

● Proper distance metric?

Using Overlap (Hamming): 0=same, 1=different and sum

Maria: **(Low, High, No, ????)**

Step 3.

Keep the k closest records to Maria (here, k=3)

d(Maria, Harry) = 0 d(Maria, Amber) = 1 d(Maria, Kaley) = 1

The **k-neighborhood of Maria**

Assume **k=3**

● Proper distance metric?

Using Overlap (Hamming): 0=same, 1=different and sum

Maria: **(Low, High, No, ????)**

Step 4.

Look at the class of the 3 closest record to Maria

d(Maria, Harry) Poor (=class of Harry) d(Maria, Amber) Good (=class of Amber) d(Maria, Kaley) Poor (=class of Kaley)

Assume **k=3**

● Proper distance metric?

Using Overlap (Hamming): 0=same, 1=different and sum

Maria: **(Low, High, No, POOR)**

Step 5.

Assign to Maria the most frequent class (majority vote)

d(Maria, Harry) Poor d(Maria, Amber) Good d(Maria, Kaley) Poor

Class of Maria: POOR

Example MVDM

Calculate distances using the **Modified** value difference metric (MVDM)

Class

d(Single, Married) = | P(Yes|Single) – P(Yes|Married) | + |P(No|Single) – $P(No|Married)$ | = | $(2/10)/(4/10)$ – $(0/10)/(4/10)$ | + $(2/10)/(4/10)$ – $(4/10)/(4/10)$ = 1

d(Single, Divorces) = | 2/4 – 1/2 | + | 2/4 – $1/2$ | = 0

d(Married, Divorced) = $| 0/4 - 1/2 | + | 4/4 - 1/4|$ $1/2$ | = 1

d(Refund=Yes, Refund=No) = $\sqrt{0/3} - \frac{3}{7}$ | + | 3/3 – 4/7 | = **6/7**

Example of k-nn: ordinal and nominal values **Training records (stored)** Credit risk data

Class

 How would Maria who is **single, high-income earner, and low in debt be classified**? **NOTE: Using MVDM**

Record for Maria: *(Low, High, No)*

Assume **k=3**

Distance metric?

› Using **MVDM**

Step 1.

Calculate distance of Maria from all other records of the training set using MVDM. Hence calculate first differences between nominal values of all attributes.

Maria: **(Low, High, No, ????)**

Dept?: d(High, Low) = |P(Good|High) – P(Good|Low) | + |P(Poor|High) – P(Poor|Low)| = |1/2 – 1/3| + |1/2 – 2/3| = 0.33333

Incomme? d(High, Low) = |P(Good|High) – P(Good|Low)| + |P(Poor|High) – P(Poor|Low)| = |(2/5)-(0/5)| + |(1/5)-(2/5)| = 0.6

Married?d(Yes, No) = |P(Good|Yes) – P(Good|No)| + |P(Poor|Yes) – P(Poor|No)| = |(1/2) – 0| + ||(1/2) – 1 | = 1

Proper distance metric?

Using **MVDM**

Maria: **(Low, High, No, ????)**

Step 2.

Calculate actual distances. Based on previous slide

d(Maria, Harry) = d(Low, Low) + d(High, High) + d(No, No) = 0 d(Maria, Amber) = d(Low,Low) + d(High, High) + d(No,Yes) = 0 + 0 + 1 = 1 d(Maria, Kaley) = d(Low, Low) + d(High,Low) + d(No,Yes) = 0 + 0.6 + 1 = 1.6 d(Maria, Joe) = d(Low,High) + d(High,High) + d(No,Yes) = 0.333 + 0 + 1 = 1.333 d(Maria, Lindsay) = d(Low,High) + d(High,Low) + d(No,Yes) = 0.333 + 0.6 + 1 = 1.933

Proper distance metric?

Using MVDM

Maria: **(Low, High, No, ????)**

Step 3. Sort distances in ascending order

d(Maria, Harry) = 0 d(Maria, Amber) = 1 d(Maria, Joe) = = 1.333 d(Maria, Kaley) = 1.6 d(Maria, Lindsay) = 1.933

Proper distance metric?

Using **MVDM**

Maria: **(Low, High, No, ????)**

Step 4.

Keep the k (=3) closest records to Maria

d(Maria, Harry) = 0 d(Maria, Amber) = 1 d(Maria, Joe) = = 1.333

- Proper distance metric?
	- Using **MVDM**

Maria: **(Low, High, No, ????)**

Step 5.

Get class of the k (=3) closest records to Maria

 $d(Maria, Harry) = 0 \rightarrow Poor (=class of Harry)$ **d(Maria, Amber) = 1 Good (=class of Amber)** $d(Maria, Joe) = 1.333 \rightarrow Good (=class of Joe)$

- Proper distance metric?
	- Using **MVDM**

Maria: **(Low, High, No,** *Good***)**

Step 6.

Assign to Maria the most frequent class (majority vote)

 $d(Maria, Harry) = 0 \rightarrow Poor$ **d(Maria, Amber) =** $1 \rightarrow$ **Good d(Maria, Joe) = 1.333 → Good**

- How to reach decision based on k nearest neighbors?
	- › Many different approaches
		- **Un-weighted votes**: count simply the most frequent class among k nearest neighbors
		- **Distance weighted votes:** weigh each vote by some factor that takes into consideration e.g. the distance
			- Hence, records further away have less influence in the voting process

Choosing the value of k:

- › If **k** is **too small**, sensitive to **noise points**
- › If **k** is too **large**, neighborhood **may include points from other classes**
- › **Rule of thumb: k ~= sqrt(number of observations)**

Very important! Scaling issues for numerical attributes

- › Attributes may **have to be scaled** to prevent distance measures from being dominated by one of the attributes
- › Example:
	- height of a person may vary from 1.5m to 1.8m
	- weight of a person may vary from 90lb to 300lb
	- income of a person may vary from \$10K to \$1M
	- Assume **all above in record data**. Difference in **income a lot greater** than **height difference**, which **influences (dominates) the distance measure**.
	- In **practice**, all numerical attributes are usually **scaled to the (0,1) range (other ranges possible too)**

- Why scaling Example
	- › Assume vector representing visitors/customer to a website with attributes: **Age, Income, Number of visits .**
	- **Jim: (75, 55000, 35)** => Jim is old and visits site often

k-NN distance measure may calculate that Alice is closest to Jim, because income dominates

Alice: (22, 54000, 0) => Alice is young and never

visited the site

But this does not sound "reasonable". Other attributes differences have been masked by income

Nearest Neighbor Classification \circ How to scale? Many different ways › Calculate what portion of the range a value accounts for (called **min-max normalization**)

…where **"Old value"** current value of an attribute, **xminimum** = the minimum value of the attribute and **xmaximum** = the maximum value of the attribute Ranges from 0 to 1. Do this for all attributes.

- How to scale? Many different ways
	- Express each value in **terms of z scores** i.e. how many std. deviations σ it is away from the mean of attribute (called **standardization**):

$$
z_{val} = \frac{(val - \overline{y_{val}})}{\sigma}
$$

…where **"val"** a value of an attribute, **= mean of attribute y for which val is a value** and **σ the std deviation of attribute y** Ranges aprox. from -3 to 3 Apply this to all numerical attributes

k-NN classifiers are **lazy learners**

- › It does **not build models explicitly**
	- **Instead stores training data and computes distances every time (wtf!). Does not build model.**
- › Unlike eager learners such as decision tree induction and rule-based systems
- › Classifying unknown records **is relatively expensive**
	- **Always compute again distances instances for each new record**
- Decision Trees/Rule-based are **eager learners**
	- They **build model out of training data**

kNN prone to **overfitting** › Overfitting when k small (k=1). Why?

When k small then

classification prone to noise. E.g consider a space where most points are class A, few class B. Test records **happens to be near record of class B.** If k=1 probably misclassified as B, which is counterintuitive.

Nearest Neighbor implementation in R

- Using the iris dataset to classify different species of iris plant
	- › 3 species: **virginica**, **setosa**, **versicolor**
	- › Determine species (class) based on some characteristics, length and width- of petals and sepals. **Will use k-nn algorithm**

Iris virginica Iris setosa

Iris versicolor

k -NN in R

The k-NN algorithm in R

#includes the class package, containing the necessary functions for k-nn library(class)

#Add the Iris dataset. Note: iris dataset is build-in and comes with R data(iris)

#Take a quick look at the data (peek at data) head(iris)

Something strange things can be seen. The iris dataset is sorted on class. i.e. # 50 first records are all the same species, next 50 are the same etc. # This does not help us in getting a good training dataset which should contain # a good mix of each species. # Hence, first shuffle iris dataset. There are many ways to do it, but this is one

Initialize random number generator set.seed(9850) # Get 150 random numbers from 0 to 1 from a uniform distribution gp <- runif(nrow(iris)) # Now, use the outcome of order on gp, to get the rankings of the random numbers # and use these to shuffle iris records iris <-iris[order(gp),] #Take a look at the values of each attribute. summary(iris) # There is an issue. Attributes have different ranges. This may introduce bias. So, # try to normalize each value of attribute in the range 0 to 1. One easy way to do # this is to normalize is to use min-max normalization : # new value = (old value – col min())/ (col max() – col min()) . To do this, we will use a # function. Makes things easier. …Continued on next slide…

k -NN in R

```
# Continued from previous slide
# Define a function to normalize all attributes. Yes, in R you can define function and
# store the definition of function in variables (whaaaat???)
norm \le function(x){ return( (x-min(x)) / (max(x)-min(x)) ) }
# Now normalize each attribute by applying norm i.e. make each value from 0 to 1
iris[,"Sepal.Length"] <- norm(iris$Sepal.Length) 
iris[,"Sepal.Width"] <- norm(iris$Sepal.Width) 
iris[,"Petal.Length"] <- norm(iris$Petal.Length)
iris[, "Petal.Width"] <- norm(iris$Petal.Width)
#Take a look at the data again
summary(iris)
# Looks cool! Create now training dataset We will use first 129 records as training
# set and the rest as testing set
iris train \leq iris[1:129,]iris test \leq - iris[130:150,]# Single out, i.e. keep separately the class of each record. This will help us make 
# some tests easier. Also, the R function for knn requires it.
iris train target \le-iris[1:129, 5]iris test target \le-iris[130:150, 5]
# This is advance ninja techniques vol 4: without the next lines, R;s knn function
# goes berserk.
iris train <-iris train[, -5]
```
iris test \le -iris test[, -5]

Now we are ready to apply the k-NN algorithm. See next slide…
k-NN in R

Continued from previous slide # Call R's knn function which does our job. Set as k the square root of # number of records in dataset (a rule of thumb)

model1 <- knn(train=iris train, test=iris test, cl=iris train target, k=13)

Ok done! At this point we have calculated the k-nearest neighbors # and assigned class by majority vote for each one of the records in the iris test # dataset. I.e. we have predicted a class for each record in the testing set.

Print the confusion matrix to see how our model has performed table(iris test target, model1)

Complexity of k-NN?

- Suppose we have **training set of size d** and **dimension d and require k closest neighbors**
	- › Complexity to compute distance to one training record: **O(d)**
	- › Complexity to compute distance to all training records: **O(nd)**
	- › Complexity to find k closest distances: **O(nk)**
	- › Total time (complexity): **O(nd + nk)**
	- › **For large training set (usually the case) expensive!**

K-NN: Possible if class is continuous

Classification

y = most common class in set {y₁,..., *y* ˆ \hat{y} = most common class in set $\{y_1, ..., y_K\}$

● Regression

$$
\hat{y} = \frac{1}{K} \sum_{k=1}^{K} y_k
$$

In regression, take the **average of values of k nearest neighbors**. This will be the "class" or dependent value for unknown record

K-NN: Possible if class is continuous

Weighted by distance › Classification

 $\{ D(\mathbf{x}, \mathbf{x}_{1}) y_{1},..., D(\mathbf{x}, \mathbf{x}_{K}) y_{K}\}$ \hat{y} = most common class in wieghted set

› Regression

$$
\hat{y} = \frac{\sum_{k=1}^{K} D(x, x_k) y_k}{\sum_{k=1}^{K} D(x, x_k)}
$$

Advantages/Disadvantages of k-NN?

- Advantages
	- › "Learning" is very, very fast
		- If you can call it "learning" (well, it's not learning actually)
	- › Can "learn" complex target functions/models easily
		- Because **there is no model** to learn.
	- Does not lose any information
		- Compare with decision tree
- Disadvantages
	- **Computationally expensive**, slow query time i.e. slow to classify unknown records
		- Due to **number of times the distance** has to be calculated training sets generally large
	- **Requires lots of storage**
		- Not a problem anymore (in 1956 was great problem)
	- › Easily **fooled by irrelevant attributes** (most important problem) Curse of dimensionality.
		- **Signal of important attributes may be masked by the noise of many irrelevant attributes**

Naïve Bayes Classifiers

Naïve Bayes classifiers

Naïve Bayes classifiers?

- › A **probabilistic framework** for solving classification problems
	- **Probabilistic?** Calculate some probabilities and decide class based on these
	- Record belongs to a class with some probability
		- Can calculate probability for any class (!)
		- We don't assert with certainty the class a record belongs to
- › Based on **conditional probabilities**
- **Based on Bayes theorem**

Preliminaries

● Conditional probability

› **Probability of event A** given that **event B has occurred**

> $P(A|B) =$ $P(A \cap B)$ $P(B)$

Tells us how the probability of events A and B occurring wrt Ω (S). Measures how big/pct the common area is between A and B with respect $\mathbf{to} \Omega$ (S)

Tells us the probability of event A given that B occurred. Measures how big/pct the common area between A and B with respect to B

- Bayes theorem
	- › Tells us how **conditions** are **related to events:**

$$
P(A|B) = \frac{P(B|A)P(A)}{P(B)}
$$

 Derives straight from conditional probabilities:

 $P(A|B) =$ $P(A \cap B)$ $P(B)$, but since $P(B|A) =$ $P(A \cap B)$ $P(B)$ \rightarrow P(A \cap B) = P(B|A)P(A hence $P(A|B) =$ $P(B|A)P(A)$ $P(B)$

 \bullet Intuitively understanding the elements in Bayes' theorem

$$
P(A|B) = \frac{P(B|A)P(A)}{P(B)}
$$

- **P(A)**: Prior belief. Probability of event A before seeing any data. The hypothesis.
- **P(B|A)**: Likelihood. Probability of the data if event B is true
- **P(B)**: Data evidence. Marginal probability of the data
- **P(A|B)**: Posterior probability. Probability of event A after having seen data of event B

Bayes theorem

- › Alternative forms of Bayes' theorem, based on **Law of Total Probability**
- › **Law of total probability?** Assume space Ω is p artitioned into n partitions A_{i} such that $\mathsf{A}_{\mathsf{i}} \cap \mathsf{A}_{\mathsf{j}} = \mathsf{p}$ **ø** (**mutual exclusive**) and ∪ **Aⁱ = Ω** (**exhaustive**), then probability of event B occurring is:

$$
P(B) = \sum_{i=1}^{n} P(A_i \cap B) = \sum_{i=1}^{n} P(B|A_i) P(A_i)
$$

Bayes Theorem Bayes theorem

› Visualizing **Law of Total Probability**

- Bayes theorem
	- › **Based on Law of total probability**, Bayes theorem becomes:

 $P(A|B) =$ $P(B|A)P(A)$ $\sum_{i=1}^n P(B|A_i)P(A_i)$

…assuming that **space B is partitioned in n partitions Aⁱ** with the same properties (i.e. Aⁱ mutual exclusive and exhaustive)

Examples of Bayes theorem (quite counterintuitive)

Assume the following:

- › Breast cancer affects 1% of women
- › A test (e.g. mammogram) detects breast cancer 80% if the person has breast cancer
- › 9.1% of the test detects breast cancer when the person has not cancer (false positive)
- › **Question: Given that a woman takes the test and the test reveals cancer (i.e. indicated that the woman has cancer) what is the probability that she really has cancer?**

Examples of Bayes theorem (quite counterintuitive)

What do we have?

- › **P(has breast cancer)** = 0.01
- › **P(Test says br. cancer | has br. cancer)** = 0.8
- › **P(Test says br. cancer | has not br. cancer)** = 0.096
- › For the woman which took the test and it revealed breast cancer, we are actually looking for this:
	- **P(has breast cancer | test says br. cancer) = ?**
		- The basic idea here is that **it's different for a test to say it** and **actually having it!**

Examples of Bayes theorem (quite counterintuitive)

Applying Bayes Theorem

 $P(has\ br\cdot cancer\ |\ test\ says\ br\cdot cancer) =$ $P(test$ says br. cancer | has br. cancer) $P(has\ br\ .\ cancer)$ P(test says br. cancer)

P(test says br. Cancer | has br. Cancer) known = 0.8, **P(has br. cancer)** also known = 0.01 . For **P(test says br. cancer)** we can **apply the Law of total probability**: we have two partitions -br. Cancer and no br. Cancer- that are mutual exclusive and exhaustive and "test says br. cancer" crosses both areas. **Hence**

P(test says br. cancer) = P(test says br. cancer | has cancer)P(has cancer) + P(test says br. cancer | has no cancer)P(has no cancer) = $0.8*0.01 + 0.096*(1 (0.01) = 0.10304$

Answering the question:

P(has br. Cancer | test says br. Cancer) = (0.8*0.01)/0.10304 = 0.077 (or 7.7%) NOTE: Quite small chance, even test came out positive for breast cancer.

- Assume that **X** are all the values of some attributes of a record r $(x_1, x_2, x_3, ..., x_d)$ and **Y** the class label of the record
	- › Note: **X** will stand in next sections as the **set of all values of attributes of a record (except class of course)**
- Further assume that the **class label Y is non-deterministically related to X**
	- **Non-deterministically?** Simply means you can not associate values of X with a particular value of Y with certainty 100%

- Then, we can **treat X and Y as random variables and calculate P(Y | X)** i.e. the probability that record r, with these values X on its attributes belongs to class Y.
	- › The problem of **classifying record r** becomes **then to find Y (class) that maximizes P(Y|X)**
- This is the **main idea of Bayesian classifiers**

- **P(Y|X)** known as **posterior probability**
- **P(Y)** known as **prior probability**
- As with all classification methods, 2 phases
	- › **Training phase**: Try to calculate P(Y|X) based on the records of the training set
	- › **Testing phase:** Given a record X' with unknown class, and **find P(Y'|X') which maximizes this probability**. If Y' maximizes, say record X' belongs to class Y'

How to compute P(Y|X) ?

- › More clearly **P(Y|X)** is actually **P(Y|x¹** ∩ **x²** ∩ **x³** ∩ **…** ∩ **x^d) where xi values on attributes of record with dimension d. (Remember X attribute values)**
- › Use **Bayes Theorem** to **calculate posterior probability**:

 $P(Y|X) =$ $P(X|Y)P(Y)$ $P(X)$

How to compute P(Y|X) ?

 $P(Y|X) =$ $P(X|Y)P(Y)$ $P(X)$

…calculates posterior probability **based on prior probability P(Y), conditional dependence P(X|Y)** and **P(X) called the evidence.** Now, **given a record r**, with **unknown class Y**, in order to see which class it belongs, try to **maximize P(Y|X)** or **maximize P(X|Y)P(Y)** since <u>P(X) for record r always constant (and not always</u> computable). Record belongs to class Y that maximizes this probability,

How to calculate P(Y|X)?

- › It's **easy to calculate prior P(Y)** based on training set
- › Calculating **P(X|Y) not that easy**.
	- Note: For record r with dimension d and attribute values (x1, x2, x3, … ,xd), **P(X|Y) = P(x¹** ∩ **x²** ∩ **x³** ∩ **…** ∩ **x^d | Y)**
- › Bayes classifiers **differ in their way** they deal with calculating P(X|Y) and what assumptions they make
	- **Naïve Bayes classifier**
	- Artificial Neural Networks (ANN)

Naïve Bayes Classifier

 Naïve Bayes classifier assumes that the attributes X of record r are **conditionally independent of class Y. I.e.**

 $P(X|Y = y) = P(x_1 \cap x_2 \cap \dots \cap x_d | Y = y) = | P(x_i | Y = y)$ \boldsymbol{i} =1 \boldsymbol{d}

In Naïve Bayes, new record r is classified to **class y if** $P(y)$ $\Pi P(x_i | Y=y)$ is maximal.

Naïve Bayes Classifier

- Conditional independence
	- › Let there be **three events X, Y, Z**. We say that event **X is conditionally independent of Z given Y** when:

P(X|Y ∩ **Z) = P(X|Y) or equivalent P(X** ∩ **Z | Y) = P(X|Y)P(Z|Y)**

Naïve Bayes Classifier for discrete attrik

 For discrete attributes: \Rightarrow P(Y) = N_y / N, Y class attributé **P(Yes) = 3/10 P(No) = 7/10** › **P(Xi|Y^k) = |Xik| / Nyk** Where $|X_{ik}|$ number of attributes having value x_i and belong to class Y_k . E.g. **P(Status=Married|No) = 4/7**

Naïve Bayes Classifier for qualitative attributes - applying naïve Bayes example

Class!

Assume all attributes categorical. Assume conditional independence of class

 Given record **X =(M2, N3, Q1).** What is it's class?

- $\sqrt{P(R1)} = 1/3$ $\text{P(R2)} = 2/3$
- › **Calculate P(R1|X)** . Note: Can't and don't need to calculate P(X). P(X|R1)P(R1)= P(M2|R1)P(N3|R1)P(Q1|R1)P(R1) =1*(1/2)*(1/2)(1/3)= *0.083*
- › **Calculate P(R2|X).** P(M2|R2)P(N3|R2)P(Q1|R2)P($R2$) = (1/4)*(1/4)*(1/4)*(2/3)=*0.0104* › **Since P(R1|X) > P(R2|X), record X belongs to class R1**

Naïve Bayes Classifier for qualitative attributes - applying naïve Bayes example

Training data

Assume

- › A: all attributes of unknown record
- › M: Mammals
- › N: Non-Mammal

 P(A|M) = $(\overline{6}/7)^*(\overline{6}/7)^*(2/7)^*(2/7)$ = **0.06**

- **P(A|N)** = **0.0042**
- **P(A|M)*P(M) = 0.021**
- **P(A|N)*P(N) = 0.0027**
- **•** Hence, since **P(A|M)*P(M) > P(A|N)*P(N)** unknown is classified as "Mammal" .

Unknown record. Find class

Naïve Bayes Classifier: Continuous attributes

For continuous attributes:

- › **Discretize** the range into bins
	- one **ordinal attribute** per bin (e.g. poor, good, better, very good etc. **Note: have ordering**)
	- violates independence assumption
		- Discretization may mask discriminating factors of attribute (loss of information)
- › **Two-way split: (A < v) or (A > v)**
	- choose only one of the two splits as new attribute
- › **Probability density estimation:**
	- Assume **attribute follows a normal distribution**
	- Use data to estimate parameters of distribution (e.g., **mean** and **standard deviation**)
	- Once probability distribution is known, **can use it to estimate the conditional probability P(Ai|c)**

Naïve Bayes Classifier: Continuous attributes

- Probability density estimation method
	- › Assume every continuous attribute normally distributed.
	- › Calculate mean, variance **for each attribute given class**
	- › Calculate **P(xi|Y^j) for each (xⁱ , Y^j)** pair as follows, using the normal distribution's PDF:

$$
P\big(x_i\big|Y_j\big)=\frac{1}{\sqrt{2\pi\sigma_{ij}^2}}e^{-\frac{\big(x_i-\mu_{ij}\big)^2}{2\sigma_{ij}^2}}
$$

Naïve Bayes Classifier: Continuous attributes

PDF of normal distribution of attributes assumption in Naïve Bayes

Some notes: The **PDF (Probability Density Function)** does not calculate probabilities(!). For continuous variable X **P(X=x⁰) = 0**. The PDF tells us the "density" at this point i.e. **how common are samples (i.e. observed values) at exactly this value X=x**⁰

$$
P(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}
$$

continuous

Training Data

- Assume Income (cont. var) normally distributed
- \circ Calculate P(x_i | c_i) for each pair $(x_i|c_i)$ using normal distribution's PDF
- To do this, calculate for each class (yes/no), mean and variance
	- **For Class=no**
		- **Sample mean μ of "no" class = 110K** (add all income where class=no and divide by # of "no" classes). Note: will use value 110, as we take each income as measured in K. i.e. 125 instead of 125000 (125K)
		- **Sample variance σ² of "no" class = 2975**

P(Income=120 | No) =

54.54 $\sqrt{2\pi}$

 $\mathbf{1}$

 \boldsymbol{e}

 $(120-110)^2$ $2*2975 = 0.0072$

Naïve Bayes Classifier: Example with unknown record

Conditional prob for discrete attributes from training data

naive Bayes Classifier:

P(Refund=Yes|No) = 3/7 $P(Refund=NolNo) = 4/7$ P(Refund=Yes|Yes) = 0 P(Refund=No|Yes) = 1 P(Marital Status=Single|No) = 2/7 P(Marital Status=Divorced|No)=1/7 P(Marital Status=Married|No) = 4/7 P(Marital Status=Single|Yes) = 2/7 P(Marital Status=Divorced|Yes)=1/7 P(Marital Status=Married|Yes) = 0

For taxable income: If class=No: sample mean=110 sample variance=2975 If class=Yes: sample mean=90 sample variance=25

Data needed to calculate continuous variables assuming normal distribution, via PDF

- Assume previous training data
- We are given **new, unclassified record X=(No, Married, 120K). Class=?? Mixed: discrete and continuous attributes.**
- Calculate P(X|Class=No) and P(X|Class=Yes) for record X
- **P(X|Class=No) =** P(Ref=No|No)*P(Married|No)*P(120 K|Class=No) = $(4/7)*(4/7)*0.0072 =$ **0.0024**
- **P(X|Class=Yes) =** P(Ref=No|Class=Yes)*P(Married| Class=Yes)*P(Income=120K| $Class=Yes$ = 1 \times 0 \times 1.2 \times 10⁻⁹ = 0
- Calculate now P(X|Class=No)*P(No) and P(X|Class=Yes)*P(Yes)
	- $P(X|Class=No)*P(No) = 0.0024*(7/10) =$ 0.00168
		- $P(X|Class=Yes)*P(Yes) = 0$
- **Since P(X|Class=No)*P(No) > P(X|Class=Yes)*P(Yes), given record X is classified as "No"**

Naïve Bayes Classifier improvements

- **If one of the conditional probability is zero**, then the entire expression becomes zero
- Other probability estimation:

Original :
$$
P(A_i | C) = \frac{N_{ic}}{N_c}
$$

\nLaplace : $P(A_i | C) = \frac{N_{ic} + 1}{N_c + c}$
\nm-estimate : $P(A_i | C) = \frac{N_{ic} + mp}{N_c + m}$

c: number of classes p: prior probability m: parameter

Naïve Bayes in R

#Includes functions for Naïve Bayes library(e1071)

#We will be using the Congressional Voting Records Data Set #From: http://archive.ics.uci.edu/ml/datasets/Congressional+Voting+Records

#First read the data. Note the dataset HAS NO headers, hence set header to FALSE. #We well add headers later. NOTE: Change your path to data appropriately! voteData = read.csv("house-votes-84.data", header=FALSE) attach(voteData)

#Add headers to data. Makes working with dataset easier colnames(voteData) <- c("party", "infants", "water-cost", "budgetRes", "PhysicianFr", "ElSalvador", "ReligSch", "AntiSat", "NicarAid", "Missile", "Immigration", "CorpCutbacks", "EduSpend", "RightToSue", "Crime", "DFExports", "SAExport")

#Take a quick look at the data. Is everything ok? head(voteData)

#Looks fine. We are now ready to train our model and derive our Naïve Bayes #classifier. We want to predict the party based on how a congress delegate #has voted on various issues. NaiveBayesModel <- naiveBayes (party \sim ., data = voteData)

#Done! Model created. Variable NaiveBayesModel contains now our naïve bayes model #as it resulted from the training data (voting records dataset) #Now, try to predict the party based on the voting history of some congressman. See next slide

Naïve Bayes in R

#Now, try to apply the Naïve Bayes model to an unknown record.

#Add a new unknown record to existing voteData. Note that first attribute (party) has #value ? meaning we don't know it and try to quess it from all the other #attributes. NOTE: we will get a warning but we ignore it. $voteData[ntow(voteData)+1, 1 < -$ c("?","n","n","y","y","y","n","n","y","n","n","y","n","y","y","y","y")

#Apply Naive Bayes model to unknown record i.e. to last record that was #added to voteData unknownRecordClass = predict(NaiveBayesModel, voteData[nrow(voteData),])

#Now unknownRecordClass has the class i.e. party predicted for unknown record. #Let's see it unknownRecordClass

#You can also plot it (sigh) plot(unknownRecordClass)

Naïve Bayes - Summary

Advantages

- › **Robust** to **isolated noise points**
- › Can handle missing values by ignoring the instance during probability estimate calculations
- › **Robust** to **irrelevant attributes**

Disadvantages

- Assumption: **class conditional independence**, which may cause loss of accuracy
- › **Independence assumption may not hold** for some attribute. Practically, dependencies exist among variables
	- Use other techniques such as Bayesian Belief Networks (BBN)
Appendices

Appendix B: Bibliography

- Cover, T., and P. Hart. 1967. Nearest neighbor pattern classification. IEEE Transactions on Information Theory. 13(1): 21-7.
- S. Arya, D. N. Mount, S. Netanyahu, R. Silverman, A. Y. Wu, An optimal algorithm for approximate nearest neighbor searching, Journal of the ACM, 1998
- A. Broder, S. Glassman, M. Manasse, G. Zweig, Syntactic clustering of the Web , WWW6.
- S. B. Imandoust, M. Bolandraftar, Application of K-Nearest Neighbor (KNN) Approach for Predicting Economic Events: Theoretical Background, Int. Journal of Engineering Research and Applications, 2013
- D. Guegan, P. Rakotomarolahy, The Multivariate k-Nearest Neighbor Model for Dependent Variables: One-Sided Estimation and Forecasting, Working paper http://econpapers.repec.org/paper/msecesdoc/09050.htm

Appendix B: Bibliography

- Brandts, Jordi, Jacob K. Goeree, and Charles A. Holt "Naive Bayesian Learning and Adjustment to Equilibrium in Signaling Games," University of Virginia, Discussion Paper, (1996, revised 1999)
- Kim J, Le DX, Thoma GR. Naive Bayes Classifier for Extracting Bibliographic Information From Biomedical Online Articles Proc 2008 International Conference on Data Mining. Las Vegas, Nevada, USA. July 2008;II:373-8
- Ng, A., M. Jordan, "On discriminative vs. generative classifiers: A comparison of logistic regression and naive Bayes," in Advances in Neural Information Processing Systems 14. Cambridge, MA: MIT Press, 2002.