


 Given a collection of records (training set )
› Each record contains a set of attributes, one of the 

attributes is (always) the class.

 Find a model for class attribute as a 
function of the values of other attributes.

 Goal: previously unseen records should be 
assigned a class as accurately as possible.
› A test set is used to determine the accuracy of the 

model. Usually, the given data set is divided into 
training and test sets, with training set used to build 
the model and test set used to validate it.



Tid Refund Marital
Status

Taxable
Income Cheat

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

Goal: Try to guess value of 
cheat (the “class”) based on 
the other values of that record

One record

Goal: Find function f() such that: 

f (Refund, Marital Status, Taxable Income) = Cheat

Here, class = cheat 

attribute of records.

It’s called classification 

because we try to put each 

record in one class/category 

(“yes”, “no”)

 Example of classification



 Prerequisites for classification

› Must have class attribute

› Class attribute MUST BE discrete

 I.e. set of values of class attribute countable, 

fixed and known beforehand.

› Other attributes of records (except class 

attribute) can be anything: discrete and/or 

continuous. 



Tid Refund Marital
Status

Taxable
Income Cheat

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

One record

NOTE: 
When class is a continuous 
attribute, then such tasks are called 
regression (which you probably 
know but we won’t deal with this). 
Basic difference between 
classification and regression .

Again, here we’re interested only in 
situations where class is a discrete 
attribute (=classification).

“Class” also mentioned as: 

categories, category labels, 

labels.



 Formal definition of the classification 

problem

“Classification is the task of
learning a target-function f, that
maps each attribute set x to one
of the predefined class labels y.”

 Target-function f also known as 

classification model or simply model.



 Descriptive modeling

› Used as an explanatory tool for distinguishing 

objects in different categories

 E.g. for biologists to explain how a mammal, bird, 

fish is defined based on some characteristics

 Predictive modeling

› Used as a tool to predict the label of a class of 

unknown objects

 E.g. predict whether or not customers will be 

defaulting on loans or not



 Best
› When class attribute is binary (i.e. only has only 

two distinct values) or is nominal

 Not so good
› When class attribute is ordinal (=values can be 

ordered e.g. Small, Medium, Large, XLarge)

 Classification does not take into consideration the 
ordering that ordinals imply – be careful 

› When class attribute resembles hierarchy 
(category/subcategory)

 Our focus: class attribute is binary or 
nominal



 Predicting tumor cells as benign or 
malignant

 Classifying credit card transactions 
as legitimate or fraudulent

 Classifying secondary structures of 
protein 
as alpha-helix, beta-sheet, or 
random
coil

 Categorizing news stories as 
finance, 
weather, entertainment, sports, etc



 Decision Tree based Methods

 k-nearest neighbors

 Rule-based Methods

 Memory based reasoning

 Neural Networks

 Naïve Bayes and Bayesian Belief 
Networks

 Support Vector Machines (SVD)



Apply 

Model

Induction

Deduction

Learn 

Model

Model

Tid Attrib1 Attrib2 Attrib3 Class 

1 Yes Large 125K No 

2 No Medium 100K No 

3 No Small 70K No 

4 Yes Medium 120K No 

5 No Large 95K Yes 

6 No Medium 60K No 

7 Yes Large 220K No 

8 No Small 85K Yes 

9 No Medium 75K No 

10 No Small 90K Yes 
10 

 

Tid Attrib1 Attrib2 Attrib3 Class 

11 No Small 55K ? 

12 Yes Medium 80K ? 

13 Yes Large 110K ? 

14 No Small 95K ? 

15 No Large 67K ? 
10 

 

Test Set

Learning

algorithm

Training Set

In training set: 
class of each 

record already 
known and 
correct and this 
creates the 
model!

In testing set: 
class of each 
record unknown 
and the goal is to 
find it by applying 

the model.



 The goal is to find a model that assigns to 
each record the correct class

 However, errors may occur
› What is an “Error”? Model puts record in class j

when it in reality, it belongs to class k .

 Confusion matrix tells us the performance

Predicted class by model

Class 1 Class 0

True class it 

belongs to

Class 1 f11 f10

Class 0 f01 f00

Confusion matrix: 
f11 tells us the 
number of class 1 
items that have 
been put by 
algorithm in class 

1 . 
In general: fij = 
number of items 
in class i
predicted by 
model as class j. 



 Metrics based on confusion matrix

› Accuracy

 Pct of correctly identified classes

› Error rate

 Pct of incorrectly identified classes





 What is a decision tree?
› A hierarchical structure, with nodes and edges, 

which recursively partitions the data (records) 
into classes, by examining the values of its 
attributes. 

› Build classification of regression models in the 
form of a tree (hierarchical structure)

› Decision trees are models
 Built by the training set to determine the structure

 Used by the testing set to assign records into a class

› The basic idea: perform a series of 
steps/comparisons in order to reach a 
conclusion (=i.e. class). The decision tree tells you 
which comparisons to make.



Tid Refund Marital
Status

Taxable
Income Cheat

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

MarriedSingle, Divorced

< 80K > 80K

Splitting Attributes

Training Data Model:  Decision Tree

Builds

NOTE: There could be more than one tree that fits the same data!



 Types of nodes in decision trees

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

MarriedSingle, Divorced

< 80K > 80K

Root node: Has no 
incoming edges and 0 or 
more outgoing edges

Internal node: Has exactly 
one incoming edge and 2  
or more outgoing edges

Leafs or terminal nodes: Has 
exactly one incoming edge 
and 0 outgoing edges



 In decision trees, each leaf/terminal node is 
assigned a class label (i.e. one value of the 
class attribute)

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

MarriedSingle, Divorced

< 80K > 80K
Leaf or terminal node: 
Assigned one value of class 
attribute (in each leaf one 
of the 2 values of cheat: 
{YES, NO} )



 Non-terminal nodes (i.e. root and 
internal nodes) contain test conditions 

on the record’s attributes.

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

MarriedSingle, Divorced

< 80K > 80K

Root/internal node: Test 
condition on some attribute 
of data. 
Root applies test condition 
on attribute Refund

Applies test condition on 
attribute Marital Status

Applies test 
condition on 
attribute 
Taxable 
income



 Edges have labels, indicating the values 

of the test condition

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

MarriedSingle, Divorced

< 80K > 80K

Possible value of attribute 
“Refund”.  Here, value of 
Refund is “No”.

Possible value of 
attribute “Refund”.  
Here, value of 
Refund is “Yes”.

Possible value of 
attribute “Marital 
Status”.  Here, value of 
Marital status is 
“Married”.

Possible value of 
attribute “Marital 
Status”.  Here, value of 
Marital status is Single 

or Divorced.

Possible value of 
attribute “Taxable 
Income”.  Here, value 
of taxable income is > 
80K.



 Decision trees (=the model) are built by 

using the training data

› Where the class is already known and 

correct 

 Decision trees (=the model) are used by 

testing and unknown sets to classify the 

data



Apply 

Model

Induction

Deduction

Learn 

Model

Model

Tid Attrib1 Attrib2 Attrib3 Class 

1 Yes Large 125K No 

2 No Medium 100K No 

3 No Small 70K No 

4 Yes Medium 120K No 

5 No Large 95K Yes 

6 No Medium 60K No 

7 Yes Large 220K No 

8 No Small 85K Yes 

9 No Medium 75K No 

10 No Small 90K Yes 
10 

 

Tid Attrib1 Attrib2 Attrib3 Class 

11 No Small 55K ? 

12 Yes Medium 80K ? 

13 Yes Large 110K ? 

14 No Small 95K ? 

15 No Large 67K ? 
10 

 

Test Set

Tree

Induction

algorithm

Training Set

Decision 

Tree



Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

MarriedSingle, Divorced

< 80K > 80K

Refund Marital 
Status 

Taxable 
Income Cheat 

No Married 80K ? 
10 

 

Test Data
Start from the root of tree and 
apply conditions to record of 
test data.

We’ve built this 

decision tree (model) 

from the training 

data.

Our goal: Try to 

predict value of 

Cheat for this 

particular record.



Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

MarriedSingle, Divorced

< 80K > 80K

Refund Marital 
Status 

Taxable 
Income Cheat 

No Married 80K ? 
10 

 

Test Data



Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

MarriedSingle, Divorced

< 80K > 80K

Refund Marital 
Status 

Taxable 
Income Cheat 

No Married 80K ? 
10 

 

Test Data



Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

MarriedSingle, Divorced

< 80K > 80K

Refund Marital 
Status 

Taxable 
Income Cheat 

No Married 80K ? 
10 

 

Test Data



Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

Married Single, Divorced

< 80K > 80K

Refund Marital 
Status 

Taxable 
Income Cheat 

No Married 80K ? 
10 

 

Test Data



Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

Married Single, Divorced

< 80K > 80K

Refund Marital 
Status 

Taxable 
Income Cheat 

No Married 80K ? 
10 

 

Test Data

Reached leaf node 
which contains a 
class.

Assign value of leaf 
node to cheat i.e. 
assign cheat to 
“No” . Since record 
has been assigned 
to class (“No”), 
terminate.

No



Apply 

Model

Induction

Deduction

Learn 

Model

Model

Tid Attrib1 Attrib2 Attrib3 Class 

1 Yes Large 125K No 

2 No Medium 100K No 

3 No Small 70K No 

4 Yes Medium 120K No 

5 No Large 95K Yes 

6 No Medium 60K No 

7 Yes Large 220K No 

8 No Small 85K Yes 

9 No Medium 75K No 

10 No Small 90K Yes 
10 

 

Tid Attrib1 Attrib2 Attrib3 Class 

11 No Small 55K ? 

12 Yes Medium 80K ? 

13 Yes Large 110K ? 

14 No Small 95K ? 

15 No Large 67K ? 
10 

 

Test Set

Tree

Induction

algorithm

Training Set

Decision 

Tree

 Each step/test 

condition is 

determined from 

training set

Interested in 

this!



 The problem again!

Tid Refund Marital
Status

Taxable
Income Cheat

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

Training Data

You start with this, AND NO 

DECISION TREE AT ALL

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

MarriedSingle, Divorced

< 80K > 80K

Splitting Attributes

Model:  Decision Tree

Need to 
construct THIS



 Building Decision Tree based on training 

set using Tree Induction

 Many Algorithms :

› Hunt’s algorithm (one of the earliest)

› CART

› ID3, C4.5

› SLIQ,SPRINT



 Let Dt be the set of training 
records that reach a node t

 General Procedure:

› If Dt contains records that 
belong the same class yt, 
then t is a leaf node labeled 
as yt

› If Dt is an empty set, then t is 
a leaf node labeled by the 
default class, yd

› If Dt contains records that 
belong to more than one 
class (note: this is the 
training set and we know 
the class), use an attribute 
test to split the data into 
smaller subsets. Recursively
apply the procedure to 
each subset.

Tid Refund Marital 
Status 

Taxable 
Income Cheat 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 

 

Dt

?

Training Data



Tid Refund Marital
Status

Taxable
Income Cheat

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

Refund

Don’t 

Cheat

Yes No

Marital

Status

Don’t 

Cheat
Cheat

Single,

Divorced
Married

Don’t 

Cheat

Refund

Don’t 

Cheat

Don’t 

Cheat

Yes No

Refund

Don’t 

Cheat

Yes No

Marital

Status

Don’t 

Cheat

Cheat

Single,

Divorced
Married

Taxable

Income

Don’t 

Cheat

< 80K >= 80K

Same class? No. 
Find attribute to 
split. Choose 
“Refund”

Split on “Refund”

All records with 
Refund=no. Same 
class? No. 
Choose attribute 
to split.

All records with 

Refund=Yes. All in 

same class? YES! 

No need to split. 

Assign class



 Greedy strategy (greedy algorithms)
› Split the records of the training set based on 

an attribute that optimizes *now* a certain 
criterion

 Some serious issues though
› How to split the records?

 How to specify attribute test condition for non-
terminal nodes?

 Which attribute to select, i.e. how to determine 
best split?

› When to stop splitting?



 Depends on attribute types of records. 

Can be:

› Nominal

› Ordinal

› Continuous

 Depends on number of ways to split

› 2-way split

› Multi-way split



 Multi-way split: Use as many partitions as 
distinct values. E.g.

 Binary split:  Divides values into two subsets. 
Need to find optimal partitioning.                                        

E.g.

CarType
Family

Sports

Luxury

CarType
{Family, 

Luxury} {Sports}

CarType
{Sports, 

Luxury} {Family} OR



 Multi-way split: Use as many partitions as 

distinct values. 

 Binary split:  Divides values into two subsets. 

Need to find optimal partitioning.

 What about this split?

Size
Small

Medium

Large

Size
{Medium, 

Large} {Small}

Size
{Small, 

Medium} {Large}
OR

Size
{Small, 

Large} {Medium}

NOPE! Does not 

preserve order. 

REMEMBER: 

Ordinals are 

about order



 Different ways of handling

› Discretization to form an ordinal categorical 

attribute

 Static – discretize once at the beginning

 Dynamic – ranges can be found by equal

interval bucketing, equal frequency 

bucketing (percentiles) or clustering.

› Binary Decision: (A < v) or (A  v)

 consider all possible splits and finds the best cut 

 can be more computational intensive



 Examples of continuous attributes

Taxable

Income

> 80K?

Yes No

Taxable

Income?

(i) Binary split (ii) Multi-way split

< 10K

[10K,25K) [25K,50K) [50K,80K)

> 80K



 How to determine which attribute to 

select for split i.e. determine best split?

› Is it possible to somehow measure the 

“goodness”/quality of a split based on some 

attribute?

 If yes, select the split with the best quality

 (Answer: YES, there are measures.)



 Intuitive observations in order to come 

up with a measure

Assume before splitting: 10 records of class 0,

10 records of class 1

Own

Car?

C0: 6

C1: 4

C0: 4

C1: 6

C0: 1

C1: 3

C0: 8

C1: 0

C0: 1

C1: 7

Car

Type?

C0: 1

C1: 0

C0: 1

C1: 0

C0: 0

C1: 1

Student
ID?

...

Yes No Family

Sports

Luxury c1
c10

c20

C0: 0

C1: 1
...

c11

This means: If splitting based on attribute 
“Own car”, then out of all records with 

value “Yes” in “Own Car”, 6 belong in 
class 0 and 4 in class 1.

Q: Which attribute (Own Car, Car Type, 

Student ID) is better? i.e. Which split is 

better? ANSWER: Car Type.

Split all records 
on “Own Car” 
attribute

Split all records 
on “Car Type” 
attribute

Split all records 
on “Student ID” 
attribute



 All algorithms have greedy and divide and 
conquer approach: 
› Nodes with homogeneous class distribution are 

preferred
 Homogeneous? Low impurity, low intermixing of records 

belonging to different classes, records to belong mostly 
to one class  

 Need a measure of node impurity:

C0: 5

C1: 5
C0: 9

C1: 1

Non-homogeneous, 

High degree of impurity
Homogeneous, Low 

degree of impurity

Split records on 

attribute A
Split (same) records on 

attribute B

This is better!



 Three measures of node impurity

› Gini index

› Entropy

› Misclassification error

 Different algorithms use different node 

impurity measures. E.g.

› ID3, C4.5 uses Entropy

› Hunt, CART, SLIQ, SPRINT uses Gini index



 Gini index for a given node t

…where p(j|t) the relative frequency of class j at node t 
(Note: each node may contain records from any class)

 Observations:
› Maximum = 1 – 1/nc when records of node t are distributed 

equally among classes. Greatest impurity 

› Minimum = 0.0 when all records of node t belong to only 
one class. Smallest (no) impurity.

› Lower values are better/preferred!

› Understanding Gini index? Measures how often 
(=probability) a randomly chosen record would be placed 
in the incorrect class.



 Examples: calculating the Gini index for 

various nodes

P(C1) = 0/6 = 0     P(C2) = 6/6 = 1 (rel. fr/prob.)

Gini = 1 – P(C1)2 – P(C2)2 = 1 – 0 – 1 = 0 

Class 1 (C1) 0

Class 2 (C2) 6

A node with: 0 rec in class 
0, 6 rec in class 1

Class 1 (C1) 1

Class 2 (C2) 5

P(C1) = 1/6          P(C2) = 5/6

Gini = 1 – (1/6)2 – (5/6)2 = 0.278

Class 1 (C1) 2

Class 2 (C2) 4

P(C1) = 2/6          P(C2) = 4/6

Gini = 1 – (2/6)2 – (4/6)2 = 0.444



 Calculate Gini Index for splits (also referred 
to as “Gini Index of attribute”)

 Assume a node p is split (based on 
attribute) into k partitions (“children”) then 
Gini Index of split:

…where ni = number of records at node i

and n = number of records at node p



 Example: assume binary split. What is the Gini index 
of this split?

B?

Yes No

Node N1 Node N2

Gini(N1) = 1 – (5/7)2 – (2/7)2 = 0.408 

Gini(N2) = 1 – (1/5)2 – (4/5)2 = 0.320

Gini(Split or B) = 7/12 * Gini(N1) 
+  5/12 * Gini(N2) = 7/12 * 0.408 

+ 5/12 * 0.320 = 0.413 QED

N1

C1 5

C2 2

N2

C1 1

C2 4

B? 

(parent)

C1 6

C2 6

Gini index of 
each of the 2 
nodes (N1, N2)



 Examples

Tid Refund Marital 
Status 

Taxable 
Income Cheat 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 

 

Compute Gini index for “Refund” 

attribute (i.e. compute Gini index of split 

based on “Refund”). Cheat is class!

If we split based on “Refund” we get:

Refund

Yes No

Cheat=
Yes

0

Cheat=

No

3

Cheat=
Yes

3

Cheat=
No

4

3 out of 10 rec. 7 out of 10 rec.

Cheat=
Yes

3

Cheat=
No

7

Total 10 rec

Gini(Left node) = 1-(0/3)2-(3/3)2 = 0

Gini(Right node) = 1 – (3/7)2 – (4/7)2 = 0.489  

Gini(Refund) = (3/10) * 0 + 

(7/10) * 0.489 = 0.3423 QED



 Gini gain
› The difference between parent node’s Gini 

index and Gini index of split:

Ginigain = GiniParent - GiniSplit

› Measures how Gini index improves

› Goal: maximize gain, i.e. this difference, which 
determines which attribute to select for splitting 
in this step.

› Important: Used in algorithms to select attributes 
and build decision trees.



B?

Yes No

Node N3 Node N4

A?

Yes No

Node N1 Node N2

Before Splitting: M0

M1 M2 M3 M4

M12 M34

Gain = M0 – M12 vs  M0 – M34 => choose attribute with biggest gain!

C0 N00

C1 N01

C0 N10

C1 N11

C0 N20

C1 N21

C0 N30

C1 N31

C0 N40

C1 N41

Split on A or B 
attribute???



 Example
Tid Refund Marital 

Status 
Taxable 
Income Cheat 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 

 

Compute Gini gain when splitting on attribute 

“Refund”. Cheat is class!

Gini gain(Refund) = Gini of entire dataset –

Gini(Refund)

We have already calculated Gini of attribute 

“Refund” (=0.3423). 

Gini of our entire data set is also called “Gini 

of overall collection of training examples” or 

“Gini of system”:

Gini(training set) = 1-(3/10)2 – (7/10)2 = 0.42

Gini gain(Refund) = 0.42 – 0.3423 = 0.0777 QED



 Using Gini and Gini gain to build decision 
trees

ID M N Q R

1 M1 N3 Q2 R2

2 M2 N3 Q2 R1

3 M2 N2 Q1 R1

4 M1 N2 Q1 R2

5 M2 N1 Q3 R2

6 M1 N1 Q3 R2

Training Data

STEP 1: Compute Gini index for our entire 

dataset: 

Gini = 1 – (2/6)2 – (4/6)2 = 0.444

STEP 2: Compute Gini index for each attribute 

(Split):

Gini(M) = (3/6)*0 + (3/6)*0.444 = 0.222

Gini(N) =  (2/6)*0 + (2/6)*0.5+(2/6)*0.5=0.333

Gini(Q) = (2/6)*0.5 + (2/6)*0.5 + (2/6)*0 = 0.333

STEP 3: Calculate Gini gains for each attribute:

Gini Gain(M) = 0.444 – 0.222 = 0.222 (biggest!)

Gini Gain(N) = 0.444 – 0.333 = 0.111

Gini Gain(Q) = 0.444 – 0.333 = 0.111

Hence, first split based on attribute M



ID M N Q R

1 M1 N3 Q2 R2

2 M2 N3 Q2 R1

3 M2 N2 Q1 R1

4 M1 N2 Q1 R2

5 M2 N1 Q3 R2

6 M1 N1 Q3 R2

Training Data M

M1 M2

R2 Node N2

If M has value M1, then R is 
always R2. Homogeneous 
node! Hence no further 
splitting and make this a 
leaf. 

We make a rule:
M1  R2

R1 2

R2 1

Here, non-homogeneous 
node. Apply same method 
to split based on other 
attribute. Tree will grow at 
this branch.

Root node of tree will be 
test on attribute M



ID M N Q R

1 M1 N3 Q2 R2

2 M2 N3 Q2 R1

3 M2 N2 Q1 R1

4 M1 N2 Q1 R2

5 M2 N1 Q3 R2

6 M1 N1 Q3 R2

Training Data

Calculate again with the same steps.

STEP 1: Compute Gini index for our new 

“entire” dataset (leave out red-ish rows. 

These have already been classified): 

Gini = 1 – (2/3)2 – (1/3)2 = 0.444

STEP 2: Compute Gini index for each 

attribute:

Gini(N) =  (1/3)*0 + (1/3)*0+(1/3)*0 = 0

Gini(Q) = (1/3)*0 + (1/3)*0 + (1/3)*0 = 0

STEP 3: Calculate Gini gains:

Gini Gain(N) = 0.444 – 0.0 = 0.444

Gini Gain(Q) = 0.444 – 0.0 = 0.444

Equal Gini gains. Hence, both are equally 

good. choose one of N, Q. Assume we 

choose N (can also choose Q).



ID M N Q R

1 M1 N3 Q2 R2

2 M2 N3 Q2 R1

3 M2 N2 Q1 R1

4 M1 N2 Q1 R2

5 M2 N1 Q3 R2

6 M1 N1 Q3 R2

Training Data

M

M1 M2

R2 N

Homogeneous nodes. Hence, 

no need to split further. Make 

them leaves with proper class 

values (from nodes) and devise 

rules (include incoming M2):
M2, N1  R2

M2, N2  R1

M2, N3  R1

Dataset empty, hence done. 

Decision tree built.

N1
N2

N3

R2

R1
R1



 For each distinct value, gather counts for each 

class in the dataset

 Use the count matrix to make decisions

 CarType 

 {Sports, 
Luxury} 

{Family} 

C1 3 1 

C2 2 4 

Gini 0.400 
 

 

 CarType 

 
{Sports}  

{Family,
Luxury} 

C1 2 2 

C2 1 5 

Gini 0.419 
 

 

 CarType 

 Family Sports Luxury 

C1 1 2 1 

C2 4 1 1 

Gini 0.393 
 

 

Multi-way split Two-way split 

(find best partition of values)

Note: for k categorical values you need 

to check (2k – 2)/2 = 2k-1 -1 partitions

Gini(CarType)



 Use Binary Decisions based on one 
value

 Several Choices for the splitting 
value

› Number of possible splitting 
values  = Number of distinct 
values

 Each splitting value has a count 
matrix associated with it
› Class counts in each of the 

partitions, A < v and A  v

 Simple method to choose best v

› For each v, scan the database to 
gather count matrix and 
compute its Gini index

› Computationally Inefficient! 
Complexity: O(n2) computing 
Gini. 
 Repetition of work.

Tid Refund Marital 
Status 

Taxable 
Income Cheat 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 

 

Taxable

Income

> 80K?

Yes No



 How to improve speed?

 For efficient computation: for each attribute,

› Sort the attribute on values. Complexity O(nlogn) =>better!

› Linearly scan these values, each time updating the count 
matrix and computing Gini index. Some optimization tricks:
 Choose split points at midpoint between values

 Identify adjacent examples that differ in their target (class) labels 
and attribute values => Set of candidate splits

› Calculate Gini Index and choose the split position that has 
the least gini index

Cheat No No No Yes Yes Yes No No No No

Taxable Income

60 70 75 85 90 95 100 120 125 220

55 65 72 80 87 92 97 110 122 172 230

<= > <= > <= > <= > <= > <= > <= > <= > <= > <= > <= >

Yes 0 3 0 3 0 3 0 3 1 2 2 1 3 0 3 0 3 0 3 0 3 0

No 0 7 1 6 2 5 3 4 3 4 3 4 3 4 4 3 5 2 6 1 7 0

Gini 0.420 0.400 0.375 0.343 0.417 0.400 0.300 0.343 0.375 0.400 0.420

Split Positions

Sorted Values



 Entropy – measures information (INFO)

 Calculate Entropy for node t : 

…where p(j | t) the relative frequency of class j at 
node t. (note log = base-2 logarithm i.e. log2)

 Measures homogeneity of a node
› Maximum = log nc when all records of node equally 

distributed among classes

› Minimum = 0.0 when all records of node belong to 
one class



 Entropy measures information in a node

› Yes, you can measure amount of 

information!

› Intuitively: when all records of node belong 

to one class, implies most information. Wen 

records of node belong to different classes, 

least information

› Try to maximize amount of information gain

› Entropy based computations similar to Gini

Index computations.



 Examples: calculating the Entropy for 

various nodes

P(C1) = 0/6 = 0     P(C2) = 6/6 = 1 (rel. fr/prob.)

Entropy = – 0log20 – 1log21 = 0 ( note: 0log0 = 0 )

Class 1 (C1) 0

Class 2 (C2) 6

A node with: 0 rec in class 
0, 6 rec in class 1

Class 1 (C1) 1

Class 2 (C2) 5

P(C1) = 1/6          P(C2) = 5/6

Entropy = – (1/6)log2 (1/6) – (5/6)log2 (5/6) = 
0.65 

Class 1 (C1) 2

Class 2 (C2) 4

P(C1) = 2/6          P(C2) = 4/6

Entropy = –(2/6)log2 (2/6) – (4/6)log2 (4/6) = 

0.92  



 Entropy of split
› Assume node p is split into k children, then

Entropy of split (or Entropy of attribute): 

…where ni = number of records at node i, 
Entropy(i) = Entropy of node/child i, n = 
number of records at node p.

Note: Compare to Gini Index of Split: 
Similar!



 Information gain
› Measuring the gain of information when 

splitting on an attribute. Assume parent node 
p split into k partitions (children):

…where ni number of records at node i, n # of records 
at parent and Entropy(i) entropy of child i (note similar 
to Gini)

 Measures reduction in entropy because of split. 
Choose split that achieves most reduction (maximizes 
GAIN)

 Disadvantage: Prefers splits resulting in large number 
of “pure” nodes/partitions (pure=low intermixing)



ID M N Q R

1 M1 N3 Q2 R2

2 M2 N3 Q2 R1

3 M2 N2 Q1 R1

4 M1 N2 Q1 R2

5 M2 N1 Q3 R2

6 M1 N1 Q3 R2

Training Data

STEP 1: Compute Entropy for our entire training data 

(Entropy of node): 

Entropy Node = -(2/6)log2(2/6) – (4/6)log2(4/6) = 

0.9182

STEP 2: Compute Entropy for each attribute of node 
i.e. split node based on each attribute (split – use 

formula on slide 62):

Entropy(M) = (3/6)*0 + (3/6)*[ -(2/3)*log2(2/3) –

(1/3)*log2(1/3)] = 0.4591

Entropy(N) = (2/6)*0 + (2/6)*1+ (2/6)*1 = 0.6666

Entropy(Q) = (2/6)*1 + (2/6)*1 + (2/6)*0 = 0.6666

STEP 3: Calculate Entropy gains for each attribute:

Entropy Gain(M) = 0.9182 – 0.4591 = 0.4591 (biggest!)
Entropy Gain(N) = 0.9182 – 0.6666 = 0.2516

Entropy Gain(Q) = 0.9182 – 0.6666 = 0.2516

Hence, first split based on attribute M (biggest gain)



ID M N Q R

1 M1 N3 Q2 R2

2 M2 N3 Q2 R1

3 M2 N2 Q1 R1

4 M1 N2 Q1 R2

5 M2 N1 Q3 R2

6 M1 N1 Q3 R2

Training Data M

M1 M2

R2 Node N2

If M has value M1, then R is 
always R2. Homogeneous 
node! Hence no further 
splitting and make this a 
leaf. 

We make a rule:
M1  R2

R1 2

R2 1

Here, non-homogeneous 
node. Apply same method 
to split based on other 
attribute. Tree will grow at 
this branch.

Root node of tree will be 
test on attribute M



ID M N Q R

1 M1 N3 Q2 R2

2 M2 N3 Q2 R1

3 M2 N2 Q1 R1

4 M1 N2 Q1 R2

5 M2 N1 Q3 R2

6 M1 N1 Q3 R2

Training Data Calculate again following the same steps (leave out red 
rows).

STEP 1: Compute Entropy for our new “entire” 
node/dataset (leave out red-ish rows. These have 
already been classified): 

Entropy node = -(2/3)log2(2/3) – (1/3)log2(1/3) = 0.9182

STEP 2: Compute Entropy for each attribute (use formula 
on slide 62):
Entropy(N) =  (1/3)*0 + (1/3)*0+(1/3)*0 = 0
Entropy(Q) = (1/3)*0 + (1/3)*0 + (1/3)*0 = 0

STEP 3: Calculate Entropy gains:
Gini Gain(N) = 0.9182 – 0.0 = 0.9182
Gini Gain(Q) = 0.9182 – 0.0 = 0.9182

Equal Entropy gains. Hence, both attributes are equally 
good. Choose one of N, Q. Assume we choose N (can 

also choose Q).



ID M N Q R

1 M1 N3 Q2 R2

2 M2 N3 Q2 R1

3 M2 N2 Q1 R1

4 M1 N2 Q1 R2

5 M2 N1 Q3 R2

6 M1 N1 Q3 R2

Training Data

M

M1 M2

R2 N

Homogeneous nodes. Hence, 

no need to split further. Make 

them leaves with proper class 

values (from nodes) and devise 

rules (include incoming M2):
M2, N1  R2

M2, N2  R1

M2, N3  R1

Dataset empty, hence done. 

Decision tree built.

N1
N2

N3

R2

R1
R1



 Gain ratio 
› alternative way instead of information gain to solve 

information gain problems. 

 Assume node p is split into k partitions (children)

… where ni is number of records in partition i

 Adjust information gain by the entropy of the 
partition. Large number of small partitions is 
penalized (i.e. higher entropy partitions)

 Overcomes disadvantages of Information gain

 Used in C4.5



 Example – Entropy split/ 
attribute

Tid Refund Marital 
Status 

Taxable 
Income Cheat 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 

 

Compute Entropy for “Refund” attribute 

(i.e. compute Entropy of split based on 

“Refund”). Cheat is class!

If we split based on “Refund” we get:

Refund

Yes No

Cheat=
Yes

0

Cheat=

No

3

Cheat=
Yes

3

Cheat=
No

4

3 out of 10 rec. 7 out of 10 rec.

Cheat=
Yes

3

Cheat=
No

7

Total 10 rec

Entropy(Refund=“yes”) = - (3/3)log(3/3) – (0/3)log(0/3) =0
Entropy(Refund=“no”) = - (3/7)log(3/7) – (4/7)log(4/7) = 0.9852 

Entropy(Refund) = (3/10) * 0 + 

(7/10) * 0.9852 = 0.6894 QED

Entire dataset



 Example – Entropy Gain

Tid Refund Marital 
Status 

Taxable 
Income Cheat 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 

 

Compute Entropy gain for split on 

“Refund” attribute. Cheat is class!

Refund

Yes No

Cheat=
Yes

0

Cheat=
No

3

Cheat=
Yes

3

Cheat=

No

4

3 out of 10 rec. 7 out of 10 rec.

Cheat=
Yes

3

Cheat=
No

7

Total 10 rec

Calculate Entropy for parent node (entire dataset):

Entropy(dataset) = -(3/10)log(3/10) – (7/10)log(7/10)= 

= 0.8812

Entropy(Refund) = 0.6894 (see previous slide)

Entropy Gain = 0.8812 – 0.6894 = 0.1918 QED

Entire dataset



 Classification error at node i

 Measures misclassification error made by 
a node.
› Maximum = 1-1/nc when records are equally 

distributed among all classes

› Minimum = 0.0, when all records belong to 
one class



 Examples: calculating the Classification 

error for various nodes

P(C1) = 0/6 = 0     P(C2) = 6/6 = 1 (rel. fr/prob.)

Error = 1 – max(0, 1) = 1-1 = 0

Class 1 (C1) 0

Class 2 (C2) 6

A node with: 0 rec in class 
0, 6 rec in class 1

Class 1 (C1) 1

Class 2 (C2) 5

P(C1) = 1/6          P(C2) = 5/6

Error = 1 – max( 1/6, 5/6) = 1 – 5/6 = 1/6

Class 1 (C1) 2

Class 2 (C2) 4

P(C1) = 2/6          P(C2) = 4/6

Error = 1 – max( 2/6, 4/6) = 1 – 4/6 = 1/3



 Using criteria Entropy and Classification 

error to build Decision Trees in the same 

way the Gini index is used

ID M N Q R

1 M1 N3 Q2 R2

2 M2 N3 Q2 R1

3 M2 N2 Q1 R1

4 M1 N2 Q1 R2

5 M2 N1 Q3 R2

6 M1 N1 Q3 R2

Training Data
STEP 1: Calculate Entropy/Classification 

error for system

STEP 2: For each attribute compute 

Entropy/Classification error (Entropy 

split/attribute etc)

STEP 3: Calculate gains. Choose 

attribute with biggest gain and make it 
node….

… etc …



 For a 2-class problem (Q: why 2-class?)



 Stop expanding when training set is empty

 Stop expanding a node when all the 

records belong to the same class

 Stop expanding a node when all the 

records have similar attribute values

 Early termination





 Accuracy
› Correctly identified categories (all)

 Precision
› Proportion of positive class identification was correct = TP / (TP + 

FP) i.e. 

 Recall
› Proportion of actual positives was correct = TP / (TP + FN) i.e. how 

much of actual positive were identified.

 F-measure (0 to 1) the greater the better.
› Single number for Precision and Recall: F-measure = 

(2*Precision*Recall)/(Precision + Recall)  i.e. harmonic mean!

Predicted class by model

Positive Negative

True class it 

belongs to

Positive True Positive False Positive

Negative False Negative True Negative

Precision

Recall

Important: Above is a 2 class problem. Yet, can generalize 

Accuracy/Precision/Recall to problems with more than 2 classes.

Note on terminology: in 2 class problems 

(binary class problems), classes are 

usually referred to as positive/negative. 

Could also use Class0/Class1 .



 When to use Precision, Recall, F-measure?
› When your classification dataset is imbalanced

 When the distribution of rows in known classes is 
biased or skewed in the training set!
 More clearly: don’t have the same amount of obs in each 

class in your training set. Severe 

› Type of research
 E.g. In medicine, false negative much more important 

than say false positive. Hence, Recall much more 
important. For YT recommendations, Precision better.

› If balanced, accuracy is fine.

Predicted class by model

Positive Negative

True class it 

belongs to

Positive True Positive False Positive

Negative False Negative True Negative





 In R, two ways of building and using 

Decision Trees

› Using the rpart package

 Recursive partitioning for classification
 Documentation

 See: https://cran.r-project.org/web/packages/rpart/rpart.pdf

› Using the tree package

 Example in R presented in next slides

 Code in next slide(s) uses Carseats dataset of package 

ISLR, a simulated dataset containing sales of child car 

seats at 400 different stores



#includes the Carseats dataset, a simulated dataset containing sales of child car seats at 400 different stores

library(ISLR)

#library for Classification and Regression Trees

library(tree)

#Add Carseats dataset to R’s path making thus Carseats dataset available to R

attach(Carseats)

#Take a quick look at the data (peek at data)

head(Carseats)

# The aim of this example is to predict the value for the Sales attribute in the Carseats dataset (i.e. class=Sales). However, 

# Sales attribute is continuous hence we have to transform it into a discrete (=categorical) variable. 

#take a look at the values of attribute Sales in the Carseats dataset

range(Sales)

#Sales is a continuous attribute ranging from 0.00 up until 16.27. We make an assumption and say that if Sales >= 8 then Sales is High,

#otherwise not.

High = ifelse(Sales>=8, "Yes", "No")

# Now High is a list containing Yes/No values, one for each record in dataset

# We must now attach High to the Carseats dataset, increasing its dimension by 1.

Carseats = data.frame(Carseats, High)

# The Sales attribute is no longer needed, since we have transformed it into a discrete value as specified by High. Sales

# is the first attribute of the Carseats dataset, so get rid of it (i.e. remove it from the Carseats dataset). Dimension reduces by 1

Carseats = Carseats[,-1]

# We have made our class attribute a distinct value. Now, select randomly some records from Carseats in order to create the training

# dataset

set.seed(2) # initialize random number generator. Note: if you keep 2, the same records will always be selected

# Create training set. Get 200 random numbers from 1 to 400.

train = sample( 1:nrow(Carseats), nrow(Carseats)/2)

test = -train #the rest will be our testing data

# Train contains the indexes of the records in Carseats that will be included into the training set. Create the actual dataset

training_data = Carseats[train,]

# Create the decision tree using the training data. We want to predict High based on

# all other attributes of the Carseats dataset

tree_model = tree(High~., training_data)

# Decision tree built. Variable tree_model holds now our Decision tree as it has been created from the training set. Now visualize it

plot(tree_model)

# Plot does now show labels on Decision Tree. Plot tree with labels to make it easily understandable.

text(tree_model, pretty=0)

# Next, use the testing data to test the Decision tree referenced by tree_model

 Building/training a decision tree in R (tree library)



 Using Decision tree to classify testing data in R (tree library)
#...continued from previous slide…

# Now that we have built/trained our decision tree, apply it on the testing dataset

# First, select records from Carseats that will comprise our testing dataset. Note:

# the testing dataset has the High attribute but we will not remove it. This is 

# because we will need this to calculate accuracy and error rate. In addition, the 

# tree library will ignore this attribute anyway.

testing_data = Carseats[test,]

# Peek at testing data 

head(testing_data)

# Predict the class attribute (High) for the testing dataset. Apply testing dataset

tree_predict = predict(tree_model, testing_data, type="class")

# Prediction done. Now tree_predict is a one dimensional data structure (separate

# from testing dataset) that holds one value “Yes”/”No” for each record in testing 

# set. I.e. the first value in tree_predict corresponds to the first record in 

# testing set.

# Now, try to evaluate how well our testing data was classified by calculating the 

# Confusion Matrix. There are two ways to do this:

# Using the 'table' command, which

# compares tree_predict and attribute High from testing dataset like this:

testingDataConfusionTable = table(tree_predict, testing_data$High)

# Ok, let's calculate some quality metrics of the model, in order to see how

# our model performed. We calculate accuracy and error rate of the classifier/mocel

# Calculate accuracy

modelAccuracy = sum( diag(testingDataConfusionTable)/sum(testingDataConfusionTable))

# Calculate Error rate (note could also use 1-modelAccuracy)

modelErrorRate = 1 - sum( diag(testingDataConfusionTable)/sum(testingDataConfusionTable))

# Print the result out nicely. We loooooooooove nice and clear responses.

sprintf("Model accuracy: %f, model error rate:%f", modelAccuracy,modelErrorRate )

# You can also use a different library (instead of table) for calculating the confusion matrix

library(caret) #needed for confusion matrix. Install this package (may take a while)

# Compare tree_predict and attribute High from testing dataset by showing the confuction

# matrix. Look at matrix and accuracy

confusionMatrix(tree_predict, testing_data$High)





 Important aspects of classification using 

Decision Trees

› Underfitting and Overfitting

› How to cope with missing values?

› Cost of classification



 There are two types of errors when dealing 
with decision trees
› Training errors (aka resubstitution errors aka 

apparent error)
 Number of misclassifications of records in the 

training set

› Generalization errors
 Expected errors of misclassifications when model is 

applied on unknown records (or the testing set)

 How to measure misclassification? (see 
confusion matrix)
› Absolute number of records wrongly classified

› Pct of records wrongly classified



 Misclassification on training set? Isn’t this 
impossible?
› Given consistent training set, will algorithms 

produce zero error on training set?

› Considering termination conditions:
 Training set empty: zero error

 All records have the same class: zero error

 No attributes left to split: impossible (consistent 
training set)

 No attribute with positive information gain: possible 
bur unusual

› So, in general, under such circumstance it is 
impossible (occasional possible)



 Misclassification on training set? Isn’t this 
impossible?
› Assume now inconsistent training set

› Consider termination conditions
 Training set empty: zero error

 All instances have the same class: zero error

 No attributes left to split on: inconsistent class. 
Choosing most common class minimizes error

 No attribute has positive information gain: possible 
but unusual

› So, in such situations, it is possible. You have a 
minimum error on the classification of the 
training set (training error)



 Reasons for errors on the training set

› Training set is not a good sample

› (consistent) Noise on some attributes

› Missing attribute values

› Some class values present in small amounts



 Are training errors and generalization 

errors –for a particular model-related?

 Is the following true?

› “Assume two models (also called 

Hypothesis) A and B over the same training 

set. If training_error(A) < training_error(B) then 

Generalization_error(A) < 

Generalization_error(B)” ?

 No. That’s WRONG!



 Underfitting

› When both training errors and generalization 

errors are large.

 Happens when Decision Tree is too simple (i.e. 

small number of nodes)

 When Decision tree has few nodes, it can’t 

deduce the structure/relationships of attributes

 Some data will not fit. Hence errors.



 Overfitting

› When training error is very small but 

generalization errors are large

 Happens when the Decision Tree adapts too 

well on the training data. I.e. perfectly fits 

training data and hence works only for 

training data !

 Happens when Decision Tree grows large and 

complex (large number of nodes) 



 Overfitting

› Testing errors  

decrease at 

the expense 

of the 

generalization 

error!

OverfittingUnderfitting



 Overfitting results in decision trees that 

are more complex than necessary

› Complex? => More nodes

 Training error no longer provides a good 

estimate of how well the tree will perform 

on previously unseen records

 Need new ways for estimating errors

› Important step to improve complex decision 

trees



 Assume
› e(t) = Error on training set

› e’(t) = Error on testing/unknown set (same 
model)

 Two approaches to estimating 
generalization errors
› Optimistic approach

 Assumes that e(t) = e’(t)

 As discussed, rather not good estimation
 Especially for complex decision trees due to overfitting



 Two approaches to estimating generalization 
errors (cont.)
› Pessimistic approach

 The idea: give complex decision trees a penalty and 
calculate a pessimistic/increased error due to this 
complexity
 Affects leaves of tree

 Pessimistic error for a decision tree (or subtree!) T, eg(T) 

…where e(T) = generalization error of decision tree, 
Nt = number of records in training set, nl = number of 
leaves in decision tree and c = penalty (usually 0.5)



 Example
B

Yes No

Node N1 Node N2

N1

C1 5

C2 2

N2

C1 1

C2 4

B

C1 6

C2 6

Assume error: 3/12

Estimated pessimistic error for decision tree:

eg(T) = (3+0.5*2) / 12 = 0.333
(Note: if there were 3 “children”/nodes (same #records and 
error): (3+0.5*3)/12 = 0.375 (increased penalty for 
complexity)



 Tree pruning
› Pruning? Get rid/remove of some sections of 

the decision tree

› Reduces the complexity of the tree (due to 
removal of nodes)

› That way improves accuracy and addresses 
overfitting

 Two approaches to pruning
› Pre-pruning

› Post-pruning



 Pre-Pruning (Early Stopping Rule)

› Stop the algorithm before it becomes a fully-grown 

tree during the training phase

› Typical stopping conditions for a node:

 Stop if all instances belong to the same class

 Stop if all the attribute values are the same

› More restrictive conditions:

 Stop if number of instances is less than some user-specified 

threshold

 Apply 2 test to check if class distribution of instances are 

independent of the available features. If so, stop

 Stop if expanding the current node does not improve 

impurity measures (e.g., Gini or information gain).



 Post-pruning
› Grow decision tree to its entirety from the 

training set

› Trim the nodes of the decision tree in a 
bottom-up fashion

› If generalization error improves after 
trimming, replace sub-tree by a leaf node

 Use of pessimistic error

› Class label of leaf node is determined from 
majority class of instances in the sub-tree

› Can use other methods e.g. MDL for post-
pruning



A?

A1

A2 A3

A4

Class = Yes 20

Class = No 10

Error = 10/30

Assume fully grown tree from training set

Training Error (Before splitting) = 10/30

Pessimistic error = (10 + 0.5)/30 = 10.5/30

Training Error (After splitting) = 9/30

Pessimistic error (After splitting) = 

= (9 + 4 * 0.5) / 30 = 11/30

PRUNE THIS NODE! Replace 

with leaf node “Yes” (majority in subtree)

Class = Yes 8

Class = No 4

Class = Yes 3

Class = No 4

Class = Yes 4

Class = No 1

Class = Yes 5

Class = No 1

Node exists in decision tree, 
(forms subtree) as created 
from dataset.

Should we prune it?



 What does penalty of 0.5 mean?

› Means that for binary split, a node should 

always be grown along children if 

classification improves at least one record

 Is in general cheaper





 Missing values affect decision tree 

construction in three different ways:

› Affects how impurity measures are 

computed

› Affects how to distribute instance with 

missing value to child nodes

› Affects how a test instance with missing value 

is classified



Tid Refund Marital 
Status 

Taxable 
Income Class 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 ? Single 90K Yes 
10 

 

Split on Refund:

Entropy(Refund=Yes) = 0

Entropy(Refund=No) =

= -(2/6)log(2/6) – (4/6)log(4/6) = 0.9183

Entropy(Children) 

= 0.3 (0) + 0.6 (0.9183) = 0.551

Entropy Gain = 0.9 * (0.8813 – 0.551) = 0.3303

Before Splitting:

Entropy(Parent)

= -0.3 log(0.3)-(0.7)log(0.7) = 0.8813

Class=Yes Class=No

Refund=Yes 0 3

Refund=No 2 4

Refund=? 1 0

Probability of this 
gain

Missing value



Tid Refund Marital 
Status 

Taxable 
Income Class 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 
10 

 

Refund
Yes No

Refund
Yes

Tid Refund Marital 
Status 

Taxable 
Income Class 

10 ? Single 90K Yes 
10 

 

No

Probability that Refund=Yes is 3/9

Probability that Refund=No is 6/9

Assign record with unknown Refund to the 

left child with weight = 3/9 and to the 

right child with weight = 6/9

Class=Yes 0+3/9

Class=No 3

Class=Yes 2+6/9

Class=No 4

Class=Yes 0

Class=No 3

Class=Yes 2

Class=No 4



Refund

MarSt

TaxInc

YESNO

NO

NO

Yes
No

Married
Single, 

Divorced

< 80K > 80K

Married Single Divorced Total

Class=No 3 1 0 4

Class=Yes 6/9 1 1 2.67

Total 3.67 2 1 6.67

Tid Refund Marital 
Status 

Taxable 
Income Class 

11 No ? 85K ? 
10 

 

New/unknown record:

Probability that Marital Status 

= Married is 3.67/6.67

Probability that Marital Status 

={Single,Divorced} is 3/6.67





 Classification is the problem of predicting the 
value of a categorical attribute (called the 
class) from a set of 
categorical/discrete/continuous attributes

 Decision Trees are one form of solving this 
problem
› Easy to understand

› Easy to implement

› Easy to use

› Computationally cheap

 Decision Trees are created (grown) from training 
sets, where the class is known and applied to 
testing and unknown data

 Decision Trees have also problems though
› Most important one is Overfitting





 Proof of the “Gini Index of node” formula:

Assume m classes, with i {1,2,3,…,m} denoting the class and fi the fraction 
of items of a node labelled as belonging to class i .
Assume now a randomly selected record labelled as belonging to class i. 
The probability of this random record to NOT belong to class i is (1-fi ). 
Since all records are not drawn with equal probability, the probability of 
selecting an item labelled as belonging to class i is fi. Hence, drawing a 
random record with label i, and the selected record not belonging to class i
has probability  P(i) = fi(1-fi ) 
where P(i) means the probability of  selecting record labelled as belonging 
to i, and record does not belong to class I (i.e. is error)
The total probability of error will hence be: 

=

𝑖=1

𝑚

𝑓𝑖 1 − 𝑓𝑖 = 

𝑖=1

𝑚

𝑓𝑖 − 𝑓𝑖
2 = 

𝑖=1

𝑚

𝑓𝑖 − 

𝑖=1

𝑚

𝑓𝑖
2 = 𝟏 −

𝐢=𝟏

𝐦

𝐟𝐢
𝟐

𝑃 1 𝑂𝑅 2 𝑂𝑅 3 𝑂𝑅 …𝑂𝑅 𝑚 = 𝑃 1 + 𝑃 2 + 𝑃 3 + …+ 𝑃 𝑚 =



 Classification and Regression Trees. L. Breiman, 
J. H. Friedman, R. A. Olshen, and C. J. Stone. 
Wadsworth, Belmont, CA, 1984.

 C4.5: Programs for Machine Learning (Morgan 
Kaufmann Series in Machine Learning) by J. 
Ross Quinlan

 Learning Classification Trees, Wray Buntine, 
Statistics and Computation (1992), Vol 2, pages 
63-73

 On the Boosting Ability of Top-Down Decision 
Tree Learning

 Algorithms. Kearns and Mansour,, STOC: ACM 
Symposium on Theory of Computing, 1996“


