

 Investigate and quantify the relationship
between one variable which takes
continuous values and a set of other
variables that may take any type of value
› In particular, investigate the effects of one (or

more) variable(s) onto the value of another
variable in the dataset.
 E.g. How does the value of one variable

change if other variable(s) change value?

 Goal: come up with a model (i.e. a
function) that predicts and/or explains
the value of one variable based on the
values of other variables.

 In regression, the relationship expressed is
between one variable -called the dependent
variable- and one or more independent
variables

 Very Important! In regression, dependent
variable takes continuous values
› Independent variables can be of any type

 Relationship between variables take the form
of a function/equation: Aims at expressing the
value of the dependent variable as a function
of the values of other independent variables.
› This function also referred to as “regression model”,

“regression equation” or plain “regression”.

 Regression equations can take many
different forms
› But does not imply a deterministic relationship

 Examples of regression equations/models
› FoodConsumption = 0.78 Income + 1459

 e.g. for quantifying the relationship between
annual FoodConsumption (dependent variable) of
families and their annual income (independent)

› CarValue = PurchaseValue - e(0.88*age) e.g.

 E.g for quantifying the relationship between the
present value of a car (dependent variable) and
the variables purchase value and age
(independent variables).

 Purpose of regression models

› Explain the variance in the dependent

variable based on the values of the

independent variables(s) of the existing

dataset

› Predict the value of the dependent variable

based on the values of the independent

variable(s)

 Regression analysis requires a training set
with observations on these variables from
which the relationship between the
interested variables will be quantified.

 A regression model tries to come up with an
equation that best “fits” the data in the
training set.
› There can be many regression equations that fit

the data, but we look for the one that fit the best

› This “fit” can assessed and the usefulness of the
model can be determined.

varY = b1varX1 + b2varX2 + b3varX3 +…+ b0

Dependent

variable
Coefficients/

parameters

Independent

Variables/Predictors/Regressors

Intercept/bias

Terminology

General form of a regression model capturing the relationship between

variable varY and variables varX1, varX2,….

 Examples of regression models (note the

coefficients and independent variables):

𝚱𝛂𝛕𝛂𝛎𝛂𝛌𝛚𝛔𝛈 = 𝜷𝟏𝜠𝜾𝝈ό𝜹𝜼𝝁𝜶
𝟐 + 𝜷𝟎

𝚨𝛒𝛕𝛈𝛒𝛊𝛂𝛋𝛈 𝛑𝛊𝛆𝛔𝛈 = 𝜷𝟏𝜱ύ𝝀𝝀𝝄 + 𝜷𝟐 𝜢𝝀𝜾𝜿𝜾𝜶 + 𝜷𝟎

𝒍𝒏 𝜠𝜾𝝈ό𝜹𝜼𝝁𝜶
= 𝜷𝟏𝚬𝛍𝛑𝛆𝛊𝛒𝛊𝛂 + 𝜷𝟐𝚬𝛍𝛑𝛆𝛊𝛒𝛊𝛂 + 𝜷𝟑𝚬𝛋𝛑𝛂𝛊𝛅𝛆𝛖𝛔𝛈 + 𝜷𝟎

𝑪𝒓𝒐𝒑 𝒚𝒊𝒆𝒍𝒅 =
𝟏

𝒃𝟏 + 𝒃𝟐𝑪𝒓𝒐𝒑𝑺𝒑𝒂𝒄𝒊𝒏𝒈
𝒃𝟑
+ 𝜷𝟎

 In a regression model, the unknowns are the

coefficients of the independent variables

(usually represented as betas bi) and the
goal is to estimate them from the training set

and assess their importance

› Estimation of coefficients is done using the

existing training dataset

› The coefficients bi for each independent variable

tell us how that independent variable influences

the dependent.

› Values of the independent variables are known

from the training data

 Types of regression models
› Based on how the value of the dependent

variable changes when the values of the
independent variables or coefficients change
(That’s very, very important and always to keep
in mind – determines the form of the regression
model)
 i.e. how a change in the coefficients/parameters

and independent variables affect the dependent
variable.

 Expressed as rate of change:
ΔY

ΔΧ
,
ΔY

Δb

› Two types
 Linear regression models

 Nonlinear regression models

 Types of regression models
› Linear regression models

 In linear regression models the dependent
variable depends linearly on all the
coefficients/parameters (and only the
coefficients!)

 “Depends linearly” means that the rate of
change of the dependent variable -if the
coefficient changes- is independent of the
value of the coefficient (i.e. constant wrt
coefficient). I.e. rate of change constant

 Linear regression models do not need to
depend linearly on the independent variables!

 Types of regression models

› Linear regression models

 The model Consumption = b1Income + b0 is a linear

model because the value of consumption

depends linearly on all coefficients b of the model:

(e.g. assuming coefficient b1 increases by some ε):

𝚫𝐂𝐨𝐧𝐬𝐮𝐦𝐩𝐭𝐢𝐨𝐧

𝚫𝒃𝟏
=

𝒃𝟏 + 𝜺 𝑰𝒏𝒄𝒐𝒎𝒆 + 𝒃𝟎 − 𝒃𝟏𝑰𝒏𝒄𝒐𝒎𝒆 − 𝒃𝟎
𝜺

= 𝑰𝒏𝒄𝒐𝒎𝒆

Independent of the value of coefficient b1 that

changed. Hence the model is linear. Model

happens to be also linear with respect to

independent variable Income.

 Types of regression models
› Linear regression models

 Dependent variable does not need to be linearly
dependent on the independent variables (can be
but its not required). This means linear regression
models –when plotted- can form curves.

 Hence that all the following regression models are
also linear although they are not linear with respect
to the independent variables.

𝑪𝒐𝒏𝒔𝒖𝒎𝒑𝒕𝒊𝒐𝒏 = 𝒃𝟏𝑰𝒏𝒄𝒐𝒎𝒆 + 𝒃𝟐𝑭𝒂𝒎𝒊𝒍𝒕𝒚𝑺𝒊𝒛𝒆𝟑 + 𝒃𝟎

𝑩𝒍𝒐𝒐𝒅𝑷𝒓𝒆𝒔𝒖𝒓𝒆 = 𝒃𝟏𝑺𝒆𝒙 + 𝒃𝟐 𝑨𝒈𝒆 + 𝒃𝟎

𝐥𝐧 𝑰𝒏𝒄𝒐𝒎𝒆 = 𝒃𝟏𝑬𝒙𝒑𝒆𝒓𝒊𝒆𝒏𝒄𝒆 + 𝒃𝟐𝑬𝒙𝒑𝒆𝒓𝒊𝒆𝒏𝒄𝒆
𝟐 +

𝒃𝟑𝒀𝒆𝒂𝒓𝒔𝑬𝒅𝒖𝒄𝒂𝒕𝒊𝒐𝒏 + 𝒃𝟎

All these are

considered

linear models

because they

depend linearly

on the

coefficients.

Not on the

independent

variables. You

may substitute

e.g. FamilySize3

with a new

variable say Z

 Types of regression models

› Nonlinear regression models

 In nonlinear regression models the dependent

variable does not depend linearly on all the

coefficients (and only the coefficients!)

 “Does not depend linearly” means that the

rate of change of the dependent variable -if

one of the coefficient changes- is dependent

of the value of the coefficient i.e. definitely not

constant!

 Types of regression models
› Nonlinear regression models

 The following are examples of nonlinear
regression models

𝑹𝒂𝒕𝒆 𝒐𝒇 𝒓𝒆𝒂𝒄𝒕𝒊𝒐𝒏 =
𝒃𝟏𝑪𝒐𝒏𝒄𝒆𝒏𝒕𝒓𝒂𝒕𝒊𝒐𝒏

𝒃𝟐 + 𝑪𝒐𝒏𝒄𝒆𝒏𝒕𝒓𝒂𝒕𝒊𝒐𝒏

Rate of a chemical
reaction and the
concentration of

substance

𝑪𝒓𝒐𝒑 𝒚𝒊𝒆𝒍𝒅 =
𝟏

𝒃𝟏 + 𝒃𝟐𝑪𝒓𝒐𝒑𝑺𝒑𝒂𝒄𝒊𝒏𝒈
𝒃𝟑

 The notion of error in regression models
› Regression models are approximations that

try to fit in the best way possible the real data
and values of the dependent variable in the
training set.

 You always have a sample – the training set.
Never the population.

 Because regression models approximate the
value of the dependent variable, they never
succeed in capturing/predicting/estimating
the real value of the dependent variable.
 But what is the real value of the dependent variable?

 The notion of error in regression models

› Two types of errors in regression models

 Errors/disturbance

 The difference between the (unobserved) real value of

the dependent variable in the population and the
observed value in the training set. This error can never be

observed or measured because we are unaware of the

real value of the dependent variable in the population.

 Residuals/fitting deviations

 The difference between the dependent value in the

training set and the predicted/estimated value by the
regression model. This can be observed and measured

 The notion of error in regression models
› Errors and residuals are included in the

regression models.

 Adding term ε (for error) when showing the
general model or εi (for residuals) when

› Full specification of a regression model
includes error term e.g.

𝑪𝒐𝒏𝒔𝒖𝒎𝒑𝒕𝒊𝒐𝒏 = 𝒃𝟏𝑰𝒏𝒄𝒐𝒎𝒆 + 𝒃𝟐𝑭𝒂𝒎𝒊𝒍𝒕𝒚𝑺𝒊𝒛𝒆𝟑 + 𝒃𝟎 + 𝜺

› If the error term is not explicitly included in the
regression model, it’s implied.
 This means, there always is an error term in the

model!

 More types of linear regression models

› Simple linear regression models

 When the regression model includes only 2

variables: one dependent and one

independent variable

 E.g. Income = b1Education + b0

› Multiple linear regression models

 When the regression model includes more

than 2 variables

 E.g. Income = b1Education + b2Experience + b0

 Who comes up with regression models and
how?
› Domain experts (economist, statisticians,

engineers, etc)
 Theory

 Read the relevant literature and identify factors that
affect the value of the dependent variable

 Determine the purpose of the model
 Explain the variance or predict the dependent variable?
 These influence how the model will be evaluated.

 Look at the data and how it changes
 From existing data, see how the dependent variable

changes when the independent variables change

 Trial and error
 Begin by trying simple regression models and assess the

results. Continue by modifying the model if results are not
appropriate.

 Who comes up with regression models?

› Don’t forget: The coefficients of a model are

calculated from the existing dataset (the

training set) and these capture the

relationships between the variables. Hence,

regression models are approximations that

try to fit the best way possible the available

data in the training set.

 In regression analysis you

› First estimate the parameters from the

training set

› Then assess and evaluate the model to see if

it meets the objectives, is useful and

conclusions can be drawn

 Evaluation methods depend on the model’s

purpose (explanation or prediction?)

 In a regression model, the problem is
estimating the coefficients/parameters that will
indicate/quantify the relationships between
the variables
› Coefficients/parameters are estimated from an

existing dataset (the training set) which is required.

Tid House
Price

Marital
Status

Income
m2House

1 190K Single 125K 180

2 145K Married 100K 154

3 101K Single 70K 110

4 187K Married 120K 167

5 109K Divorced 95K 110

6 96K Married 60K 90

7 200K Divorced 220K 190
10

Training

set.

Income = b1m
2House + b0

Unknowns are the parameters b

(independent variables known from

training set). The parameters b of this

regression model are estimated

using the training set. The goal: find

the best values of b which best fit the

values of the dependent variable in

the training set.

 Different methods to estimate

parameters based on the type of the

regression model

› E.g. Linear vs Nonlinear

 The general idea: Estimation of

parameters in regression model (linear or

nonlinear) involves a Cost function (also

called “Loss function”) that needs to be

minimized.

 Cost function tries to measure how big the

error of the regression model is when

estimating the value of the dependent

variable

› The model with smallest error fits the data well

i.e. is the best one.

› Essentially, error is the sum of residuals which is to

be minimized

› Cost functions can have many different forms

 Depending on the purpose

 The form of the cost function determines the type

of regression: Ordinary Least Squares (OLS), LASSO,

Quantile etc

 Linear regression models have the

following general form:

𝒀 = 𝒃𝟏𝑿𝟏 + 𝒃𝟐𝑿𝟐 + 𝒃𝟑𝑿𝟑 +⋯𝒃𝒌𝑿𝒌 + 𝒃𝟎 + 𝜺

Where:

Y: Dependent variable
Xi : Independent variable i

bi: Parameter to be estimated

ε: Error term

 Since linear regression models try to fit the

available training data, the linear regression

model can also be written in the form:

𝒀𝒊 = 𝒃𝟏𝑿𝟏𝒊 + 𝒃𝟐𝑿𝟐𝒊 + 𝒃𝟑𝑿𝟑𝒊 +⋯+ 𝒃𝒌𝑿𝒌𝒊 + 𝒃𝟎 + 𝒆𝒊

Where:
Yi : Value of dependent variable in observation i in training set

Xki : Value of independent variable k in observation i of the

training set
bi: Parameter to be estimated

ei : Residual of the i-th observation in the training set

 If there are n observations in the training

set, then there will be n equations, one

for each observation, of the form:

𝒀𝒊 = 𝒃𝟏𝑿𝟏𝒊 + 𝒃𝟐𝑿𝟐𝒊 + 𝒃𝟑𝑿𝟑𝒊 +⋯+ 𝒃𝒌𝑿𝒌𝒊 + 𝒃𝟎 + 𝒆𝒊

 Because parameters are estimated from the
training set and not the true real values of
the variables (remember: the training set is
just a sample), the estimates are mentioned
in the regression model by adding a hat (^)

𝒀𝒊 = 𝒃𝟏𝑿𝟏𝒊 + 𝒃𝟐𝑿𝟐𝒊 + 𝒃𝟑𝑿𝟑𝒊 +⋯+ 𝒃𝒌𝑿𝒌𝒊 + 𝒃𝟎 + 𝒆𝒊

Where:
𝒀𝒊 : The estimated value of the dependent variable
𝒃𝒊 : The estimated value of the parameter i.

 Regression model in matrix notation

› It’s customary to represent these n regression

equation in matrix notation. If we define:

𝒀 =

𝒀𝟏
𝒀𝟐…
𝒀𝒏

𝑿 =

𝟏 𝑿𝟏𝟏 𝑿𝟐𝟏 … 𝑿𝒌𝟏

𝟏 𝑿𝟏𝟐 𝑿𝟐𝟐 … 𝑿𝒌𝟐

𝟏 𝑿𝟏𝟑 𝑿𝟐𝟑 … 𝑿𝒌𝟑

… … … … …
𝟏 𝑿𝟏𝒏 𝑿𝟐𝒏 … 𝑿𝒌𝒏

𝒃 =

𝒃𝟎
𝒃𝟏
𝒃𝟐
…
𝒃𝒌

𝒆 =

𝒆𝟏
𝒆𝟐
𝒆𝟑
…
𝒆𝒏

› Then the n linear regression equations, derived from

the training set, can be written in matrix form:

𝒀 = 𝑿𝒃 + 𝒆
If you carry out the operations, you’ll

get the n linear regression equations

as vectors.

The matrix form makes it easier to

calculate the parameters using

machines (i.e. computers).

Matrix of values of

independent variables in

training set.

 Two methods for estimating the

parameters of linear regression models

› Ordinary Least Squares (OLS)

› Gradient Descent and its variations

 Each of the above method appropriate

in specific situations.

 Ordinary Least Square (OLS) Regression

› In OLS the cost function is the Sum of

Squared Errors (SSE) i.e. sum of residuals

which must be minimized:

𝑺𝑺𝑬 =

𝒊=𝟏

𝒏

𝒆𝒊
𝟐 =

𝒊=𝟏

𝒏

𝒀𝒊 − 𝒀𝒊
𝟐

› The parameters b which minimize the above

SSE are the parameter estimates of the linear

regression model that best fit the training data.

𝒀𝒊 = Value of the dependent variable in observation i of the training set
𝒀𝒊 = Estimated value by the linear regression model for the values of the

independent variables in observation i in the training set.

 Geometric interpretation of SSE?

› i.e. Draw it for me with crayons pls…

Residual or Error (green line) measures how much “off” (in

terms of distance) is the real from the predicted/estimated

value of the dependent variable Yi by the model for that

value of Xi. Note: not perpendicular to the regression line –

it’s the shortest distance to the regression line.

Data point
(Observed/real 𝑌𝑖for
some Xi)

Predicted value 𝑌𝑖(value

estimated by the model)
for some value of
independent variable Xi .

Residual

Red line is the “Regression line” i.e.
line generated by all the points
generated by the regression model
which is the best “fit” to the data
(a.k.a. best fit line)

𝒀𝒊

Residual

Residual

Residual

Residual

The basic idea:
Sum of all squared

residuals is a

measure of how

good a regression

line (i.e. the

predicted or

estimated values

by a regression

model) is – how

good it fits the

data.

The best regression

line, that fits best to
the data, has of

course the smallest

sum of squared

residuals or errors.

𝒀𝒊

𝑿

 But why Sum of SQUARED errors?

› i.e. why SQUARE the errors?

𝑺𝑺𝑬 =

𝒊=𝟏

𝒏

𝒆𝒊
𝟐 =

𝒊=𝟏

𝒏

𝒀𝒊 − 𝒀𝒊
𝟐

Why this SQUARE in

residuals ????

1st reason: You need positive residuals or errors

because they are in essence distances from the

regression line.

So, why not use absolute measures instead e.g.

𝑌𝑖 − 𝑌𝑖 ? You can actually and that’s used in many

situations –it’s called L1 norm of residuals! If you use

such way of measuring residuals, the regression in

not called OLS anymore. It’s called Least Absolute

Deviations – LAD – regression and used in Robust

regression.

However, L1 norm of residuals has some other issues

(see 2nd reason)

2nd reason: You want to penalize large

residuals. I.e. PUNISH large residuals! This means

that if you have big residuals, YOU WANT TO MAKE

THEM EVEN BIGGER so that SSE gets EVEN BIGGER

when large residuals are present !!! Why is that?

Ask yourself: What’s a better model: many small

errors or 1 huge error? Now assume that Sum of

small errors = 1 huge error. (L1 norm of residuals

cannot differentiate. Squares CAN! I.e. “missing by

a little lots of times is better than missing by a lot a

few times”.

But, if so, why not raise to the power of say 6 or 8 or

10 to punish large residuals more? You can do this

also! But this adds little and makes calculations

more difficult. Hence, raising to the power of 2 is

cheap and does the job…

(Note: you do understand that you CANNOT raise it

to an odd power?)

 Ordinary Least Square (OLS) Regression

› How is the Cost function (SSE) minimized in OLS?

› First write SSE in matrix notation as a function of

the vector b

𝑺𝑺𝑬 𝒃 = 𝒆𝑻𝒆 = 𝒀 − 𝑿𝒃
𝑻
(𝒀 − 𝑿𝒃)

› And then minimize the Cost function (SSE) by
solving the equation of partial derivatives:

𝝏𝑺𝑺𝑬 𝒃

𝝏𝒃
= 𝟎

This equation has a closed form
solution due to the form of the
linear regression. Solving this will
calculate the vector b that
minimizes the SSE and hence
finds the parameters we are
looking for.

 Ordinary Least Square (OLS) Regression

› The closed form solution derived from the

previous equation for estimating the parameters

b of a linear regression model in matrix form is:

› The above closed form formula – called normal
equation - gives you the vector of parameters
estimates b, based on the matrix of values of the
independent variables X and the matrix of the
values of the dependent variable Y in the training
set, which minimize SSE and hence fit the best way
possible the training data

𝒃 = 𝑿𝑻𝑿
−𝟏
𝑿𝑻𝒀

 Gradient descent
› While OLS minimizes the SSE in a very specific way (by

finding the values of b who yield the partial
derivative to zero) leading to a closed form formula
(the normal equation) for estimating the parameters,
Gradient descent minimizes the cost function in a
very different way.
 It also has a cost/loss function but the way it minimizes it

is different

› Gradient descent is an iterative, numerical
optimization method for minimizing the cost function
and thus finding the parameter estimates.
 i.e. Gadient descent does not offer a closed form

formula like the normal equation in OLS for calculating
the parameters.

 “iterative” ? Tries to guess the proper coefficient values
of the parameters that lead to minimizing the cost
function

 Gradient descent
› Why Gradient descent?

 OLS has three main concerns

 1) The normal equation requires inversion of a matrix:

𝒃 = 𝑿𝑻𝑿
−𝟏
𝑿𝑻𝒀

Matrix inversion

 Matrix inversion is a very expensive operation on
computers. I.e. it takes a lot of time to calculate the
inverse. If the XTX matrix has 100 variables (i.e. is an
100x100 matrix), since an inversion requires n3 operations
(n=dimension of matrix) on average, it would require
~1000000 operations to invert the matrix.

 OLS performs poorly in big data settings!

 Gradient descent is much faster in estimating the
parameters in such Big Data settings.

 Gradient descent
› Why Gradient descent?

 2) OLS makes the assumption that the matrix
of independent variables X fits into the
computer’s main memory (RAM).

 You cannot make this assumption when
working with Big Data.
 In big data settings, these matrices of the normal

equation may not fit into the main memory (RAM). In
such cases OLS does not work AT ALL because the
normal equation can’t be calculated.

 How can you in such situations estimate the
coefficients?

 Gradient descent offers versions that can estimate the
parameters even when data does not fit into RAM.

 Gradient descent
› Why Gradient descent?

 3) OLS makes the assumption that you have
all the data available when you start your
parameter estimation.

 In Big Data environments you cannot make
this assumption.
 What happens when you don’t have all your data

available because it arrives at some interval?

 How can you in such situations estimate the
coefficients?

 You can’t use the normal equation in such settings!

 There are versions of Gradient descent that can be
used in such circumstances.

 Gradient descent

› Why Gradient descent?

 4) OLS and the normal equation DOES NOT

WORK AT ALL when the number of

observations is smaller than the dimension of

the dataset i.e. the number of variables!

 E.g. when you have 700 variables and 650

observations.

 Why? Because in such cases 𝑿𝑻𝑿
−𝟏

is not

computable! I.e. 𝑿𝑻𝑿 cannot be inverted.

 Leaving the proof to you

 Gradient descent can be used in such situations.

 Offers .e.g. regularization

 Gradient descent

› Why Gradient descent?

 Gradient descent performs much better –in terms of

execution times/number of operations- in big data

contexts than OLS and in such situations it’s

exclusively used.

 Gradient descent works even when the data does

not fit into main memory or when entire data not

available at the beginning – different versions of GD

› Warning! Gradient descent uses a different

notation for the multiple linear regression model:

𝒉𝜽 𝒙 𝒊 = 𝜽𝟏𝒙𝟏
(𝒊)

+ 𝜽𝟐𝒙𝟐
(𝒊)
+⋯+ 𝜽𝒌𝒙𝒌

𝒊
+ 𝜽𝟎 + 𝜺

𝜽𝒋 = Parameter j (to be estimated) 𝒙𝒋
(𝒊)

= Value of independent variable j in

observation i in training set

 Cost function in Gradient descent

› In Gradient descent the cost function is

called the mean squared error, J(θ)

𝑱(𝜽𝟎, 𝜽𝟏, … , 𝜽𝜿) =
𝟏

𝟐𝒎

𝒊=𝟏

𝒎

𝒉𝜽 𝒙(𝒊) − 𝒚(𝒊)
𝟐

Where:

𝜽𝒊 = (Unknown) parameter i of the linear regression model from a total of

k+1 parameters

𝒎 = Number of observation in training set

𝒉𝜽() = The estimated value of the linear regression model for the values of

the independent variables at observation i in training set.

𝒙(𝒊) = The values of the independent variables of observation i in training set

𝒚(𝒊) = The value of the dependent variable of observation i in training set

 Cost function in Gradient descent

› Gradient descent attempts to minimize the

cost function J(θ) by finding/estimating the

proper values of parameters θ.

𝑱(𝜽𝟎, 𝜽𝟏, … , 𝜽𝜿) =
𝟏

𝟐𝒎

𝒊=𝟏

𝒎

𝒉𝜽 𝒙(𝒊) − 𝒚(𝒊)
𝟐

Often abbreviated simply

as J(θ).

 Cost function in Gradient descent
› Cost function has things in common with the

cost function (i.e. SSE) in OLS but differs a little for

some reasons

𝑱(𝜽𝟎, 𝜽𝟏, … , 𝜽𝜿) =
𝟏

𝟐𝒎

𝒊=𝟏

𝒎

𝒉𝜽 𝒙(𝒊) − 𝒚(𝒊)
𝟐

Sum of squared errors in OLS

Why divide by 2m? m because of
two reasons: i) it’s the mean squared
error and ii) it yields to smaller
numbers which is important due to

the numerical nature of the method.
Also, include the constant 2 in
denominator to make things simpler
as it’s shown later on (hint: it will be
eliminated). However, these terms
do not affect the minimization
process.

𝒉𝜽 𝒙 𝒊 = 𝜽𝟏𝒙𝟏
(𝒊)

+ 𝜽𝟐𝒙𝟐
(𝒊)
+⋯+ 𝜽𝒌𝒙𝒌

𝒊
+ 𝜽𝟎 + 𝜺

Form of the linear regression model, with

θ the unknown parameters, is:

 Cost function in Gradient descent

› Cost function in matrix form

𝑱 𝜽 =
𝟏

𝟐𝒎
𝑿𝜽 − 𝒚 𝑻 𝑿𝜽 − 𝒚 =

𝟏

𝟐𝒎
𝑿𝜽 − 𝒚 𝟐

𝒚 =

𝒚𝟏
𝒚𝟐…
𝒚𝒏

𝑿 =

𝟏 𝑿𝟏𝟏 𝑿𝟐𝟏 … 𝑿𝒌𝟏

𝟏 𝑿𝟏𝟐 𝑿𝟐𝟐 … 𝑿𝒌𝟐

𝟏 𝑿𝟏𝟑 𝑿𝟐𝟑 … 𝑿𝒌𝟑

… … … … …
𝟏 𝑿𝟏𝒏 𝑿𝟐𝒏 … 𝑿𝒌𝒏

𝜽 =

𝜽𝟎
𝜽𝟏
𝜽𝟐
…
𝜽𝒌

Vector of dependent variables

Matrix of independent variables with first
columns all 1s for constant term.

Vector of estimated parameters

Where:

Note: square each
element of vector

Sum of all elements
to get pure number
of J(θ).

 Cost function

› A note on notation: cost function in gradient

descent uses different notation (θ instead of

b for parameters, hθ() for linear regression

model, J(θ) for cost function)

› This is because Gradient descent originated

from a different field. One of the first

algorithms which founded the area of
machine learning in applied mathematics

› We use the same notation used by

contemporary literature.

 General idea of estimating the

parameters θ with Gradient descent

which minimize the cost function J(θ) –

it’s a process i.e. no closed formula:

› Start with initial, random values for the

parameters θ

› Update/Change the values of the
parameters θ in a way that yield to smaller

value of the cost function J(θ)

› Continue changing values of θ iteratively

until the smallest value of J(θ) is attained.

The general idea of

Gradient descent.

Assume a simple linear

regression model hθ(x) = θ0

+ θ1x

The cost function of such

linear regression model,

J(θ), will be convex and an

example cost function is

depicted on the left.

Gradient descent tries to

modify the values of all the

parameters θ iteratively,

towards the smallest value

of J(θ).

 How to change the values of parameters θ in
order to minimize J(θ)?
› The value of the first partial derivative of the cost

function J(θ) with respect to a parameter θj will tell us
how we need to modify the parameter θj (leaving all
other parameters constant) to achieve a smaller
value of J(θ).

 Remember from your math classes:
› If the value of the first derivative of a function f(x) with

respect to x is at some point x0

 positive (>0), an increase of x0 leads to an increase of
f(x). A decrease of x0 leads to decrease of f(x)

 negative (<0), an increase of x0 leads to an decrease of
f(x). A decrease of x0 leads to increase of f(x)

 is equal to zero (=0), an increase of x0 leads to an
increase or decrease of f(x) (has a point of deflection at
x0).

 How to apply this rule on J(θ)?

› In Gradient Descent J(θ) (cost function) is

the f(x), with θs as our X variables.

 Note here: we have many θs hence J(θ) has

many unknowns. We address this later.

› Thus, the value of the first derivative of J(θ)

with respect to θj for some value θ of θj tells

us if θ needs to increase or decrease in order

to achieve an even smaller value of J(θ).

 Value of the first derivative of J(θ) tells us the

direction of change of variable θ (increase or

decrease).

 How to change the values of parameters θ
in order to minimize J(θ)?
› J(θ) is a multivariate function, where the

parameters θj are the unknown variables.

› To apply the derivative technique, we will use
the first partial derivative wrt to one θj parameter
and leaving other θs constant i.e. calculate the

value of
𝝏𝑱 𝜽

𝝏𝜽𝒋
. If this value is positive, a decrease

of θj will decrease the cost function, if it’s
negative, an increase of θj will decrease the
cost function J(θ).

 Do this for all parameters θ to see how they need
to change i.e. calculate 𝜵𝑱 𝜽

 Do this iteratively to get an even smaller value J(θ)

 How to change the values of parameters θ
in order to minimize J(θ)?
› A more clear example

 if initial parameters of θ = (θ0, θ1, θ2, ..., θk) and at
that point the cost function is J(θ), then if the value

of
𝝏𝑱 𝜽

𝝏𝜽𝟐
is negative, this means that a small increase

(update/change) of parameter θ2 leading to
parameters θ’ = (θ0, θ1, θ2+ε ..., θk) (leaving all other
θs the same) will decrease J(θ). If it’s positive,
decrease θ2 to get θ’ = (θ0, θ1, θ2-ε ..., θk) , to get a
smaller J(θ).
 i.e. J(θ’) < J(θ)

 Do the same for each and all θs in the linear
regression model and update their values
accordingly.

 Do such update for each θ iteratively (i.e. many
times over).

 How to change the values of parameters

θ in order to minimize J(θ)?

› In Gradient Descent, each parameter is

updated/changed, at each iteration, using

the following formula:

𝜽𝒋 ≔ 𝜽𝒋 − 𝜶
𝝏𝑱 𝜽

𝝏𝜽𝒋
α is a real value > 0, called the learning rate. It is a constant
given as input to gradient descent. While the partial
derivative will give us the direction in which the cost function
will decrease, it does not specify how big the increase of θ

should be. This is specified by the value of the learning rate
α. Can be imagined as the step by which the θ will change.

Setting the appropriate value for α is very important and
affects the significantly the algorithm.

 How to change the values of parameters θ in
order to minimize J(θ)?
› For a multiple linear regression model, you can actually

calculate
𝝏𝑱 𝜽

𝝏𝜽
for all θs, resulting in the following

update formulas for the parameters θ:

𝜽𝟎 ∶= 𝜽𝟎 − 𝜶
𝟏

𝒎

𝒊=𝟏

𝒎

𝒉𝜽 𝒙 𝒊 − 𝒚 𝒊

𝜽𝒋 ∶= 𝜽𝒋 − 𝜶
𝟏

𝒎

𝒊=𝟏

𝒎

𝒉𝜽 𝒙 𝒊 − 𝒚 𝒊 𝒙𝒋
𝒊

Update for the
constant
term/intercept

Form of linear regression model: 𝒉𝜽 𝒙 𝒊 = 𝜽𝟏𝒙𝟏
(𝒊)

+ 𝜽𝟐𝒙𝟐
(𝒊)
+⋯+ 𝜽𝒌𝒙𝒌

𝒊
+ 𝜽𝟎 + 𝜺

Update for all
other parameters
in the linear

regression model

Where

m: number of observations in training set

hθ(x(i)) : value of linear regression model for the values of independent variables in observation i of the training set

y(i) : value of the dependent variable in observation i of the training set

α : learning rate

xj
(i): value of independent variable xj in observation i of the training set

 How to change the values of parameters

θ in order to minimize J(θ)?

› In matrix form, the previous update formulas

for parameters θ can be written as

𝜽 ∶= 𝜽 − 𝜶
𝟏

𝒎
𝑿𝑻 𝑿𝜽 − 𝜰

Where:
m: Number of observations in training set
𝜽 : The vector of (k+1) parameters of the linear regression model

𝑿 : The mx(k+1) matrix of values of independent variables in the
linear regression model, with the first column all 1 (ones).

𝒀 : The vector of m values of the dependent variables in the

training set

α : the learning rate, given as input

 Gradient descent algorithm

› Pseudocode

Initialize vector of parameters θ with random values

Initialize costVector # We will store the value of the cost function for each

iteration in this vector.

α = 0.01 # Set learning rate. See later how to come up with an appropriate value.

Start iterations of Gradient descent

while termination conditions not met {

update θ vector with

calculate value of cost function J(θ) for the newly calculated values of θ

Store value of cost function into vector costVector

}

Vector θ will contain the estimated parameters which minimize J(θ)

print θ vector # Print the estimated parameters

plot costVector # Plot the costVector

𝜃 ∶= 𝜃 − 𝛼
1

𝑚
𝑋𝑇 𝑋𝜃 − 𝛶

 Gradient descent usually depicted as a

contour plot
Convergence of θs to

the values which

minimize J(θ) is

usually depicted as

Contour plot.

In a Contour plot,

each circle represents

the values of θ that

lead to the same

value of J(θ).

 When does Gradient descent terminate?
› 3 possible termination conditions

 When a predefined number of iterations have
been completed. Typical number of iterations
are n=50, 20000 or greater depending how fast
the algorithm converges

 When the improvement of the cost function is
smaller than a predefined value

 Early stopping. With the current “version” of
the cost function, calculate the cost on a
validation set (different from training set) at
each iteration. Compare the two consecutive
values of J(θ) and if J(θ) starts to increase,
terminate the algorithm. Used to address
overfitting.

 Gradient descent algorithm with predefined

number of iterations as termination condition

Initialize vector of parameters θ with random values

Initialize costVector # We will store the value of the cost function J(θ) for each iteration

here

α = 0.01 # Setting the learning rate

numIterations = 10000 # Number of iterations to carry out

n = 0 # How many iterations we have done

while n < numIterations {

update θ vector with

calculate value of cost function J(θ) for the newly estimated values of θ

Store value of cost function into vector costVector

n = n + 1 # Next iteration

}

Vector θ will contain the estimated parameters which minimize J(θ)

print θ vector

plot costVector

𝜃 ∶= 𝜃 − 𝛼
1

𝑚
𝑋𝑇 𝑋𝜃 − 𝛶

 The learning rate α
› Setting the learning rate α to the proper value is

critical!

 Determines if and how fast Gradient descent
converges to the minimum of the cost function.

 If the value of the learning parameter is too small,
Gradient descent may converge very slowly

 If the value of the learning parameter is too large,
Gradient descent may not converge at all to the
proper values of θ which minimize J(θ). May
diverge!

› How to check if learning parameter α is too
small, too big or just appropriate?

 Empirically, plot the cost function and see its shape

 The learning rate α

› Appropriate value of learning rate

If the value of the

learning rate is

appropriate, the cost

function J(θ) plotted

against the number of

iterations will have

such shape. Cost

function shows a

steep drop and then a

gradual improvement.

To check if the

selected value is

appropriate, run

Gradient descent and

plot the cost function.

 The learning rate α

› Too small value of the learning rate α

If the value of the

learning rate is too

small, the cost

function J(θ) plotted

against the number of

iterations will have

such shape.

This means Gradient

descent will converge

very, very slowly to

the appropriate

values of θs that

minimize J(θ).

 The learning rate α

› Too big value of the learning rate α

If the value of the

learning rate is too

big, the cost function

J(θ) plotted against

the number of

iterations will have

such a shape. The

cost function

increases with each

iteration.

 The learning rate α

› Too big value of the learning rate α

If the value of the learning

rate α is too big, Gradient

descent may overshoot the

proper values of θ that

minimize the cost function.

Overshooting happens

because the value of α is too

big and hence the update θj

= θj - α
𝝏𝑱 𝜽

𝝏𝒋
the new values of

θj may increase by too

much, missing the values for

which J(θ) is minimized.

Gradient descent then

diverges from the proper
values of θs.

 The learning rate α

› Appropriate values for learning rate?

 Typical values of the learning rate α are 0.001, 0.01,

0.1

 Execute Gradient descent with such values of the

learning rate α and plot the cost function J(θ) as a

function of the number of iterations. Compare the

shape of the plot with the plots shown previously.

 If learning rate is too small, increase it by some

amount e.g. from 0.01 to 0.03. Execute Gradient

descent again and plot the cost function. Stop if

the plot of the cost function has the appropriate

shape.

 The version of Gradient descent

discussed previously is the “plain vanilla”

style of the algorithm also known as

“Batch Gradient Descent”

 Two other versions of Gradient Descent

available that improve performance

dramatically in Big data settings:

› Stochastic gradient descent - SGD

› Mini-Batch gradient descent - MBGD

 Why the need to improve the performance

of Gradient descent?

› If number of observations in training set is large

(e.g. 100000000 observations/records or more),

there are two main concerns with Batch Gradient

descent:

 Entire training set must be stored into memory (RAM)

 Update formulas must iterate over the entire training

set to calculate on step for all parameters in each

iteration.

 In such settings, Batch Gradient descent is

computationally expensive!

 Concern: Entire training set into memory
› Looking at the matrix form of the update

formula: Does is fit into memory?

𝜽 ∶= 𝜽 − 𝜶
𝟏

𝒎
𝑿𝑻 𝑿𝜽 − 𝜰

To execute this calculation, the entire matrix of the values of
the independent variables X must be loaded into the main
memory (RAM). What if it does not fit into RAM? E.g. if there
are 10000000 observations and 50 numeric variables, you’ll
need to store 10000000 * 50 = 500000000 numbers and since
each number requires at least 4 bytes you need 500000000 *
4= 2000000000 bytes of data in RAM or ~1.8GB of RAM. Do
you have it?

 Concern: Iterate over the entire training set at
each iteration
› Looking at the analytic formula indicates better the

problem (Note: the same argument holds for the
matrix form, but it’s clearer in the analytic form of the
update formula): Can be slow in big data contexts

If the training set has m=10000000 observations, we iterate
over all 10000000 observations just make one (1) update to
one (1) parameter at one (1) iteration! Considering that we
have many parameters, we traverse the 10000000
observations many times at each iteration. This makes Batch
Gradient descent slow.

𝜽𝒋 ∶= 𝜽𝒋 − 𝜶
𝟏

𝒎

𝒊=𝟏

𝒎

𝒉𝜽 𝒙 𝒊 − 𝒚 𝒊 𝒙𝒋
𝒊

 Why the need to improve the

performance of Gradient descent?

› The solution in such big data environments is

simply not to iterate over the entire training set

at each iteration!

› The two other versions of Batch Gradient

descent treat/scan the training set differently

and address the above concerns

 Stochastic Gradient Descent - SGD
› At each iteration, SGD uses only one observation

of the training set to update the parameters
(instead of the entire training set in GD)

Initialize all parameters θj with random values

Initialize costVector # We will store the value of the cost function J(θ) for each iteration here

α = 0.01 # Setting the learning rate

Randomly shuffle the training set # To ensure that the observations do not have some kind of order

while termination criteria not met{

Calculate cost function and store its value in costVector

for each observation i in training set {

for each parameter θj {

Set new value of parameter 𝑛𝑒𝑤𝜃𝑗
∶= 𝜃𝑗 − 𝛼 ℎ𝜃 𝑥 𝑖 − 𝑦 𝑖 𝑥𝑗

𝑖

}

calculate value of cost function J(θ) for the newly estimated values of θ

Store value of cost function into vector costVector

}

θj := newΘj
n = n + 1 # Next iteration

}

Vector θ will contain the estimated parameters which minimize J(θ)

print θj
plot costVector

 Pros/Cons of SGD
› Pros

 It’s a so-called online algorithm – you see the
update of parameters immediately, in a
sequential fashion, during their estimation i.e. in
real time. That’s not possible with Batch GD

 Does not require entire training set in memory

 Avoids local minima of J(θ)

› Cons

 Can be noisy i.e. parameters jump around at
each epoch with greater variance between
epochs (epoch = one update of all
parameters)

 Mini-Batch Gradient Descent - MBGD
› MBGD does not use one single observation of the

training set to update the parameters. It uses a
“small batch” of training set observations –
typically between 2 and 100 observation in each
batch.
 To do this, we cut the large training set into smaller

training subsets, and use these to update the
parameters at each step

 It’s a method “between” the extremes of Batch
Gradient descent (which uses entire training set for
each parameter update) and Stochastic Gradient
descent which uses only one observation to update
the parameters.

 Can be used when the dataset does not fit into
computer’s memory

 Mini-Batch Gradient descent

Initialize all parameters θj with random values

Initialize costVector # We will store the value of the cost function J(θ) for each iteration here

α = 0.01 # Setting the learning rate

Randomly shuffle the training set # To ensure that the observations do not have some kind of order

Cut the training set into batches/subsets bi each of size nb such that bi*nb =m # Note: last batch
might be smaller than nb
while termination criteria not met{

Calculate cost function and store its value in costVector

for each batch bi {

for each parameter θj {

Set new value of parameter 𝑛𝑒𝑤𝜃𝑗
∶= 𝜃𝑗 − 𝛼 σ𝜄=1

𝑛𝑏 ℎ𝜃 𝑥 𝑖 − 𝑦 𝑖 𝑥𝑗
𝑖

}

calculate value of cost function J(θ) for the newly estimated values of θ

Store value of cost function into vector costVector

}

θj := newΘj # update all parameters with new values

n = n + 1 # Next iteration

}

Vector θ will contain the estimated parameters which minimize J(θ)

print print θj
plot costVector

OLS Gradient descent

Estimates the same, unbiased parameters
for the same training set if the linear
regression assumptions hold (No or little
multicollinearity, No of auto-correlation of
residuals, Homoscedasticity etc)

Estimates of parameters are
approximations and biased. May result in
different parameter estimates for the same
training set and regression model.

Computationally expensive in big data
contexts.

Suitable in big data contexts where
number of variables and number of
observation are very large

Can be used to estimate parameters only

for linear regression models

Can be used (and is used) to estimate

parameters in nonlinear regression

models.

Offers closed formulas (the normal
equation) for calculating the parameters

Does not offer closed formula. Parameter
estimates are iteratively calculated

Requires entire training set in RAM Versions of Gradient descent do not
require entire training set in RAM (e.g.
Stochastic Gradient Descent, Mini-Batch

Gradient Descent)

Taught and used mainly in social sciences
to explain variance of dependent
variable.

Taught and used mainly in computer
science and engineering to predict the
dependent variable.

 Evaluation?

› Checking to see if the estimated model is

justified and useful i.e. achieves its goal.

 Evaluation method depends strongly on

the regression model’s goal

› Whether the goal is to explain the variance

of the dependent variable

› Whether the goal is to predict the value of

the dependent variable

 When the model’s goal is to explain the
variance of the dependent variable
› The aim is to exactly determine how each

individual independent variable influences
the dependent.

 Out of such observations you may validate or
inform existing theories.

 You don’t want to mask any influence
(capture their pure effect) and make sure that
linearity is the proper way to capture the
relationship between the variables.

 Main tests you have to do for a linear

regression model, if your goal is to explain

the variance (many checks, but 4 most

important):

› Check the linearity hypothesis

› Check the homoscedasticity of the residuals

› Check if the residuals are normally distributed

› Check (multi) collinearity of the independent

variables

 You don’t want multicollinearity!

 When the model’s goal is to predict with

high accuracy the value of the

dependent variable

› The aim is to see how well the estimated

model performs on new/unknown/unseen

data i.e. data that is not in the training set

 When the aim is prediction, you don’t care

how exactly each individual independent

variable influences the dependent.

 You care about the accuracy of the prediction, not

how each variable influences the dependent

 Also, you don’t really care which

variable to include into the model.

› If it improves prediction it’s a good addition.

You don’t need to justify inclusion of

independent variables because you don’t

care about a theory.

 In general, adding variables improve

prediction

 There are problems however when adding

variables that need to be addressed

 How to evaluate a model when the goal
it prediction?
› You compare the model’s predicted values

of the dependent variable for unknown data
with the actual, observed, real value of the
dependent variable for unknown data. Their
difference is the prediction error

 Large prediction error => bad

 Small prediction error => good

› The error can be estimated with error metrics

 There are many of them, each one
appropriate for specific situations i.e.
emphasizes different aspects

 Most common error metrics used to evaluate
prediction accuracy (n=number of observations, yi real
observation of dependent var, ො𝑦𝑖= predicted value of
dependent variable)

› Mean Absolute Error (MAE)

 𝑀𝐴𝐸 =
1

𝑛
σ𝑖=1
𝑛 𝑦𝑖 − ො𝑦𝑖

› Mean Squared Error (MSE)

 𝑀𝑆𝐸 =
1

𝑛
σ𝑖=1
𝑛 𝑦𝑖 − ො𝑦𝑖

2

› Root Mean Squared Error (RMSE) – most popular

 𝑅𝑀𝑆𝐸 =
1

𝑛
σ𝑖=1
𝑛 𝑦𝑖 − ො𝑦𝑖

2

› Mean Absolute Percentage Error (MAPE)

 𝑀𝐴𝑃𝐸 =
1

𝑛
σ𝑖=1
𝑛 𝑦𝑖− ො𝑦𝑖

𝑦𝑖

 How to calculate prediction error of a linear
regression model?

 Where to get the data from and check
accuracy against?
› In general, two approaches to do this

 In-Sample-Testing: get a subset from the data that
was used to estimate the parameters and check
prediction errors. The error calculated from such
dataset is called training error
 The idea here is that the calculated training error is a

good approximation of the error on unknown data.

 Out-of-Sample-Testing: get a different, new, unseen
subset of data –not in the training set- to check
prediction error. Error calculated in such way is
called generalization error.

 Out-of-Sample-Testing
› How/where to get new, unseen data?

 1) Collect new data from the source again i.e.
apart from training data
 Not always possible, costly, time consuming

 2) Divide the existing dataset randomly into
two non overlapping subsets:
 One for estimating the parameters thus becoming the

training set

 One for evaluating the prediction error called the
testing set/test set. The test set is not used for
estimating the parameters: this set is excluded and
hence functions as an new, unseen data set.

 Such way of testing/evaluating a model is called
cross validation.

 Cross validation

› Different versions available to get better

estimate of the error

 1) Holdout method: Divide (once) randomly

initial dataset into only two non-overlapping

data subsets: one for training (training set) and

one for testing (testing set)

 In general 70-80% of the initial dataset will be the

training set, 30-20% of the initial dataset will be the

testing set.

 Use the training set to estimate parameters

 Use the testing set (which is a new/unseen dataset) to

calculate error which is considered an approximation

for the generalization error.

 Cross validation
› Different versions available to get better

estimate of the error
 2) k-Fold Cross validation method: Divide the initial

dataset into k non-overlapping subsets with
approximately equal number of observations - not
only into two as in the holdout method. k (number
of subsets) is given by user (usually k=5 or k=10 or
even greater).

 Then, iterate over each of these k subsets, and use
each one of the subsets as the testing set and the
remaining k-1 subsets as the training set (merging
them into one set). Process terminates when each
one of the k subsets has been used as testing set.

 Calculate error on each testing set. In total k errors
will result out of which the average can be
calculated. Much better estimate of the
generalization error!

 Why K-fold cross validation?

› gives a much better estimate for the

generalization error.

Testing set

Training set

Training set

Training set

Training set

Training set

Testing set

Training set

Training set

Training set

Training set

Training set

Testing set

Training set

Training set

Training set

Training set

Training set

Testing set

Training set

Training set

Training set

Training set

Training set

Testing set

Cut original

dataset into

k

approximate

ly equally

sized

subsets.

Here k=5

1st iteration: use
first subset as
testing set and
remaining as
training set.
Calculate error.

2nd iteration: use
second subset as
testing set and
remaining as
training set.
Calculate error.

3rd iteration: use
third subset as
testing set and
remaining as
training set.
Calculate error.

4th iteration: use
fourth subset as
testing set and
remaining as
training set.
Calculate error.

5th iteration: use
fifth subset as
testing set and
remaining as
training set.
Calculate error.

 Cross validation
› Used also in comparing the accuracy of

different linear regression models to predict
the same dependent variable.

 E.g. which one of the following different linear
regression models better predicts the mpg of
cars?

𝑚𝑝𝑔 = 𝛽1𝐻𝑜𝑟𝑠𝑒𝑝𝑜𝑤𝑒𝑟 + 𝛽2𝑊𝑒𝑖𝑔ℎ𝑡 + 𝛽0
𝑚𝑝𝑔 = 𝛽1𝐻𝑜𝑟𝑠𝑒𝑝𝑜𝑤𝑒𝑟 + 𝛽2𝑊𝑒𝑖𝑔ℎ𝑡 + 𝛽3Displacement + 𝛽0
𝑚𝑝𝑔 = 𝛽1𝐻𝑜𝑟𝑠𝑒𝑝𝑜𝑤𝑒𝑟 + 𝛽2𝑊𝑒𝑖𝑔ℎ𝑡 + 𝛽3𝑊𝑒𝑖𝑔ℎ𝑡2 + 𝛽4Displacement + 𝛽0

› Do a k-fold cross validation on the same

dataset for each model. Compare errors.

› Model with smallest error chosen

 K-Fold Cross Validation in R

› See file R-k-FoldCrossValidation.rar on eclass

 When the goal is prediction, the aim of a

regression model is to have small

generalization errors

› Yet, real value of generalization error is never

known – only estimations possible by using k-fold

cross validation

 From the training error (which is always

known), it’s not possible to get a reliable

estimate of the generalization error

› It’s a poor estimate for the generalization error

 However, from the relationship between
the training error and generalization error
(resulting from k-fold cross validation)
useful conclusions about the regression
model can be drawn
› In particular these situations

 Training error and generalization error small

 Training error large, and generalization error
large

 Training error small and generalization error
large

 Training error and generalization error small
› Regression model fits the training data well. The

ideal situation

 Training error and generalization error large
› In this case the regression model is underfitting

the training data and the situation is called
underfitting: the model does not succeed in
fitting the training data well.

› Happens when the regression model is too
simple i.e. has few independent variables.

› Such models do not have the flexibility to adapt
to the changes and variance of the dependent
variable and hence has a poor fit to the data –
hence the large training and generalization
errors.

 Training error (very) small and generalization
error large
› In this case the regression model is overfitting the

training data and the situation is called
overfitting.

› This happens when the regression model fits the
training data too well – the model captures not
only the (true) relationships between the
variables in the training set but also random
noise and fluctuations of training data

 Hence, it is very good in predicting the value of the
dependent variable for data in the training set (i.e.
very small training error) but very bad in predicting
the value of the dep. variable for new/unknown
data (large generalization error).

 Overfitting is a generally associated with

more complex regression models

› A regression model is called complicated,

the more independent variables it contains

and higher degree of monomials.

𝑚𝑝𝑔 = 𝛽1𝐻𝑜𝑟𝑠𝑒𝑝𝑜𝑤𝑒𝑟 + 𝛽2𝑊𝑒𝑖𝑔ℎ𝑡 + 𝛽3𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 + 𝛽0

𝑚𝑝𝑔 = 𝛽1𝐻𝑜𝑟𝑠𝑒𝑝𝑜𝑤𝑒𝑟 + 𝛽2𝑊𝑒𝑖𝑔ℎ𝑡 + 𝛽0

𝑚𝑝𝑔 = 𝛽1𝐻𝑜𝑟𝑠𝑒𝑝𝑜𝑤𝑒𝑟 + 𝛽2𝑊𝑒𝑖𝑔ℎ𝑡 + 𝛽3𝑊𝑒𝑖𝑔ℎ𝑡2 + 𝛽0

Simpler regression model

More complicated
regression models
than above: more
independent
variables and/or
higher degree of
monomials

 The more complex the regression model

the more overfitting becomes a problem

Training error (small)

Generalization error
(large)

Model complexity

 How to check if a model is prone to

overfitting?

› Calculate training error of model using in-

sample-testing: take a subset of the training

data – used to estimate the model’s

parameter- and calculate training error

› Calculate generalization error using k-Fold

Cross Validation

› Compare these two errors (training,

generalization)

 How to address a model that exhibits

overfitting?

› Two approaches

 Make the regression model simpler by removing

independent variables or reducing the degree

of monomials

 Not always easy: which variables to remove, model

needs to be re-evaluated etc.

 Use regularization.

 What is regularization? A way/technique to overcome
the problems of overfitting by limiting the size of the

coefficients.

 Regularization

› Two approaches

 Make the regression model simpler by removing

independent variables or reducing the degree

of monomials

 Not always easy: which variables to remove, model

needs to be re-evaluated etc.

 Use regularization.

 What is regularization? A way/technique to overcome

the problems of overfitting by limiting the size of the
coefficients.

 Regularization
› Size of coefficients

 In general, overfitted regression models are not
biased, but have a huge variance of the predicted
dependent variable. The bias-variance tradeoff in
predictive modeling!

Bias-variance tradeoff in
predictive models: models

having a low bias have

large variance of the

predicted value. Models

with a low variance of the

predicted value have large

bias

 Regularization
› Size of coefficients

 This high variance of the predicted value is
caused by the size of the estimated coefficients:
they are large. As a result, even small changes
of the dependent variable results in large
variances of the dependent variable due to the
large coefficients

› Since bias in an overfitted regression model is
low, high variance due to the large
coefficients can be addressed by limiting their
size

 I.e. making them technically smaller.

 This is what regularization achieves.

 What regularization does

› Attempts to limit the size of coefficients in an

overfitted regression model in order to control

the variance of the predicted values of the

dependent variable.

› Regularization achieves this by modifying the

loss function and placing also constraints on

the magnitude of coefficients so that they

don’t grow to large values

 I.e. loss function also constraints the magnitude

of the coefficients.

 Modified Loss function

› If gradient descent is the method used to

estimate the coefficients, to achieve

regularization an additional term is added: the

regularization term:

𝐽 𝛽0, 𝛽1, 𝛽2, … , 𝛽𝑘 =
1

2𝑚

𝑖=1

𝑚

ℎ𝛽 𝑥 𝑖 − 𝑦 𝑖 2
+ 𝜆

𝑗=1

𝑛

𝛽𝑗
𝑞

(Traditional) Loss function
of Gradient Descent

Regularization term: new term

added to achieve regularization

of coefficients. λ is a regularization

parameter given as input. q is a

parameter and determines the

type of regularization

 Regularization term: why it works
› The term added is the sum of estimated

coefficients. Minimizing this new loss function means

minimizing both terms i.e. minimize 𝜆 σ𝑗=1
𝑛 𝛽𝑗

𝑞
also!

That means that constraints on their size are placed
and smaller values are preferred.

𝐽 𝛽0, 𝛽1, 𝛽2, … , 𝛽𝑘 =
1

2𝑚

𝑖=1

𝑚

ℎ𝛽 𝑥 𝑖 − 𝑦 𝑖 2
+ 𝜆

𝑗=1

𝑛

𝛽𝑗
𝑞

(Traditional) Loss function
of Gradient Descent

Regularization term: new

term added to achieve
regularization of coefficients

 q: parameter that determines the type of

regularization

› If q=1 the loss function becomes

1

2𝑚

𝑖=1

𝑚

ℎ𝛽 𝑥 𝑖 − 𝑦 𝑖 2
+ 𝜆

𝑗=1

𝑛

𝛽𝑗

› and the regression is called Lasso or L1 regression.

› Lasso regression not only limits the size of coefficients but
can also be used for feature selection

 For large values of λ, Lasso regression will result in
coefficients to become 0. This means that the respective
independent variables not statistically significant and hence
can be dropped (= feature/variable selection)!

 q: parameter that determines the type of

regularization

› If q=2 the loss function becomes

1

2𝑚

𝑖=1

𝑚

ℎ𝛽 𝑥 𝑖 − 𝑦 𝑖 2
+ 𝜆

𝑗=1

𝑛

𝛽𝑗
2

› and the regression is called Ridge or L2
regression or Thikonov regularization.

› This is the most popular form of regularization
with good results. Coefficients get smaller but
not zero hence Ridge regression cannot be
used for feature selection.

 q: parameter that determines the type of

regularization

› Third option also available called Elasticnet

 Adds two terms to the Loss function, one similar to

Lasso regression and one similar to Ridge

regression with weights.

 λ: regularization parameter
› Given as input to the regression analysis i.e.

must be determined beforehand by the user

› If λ=0, regularization term cancels out and the
loss function takes its traditional form (i.e.
without regularization)

› The proper value for λ can be determined by
doing k-Fold Cross Validation for different values
of λ and selecting the most appropriate one
based on the prediction error.

 Typical values for λ are: 0.01, 0.02… 0.4… 0.7…

 Regularization in R

› When using Gradient Descent, two things must

change the cost function changes (here Ridge

regression):

 The partial derivative which becomes

calculateCostRidge<-function(X, y, theta, lambda=0){

Number of observations

m <- length(y)

return(sum((X%*%theta- y)^2) / (2*m) + lambda*sum(theta^2))

} # calculateCostRidge

𝜕

𝜕𝜃𝑖
𝐽 𝜃 =

1

𝑚

𝑖=1

𝑚

ℎ𝜃 𝑥 𝑖 − 𝑦 𝑖 𝑥𝑗
𝑖
+ 𝜆𝛩𝑗

• The Loss/cost function which becomes:

 Regularization

› Regularization does not apply only to Gradient

Descent (here just used as an example)

› Can also do regularization with any method of

estimating coefficients for a regression model

 E.g. OLS with regularization is possible.

 Waugh, F. V.: Choice of the Dependent Variable in
Regression Analysis, Journal of the American Statistical
Association, Vol. 38, No. 222, June., 1943, pp. 210-216

 Shmueli, G.: To Explain or to Predict? Statistical Science
25(3), January 2011

 Peng, R. D. R Programming for Data Science. Lean
Publishing. Ανακτήθηκε στις 19 Νοεμβρίου 2018, από:
https://leanpub.com/rprogramming

 Draper, N. R. and Smith, H.: Applied Regression Analysis,
Wiley-Interscience; Third edition, 1998

 Brian, C.: Regression Models for Data Science in R. Lean
Publishing, 2015, Ανακτήθηκε στις Ιούνιο 2019, από:
https://leanpub.com/regmods

 Nilsson, N. J.: Introduction to Machine Learning, 1998,
Ανακτήθηκε στις Ιούνιο 2019, από:
http://robotics.stanford.edu/~nilsson/MLBOOK.pdf

 Wikipedia, Classification. Ανακτήθηκε Ιούνιο 2019, από:
https://en.wikipedia.org/wiki/Classification

 Yanchang, Z.: Regression and Classification with R, 2015,
Ανακτήθηκε στις Ιούλιο 2018, από:
http://www.rdatamining.com/docs/regression-and-
classification-with-r

https://leanpub.com/rprogramming
https://leanpub.com/regmods
https://en.wikipedia.org/wiki/Classification

 Kiefer, J. and Wolfowitz, J.: Stochastic Estimation of the Maximum
of a Regression Function, Annals of Mathematical Statistics,
Volume 23, Number 3, 1952, pp 462-466.

 Bottou, L., Curtis, F. E., Nocedal, J.: Optimization Methods for
Large-Scale Machine Learning, SIAM Review, Volume 60 (2),
2018. Διαθέσιμο από http://arxiv.org/abs/1606.04838

 Tibshirani, R.: Regression Shrinkage and Selection via the Lasso,
Journal Royal Statistical Society, Volume 58 (1), 1996, pp267-288

 Hoerl, A.E. and Kennard, R.: Ridge regression: Biased estimation
for non orthogonal problems. Technometrics, 12, 1970, pp55-67

 Zou, H. and Hastie, T.: Regularization and variable selection via
the elastic net, Journal of the Royal Statistical Society, Series B.67,
2005, pp. 301–320.

 Stanton, J. M.: Galton, Pearson, and the Peas: A Brief History of
Linear Regression for Statistics Instructors, Journal of Statistics
Education, Volume 9, Issue 3, 2001

 Poole, M. A. and O'Farrell, P. N.: The Assumptions of the Linear
Regression Model, Transactions of the Institute of British
Geographers, No. 52, 1971, pp. 145-158 .

 We will derive as an example the update

for parameter θ1 (parameter for an

independent variable) - the same

analysis holds for all other parameters θj

𝝏𝑱 𝜽

𝝏𝜽𝟏
=

𝝏
𝟏
𝟐𝒎

σ𝒊=𝟏
𝒎 𝒉𝜽 𝒙(𝒊) − 𝒚(𝒊)

𝟐

𝝏𝜽𝟏
=

𝟏
𝟐𝒎𝝏σ𝒊=𝟏

𝒎 𝒉𝜽 𝒙(𝒊)
𝟐
− 𝟐𝒉𝜽 𝒙 𝒊 𝒚 𝒊 + 𝒚(𝒊)

𝟐

𝝏𝜽𝟏

=
𝟏

𝟐𝒎

𝝏σ𝒊=𝟏
𝒎 𝒉𝜽 𝒙(𝒊)

𝟐

𝝏𝜽𝟏
− 𝟐

𝝏σ𝜾=𝟏
𝝁

𝒉𝜽 𝒙 𝒊 𝒚 𝒊

𝝏𝜽𝟏
+

𝝏σ𝜾=𝟏
𝝁

𝒚(𝒊)
𝟐

𝝏𝜽𝟏
= < 𝒔𝒆𝒆 𝒏𝒆𝒙𝒕 𝒔𝒍𝒊𝒅𝒆 >

=
𝟏

𝟐𝒎

𝝏σ𝒊=𝟏
𝒎 𝒉𝜽 𝒙(𝒊)

𝟐

𝝏𝜽𝟏
− 𝟐

𝝏σ𝜾=𝟏
𝝁

𝒉𝜽 𝒙 𝒊 𝒚 𝒊

𝝏𝜽𝟏

=
𝟏

𝟐𝒎
𝟐

𝒊=𝟏

𝒎

𝒉𝜽 𝒙 𝒊
𝝏𝒉𝜽 𝒙 𝒊

𝝏𝜽𝟏
− 𝟐

𝝏σ𝜾=𝟏
𝝁

𝒉𝜽 𝒙 𝒊 𝒚 𝒊

𝝏𝜽𝟏

=
𝟏

𝟐𝒎
𝟐

𝒊=𝟏

𝒎

𝒉𝜽 𝒙 𝒊 𝒙𝟏
(𝒊)
− 𝟐

𝒊=𝟏

𝒎

𝒙𝟏
(𝒊)
𝒚(𝒊) =

𝟏

𝒎

𝒊=𝟏

𝒎

𝒉𝜽 𝒙 𝒊 − 𝒚 𝒊 𝒙𝟏
(𝒊)

𝜽𝟏 ∶= 𝜽𝟏 − 𝜶
𝟏

𝒎

𝒊=𝟏

𝒎

𝒉𝜽 𝒙 𝒊 − 𝒚 𝒊 𝒙𝟏
𝒊

Thus the update formula for parameter θ1 becomes thus:

Now do the same for all other
parameters θ0, θ2, θ3,.... and
from this we get the closed

form formulas for the updates
of all parameters θ.

 It’s all in how the training set is scanned/traversed
› Assume that training set has 10000000 observations i.e.

m=10000000. i.e. training set very large.

How θs are updated in Batch Gradient descent

while termination conditions not met {

update each θs (i.e. coefficients) as follows:

… <do this for all thetas>

calculate value of cost function J(θ) for the newly calculated values of θs

Store value of cost function into vector costVector

}

𝜽𝟎 ∶= 𝜽𝟎 − 𝜶
𝟏

𝒎

𝒊=𝟏

𝒎

𝒉𝜽 𝒙 𝒊 − 𝒚 𝒊

𝜽𝟏 ∶= 𝜽𝒋 − 𝜶
𝟏

𝒎

𝒊=𝟏

𝒎

𝒉𝜽 𝒙 𝒊 − 𝒚 𝒊 𝒙𝟏
𝒊

𝜽𝟏 ∶= 𝜽𝒋 − 𝜶
𝟏

𝒎

𝒊=𝟏

𝒎

𝒉𝜽 𝒙 𝒊 − 𝒚 𝒊 𝒙𝟏
𝒊

The problem is in this calculation

of the sum: For each coefficient θj

we iterate through m=10000000

observations to make one small

adjustment of each θj. I.e. iterate

through the same 10000000

observation for updating each

and every θj. And this happens

only during one iteration (see

outer while termination condition

not met). This is slow and

inefficient for large datasets

Batch Gradient Descent

 It’s all in how the training set is scanned/traversed
› Assume that training set has 10000000 observations i.e.

m=10000000. i.e. training set very large.

while termination criteria not met{

Calculate cost function and store its value in costVector

for each observation i in training set (i.e. for each 10000000 obs) {

for each parameter θj {

Set new value of parameter 𝑛𝑒𝑤𝜃𝑗
∶= 𝜃𝑗 − 𝛼 ℎ𝜃 𝑥 𝑖 − 𝑦 𝑖 𝑥𝑗

𝑖

}

calculate value of cost function J(θ)

Store value of cost function into vector costVector

}

θj := newΘj

n = n + 1 # Next iteration

}

Look at the update function of

the θs: there is no sum – compare

this to the update function in

Batch Gradient Descent. Hence in

SDG we don’t iterate over

10000000 to make one update. In

Stochastic Gradient Descent only

one observation is used at any

step not all 10000000. However,

Stochastic Gradient Descent

iterates through all 10000000 only

once during each cycle (outer

while)– see “for each 10000000

obs in training set”

Stochastic Gradient Descent (SDC)

 It’s all in how the training set is scanned/traversed
› Assume that training set has 10000000 observations i.e.

m=10000000. i.e. training set very large.

Cut the training set into batches/subsets bi each of size nb such that bi*nb =m

while termination criteria not met{

Calculate cost function and store its value in costVector

for each batch bi {

for each parameter θj {

Set new value of parameter 𝑛𝑒𝑤𝜃𝑗
∶= 𝜃𝑗 − 𝛼 σ𝜄=1

𝑛𝑏 ℎ𝜃 𝑥 𝑖 − 𝑦 𝑖 𝑥𝑗
𝑖

}

calculate value of cost function J(θ) for the newly estimated values of θ

Store value of cost function into vector costVector

}

θj := newΘj # update all parameters with new values

n = n + 1 # Next iteration

}

Look at the update function of

the θs: There is a sum but it does

not iterate over all 10000000

observations –it iterates over a lot

smaller number of observations nb

because the training set of

10000000 has been cut into

batches of smaller size (e.g. 3000

observations per batch). Mini-

batch Gradient Descent will

process all batches and hence will

iterate through all 10000000

observations, but not all at once

and for a single update.

Mini-Batch Gradient Descent

