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Investigate and quantity the relationship
between one variable which takes
continuous values and a set of other
variables that may take any type of value

In particular, investigate the effects of one (or
more) variable(s) onto the value of another
variable in the dataset.
E.g. How does the value of one variable
change if other variable(s) change value?¢
Goal: come up with a model (i.e. o
function) that predicts and/or explains
the value of one variable based on the

values of other variables. /



Regression analysis

In regression, the relationship expressed is
pbetween one variable -called the dependent
variable- and one or more independent
variables
Very Important! In regression, dependent
variable takes continuous values

Independent variables can be of any type
Relationship between variables take the form
of a function/equation: Aims at expressing the

value of the dependent variable as a function
of the values of other independent variables.

This function also referred to as “regression model”,

“regression equation” or plain “regression”. -




Regression analysis

Regression equations can fake many
different forms

But does not imply a deterministic relationship

Examples of regression equations/models

FoodConsumption = 0.78 Income + 1459

e.g. for quantifying the relationship between
annual FoodConsumption (dependent variable) of
families and their annual income (independent)

CarValue = PurchaseValue - el(088%age) g g,

E.g for quantitying the relationship between the
present value of a car (dependent variable) and
the variables purchase value and age

(independent variables). /



Purpose of regression models

Explain the variance in the dependent
variable based on the values of the
independent variables(s) of the existing
dataset

Predict the value of the dependent variable
based on the values of the independent
variable(s)



Regression analysis requires a training set
with observations on these variables from
which the relationship between the
Intferested variables will be quantified.

A regression model tries to come up with an
equation that best “fits” the data in the
training set.
There can be many regression equations that fif
the data, but we look for the one that fit the best

This “fit" can assessed and the usefulness of the
model can be determined.

P



Regression analysis

Terminology

General form of a regression model capturing the relationship between
variable varY and variables varX;, varX,,....

varY = b,varX, + b,varX, + b,



Regression analysis

Examples of regression models (note the
coefficients and independent variables):

Katavalwon = f1Ewcéénua® + B,

Aptnplakn mieon = f,PVAAo + Bo,VHAikia + B

In(Etocodnua)
= B1Eumepwa + BrEpumepra + B3Exknmawdevon + L

1
+ Bo

(b1 + b,CropSpacing)?s /

Crop yield =



In a regression model, the unknowns are the
coefficients of the independent variables
(usually represented as betas b;) and the
goal is to estimate them from the training set
and assess their importance

Estimation of coefficients is done using the
existing training dataset

The coefficients bi for each independent variable
tell us how that independent variable influences
the dependent.

Values of the independent variables are known
from the training data /



Types of regression models

Based on how the value of the dependent
variable changes when the values of the
mdependen’r variables or coefficients change
(That's very, very important and always to keep

IN Mind — determines the form of the regression
model)

l.e. how a change in the coefficients/parameters

and independent variables affect the dependent
variable.

Expressed as rate of change: aY &Y

AX ’ Ab
Two types
Linear regression models
Nonlinear regression models

e



Regression analysis

Types of regression models

Linear regression models

In linear regression models the dependent
variable depends linearly on all the
coefficients/parameters (and only the
coefficients!)

“Depends linearly” means that the rate of
change of the dependent variable -if the
coefficient changes- is independent of the
value of the coefficient (i.e. constant wrt
coefficient). |.e. rate of change constant

Linear regression models do not need to

depend linearly on the independyf«:bles!




Regression analysis

Types of regression models

Linear regression models

The model Consumption = b,Income + b, is a linear
model because the value of consumption
depends linearly on all coefficients b of the model:
(e.g. assuming coefficient b, increases by some g):

AConsumption (b + &)Income + by — byIncome — b,

= Income

Ab1 &E /

Independent of the value of coefficient b, that
changed. Hence the model is linear. Model
happens to be also linear with respect to
independent variable Income.




Regression analysis

Types of regression models
Linear regression models

Dependent variable does not need to be linearly
dependent on the independent variables (can be
but its not required). This means linear regression
models -when plotted- can form curves.

Hence that all the following regression models are
also linear although they are not linear with respect
to the independent variables.

All these are
considered
linear models
because they
depend linearly
on the
coefficients.
Not on the
independent
variables. You
may substitute
e.g. FamilySize3
with a new
variable say Z

Consumption = byIncome + b,FamiltySize> + b,

/
BloodPresure = b;Sex + b,,/Age + b,

In (Income) = byExperience + by,Experience? +

bsYearsEducation + b /




Regression analysis

Types of regression models

Nonlinear regression models

In nonlinear regression models the dependent
variable does not depend linearly on all the
coefficients (and only the coefficients!)

“Does not depend linearly” means that the
rate of change of the dependent variable -if
one of the coefficient changes- is dependent
of the value of the coefficient i.e. definitely nof

constant! :




eg =1le]aNelale ‘y SIS

® Types of regression models

> Nonlinear regression models

- The following are examples of nonlinear
regression models

b,Concentratio

Rate of reaction =
/ b, + Concentration

1

Crop yield =



The notion of error in regression models

Regression models are approximations that
try to fit in the best way possible the real data
and values of the dependent variable in the
training set.
You always have a sample — the training set.
Never the population.
Because regression models approximate the
value of the dependent variable, they never
succeed in capturing/predicting/estimating
the real value of the dependent variable.
But what is the real value of the dependent variable?

e




Regression analysis

The notion of error in regression models

Two types of errors in regression models
Errors/disturbance

The difference between the (unobserved) real value of
the dependent variable in the population and the
observed value in the fraining set. This error can never be
observed or measured because we are unaware of the
real value of the dependent variable in the population.

Residuals/fitting deviations

The difference between the dependent value in the
training set and the predicted/estimated value by the
regression model. This can be observed and measured

_




The notion of error in regression models

Errors and residuals are included in the
regression models.

Adding term € (for error) when showing the
general model or g (for residuals) when

Full specification of a regression model
Includes error term e.g.

Consumption = b;Income + b,FamiltySize> + by + ¢

If the error term is not explicitly included in the
regression model, it's implied.

This means, there always is an error ferm in the
model! P



More types of linear regression models

Simple linear regression models

When the regression model includes only 2
variables: one dependent and one
Independent variable

E.g. Income = b,Education + b,

Multiple linear regression models

When the regression model includes more
than 2 variables
E.g. Income = b,Education + b,Experience + b,



Who comes up with regression models and
how?

Domain experts (economist, stafisticians,
engineers, etc)

Theory

Read the relevant literature and identify factors that
affect the value of the dependent variable

Determine the purpose of the model
Explain the variance or predict the dependent variablee
- These influence how the model will be evaluated.

Look at the data and how it changes

From existing data, see how the dependent variable
changes when the independent variables change

Trial and error

Begin by trying simple regression models and assess the
results. Continue by modifying the model if results are not

appropriate. /



Who comes up with regression models?

Don’t forget: The coefficients of a model are
calculated from the existing dataset (the
fraining set) and these capture the
relationships between the variables. Hence,
regression models are approximations that
try to fit the best way possible the available
data in the training set.



In regression analysis you

First estimate the parameters from the
training set

Then assess and evaluate the model to see if
It meets the objectives, is useful and
conclusions can be drawn

Evaluation methods depend on the model’s
purpose (explanation or predictione)







Estimating parameters

In a regression model, the problem is
estimating the coefficients/parameters that will
indicate/quantify the relationships between
the variables

Coefficients/parameters are estimated from an
existing dataset (the training set) which is required.

Tid House Marital Income

Price  Status m2House
Single Income = b,m2House + b,
Married
Training Single Unknowns are the parameters b
set — EEe (independent variables known from

training set). The parameters b of this

Divorced regression model are estimated

using the training set. The goal: find
the best values of b which best fit the
values of the dependent variable in
the training set.

Married

Divorced




Different methods to estimate
parameters based on the type of the
regression model

E.Q. Linear vs Nonlinear

The general idea: Estimation of
parameters in regression model (linear or
nonlinear) involves a Cost function (also
called “Loss function”) that needs to be
minimized.

e



Cost function tries to measure how big the
error of the regression model is when
estimating the value of the dependent
variable

The model with smallest error fits the data well
l.e. Is the best one.

Essentially, error is the sum of residuals which is to

be minimized

Cost functions can have many different forms
Depending on the purpose

The form of the cost function determines the type

of regression: Ordinary Least Squares (OLS), LASSO,
Quantile etc ,,
/






Estimating parameters

© Linear regression models have the
following general form:

Y = b1X1+b2X2+ 3+°°'kak+bO+£




Estimating parameters

- Sincé“““““"“‘i‘“n~-eOr regression models try to fit the
available training data, the linear regression
model can CI|SO be written in the form:

Yi — leli ~+ bZXZi +b X3i + -+ kaki T bO + €




\

Estimating parameters

@ If there are n observations in the fraining
sef, then there will be n equations, one
for each observation, of the form:

Yi = b1X1i + bZXZi + b3X3i + --- + kaki + b() + €;




Estimating parameters

® Because parameters are estimated from the
training set and not the true real values of
the variables (remember: the training set is
just a sample), the estimates are mentioned
INn tThe regression model by adding a hat (A)

?i . leli A BZXZi + BBX3i SR + Bkai + BO + €




Regression model in matrix notation

It's customary to represent these n regression
equation in matrix notation. It we define:

Matrix of values of
independent variablesin | ———

training set. -1 X11 X21 Xkl_ —’BO— ey
Yy 1 Xi2 Xz - Xi2|  |by e,

? = YZ X=|1 X13 X23 Xk3 b = BZ e=|€3

| 1 Xln in “es an_ —Bk— —en—

Then the n linear regression equations, derived from
the training set, can be written in matrix form:

<5 == If you carry out the operations, you'll
Y —_ Xb + e get the n linear regression equations
as vectors.

The matrix form makes it easier to
calculate the parameters using
machines (i.e. computers).




Two methods for estimating the
parameters of linear regression models
Ordinary Least Squares (OLS)
Gradient Descent and its variations

Each of the above method appropriate
INn specific situations.






Estimating parameters

Ordinary Least Square (OLS) Regression

In OLS the cost function is the Sum of
Squared Errors (SSE) i.e. sum of residuals
which must be minimized:

n n
SSE= ) ef= ) (v;- 7))’
i=1 i=1

Y; = Value of the dependent variable in observation i of the training set
Y; = Estimated value by the linear regression model for the values of the
independent variables in observation i in the fraining set.

The parameters b which minimize the above

SSE are the parameter estimates of the linear
regression model that best fit the training data.



Geometlric interpretation of SSE<¢
l.e. Draw it for me with crayons pls...

The basic idea:
Sum of all squared

Data point . .
Residual or Error (green line) measures how much “off” (in (Obser\(ed/reol vifqr residuals is o
terms of distance) is the real from the predicted/estimated some Xi) ; measure of how
value of the dependent variable Yi by the model for that .
value of Xi. Note: not perpendicular to the regression line — - gOOd aregression
it's the shortest distance to the regression line. ”ne (I e. the
ENEo il oredicted or
Residual estimated values
by a regression
Predicted value Y;(value model) is — how
estimated by the model) oy r
Residual _ for some value of QOOd it fits the
independent variable Xi . data.
Residudl Red line is the "Regression line” i.e. The best regression
line generated by all the points . .
generated by the regression model Ime' fhat fits best fo
Residudl which s the best “fit" fo the data the data, has of

(a.k.a. best fit line)

course the smallest
sum of squared
residuals or errors.




Estimating parameters

But why Sum of SQUARED errorse
l.e. why SQUARE the errors?

n n
SSE= ) et = ) (v;- 1)’
i=1 i=1

| Why this SQUARE in
| residuals ????

15t reason: You need positive residuals or errors
because they are in essence distances from the
regression line.

So, why not use absolute measures instead e.g.

|Y; — ¥i| 2 You can actually and that's used in many
situations —it's called L1 norm of residuals! If you use
such way of measuring residuals, the regression in
not called OLS anymore. It's called Least Absolute
Deviations — LAD - regression and used in Robust
regression.

However, L1 norm of residuals has some other issues
(see 2nd reason)

2"d reason: You want to penalize large
residuals. |.e. PUNISH large residuals! This means
that if you have big residuals, YOU WANT TO MAKE
THEM EVEN BIGGER so that SSE gets EVEN BIGGER
when large residuals are present !!! Why is that?
Ask yourself: What's a better model: many small
errors or 1 huge errorg Now assume that Sum of
small errors = 1 huge error. (L1 norm of residuals
cannot differentiate. Squares CAN! |.e. “missing by
a little lots of times is better than missing by a lof a
few times".

But, if so, why not raise to the power of say 6 or 8 or
10 to punish large residuals more? You can do this
also! But this adds little and makes calculations
more difficult. Hence, raising to the
cheap and does the job...
(Note: you do understand th
to an odd power?)

ou CANNOT raise it




Ordinary Least Square (OLS) Regression
How is the Cost function (SSE) minimized in OLS?

First write SSE in matrix notation as a function of
the vector b

SSE(D) = eTe = (Y — Xb) (Y — Xb)

And then minimize the Cost function (SSE) by
solving the equation of parfial derivatives:

This equation has a closed form

N solution due to the form of the
GSSE(b) linear regression. Solving this will
— — O calculate the vector b that
ab minimizes the SSE and hence

finds the parameters we are
looking for.




Estimating paramefters

Ordinary Least Square (OLS) Regression

The closed form solution derived from the
previous equation for estimating the parameters
b of a linear regression model in matrix form is:

b=(X"X) X"y

The above closed form formula - called normal
equation - gives you the vector of parameters
estimates b, based on the maitrix of values of the
independent variables X and the maifrix of the
values of the dependent variable Y in the training

set, which minimize SSE and hence fit the best way
possible the training data







GD: Estimating parameters

Gradient descent

While OLS minimizes the SSE in a very specific way (by
finding the values of b who yield the partial
derivative to zero) leading to a closed form formula
(the normal equation) for estimating the parameters,
Gradient descent minimizes the cost function in a
very different way.

It also has a cost/loss function but the way it minimizes it
is different

Gradient descent is an iterative, numerical
optimization method for minimizing the cost function
and thus finding the parameter estimates.

l.e. Gadient descent does not offer a closed form
formula like the normal equation in OLS for calculating
the parameters.

“iteratfive™ ¢ Tries to guess the proper coefficient values

of the parameters that lead to minimizing the cost
function /




GD: Estimating parameters

Gradient descent

Why Gradient descente
OLS has three main concerns

1) The normal equation requires inversion of a matrix:

—~ -1
b=(X"X) X'y
Mo’rrix' Inversion

Matrix inversion is a very expensive operation on
computers. |.e. if fakes a lot of time to calculate the
inverse. If the X™X matrix has 100 variables (i.e. is an
100x100 matrix), since an inversion requires N3 operations
(h=dimension of matrix) on average, it would require
~1000000 operations to invert the matrix.

OLS performs poorly in big data settings!

Gradient descent is much faster in estimatin e
parameters in such Big Data settings.




GD: Estimatfing parameters

Gradient descent
Why Gradient descente

2) OLS makes the assumption that the matrix
of independent variables X fits info the
computer’'s main memory (RAM).

You cannot make this assumption when
working with Big Data.
In big data settings, these matrices of the normal
equation may not fit into the main memory (RAM). In

such cases OLS does not work AT ALL because the
normal equation can't be calculated.

How can you in such situations estimate the
coefficients?

Gradient descent offers versions that can estimate the
parameters even when data does not fit infto RAM.



GD: Estimatfing parameters

Gradient descent
Why Gradient descente

3) OLS makes the assumption that you have
all the data available when you start your
parameter estimation.

In Big Data environments you cannot make
this assumpftion.

What happens when you don't have all your data
available because it arrives at some interval?

How can you in such situations estimate the
coefficientse

You can't use the normal equation in such setfings!

There are versions of Gradient descent that can be
used in such circumstances. /



GD: Estimating parameters

Gradient descent
Why Gradient descente

4) OLS and the normal equation DOES NOT
WORK AT ALL when the number of
observations is smaller than the dimension of
the dataset i.e. the number of variables!

E.g. when you have 700 variables and 650
observation:s.

Why?2 Because in such cases (X7X) " is not
computable! l.e. (XTX) cannot be inverted.

- Leaving the proof to you ©

Gradient descent can be used in such situations.
- Offers .e.qg. regularization



GD: Estimatfing parameters

Gradient descent

Why Gradient descente

Gradient descent performs much better —in terms of
execution times/number of operations- in big data
contexts than OLS and in such situations it's
exclusively used.

Gradient descent works even when the data does
not fit info main memory or when entire data not
available at the beginning — different versions of GD

Warning! Gradient descent uses a different
notation for the multiple linear regression model.

ho(x®) = 0,2+ 0,2 + -+ 0,x° + 0, + ¢

0; = Parameter | (to be estimated) x](.i) = Value of independ variable jin

observation iin training set



GD: Estimatfing parameters

Cost function in Gradient descent

In Gradient descent the cost function is
called the mean squared error, J(O)

](001 011 2(’19 (x(l)) y(l))

Where:

= (Unknown) parameter i of the linear regression model from a total of
k+1 parameters
m = Number of observation in training set
hge() = The estimated value of the linear regression model for the values of
the independent variables at observation i in training set.
x® =The values of the independent variables of observation iin training set
y® =The value of the dependent variable of observofionMining set

e




GD: Estimatfing parameters

Cost function in Gradient descent

Gradient descent attempts to minimize the
cost function J(0) by finding/estimating the
proper values of parameters O.

](901 911 Z(he (x(l)) y(l))

-

I

Often abbreviated simply
as J(0).



GD: Estimating parameters

® Cost function in Gradient descent

> Cost function has things in common with the
cost function (i.e. SSE) in OLS but differs a little for
some reasons

m

i | _ |
](90; 91, e HIC) — ﬁi(he(x(l)) _ y(l))z
= N

‘ ,

|




> Cost function in matrix form

GD: Estimating parameters
® Cost function in Gradient descent

1
J(8) = - (X6~ y) (X6~ y) = - (X6 — y)?

Where:

Y1

y =72

Yn

X =




Cost function

A note on notation: cost function in gradient
descent uses different notation (0 instead of
b for parameters, hg() for linear regression
model, J(0) for cost function)

This is because Gradient descent originated
from a different field. One of the first
algorithms which founded the area of
machine learning in applied mathematics

We use the same notation used by
contemporary literature.

P



GD: Estimatfing parameters

General idea of estimating the
parameters 6 with Gradient descent
which minimize the cost function J(0) -
it’'s a process i.e. no closed formula:

Start with initial, random values for the
parameters 6

Update/Change the values of the
parameters © in a way that yield to smaller
value of the cost function J(©)

Contfinue changing values of O iteratively

until the smallest value of J(0) is W.



The general idea of
Gradient descent.

Initial values of
parameters 8o, 8™\ .

Assume a simple linear
Updated/changed values of .
parameters 6o, 61 Ns- regression model he(X) = GO
s + 0,X

The cost function of such
linear regression model,
A% J(6), will be convex and an
sV v”[/ / 5 .
X, DA% example cost function is
depicted on the left.

’1’/,

N iy,

7] 1} [’////5(/

O IOK T/
ey s iligrly 4

Gradient descent tries to

modify the values of all the
fanction o) parameters O iteratively,
towards the smallest value
of J(0).




How to change the values of parameters 6 in
order to minimize J(0)?
The value of the first partial derivative of the cost
function J(0) with respect to a parameter 6, will fell us
how we need to modify the parameter 6, (leaving all

other parameters constant) o achieve a smaller
value of J(0).

Remember from your math classes:
If the value of the first derivative of a function f(x) with
respect to x is at some point X,

positive (>0), an increase of x, leads to an increase of
f(x). A decrease of x, leads ’ro decrease of f(x)

negative (<0), an increase of x, leads to an decrease of
f(x). A decrease of x, leads to i mcreose of f(x)

is equal to zero (=0), an increase of X, leads to an
increase or decrease of f(x) (has a pom’r of deflection at

Xo) - :
/



GD: Estimatfing parameters

How to apply this rule on J(O)<¢

In Gradient Descent J(6) (cost function) is
the f(x), with Bs as our X variables.

Note here: we have many 6s hence J(0) has
many unknowns. We address this later.

Thus, the value of the first derivative of J(©)
with respect to 6, for some value 6 of ©; tells
us if © needs to increase or decrease in order
to achieve an even smaller value of J(0).

Value of the first derivative of J(O) tells us the

direction of change of variable © (increase or
decrease).



How to change the values of parameters 6
INn order to minimize J(B)¢

J(©) is a multivariate function, where the
parameters 6, are the unknown variables.

To apply the derivative technigue, we will use
the first partial derivative wrt to one 6, parameter
and leaving other Bs constant i.e. caljculo’re the

aj(o - . .y
value of % If this value is positive, a decrease

of ©; will de]crease the cost function, if it's
negohve an increase of 6, will decrease the
cost function J(©).

Do this for all parameters © to see how they need
to change i.e. calculate VJ(0)

Do this iteratively 1o get an even smaller value J(6)



How to change the values of parameters ©
INn order to minimize J(6)¢

A more clear example

if inifial parameters of 6 = (6,, 6, 6, ..., ©,) and af
that pom’r the cost function is J(9), 2rhen n&rhe value

of 28 negative, this means that a small increase

(updo’re/chongeg of parameter 6, leading fo
parameters 8' = (,, ©,, ©,%¢ .. f (leaving all other
Os the same) will decrease J 9 |FIT S posmve
decrease 6, to get 8’ = (0, 0,-¢....0,),fogeta
smaller J(©).

i.e. J(0') < J(O)

Do the same for each and all ©s in the linear
regression model and update their values
accordingly.

Do such update for each O iteratively (i.e. many

times over). /



GD: Estimating parameters

® How to change the values of parameters
O in order fo minimize J(0)?

> In Gradient Descent, each parameter is
updated/changed, at each iteration, using
the following formula:

aJ (o

H] = 0.

—




GD: Estimating parameters

© How to change the values of parameters 6 in
order to minimize J(B)<¢

> Fora mulhglle linear regression model, you can actually

calculate —— for all Bs, resulting in the following
20
update formulas for the parameters 6:

0y = a—Z(he(x(‘)) y(‘))

0;,:=0;—a —Z(hg(x(‘)) y(‘))x\ -




GD: Estimating parameters

® How to change the values of parameters
O in order fo minimize J(0)?

> In matrix form, the previous update formulas
for parameters © can be written as




GD: Estimating parameters

® Gradient descent algorithm
> Pseudocode

random values

value of the cost function for each
ctor.

come up with an appropriate value.

Initialize vector of parameters 6 wit

Initialize costVector # We will store th
iteration in this

a = 0.01 # Set learning rate. See later how t

# Start iterations of Gradient descent
while termination conditions not met ({

1
update 6 vector with 6:=6-— aEXT X6 -Y)
calculate value of cost function J(6) for the newly calcu

ted values of ©

Store value of




Gradient descent usually depicted as o
contour plot

Convergence of 6s to
the values which
minimize J(O) is
usually depicted as

ny,
,’,‘W’ ,,’/ Contour plot.
,ﬁ"b';“':":':”ll 5/

&

D
4

0
L

(]
[

In a Contour plot,
each circle represents
the values of 6 that
lead to the same

i SR owoipreT value of J(0).

Contour plot




When does Gradient descent terminatee

3 possible fermination conditions

When a predefined number of iterations have
been completed. Typical number of iterations
are n=50, 20000 or greater depending how fast
the algorithm converges

When the improvement of the cost function is
smaller than a predefined value

Early stopping. With the current “version” of
the cost function, calculate the cost on a
validation set (different from training set) at
each iteration. Compare the two consecutive
values of J(B8) and if J(B) starts to increase,
ferminate the algorithm. Used to address

overfitting. /



\ G D: Estimating parameters

® Gradient descent algorithm with predefined
number of iterations as termination condition

Initialize vector of parameters 6 with random values

Initialize costVector # We will store the value of the cost function J(6) for each iteration
here

a = 0.01 # Setting the learning rate

numIterations = 10000 # Number of iterations to rry out

n = 0 # How many iterations we have done

while n < numIterations {

1
update 6 vector with 6:=60-— CZEXT (X6 —-Y)
calculate value of cost function J(6) for the newly estimated values of 6
Store value of cost function into vector costVector

n=n+ 1 # Next i1teration




GD: Estimatfing parameters

The learning rate a

Setting the learning rate a to the proper value is
criticall

Determines if and how fast Gradient descent
converges to the minimum of the cost function.

If the value of the learning parameter is too smaill,
Gradient descent may converge very slowly

If the value of the learning parameter is too large,
Gradient descent may not converge at all to the
proper values of 6 which minimize J(6). May
divergel
How to check if learning parameter a is too
small, too big or just appropriate?

Empirically, plot the cost function owghape



The learning rate a
Appropriate value of Ieaming rate

If the value of the
learning rate is
appropriate, the cost
function J(6) plotted
against the number of
iterations will have
such shape. Cost
function shows a
steep drop and then a
gradual improvement.

To check if the
selected value is
appropriate, run
Gradient descent and
plot the cost function.

MAnBog emavaiiyewv



The learning rate a
Too small value of the learning rate a

If the value of the
learning rate is too
small, the cost
function J(O) plotted
against the number of
iterations will have
such shape.

This means Gradient
descent will converge
very, very slowly to
the appropriate
values of Bs that
minimize J(O).

MANGog emavaiiwewy



The learning rate a
Too big value of the learning rate a

If the value of the
learning rate is too
big, the cost function
J(©) plotted against
the number of
iterations will have
such a shape. The
cost function
increases with each
iteration.

MAnBog enmavainyewy



The learning rate a
Too big value of the learning rate a

If the value of the learning
rate a is too big, Gradient
descent may overshoot the
P—— | proper values of © that
OUVTEAEGTGV 80, 1 minimize the cost function.

Overshooting happens
because the value of a is too

big and hence the update 6,

- Gj - a %}9) the new values of

6, may increase by too
much, missing the values for
which J(0) is minimized.
Gradient descent then

EAdxioT Tipi J(60, 81) diverges from the proper
values of ©s.

7



The learning rate a

Appropriate values for learning rate?

Typical values of the learning rate a are 0.001, 0.01,
0.1

Execute Gradient descent with such values of the
learning rate a and plot the cost function J(0) as @
function of the number of iterations. Compare the
shape of the plot with the plots shown previously.

If learning rate is too small, increase it by some
amount e.g. from 0.01 to 0.03. Execute Gradient
descent again and plot the cost function. Stop if
the plot of the cost function has the appropriate
shape.



The version of Gradient descent
discussed previously is the “plain vanilla™
style of the algorithm also known as
“Batch Gradient Descent”

Two other versions of Gradient Descent
available that improve performance
dramatically in Big data seffings:

Stochastic gradient descent - SGD
Mini-Batch gradient descent - MBGD

e



Versions of Gradient descent

Why the need o improve the performance
of Gradient descente

If number of observations in training set is large
(e.g. 100000000 observations/records or more),
there are two main concerns with Batch Gradient

descent:
Enfire training set must be stored into memory (RAM)

Update formulas must iterate over the entire training
set to calculate on step for all parameters in each
iteration.

In such settings, Batch Gradient descent is

compuvutationally expensive! /



Versions of Gradient descent

@ Concern: Entire fraining set info memory

> Looking at the matrix form of the update
formula: Does is fit info memory?

|
0:=0—a—X! (X0 -1)

m




Concern: Iterate over the entire training set at
each iteration

Looking at the analytic formula indicates better the
problem (Note: the same argument holds for the
maftrix form, but it's clearer in the analytic form of the
update formula): Can be slow in big data contexts

If the training set has m=10000000 observations, we iterate
over all 10000000 observations just make one (1) update to
one (1) parameter at one (1) iteration! Considering that we
have many parameters, we traverse the 10000000
observations many times at each iteration. This makes Batch
Gradient descent slow.

m

1 . N

0j:=0j—a EZ("O("(‘)) —y®) x;®
=



Why the need to improve the
performance of Gradient descent?

The solution in such big data environments is
simply not to iterate over the entire training set
at each iteration!

The two other versions of Batch Gradient
descent freat/scan the training set differently
and address the above concerns



Versions of Gradient descent

Stochastic Gradient Descent - SGD

At each iteration, SGD uses only one observation
of the training set to update the parameters
(instead of the entire training set in GD)

Initialize all parameters 6; with random values
Initialize costVector # We will store the value of the cost function J(6)

o = 0.01 # Setting the learning rate
Randomly shuffle the training set # To ensure that the observations do not have some kind of order

for each iteration here

while termination criteria not met{
Calculate cost function and store its wvalue in costVector

for each observation i in training set {
for each parameter ej {
Set new value of parameter newy;:= Hj—-a(hg(xUX)—)ﬂD)fo
}
calculate value of cost function J(6) for the newly estimated values of ©
Store value of cost function into vector costVector
}
0, := newgy,
n=n+ 1 # Next iteration

}

# Vector 6 will contain the estimated parameters which minimize J(8)
print Oy
plot costVector




Pros/Cons of SGD

Pros

It's a so-called online algorithm - you see the
update of parameters immediately, in @
sequential fashion, during their estimation i.e. in
real time. That's not possible with Batch GD

Does not require entire training set in memory
Avoids local minima of J(0)

Cons

Can be noisy i.e. parameters jump around at
each epoch with greater variance between
epochs (epoch = one update of all

parameters)



Mini-Batch Gradient Descent - MBGD

MBGD does not use one single observation of the

training set to update the parameters. It uses a

“small batch” of fraining set observations —

’g/pgcr?lly between 2 and 100 observation in each
atch.

To do this, we cut the large training set into smaller
training subsets, and use these to update the
parameters at each step

It's a method “between” the exitremes of Batch
Gradient descent (which uses entire fraining set for
each parameter update) and Stochastic Gradient
descent which uses only one observation to update
the parameters.

Can be used when the dataset does not fit info
computer’'s memory



Versions of Gradient descent

® Mini-B h Gradient descent

Initialize all parameters 6, with random values
Initialize costVector # We will store the value of the cost function J(©)
a = 0.01 # Setting the learning rate
Randomly shuffle the training set # To en
Cut the training set into batches/subsets b,
might be smaller than ny
while termination criteria not met/{
Calculate cost function and store its value in
for each batch b;
for each parameter ej{

for each iteration here

re that the observations do not have some kind of order
ach of size n, such that b;*n, =m # Note: last batch

ostVector

Set new value of parameter neW@j:= Qi—-a Zﬁg(hg(x -—}Kﬂ)xfo

}

calculate value of cost function J(©)
Store value of cost function into vector costVector

for the newly estimated values of 6




OLS vs Gradient descent
o [ Gradenidescent

Estimates the same, unbiased parameters
for the same training set if the linear
regression assumptions hold (No or little
multicollinearity, No of auto-correlation of
residuals, Homoscedasticity etc)

Computationally expensive in big data
contexis.

Can be used to estimate parameters only
for linear regression models

Offers closed formulas (the normal
equation) for calculating the parameters

Requires entire training set in RAM

Taught and used mainly in social sciences
to explain variance of dependent
variable.

Estimates of parameters are
approximations and biased. May result in
different parameter estimates for the same
training set and regression model.

Suitable in big data contexts where
number of variables and humber of
observation are very large

Can be used (and is used) to estimate
parameters in nonlinear regression
models.

Does not offer closed formula. Parameter
estimates are iteratively calculated

Versions of Gradient descent do not
require entire training set in RAM (e.g.
Stochastic Gradient Descent, Mini-Batch
Gradient Descent)

Taught and used mainly in computer
science and engineering to predict the
dependent variable.







Evaluation@

Checking 1o see if the estimated model is
justified and useful i.e. achieves its goal.

Evaluation method depends strongly on
the regression model’s goal

Whether the goal is fo explain the variance
of the dependent variable

Whether the goal is to predict the value of
the dependent variable



Explaining variance

When the model’'s goal is to explain the
variance of the dependent variable
The aim is fo exactly determine how each

iIndividual independent variable influences
the dependent.

QOut of such observations you may validate or
Inform existing theories.

You don't want to mask any influence
(capture their pure effect) and make sure that
linearity is the proper way to capture the

relafionship between the variobles./



Explaining variance

Main tests you have to do for a linear
regression model, it your goal is to explain
the variance (many checks, but 4 most
Important):

Check the linearity hypothesis

Check the homoscedasticity of the residuals

Check if the residuals are normally distributed

Check (multi) collinearity of the independent
variables

You don't want multicollinearity! /



When the model’s goal is to predict with
high accuracy the value of the
dependent variable

The aim Is fo see how well the estimated

model performs on new/unknown/unseen

data i.e. data that is not in the training set
When the aim is prediction, you don’t care
how exactly each individual independent
variable influences the dependent.

You care about the accuracy of the prediction, not
how each variable influences the dependent

»




Also, you don’t really care which
variable to include into the model.

If It iImproves prediction it's a good addition.
You don't need to justify inclusion of
iIndependent variables because you don't
care about a theory.
In general, adding variables improve
prediction

There are problems however when adding
variables that need to be addressed

P



How fo evaluate a model when the goal
It prediction?
You compare the model’s predicted values
of the dependent variable for unknown data
with the actual, observed, real value of the

dependent variable for unknown data. Their
difference is the prediction error

Large prediction error =>
Small prediction error =>
The error can be estimated with error metrics

There are many of them, each one
appropriate for specific situations i.e.
emphasizes different aspects



Predicting

Most common error meftrics used to evaluate

prediction ACCUracy (n=number of observations, y; real
observation of dependent var, y;= predicted value of
dependent variable)

Mean Absolu’re Error (MAE)

MAE = —%i_11yi — il
Mean Squared Error (MSE)
MSE = - 1(yl yi)z

Root Iv\ean Squared Error (RMSE) — most popular

RMSE = J Zl 1(yl 571')2
Mean Absolute Percentage Error (MAPE)

MAPE = ~37, ‘yiy‘fi‘ / :




Predicting

How to calculate prediction error of a linear
regression modele

Where to get the data from and check
Adccuracy againste

In general, two approaches to do this

In-Sample-Testing: get a subset from the data that
was used to estimate the parameters and check
prediction errors. The error calculated from such
dataset is called fraining error

The idea here is that the calculated training error is @
good approximation of the error on unknown data.

Out-of-Sample-Testing: get a different, new, unseen
subset of data —not in the training set- to check

prediction error. Error calculated in such way is
called generalization error.



Out-of-Sample-Testing
How/where to get new, unseen data?

1) Collect new data from the source again i.e.
apart from training data
Not always possible, costly, time consuming

2) Divide the existing dataset randomly into
two non overlapping subsets:
One for estimating the parameters thus becoming the
training set

One for evaluating the prediction error called the
testing set/test set. The test set is not used for
estimating the parameters: this set is excluded and
hence functions as an new, unseen data set.

Such way of testing/evaluating a model is called
cross validation. ,



Cross validation

Ditferent versions available to get better
estimate of the error

1) Holdout method: Divide (once) randomly
Initial dataset into only two non-overlapping
data subsets: one for training (training set) and
one for testing (testing set)

In general 70-80% of the initial dataset will be the
training set, 30-20% of the initial dataset will be the
testing set.

Use the training set to estimate parameters

Use the testing set (which is a new/unseen dataset) to
calculate error which is considered an approximation
for the generalization error. /



Predicting

Cross validation

Different versions available to get better
estimate of the error

2) k-Fold Cross validation method: Divide the initial
dataset info k non-overlapping subsets with
approximately equal number of observations - not
only info two as in the holdout method. k (humber
of subsets) is given by user (usually k=5 or k=10 or
even greo’rer?.

Then, iterate over each of these k subsets, and use
each one of the subsets as the testing set and the
remaining k-1 subsets as the fraining set (merging
them info one set). Process terminates when each
one of the k subsets has been used as testing set.

Calculate error on each testing seft. In total k errors
will result out of which the average can be

calculated. Much better estimate of the
generalization error!



Why K-fold cross validation?

gives a much better estimate for the
generalization error.

—

Testing set Training set  Training set  Training sef  Training set
Cut original
dalas Training set ICSseRc @ Training set  Training sef  Training set
approximate .. -
ly egually —  Training set Training set Testing set Training set Training set
sSize
H Training set Training set  Training set Testing sef Training set
Training set Training set  Training set  Training set Testing set

1st iteration: use
first subset as
testing set and
remaining as
fraining set.
Calculate error.

2nd jteration: use
second subset as
testing set and
remaining as
fraining set.
Calculate error.

3 iteration: use
third subset as
testing set and
remaining as
fraining set.
Calculate error.

4t jteration: use

fourth subset as
testing set and
remaining as
training set.

Cclcuys/error.

5Miteration: use
fifth subset as
testing set and
remaining as
fraining set.
Calculate error.



Predicting

Cross validation

Used also in comparing the accuracy of
different linear regression models to predict
the same dependent variable.

E.g. which one of the following different linear

regression models better predicts the mpg of
carse

mpg = [iHorsepower + [,Weight + P,
mpg = f{Horsepower + [,Weight + [;Displacement + f,
mpg = fiHorsepower + [,Weight + B3Weight? + B,Displacement + S,

Do a k-fold cross validation on the same

dataset for each model. Compare errors.
Model with smallest error chosen



Predicting

® K-Fold Cross Validation in R
> See file R-k-FoldCrossValidation.rar on eclass




When the goal is prediction, the aim of a
regression model is to have small
generalization errors

Yet, real value of generalization error is never
known — only estimations possible by using k-fold
cross validation

From the training error (which is always
known), It's not possible to get a reliable
estimate of the generalization error

It’'s a poor estimate for the generalization error

e



However, from the relationship between
the fraining error and generalization error
(resulting from k-fold cross validation)
useful conclusions about the regression
model can be drawn

In particular these situations

Training error and generalization error small

Training error large, and generalization error
large

Training error small and generalization error

large
/



Training error and generalization error small

Regression model fits the training data well. The
ideal situation

Training error and generalization error large

In this case the regression model is underfitting
the training data and the situation is called
underfitting: the model does not succeed in
fitting the training data well.

Happens when the regression model is foo
simple I.e. has few independent variables.

Such models do not have the flexibility to adapt
to the changes and variance of the dependent
variable and hence has a poor fit to the data —
hence the large training and generalization

errors. /



Overfitting

Training error (very) small and generalization
error large

In this case the regression model is overfitting the
training data and the situation is called
overfitting.

This happens when the regression model fits the
training data too well — the model captures not
only the (true) relationships between the
variables in the fraining set but also random
noise and fluctuations of fraining data

Hence, it is very good in predicting the value of the
dependent variable for data in the training set (i.e.

very small training error) but very bad in predicting
the value of the dep. variable for new/unknown

data (large generalization error).



Overfitting

@ Qverfitting is a generally associated with
more complex regression models
> A regression model is called complicated,

the more independent variables it contains
and higher degree of monomials.

mpg = [iHorsepower + B,Weight + [,

mpg = PiHorsepower + [,Weight + f3Displacement + [,



The more complex the regression model
the more overfitting becomes a problem

EN@AvVIOon UTTEPTTPOCAPUOYNG
HOVTEAOU

Generalization error
(large)

Training error (small)

Model complexity




How to check if a model is prone to
overfitting?
Calculate training error of model using in-
sample-testing: take a subset of the fraining

data — used to estimate the model’s
parameter- and calculate training error

Calculate generalization error using k-Fold
Cross Validation

Compare these two errors (training,
generalization)

P



How to address a model that exhibits
overfitting?
Two approaches

Make the regression model simpler by removing
iIndependent variables or reducing the degree
of monomials
Not always easy: which variables to remove, model
needs to be re-evaluated etc.
Use regularization.

What is regularizatione A way/technique to overcome
the problems of overfitting by limiting the size of the
coefficients.

P



Regularization

Two approaches

Make the regression model simpler by removing
Independent variables or reducing the degree
of monomials
Not always easy: which variables to remove, model
needs to be re-evaluated etc.
Use regularization.

What is regularizatione A way/technique to overcome
the problems of overfitting by limiting the size of the
coefficients.

e



Regularization
Size of coefficients

In general, overfitted regression models are not
biased, but have a huge variance of the predicted
dependent variable. The bias-variance tradeoff in
predictive modeling!

Bias-variance tradeoff in
predictive models: models
having a low bias have
large variance of the
predicted value. Models
with a low variance of the
predicted value have large
bias




Regularization

Size of coefficients

This high variance of the predicted value is
caused by the size of the estimated coefficients:
they are large. As a result, even small changes
of the dependent variable results in large
variances of the dependent variable due to the
large coefficients

Since bias in an overfitted regression model is
low, high variance due to the large
coefficients can be addressed by limifing their
size

l.e. making them technically smaller.

This is what regularization achieves.



What regularization does

Attempts to limit the size of coefficients in an
overfitted regression model in order to control
the variance of the predicted values of the
dependent variable.

Regularization achieves this by modifying the
0ss function and placing also constraints on
the magnitude of coeftficients so that they
don’'t grow to large values

l.e. loss function also constraints the magnitude
of the coefficients.

e



Overfitting

® Modifled Loss function

> If gradient descent is the method used o
estimate the coefficients, o achieve
regularization an additional term is added: the
regularization term:

](,30» ﬁli ﬁZi "",Bk ) — %Z(hﬂ(x(l)) _ y(%z_k\/‘{ZlLB]lq
LT U |
|

|




Overfitting

1 m | | n
JBo, B, o s Bi) = %thﬁ(w) - y0) *Z'ﬁf'q
= j=
\ } \ }

! f
(Traditional) Loss function Regularization term: new
of Gradient Descent term added to achieve
regulorizo’rion of coefficients

Regularization term: why it works
The term added is the sum of estimated
coefficients. Minimizing this new loss function means
minimizing both ferms i.e. minimize 1 ¥™,|4;|" also!
That means that constraints on their size are placed
and smaller values are preferred.



g: parameter that defermines the type of
regularization
It g=1 the loss function becomes

1 m n
. NN 2
— (hg(x®) = y®)* +2 )|
i=1 j=1

and the regression is called Lasso or L1 regression.

Lasso regression not only limits the size of coefficients but
can also be used for feature selection
For large values of A, Lasso regression will result in
coefficients to become 0. This means that the respective

independent variables not stafistically significant and hence
can be dropped (= feature/variable selection)!

e



g: parameter that defermines the type of
regularization

It g=2 the loss function becomes
= () = yO) 42 |g)f

and the regression is called Ridge or L2
regression or Thikonov regularization.

This is the most popular form of regularization
with good results. Coefficients get smaller but
not zero hence Ridge regression cannot be
used for feature selection. /



§
Overfitfing

® Q. parameter that determines the type of
regularization

> Third option also available called Elasticnet

- Adds two terms to the Loss function, one similar to
Lasso regression and one similar to Ridge
regression with weights.




A. regularization parameter

Given as input o the regression analysis i.e.
must be determined beforehand by the user

If A=0, regularization term cancels out and the
loss function takes ifs traditional form (i.e.
without regularization)

The proper value for A can be determined by
doing k-Fold Cross Validation for different values
of A and selecting the most appropriate one
based on the prediction error.

Typical values for A are: 0.01, 0.02... 0.4... 0.7...

e



Regularization in R

When using Gradient Descent, two things must
change the cost function changes (here Ridge
regression):

The partial derivative which becomes

9 1 o . G
55O =1 [Zzl(hg (x®) = y©)x® + 26|

« The Loss/cost function which becomes:

calculateCostRidge<-function(X, vy, theta, lambda=0){
# Number of observations
m <- length(y)
return( sum((X%*%theta- y)*2) / (2*m) + lambda*sum(theta"2))

} # calculateCostRidge




Regularization

Regularization does not apply only to Gradient
Descent (here just used as an example)

Can also do regularization with any method of
estimating coefficients for a regression model

E.g. OLS with regularization is possible.
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Deriving update formulas for
parameters in linear regression
models In Gradient Descent

We will derive as an example the update
for parameter O, (parameter for an
Independent variable) - the same
analysis holds for all other parameters 6,

1 . . 1 2 . . 2
9J(6) 9 5 Niti(he(x?) — y®)* 7m 92z (he(x(l)) — 2ho(x®)y" + y® )

a91 ; 091 B 691
N2 . ) 2
1 d Z?ll hg (x(‘)) 0 Zﬂ_ he(x(l))y(l) d Zl‘_ y(l)
— — -2 =1 =1 — lide >
2m 90, a0, + 30, < see next slide




Deriving update formulas for
parameters in linear regression
models iIn Gradient Descent

1 [axPhy (x®)? 5 9%y he(x©)y®
B 2m | 00, 20,
- i 2 Z h (x(l)) ah@(x azfl 1 h (x(l))y(l)
1| | N
= — zz o (x ) - sz%w = — (he(x®) - y©)x{)
L (=1 i=1 i=1

Thus the update formula for parameter 61 becomes thus:




Batch Gradient Descent vs Stochastic
Gradient Descent vs Mini-Batch Gradient
Descent: An explanation of how they

differ in updating the s /



Batch Gradient Descent vs
Stochastic Gradient Descent Vs
Mini-Batch Gradient Descent

@ It's all in how the training set is scanned/fraversed

> Assume that training set has 10000000 observations i.e.
m=10000000. i.e. fraining set very large.

# How 6s are updated in Batch Gradient descent Batch Gradient Descent
while termination conditions not met {
update each 6s (i.e. coefficients) as folles:

m
1 : )
0, := 0y — _Z(h“’(x(”) =)
mi=1
1 m
0,:= 0;,—a Ez(h"("@) — YD) 1, W
i=1

m

1 , , ,

0,:= 6,—a EZ(hg(x(‘)) — y®) x, ®
1=




Batch Gradient
Stochastic Gradi

escent Vs

ent Descent Vs

Mini-Batch Gradient Descent

@ It's all in how the training set is scanned/fraversed

> Assume that training set has

10000000 observations i.e.

m=10000000. i.e. training set very large.

Stochastic Gradient Descent (SDC)

while termination criteria not met({

for each parameter 65 {

}
calculate value of cost function J(6)

Store value of cost function into vector costVector

}

Calculate cost function and store its value in costVector
for each observation i in training set (i.e. for each 10000000 obs)

Set new value of parameter newg; = Gj—-a(hg(xan-—)ﬂg)xﬁ)




Batch Gradient Descent vs
Stochastic Gradient Descent Vs
Mini-Batch Gradient Descent

@ It's all in how the fraining set is scanned/fraversed

> Assume that ’rrolnmg set has 10000000 observations i.e.
m=10000000. i.e. ’rrqmmg set very large.

Cut the training set into batches/subsets b; each of size n, suc
while termination criteria not met({
Calculate cost function and store its value in costVector

for each batch b; {

for each parameter 65 {

Set new value of parameter newe ; := 0 —a Z:L”l(h,g(x(i)) —y(i)) xj(i)

}
calculate value of cost function J(6) for the newly estimated values of ©
ue of cost function i




