


 Investigate and quantify the relationship 
between one variable which takes 
continuous values and a set of other 
variables that may take any type of value
› In particular, investigate the effects of one (or 

more) variable(s) onto the value of another 
variable in the dataset.
 E.g. How does the value of one variable 

change if other variable(s) change value?

 Goal: come up with a model (i.e. a 
function) that predicts and/or explains
the value of one variable based on the 
values of other variables.



 In regression, the relationship expressed is 
between one variable -called the dependent 
variable- and one or more independent 
variables

 Very Important! In regression, dependent 
variable takes continuous values
› Independent variables can be of any type

 Relationship between variables take the form 
of a function/equation: Aims at expressing the 
value of the dependent variable as a function 
of the values of other independent variables.
› This function also referred to as “regression model”, 

“regression  equation” or plain “regression”.



 Regression equations can take many 
different forms
› But does not imply a deterministic relationship

 Examples of regression equations/models
› FoodConsumption = 0.78 Income + 1459

 e.g. for quantifying the relationship between 
annual FoodConsumption (dependent variable) of 
families and their annual income (independent)

› CarValue = PurchaseValue - e(0.88*age) e.g.

 E.g for quantifying the relationship between the 
present value of a car (dependent variable) and 
the variables purchase value and age 
(independent variables).



 Purpose of regression models

› Explain the variance in the dependent 

variable based on the values of the 

independent variables(s) of the existing 

dataset

› Predict the value of the dependent variable 

based on the values of the independent 

variable(s)



 Regression analysis requires a training set 
with observations on these variables from 
which the relationship between the 
interested variables will be quantified.

 A regression model tries to come up with an 
equation that best “fits” the data in the 
training set.
› There can be many regression equations that fit 

the data, but we look for the one that fit the best

› This “fit” can assessed and the usefulness of the 
model can be determined.



varY = b1varX1 + b2varX2 + b3varX3 +…+ b0

Dependent 

variable
Coefficients/

parameters

Independent 

Variables/Predictors/Regressors

Intercept/bias

Terminology

General form of a regression model capturing the relationship between 

variable varY and variables varX1, varX2,…. 



 Examples of regression models (note the 

coefficients and independent variables):

𝚱𝛂𝛕𝛂𝛎𝛂𝛌𝛚𝛔𝛈 = 𝜷𝟏𝜠𝜾𝝈ό𝜹𝜼𝝁𝜶
𝟐 + 𝜷𝟎

𝚨𝛒𝛕𝛈𝛒𝛊𝛂𝛋𝛈 𝛑𝛊𝛆𝛔𝛈 = 𝜷𝟏𝜱ύ𝝀𝝀𝝄 + 𝜷𝟐 𝜢𝝀𝜾𝜿𝜾𝜶 + 𝜷𝟎

𝒍𝒏 𝜠𝜾𝝈ό𝜹𝜼𝝁𝜶
= 𝜷𝟏𝚬𝛍𝛑𝛆𝛊𝛒𝛊𝛂 + 𝜷𝟐𝚬𝛍𝛑𝛆𝛊𝛒𝛊𝛂 + 𝜷𝟑𝚬𝛋𝛑𝛂𝛊𝛅𝛆𝛖𝛔𝛈 + 𝜷𝟎

𝑪𝒓𝒐𝒑 𝒚𝒊𝒆𝒍𝒅 =
𝟏

𝒃𝟏 + 𝒃𝟐𝑪𝒓𝒐𝒑𝑺𝒑𝒂𝒄𝒊𝒏𝒈
𝒃𝟑
+ 𝜷𝟎



 In a regression model, the unknowns are the 

coefficients of the independent variables 

(usually represented as betas bi) and the 
goal is to estimate them from the training set 

and assess their importance

› Estimation of coefficients is done using the 

existing training dataset

› The coefficients bi for each independent variable 

tell us how that independent variable influences 

the dependent. 

› Values of the independent variables are known 

from the training data



 Types of regression models
› Based on how the value of the dependent 

variable changes when the values of the 
independent variables or coefficients change 
(That’s very, very important and always to keep 
in mind – determines the form of the regression 
model)
 i.e. how a change in the coefficients/parameters 

and independent variables affect the dependent 
variable. 

 Expressed as rate of change: 
ΔY

ΔΧ
,
ΔY

Δb

› Two types
 Linear regression models

 Nonlinear regression models



 Types of regression models
› Linear regression models

 In linear regression models the dependent 
variable depends linearly on all the 
coefficients/parameters (and only the 
coefficients!)

 “Depends linearly” means that the rate of 
change of the dependent variable -if the 
coefficient changes- is independent of the 
value of the coefficient (i.e. constant wrt
coefficient). I.e. rate of change constant

 Linear regression models do not need to 
depend linearly on the independent variables!



 Types of regression models

› Linear regression models

 The model Consumption = b1Income + b0 is a linear 

model because the value of consumption 

depends linearly on all coefficients b of the model: 

(e.g. assuming coefficient b1 increases by some ε):

𝚫𝐂𝐨𝐧𝐬𝐮𝐦𝐩𝐭𝐢𝐨𝐧

𝚫𝒃𝟏
=

𝒃𝟏 + 𝜺 𝑰𝒏𝒄𝒐𝒎𝒆 + 𝒃𝟎 − 𝒃𝟏𝑰𝒏𝒄𝒐𝒎𝒆 − 𝒃𝟎
𝜺

= 𝑰𝒏𝒄𝒐𝒎𝒆

Independent of the value of coefficient b1 that 

changed. Hence the model is linear. Model 

happens to be also linear with respect to 

independent variable Income. 



 Types of regression models
› Linear regression models

 Dependent variable does not need to be linearly 
dependent on the independent variables (can be 
but its not required). This means linear regression 
models –when plotted- can form curves.

 Hence that all the following regression models are 
also linear although they are not linear with respect 
to the independent variables.

𝑪𝒐𝒏𝒔𝒖𝒎𝒑𝒕𝒊𝒐𝒏 = 𝒃𝟏𝑰𝒏𝒄𝒐𝒎𝒆 + 𝒃𝟐𝑭𝒂𝒎𝒊𝒍𝒕𝒚𝑺𝒊𝒛𝒆𝟑 + 𝒃𝟎

𝑩𝒍𝒐𝒐𝒅𝑷𝒓𝒆𝒔𝒖𝒓𝒆 = 𝒃𝟏𝑺𝒆𝒙 + 𝒃𝟐 𝑨𝒈𝒆 + 𝒃𝟎

𝐥𝐧 𝑰𝒏𝒄𝒐𝒎𝒆 = 𝒃𝟏𝑬𝒙𝒑𝒆𝒓𝒊𝒆𝒏𝒄𝒆 + 𝒃𝟐𝑬𝒙𝒑𝒆𝒓𝒊𝒆𝒏𝒄𝒆
𝟐 +

𝒃𝟑𝒀𝒆𝒂𝒓𝒔𝑬𝒅𝒖𝒄𝒂𝒕𝒊𝒐𝒏 + 𝒃𝟎

All these are 

considered 

linear models 

because they 

depend linearly 

on the 

coefficients. 

Not on the 

independent 

variables. You 

may substitute 

e.g. FamilySize3

with a new 

variable say Z



 Types of regression models

› Nonlinear regression models

 In nonlinear regression models the dependent 

variable does not depend linearly on all the 

coefficients (and only the coefficients!)

 “Does not depend linearly” means that the

rate of change of the dependent variable -if 

one of the coefficient changes- is dependent 

of the value of the coefficient i.e. definitely not 

constant!



 Types of regression models
› Nonlinear regression models

 The following are examples of nonlinear 
regression models

𝑹𝒂𝒕𝒆 𝒐𝒇 𝒓𝒆𝒂𝒄𝒕𝒊𝒐𝒏 =
𝒃𝟏𝑪𝒐𝒏𝒄𝒆𝒏𝒕𝒓𝒂𝒕𝒊𝒐𝒏

𝒃𝟐 + 𝑪𝒐𝒏𝒄𝒆𝒏𝒕𝒓𝒂𝒕𝒊𝒐𝒏

Rate of a chemical 
reaction and the 
concentration of 

substance

𝑪𝒓𝒐𝒑 𝒚𝒊𝒆𝒍𝒅 =
𝟏

𝒃𝟏 + 𝒃𝟐𝑪𝒓𝒐𝒑𝑺𝒑𝒂𝒄𝒊𝒏𝒈
𝒃𝟑



 The notion of error in regression models
› Regression models are approximations that 

try to fit in the best way possible the real data 
and values of the dependent variable in the 
training set.

 You always have a sample – the training set. 
Never the population.

 Because regression models approximate the 
value of the dependent variable, they never 
succeed  in capturing/predicting/estimating 
the real value of the dependent variable.
 But what is the real value of the dependent variable?



 The notion of error in regression models

› Two types of errors in regression models

 Errors/disturbance

 The difference between the (unobserved) real value of 

the dependent variable in the population and  the 
observed value in the training set. This error can never be 

observed or measured because we are unaware of the 

real value of the dependent variable in the population.

 Residuals/fitting deviations

 The difference between the dependent value in the 

training set and the predicted/estimated value by the 
regression model. This can be observed and measured



 The notion of error in regression models
› Errors and residuals are included in the 

regression models.

 Adding term ε (for error) when showing the 
general model or εi (for residuals) when 

› Full specification of a regression model 
includes error term e.g.

𝑪𝒐𝒏𝒔𝒖𝒎𝒑𝒕𝒊𝒐𝒏 = 𝒃𝟏𝑰𝒏𝒄𝒐𝒎𝒆 + 𝒃𝟐𝑭𝒂𝒎𝒊𝒍𝒕𝒚𝑺𝒊𝒛𝒆𝟑 + 𝒃𝟎 + 𝜺

› If the error term is not explicitly included in the 
regression model, it’s implied.
 This means, there always is an error term in the 

model!



 More types of linear regression models

› Simple linear regression models

 When the regression model includes only 2 

variables: one dependent and one 

independent variable

 E.g. Income = b1Education + b0

› Multiple linear regression models

 When the regression model includes more 

than 2 variables

 E.g. Income = b1Education + b2Experience + b0



 Who comes up with regression models and 
how?
› Domain experts (economist, statisticians, 

engineers, etc)
 Theory

 Read the relevant literature and identify factors that 
affect the value of the dependent variable

 Determine the purpose of the model
 Explain the variance or predict the dependent variable?
 These influence how the model will be evaluated.

 Look at the data and how it changes
 From existing data, see how the dependent variable 

changes when the independent variables change

 Trial and error
 Begin by trying simple regression models and assess the 

results. Continue by modifying the model if results are not 
appropriate.



 Who comes up with regression models?

› Don’t forget: The coefficients of a model are 

calculated from the existing dataset (the 

training set) and these capture the 

relationships between the variables. Hence, 

regression models are approximations that 

try to fit the best way possible the available 

data in the training set.



 In regression analysis you

› First estimate the parameters from the 

training set

› Then assess and evaluate the model to see if 

it meets the objectives, is useful and 

conclusions can be drawn

 Evaluation methods depend on the model’s 

purpose (explanation or prediction?)





 In a regression model, the problem is 
estimating the coefficients/parameters that will 
indicate/quantify the relationships between 
the variables
› Coefficients/parameters are estimated from an 

existing dataset (the training set) which is required.

Tid House 
Price 

Marital 
Status 

Income 
m2House 

1 190K Single 125K 180 

2 145K Married 100K 154 

3 101K Single 70K 110 

4 187K Married 120K 167 

5 109K Divorced 95K 110 

6 96K Married 60K 90 

7 200K Divorced 220K 190 
10 

 

Training 

set.

Income = b1m
2House + b0

Unknowns are the parameters b 

(independent variables known from 

training set). The parameters b of this 

regression model are estimated 

using the training set. The goal: find 

the best values of b which best fit the 

values of the dependent variable in 

the training set.



 Different methods to estimate 

parameters based on the type of the 

regression model

› E.g. Linear vs Nonlinear

 The general idea: Estimation of 

parameters in regression model (linear or 

nonlinear) involves a Cost function (also 

called “Loss function”) that needs to be 

minimized.



 Cost function tries to measure how big the 

error of the regression model is when 

estimating the value of the dependent 

variable

› The model with smallest error fits the data well 

i.e. is the best one.

› Essentially, error is the sum of residuals which is to 

be minimized

› Cost functions can have many different forms

 Depending on the purpose

 The form of the cost function determines the type 

of regression: Ordinary Least Squares (OLS), LASSO, 

Quantile etc





 Linear regression models have the 

following general form:

𝒀 = 𝒃𝟏𝑿𝟏 + 𝒃𝟐𝑿𝟐 + 𝒃𝟑𝑿𝟑 +⋯𝒃𝒌𝑿𝒌 + 𝒃𝟎 + 𝜺

Where: 

Y: Dependent variable
Xi : Independent variable i

bi: Parameter to be estimated

ε: Error term  



 Since linear regression models try to fit the 

available training data, the linear regression 

model can also be written in the form:

𝒀𝒊 = 𝒃𝟏𝑿𝟏𝒊 + 𝒃𝟐𝑿𝟐𝒊 + 𝒃𝟑𝑿𝟑𝒊 +⋯+ 𝒃𝒌𝑿𝒌𝒊 + 𝒃𝟎 + 𝒆𝒊

Where: 
Yi : Value of dependent variable in observation i in training set

Xki : Value of independent variable k in observation i of the 

training set
bi: Parameter to be estimated

ei : Residual of the i-th observation in the training set



 If there are n observations in the training 

set, then there will be n equations, one 

for each observation, of the form:

𝒀𝒊 = 𝒃𝟏𝑿𝟏𝒊 + 𝒃𝟐𝑿𝟐𝒊 + 𝒃𝟑𝑿𝟑𝒊 +⋯+ 𝒃𝒌𝑿𝒌𝒊 + 𝒃𝟎 + 𝒆𝒊



 Because parameters are estimated from the 
training set and not the true real values of 
the variables (remember: the training set is 
just a sample), the estimates are mentioned 
in the regression model by adding a hat (^)

෡𝒀𝒊 = ෡𝒃𝟏𝑿𝟏𝒊 + ෡𝒃𝟐𝑿𝟐𝒊 + ෡𝒃𝟑𝑿𝟑𝒊 +⋯+ ෡𝒃𝒌𝑿𝒌𝒊 + ෡𝒃𝟎 + 𝒆𝒊

Where: 
෡𝒀𝒊 : The estimated value of the dependent variable
෡𝒃𝒊 : The estimated value of the parameter i.



 Regression model in matrix notation

› It’s customary to represent these n regression 

equation in matrix notation. If we define:

෡𝒀 =

𝒀𝟏
𝒀𝟐…
𝒀𝒏

𝑿 =

𝟏 𝑿𝟏𝟏 𝑿𝟐𝟏 … 𝑿𝒌𝟏

𝟏 𝑿𝟏𝟐 𝑿𝟐𝟐 … 𝑿𝒌𝟐

𝟏 𝑿𝟏𝟑 𝑿𝟐𝟑 … 𝑿𝒌𝟑

… … … … …
𝟏 𝑿𝟏𝒏 𝑿𝟐𝒏 … 𝑿𝒌𝒏

෡𝒃 =

෡𝒃𝟎
෡𝒃𝟏
෡𝒃𝟐
…
෡𝒃𝒌

𝒆 =

𝒆𝟏
𝒆𝟐
𝒆𝟑
…
𝒆𝒏

› Then the n linear regression equations, derived from 

the training set, can be written in matrix form:

෡𝒀 = 𝑿෡𝒃 + 𝒆
If you carry out the operations, you’ll 

get the n linear regression equations 

as vectors. 

The matrix form makes it easier to 

calculate the parameters using 

machines (i.e. computers).

Matrix of values of 

independent variables in 

training set.



 Two methods for estimating the 

parameters of linear regression models

› Ordinary Least Squares (OLS)

› Gradient Descent and its variations

 Each of the above method appropriate 

in specific situations.





 Ordinary Least Square (OLS) Regression

› In OLS the cost function is the Sum of 

Squared Errors (SSE) i.e. sum of residuals

which must be minimized:

𝑺𝑺𝑬 = ෍

𝒊=𝟏

𝒏

𝒆𝒊
𝟐 = ෍

𝒊=𝟏

𝒏

𝒀𝒊 − ෡𝒀𝒊
𝟐

› The parameters b which minimize the above 

SSE are the parameter estimates of the linear 

regression model that best fit the training data.

𝒀𝒊 = Value of the dependent variable in observation i of the training set
෡𝒀𝒊 = Estimated value by the linear regression model for the values of the 

independent variables in observation i in the training set.



 Geometric interpretation of SSE?

› i.e. Draw it for me with crayons pls…

Residual or Error (green line) measures how much “off” (in 

terms of distance) is the real from the predicted/estimated 

value of the dependent variable Yi by the model for that 

value of Xi. Note: not perpendicular to the regression line –

it’s the shortest distance to the regression line.

Data point 
(Observed/real 𝑌𝑖for 
some Xi)

Predicted value ෠𝑌𝑖(value 

estimated by the model) 
for some value of 
independent variable Xi .

Residual

Red line is the “Regression line” i.e. 
line generated by all the points 
generated by the regression model 
which is the best “fit” to the data 
(a.k.a. best fit line)

෡𝒀𝒊

Residual

Residual

Residual

Residual

The basic idea:
Sum of all squared 

residuals is a 

measure of how 

good a regression 

line (i.e. the 

predicted or 

estimated values 

by a regression 

model) is – how 

good it fits the 

data. 

The best regression 

line, that fits best to 
the data, has of 

course the smallest 

sum of squared 

residuals or errors.

𝒀𝒊

𝑿



 But why Sum of SQUARED errors?

› i.e. why SQUARE the errors?

𝑺𝑺𝑬 = ෍

𝒊=𝟏

𝒏

𝒆𝒊
𝟐 = ෍

𝒊=𝟏

𝒏

𝒀𝒊 − ෡𝒀𝒊
𝟐

Why this SQUARE in 

residuals ????

1st reason: You need positive residuals or errors 

because they are in essence distances from the 

regression line.

So, why not use absolute measures instead e.g. 

𝑌𝑖 − ෠𝑌𝑖 ? You can actually and that’s used in many 

situations –it’s called L1 norm of residuals! If you use 

such way of measuring residuals, the regression in 

not called OLS anymore. It’s called Least Absolute 

Deviations – LAD – regression and used in Robust 

regression.

However, L1 norm of residuals has some other issues 

(see 2nd reason)

2nd reason: You want to penalize large 

residuals. I.e. PUNISH large residuals! This means 

that if you have big  residuals, YOU WANT TO MAKE 

THEM EVEN BIGGER so that SSE gets EVEN BIGGER 

when large residuals are present !!! Why is that? 

Ask yourself: What’s a better model: many small 

errors or 1 huge error? Now assume that Sum of 

small errors = 1 huge error. (L1 norm of residuals 

cannot differentiate. Squares CAN! I.e. “missing by 

a little lots of times is better than missing by a lot a 

few times”.

But, if so, why not raise to the power of say 6 or 8 or 

10 to punish large residuals more? You can do this 

also! But this adds little and makes calculations 

more difficult. Hence, raising to the power of 2 is 

cheap and does the job…

(Note: you do understand that you CANNOT raise it 

to an odd power?)



 Ordinary Least Square (OLS) Regression

› How is the Cost function (SSE) minimized in OLS?

› First write SSE in matrix notation as a function of 

the vector b

𝑺𝑺𝑬 ෡𝒃 = 𝒆𝑻𝒆 = 𝒀 − 𝑿෡𝒃
𝑻
(𝒀 − 𝑿෡𝒃)

› And then minimize the Cost function (SSE) by 
solving the equation of partial derivatives:

𝝏𝑺𝑺𝑬 ෡𝒃

𝝏෡𝒃
= 𝟎

This equation has a closed form 
solution due to the form of the 
linear regression. Solving this  will 
calculate the vector b that 
minimizes the SSE and hence 
finds the parameters we are 
looking for.



 Ordinary Least Square (OLS) Regression

› The closed form solution derived from the 

previous equation for estimating the parameters 

b of a linear regression model in matrix form is:

› The above closed form formula – called normal 
equation - gives you the vector of parameters 
estimates b, based on the matrix of values of the 
independent variables X and the matrix of the 
values of the dependent variable Y in the training 
set, which minimize SSE and hence fit the best way 
possible the training data

෡𝒃 = 𝑿𝑻𝑿
−𝟏
𝑿𝑻𝒀





 Gradient descent
› While OLS minimizes the SSE in a very specific way (by 

finding the values of b who yield the partial 
derivative to zero) leading to a closed form formula 
(the normal equation) for estimating the parameters, 
Gradient descent minimizes the cost function in a 
very different way.
 It also has a cost/loss function but the way it minimizes it 

is different

› Gradient descent is an iterative, numerical 
optimization method for minimizing the cost function 
and thus finding the parameter estimates.
 i.e. Gadient descent does not offer a closed form 

formula like the normal equation in OLS for calculating 
the parameters.

 “iterative” ? Tries to guess the proper coefficient values 
of the parameters that lead to minimizing the cost 
function



 Gradient descent
› Why Gradient descent?

 OLS has three main concerns

 1) The normal equation requires inversion of a matrix:

෡𝒃 = 𝑿𝑻𝑿
−𝟏
𝑿𝑻𝒀

Matrix inversion

 Matrix inversion is a very expensive operation on 
computers. I.e. it takes a lot of time to calculate the 
inverse. If the XTX matrix has 100 variables (i.e. is an 
100x100 matrix), since an inversion requires n3 operations 
(n=dimension of matrix) on average, it would require 
~1000000 operations to invert the matrix.

 OLS performs poorly in big data settings!

 Gradient descent is much faster in estimating the 
parameters in such Big Data settings.



 Gradient descent
› Why Gradient descent?

 2) OLS makes the assumption that the matrix
of independent variables X fits into the 
computer’s main memory (RAM).

 You cannot make this assumption when 
working with Big Data.
 In big data settings, these matrices of the normal 

equation may not fit into the main memory (RAM). In 
such cases OLS does not work AT ALL because the 
normal equation can’t be calculated.

 How can you in such situations estimate the 
coefficients?

 Gradient descent offers versions that can estimate the 
parameters even when data does not fit into RAM.



 Gradient descent
› Why Gradient descent?

 3) OLS makes the assumption that you have 
all the data available when you start your 
parameter estimation.

 In Big Data environments you cannot make 
this assumption.
 What happens when you don’t have all your data 

available because it arrives at some interval?

 How can you in such situations estimate the 
coefficients?

 You can’t use the normal equation in such settings!

 There are versions of Gradient descent that can be 
used in such circumstances. 



 Gradient descent

› Why Gradient descent?

 4) OLS and the normal equation DOES NOT 

WORK AT ALL when the number of 

observations is smaller than the dimension of 

the dataset i.e. the number of variables!

 E.g. when you have 700 variables and 650 

observations.

 Why? Because in such cases 𝑿𝑻𝑿
−𝟏

is not 

computable! I.e. 𝑿𝑻𝑿 cannot be inverted.

 Leaving the proof to you 

 Gradient descent can be used in such situations.

 Offers .e.g. regularization



 Gradient descent

› Why Gradient descent?

 Gradient descent performs much better –in terms of 

execution times/number of operations- in big data 

contexts than OLS and in such situations it’s 

exclusively used.

 Gradient descent works even when the data does 

not fit into main memory or when entire data not 

available at the beginning – different versions of GD

› Warning! Gradient descent uses a different 

notation for the multiple linear regression model:

𝒉𝜽 𝒙 𝒊 = 𝜽𝟏𝒙𝟏
(𝒊)

+ 𝜽𝟐𝒙𝟐
(𝒊)
+⋯+ 𝜽𝒌𝒙𝒌

𝒊
+ 𝜽𝟎 + 𝜺

𝜽𝒋 = Parameter j (to be estimated) 𝒙𝒋
(𝒊)

= Value of independent variable j in 

observation i in training set



 Cost function in Gradient descent

› In Gradient descent the cost function is 

called the mean squared error, J(θ)

𝑱(𝜽𝟎, 𝜽𝟏, … , 𝜽𝜿) =
𝟏

𝟐𝒎
෍

𝒊=𝟏

𝒎

𝒉𝜽 𝒙(𝒊) − 𝒚(𝒊)
𝟐

Where:

𝜽𝒊 = (Unknown) parameter i of the linear regression model from a total of 

k+1 parameters

𝒎 = Number of observation in training set

𝒉𝜽() = The estimated value of the linear regression model for the values of 

the independent variables at observation i in training set. 

𝒙(𝒊) = The values of the independent variables of observation i in training set

𝒚(𝒊) = The value of the dependent variable of observation i in training set



 Cost function in Gradient descent

› Gradient descent attempts to minimize the 

cost function J(θ) by finding/estimating the 

proper values of parameters θ.

𝑱(𝜽𝟎, 𝜽𝟏, … , 𝜽𝜿) =
𝟏

𝟐𝒎
෍

𝒊=𝟏

𝒎

𝒉𝜽 𝒙(𝒊) − 𝒚(𝒊)
𝟐

Often abbreviated simply 

as J(θ).



 Cost function in Gradient descent
› Cost function has things in common with the 

cost function (i.e. SSE) in OLS but differs a little for 

some reasons

𝑱(𝜽𝟎, 𝜽𝟏, … , 𝜽𝜿) =
𝟏

𝟐𝒎
෍

𝒊=𝟏

𝒎

𝒉𝜽 𝒙(𝒊) − 𝒚(𝒊)
𝟐

Sum of squared errors in OLS

Why divide by 2m? m because of 
two reasons: i) it’s the mean squared 
error and ii) it yields to smaller 
numbers which is important due to 

the numerical nature of the method.
Also, include the constant 2 in 
denominator to make things simpler 
as it’s shown later on (hint: it will be 
eliminated).  However, these terms 
do not affect the minimization 
process.

𝒉𝜽 𝒙 𝒊 = 𝜽𝟏𝒙𝟏
(𝒊)

+ 𝜽𝟐𝒙𝟐
(𝒊)
+⋯+ 𝜽𝒌𝒙𝒌

𝒊
+ 𝜽𝟎 + 𝜺

Form of the linear regression model, with 

θ the unknown parameters, is:



 Cost function in Gradient descent

› Cost function in matrix form

𝑱 𝜽 =
𝟏

𝟐𝒎
𝑿𝜽 − 𝒚 𝑻 𝑿𝜽 − 𝒚 =

𝟏

𝟐𝒎
𝑿𝜽 − 𝒚 𝟐

𝒚 =

𝒚𝟏
𝒚𝟐…
𝒚𝒏

𝑿 =

𝟏 𝑿𝟏𝟏 𝑿𝟐𝟏 … 𝑿𝒌𝟏

𝟏 𝑿𝟏𝟐 𝑿𝟐𝟐 … 𝑿𝒌𝟐

𝟏 𝑿𝟏𝟑 𝑿𝟐𝟑 … 𝑿𝒌𝟑

… … … … …
𝟏 𝑿𝟏𝒏 𝑿𝟐𝒏 … 𝑿𝒌𝒏

𝜽 =

෡𝜽𝟎
෡𝜽𝟏
෡𝜽𝟐
…
෡𝜽𝒌

Vector of dependent variables

Matrix of independent variables with first 
columns all 1s for constant term.

Vector of estimated parameters

Where:

Note: square each 
element of vector

Sum of all elements 
to get pure number 
of J(θ).



 Cost function

› A note on notation: cost function in gradient 

descent uses different notation (θ instead of 

b for parameters, hθ() for linear regression 

model, J(θ) for cost function)

› This is because Gradient descent originated 

from a different field. One of the first 

algorithms which founded the area of 
machine learning in applied mathematics

› We use the same notation used by 

contemporary literature. 



 General idea of estimating the 

parameters θ with Gradient descent 

which minimize the cost function J(θ) –

it’s a process i.e. no closed formula:

› Start with initial, random values for the 

parameters θ

› Update/Change the values of the 
parameters θ in a way that yield to smaller 

value of the cost function J(θ)

› Continue changing values of θ iteratively

until the smallest value of J(θ) is attained.



The general idea of 

Gradient descent.

Assume a simple linear 

regression model hθ(x) = θ0

+ θ1x

The cost function of such 

linear regression model,

J(θ), will be convex and an 

example cost function is 

depicted on the left.

Gradient descent tries to 

modify the values of all the 

parameters θ iteratively, 

towards the smallest value 

of J(θ).



 How to change the values of parameters θ in 
order to minimize J(θ)?
› The value of the first partial derivative of the cost 

function J(θ) with respect to a parameter θj will tell us 
how we need to modify the parameter θj (leaving all 
other parameters constant) to achieve a smaller 
value of J(θ). 

 Remember from your math classes:
› If the value of the first derivative of a function f(x) with 

respect to x is at some point x0

 positive (>0), an increase of x0 leads to an increase of 
f(x). A decrease of x0 leads to decrease of f(x)

 negative (<0), an increase of x0 leads to an decrease of 
f(x). A decrease of x0 leads to increase of f(x)

 is equal to zero (=0), an increase of x0 leads to an 
increase or decrease of f(x) (has a point of deflection at 
x0).



 How to apply this rule on J(θ)?

› In Gradient Descent J(θ) (cost function) is 

the f(x), with θs as our X variables.

 Note here: we have many θs hence J(θ) has 

many unknowns. We address this later.

› Thus, the value of the first derivative of J(θ)

with respect to θj for some value θ of θj tells 

us if θ needs to increase or decrease in order 

to achieve an even smaller value of J(θ). 

 Value of the first derivative of J(θ) tells us the 

direction of change of variable θ (increase or 

decrease).



 How to change the values of parameters θ 
in order to minimize J(θ)?
› J(θ) is a multivariate function, where the 

parameters θj are the unknown variables.

› To apply the derivative technique, we will use 
the first partial derivative wrt to one θj parameter 
and leaving other θs constant i.e. calculate the 

value of 
𝝏𝑱 𝜽

𝝏𝜽𝒋
. If this value is positive, a decrease 

of θj will decrease the cost function, if it’s 
negative, an increase of θj will decrease the 
cost function J(θ).

 Do this for all parameters θ to see how they need 
to change i.e. calculate 𝜵𝑱 𝜽

 Do this iteratively to get an even smaller value J(θ)



 How to change the values of parameters θ 
in order to minimize J(θ)?
› A more clear example

 if initial parameters of θ = (θ0, θ1, θ2, ..., θk) and at 
that point the cost function is J(θ), then if the value 

of 
𝝏𝑱 𝜽

𝝏𝜽𝟐
is negative, this means that a small increase

(update/change) of parameter θ2 leading to 
parameters θ’ = (θ0, θ1, θ2+ε ..., θk) (leaving all other 
θs the same) will decrease J(θ). If it’s positive, 
decrease θ2 to get θ’ = (θ0, θ1, θ2-ε ..., θk) , to get a 
smaller J(θ).
 i.e. J(θ’) < J(θ)

 Do the same for each and all θs in the linear 
regression model and update their values 
accordingly. 

 Do such update for each θ iteratively (i.e. many 
times over).



 How to change the values of parameters 

θ in order to minimize J(θ)?

› In Gradient Descent, each parameter is 

updated/changed, at each iteration, using 

the following formula:

𝜽𝒋 ≔ 𝜽𝒋 − 𝜶
𝝏𝑱 𝜽

𝝏𝜽𝒋
α  is a real value > 0, called the learning rate. It is a constant 
given as input to gradient descent. While the partial 
derivative will give us the direction in which the cost function 
will decrease, it does not specify how big the increase of θ 

should be.  This is specified by the value of the learning rate 
α. Can be imagined as the step by which the θ will change. 

Setting the appropriate value for α is very important and 
affects the significantly the algorithm.



 How to change the values of parameters θ in 
order to minimize J(θ)?
› For a multiple linear regression model, you can actually 

calculate 
𝝏𝑱 𝜽

𝝏𝜽
for all θs, resulting in the following 

update formulas for the parameters θ:

𝜽𝟎 ∶= 𝜽𝟎 − 𝜶
𝟏

𝒎
෍

𝒊=𝟏

𝒎

𝒉𝜽 𝒙 𝒊 − 𝒚 𝒊

𝜽𝒋 ∶= 𝜽𝒋 − 𝜶
𝟏

𝒎
෍

𝒊=𝟏

𝒎

𝒉𝜽 𝒙 𝒊 − 𝒚 𝒊 𝒙𝒋
𝒊

Update for the 
constant 
term/intercept

Form of linear regression model: 𝒉𝜽 𝒙 𝒊 = 𝜽𝟏𝒙𝟏
(𝒊)

+ 𝜽𝟐𝒙𝟐
(𝒊)
+⋯+ 𝜽𝒌𝒙𝒌

𝒊
+ 𝜽𝟎 + 𝜺

Update for all 
other parameters 
in the linear 

regression model

Where

m: number of observations in training set

hθ(x(i)) : value of linear regression model for the values of independent variables in observation i of the training set

y(i) : value of the dependent variable in observation i of the training set

α : learning rate

xj
(i): value of independent variable xj in observation i of the training set



 How to change the values of parameters 

θ in order to minimize J(θ)?

› In matrix form, the previous update formulas 

for parameters θ can be written as 

𝜽 ∶= 𝜽 − 𝜶
𝟏

𝒎
𝑿𝑻 𝑿𝜽 − 𝜰

Where:
m: Number of observations in training set 
𝜽 : The vector of (k+1) parameters of the linear regression model

𝑿 : The mx(k+1) matrix of values of independent variables in the 
linear regression model, with the first column all 1 (ones).

𝒀 : The vector of m values of the dependent variables in the 

training set

α : the learning rate, given as input



 Gradient descent algorithm

› Pseudocode

Initialize vector of parameters θ with random values

Initialize costVector # We will store the value of the cost function for each 

iteration in this vector.

α = 0.01 # Set learning rate. See later how to come up with an appropriate value.

# Start iterations of Gradient descent

while termination conditions not met {

update θ vector with                     

calculate value of cost function J(θ) for the newly calculated values of θ

Store value of cost function into vector costVector

}

# Vector θ will contain the estimated parameters which minimize J(θ)

print θ vector # Print the estimated parameters

plot costVector # Plot the costVector

𝜃 ∶= 𝜃 − 𝛼
1

𝑚
𝑋𝑇 𝑋𝜃 − 𝛶



 Gradient descent usually depicted as a 

contour plot
Convergence of θs to 

the values which 

minimize J(θ) is 

usually depicted as 

Contour plot.

In a Contour plot, 

each circle represents 

the values of θ that 

lead to the same 

value of J(θ).



 When does Gradient descent terminate?
› 3 possible termination conditions

 When a predefined number of iterations have 
been completed. Typical number of iterations 
are n=50, 20000 or greater depending how fast 
the algorithm converges

 When the improvement of the cost function is 
smaller than a predefined value

 Early stopping. With the current “version” of 
the cost function, calculate the cost on a 
validation set (different from training set) at 
each iteration. Compare the two consecutive 
values of J(θ) and if J(θ) starts to increase, 
terminate the algorithm. Used to address 
overfitting.



 Gradient descent algorithm with predefined 

number of iterations as termination condition

Initialize vector of parameters θ with random values

Initialize costVector # We will store the value of the cost function J(θ) for each iteration 

here

α = 0.01 # Setting the learning rate

numIterations = 10000 # Number of iterations to carry out

n = 0 # How many iterations we have done

while n < numIterations {

update θ vector with                     

calculate value of cost function J(θ) for the newly estimated values of θ

Store value of cost function into vector costVector

n = n + 1   # Next iteration

}

# Vector θ will contain the estimated parameters which minimize J(θ)

print θ vector

plot costVector

𝜃 ∶= 𝜃 − 𝛼
1

𝑚
𝑋𝑇 𝑋𝜃 − 𝛶



 The learning rate α
› Setting the learning rate α to the proper value is 

critical!

 Determines if and how fast Gradient descent
converges to the minimum of the cost function.

 If the value of the learning parameter is too small, 
Gradient descent may converge very slowly

 If the value of the learning parameter is too large, 
Gradient descent may not converge at all to the 
proper values of θ which minimize J(θ). May 
diverge!

› How to check if learning parameter α is too 
small, too big or just appropriate?

 Empirically, plot the cost function and see its shape



 The learning rate α

› Appropriate value of learning rate

If the value of the 

learning rate is 

appropriate, the cost 

function J(θ) plotted 

against the number of 

iterations will have 

such shape. Cost 

function shows a 

steep drop and then a 

gradual improvement.

To check if the 

selected value is 

appropriate, run 

Gradient descent and 

plot the cost function.



 The learning rate α

› Too small value of the learning rate α

If the value of the 

learning rate is too 

small, the cost 

function J(θ) plotted 

against the number of 

iterations will have 

such shape.

This means Gradient 

descent will converge 

very, very slowly to 

the appropriate 

values of θs that 

minimize J(θ).



 The learning rate α

› Too big value of the learning rate α

If the value of the 

learning rate is too 

big, the cost function 

J(θ) plotted against 

the number of 

iterations will have 

such a shape. The 

cost function 

increases with each 

iteration.



 The learning rate α

› Too big value of the learning rate α

If the value of the learning 

rate α is too big, Gradient 

descent may overshoot the 

proper values of θ that 

minimize the cost function.

Overshooting happens 

because the value of α is too 

big and hence the update θj

= θj - α 
𝝏𝑱 𝜽

𝝏𝒋
the new values of 

θj may increase by too 

much, missing the values for 

which J(θ) is minimized. 

Gradient descent then 

diverges from the proper 
values of θs.



 The learning rate α

› Appropriate values for learning rate?

 Typical values of the learning rate α are 0.001, 0.01, 

0.1

 Execute Gradient descent with such values of the 

learning rate α and plot the cost function J(θ) as a 

function of the number of iterations. Compare the 

shape of the plot with the plots shown previously.

 If learning rate is too small, increase it by some 

amount e.g. from 0.01 to 0.03. Execute Gradient 

descent again and plot the cost function. Stop if 

the  plot of the cost function has the appropriate 

shape.



 The version of Gradient descent 

discussed previously is the “plain vanilla” 

style of the algorithm also known as 

“Batch Gradient Descent”

 Two other versions of Gradient Descent

available that improve performance 

dramatically in Big data settings:

› Stochastic gradient descent - SGD

› Mini-Batch gradient descent - MBGD



 Why the need to improve the performance 

of Gradient descent?

› If number of observations in training set is large

(e.g. 100000000 observations/records or more), 

there are two main concerns with Batch Gradient 

descent:

 Entire training set must be stored into memory (RAM)

 Update formulas must iterate over the entire training 

set to calculate on step for all parameters in each 

iteration.

 In such settings, Batch Gradient descent is 

computationally expensive!



 Concern: Entire training set into memory
› Looking at the matrix form of the update 

formula: Does is fit into memory?

𝜽 ∶= 𝜽 − 𝜶
𝟏

𝒎
𝑿𝑻 𝑿𝜽 − 𝜰

To execute this calculation, the entire matrix of the values of 
the independent variables X must be loaded into the main 
memory (RAM). What if it does not fit into RAM? E.g. if there 
are 10000000 observations and 50 numeric variables, you’ll 
need to store 10000000 * 50 = 500000000 numbers and since 
each number requires at least 4 bytes you need 500000000 * 
4= 2000000000 bytes of data in RAM or ~1.8GB of RAM. Do 
you have it? 



 Concern: Iterate over the entire training set at 
each iteration
› Looking at the analytic formula indicates better the 

problem (Note: the same argument holds for the 
matrix form, but it’s clearer in the analytic form of the 
update formula): Can be slow in  big data contexts

If the training set has m=10000000 observations, we iterate 
over all 10000000 observations just make one (1) update to 
one (1) parameter at one (1) iteration! Considering that we 
have many parameters, we traverse the 10000000 
observations many times at each iteration. This makes Batch 
Gradient descent slow. 

𝜽𝒋 ∶= 𝜽𝒋 − 𝜶
𝟏

𝒎
෍

𝒊=𝟏

𝒎

𝒉𝜽 𝒙 𝒊 − 𝒚 𝒊 𝒙𝒋
𝒊



 Why the need to improve the 

performance of Gradient descent?

› The solution in such big data environments is 

simply not to iterate over the entire training set 

at each iteration!

› The two other versions of Batch Gradient 

descent treat/scan the training set differently 

and address the above concerns



 Stochastic Gradient Descent - SGD
› At each iteration, SGD uses only one observation

of the training set to update the parameters 
(instead of the entire training set in GD) 

Initialize all parameters θj with random values

Initialize costVector # We will store the value of the cost function J(θ) for each iteration here

α = 0.01 # Setting the learning rate

Randomly shuffle the training set # To ensure that the observations do not have some kind of order

while termination criteria not met{

Calculate cost function and store its value in costVector

for each observation i in training set {  

for each parameter θj {

Set new value of parameter 𝑛𝑒𝑤𝜃𝑗
∶= 𝜃𝑗 − 𝛼 ℎ𝜃 𝑥 𝑖 − 𝑦 𝑖 𝑥𝑗

𝑖

}  

calculate value of cost function J(θ) for the newly estimated values of θ

Store value of cost function into vector costVector

}

θj := newΘj
n = n + 1   # Next iteration

}

# Vector θ will contain the estimated parameters which minimize J(θ)

print θj
plot costVector



 Pros/Cons of SGD
› Pros

 It’s a so-called online algorithm – you see the 
update of parameters immediately, in a 
sequential fashion, during their estimation i.e. in 
real time. That’s not possible with Batch GD

 Does not require entire training set in memory

 Avoids local minima of J(θ)

› Cons

 Can be noisy i.e. parameters jump around at 
each epoch with greater variance between 
epochs (epoch = one update of all 
parameters)



 Mini-Batch Gradient Descent - MBGD
› MBGD does not use one single observation of the 

training set to update the parameters. It uses a 
“small batch” of training set observations –
typically between 2 and 100 observation in each 
batch.
 To do this, we cut the large training set into smaller 

training subsets, and use these to update the 
parameters at each step

 It’s a method “between” the extremes of Batch 
Gradient descent (which uses entire training  set for 
each parameter update) and Stochastic Gradient 
descent which uses only one observation to update 
the parameters.

 Can be used when the dataset does not fit into 
computer’s memory



 Mini-Batch Gradient descent

Initialize all parameters θj with random values

Initialize costVector # We will store the value of the cost function J(θ) for each iteration here

α = 0.01 # Setting the learning rate

Randomly shuffle the training set # To ensure that the observations do not have some kind of order

Cut the training set into batches/subsets bi each of size nb such that bi*nb =m # Note: last batch 
might be smaller than nb
while termination criteria not met{

Calculate cost function and store its value in costVector

for each batch bi {  

for each parameter θj {

Set new value of parameter 𝑛𝑒𝑤𝜃𝑗
∶= 𝜃𝑗 − 𝛼 σ𝜄=1

𝑛𝑏 ℎ𝜃 𝑥 𝑖 − 𝑦 𝑖 𝑥𝑗
𝑖

}  

calculate value of cost function J(θ) for the newly estimated values of θ

Store value of cost function into vector costVector

}

θj := newΘj # update all parameters with new values

n = n + 1   # Next iteration

}

# Vector θ will contain the estimated parameters which minimize J(θ)

print print θj
plot costVector



OLS Gradient descent

Estimates the same, unbiased parameters 
for the same training set if the linear 
regression assumptions hold (No or little 
multicollinearity, No  of auto-correlation of 
residuals, Homoscedasticity etc)

Estimates of parameters are 
approximations and biased. May result in 
different parameter estimates for the same 
training set and regression model.

Computationally expensive in big data 
contexts.

Suitable in big data contexts where 
number of variables and number of 
observation are very large

Can be used to estimate parameters only 

for linear regression models

Can be used (and is used) to estimate 

parameters in nonlinear regression 

models.

Offers closed formulas (the normal 
equation) for calculating the parameters

Does not offer closed formula. Parameter 
estimates are iteratively calculated

Requires entire training set in RAM Versions of Gradient descent do not 
require entire training set in RAM (e.g. 
Stochastic Gradient Descent, Mini-Batch

Gradient Descent)

Taught and used mainly in social sciences 
to explain variance of dependent 
variable.

Taught and used mainly in computer 
science and engineering to predict the 
dependent variable.





 Evaluation? 

› Checking to see if the estimated model is 

justified and useful i.e. achieves its goal.

 Evaluation method depends strongly on 

the regression model’s goal

› Whether the goal is to explain the variance 

of the dependent variable

› Whether the goal is to predict the value of 

the dependent variable



 When the model’s goal is to explain the 
variance of the dependent variable 
› The aim is to exactly determine how each 

individual independent variable influences 
the dependent.

 Out of such observations you may validate or 
inform existing theories.

 You don’t want to mask any influence
(capture their pure effect) and make sure that 
linearity is the proper way to capture the 
relationship between the variables.



 Main tests you have to do for a linear 

regression model, if your goal is to explain 

the variance (many checks, but 4 most 

important):

› Check the linearity hypothesis

› Check the homoscedasticity of the residuals

› Check if the residuals are normally distributed

› Check (multi) collinearity of the independent 

variables

 You don’t want multicollinearity!



 When the model’s goal is to predict with 

high accuracy the value of the 

dependent variable 

› The aim is to see how well the estimated 

model performs on new/unknown/unseen 

data i.e. data that is not in the training set

 When the aim is prediction, you don’t care 

how exactly each individual independent

variable influences the dependent.

 You care about the accuracy of the prediction, not 

how each variable influences the dependent



 Also, you don’t really care which 

variable to include into the model.

› If it improves prediction it’s a good addition.

You don’t need to justify inclusion of 

independent variables because you don’t 

care about a theory.

 In general, adding variables improve 

prediction

 There are problems however when adding 

variables that need to be addressed



 How to evaluate a model when the goal 
it prediction?
› You compare the model’s predicted values 

of the dependent variable for unknown data
with the actual, observed, real value of the 
dependent variable for unknown data. Their 
difference is the prediction error

 Large prediction error => bad

 Small prediction error => good

› The error can be estimated with error metrics

 There are many of them, each one 
appropriate for specific situations i.e. 
emphasizes different aspects



 Most common error metrics used to evaluate 
prediction accuracy (n=number of observations, yi real 
observation of dependent var, ො𝑦𝑖= predicted value of 
dependent variable)

› Mean Absolute Error (MAE) 

 𝑀𝐴𝐸 =
1

𝑛
σ𝑖=1
𝑛 𝑦𝑖 − ො𝑦𝑖

› Mean Squared Error (MSE)

 𝑀𝑆𝐸 =
1

𝑛
σ𝑖=1
𝑛 𝑦𝑖 − ො𝑦𝑖

2

› Root Mean Squared Error (RMSE) – most popular

 𝑅𝑀𝑆𝐸 =
1

𝑛
σ𝑖=1
𝑛 𝑦𝑖 − ො𝑦𝑖

2

› Mean Absolute Percentage Error (MAPE)

 𝑀𝐴𝑃𝐸 =
1

𝑛
σ𝑖=1
𝑛 𝑦𝑖− ො𝑦𝑖

𝑦𝑖



 How to calculate prediction error of a linear 
regression model? 

 Where to get the data from and check 
accuracy against?
› In general, two approaches to do this 

 In-Sample-Testing: get a subset from the data that 
was used to estimate the parameters and check 
prediction errors. The error calculated from such 
dataset is called training error
 The idea here is that the calculated training error is a 

good approximation of the error on unknown data.

 Out-of-Sample-Testing: get a different, new, unseen 
subset of data –not in the training set- to check 
prediction error. Error calculated in such way is 
called generalization error.



 Out-of-Sample-Testing
› How/where to get new, unseen data?

 1) Collect new data from the source again i.e. 
apart from training data
 Not always possible, costly, time consuming

 2) Divide the existing dataset randomly into 
two non overlapping subsets:
 One for estimating the parameters thus becoming the 

training set

 One for evaluating the prediction error called the 
testing set/test set. The test set is not used for 
estimating the parameters: this set is excluded and 
hence functions as an new, unseen data set.

 Such way of testing/evaluating a model is called 
cross validation.



 Cross validation

› Different versions available to get better 

estimate of the error

 1) Holdout method: Divide (once) randomly 

initial dataset into only two non-overlapping 

data subsets: one for training (training set) and 

one for testing (testing set)

 In general 70-80% of the initial dataset will be the 

training set, 30-20% of the initial dataset will be the 

testing set.

 Use the training set to estimate parameters

 Use the testing set (which is a new/unseen dataset) to 

calculate error which is considered an approximation 

for the generalization error.



 Cross validation
› Different versions available to get better 

estimate of the error
 2) k-Fold Cross validation method: Divide the initial 

dataset into k non-overlapping subsets with 
approximately equal number of observations - not 
only into two as in the holdout method. k (number 
of subsets) is given by user (usually k=5 or k=10 or 
even greater). 

 Then, iterate over each of these k subsets, and use 
each one of the subsets as the testing  set and the 
remaining k-1 subsets as the training set (merging 
them into one set). Process terminates when each 
one of the k subsets has been used as testing set.

 Calculate error on each testing set. In total k errors 
will result out of which the average can be 
calculated. Much better estimate of the 
generalization error!



 Why K-fold cross validation? 

› gives a much better estimate for the 

generalization error.

Testing set

Training set

Training set

Training set

Training set

Training set

Testing set

Training set

Training set

Training set

Training set

Training set

Testing set

Training set

Training set

Training set

Training set

Training set

Testing set

Training set

Training set

Training set

Training set

Training set

Testing set

Cut original 

dataset into 

k 

approximate

ly equally 

sized 

subsets. 

Here k=5

1st iteration: use 
first subset as 
testing set and 
remaining as 
training set. 
Calculate error.

2nd iteration: use 
second subset as 
testing set and 
remaining as 
training set. 
Calculate error.

3rd iteration: use 
third subset as 
testing set and 
remaining as 
training set. 
Calculate error.

4th iteration: use 
fourth subset as 
testing set and 
remaining as 
training set. 
Calculate error.

5th iteration: use 
fifth subset as 
testing set and 
remaining as 
training set. 
Calculate error.



 Cross validation
› Used also in comparing the accuracy of 

different linear regression models to predict 
the same dependent variable.

 E.g. which one of the following different linear 
regression models better predicts the mpg of 
cars?

𝑚𝑝𝑔 = 𝛽1𝐻𝑜𝑟𝑠𝑒𝑝𝑜𝑤𝑒𝑟 + 𝛽2𝑊𝑒𝑖𝑔ℎ𝑡 + 𝛽0
𝑚𝑝𝑔 = 𝛽1𝐻𝑜𝑟𝑠𝑒𝑝𝑜𝑤𝑒𝑟 + 𝛽2𝑊𝑒𝑖𝑔ℎ𝑡 + 𝛽3Displacement + 𝛽0
𝑚𝑝𝑔 = 𝛽1𝐻𝑜𝑟𝑠𝑒𝑝𝑜𝑤𝑒𝑟 + 𝛽2𝑊𝑒𝑖𝑔ℎ𝑡 + 𝛽3𝑊𝑒𝑖𝑔ℎ𝑡2 + 𝛽4Displacement + 𝛽0

› Do a k-fold cross validation on the same 

dataset for each model. Compare errors.

› Model with smallest error chosen



 K-Fold Cross Validation in R

› See file R-k-FoldCrossValidation.rar on eclass



 When the goal is prediction, the aim of a 

regression model is to have small 

generalization errors

› Yet, real value of generalization error is never 

known – only estimations possible by using k-fold 

cross validation

 From the training error (which is always 

known), it’s not possible to get a reliable 

estimate of the generalization error

› It’s a poor estimate for the generalization error



 However, from the relationship between 
the training error and generalization error
(resulting from k-fold cross validation) 
useful conclusions about the regression 
model can be drawn
› In particular these situations

 Training error and generalization error small

 Training error large, and generalization error 
large

 Training error small and generalization error 
large



 Training error and generalization error small
› Regression model fits the training data well. The 

ideal situation

 Training error and generalization error large
› In this case the regression model is underfitting 

the training data and the situation is called 
underfitting: the model does not succeed in 
fitting the training data well.

› Happens when the regression model is too 
simple i.e. has few independent variables. 

› Such models do not have the flexibility to adapt 
to the changes and variance of the dependent 
variable and hence has a poor fit to the data –
hence the large training and generalization 
errors.



 Training error (very) small and generalization 
error large
› In this case the regression model is overfitting the 

training data and the situation is called 
overfitting. 

› This happens when the regression model fits the 
training data too well – the model captures not 
only the (true) relationships between the 
variables in the training set but also random 
noise and fluctuations of training data

 Hence, it is very good in predicting the value of the 
dependent variable for data in the training set (i.e. 
very small training error) but very bad in predicting 
the value of the dep. variable for new/unknown 
data (large generalization error).



 Overfitting is a generally associated with 

more complex regression models

› A regression model is called complicated,

the more independent variables it contains 

and  higher degree of monomials.

𝑚𝑝𝑔 = 𝛽1𝐻𝑜𝑟𝑠𝑒𝑝𝑜𝑤𝑒𝑟 + 𝛽2𝑊𝑒𝑖𝑔ℎ𝑡 + 𝛽3𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 + 𝛽0

𝑚𝑝𝑔 = 𝛽1𝐻𝑜𝑟𝑠𝑒𝑝𝑜𝑤𝑒𝑟 + 𝛽2𝑊𝑒𝑖𝑔ℎ𝑡 + 𝛽0

𝑚𝑝𝑔 = 𝛽1𝐻𝑜𝑟𝑠𝑒𝑝𝑜𝑤𝑒𝑟 + 𝛽2𝑊𝑒𝑖𝑔ℎ𝑡 + 𝛽3𝑊𝑒𝑖𝑔ℎ𝑡2 + 𝛽0

Simpler regression model

More complicated 
regression models 
than above: more 
independent 
variables and/or 
higher degree of 
monomials 



 The more complex the regression model 

the more overfitting becomes a problem

Training error (small)

Generalization  error 
(large)

Model complexity



 How to check if a model is prone to 

overfitting?

› Calculate training error of model using in-

sample-testing: take a subset of the training 

data – used to estimate the model’s 

parameter- and calculate training error

› Calculate generalization error using k-Fold 

Cross Validation

› Compare these two errors (training, 

generalization)



 How to address a model that exhibits 

overfitting?

› Two approaches

 Make the regression model simpler by removing 

independent variables or reducing the degree 

of monomials

 Not always easy: which variables to remove, model 

needs to be re-evaluated etc.

 Use regularization.

 What is regularization? A way/technique to overcome 
the problems of overfitting by limiting the size of the 

coefficients.



 Regularization

› Two approaches

 Make the regression model simpler by removing 

independent variables or reducing the degree 

of monomials

 Not always easy: which variables to remove, model 

needs to be re-evaluated etc.

 Use regularization.

 What is regularization? A way/technique to overcome 

the problems of overfitting by limiting the size of the 
coefficients.



 Regularization
› Size of coefficients

 In general, overfitted regression models are not 
biased, but have a huge variance of the predicted 
dependent variable. The bias-variance tradeoff in 
predictive modeling!

Bias-variance tradeoff in 
predictive models: models 

having a low bias have 

large variance of the 

predicted value. Models 

with a low variance of the 

predicted value have large 

bias



 Regularization
› Size of coefficients

 This high variance of the predicted value is 
caused by the size of the estimated coefficients: 
they are large. As a result, even small changes 
of the dependent variable results in large 
variances of the dependent variable due to the 
large coefficients

› Since bias in an overfitted regression model is 
low, high variance due to the large 
coefficients can be addressed by limiting their 
size

 I.e. making them technically smaller.

 This is what regularization achieves.



 What regularization does

› Attempts to limit the size of coefficients in an 

overfitted regression model in order to control 

the variance of the predicted values of the 

dependent variable.

› Regularization achieves this by modifying the 

loss function and placing also constraints on 

the magnitude  of coefficients so that they 

don’t grow to large values

 I.e. loss function also constraints the magnitude 

of the coefficients.



 Modified Loss function

› If gradient descent is the method used to 

estimate the coefficients, to achieve 

regularization an additional term is added: the 

regularization term:

𝐽 𝛽0, 𝛽1, 𝛽2, … , 𝛽𝑘 =
1

2𝑚
෍

𝑖=1

𝑚

ℎ𝛽 𝑥 𝑖 − 𝑦 𝑖 2
+ 𝜆෍

𝑗=1

𝑛

𝛽𝑗
𝑞

(Traditional) Loss function 
of Gradient Descent

Regularization term: new term 

added to achieve regularization 

of coefficients. λ is a regularization 

parameter given as input. q is a 

parameter and determines the 

type of regularization



 Regularization term: why it works
› The term added is the sum of estimated 

coefficients. Minimizing this new loss function means 

minimizing both terms i.e. minimize 𝜆 σ𝑗=1
𝑛 𝛽𝑗

𝑞
also!

That means that constraints on their size are placed 
and smaller values are preferred.

𝐽 𝛽0, 𝛽1, 𝛽2, … , 𝛽𝑘 =
1

2𝑚
෍

𝑖=1

𝑚

ℎ𝛽 𝑥 𝑖 − 𝑦 𝑖 2
+ 𝜆෍

𝑗=1

𝑛

𝛽𝑗
𝑞

(Traditional) Loss function 
of Gradient Descent

Regularization term: new 

term added to achieve 
regularization of coefficients



 q: parameter that determines the type of 

regularization

› If q=1 the loss function becomes 

1

2𝑚
෍

𝑖=1

𝑚

ℎ𝛽 𝑥 𝑖 − 𝑦 𝑖 2
+ 𝜆෍

𝑗=1

𝑛

𝛽𝑗

› and the regression is called Lasso or L1 regression.

› Lasso regression not only limits the size of coefficients but 
can also be used for feature selection

 For large values of λ, Lasso regression will result in 
coefficients to become 0. This means that the respective 
independent variables not statistically significant and hence 
can be dropped (= feature/variable selection)!



 q: parameter that determines the type of 

regularization

› If q=2 the loss function becomes 

1

2𝑚
෍

𝑖=1

𝑚

ℎ𝛽 𝑥 𝑖 − 𝑦 𝑖 2
+ 𝜆෍

𝑗=1

𝑛

𝛽𝑗
2

› and the regression is called Ridge or L2 
regression or Thikonov regularization.

› This is the most popular form of regularization 
with good results. Coefficients get smaller but 
not zero hence Ridge regression cannot be 
used for feature selection.



 q: parameter that determines the type of 

regularization

› Third option also available called Elasticnet

 Adds two terms to the Loss function, one similar to 

Lasso regression and one similar to Ridge

regression with weights.



 λ: regularization parameter
› Given as input to the regression analysis i.e. 

must be determined beforehand by the user

› If λ=0, regularization term cancels out and the 
loss function takes its traditional form (i.e. 
without regularization)

› The proper value for λ can be determined by 
doing k-Fold Cross Validation for different values 
of λ and selecting the most appropriate one 
based on the prediction error. 

 Typical values for λ are: 0.01, 0.02… 0.4… 0.7…



 Regularization in R

› When using Gradient Descent, two things must 

change the cost function changes (here Ridge 

regression):

 The partial derivative which becomes

calculateCostRidge<-function(X, y, theta, lambda=0){  

# Number of observations

m <- length(y)  

return( sum((X%*%theta- y)^2) / (2*m) + lambda*sum(theta^2))

} # calculateCostRidge

𝜕

𝜕𝜃𝑖
𝐽 𝜃 =

1

𝑚
෍

𝑖=1

𝑚

ℎ𝜃 𝑥 𝑖 − 𝑦 𝑖 𝑥𝑗
𝑖
+ 𝜆𝛩𝑗

• The Loss/cost function which becomes:



 Regularization

› Regularization does not apply only to Gradient 

Descent (here just used as an example)

› Can also do regularization with any method of 

estimating coefficients for a regression model

 E.g. OLS with regularization is possible.
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 We will derive as an example the update 

for parameter θ1 (parameter for an 

independent variable) - the same 

analysis holds for all other parameters θj

𝝏𝑱 𝜽

𝝏𝜽𝟏
=

𝝏
𝟏
𝟐𝒎

σ𝒊=𝟏
𝒎 𝒉𝜽 𝒙(𝒊) − 𝒚(𝒊)

𝟐

𝝏𝜽𝟏
=

𝟏
𝟐𝒎𝝏σ𝒊=𝟏

𝒎 𝒉𝜽 𝒙(𝒊)
𝟐
− 𝟐𝒉𝜽 𝒙 𝒊 𝒚 𝒊 + 𝒚(𝒊)

𝟐

𝝏𝜽𝟏

=
𝟏

𝟐𝒎

𝝏σ𝒊=𝟏
𝒎 𝒉𝜽 𝒙(𝒊)

𝟐

𝝏𝜽𝟏
− 𝟐

𝝏σ𝜾=𝟏
𝝁

𝒉𝜽 𝒙 𝒊 𝒚 𝒊

𝝏𝜽𝟏
+

𝝏σ𝜾=𝟏
𝝁

𝒚(𝒊)
𝟐

𝝏𝜽𝟏
= < 𝒔𝒆𝒆 𝒏𝒆𝒙𝒕 𝒔𝒍𝒊𝒅𝒆 >



=
𝟏

𝟐𝒎

𝝏σ𝒊=𝟏
𝒎 𝒉𝜽 𝒙(𝒊)

𝟐

𝝏𝜽𝟏
− 𝟐

𝝏σ𝜾=𝟏
𝝁

𝒉𝜽 𝒙 𝒊 𝒚 𝒊

𝝏𝜽𝟏

=
𝟏

𝟐𝒎
𝟐෍

𝒊=𝟏

𝒎

𝒉𝜽 𝒙 𝒊
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𝝏𝜽𝟏
− 𝟐

𝝏σ𝜾=𝟏
𝝁

𝒉𝜽 𝒙 𝒊 𝒚 𝒊

𝝏𝜽𝟏

=
𝟏

𝟐𝒎
𝟐෍
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𝒎
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(𝒊)
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𝒎
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(𝒊)
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𝟏

𝒎
෍

𝒊=𝟏

𝒎

𝒉𝜽 𝒙 𝒊 − 𝒚 𝒊 𝒙𝟏
(𝒊)

𝜽𝟏 ∶= 𝜽𝟏 − 𝜶
𝟏

𝒎
෍

𝒊=𝟏

𝒎

𝒉𝜽 𝒙 𝒊 − 𝒚 𝒊 𝒙𝟏
𝒊

Thus the update formula for parameter θ1 becomes thus:

Now do the same for all other 
parameters θ0, θ2, θ3,.... and  
from this we get the closed 

form formulas for the updates 
of all parameters θ.





 It’s all in how the training set is scanned/traversed
› Assume that training set has 10000000 observations i.e. 

m=10000000. i.e. training set very large.

# How θs are updated in Batch Gradient descent

while termination conditions not met {

update each θs (i.e. coefficients) as follows:

… <do this for all thetas>

calculate value of cost function J(θ) for the newly calculated values of θs

Store value of cost function into vector costVector

}

𝜽𝟎 ∶= 𝜽𝟎 − 𝜶
𝟏

𝒎
෍

𝒊=𝟏

𝒎

𝒉𝜽 𝒙 𝒊 − 𝒚 𝒊

𝜽𝟏 ∶= 𝜽𝒋 − 𝜶
𝟏

𝒎
෍

𝒊=𝟏

𝒎

𝒉𝜽 𝒙 𝒊 − 𝒚 𝒊 𝒙𝟏
𝒊

𝜽𝟏 ∶= 𝜽𝒋 − 𝜶
𝟏

𝒎
෍

𝒊=𝟏

𝒎

𝒉𝜽 𝒙 𝒊 − 𝒚 𝒊 𝒙𝟏
𝒊

The problem is in this calculation 

of the sum: For each coefficient θj 

we iterate through m=10000000 

observations to make one small 

adjustment of each θj.  I.e. iterate 

through the same 10000000 

observation for updating each 

and every θj. And this happens 

only during one iteration (see 

outer while termination condition 

not met). This is slow and 

inefficient for large datasets

Batch Gradient Descent



 It’s all in how the training set is scanned/traversed
› Assume that training set has 10000000 observations i.e. 

m=10000000. i.e. training set very large.

while termination criteria not met{

Calculate cost function and store its value in costVector

for each observation i in training set (i.e. for each 10000000 obs) {  

for each parameter θj {

Set new value of parameter 𝑛𝑒𝑤𝜃𝑗
∶= 𝜃𝑗 − 𝛼 ℎ𝜃 𝑥 𝑖 − 𝑦 𝑖 𝑥𝑗

𝑖

}  

calculate value of cost function J(θ) 

Store value of cost function into vector costVector

}

θj := newΘj

n = n + 1   # Next iteration

}

Look at the update function of 

the θs: there is no sum – compare 

this to the update function in 

Batch Gradient Descent. Hence in 

SDG we don’t iterate over 

10000000 to make one update.  In 

Stochastic Gradient Descent only 

one  observation is used at any 

step not all 10000000. However, 

Stochastic Gradient Descent 

iterates through all 10000000 only 

once during each cycle (outer 

while)– see “for each 10000000 

obs in training set”

Stochastic Gradient Descent (SDC)



 It’s all in how the training set is scanned/traversed
› Assume that training set has 10000000 observations i.e. 

m=10000000. i.e. training set very large.

Cut the training set into batches/subsets bi each of size nb such that bi*nb =m

while termination criteria not met{

Calculate cost function and store its value in costVector

for each batch bi {  

for each parameter θj {

Set new value of parameter 𝑛𝑒𝑤𝜃𝑗
∶= 𝜃𝑗 − 𝛼 σ𝜄=1

𝑛𝑏 ℎ𝜃 𝑥 𝑖 − 𝑦 𝑖 𝑥𝑗
𝑖

}  

calculate value of cost function J(θ) for the newly estimated values of θ

Store value of cost function into vector costVector

}

θj := newΘj # update all parameters with new values

n = n + 1   # Next iteration

}

Look at the update function of 

the θs: There is a sum but it does 

not iterate over all 10000000 

observations –it iterates over a lot 

smaller number of observations nb

because the training set of 

10000000 has been cut into 

batches of smaller size (e.g. 3000 

observations per batch). Mini-

batch Gradient Descent will 

process all batches and hence will 

iterate through all 10000000 

observations, but not all at once 

and for a single update.

Mini-Batch Gradient Descent


