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About data



About data
 What is data? A collection 

of objects and their 
attributes

 An attribute is a property or 

characteristic of an object

› Examples: eye color of a 

person, temperature, etc.

› Attribute also known with 

different names: variable, 

field, characteristic, feature 

or dimension

 A collection of attributes 

describe an object

› Object is also known as 

record, point, case, 

sample, entity, or instance

Tid Refund Marital 
Status 

Taxable 
Income Cheat 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 

 

Attributes/Dimensions

Objects, 

records, 

instances, 

observations, 

tuples



About data

 Attribute values?
› Numbers or symbols assigned/mapped to an 

attribute

 Attribute vs Attribute values
› Same attribute can be mapped to different 

attribute values

 E.g. height in feet or meters

› Different attributes can be mapped to the 
same set of values

 E.g. Attribute values for ID and age are integers

 But with different properties: id’s don’t have 
limits, age has 



About data

  There are different types of attributes based 
on the values they receive (which determines 
also how you can analyse them in terms of 
operations):
› Nominal

 Examples: ID numbers, eye color, zip codes

› Ordinal
 Examples: rankings (e.g., taste of potato chips on a 

scale from 1-10 – Likert scale), grades, height in {tall, 
medium, short}

› Interval
 Examples: calendar dates, temperatures in Celsius or 

Fahrenheit.

› Ratio
 Examples: temperature in Kelvin, length, time, counts 



About data
 The type of an attribute depends on which 

of the following properties it possesses 
(basically what arithmetic operations you 
can do with them):
› Distinctness:  =    

› Order:     <  >   

› Addition:     +  -  

› Multiplication:   * /

› Nominal attribute: distinctness

› Ordinal attribute: distinctness & order

› Interval attribute: distinctness & order & addition

› Ratio attribute: distinctness & order & addition & 
Multiplication



Attribute 

Type

Description Examples Allowed 

Operations

Nominal The values of a nominal 
attribute are just different 
names, i.e., nominal attributes 
provide only enough 
information to distinguish one 
object from another. (=, )

zip codes, 

employee ID 

numbers, eye 

color, sex: {male, 

female}

mode, 

entropy, 

contingency 

correlation, 2 
test

Ordinal The values of an ordinal 

attribute provide enough 

information to order 

objects. (<, >)

hardness of 
minerals, {good, 
better, best}, 
grades, street 
numbers, Likert 
scales

median, 
percentiles, rank 
correlation, run 
tests, sign tests

Interval For interval attributes, the 
differences between values 
are meaningful, i.e., a unit of 
measurement exists.  
(+, - ) but not (*, /) . E.g. 30oC is 
not twice as hot as 15oC

calendar dates, 

temperature in 

Celsius or 

Fahrenheit

mean, standard 
deviation, 
Pearson's 
correlation, t 
and F tests

Ratio For ratio variables, both 

differences and ratios 

are meaningful. (*, /)

temperature in 

Kelvin, monetary 

quantities, 

counts, age, 

mass, length, 

electrical current

geometric 

mean, 

harmonic 

mean, 

percent 

variation
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Attribut

e Level

Allowed Transformation Comments

Nominal Any permutation of values If all employee ID 

numbers were 

reassigned, would it 

make any difference?

Ordinal An order preserving change 

of values, i.e., 

new_value = f(old_value) 

where f is a monotonic 

function.

An attribute 
encompassing the notion 
of good, better best can 
be represented equally 
well by the values {1, 2, 3} 
or by { 0.5, 1, 10}.

Interval new_value =a * old_value + 

b, where a and b are 

constants

E.g. he Fahrenheit and 
Celsius temperature 
scales differ in terms of 
where their zero value is 
and the size of a unit 
(degree).

Ratio new_value = a * old_value Length can be 

measured in meters or 

feet.

Allowed transformation i.e. transformation that do not change 

the meaning of the attribute



Discrete and continuous
 Discrete Attribute

› Has only a finite (or countable infinite set) of values 
(countable means can be ordered with a relationship)

› Examples: zip codes, counts, or the set of words in a 
collection of documents, number of birds in a flock 

› Often represented as integer variables.   

› Note: binary attributes are a special case of discrete 
attributes. 

 Continuous Attribute
› Has real numbers as attribute values (cannot be ordered 

with a relationship)

› Examples: temperature, height, weight, salary.  

› Practically, real values can only be measured and 
represented using a finite number of digits.

› Continuous attributes are typically represented as floating-
point variables.  



Types of data sets

Ways in which they are represented/structured
› “Structured” data: ordered/grouped in some particular 

way which (structure) is understandable to humans AND 
machines.

Record data
› Data Matrix

› Document Data

› Transaction Data

Graph data
› World Wide Web

› Molecular Structures

Ordered data
› Spatial Data

› Temporal Data

› Sequential Data

› Genetic Sequence Data



Important characteristics of 

structured data

 Dimensionality
› How many dimensions the data has (here 

dimensions: number of variables, features, 
attributes)

› Dimensionality is a big problem (curse of 
dimensionality)

 Sparcity
› How many values are present (or non-

present/zero )?

 Resolution
› Different patterns at different scales



Record data

 Record: a fixed set of attributed, handled as 
one entity

 Record data: collection of records

Tid Refund Marital 
Status 

Taxable 
Income Cheat 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 

 

Record data

One record



Data matrix
 If data objects have the same fixed set of numeric 

attributes, then the data objects can be thought of 

as points in a multi-dimensional space, where each 

dimension represents a distinct attribute 

 Such data set can be represented by an m by n 

matrix, where there are m rows, one for each 

object, and n columns, one for each attribute

1.12.216.226.2512.65

1.22.715.225.2710.23

Thickness LoadDistanceProjection 

of y load

Projection 

of x Load

1.12.216.226.2512.65

1.22.715.225.2710.23

Thickness LoadDistanceProjection 

of y load

Projection 

of x Load



Document data
 Each document becomes a `term' vector 

creating collectively a Document Term Matrix. 
› each term is a component (attribute) of the vector,

› the value of each component is the number of times 
the corresponding term occurs in the document. 

Document 1
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Document 2

Document 3

3 0 5 0 2 6 0 2 0 2

0

0

7 0 2 1 0 0 3 0 0

1 0 0 1 2 2 0 3 0

Note: Search 

engines like 

google, Bing do this

Term/lemma/word 

‘team’ appears in 

‘Document 1’ 3 times

Term vector.

Vectorizing 

a document

Docu
ment 
Term 
Matrix



Transaction data
 A special type of record data, where 

› each record (transaction) involves a set of items.  

› For example, consider a grocery store.  The set of 

products purchased by a customer during one 

shopping trip constitute a transaction, while the 

individual products that were purchased are the 

items. 

TID Items 

1 Bread, Coke, Milk 

2 Beer, Bread 

3 Beer, Coke, Diaper, Milk 

4 Beer, Bread, Diaper, Milk 

5 Coke, Diaper, Milk 

 



Graph data

 Data represented with nodes and links 

(=graphs)

5

2

1

 2

5

 Examples
› World wide web 

(pages, links)

› References in scientific 
articles
 Who references which 

paper (link)

› Calculate
 PageRank (google)

 h-index

 Hubs



Ordered data

 Position/rank matters

› E.g. genomic sequence

GGTTCCGCCTTCAGCCCCGCGCC

CGCAGGGCCCGCCCCGCGCCGTC

GAGAAGGGCCCGCCTGGCGGGCG

GGGGGAGGCGGGGCCGCCCGAGC

CCAACCGAGTCCGACCAGGTGCC

CCCTCTGCTCGGCCTAGACCTGA

GCTCATTAGGCGGCAGCGGACAG

GCCAAGTAGAACACGCGAAGCGC

TGGGCTGCCTGCTGCGACCAGGG



Ordered data

 Spatio-temporal data

Average 

Monthly 

Temperature of 

land and ocean



Data quality



Data quality

 Data quality?

› The aspects of data sets that make it 

suitable/useful (or not) for processing to 

achieve a goal

› Common data quality issue/problems

 Noise and outliers

 Missing values

 Duplicate data



Noise
 Noise refers to involuntarily modification of 

original values
› Examples: distortion of a person’s voice when talking on 

a poor phone and “snow” on television screen

Two Sine Waves (voice) Two Sine Waves + Noise (voice + 
distortion). Yup it’s a miracle that 
you can hear a voice.



Noise

 Useless/funny bits of noise

› Give rise to information theory

 Claude Shannon aiming at separate voice 

(information) from not-voice (noise)

› Noise can be interesting

 “Snow” on old TVs is ~40% cosmic radiation 

(from Big Bang)

 Meaning the “snow” that you saw, was  the 

cosmos/universe on your TV

 Not anymore though due to digital TV.



Outliers
 Outliers are data objects with characteristics that are 

considerably different than most of the other data objects in 
the data set
› Practical rule: Normally distributed data, everything that’s more 

than 3 standard deviation  away from the mean is suspect of an 
outlier. 

› Special graphs to visualize them e.g. Box plot (Θηκόγραμμα)

Outlier

Outlier

Outlier

“Most of the 

data” in data 

set



Outliers

 Can seriously distort your view when 

analyzing data even in the simplest way

› E.g. finding mean/average

Person Income (in dollars)

Bill 10000000000

Jim 19

John 20

Phil 25

Martha 16

(Naïve) average income: 

2000000016 dollars

#LOL, one person made everyone rich.
No joke pal.



Missing values
 Reasons for missing values

› Information is not collected 
(e.g., people decline to give their age and 
weight)

› Attributes may not be applicable to all cases 
(e.g., annual income is not applicable to 
children)

› Devices may be faulty (e.g. faulty thermometer) 

 Handling missing values
› Eliminate missing values in some way (commonly 

used – many techniques)

› Ignore the Missing Value During Analysis

› Replace with specific values (e.g. average) and 
ways (e.g. weighted by probabilities)



Missing values
 In real datasets, missing values 

represented in various ways

› No value at all (empty value), specific 

individual values such as ? - _  etc  

› Empty values are veryfied/discovered by 

examining the data prior to any analysis 

 During preprocessing or exploratory data 

analysis stage

› May also read the documentation to see 

how missing values are represented in 

datasets



Missing values
 Examples

› Python and R offer special values to denote 

that values are missing

 R: Values NA (not available) and NaN (Not A 

Number)

 Python: None and NaN  (Not A Number)

› R and Python recognize such values 

automatically as meaning missing values 

and can reason with these



Missing values

csv file

import pandas as pd 
taxpayerData = pd.read_csv('Lecture2-taxpayersData.csv', header=0, sep=',')

Reading above csv file in Python into a data frame:

Representation of empty value in 

Python. Denotes a missing value

Empty value 

indicating 

missing value



Missing values

 Can be represented in csv files using 

special values

Missing value represented as ? in this 

dataset (a csv file). Not as an empty 

value. 



Duplicate data
 Data set may include data objects that are 

duplicates, or almost duplicates of one 
another
› Major issue when merging data from 

heterogeneous sources (typical in greek public 
sector)

 Examples:
› Same person with multiple/different email 

addresses
 Yes, I know what you did on facebook, twitter, insta 

etc.

 The term is “Data cleaning”
› Process of dealing with duplicate data issues

 E.g. names: in greek Κων/νος, Κωνσταντίνος, 
Κώστας, Αγ. Βαρβάρα, Αγία Βαρβάρα etc



Data preprocessing



Data preprocessing

 Data preprocessing?

› Steps that aim making the data, before their 

processing, suitable for the desired processing.

 The issue here is to optimize various aspects that 

may affect processing, in particular

 Required space

 Processing time, minimize running times i.e. O( g(n) )

 Don’t forget: we’re working with Big data!

 Probably the most important step in data 

mining

 In general, about 70%-80% of total time is 

consumed on data preprocessing tasks



Data preprocessing

 Can definitely shoot your own foot

› Wrong preprocessing yields ALWAYS to 

wrong results when doing analys. Garbage 
in-garbage out.



Preprocessing

Preprocessing: The most 
important aspect in working 
with data!

Επεξεργασία & 

Μετασχηματισμός

Databases

Data Store

Επεξεργασμένα
δεδομένα

Επιλογή

Εξόρυξη

δεδομένων

Αξιολόγηση

προτύπων

Knowledge

Πρότυπα

Files

Επιλεγμένα 
δεδομένα

Ενοποίηση δεδομένων



Data preprocessing

 Preprocessing techniques/methods

› Aggregation

› Sampling

› Dimensionality reduction

› Feature subset selection

› Feature creation

› Discretization

› Attribute transformation



Aggregation

 Combining two or more attributes (or 
objects) into a single attribute (or object)

 Purpose
› Data reduction

  Reduce the number of attributes or objects

› Change of scale

  Cities aggregated into regions, states, 
countries, etc

› More “stable” data

  Aggregated data tends to have less variability 



Aggregation

Standard Deviation of 

Average Monthly 

Precipitation

Standard Deviation of 

Average Yearly 

Precipitation – aggregated 
(note smaller variability)

Variation of Precipitation in Australia



Sampling
Sampling is the main technique employed for 

data selection.
› It is often used for both the preliminary 

investigation of the data and the final data 
analysis.

 

Why sampling?
› Statisticians sample because obtaining the entire 

set of data of interest is too expensive or time 
consuming.

 

Sampling is used in data mining because 
processing the entire set of data of interest is 
too expensive or time consuming.



Sampling
 The key principle for effective sampling is 

the following: 

› using a sample will work almost as well as 

using the entire data sets, if the sample is 
representative

› A sample is representative if it has 

approximately the same property (of interest) 

as the original set of data

 In terms of its distribution  



Sampling
 Simple Random Sampling

› There is an equal probability of selecting any particular 
item

 Sampling without replacement
› As each item is selected, it is removed from the population

 Sampling with replacement
› Objects are not removed from the population as they are 

selected for the sample.   
   In sampling with replacement, the same object can be 

picked up more than once

 Stratified sampling
› Split the data into several partitions; then draw random 

samples from each partition



Sampling

 Effect of sample size?

8000 points           2000 Points   500 Points

More objects/points/data is in general better. But more objects require 

more space, more time (preprocessing and analysis). Tradeoff.

Effects almost any type of 
data: e.g. when you talk on 
the phone and your voice is 
sent to other guy/girl



Sampling

What sample size is necessary to get at 
least one object from each of 10 groups.

This graph will tell you. For example 

with a sample size of 40, the 

probability of having at least one from 

each group is ~0.87 .

10 groups



Dimensionality reduction

 Curse of dimensionality
› Remember: dimensions = number of 

attributes

 When dimensionality 
increases, data 
becomes increasingly 
sparse in the space 
that it occupies (i.e. 
many, many, missing 
or zero values)

 Definitions of density 
and distance 
between points, 
which is critical for 
clustering and outlier 
detection, become 
less meaningful

• Randomly 

generate 500 

points

• Compute 

difference 

between max and 

min distance 

between any pair 

of points

• Note: as 

dimensions 

increase, less 

meaningful 

distance which 

causes problems 

when clustering!



Dimensionality reduction
 Curse of dimensionality –visual example

 Same data (25 observations), when one more variable (dimension) is 
added. Look at how the space increases exponentially. Data 
becomes increasingly sparse inside the space that it occupies (i.e. 
many, many, missing, zero or absent values). This means that when 
dimensions increase but not your number of observations, statistical 
tests loose power. Many (much) more observations are required.

1 variable 2 variables 3 variables



Dimensionality reduction

 Due to the curse of dimensionality, you 

need at least a minimum number of 

observations in your dataset, in order to 

get reliable results from any statistical test 

or any machine learning algorithm.

› I guess you’ve heard that.

› Rule of thumb: in machine learning, at least 5 

different values for each variable.



Dimensionality reduction
 Purpose of dimensionality reduction

› Overcome dimensionality curse (ha, take that!)

› Reduce space and time required by data 
processing algorithms

 Data too Big for your machine

› Facilitate easy visualization of data – i.e. 
drawing graphs as a first look at your data

› May help in reducing noise

 Techniques/methods
› Principal Components Analysis (PCA)

› Singular Value Decomposition (SVD)

› Supervised and non-supervised techniques



Data preprocessing

PCA – Principal Component Analysis



Principal Components 

Analysis (PCA)

 How to reduce the dimension of a 
dataset, if it’s very large?
› E.g. hundreds/thousands of 

attributes/variables?

› You just can’t drop randomly some of the 
variables

 What if you drop/leave out the important 
ones?
 Which one are important, which don’t?

 In addition, you want also to minimize the 
number of variables but at the same time 
keep all the important statistics of your dataset 
e.g. variance.



Principal Components 

Analysis (PCA)
 One approach of doing this is to 

consider your original data with the 
many variables as points in a space 
where each variable is a dimension in 
that space and transform this data into 
data of another space with fewer 
dimensions (variables) but the same 
statistical properties.
› And in particular try to keep in that new 

space each variable’s variance in the 
original dataset!



Principal Components 

Analysis (PCA)

 But why keep (or explain) variance of 
variables in that new space and not e.g. 
mean or any other statistic?
› Variance is a very, very important aspect of your 

data. It’s the juicy part.

› Variance tells you how your data varies (goes up 
and down) – data with no variance is not 
interesting – and hence is more interesting in 
investigating relationships between variables.

› A lot of existing methods target variance

 Linear regression – explain variance

 ANOVA – compare means by analyzing variance

 And many, many other…



Principal Components 

Analysis (PCA)
 So, what we are trying to do is to reduce the 

variables like the following (note we show here 3 
original variables to be reduced to 2 – imagine 
having 100 variables reducing them to 5 or 10 or 20):

z2

z1

x1

x2

x3

3 variables of original 

dataset

2 variables in a new space 

with the same variance as 

original dataset and map 

data in this new space

Transform into

fewer variables

here: from 3 to 2

Map original data to a 
new space with fewer 
dimensions but the same 
variance!



Principal Components 

Analysis (PCA)

 How to find the new axes (which are in 

essence variables) of this space which 

explains most  of the variance of the 

original dataset?

› This is what Principal Component Analysis - 

PCA does!



Principal Components 

Analysis (PCA)
 A method to do this is PCA

› What it aims for?
 It aims to expressing existing data with high 

dimensionality (variables/attributes, n) in the context of 
a new (optimal) axis system (“subspace”) with fewer 
dimensions d, i.e. d < n.
 Goal of PCA: capture most of the variation in original data set 

to bring out patterns.
 “fewer dimensions” => reducing dimensionality and hence the 

curse of dimensionality
 Basically we compress the data set.
 Note: might lose some of variation of original data, and hence 

can’t perfectly reproduce original data in the new subspace, 
but this variation is not important (due to being very 
small/insignificant).

 This new “subspace” comprises the Principal Components

 IMPORTANT: PCA works only with numerical vectors!



Principal Components 

Analysis (PCA)

 A quick look at PCA
› Several issues with the new subspace

 How to choose new dimension d ? 

 How to select feature space (“subspace”) that 
represents our data well (i.e. principal 
components)?

› PCA allows you to create a new space (new 
variables) with fewer dimensions, which 
explains variation of the original dataset. You 
can then map your original data onto this 
new space and do your analysis there!



Principal Components 

Analysis (PCA)
 How to find the axes (i.e. 

variables) of new 
space?
› The Eigenvectors, 

Eigenvalues of the 
Covariance matrix define 
these spaces
 Eigenvectors are linear 

independent – i.e. 
orthogonal to each other

› The calculated 
Eigenvectors (aka 
Principal Components) will 
be the new axes that 
define the new space 
upon which the data will 
be mapped.

x2

x1

e

Eigenvector which captures the 

biggest variance in dataset. Will 

become the new axis of the space.



Principal Components 

Analysis (PCA)

 What are Eigenvectors/Eigenvalues?

› Mathematical definition:

 Let A be a nxn matrix. An eigenvector v and 

an eigenvalue λ of matrix A have the following 

properties:

𝐴 ∗ 𝑣 = 𝜆 ∗ 𝑣



Principal Components 

Analysis (PCA)

 PCA is a method for finding the 
Eigenvectors and Eigenvalues of a dataset 
and use these vectors (or a subset of these 
– the most important ones) to create a new 
space with smaller dimensions, upon which 
the original data will be mapped while 
maintaining the variance of the dataset.

 You can then do your analysis (any analysis) 
in this new space which has fewer 
dimensions (variables) and move the data 
back and forth.



Principal Components 

Analysis (PCA)

 Steps to calculate Principal Components
› Take whole dataset with n dimensions

› Normalize the data – make your variable the to have the same SCALE!
 Not always necessary if scale is not an issue with your data

› Compute the dimensional mean-vector (i.e. mean for each 
dimension/attribute)

› Subtract mean from each dimension (make variables have mean =0) – a 
form of normalizing the data (THIS IS IMPORTANT!)

› Compute the covariance matrix
 Indicating how each dimension/attribute varies with respect to all other 

attributes

› Compute Eigenvectors and Eigenvalues of the covariance matrix solving:
 |λI – A| = 0, λ=eigenvalue, | | = determinant, I = unit vector

 Av = lv, v = eigenvector

› Choose k largest Eigenvalues and corresponding Eigenvectors

› Use these Eigenvectors to form a d x k new matrix W of Eigenvectors – 
These explain most of the variance

› Use this d x k Eigenvector matrix to transform each object (vector) onto 
the new space, as follows:
 <New vector>  = WT x <old_vector>



Data preprocessing

PCA Example



Principal Components 

Analysis (PCA) - Example
 Numerical Example

 Assume the following observations/data about different food 
items: vitamin C content, protein content)

Vitamin C Protein

2.5 2.4

0.5 0.7

2.2 2.9

1.9 2.2

3.1 3.0

2.3 2.7

2 1.6

1 1.1

1.5 1.6

1.1 0.9

 Our goal/question to 
answer? 

 Reduce the number of 
variables while at the same 
time keep/explain most of 
the variance. Here e.g. we 
want to have only 1 
variable
› We have here only 2 

variables, so this makes little 
sense. Imagine e.g. having 
250 variables. In such cases 
you want to reduce the 
number of variables but 
“keep” the variance.

Variables/features

R
e

c
o
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s/
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se
rv

a
ri
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n
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Dataset



Principal Components 

Analysis (PCA) - Example

 Calculate mean for each variable

mean =1.81 mean =1.91

Vitamin C Protein

2.5 2.4

0.5 0.7

2.2 2.9

1.9 2.2

3.1 3.0

2.3 2.7

2 1.6

1 1.1

1.5 1.6

1.1 0.9

 Scaling our variables 
not an issue here!
› It would be an issue, if our 

variables would be 
measured in different scales. 
Say one variable is 
measured in thousands (e.g. 
population/income) and 
another in meters (say height 
of people). In such cases 
PCA will result in inconsistent 
results!

› When scale of any variable is 
an issue, do min-max 
normalization or z-score. Will 
see these methods in detail 
later.



Principal Components 

Analysis (PCA) - Example
 Subtract mean from each value to 

normalize the data.

mean =1.91 mean =1.81 

NOTE: we will work 

from now on with 

the red values!

Hint: mean of both 

variables is now 0.

Vitamin C Protein

2.5 – 1.81 = 0.69 2.4 – 1.91 = 0.49

0.5-1.81=-1.31 0.7 – 1.91 = -1.21

2.2-1.81=0.39 2.9 – 1.91 = 0.99

1.9-1.81=0.09 2.2 -1.91=0.29

3.1-1.81=1.29 3.0 – 1.91 =1.09

2.3-1.81=0.49 2.7 -1.91 =0.79

2-1.81=0.19 1.6-1.91 = -0.31

1-1.81= -0.81 1.1 – 1.91 = -0.81

1.5-1.81=-0.31 1.6 – 1.91 = -0.31

1.1-1.81=-0.71 0.9 -1.91 = -1.01



Principal Components 

Analysis (PCA) - Example

 Calculate the covariance matrix

Vitamin C Protein

Vitamin C 0.616 0.615

Protein 0.615 0.716

𝑐𝑜𝑣 𝑉𝑖𝑡𝑎𝑚𝑖𝑛𝐶, 𝑃𝑟𝑜𝑡𝑒𝑖𝑛 =
σ𝑖=1

10 𝑉𝑖𝑡𝐶𝑖  − 𝑉𝑖𝑡𝐶 𝑃𝑟𝑜𝑡𝑖  − 𝑃𝑟𝑜𝑡

9 = (10 − 1)

NOTE: mean here is calculated on the normalized data (i,.e. mean = 0)



Principal Components 

Analysis (PCA) - Example

 Calculate Eigenvalues and  Eigenvectors of 

the Covariance matrix

 Definition of Eigenvector v with Eigenvalue λ 

of the covariance matrix cov(VitC, Pr):

› 𝑐𝑜𝑣 𝑉𝑖𝑡𝐶, 𝑃𝑟 𝑣 = 𝜆𝑣 ⇒ 𝑐𝑜𝑣 𝑉𝑖𝑡, 𝑃𝑟 𝑣 − 𝜆𝑣 = 0 ⇒
𝒄𝒐𝒗 𝑽𝒊𝒕, 𝑷𝒓 − 𝝀𝑰𝟐 𝒗 =  𝟎 

 Calculate Eigenvalues first!



Principal Components 

Analysis (PCA) - Example

 Calculate Eigenvalues first

𝒄𝒐𝒗 𝑽𝒊𝒕, 𝑷𝒓 − 𝝀𝑰𝟐 𝒗 = 𝟎

Note: 0 is the zero vector.  We search for λ 

(eigenvalue) and corresponding v 

(eigenvector). Let’s remember a little bit of 

linear algebra: In order for this to have non-

zero vector v as solution, the determinant of 

                                         must be zero! Let’s do it.𝐜𝐨𝐯 𝐕𝐢𝐭, 𝐏𝐫 − 𝛌𝐈𝟐 



Principal Components 

Analysis (PCA) - Example

 Calculate Eigenvalues

-  λ
1 0

0 1
=

= 0.616 - λ 0.615

0.615 0.716 - λ

Determinant of this 
must be zero.

0.616 0.615

0.615 0.716

Covariance matrix Identity matrix I2

𝑑𝑒𝑡 𝑐𝑜𝑣 𝑉𝑖𝑡, 𝑃𝑟 − 𝜆𝐼2 = 0



Principal Components 

Analysis (PCA) - Example

 Calculate Eigenvalues

Det( ) = 0 => 

=> (0.616-λ)*(0.716-λ) – 0.615 * 0.615 = 0 => λ1 = 0.0489, λ2=1.283

2 Eigenvalues calculated λ1, λ2 !

0.616 - λ 0.615

0.615 0.716 - λ



Principal Components 

Analysis (PCA) - Example

 Now, for each Eigenvalue, calculate the 

Eigenvector V.

* V = 
0

0 =>

* V = 
0

0 =>

0.616 - λ 0.615

0.615 0.716 - λ

0.616 – 0.0489 

= 0.567

0.615

0.615 0.716 – 0.0489 

= 0.667

For eingenvalue λ =0.0490



Principal Components 

Analysis (PCA) - Example

 For each Eigenvalue, calculate the 

Eigenvectors.

* 
0

0 =>

v1

v2
= 

0.567*v1 +0.615*v2 = 0

0.615*v1 + 0.667*v2 = 0

0.567 0.615

0.615 0.667

For eingenvalue λ =0.0490

Eigenvalue λ=0.049

Eigenvector = 
−𝟎. 𝟕𝟑𝟓𝟏
𝟎. 𝟔𝟕𝟕𝟖

IMPORTANT! This system of equations has an 

infinite number of solutions (which makes sense).



Principal Components 

Analysis (PCA) - Example

 For each Eigenvalue, calculate the Eigenvectors.

For Eigenvalue λ =1.284

* V = 
0

0 =>

* V = 
0

0 =>

0.616 - λ 0.615

0.615 0.716 - λ

0.616 – 1.284 = 

-0.668

0.615

0.615 0.716 – 1.284 = 

-0.568



Principal Components 

Analysis (PCA) - Example

 For each Eigenvalue, calculate the Eigenvectors.

For Eigenvalue λ =1.284

* 

0

0 =>

v1

v2

-0.668 0.615

0.615 -0.568

-0.668*v1 +0.615*v2 = 0

0.615*v1 + 0.568*v2 = 0

Eigenvalue λ=1.284

Eigenvector = 
−𝟎. 𝟔𝟕𝟕𝟖
−𝟎. 𝟕𝟑𝟓𝟏

= 



Principal Components 

Analysis (PCA) - Example

 These two eigenvectors define a new 
coordinate system upon which the original 
data can be projected.

 What variables do these represent?
› Define new variables as linear combinations of the 

initial variables i.e.:

 New variable1= -0.6778*VitaminC – 0.7351*Protein

 New variable 2= -0.7351*VitaminC + 0.6778*Protein

Eigenvalue λ=1.284

Eigenvector = 
−𝟎. 𝟔𝟕𝟕𝟖
−𝟎. 𝟕𝟑𝟓𝟏

Eigenvalue λ=0.049

Eigenvector = 
−𝟎. 𝟕𝟑𝟓𝟏
𝟎. 𝟔𝟕𝟕𝟖



Principal Components 

Analysis (PCA) - Example

 We found 2 Eigenvalue/Eigenvector 

pairs (that’s expected. Why expected?)

Eigenvalue λ=0.049

Eigenvector = 
−𝟎. 𝟕𝟑𝟓𝟏
𝟎. 𝟔𝟕𝟕𝟖

Eigenvalue λ=1.284

Eigenvector = 
−𝟎. 𝟔𝟕𝟕𝟖
−𝟎. 𝟕𝟑𝟓𝟏

 Notice how one Eigenvalue is greater than the other 
? 1.284 > 0.049. 
› This means that the Eigenvector with λ = 1.284 captures 

more variance of the dataset than the other Eigenvector! 
And in fact, the value of the Eigenvalue is the variance of 
the data on that (new) dimension!



Principal Components 

Analysis (PCA) - Example
 How much variance does the greatest 

Eigenvector explain?

› Use 
𝝀𝒌

σ𝒊=𝟏
𝒏 𝝀𝒊

 where n= number of 

eigenvalues/eigenvectors - to see how muck variance 
Eingenvector with Eigenvalue λk explains

› In our case Eigenvector with λ=1.284 explains 1.284 / 
(1.284+0.049) = 0.96 or 96% of the variance in the data

› In the general case, what you do is select the k largest 
Eigenvalues (and corresp. Eigenvectors) until you are 
happy with the variance explained – The selected 
Eigenvalues/Eigenvectors are the Principal 
Components!

 In this case the explained variance is 
σ𝒊=𝟏

𝒌 𝝀𝒊

σ𝒋=𝟏
𝒏 𝝀𝒋

 Empirical: aiming at explaining >70% or variance



Principal Components 

Analysis (PCA) - Example
 If we are happy with the variance explained, 

do the following:
› Map the original data to the selected k Eigenvectors 

with the k greatest eigenvalues -in our example, lets 
say we select only 1 Eigenvalue/Eigenvector pair – 
the one with the largest Eigenvalue :

Eigenvalue λ=1.284

Eigenvector = 
−𝟎. 𝟔𝟕𝟕𝟖
−𝟎. 𝟕𝟑𝟓𝟏

Vitamin C Protein

2.5 2.4

0.5 0.7

2.2 2.9

1.9 2.2

3.1 3.0

2.3 2.7

2 1.6

1 1.1

1.5 1.6

1.1 0.9

Map this data to 

this feature vector 

defined by the 

Eigenvector
We aim to do this => Express data solely in terms of 
the selected Eigenvectors that define a new space!
Note: The two dimensional, original data will be 
mapped to a one dimensional space explaining 
large part of the variance!



Principal Components 

Analysis (PCA) - Example
 What variable(s) do the Eigenvectors 

(which defined the new space) represent?
› It’s a new variable not in the original dataset! In 

fact a linear combination of existing variables.

VitaminC

Protein

Eigenvector 
−0.6778
−0.7351

Which variable is this?????

None of the exitsing ones in the dataset! it’s a new 

variable that is created from a linear combination of the 

two original variables: If this is the eigenvector with the 

greatest eigenvalue (explaining most of the variance) this 

variable would be -0.6778*VitaminC – 0.7351*Protein

Here we have reduced the 

two variables (VitaminC, 

Protein) to only one variable 

represented by the 

Eigenvector, and mapped 

the existing dataset onto 

that new axis (see the blue 

points)



Principal Components 

Analysis (PCA)

 Summary 

 Principal Component Analysis - PCA
› What it does

 It reduces the number of dimensions in a 
dataset, while still explaining great amount of 
variance in the original data

› On what kind of attributes/data does it work?
 PCA works only on Ratio attributes.

 Variations of PCA to work in interval data available. 

› PCA can make use of the Correlation matrix 
instead of the Covariance matrix

 Important when implementing PCA in R 
 Look at the appropriate parameters! 



Principal Components 

Analysis (PCA)

 Principal Component Analysis – PCA

› When to do it

 When you want to visualize datasets with 

many variables (e.g. > 100)

 Impossible to do with that many variables

 With PCA, keep e.g. the 3 principal eigenvectors and 

project data onto that space. 3 variables can be 

visualized easily.

 Identify correlated variables in datasets with 

many variables.



Principal Components 

Analysis (PCA)
 A more concrete example:
 “In the Places Rated Almanac, Boyer and Savageau rated 329 

communities according to the following nine criteria:
› Climate and Terrain
› Housing
› Health Care & the Environment
› Crime
› Transportation
› Education
› The Arts
› Recreation
› Income
› …

Note that within the dataset, except for housing and crime, the higher 
the score the better. For housing and crime, the lower the score the 
better. Where some communities might do better in the arts, other 
communities might be rated better in other areas such as having a 
lower crime rate and good educational opportunities.”
 Objective: Search for relationships (correlation) between these 
variables.



Principal Components 

Analysis (PCA)

 In order to do this you need to check all 
combination of variables and expect a linear 
correlation 
› In this 9-dimensional space, observation which are 

correlated will appear closely together

› Difficult to see: too many scatterplots of variables 
against each other, how to draw a 9-dimensional 
space etc.

 Or you could do a PCA, find principal 
components and project data onto these
› Such projection gives you a quick view of the 

grouping which implies correlation. 



Data preprocessing

PCA – Sorry, I still don’t get it!



Principal Components 

Analysis (PCA) – I don’t get it

 I’m sorry, I still don’t get PCA. Get you draw 
it for me? Ok, first some basics about matrix 
multiplication.

x2

x1

This point at coordinates (2,3) defines a 

vector: From origin (0,0) to point (2,3) 

on that plane. That vector is also 

denoted as 
𝟐
𝟑

2 

3 Point A 



Principal Components 

Analysis (PCA)
 Notice how point B is a reflection of Point A 

on the origin (0,0)?

x1

2 

3 Point A 

-2 

-3 
Point B 

𝟐
𝟑

−𝟐
−𝟑

The question is now: how can we calculate 
the reflection of any point P in the origin?

Easy: Just multiply the vector with the matrix 
−𝟏 𝟎
𝟎 −𝟏

 this will calculate the vector that is 

the reflection of the original e.g.

−𝟏 𝟎
𝟎 −𝟏

𝟐
𝟑

=
−𝟐
−𝟑

From this, please take away the following 
important message: Matrix multiplication is 
simply Vector TRANSFORMATIONS (i.e. move 
vector elsewere)! Note: you can define 
matrices for any transformation. If you 

multiply matrices A and B with vector 
−𝟐
−𝟑

 

i.e. A*B* 
−𝟐
−𝟑

 that means: transform vector 

−𝟐
−𝟑

 according to B and the result according 

to A.  This may indicate e.g. Rotate and 
Mirror vector.



Principal Components 

Analysis (PCA)

 Multiplication of matrices are 

transformations

𝟏 𝟎
𝟎 −𝟏

−𝟏 𝟎
𝟎 𝟏

𝟎 𝟏
𝟏 𝟎

𝟏 𝟎
𝟎 −𝟏

𝟐
𝟑

Imagine this matrix as a 
function f transforming vector 

(2,3) ➔ reflection over x

Function or Filter for 
reflecting over y axis

Function or Filter for 
reflecting over y=x line



Principal Components 

Analysis (PCA)

 May also transform onto lower 

dimensional spaces

𝟐
𝟑

𝟐 𝟕 = 25 This transformation [2 7] maps 
a vector onto a line i.e. one 

dimensional space.

Function 
transforming vector 

[2  3]



Principal Components 

Analysis (PCA)

 Matrix multiplication is not multiplication! 

It’s transformation i.e. moving a point 

from one position on the same axes to 

another position, or moving a point from 

the current axis system to a new/different 

axis system.



Data preprocessing

PCA – A visual explanation



Principal Components 

Analysis (PCA)

 Let’s assume we have some data with 2 
variables (2 dimensions) and we want to 
reduce the number of variables to 1 while 
keeping the variance, as much as possible, 
of the original data. 

Vitamin C

Protein

Data / observations

Example here: How 

much Protein and 

Vitamin C some 

food items have. 2 
dimensional dataset 

(Vitamin C, Protein)



Principal Components 

Analysis (PCA)
 Let’s do the following now: Draw random  

lines on the plane of your data and project 
the original data on that line. This would 
mean in essence projecting my 2-
dimensional data on a 1-dimensional 
space. How does this look like?
› This line will be the new axis upon which the 2-

dimensional data will be projected and become 
1-dimensional

› Our goal is to explain/keep most of the variance 
of the original dataset when the data is 
projected onto the new space. (That’s what PCA 
does)



Principal Components 

Analysis (PCA)

Vitamin C

Protein

Vitamin C

Protein

Line 1

Line 2

Note: Red dots on Line 1 and Line 2 are the projections of the 2-
dimensional data on each line (1-dimensional space). Projections are 
perpendicular to the lines. HINT: Notice how the “spread” (aka variance) 
of the red dots on these lines (Line1, Line2) differ?



Principal Components 

Analysis (PCA)

Vitamin C

Protein

Line 3

Compare the spacing of the red dots (variance) on Line 3 to Line 1 and 2. 
See how the spread of red dots on Line 3 is well…. Smaller than on Lines 2 
and 3? That means that Line 3 captures a smaller variance of the original 
dataset!



Principal Components 

Analysis (PCA)
You can draw indefinitely many such lines  (see rotating line) 
and project the data onto them. On some lines, the “spread” 
of red dots i.e. variance of red dots on the line will be greater 
than on others. These lines (or vectors) are the Eigenvectors!

For animated version see file: PCA-Eigenvector-Illustration.gif



Principal Components 

Analysis (PCA)
 The line where the red dots have the greatest variance (biggest 

spread), is an Eigenvector and the First Principal Component of 
our data! The variance (spread) of red dots are the Eigenvalues of 
the Eigenvectors!
› The line with the second biggest spread is the second Principal 

Component, the line with the third biggest spread is the Third Principal 
Component etc.

Vitamin C

Protein

Eigenvector  -1
st

 

Principal  Component 
Eigenvector - 2nd Principal 

Component 

The length of the 

Eigenvector is its 

Eigenvalue λ



Principal Components 

Analysis (PCA)
 A metaphor describing what PCA does

Original data / observations (here 

represented as leaves and 

brances) in 3 dimensional space 

i.e. original data has 3 features

Data / observations (leaves and brances) 

projected onto a new 2 dimensional space 

(shadows of leaves and branches) defined 

by 2 eigenvectors i.e. 2 features designed 

in such way so as to maximize the number 

of leaves and branches visible. This is 

achieved if the variance is maximized i.e. 

data is spaced out.

PCA

Eigenvectors defining a new space 

upon which data is projected. Not all 

Eigenvectors need to be used to define 

the new space. Here only 2 are used to 

define the new space. 



Principal Components 

Analysis (PCA)

 Using Eigenvalues/Eigenvectors is one 

way to do PCA

 Other ways also available

› E.g. using Single Value Decomposition – SVD

 Both methods yield to similar results

› i.e. not much difference.



PCA in R: 

See file PCA.R on eclass performing PCA on 

the Iris dataset. 

PCA in Python: 

See file PCA.py on eclass performing PCA on 

the Iris dataset.

Principal Components Analysis 

(PCA)



Discretization

 Discretization? 

› Divide the range of a continuous attribute into intervals

› Some classification algorithms only accept categorical 

attributes.

› Reduce data size by discretization

› Prepare for further analysis

› Used in problems that require categorization and 

correlation analysis



Discretization

 Two ways to discretization

› Unsupervised

 Don’t take into consideration the classes in 

which the data item belong

› Supervised

 Take into consideration the classes in which 

data items belong



Discretization

 Unsupervised methods

› Equal interval width : Split range in n equal 

spaces by specifying n-1 split points

Equal interval width



Discretization

 Unsupervised methods

› Equal frequency: Split range in spaces so that 

equal number of data objects are in each 
space/bin

Equal frequency

Number of objects in this bin…

…equal to number of objects in these 

bins



Discretization

 Supervised methods
› Here we look at some attribute (class) of the 

data and try to take this into consideration when 
building the bins (hence supervised). Try to 
improve quality of bins wrt class.

› Bottom-up approach

 Each item belongs to its own bin. Then try to 
produce bigger bins by evaluating some metrics

› Goal: create bins that are as “clean” as possible 
wrt an attribute, i.e. minimize 
“chaos”/”unorderly-ness” in each bin in terms of 
the class the items belong.



Discretization

 Can we measure “chaos”/”unorderly-

ness” in each bin?

› Yup, that is what Entropy does

› Measuring entropy of bin ei:

…where k the number of different bins/classes, mi the 

number of items in class i, mij the number of items that are in 

class j found in bin i. mij/mi is the probability of class j in bin i.



Discretization

 Total entropy e of the 

spaces/partitioning is defined as 

…where m total number of data items, mi 

the number of data items in bin I (defined 

in terms of class)



Discretization
 Some notes on Entropy

› If Entropy = 0 => no chaos, perfect order, 
clean space/partition. Minimum entropy

› If Entropy = 1 => biggest chaos, greatest 
“unorder”, most unclean space/partition. 
Maximum entropy



Similarity and dissimilarity 

measures



Similarity and dissimilarity 

measures
 Similarity

› Numerical measure of how alike two data 
objects are.

› Is higher when objects are more alike.

› Often falls in the range [0,1]

 Dissimilarity
› Numerical measure of how different two data 

objects are

› Lower when objects are more alike

› Minimum dissimilarity is often 0

› Upper limit varies

 Proximity refers to a similarity or dissimilarity



Similarity and dissimilarity 

measures
 For simple attributes

› Note: q, p below are attribute values for two data objects

›  s, d below stand for (s)imilarity and d(istance)



Similarity and dissimilarity 

measures
 Distance 

› is an dissimilarity measure

› Observe that Dissimilarity and Distance are same 
things

 You use distance to measure similarity/dissimilarity

 You transform distance in order to calculate 

similarity/dissimilarity e.g. 𝒔𝒊𝒎𝒊𝒍𝒂𝒓𝒊𝒕𝒚 =
𝟏

𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆 𝒑𝟏,𝒑𝒘
  or 

𝒔𝒊𝒎𝒊𝒍𝒂𝒓𝒊𝒕𝒚 =
𝟏

𝒆𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆 𝒑𝟏,𝒑𝟐
 , etc. In general you choose 

the proper formula.

 Different ways to measure distance
› Euclidian distance

› Minkowski distance

› Mahalanobis distance



Similarity and dissimilarity 

measures

 You can define your own distance measure.

 However, in order to be considered a proper 
distance measure, it must be a metric. Or 
more clearly it has to have the following 
properties:

),(),(),(  4.

),(),(  3.

 iff 0),(  2.

0),(  1.

zydyxdzxd

xydyxd

yxyxd

yxd

+

=

==
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Euclidian Distance

 “Works” for points x, y in one, two, three 

or more dimensions

 (known) Formula

…where n is the number of dimensions (attributes) 

and xk and yk are, respectively, the kth attributes 

(components) or data objects x and y.



Euclidian Distance

0

1

2

3

0 1 2 3 4 5 6

p1

p2

p3 p4

point x y

p1 0 2

p2 2 0

p3 3 1

p4 5 1

Euclidean Distance Matrix

p1 p2 p3 p4

p1 0 2.828 3.162 5.099

p2 2.828 0 1.414 3.162

p3 3.162 1.414 0 2

p4 5.099 3.162 2 0

Data objects



The problem with the

Euclidean distance

 E.g. 

› 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 0.8, 1.2, 2.6 , 0.1, 0.9, 2.1 = 0.9119

› 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 0.8, 80000, 2.6 , 0.1, 67090, 2.1 = 12910.0002

Large numbers influence more the Euclidean 

distance than small numbers. Here, Euclidean 

distance approx. equal to |80000-67090| = 12910 

so why spend such calculation cost (raising power, 

sqrt)? 



The problem with the

Euclidean distance
 Solution: Normalizing (all or some) numbers 

that are at different scales (Feature scaling)

› Normalizing: Scaling into a fixed range 0-1

› Various approaches:

 Min-max normalization of all values in dimension

𝑁𝑒𝑤 𝑣𝑎𝑙𝑢𝑒 =
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑣𝑎𝑙𝑢𝑒 − min 𝑣𝑎𝑙𝑢𝑒

max 𝑣𝑎𝑙𝑢𝑒 − min 𝑣𝑎𝑙𝑢𝑒



The problem with the

Euclidean distance

 Min-max normalization (feature scaling)  

› 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 0.8, 80000, 2.6 , 0.1, 67090, 2.1

› Scaling 80000 and 67090 (belong to same 

dimension)

 𝑁𝑒𝑤 𝑣𝑎𝑙𝑢𝑒 80000 =
80000 −67090

80000−67090
= 1 

 𝑁𝑒𝑤 𝑣𝑎𝑙𝑢𝑒 80000 =
67090 −67090

80000−67090
= 0

𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 0.8, 1, 2.6 , 0.1, 0, 2.1 = 1.319
Much more 

sensible 
value than 

12910



Minkowski distance

 Minkowski distance is a generalization of 
Euclidean Distance

…where r is a parameter, n is the number of dimensions 

(attributes) and xk and yk are, respectively, the kth attributes 

(components) or data objects x and y.



Minkowski distance

 Special cases of the Minkowski distance:

 r = 1.  City block (Manhattan distance, taxicab, L1 norm) 
distance. 
› A common example of this is the Hamming distance, which is just the 

number of bits that are different between two binary vectors

 r = 2.  Euclidean distance

 r → .  “Supremum” (Lmax norm, L norm) distance. 
› This is the maximum difference between any component of the vectors

 IMPORTANT! Do not confuse r with n, i.e., all these 
distances are defined for all numbers of dimensions.



Minkowski distance

Distance Matrices

point x y

p1 0 2

p2 2 0

p3 3 1

p4 5 1

L1 p1 p2 p3 p4

p1 0 4 4 6

p2 4 0 2 4

p3 4 2 0 2

p4 6 4 2 0

L2 p1 p2 p3 p4

p1 0 2.828 3.162 5.099

p2 2.828 0 1.414 3.162

p3 3.162 1.414 0 2

p4 5.099 3.162 2 0

L p1 p2 p3 p4

p1 0 2 3 5

p2 2 0 1 3

p3 3 1 0 2

p4 5 3 2 0

Manhattan 

distance, r=1

Euclidean 

distance, r=2

Distance r → , 

L norm



Mahalanobis distance

 Is the distance between a point p and a 

distribution D

› If Mahalanobis distance = 0, then point is at 

the mean of D (i.e. the “center”) 

For red points, the Euclidean distance 
is 14.7, Mahalanobis distance is 6. 𝑀𝑎ℎ𝑎𝑙𝑎𝑛𝑜𝑏𝑖𝑠 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡 𝑝 

𝑓𝑟𝑜𝑚 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 = ෍

𝑖=1

𝑑
𝑝𝑖 − 𝑐𝑖

𝜎𝑖

2

pi value of point in i dimension, ci value of 
distribution center at dimension i, σi stdev of 
dimension i



Mahalanobis distance

 Mahalanobis measures the distance in a 

multivariate space

 Mahalanobis distance equals the 

Euclidean distance of two points if all 

variables are uncorrelated to each other 

(orthogonal)

 Mahalanobis measures the distance if 

variables are correlated 

› i.e. when axes not in right angles



Hamming distance

 Hamming distance

› between two vectors of equal length it’s the 

number of positions at which the 

corresponding symbols are different. 

Hamming distance = 2



Hamming distance

 Example of Hamming distance

𝑑
𝑅𝑒𝑎𝑙 𝑀𝑎𝑑𝑟𝑖𝑑, 𝐵𝑙𝑢𝑒, 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟𝑠 ,

𝐷𝑜𝑟𝑡𝑚𝑢𝑛𝑑, 𝐵𝑙𝑢𝑒, 12 𝐴𝑛𝑔𝑟𝑦 𝑀𝑒𝑛  
= 2

𝑠
𝑅𝑒𝑎𝑙 𝑀𝑎𝑑𝑟𝑖𝑑, 𝐵𝑙𝑢𝑒, 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟𝑠 ,

𝐷𝑜𝑟𝑡𝑚𝑢𝑛𝑑, 𝐵𝑙𝑢𝑒, 12 𝐴𝑛𝑔𝑟𝑦 𝑀𝑒𝑛  
=

1

3

Similarity between nominal vectors:

Hamming Distance between nominal vectors:



Cosine similarity

Applies to document data 

If d1 and d2 are two document vectors, then

             cos( d1, d2 ) =  (d1 • d2) / ||d1|| ||d2|| , 

   where • indicates vector dot product and || d || is  the   length of vector d.  

 Example: 

  d1 =  (3, 2, 0, 5, 0, 0, 0, 2, 0, 0) 

   d2 =  (1, 0, 0, 0, 0, 0, 0, 1, 0, 2) 

    d1 • d2=  3*1 + 2*0 + 0*0 + 5*0 + 0*0 + 0*0 + 0*0 + 2*1 + 0*0 + 0*2 = 5

   ||d1|| = (3*3+2*2+0*0+5*5+0*0+0*0+0*0+2*2+0*0+0*0)0.5 =  (42) 0.5 = 6.481

    ||d2|| = (1*1+0*0+0*0+0*0+0*0+0*0+0*0+1*1+0*0+2*2) 0.5 = (6) 0.5 = 2.245

    Hence, cos( d1, d2 ) = .3150



Jaccard index (Jaccard 

coefficient)

 Measures similarity between two sets

 Formula

𝑱 𝑨, 𝑩 =
𝑨 ∩ 𝑩

𝑨 ∪ 𝑩

Apple

Economics

Economics

Tesla
𝐽 𝐴, 𝐵 =

1

3

𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 1 − 𝐽 𝐴, 𝐵 =
2

3



Summary



Summary

 Data has different types of attributes 

depending on the type of values they 

may take



Summary

 Different types imply different methods of 
analysis
› Different methods of analysis work for on 

different types of data

 Preprocessing is one of the most important 
steps in data mining
› Consumes most of the time (70-80% of dm tasks)

 There are different objectives when 
preprocessing data
› Reducing dimensions

› Sampling

› Discretization



Summary
 PCA most powerful way to reduce 

dimensions of the dataset (curse of 
dimensionality) which causes problems in 
Big Data
› Used in many-many Big Data environments

 There are also different distance metrics
› Depending on the data, objective of task at 

hand

 In general, choose wisely, the appropriate, 
types of values, preprocessing methods 
and distance metrics
› Will influences your data mining results!



Appendices
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