Applied Microeconometrics (L8): Ordered and Multinomial Outcomes.

Nicholas Giannakopoulos

University of Patras
Department of Economics
ngias@upatras.gr

December 3, 2019

Overview

Ordered and Multinomial Response Outcomes

Ordered probit

Multinomial Logit

Modeling

- Ordered response models (dependent variable is NOT strictly continuous and NOT binary). Example:
- rating of the corporate payment default risk, A (best) to D (worst)
- rating of the sovereign default risk, A (best) to D (worst)
- rating of self-assessed health, 0 (poor) to 3 (excellent health)
- Multinomial response models. Examples:
- individual's employment status: unemployed ($\mathrm{y}=0$); wage-employed ($\mathrm{y}=1$); self-employed ($\mathrm{y}=2$)
- health care utilization: no use of health care ($\mathrm{y}=0$) ; a GP visit but no use of hospital visits ($\mathrm{y}=1$); a hospital visit, with or without a GP visit ($\mathrm{y}=2$)
- traveling from Patras to Athens: car $(y=0)$; bus $(y=1)$; train ($y=2$)

Example: Sovereign Rating

Table 1
Moody's and S\&P alphanumeric ratings' conversion into numeric values

Moody's	S\&P	Numeric equivalent
Aaa	AAA	100
Aa1	AA+	95
Aa2	AA	90
Aa3	AA-	85
A1	A+	80
A2	A	75
A3	A-	70
Baa1	BBB+	65
Baa2	BBB	60
Baa3	BBB-	55
Ba1	BB+	50
Ba2	BB	45
Ba3	BB-	40
B1	B+	35
B2	B	30
B3	B-	25
Caa1	From CCC+ to CCC-	20
Caa2	CC	15
Caa3	C	10
Caa	D	5

Example: Sovereign Ratings (Demoussis, Drakos and Giannakopoulos, 2017)

- Standard \& Poor's AlphaNumerical Rating - 45 degree line

Example: Self-assessed health in Greece

Heatlh status	Indicator	2009	2014
Very good	5	43,8	43,5
Good	4	31,5	25,4
Fair	3	16,5	15,2
Bad	2	5,6	4,2
Very bad	1	2,5	1,7
UNK	n.a	0,1	0,0
Total	100	100	100
Source: National	Health Survey (EL.STAT)		

Modeling Ordered Response Variables

- Two models
- Ordered probit: Normal CDF $\Phi(\cdot)$
- Ordered logit: Normal CDF $\Lambda(\cdot)$
- Ordered response $y, y=[0,1,2, \ldots, J]$
- Latent variable model:

$$
\begin{align*}
y^{\star}= & \beta_{1} x_{1}+\ldots+\beta_{k} x_{k}+\epsilon \\
& =x^{\prime} \beta+\epsilon \tag{1}
\end{align*}
$$

Ordered probit

- We do not observe the latent variable, y^{\star}
- BUT we observe outcomes (choices)

$$
\begin{align*}
& y=0 \text { if } y^{\star} \leq \alpha_{1} \\
& y=1 \text { if } \alpha_{1}<y^{\star} \leq \alpha_{2} \\
& y=2 \text { if } \alpha_{2}<y^{\star} \leq \alpha_{3} \tag{2}\\
& \quad \ldots \\
& y=J \text { if } \alpha_{J}<y^{\star}
\end{align*}
$$

Ordered probit

- Suppose y can take three values: 0,1 or 2

$$
\begin{align*}
& y=0 \text { if } \quad x^{\prime} \beta+\epsilon \leq \alpha_{1} \\
& y=1 \text { if } \alpha_{1}<x^{\prime} \beta+\epsilon \leq \alpha_{2} \tag{3}\\
& y=2 \text { if } \alpha_{2}<x^{\prime} \beta+\epsilon
\end{align*}
$$

Ordered probit

- Probabilities of observing $y=0,1,2$

$$
\begin{align*}
& \operatorname{Pr}(y=0)=\operatorname{Pr}\left(x^{\prime} \beta+\epsilon \leq \alpha_{1}\right) \\
&=\operatorname{Pr}\left(\epsilon \leq \alpha_{1}-x^{\prime} \beta\right) \tag{4}\\
&=\Phi\left(\alpha_{1}-x^{\prime} \beta\right) \\
&=1-\Phi\left(x^{\prime} \beta-\alpha_{1}\right) \\
& \operatorname{Pr}(y=2)=\operatorname{Pr}\left(x^{\prime} \beta+\epsilon>\alpha_{2}\right) \\
&=\operatorname{Pr}\left(\epsilon>\alpha_{2}-x^{\prime} \beta\right) \tag{5}\\
&=1-\Phi\left(\alpha_{2}-x^{\prime} \beta\right. \\
&\left.=\Phi\left(x^{\prime} \beta-\alpha_{2}\right)\right) \\
& \operatorname{Pr}(y=1)=\Phi\left(x^{\prime} \beta-\alpha_{1}\right)-\Phi\left(x^{\prime} \beta-\alpha_{2}\right) \tag{6}
\end{align*}
$$

Hint: $\Phi(\alpha)=1-\Phi(-\alpha)$

Ordered probit

- Interpretation: Partial effects on Probabilities of observing

$$
y=0,1,2
$$

$$
\begin{equation*}
\frac{\partial \operatorname{Pr}(y=0 \mid x)}{\partial x_{k}}=-\phi\left(x^{\prime} \beta-\alpha_{1}\right) \beta_{k} \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial \operatorname{Pr}(y=1 \mid x)}{\partial x_{k}}=-\left[\phi\left(x^{\prime} \beta-\alpha_{1}\right)-\phi\left(x^{\prime} \beta-\alpha_{2}\right)\right] \beta_{k} \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial \operatorname{Pr}(y=2 \mid x)}{\partial x_{k}}=\phi\left(x^{\prime} \beta-\alpha_{2}\right) \beta_{k} \tag{9}
\end{equation*}
$$

Multinomial response: Multinomial logit

- Unordered Outcomes
- Employment status: self-employed (SE), wage-earner (WE) or unemployed (UE)
- logit model $(0 / 1)$ is extended to more than two outcomes
- pep var: $J=3, S E=0, W E=1, U E=2$

$$
\begin{align*}
& y=0 \text { if individual is UE } \\
& y=1 \text { if individual is WE } \tag{10}\\
& y=2 \text { if individual is SE }
\end{align*}
$$

- conditional probability ($j=0,1,2)$

$$
\begin{equation*}
\operatorname{Pr}\left(y_{1}=j \mid x_{i}\right) \tag{11}
\end{equation*}
$$

Multinomial logit

- Probabilities in logit form

$$
\left.\left.\begin{array}{l}
\operatorname{Pr}\left(y=1 \mid x_{i}\right)= \\
\operatorname{Pr}\left(y=2 \mid x_{i}\right)=\frac{\exp \left(x_{i} \beta_{1}\right)}{1+\exp \left(x_{i} \beta_{1}\right)+\exp \left(x_{i} \beta_{2}\right)} \tag{12}\\
\operatorname{Pr}\left(y=0 \mid x_{i}\right)
\end{array}=1-\exp \left(x_{i} \beta_{2}\right)\right]\left(x_{i} \beta_{1}\right)+\exp \left(x_{i} \beta_{2}\right)=1 \mid x_{i}\right)-\operatorname{Pr}\left(y_{i}=2 \mid x_{i}\right) .
$$

Multinomial logit

- Marginal effects

$$
\begin{align*}
& \frac{\partial \operatorname{Pr}\left(y=1 \mid x_{i}\right)}{\partial x_{i k}}=\operatorname{Pr}\left(y_{i}=1 \mid x_{i}\right)\left[\beta_{1 k}-\frac{\beta_{1 k} \exp \left(x_{i} \beta_{1}\right)+\beta_{2 k} \exp \left(x_{i} \beta_{2}\right)}{1+\exp \left(x_{i} \beta_{1}\right)+\exp \left(x_{i} \beta_{2}\right)}\right] \\
& \frac{\partial \operatorname{Pr}\left(y=2 \mid x_{i}\right)}{\partial x_{i k}}=\operatorname{Pr}\left(y_{i}=2 \mid x_{i}\right)\left[\beta_{2 k}-\frac{\beta_{1 k} \exp \left(x_{i} \beta_{1}\right)+\beta_{2 k} \exp \left(x_{i} \beta_{2}\right)}{1+\exp \left(x_{i} \beta_{1}\right)+\exp \left(x_{i} \beta_{2}\right)}\right] \\
& \frac{\partial \operatorname{Pr}\left(y=0 \mid x_{i}\right)}{\partial x_{i k}}=\operatorname{Pr}\left(y_{i}=0 \mid x_{i}\right)\left[-\frac{\beta_{1 k} \exp \left(x_{i} \beta_{1}\right)+\beta_{2 k} \exp \left(x_{i} \beta_{2}\right)}{1+\exp \left(x_{i} \beta_{1}\right)+\exp \left(x_{i} \beta_{2}\right)}\right] \tag{13}
\end{align*}
$$

Multinomial logit(Odds Ratio)

- Interpreting Odds Ratios
- Odds ratios in logistic regression can be interpreted as the effect of a one unit of change in X in the predicted odds ratio with the other variables in the model held constant.
odds (if the corresponding variable is incremented by 1)
odds (if variable not increamented)

$$
\frac{P(\text { event } \mid x+1) /(1-P(\text { event } \mid x+1)}{P(\text { event } \mid x) / P(\text { event } \mid x)}
$$

Multinomial logit(Odds Ratio)

- Important property of odds ratios: they are constant
- say you estimate the logistic regression model
$--13.70837+.1685 x_{1}+.0039 x_{2}$
- The effect of the odds of a 1-unit increase in x_{1} is $\exp (.1685)=1.18$
- The odds increase by 18%
- Incrementing x_{1} increases the odds by 18% regardless of the value of $x_{2}(0,1000$, etc.)

