
The SVAR addon for gretl

Jack Lucchetti and Sven Schreiber

October 2024

Contents

1 Introduction 3

2 C models 5
2.1 A simple example . 5
2.2 Base estimation via the SVAR package . 5
2.3 Algorithm choice . 9
2.4 Displaying the Impulse Responses . 9
2.5 Bootstrapping . 10
2.6 More general restrictions and a shortcut . 13

3 More on plotting 15
3.1 Plotting the FEVD . 15
3.2 Historical decomposition . 16

4 C-models with long-run restrictions (Blanchard-Quah style) 17
4.1 A modicum of theory . 19
4.2 Example . 21
4.3 Combining short- and long-run restrictions . 22

5 AB models 24
5.1 A simple example . 24

6 Checking for identification 26

7 Structural VEC Models 28
7.1 Syntax . 30
7.2 A hands-on example . 31

8 Set-identified SVARs 34
8.1 Notation . 34
8.2 Set identification . 35

8.2.1 Sign restrictions (practicalities) . 35
8.2.2 Interval restrictions . 36
8.2.3 General (“exotic”) set restrictions . 36

8.3 Mixed restrictions . 36
8.4 The workflow for set identification . 37
8.5 Historical and forecast error variance decompositions 38

1

A The GUI interface 41
A.1 Identifying constraints . 42
A.2 Bootstrap parameters and cumulation . 42
A.3 The output window . 43
A.4 An example . 43

B Some details of the numerical algorithm in SVAR SRdraw 45

C Alphabetical list of (public) functions 47

D Contents of the model bundle 57

E Changelog (after v1.2) 59

2

1 Introduction

The SVAR package is a collection of gretl functions to estimate Structural VARs, or SVARs for
short.

In the remainder of this guide, the emphasis will be put on the scripting interface, which is the
recommended way of using the package. However, most of its features are also accessible via the
“Structural VAR” menu entry (go to Model > Time Series > Multivariate) and the corresponding
menu-driven interface. The impatient reader, who already has some understanding of what a
SVAR is and is looking for a step-by-step guide on how to get her work done quickly via point-and
click methods, can consult section A in the Appendix.

In order to establish notation1 and define a few concepts, allow us to inflict on you a 2-page
crash course on SVARs. In this context,2 we call “structural” a model in which we assume
that the one-step-ahead prediction errors ut from a statistical model can be thought of as linear
functions of the structural shocks εt. In its most general form, a structural model is the pair of
equations

ut = yt − E(yt|Ft−1) (1)
Aut = Bεt (2)

where Ft−1 is the information set at t− 1.
In practically all cases, the statistical model is a a finite-order VAR and equation (1) spe-

cialises to

yt = µ′xt +
p∑

i=1

Φiyt−i + ut or Φ(L)yt = µ′xt + ut (3)

where the VAR may include an exogenous component xt, which typically contains at least a
constant term. The above model is referred to as the AB-model in Amisano-Giannini (1997).

The object of estimation are the square matrices A and B; estimation is carried out by
maximum likelihood. After defining C as A−1B, the relationship between prediction errors and
structural shocks becomes

ut = Cεt (4)

and under the assumption of normality the average log-likelihood can be written as

L = const− ln |C| − 0.5 · tr(Σ̂(CC ′)−1)

As is well known, the above model is under-identified and in order for the log-likelihood to
have a (locally) unique maximum, it is necessary to impose some restrictions on the matrices
A and B. This issue will be more thoroughly discussed in section 6; for the moment, let’s just
say that some the elements in A and B have to be fixed to pre-specified values. The minimum
number of restrictions is n2 + n2−n

2 . This, however, is a necessary condition, but not sufficient
by itself.

The popular case in which A = I is called a C-model. Further, a special case of the C-model
occurs when B is assumed to be lower-triangular. This was Sims’s (1980) original proposal, and
is sometimes called a “recursive” identification scheme. It has a number of interesting properties,

1Attention: Starting in v1.95 we have changed the notation in an important way, by swapping the symbols
for the structural shocks and the reduced-form residuals (forecast errors). The reason is that most of the recent
literature uses u for the reduced-form errors, and now we do so, too, which hopefully makes everything a bit easier
for users.

2The adjective “structural” is possibly one of the most widely used and abused in econometrics. In other
contexts, it takes a totally different, and unrelated, meaning.

3

among which the fact that the ML estimator of C is just the Cholesky decomposition of Σ̂, the
sample covariance matrix of VAR residuals. This is why many practitioners, including ourselves,
often use the “recursive model” and “Cholesky model” phrases interchangeably. This has been
the most frequently used variant of a SVAR model, partly for its ease of interpretation, partly
for its ease of estimation.3 In the remainder of this document, a lower-triangular C model will
be called a “plain” SVAR model.

If the model is just-identified, Σ̂(CC ′)−1 will be the identity matrix and the log-likelihood
simplifies to

L = const− 0.5 ln |Σ̂| − 0.5n

Of course, it is possible to estimate constrained models by imposing some extra restrictions; this
makes it possible to test the over-identifying restrictions easily by means of a LR test.

Except for trivial cases, like the Cholesky decomposition, maximisation of the likelihood
involves numerical iterations. Fortunately, analytical expressions for the score, the Hessian and
the information matrix are available, which helps a lot;4 once convergence has occurred, the
covariance matrix for the unrestricted elements of A and B is easily computed via the information
matrix.

Once estimation is completed, Â and B̂ can be used to compute the structural VMA rep-
resentation of the VAR, which is the base ingredient for most of the subsequent analysis, such
as Impulse Response Analysis and so forth. If the matrix polynomial Φ(L) in equation (3) is
invertible, then (assuming xt = 0 for ease of notation), yt can be written as

yt = Φ(L)−1ut = Θ(L)ut = ut + Θ1ut−1 + · · · (5)

which is known as the VMA representation of the VAR. Note that in general the matrix poly-
nomial Θ(L) is of infinite order.

From the above expression, one can write the structural VMA representation as

yt = Cεt + Θ1Cεt−1 + · · · = M0εt + M1εt−1 + · · · (6)

From equation (6) it is immediate to compute the impulse response functions:

Ii,j,h =
∂yi,t

∂εj,t−h
=

∂yi,t+h

∂εj,t
(7)

which in this case equal simply
Ii,j,h = [Mh]ij

The computation of confidence intervals for impulse responses could, in principle, be performed
analytically by the delta method (see Lütkepohl (1990)). However, this has two disadvantages:
for a start, it is quite involved to code. Moreover, the limit distribution has been shown to be a
very poor approximation in finite samples (see for example Fachin and Bravetti (1996) or Kilian
(1998)), so the bootstrap is almost universally adopted, although in some cases it may be quite
CPU-heavy.

3Some may say “partly for the unimaginative nature of applied economists, who prefer to play safe and
maximise the chances their paper isn’t rejected rather than risk and be daring and creative”. But who are we to
judge?

4As advocated in Amisano and Giannini, the scoring algorithm is used by default, but several alternatives are
available. See subsection 2.3 below.

4

2 C models

2.1 A simple example

As a trivial example, we will estimate a plain Cholesky model. The data are taken from Stock
and Watson’s sample data sw ch14.gdt, and our VAR will include inflation and unemployment,
with a constant and 3 lags. Then, we will compute the IRFs and their 90% bootstrap confidence
interval.5

In order to accomplish the above, note that we don’t need to use the SVAR package, as a
Cholesky SVAR can be handled by gretl natively. In fact, the script shown in Table 1 does just
that: runs a VAR, collects Σ̂ and estimates C as its Cholesky decomposition. Part of its output
is in Table 2. The impulse responses as computed by gretl’s internal command can be see in
Figure 1. See the Gretl User’s Guide for more details.

turn extra output off

set verbose off

open the data and do some preliminary transformations

open sw_ch14.gdt

genr infl = 400*ldiff(PUNEW)

rename LHUR unemp

list X = unemp infl

var 3 unemp infl

Sigma = $sigma

C = cholesky(Sigma)

print Sigma C

Table 1: Cholesky example via gretl’s internal var command

2.2 Base estimation via the SVAR package

We will now replicate the above example via the SVAR package; in order to do so, we need to
treat this model as a special case of the C-model, where ut = Cεt and identification is attained
by stipulating that C is lower-triangular, that is

C =

[
c11 0
c12 c22

]
. (8)

Table 3 shows a sample script to estimate the example Cholesky model: the basic idea is that
the model is contained in a gretl bundle.6 In this example, the bundle is called Mod, but it can
of course take any valid gretl identifier.

After performing the same preliminary steps as in the example in Table 1, we load the
package and use the SVAR setup function, which initialises the model and sets up a few things.
This function takes 4 arguments:

5Why not 95%? Well, keeping the number of bootstrap replications low is one reason. Anyway, it must be
said that in the SVAR literature few people use 95%. 90%, 84% or even 66% are common choices.

6Bundles are containers in which a certain object (a scalar, a matrix and so on) is associated to a “key” (a
string). Technically speaking, a bundle is an associative array like “hashes” in Perl or “dictionaries” in Python.
Fore more info, you’ll want to take a look at the Gretl User’s Guide, section 11.7.

5

VAR system, lag order 3

OLS estimates, observations 1960:1-1999:4 (T = 160)

Log-likelihood = -267.76524

Determinant of covariance matrix = 0.097423416

AIC = 3.5221

BIC = 3.7911

HQC = 3.6313

Portmanteau test: LB(40) = 162.946, df = 148 [0.1896]

Equation 1: u

coefficient std. error t-ratio p-value

--

const 0.137300 0.0846842 1.621 0.1070

u_1 1.56139 0.0792473 19.70 8.07e-44 ***

u_2 -0.672638 0.140545 -4.786 3.98e-06 ***

...

Sigma (2 x 2)

0.055341 -0.028325

-0.028325 1.7749

C (2 x 2)

0.23525 0.0000

-0.12041 1.3268

Table 2: Cholesky example via gretl’s internal var command — Output

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 5 10 15 20 25 30 35 40

periods

u -> u

-0.1
-0.05

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0 5 10 15 20 25 30 35 40

periods

infl -> u

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0 5 10 15 20 25 30 35 40

periods

u -> infl

-0.2
 0

 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

 0 5 10 15 20 25 30 35 40

periods

infl -> infl

Figure 1: Impulse response functions for the simple Cholesky model (native)

6

turn extra output off

set verbose off

open the data and do some preliminary transformations

open sw_ch14.gdt

genr infl = 400*ldiff(PUNEW)

rename LHUR unemp

list X = unemp infl

list Z = const

load the SVAR package

include SVAR.gfn

set up the SVAR

Mod = SVAR_setup("C", X, Z, 3)

Specify the constraints on C

SVAR_restrict(&Mod, "C", 1, 2, 0)

Estimate

SVAR_estimate(&Mod)

Table 3: Simple C-model

• a string, with the model type ("C" in this example);

• a list containing the endogenous variables yt;

• a list containing the exogenous variables xt (may be null);

• the VAR order p.

Once the model is set up, you can specify which elements you want to constrain to achieve
identification: in fact, the key ingredient in a SVAR is the set of constraints we put on the
structural matrices. SVAR handles these restrictions via their implicit form representation Rθ = d.
As an example, the constraints for the simple case we’re considering here can be written in implicit
form as

R vec C = d

where R = [0, 0, 1, 0] and d = 0.
There are several ways to constrain a model: the easiest way is to use the SVAR restrict

function, which should be enough in most cases; for alternatives, jump to section 2.6. A complete
description of the the SVAR restrict function can be found in appendix C; suffice it to say here
that the result of the function

SVAR_restrict(&Mod, "C", 1, 2, 0)

is to ensure that C1,2 = 0 (see eq. 8).
The next step is estimation, which is accomplished via the SVAR estimate function, which

just takes one argument, the model to estimate. The output of the SVAR estimate function
is shown below:7 note that, as an added benefit, we get asymptotic standard errors for the

7For compatibility with other packages, Σ̂ is estimated by dividing the cross-products of the VAR residuals by
T − k instead of T ; this means that the actual figures will be slightly different from what you would obtain by
running var and then cholesky($sigma).

7

estimated parameters (estimated via the information matrix).8

Unconstrained Sigma:

0.05676 -0.02905

-0.02905 1.82044

coefficient std. error z-stat p-value

--

C[1; 1] 0.238243 0.0131548 18.11 2.62e-73 ***

C[2; 1] -0.121939 0.105142 -1.160 0.2461

C[1; 2] 0.00000 0.00000 NA NA

C[2; 2] 1.34371 0.0741942 18.11 2.62e-73 ***

At this point, the model bundle contains all the quantities that will need to be accessed later
on, including the structural VMA representation (6), which is stored in a matrix called IRFs
which has h rows and n2 columns. Each row i of this matrix is vec(Mi)′, so if you wanted to
retrieve the IRF for variable m with respect to the shock k, you’d have to pick its [(k−1)·n+m]-th
column.

The number of rows h is closely related to the “horizon”. The function SVAR setup initialises
automatically the horizon to 24 for monthly data and to 20 for quarterly data. To change it, you
just assign the desired value to the horizon element of the bundle, as in

Mod.horizon = 40

(Since the contemporaneous impact effect is also part of the IRFs, the matrix will have one
more row than this horizon specification.) Clearly, this adjustment has to be done before the
SVAR estimate function is called.

More details on the internal organisation of the bundle can be found in section D in the
appendix. Its contents can be accessed via the ordinary gretl syntactic constructs for dealing
with bundles. For example, the number of observations used in estimating the model is stored
as the bundle member T, so if you ever need it you can just use the syntax Mod.T.

Once the model has been estimated, it becomes possible to retrieve estimates of the structural
shocks, via the function GetShocks, as in:

series foo = GetShock(&Mod, 1)

series bar = GetShock(&Mod, 2)

If we append the two lines above to example 3, two new series will be obtained. The formula
used is nothing but equation (4) in which the VAR residuals are used in place of ut.

Warning: If you are working on a subsample of your dataset, keep in mind that the SVAR
package follows a different convention than gretl for handling the actual start of your sample.
Ordinary gretl commands, such as var, will use data prior to your subsampling choice for lags,
if present. The SVAR package, on the contrary, will not. An example should make this clear:
suppose your dataset starts at 1970Q1, but you restrict your sample range only to start at
1980Q1. The gretl commands

8You may feel surprised by the fact that in our example the z-statistics for two elements of the C matrix are
exactly the same. This is no coincidence: in short, the reason why this happens is that the parameter covariance
matrix is computed from the information matrix, which is a function of C itself (see Amisano and Giannini, 1997,
for more details). On the other hand, the test shouldn’t be taken literally, as under the null hypothesis C11 = 0
or C22 = 0 the covariance matrix would become singular, and all the relevant asymptotic theory would break
down. To be on the safe side, just take the z values as descriptive statistics in these cases.

8

smpl 1980:1 ;

list X = x y z

var 6 X

will estimate a VAR with 6 lags, in which the first datapoint for the dependent variable will be
1980Q1 and data from 1978Q3 to 1979Q4 will be used for initialising the VAR. However,

smpl 1980:1 ;

list X = x y z

Mod = SVAR_setup("C", X, const, 6)

will estimate the same model on a different dataset: that is, the first available datapoint for
estimation will be 1981Q3 because data from 1980Q1 to 1981Q2 will be needed for lagged values
of the yt variables.

2.3 Algorithm choice

Another thing you may want to toggle before calling SVAR estimate is the optimisation method:
you do this by setting the bundle element optmeth to some number between 0 and 4; its meaning
is shown below:

optmeth Algorithm
0 BFGS (numerical score)
1 BFGS (analytical score)
2 Newton-Raphson (numerical score)
3 Newton-Raphson (analytical score)
4 Scoring algorithm (default)

So in practice the following code snippet

Mod.optmeth = 3

SVAR_estimate(&Mod)

would estimate the model by using the Newton-Raphson method, computing the Hessian by
numerically differentiating the analytical score. In most cases, the default choice will be the
most efficient; however, it may happen (especially with heavily over-identified models) that the
scoring algorithm fails to converge. In those cases, there’s no general rule. Experiment!

2.4 Displaying the Impulse Responses

The SVAR package provides a function called IRFplot for plotting the impulse response function
on your screen, with a little help from our friend gnuplot; its syntax is relatively simple. IRFplot
requires three arguments:

1. The model bundle (as a pointer);

2. the number of the structural shock we want the IRF to;

3. the number of the variable we want the IRF for.

For example,

IRFplot(&Mod, 1, 1)

9

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0 5 10 15 20 25 30 35

IRF: unemp shock -> unemployment

Figure 2: Impulse response functions for unemployment

The function can be used in a more sophisticated way than this (see later). Its output is
presented in Figure 2. As can be seen, it’s very similar to the one obtained by gretl’s native
command (Figure 1).

By the way: you can attach labels to the structural shocks if you want. Just store an array of
strings with the appropriate number of elements into the model bundle, under the snames key.
For example,

Mod.snames = strsplit("foo bar baz")

If you omit this step, the structural shocks will be labelled with names corresponding to the
observable variables in your VAR. This doesn’t make particular sense in general, but it does in
a triangular model, in which there is a one-to-one correspondence, so we decided to make this
the default choice.

A word on the unit of measurement of IRFs: by their definition (see equation (7)), clearly
their unit of measurement is the same as the one for the corresponding observable variable yi,t.
The conventional normalization of unit variances of the structural shocks and of the association
of shocks to equations implies that the impact of the i-th structural unit size shock on the i-th
variable will be just one standard deviation of the i-th reduced-form error. This is often referred
to as a one-standard-deviation shock. Sometimes, however, a different convention is adopted,
and people want to display IRFs graphically by normalizing the impact effect Ii,i,0 = 1. This
representation is often labeled as a unit shock, and the necessary division by the respective
standard deviation of the reduced-form errors can be achieved by setting the bundle member
normalize to 1, as in

Mod.normalize = 1

before calling IRFplot. Setting it back to its default value of 0 will restore standard behavior.

2.5 Bootstrapping

The next step is computing bootstrap-based confidence intervals for the estimated coefficients
and, more interestingly, for the impulse responses: as can be seen in Table 4, this task is given
to the SVAR boot function, which takes as arguments

10

bfail = SVAR_boot(&Mod, 1024, 0.90)

loop i = 1..2

loop j = 1..2

sprintf fnam "simpleC_%d%d.pdf", i, j

IRFsave(fnam, &Mod, i, j)

end loop

end loop

Table 4: Simple C-model (continued)

1. The model bundle pointer;

2. the required number of bootstrap replications (1024 here), which can be omitted if the
default value of 2000 is satisfactory;9

3. the desired size of the confidence interval α (with a default of 0.9 or 90% coverage proba-
bility, so it could have been omitted in the example above).

For further optional arguments see below and the function reference in the appendix. The
function outputs a scalar, which keeps track of how many bootstrap replications failed to converge
(none here). Note that this procedure may be quite CPU-intensive.

The function can also return in output a table similar to the output to Cmodel, which is used
to display the bootstrap means and standard errors of the parameters:

Bootstrap results (1024 replications)

coefficient std. error z p-value

C[1; 1] 0.232146 0.0183337 12.66 9.57e-37 ***

C[2; 1] -0.114610 0.143686 -0.7976 0.4251

C[1; 2] 0.00000 0.00000 NA NA

C[2; 2] 1.30234 0.0853908 15.25 1.61e-52 ***

Failed = 0, Time (bootstrap) = 20.24

This can be achieved by supplying a zero fourth argument to the SVAR boot function, as in

bfail = SVAR_boot(&Mod, 1024, 0.90, 0)

Once the bootstrap is done, its results are stored into the bundle for later use: upon successful
completion, the model bundle will contain another bundle called bootdata. This contains some
information on the bootstrap details, such as the confidence interval α and others; in addition,
it will contain three matrices in which each column is one of the n2 IRFs, and the rows contain

1. the lower limit of the confidence interval in the lo cb matrix;

2. the upper limit of the confidence interval in the hi cb matrix;

3. the medians in the mdns matrix.
9There’s a hard limit at 16384 at the moment; probably, it will be raised in the future. However, unless your

model is very simple, anything more than that is likely to take forever and melt your CPU.

11

where h is the IRF horizon.
In practice, the bootstrap results may be retrieved as follows (the medians in this example):

bfail = SVAR_boot(&Mod, 1024, 0.90)

scalar h = Mod.horizon

bundle m = Mod.bootdata

matrix medians = m.mdns

However, if you invoke IRFplot() after the bootstrap, the above information will be auto-
matically used for generating the graph. In this case, you may supply IRFplot() with a fourth
argument, an integer from 0 to 2, to place the legend to the right of the plot (value: 1), below it
(value: 2) or omit it altogether (value: 0). The default, which applies if you omit the parameter,
is 1.

Another SVAR function, IRFsave(), is used to store plots the impulse responses into graphic
files files for later use;10 its arguments are the same as IRFplot(), except that the first argument
must contain a valid filename to save the plot into. In the above example, this function is used
within a loop to save all impulse responses in one go. The output is shown in Figure 3.

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0 5 10 15 20 25 30 35

IRF: shock 1 -> unemp

Bstrap 90% CI
Bstrap median

IRF

-0.8

-0.6

-0.4

-0.2

 0

 0 5 10 15 20 25 30 35

IRF: shock 1 -> infl

Bstrap 90% CI
Bstrap median

IRF

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 5 10 15 20 25 30 35

IRF: shock 2 -> unemp

Bstrap 90% CI
Bstrap median

IRF

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 5 10 15 20 25 30 35

IRF: shock 2 -> infl

Bstrap 90% CI
Bstrap median

IRF

Figure 3: Impulse response functions for the simple Cholesky model

The default method for performing the bootstrap is the the most straightforward residual-
based bootstrap, that is the one put forward by Runkle (1987).

As an alternative, one may use bias-correction, which comes in two flavors, both inspired by
the procedure known as “bootstrap-after-bootstrap” (Kilian, 1998).

The one which corresponds more closely to Kilian’s procedure is what what we call the “Full”
variant; The “Partial” variant applies the bias correction only for adjusting the VAR coefficients
used for generating the bootstrap replications, but not for computing the VMA representation.
The interested user may want to experiment with both.

10The format is dictated by the extension you use for the output file name: since this job is delegated to
gnuplot, all graphical formats that gnuplot supports are available, including pdf, PostScript (via the extension
ps), PNG (via the extension png) or Scalable Vector Graphics (via the extension svg).

12

The “Partial” and “Full” variant may either be enabled by setting the bundle member
biascorr to 1 and 2, respectively, before calling SVAR boot. For an example, look at the ex-
ample file bias correction.inp. Alternatively, that choice can be specified as the final (sixth)
argument when calling SVAR boot.

Another bootstrap choice which can either be specified before the call to SVAR boot or di-
rectly in that call is to use the so-called wild bootstrap, or the residual-based moving blocks
bootstrap (MBB) proposed by Brüggemann et al. (2016). As regards the wild bootstrap, instead
of resampling the residuals to create a new draw of artificial bootstrap data, for each time period
t it takes the original estimated residual vector and multiplies it by a random number wt with
mean 0 and variance 1. This procedure is able to account for several forms of heteroskedasticity
in the errors. For IRFs the MBB-based confidence bands may have better coverage properties es-
pecially at short horizons. Activate any of these options by setting the bundle member boottype
to the appropriate value, as per the following table.

boottype Argument in SVAR boot Distribution Description
1 resampling, resample (none) non-wild
2 wild, wildN Gaussian wt ∼ N(0, 1)
3 wildR Rademacher P (wt = ±1) = 0.5

4 wildM Mammen wt =

{
−1/ϕ ϕ√

5

ϕ 1− ϕ√
5

5 MBB (none) moving blocks (non-wild)

where ϕ is the golden ratio (about 1.1618). The value 1 is the default and implies the usual
residual resampling. For example, the following invocation calls for a Gaussian wild bootstrap
with partial bias correction (and through the 0 in fourth position activates the table printout as
explained above):

SVAR_boot(&Mod, 5000, 0.95, 0, "wild", 1)

Finally: if you change the optmeth bundle element before SVAR boot is called, the choice
affects the estimation of the bootstrap artificial models. Hence, you may use one method for
the real data and another method for the bootstrap, if you so desire. If you use the MBB
option you can also add the movblocklen bundle element (again, before the call to SVAR boot)
to give a positive integer that sets a non-automatic choice for the block length of the bootstrap
innovations; the automatic choice currently being 10% of the sample length.

2.6 More general restrictions and a shortcut

The internal element of the model bundle which contains the constraints for a C model is a matrix
called Rd1 and the number of its rows is kept as bundle element nc1. This matrix contains the
restrictions in a C model of the form

R vec C = d

by stacking horizontally the R matrix and the d vector, so that a matrix R∗ = [R|d] is stored as
Rd1. All the SVAR restrict function does is adding rows to R∗ and checking for redundant or
inconsistent restrictions.

However, if you feel like building the matrix R∗ via gretl’s ordinary matrix functions, all you
have to do is to fill up the bundle elements Rd1 and nc1 properly before calling SVAR estimate().

13

As an example, take the script contained in Table 3, where we identify our C-model via the (rather
silly) constraint c11 = c12. The equation above would specialise to

[1 − 1 0 0] vec C = 0

and all you would have to do in order to modify the script to that effect would be substituting
the line

SVAR_restrict(&Mod, "C", 1, 2, 0)

with

Mod.Rd1 = {1, -1, 0, 0, 0}

Mod.nc1 = 1

Estimating the resulting model would give you

coefficient std. error z p-value

C[1; 1] 0.230119 0.0127062 18.11 2.62e-73 ***

C[2; 1] 0.230119 0.0127062 18.11 2.62e-73 ***

C[1; 2] -0.0616835 0.0182892 -3.373 0.0007 ***

C[2; 2] 1.32947 0.0755748 17.59 2.87e-69 ***

Log-likelihood = -276.913

where the two first coefficients are equal, as required.
That said, in many cases a triangular, Cholesky-style specification for the C matrix like the

one analysed in this section is all that is needed. When many variables are involved, the setting
of the n×(n−1)

2 restrictions via the SVAR restrict function could be quite boring, although easily
done via a loop.

For these cases, the SVAR package provides an alternative way: if you supply the SVAR setup
function with the string "plain" as its first argument, the necessary restrictions are set up
automatically. Thus, the example considered above in Table 3 could by modified by replacing
the lines

Mod = SVAR_setup("C", X, Z, 3)

SVAR_restrict(&Mod, "C", 1, 2, 0)

with the one-liner

Mod = SVAR_setup("plain", X, Z, 3)

and leaving the rest unchanged. Of course, when you have two variables, such as in this case,
there’s not much difference, but for larger systems the latter syntax is much more convenient.

Another advantage is that, in this case, the solution to the likelihood maximisation problem
is known analytically, so no numerical optimisation technique is used at all. This makes compu-
tations much faster, and for example allows you to make extravagant choices on, for example, the
number of bootstrap replications. Hence, if your C model can be rearranged as a plain triangular
model, it is highly advisable to do so.

14

3 More on plotting

Traditionally, analysis of the Impulse Response Functions has been the main object of interest
in the applied SVAR literature, but is by no means the only one. After estimation, two more
techniques are readily available for inspecting the results: the Forecast Error Variance Decom-
position and the Historical Decomposition. Since the results from these two procedures are often
visualised as graphs, we will describe them here.

3.1 Plotting the FEVD

Another quantity of interest that may be computed from the structural VMA representation
is the Forecast Error Variance Decomposition (FEVD). Suppose we want to predict the future
path of the observable variables h steps ahead, on the basis of the information set Ft−1. From
equations (5) and (6) one obtains that

yt+h − ŷt+h =
h∑

k=0

ΘkE(ut+h−k) =
h∑

k=0

MkE(εt+h−k)

Since E(εt+h−k) = I by definition, the forecast error variance after h steps is given by

Ωh =
h∑

k=0

MkM ′
k

hence the variance for variable i is

ω2
i = [Ωh]i,i =

h∑
k=0

e′iMkM ′
kei =

h∑
k=0

n∑
l=1

(kmi.l)2

where ei is the i-th selection vector,11 so kmi.l is, trivially, the i, l element of Mk. As a conse-
quence, the share of uncertainty on variable i that can be attributed to the j-th shock after h
periods equals

VDi,j,h =
∑h

k=0(kmi.j)2∑h
k=0

∑n
l=1(kmi.l)2

.

fevdmat = FEVD(&Mod)

print fevdmat

FEVDplot(&Mod, 1)

FEVDplot(&Mod, 2)

Table 5: FEVD: computation and output

As shown in Table 5, after the model has been estimated, it can be passed to another func-
tion called FEVD to compute the Forecast Error Variance Decomposition, which is subsequently
printed. Its usage is very simple, since it only needs one input (a pointer to the model bundle);
like the IRFplot function, you can also attach an extra optional parameter at the end to control
the position of the legend.

11That is, a vector with zeros everywhere except for a 1 at the i-th element.

15

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40

FEVD for unemp

unemp
infl

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40

FEVD for infl

unemp
infl

Figure 4: FEVD for the simple Cholesky model

Since the FEVD for a particular variable is expressed in terms of shares, it is quite common
to depict it graphically as a histogram, with the horizon on the x-axis. This can be accomplished
rather simply in SVAR by using the specialised function FEVDplot(), which needs two arguments:
a pointer to the model bundle and the number of the variable you want the FEVD for. Running
the code in Table 5 you should see two graphs similar to Figure 4.

For saving the output to a file, its variant FEVDsave() works the same, except you need an
extra argument (which goes first) with the filename you choose for the output.12

3.2 Historical decomposition

A natural extension of the FEVD concept (see sections 1 and 2.4) is the so-called historical
decomposition of observed time series, which can be briefly described as follows.

Consider the representations (3) and (6); clearly, if one could observe the parameters of the
system (the coefficients of the Φ(·) polynomial and the matrix µ) plus the sequence of structural
shocks εt, it would be possible to decompose the observed path of the yt variables into n + 1
distinct components: first, a purely exogenous one, incorporating the term µ′xt plus all the
feedback effects given by the lag structure Φ(L); this is commonly termed the “deterministic
component” (call it dt). The remainder yt−dt can be therefore thought of as the superimposition
of separate contributions, given by each structural shock hitting the system at a given time. In
practice, we’d think of each individual series in the system as

yit − di,t = Mi,1(L)ε1,t + · · ·+ Mi,n(L)εn,t

using representation (6).
Note that each element of the sum on the right-hand side of the above equation is uncorre-

lated (by hypothesis) of all the other ones at all leads and lags. Therefore, the contribution of
each shock to the visible path of the variable yit is distinct from the others. In a way, historical
decomposition could be considered as a particular form of counterfactual analysis: each compo-
nent Mi,j(L)εj,t shows what the history of yi,t would have been if the j-th shock had been the
only one affecting the system.

From a technical point of view, the decomposition is computed via a “rotated” version of the
system:13 pre-multiplying equation (3) by C−1 gives

y∗t = µ∗′xt +
p∑

i=1

Φ∗i y
∗
t−i + εt

12See also the illustration of the IRFsave function at Section 2.5.
13I know, I know: strictly speaking, it’s not a rotation; for it to be a rotation, you ought to force C to be

orthogonal somehow; but let’s not be pedantic, OK?

16

turn extra output off

set verbose off

open the data and do some preliminary transformations

open sw_ch14.gdt

genr infl = 400*ldiff(PUNEW)

rename LHUR unemp

list X = unemp infl

list Z = const

load the SVAR package

include SVAR.gfn

set up the SVAR

Mod = SVAR_setup("C", X, Z, 3)

Specify the constraints on C

SVAR_restrict(&Mod, "C", 1, 2, 0)

Estimate

SVAR_estimate(&Mod)

Save the historical decomposition as a list of series

list HD_infl = SVAR_hd(&Mod, 2)

Just plot the historical decomposition for unemployment

HDplot(&Mod, 2)

Table 6: Simple C-model with historical decomposition

where y∗t ≡ C−1yt and Φ∗i ≡ C−1ΦiC. This makes it trivial to compute the historical contri-
butions of the structural shocks εt to the rotated variables y∗t , which are then transformed back
into the original series yt.

The decomposition above can be performed in the SVAR package using the estimated quan-
tities by the SVAR hd function, which takes two arguments: a pointer to the SVAR model and an
integer, indicating which variable you want the decomposition for. Upon successful completion,
it will return a list of n + 1 series, containing the deterministic component and the n separate
contributions by each structural shock to the observed trajectory of the chosen variable. The
name of each variable so created will be given by the hd_ prefix, plus the names of the variable
and of the shock (det for the deterministic component).

A traditional way to represent the outcome of historical decomposition is, again, graphical.
The most common variant depicts the single contributions as histograms against time and their
sum (the stochastic component yt− dt) as a continuous line. The SVAR package provides a pair
of functions for plotting such a graph on screen or saving it to a file, and the go by the name
of HDplot() and HDsave(), respectively. See their description in Section C in the appendix and
Figure 5, which shows the historical decomposition for the unemployment series we’ve been using
as an example in this section.

4 C-models with long-run restrictions (Blanchard-Quah
style)

17

set verbose off

include SVAR.gfn

open BlQuah.gdt --frompkg=SVAR

set seed 1234 # make results reproducible

list X = DY U

list exog = const time

maxlag = 8

set up the model

BQModel = SVAR_setup("C", X, exog, maxlag)

BQModel.horizon = 40

set up the long-run restriction

SVAR_restrict(&BQModel, "lrC", 1, 2, 0)

cumulate the IRFs for variable 1

SVAR_cumulate(&BQModel, 1)

set up names for the shocks

BQModel.snames = defarray("Supply", "Demand")

do estimation

SVAR_estimate(&BQModel)

retrieve the demand shocks

dShock = GetShock(&BQModel, 2)

bootstrap (set ’quiet’ off with trailing zero arg)

bfail = SVAR_boot(&BQModel, 1024, 0.9, 0)

page 662

IRFsave("bq_Ys.pdf", &BQModel, 1, 1)

IRFsave("bq_us.pdf", &BQModel, 1, 2)

IRFsave("bq_Yd.pdf", &BQModel, -2, 1)

IRFsave("bq_ud.pdf", &BQModel, -2, 2)

now perform historical decomposition

list HDDY = SVAR_hd(&BQModel, 1)

list HDU = SVAR_hd(&BQModel, 2)

cumulate the effect of the demand shock on DY

series hd_Y_Demand = cum(hd_DY_Demand)

reproduce Figure 8

gnuplot hd_Y_Demand --time-series --with-lines --output=display

reproduce Figure 10

gnuplot hd_U_Demand --time-series --with-lines --output=display

Table 7: Blanchard-Quah example

18

-8

-6

-4

-2

 0

 2

 4

 6

 8

 10

 12

1960:2 1963:4 1967:2 1970:4 1974:2 1977:4 1981:2 1984:4 1988:2 1991:4 1995:2 1998:4
unemp

infl
infl (stoch. component)

HD for infl

Figure 5: Simple C-model example: historical decomposition plot

An alternative way to impose restrictions on C is to use long-run restrictions, as pioneered by
Blanchard and Quah (1989). The economic rationale of imposing restrictions on the elements of
C is that C is equal to M0, the instantaneous IRF. For example, Cholesky-style restrictions mean
that the j-th shock has no instantaneous impact on the i-th variable if i < j. Assumptions of this
kind are normally motivated by institutional factors such as sluggish adjustments, information
asymmetries, technical constraints and so on.

Long-run restrictions, instead, stem from more theoretically-inclined reasoning: in Blanchard
and Quah (1989), for example, it is argued that in the long run the level of GDP is ultimately
determined by aggregate supply only. Fluctuations in aggregate demand, such as those in-
duced by fiscal or monetary policy, should affect the level of GDP only in the short term. As
a consequence, the impulse response of GDP with respect to demand shocks should go to 0
asymptotically, whereas the response of GDP to a supply shock should settle to some positive
value.

4.1 A modicum of theory

To translate this intuition into formulae, assume that the bivariate process GDP growth-unemployment

xt =

[
∆Yt

Ut

]

is I(0) (which implies that Yt is I(1)), and that it admits a finite-order VAR representation

Φ(L)xt = ut

where the prediction errors are assumed to be a linear combination of demand and supply shocks[
u∆Y

t

uU
t

]
= C

[
εd

t

εs
t

]
,

19

Considering the structural VMA representation[
∆Yt

Ut

]
= Θ(L)ut = ut + Θ1ut−1 + · · · =

= Cεt + Θ1Cεt−1 + · · · = M0εt + M1εt−1 + · · · ,

it should be clear that the impact of demand shocks on ∆Yt after h periods is given by the
north-west element of Mh. Since xt is assumed to be stationary, limh→∞Θh = 0 and the same
holds for Mk, so obviously the impact of either shock on ∆Yt goes to 0. However, the impact of
εt on the level of Yt is given by the sum of the corresponding elements of Mh, since

Yt+h = Yt−1 +
h∑

i=0

∆Yt+i,

so
∂Yt+h

∂εd
t

=
h∑

i=0

∂∆Yt+i

∂εd
t

=
h∑

i=0

[Mi]11

and in the limit

lim
h→∞

∂Yt+h

∂εd
t

=
∞∑

i=0

∂∆Yt+i

∂εd
t

=
∞∑

i=0

[Mi]11 ,

In general, if xt is stationary, the above limit is finite, but needn’t go to 0; however, if we
assume that the long-run impact of εd

t on Yt is null, then

lim
k→∞

∂Yt+k

∂εd
t

= 0

and this is the restriction we want. In practice, instead of constraining elements of M0, we
impose an implicit constraint on the whole sequence Mi.

How do we impose such a constraint? First, write
∑∞

i=0 Θi as Θ(1); then, observe that

Θ(1)C =
∞∑

i=0

Mi;

the constraint we seek is that the north-west element of Θ(1)C equals 0. The matrix Θ(1) is easy
to compute after the VAR coefficients have been estimated: since Θ(L) = Φ(L)−1, an estimate
of Θ(1) is simply

Θ̂(1) = Φ̂(1)
−1

Of course, for this to work Φ(1) needs to be invertible. This rules out processes with one or more
unit roots. The cointegrated case, however, is an interesting related case and will be analysed in
section 7.

The long-run constraint can then be written as

R vec[Θ(1)C] = 0, (9)

where R = [1, 0, 0, 0]; since
vec[Θ(1)C] = [I ⊗Θ(1)] vec(C),

the constraint can be equivalently expressed as

[Θ(1)11, Θ(1)12, 0, 0] vec(C) = Θ(1)11 · c11 + Θ(1)12 · c21 = 0. (10)

Note that we include in R elements that, strictly speaking, are not constant, but rather functions
of the estimated VAR parameters. Bizarre as this may seem, this poses no major inferential
problems under a suitable set of conditions (see Amisano and Giannini (1997), section 6.1).

20

coefficient std. error z p-value

C[1; 1] 0.0575357 0.0717934 0.8014 0.4229

C[2; 1] 0.217542 0.0199133 10.92 8.80e-28 ***

C[1; 2] -0.907210 0.0507146 -17.89 1.45e-71 ***

C[2; 2] 0.199459 0.0111501 17.89 1.45e-71 ***

Estimated long-run matrix (restricted)

longrun (2 x 2)

0.50080 0.0000

0.088690 3.9133

Log-likelihood = -202.193

Bootstrap results (1024 replications, 0 failed)

coefficient std. error z p-value

--

C[1; 1] 0.0563995 0.340707 0.1655 0.8685

C[2; 1] 0.184285 0.0814261 2.263 0.0236 **

C[1; 2] -0.769799 0.109725 -7.016 2.29e-12 ***

C[2; 2] 0.171516 0.0830117 2.066 0.0388 **

coefficient std. error z p-value

LongRun[1; 1] 0.544885 0.168701 3.230 0.0012 ***

LongRun[2; 1] 0.0285569 2.89306 0.009871 0.9921

LongRun[1; 2] 0.00000 0.00000 NA NA

LongRun[2; 2] 4.09942 2.08718 1.964 0.0495 **

Table 8: Output for the Blanchard-Quah model

4.2 Example

The way all this is handled in SVAR is hopefully quite intuitive: an example script is reported in
Table 7. After reading the data in, the function SVAR setup is invoked in pretty much the same
way as in section 2.

Then, the SVAR restrict is used to specify the identifying restriction. Note that in this case
the code for the restriction type is "lrC", which indicates that the restriction applies to the
long-run matrix, so the formula (10) is employed. Next, we insert into the model the information
that we will want IRFs for yt, so those for ∆yt will have to be cumulated. This is done via
the function SVAR cumulate(), in what should be a rather self-explanatory way (the number 1
refers in this case to the position of ∆Yt in the list X). Finally, a cosmetic touch: we overwrite
the model’s default shock labels with a string array containing "Supply" and "Demand". The
shock labels are always stored in the array snames.

When a model with long-run restrictions is estimated, the resulting long-run matrix is stored
in the model bundle as member lrmat, and is also printed out by default.

The bootstrap is invoked by SVAR boot, which however by default does not produce any ad-
ditional printout. To display the results straight away set the optional fourth (trailing) argument
to 0.

In Table 8 we reported the output to the example code in Table 7, while the pretty pictures

21

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 5 10 15 20 25 30 35 40

IRF: Demand -> DY; bias-correction = full (cumulated)

Bstrap 90% CI
Bstrap median

IRF

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0 5 10 15 20 25 30 35 40

IRF: Demand -> U; bias-correction = full

Bstrap 90% CI
Bstrap median

IRF

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 5 10 15 20 25 30 35 40

IRF: Supply -> DY; bias-correction = full (cumulated)

Bstrap 90% CI
Bstrap median

IRF

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0 5 10 15 20 25 30 35 40

IRF: Supply -> U; bias-correction = full

Bstrap 90% CI
Bstrap median

IRF

Figure 6: Impulse response functions for the Blanchard-Quah model

are in Figure 6.14 Note that in the two calls to IRFplot which are used to plot the responses to
a demand shock, the number to identify the shock is not 2, but rather -2. This is a little trick
the plotting functions use to flip the sign of the impulse responses, which may be necessary to
ease their interpretation (since the shocks are identified only up to their sign).

Note that the bottom part of the scripts uses the functions described in section 3.2 so to
replicate figures 8 (p. 664) and 10 (p. 665) in the original AER article, where the historical
contribution of demand shocks to output and unemployment is reconstructed. The output on
your screen should be roughly similar to Figure 7.

-10

-8

-6

-4

-2

 0

 2

 4

 6

 1950 1955 1960 1965 1970 1975 1980 1985

h
d
_Y

_2

-2

-1

 0

 1

 2

 3

 4

 1950 1955 1960 1965 1970 1975 1980 1985

h
d
_U

_2

Output Unemployment

Figure 7: Effects of a demand shock in the Blanchard-Quah model

4.3 Combining short- and long-run restrictions

In the previous example, it turned out that the estimated coefficient for c1,1 was seemingly
insignificant; if true, this would mean that the supply shock has no instantaneous effect on ∆Yt;

14I found it impossible to reproduce Blanchard and Quah’s results exactly. I believe this is due to different
vintages of the data. Qualitatively, however, results are very much the same.

22

in other words, the IRF of output to supply starts from 0. Leaving the economic implications
aside, from a statistical viewpoint this could have suggested an alternative identification strategy
or, more interestingly, to combine the two hypotheses into one.

SVAR allows the combination of short- and long-run restrictions in C models (but not in AB
models, which are very rarely used in this context). The script presented in Table 7 is very easy
to modify to this effect: in this case, we simply need to insert the line

SVAR_restrict(&BQModel, "C", 1, 1, 0)

somewhere between the SVAR setup and the SVAR estimate function. The rest is unchanged,
and below is the output.

coefficient std. error z p-value

--

C[1; 1] 0.00000 0.00000 NA NA

C[2; 1] -0.230192 0.0128681 -17.89 1.45e-71 ***

C[1; 2] -0.909033 0.0508165 -17.89 1.45e-71 ***

C[2; 2] 0.199859 0.0111725 17.89 1.45e-71 ***

Overidentification LR test = 0.642254 (1 df, pval = 0.422896)

Note that, since this model is over-identified, SVAR automatically computes a LR test of the
overidentifying restrictions. Of course, all the subsequent steps (bootstrapping and IRF plotting)
can be performed just like in the previous example if so desired.

set verbose off

include SVAR.gfn

open IS-LM.gdt --frompkg=SVAR

list X = q i m

list Z = const time

ISLM = SVAR_setup("AB", X, Z, 4)

ISLM.horizon = 48

SVAR_restrict(&ISLM, "Adiag", 1)

SVAR_restrict(&ISLM, "A", 1, 3, 0)

SVAR_restrict(&ISLM, "A", 3, 1, 0)

SVAR_restrict(&ISLM, "A", 3, 2, 0)

SVAR_restrict(&ISLM, "Bdiag", NA)

ISLM.snames = defarray("uIS", "uLM", "uMS")

SVAR_estimate(&ISLM)

Amat = ISLM.S1

Bmat = ISLM.S2

printf "Estimated contemporaneous impact matrix (x100) =\n%10.6f", \

100*inv(Amat)*Bmat

rej = SVAR_boot(&ISLM, 2000, 0.95)

IRFplot(&ISLM, 1, 2)

Table 9: Estimation of an AB model — example from Lütkepohl and Krätzig (2004)

23

5 AB models

5.1 A simple example

AB models are more general than the C model, but more rarely used in practice. In order to
exemplify the way in which they are handled in the SVAR package, we will replicate the example
given in section 4.7.1 of Lütkepohl and Krätzig (2004). See Table 9.

This is an empirical implementation of a standard Keynesian IS-LM model in the formulation
by Pagan (1995). The vector of endogenous variables includes output qt, interest rate it and real
money mt; the matrices A and B are

A =

 1 a12 0
a21 1 a31

0 0 1

 B =

 b11 0 0
0 b22 0
0 0 b33

so for example the first structural relationship is

uq
t = −a12u

i
t + εIS

t (11)

which can be read as an IS curve. The LM curve is the second relationship, while money supply
is exogenous.

The model is set up via the function SVAR setup, like in the previous section. Note, however,
that in this case the model code is "AB" rather than "C". The base VAR has 4 lags, with the
constant and a linear time trend as exogenous variables. The horizon of impulse response analysis
is set to 48 quarters.

The constraints on the matrices A and B can be set up quite simply by using the function
SVAR restrict via a special syntax construct: the line

SVAR_restrict(&ISLM, "Adiag", 1)

sets up a system of constraints such that all elements on the diagonal of A are set to 1. More
precisely, SVAR restrict(&Model, "Adiag", x) sets all diagonal elements of A to the value
x, unless x is NA. In that case, all non-diagonal elements are constrained to 0, while diagonal
elements are left unrestricted; in other words, the syntax

SVAR_restrict(&ISLM, "Bdiag", NA)

is a compact form for saying “B is diagonal”. The other three constraints are set up as usual.
Estimation is then carried out via the SVAR estimate function; as an example, Figure 8

shows the effect on the interest rate of a shock on the IS curve. This example also shows how to
retrieve estimated quantities from the model: after estimation, the bundle elements S1 and S2
contain the estimated A and B matrices; the C matrix is then computed and printed out.

The output is shown below:

coefficient std. error z p-value

A[1; 1] 1.00000 0.00000 NA NA

A[2; 1] -0.144198 0.280103 -0.5148 0.6067

A[3; 1] 0.00000 0.00000 NA NA

A[1; 2] -0.0397571 0.155114 -0.2563 0.7977

A[2; 2] 1.00000 0.00000 NA NA

A[3; 2] 0.00000 0.00000 NA NA

A[1; 3] 0.00000 0.00000 NA NA

24

A[2; 3] 0.732161 0.146135 5.010 5.44e-07 ***

A[3; 3] 1.00000 0.00000 NA NA

coefficient std. error z p-value

--

B[1; 1] 0.00671793 0.000473619 14.18 1.15e-45 ***

B[2; 1] 0.00000 0.00000 NA NA

B[3; 1] 0.00000 0.00000 NA NA

B[1; 2] 0.00000 0.00000 NA NA

B[2; 2] 0.00858125 0.000581359 14.76 2.63e-49 ***

B[3; 2] 0.00000 0.00000 NA NA

B[1; 3] 0.00000 0.00000 NA NA

B[2; 3] 0.00000 0.00000 NA NA

B[3; 3] 0.00555741 0.000371320 14.97 1.21e-50 ***

Estimated contemporaneous impact matrix (x100) =

0.675666 0.034313 -0.016270

0.097430 0.863073 -0.409238

0.000000 0.000000 0.555741

Bootstrap results (2000 replications)

coefficient std. error z p-value

A[1; 1] 1.00000 0.00000 NA NA

A[2; 1] -0.0909784 0.395312 -0.2301 0.8180

A[3; 1] 0.00000 0.00000 NA NA

A[1; 2] -0.0377229 0.228185 -0.1653 0.8687

A[2; 2] 1.00000 0.00000 NA NA

A[3; 2] 0.00000 0.00000 NA NA

A[1; 3] 0.00000 0.00000 NA NA

A[2; 3] 0.782728 0.181538 4.312 1.62e-05 ***

A[3; 3] 1.00000 0.00000 NA NA

coefficient std. error z p-value

B[1; 1] 0.00635862 0.000850539 7.476 7.66e-14 ***

B[2; 1] 0.00000 0.00000 NA NA

B[3; 1] 0.00000 0.00000 NA NA

B[1; 2] 0.00000 0.00000 NA NA

B[2; 2] 0.00814276 0.00111305 7.316 2.56e-13 ***

B[3; 2] 0.00000 0.00000 NA NA

B[1; 3] 0.00000 0.00000 NA NA

B[2; 3] 0.00000 0.00000 NA NA

B[3; 3] 0.00512819 0.000478826 10.71 9.14e-27 ***

25

-0.002

 0

 0.002

 0.004

 0.006

 0.008

 0 10 20 30 40 50

IRF: uIS -> i

Bstrap 95% CI
Bstrap median

IRF

Figure 8: εIS → i

6 Checking for identification

Consider equation (2) again, which we reproduce here for clarity:

Aut = Bεt

Since the εt are assumed mutually incorrelated with unit variance, the following relation must
hold:

AΣA′ = BB′ (12)

If C ≡ A−1B, equation (12) can be written as

Σ = CC ′.

The matrix Σ can be consistently estimated via the sample covariance matrix of VAR resid-
uals, but estimation of A and B is impossible unless some constraints are imposed on both
matrices: Σ̂ contains n(n+1)

2 distinct entries; clearly, the attempt to estimate 2n2 parameters
violates an elementary order condition.

The recursive identification scheme resolves the issue by fixing A = I and by imposing lower-
triangularity of B. In general, however, one may wish to achieve identification by other means.15

The most immediate way to place enough constraints on the A and B matrices so to achieve
identification is to specify a system of linear constraints; in other words, the restrictions on A
and B take the form

Ra vec A = da (13)
Rb vec B = db (14)

15Necessary and sufficient conditions to achieve identification are stated in Rubio-Ramirez et al. (2010) and
Bacchiocchi (2011).

26

This setup is perhaps overly general in most cases: the restrictions that are put almost
universally on A and B are zero- or one-restrictions, that is constraints of the form, eg, Aij = 1.
In these cases, the corresponding row of R is a vector with a 1 in a certain spot and zeros
everywhere else. However, generality is nice for exploring the identification problem.

The order condition demands that the number of restrictions is at least 2n2 − n(n+1)
2 =

n2 + n(n−1)
2 , so for the order condition to be fulfilled it is necessary that

0 < rank (Ra) ≤ n2

0 < rank (Rb) ≤ n2

n2 +
n(n− 1)

2
≤ rank (Ra) + rank (Rb) ≤ 2n2

For the C model, Ra = In2 and da = vec In, so to satisfy the order condition n(n−1)
2 constraints

are needed on on B: in practice, for a C model we have one set of constraints which pertain to
B, or, equivalently in this context, to C:

R vec C = d (15)

The problem is that the order condition is necessary, but not sufficient. It is possible to
construct models in which the order condition is satisfied but there is an uncountable infinity of
solutions to the equation AΣA′ = BB′. If you try to estimate such a model, you’re bound to
hit all sorts of numerical problems (apart from the fact, of course, that your model will have no
meaningful economic interpretation).

In order to ensure identification, another condition, called the rank condition, has to hold
together with the order condition. The rank condition is described in Amisano and Giannini
(1997) (chapter 4 for the AB model), and it involves the rank of a certain matrix, which can be
computed as a function of the four matrices Ra, da, Rb and db. The SVAR package contains a
function for doing just that, whose name is SVAR ident.16

As a simple example, let’s check that the plain model is in fact identified by running a simple
variation of the example contained in Table 3:

set verbose off

include SVAR.gfn

open sw_ch14.gdt

genr infl = 400*ldiff(PUNEW)

rename LHUR unemp

list X = unemp infl

list Z = const

Mod = SVAR_setup("C", X, Z, 3)

SVAR_restrict(&Mod, "C", 1, 2)

Now check for identification

scalar is_identified = SVAR_ident(&Mod)

if is_identified

printf "Whew!\n"

else

16Starting in version 1.4 of the SVAR addon this identification check is carried out by default.

27

printf "Blast!\n"

endif

Re-check, verbosely

scalar is_identified = SVAR_ident(&Mod, 1)

The above code should produce the following output:

Order condition OK

Rank condition OK

Whew!

Constraints in implicit form:

Ra:

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

da:

1

0

0

1

Rb:

0 0 1 0

db:

0

no. of constraints on A: 4

no. of constraints on B: 1

no. of total constraints: 5

no. of necessary restrictions for the order condition = 5

Order condition OK

rank condition: r = 5, cols(Q) = 5

Rank condition OK

7 Structural VEC Models

This class of models was first proposed in King et al. (1991).17 A SVEC is basically a C-model
in which the interest is centred on classifying structural shocks as permanent or transitory by
exploiting the presence of cointegration.

Suppose we have an n-dimensional system with cointegration rank r which can be represented
as a finite-order VAR Φ(L)yt = ut. As is well known,18 the system also admits the VECM
representation

Γ(L)∆yt = µt + αβ′yt−1 + ut (16)

17A very nice paper in the same vein which is also frequently cited is Gonzalo and Ng (2001). A compact yet
rather complete analysis of the main issues in this context can be found in Lütkepohl (2006).

18See Johansen (1995).

28

in which α and β are r×n matrices, with 0 ≤ r ≤ n. If r = n, the system is stationary; if r = 0,
the system is I(1). In the intermediate cases, r is said to be the cointegration rank.

In all these cases, it is also possible to express ∆yt as a vector moving average process

∆yt = C(L)ut. (17)

The main consequence of cointegration for eq. (17) is that C(1) is a singular matrix, with rank
n− r. The most important consequence of the above for structural estimation is that the C(1)
matrix satisfies

C(1)α = 0;

Moreover, as argued in section 4, the ij-th element of C(1) can be thought of as the long-run
response of yi,t to uj,t or, more precisely

C(1)ij = lim
k→∞

∂yi,t+k

∂uj,t
.

Hence, the long-run response of yt to structural shocks is easily seen (via eq. 4) to be C(1) · C.
Now, define a transitory shock as a structural shock that has no long-run effect on any

variable: therefore, the corresponding column of C(1) ·C must be full of zeros. But this, in turn,
implies that the corresponding column of C must be a linear combination of the columns of α.
Since α has r linearly independent columns, the vector of structural shocks can contain at most r
transitory shocks and n− r permanent ones; the SVAR addon follows the widespread assumption
that there are indeed r transitory shocks.

By ordering the structural shocks with the permanent ones appearing first,

εt =

[
εp

t

εt
t

]
it’s easy to see that a separation of the transitory shocks from the permanent ones can be achieved
by imposing that the last r columns of C lie in the space spanned by α; in formulae,

α′⊥CJ = 0, (18)

where J is the matrix

J =

[
0n−r×r

Ir×r

]
and ⊥ is the “nullspace” operator.19 Equation (18) can be expressed in vector form as

(J ′ ⊗ α′⊥) vec(C) = 0;

since α⊥ has n−r columns, this provides r · (n−r) constraints of the type R vec(C) = d, that we
know how to handle. Note the convention to put those equations on top where the permanent
shocks occur. Sometimes this requires a manual re-ordering of the variables, especially if some
of them are restricted to be weakly exogenous.

Since 0 < r < n, this system of constraints is not sufficient to achieve identification, apart
from the special case n = 2, r = 1, so in general the partition between transitory and permanent
shocks must be supplemented by extra constraints. Clearly, these can be short-run constraints
on both kind of shocks, but long-run constraints only make sense on permanent ones.20

19If M is an r × c matrix, with r > c and rank (M) = c, then M⊥ is some matrix such that M ′
⊥M = 0. Note

that M⊥ is not unique.
20The SVAR addon also allows to apply further long-run constraints manually in a SVEC model, using the same

29

7.1 Syntax

Fort this type of model, the model code you have to supply to SVAR setup is "SVEC". This
means that your model is a C-model in which, however, the structural shocks will be classified
as transitory or permanent, depending on the cointegration properties you assume.

This is an important point: SVAR is not meant for doing inference on the cointegration
part of your model. For determining the cointegration rank of your system and estimating the
cointegration β, you’re on your own. Of course, you can use gretl’s in-built commands, such as
johansen and vecm, or pre-set them to some theory-derived value: SVAR won’t care, and will
blindly accept the matrix β you supply it; the cointegration rank is implicitly assumed as the
number of columns of the β matrix.

Another piece of information you must supply separately, prior to estimation, is how you want
the deterministic terms (the constant and the trend) in your model to be treated; in practice,
which of the famous “five cases” you want to apply to your model. In fact, the constant and the
trend are subject to a special treatment in this class of models, so they will be dropped from the
exogenous list X, if present, when you call SVAR setup and re-added internally if needed. Unless
you have extra exogenous variables, such as centred seasonals, you might just as well leave X as
null. The five cases range from the most to the least restrictive, as per Table 10.

Code vecm option Description
1 --nc No constant, no trend
2 --rc Restricted constant, no trend
3 Unrestricted constant, no trend
4 --crt Constant, restricted trend
5 --ct Constant, unrestricted trend

Table 10: The five cases for deterministic terms in cointegrated systems

This is not the place for explaining the differences between the five options; if you’ve come
this far, you probably know already. If you don’t, grab any decent econometrics textbook or the
Gretl User’s Guide and look for the chapter on cointegration and VECMs.

For injecting the necessary information into the model bundle once you’ve set it up, there
is a dedicated function whose name is SVAR coint. It takes three compulsory parameters: the
SVAR model (in pointer form), the “deterministic terms code” and the cointegration matrix β.
Next is the loading matrix α; this argument may be omitted or equivalently passed as an empty
matrix {}, in which case it will be estimated via OLS. If, on the contrary, it is not empty, then
it should be a n× r matrix that will be accepted at face value. Pre-setting α may be useful, in
some cases, to force some of the variables to be weakly exogenous. Note that the $jbeta and
$jalpha standard gretl accessors make it painless to fetch them from a Johansen-style VECM
if necessary. This also means that the coefficients of any restricted deterministic terms must be
included as part of the given β matrix in the cases 2 and 4 (sometimes called β∗ in the literature).

Calling this function will

1. Set up a system of constraints such that the n− r permanent shocks will come first in the
ordering, followed by the r temporary ones. The shock names will be set accordingly.

lrC code as before. However, getting these right is sometimes tricky given the reduced rank of the long-run impact
matrix. Sometimes, for example, the restrictions might imply a different α matrix from what the reduced-form
estimates yielded. These complications are currently not (always) handled automatically and remain the user’s
responsibility. You should double-check what your long-run constraints actually mean and how they interact.

30

2. Prepare the estimation of the VECM parameters subject to the constraints implied by the
given β (and α, if not empty): in practice, the matrix Σ and the parameters µ and Γi

in equation (16). Internally, later everything will be transformed into the VAR form (3)
so that the VMA representation can be computed and everything will proceed like in an
ordinary C model.

At that point, the rest of the model can be set up as usual. This involves setting extra
restrictions, but note that long-run constraints (including those implied by the properties of β
and α) also depend on estimated autoregressive parameters. Therefore the interplay of short-
and long-run constraints can only be analyzed at estimation time, not when the restrictions are
specified. Switching on the identification check may in some cases help to uncover redundant or
contradictory constraints.

In the next subsection, we will provide an extended and annotated example.

7.2 A hands-on example

In this example, we will go through a pseudo-replication of the simpler of the two examples
presented in King et al. (1991): the structure of the model will be kept the same, but we will use
a different dataset. While the original article used post-WWII data for the US economy, we will
use the so-called AWM dataset, which is supplied among gretl’s sample datasets. AWM stands
for Area-Wide Model, and is a quarterly dataset of the Euro area, which spans the 1970-1998
period. It was originally developed by Fagan et al. (2005) but has been used in countless other
benchmark studies. The script is supplied in the examples directory as Traditional/awm.inp,
but we reproduce it here as table 11 for your convenience.

The model comprises three variables, all in logs: real GDP (yt), real private consumption (ct)
and real investment (it); these should, in theory, follow the same stochastic trend (the so-called
“balanced growth path”), so that there ought to be two cointegration relationships:

ct = yt + zc
t

it = yt + zi
t

The general idea of the script is: use gretl’s internal functions to estimate the VECM and
test whether the “balanced growth path” hypothesis is in fact tenable on this particular dataset.
Then, set up the structural part of the model, estimate it and do a few plots.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 5 10 15 20 25 30 35 40

IRF: Permanent -> y

Bstrap 90% CI
Bstrap median

IRF

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 5 10 15 20 25 30 35 40

IRF: Permanent -> c

Bstrap 90% CI
Bstrap median

IRF

 0

 0.5

 1

 1.5

 2

 2.5

 0 5 10 15 20 25 30 35 40

IRF: Permanent -> i

Bstrap 90% CI
Bstrap median

IRF

Figure 9: Impulse responses to a permanent shock

More in detail, the script goes like this:

31

1 nulldata 116

2 setobs 4 1970:1

3 include SVAR.gfn

4

5 # grab data from AWM

6 join AWM.gdt YER PCR ITR

7

8 # transform into logs

9 series y = 100 * ln(YER)

10 series c = 100 * ln(PCR)

11 series i = 100 * ln(ITR)

12 list X = c i y

13

14 # find best lag

15 var 8 X --lagselect

16 p = 3

17

18 # check for the "balanced growth path" hypothesis

19 johansen p X

20 vecm p 2 X

21 restrict

22 b[1,1] = -1

23 b[1,2] = 0

24 b[1,3] = 1

25

26 b[2,1] = 0

27 b[2,2] = -1

28 b[2,3] = 1

29 end restrict

30

31 # ok, now go for the real thing

32 x = SVAR_setup("SVEC", X, const, p)

33 matrix b = I(2) | -ones(1,2)

34 SVAR_coint(&x, 3, b, {}, 1)

35 x.horizon = 40

36 SVAR_restrict(&x, "C", 1, 2, 0)

37

38 SVAR_estimate(&x)

39 loop j = 1..3

40 FEVDplot(&x, j)

41 endloop

42

43 SVAR_boot(&x, 1024, 0.90)

44 loop j = 1..3

45 IRFplot(&x, 1, j, 2)

46 endloop

Table 11: The awm.inp script

32

Lines 1–7 Create an empty quarterly dataset, populate it with the relevant variables from the
AWM.gdt file.

lines 8–13 Transform the series to logarithms and group them into the list X.

lines 14–30 Run some preliminary checks: find the best lag length for the VAR, check that the
cointegration rank is in fact 2 and that the cointegration matrix is the one hypothesised
by economic theory.

Line 32 Set up the SVAR object. Note the usage of the SVEC code.

Lines 33–36 Set up the cointegration infrastructure (deterministic terms, β, etcetera).

lines 35–36 Set the horizon for IRF computation to a higher value than the default and add an
extra restriction to one of the temporary shocks to achieve identification. Here we assume
that the idiosyncratic shock on investment does not affect consumption instantaneously.

lines 38–42 Estimate the model and plot the FEVD graphs.

lines 43–46 Bootstrap the model and plot the IRFs with a 90% confidence interval.

A selection of the output is shown below, while Figure 9 is the equivalent of King et al.’s
figure 2 (p. 820).21 Considering that the data span a different period and describe a different
economy, the similarity between the original figure and the replicated one is quite remarkable.

ok, now go for the real thing

? x = SVAR_setup("SVEC", X, const, p)

? matrix b = I(2) | -ones(1,2)

Generated matrix b

? SVAR_coint(&x, 3, b, {}, 1)

Unestricted constant, beta =

1.00000 0.00000

0.00000 1.00000

-1.00000 -1.00000

alpha is unrestricted

? x.horizon = 40

? SVAR_restrict(&x, "C", 1, 2, 0)

? SVAR_estimate(&x)

Optimization method = Scoring algorithm

Unconstrained Sigma:

0.29538 0.39670 0.22203

0.39670 1.64419 0.55188

0.22203 0.55188 0.32538

coefficient std. error z p-value

C[1; 1] 0.485389 0.0391266 12.41 2.44e-35 ***

C[2; 1] 1.09533 0.0948831 11.54 7.92e-31 ***

C[3; 1] 0.516670 0.0406739 12.70 5.71e-37 ***

C[1; 2] 0.00000 0.00000 NA NA

21Note the usage of the fourth, optional parameter in the call to IRFplot to move the legend to the bottom of
the figure.

33

C[2; 2] 0.373888 0.0245469 15.23 2.18e-52 ***

C[3; 2] -0.211184 0.0138649 -15.23 2.18e-52 ***

C[1; 3] 0.244504 0.0160525 15.23 2.18e-52 ***

C[2; 3] -0.551965 0.0501828 -11.00 3.86e-28 ***

C[3; 3] -0.117619 0.0210737 -5.581 2.39e-08 ***

Estimated long-run matrix

longrun (3 x 3)

1.1036 0.0000 0.0000

1.1036 0.0000 0.0000

1.1036 0.0000 0.0000

Log-likelihood = -295.974

8 Set-identified SVARs

Starting with version 1.9 the SVAR addon also makes it possible to estimate set-identified struc-
tural VAR models. What is currently still missing is a graphical interface and some other final
bits of integration. With this new functionality there is surely also an extended potential for
wrong and unsupported user input which may not always be caught properly. For example,
calling some of the traditional functions when working with a set identified model may lead to
breakage. This will be fixed and improved as time goes by.

Some artificial as well as real-life example scripts are included with SVAR to demonstrate
the usage of sign restrictions and set identification in general. These are: ChoMoreno.inp,
exotic1.inp, exotic2.inp, spaghetti plot.inp, mixed example.inp, supply demand.inp,
KilianMurphy relaxed.inp, and Uhlig example.inp

8.1 Notation

At the risk of repeating some parts of earlier sections, here is some notation first: the reduced-
form VAR is assumed to be

yt = µt +
p∑

i=1

Φiyt−1 + ut,

where ut = yt−E(yt|Ft−1) and Σ ≡ E(utu
′
t); Ft−1 is the information set at t−1. The structural

model can be written as
Aut = Bεt.

The relationship between the VAR shocks and the structural ones is, therefore,

ut = Cεt,

where C = A−1B, which entails Σ = CC ′.
In order to write down the VMA representation, we assume that the Φ(L) polynomial is

invertible, so yt can be written as yt = mt + Θ(L)ut, where Θ(L) = Φ(L)−1. Therefore, the
structural VMA representation of the process is

yt = mt + M0εt + M1εt−1 + · · · (19)

where Mi = ΘiC; since Θ0 = I, M0 is simply equal to C. As for C, it is assumed that it can be
written as

C = KQ (20)

34

where K is the Cholesky decomposition of Σ and Q is an orthogonal matrix Q′Q = I.
Set identification is typically achieved by stipulating conditions on the elements of the Mi

matrices.

8.2 Set identification

The apparatus we have makes it possible to handle very general set constraints on the Mi

matrices, that can be expressed as g(Mi) ∈ A, where g is a pretty arbitrary function and A is a
pretty arbitrary set. In most cases, however, identification is attained by simple sign restrictions,
that is constraints of the kind

[Mk]i,j > 0 or [Mk]i,j < 0

where we’re using the notation [A]i,j to indicate the element on row i and column j of the matrix
A and of course k can be any non-negative integer. The general case may be more involved; a
real-life example is provided by the “elasticity bounds” constraints used in Kilian and Murphy
(2014), where you have

a <
[Mk]i,j
[Mk]l,j

< b.

These constraints are often imposed for a contiguous range of lags: when h = 0, restrictions
implicitly apply to C, since M0 = C; however, one could conceivably impose restrictions on
H ≤ h ≤ H, where H should in most cases (but not always) be 0.22 Each restriction corresponds
to an a-priori idea of the impact of the j-th structural shock on the i-th variable. Of course, the
ordering of the structural shocks is arbitrary, so the user is required to make a choice here (see
below).

8.2.1 Sign restrictions (practicalities)

After having initially set up the model bundle appropriately (see below), sign restrictions in the
narrow or plain sense are specified through the SVAR SRplain function.

The full documentation is in the appendix, but the gist is: this function gives you a way to
indicate the sign of the impact that of a certain shock is assumed to have on a certain variable,
and optionally over which set of lags. Internally, each call to SVAR SRplain adds a row vector to
the SRest matrix contained in the bundle referenced as the first argument; the restriction matrix
is simply created by stacking these rows vertically.

For example, a minimal call of the function would read

SVAR_SRplain(&mod, "price", "monetary", "+")

and it would mean that the shock named monetary has a positive instantaneous impact on price;
in other words, [M0]ij > 0, where i is the ordinal number of the variable price in the input list
and j is the ordinal number of the string monetary in the snames array inside the model bundle.

One could constrain non-instantaneous IRFs by using the full syntax

SVAR_SRplain(&mod, "y", "shock", "+", len, start)

where len and start are nonegative integers. They both default to 0, so for example:

SVAR_SRplain(&mod, "bar", "foo", "-", 3)

22Something that is impossible, at the moment, is imposing cross-matrix (cross-horizon) constraints, such as,
for example, [M0]i,j > [M1]i,j . This approach might be implemented when we become aware that it is needed or
being used already.

35

means that the shock named foo has a negative impact on the observable variable bar over the
horizon from 0 to 3 (hence, four elements of the IRF are constrained). In practice, the number
of constraints is len+1.

Finally, by indicating a starting lag for the constraint, the sign restrictions would be applied
to the responses from start to start+len. Therefore, the code

SVAR_SRplain(&mod, "quantity", "supply", "+", 4, 2)

means that the shock named supply has a positive impact on the observable variable quantity
over the horizon from 2 to 6; again, note that the number of restricted IRFs is len +1 = 5 =
(6− 2 + 1).

8.2.2 Interval restrictions

A plain sign restriction specifies an interval with upper or lower bound zero into which the impulse
response is supposed to fall. A generalization of this idea is to specify an arbitrary interval with
a lower or upper bound or both, none of which has to be zero. This idea was already mentioned
above in the guise of “elasticity bounds”.

The SVAR SRfull function allows to use such restrictions, see the appendix for its documen-
tation. These restrictions can be “static” in the sense that they only apply to a certain horizon,
for example on impact; or just like sign restrictions they can be “dynamic” and associated with
a range of horizons.

8.2.3 General (“exotic”) set restrictions

General set restrictions are specified via the function SVAR SRexotic, which takes 2 mandatory
arguments and 2 optional ones (again, see the appendix).

The string you pass as argument #2 must contain a valid hansl expression, in terms of a
matrix whose name nust be M, yielding a scalar. This code snippet is assumed to perform some
kind of check on the elements of the matrix, the convention being that a non-zero result implies
that the restriction holds. For example, the string

string boundscheck = "abs(M[1,1]) < 0.1"

will check whether −0.1 < [Mi]1,1 < 0.1 for a certain horizon i which must not enter the
expression, however. In order to impose this restriction on horizons 0 through 2, i.e. on M0, M1

and M2, you invoke the function like this:

string boundscheck = "abs(M[1,1]) < 0.1"

SVAR_SRexotic(&mod, boundscheck, 2)

If you want more restrictions, you just invoke the function several times with suitable strings
as arguments.

8.3 Mixed restrictions

In some cases, set restrictions may be supplemented by exact restrictions on the C matrix. The
syntax for specifying constraints of this kind is strightforward, and is absolutely similar to the
one used for C-models (see section 2.2). So, for example, to set C4,2 = 0 you would insert in
your script a line like

SVAR_restrict(&Mod, "C", 4, 2, 0)

36

and more general constraints can be specified by suitably constructing the Rd1 member of the
model bundle.

Since M0 = C (see equation 19) these are typically used to set to 0 some instantaneous
response; more sophisticated alternatives, though possible, are very seldom used in the literature.

Given the peculiar nature of set-based inference there are some limitations on the type of
point constraints that can be specified in this context. At present, two types of restrictions are
not allowed:

cross-shocks constraints : for example, something like C2,3 = C4,1 is not allowed, altough it
is perfectly possible to set both elements to 0. Note that this does not rule out constraints
pertaining to the same shock on several variables. For instance, something like C1,3 = C2,3:
this would mean that the instantaneous impact of shock number 3 is the same for variables
1 and 2. This possibility, however, requires setting up an appropriate row of the bundle
element Rd1 by hand: see Section 2.6.

non-zero constraints : that is, something like Ci,j = 1; this limitation may be relaxed in the
future, but we’re not aware of non-zero restriction having ever been used in the literature
(if anybody has evidence to the contrary, please let us know).

8.4 The workflow for set identification

1. First of all the model should be set up as usual through SVAR setup, but now with model
code “SR”. This automatically arranges for the reduced-form parameters to be estimated
(or if you’re a Bayesian: to calculate the likelihood-based ingredient to update your prior).

2. However, this setup can only initialize the shock names under the key snames generically
by copying the variable names. Thus it will normally be useful to modify some of these
names with meaningful shock labels. For example:

Mod.snames[1] = "monetary"

3. Next the restrictions have to be formulated and imposed on the model, namely through
any number of calls to the functions SVAR SRplain, SVAR SRfull, or SVAR SRexotic. If
necessary, add point restrictions using SVAR restrict.

4. The core of set-identified SVAR estimation happens now: a large number of random or-
thogonal matrices Q are generated, and the IRFs are computed according to equation (20).
If Q is such that all the constraints are satisfied, those IRFs are kept as “good”. The
process goes on until the number of “good” draws reaches a prescribed number (typically,
a few hundred).

The randomized drawing is performed by the function SVAR SRdraw. This is the heavy
number-crunching part.23 At this stage one also chooses the desired coverage level of the
error bands (confidence intervals, credible sets, whatever) presumably to be plotted later.
A more detailed description of what this function does is provided in section B, although
for the precise details there’s no substitute to studying the code.

5. Plotting; after having collected all the draws which fulfilled the imposed identification re-
strictions, SVAR offers two variants for the graphical representation of the results, functions
again documented in the appendix:

23With the computing power these days even that will typically not give you enough time to get coffee, unless
you need a monster number of draws.

37

• Standard – these plots resemble the traditional IRF graphs and are produced by the
function SVAR SRirf. The centers of the IRF distributions as well as their lower and
upper error bounds are calculated separately for each horizon. It is a well-known
criticism that the resulting plotted lines can be a combination of very different draws,
possibly distorting the impression that is conveyed by the plot. Other researchers
have countered this criticism by remarking that one just needs to know what is being
done. So now you know.

• Spaghetti – this kind of plot is provided by SVAR spagplot which literally gives the
user everything identified by the set restrictions; each accepted draw’s IRF is drawn,
and one can hopefully judge whether they have the same tendency or are constantly
crossing each other.

8.5 Historical and forecast error variance decompositions

The set identification methods revolve around the IRF properties of the admissible models, and
several approaches to analyze and display the impulse responses have been presented. What re-
mains to be explained is the usage of other usual types of analyses such as estimates of historical
shock developments (historical decomposition, HD) and the relative contributions of the identi-
fied shocks to the dynamics of the endogenous variables (forecast error variance decomposition,
FEVD).24

A well-known complication in the set identification context is that by its very nature there
exists no point estimate of the IRFs, but the standard HD and FEVD require unique coeffi-
cients. On a technical level, any of the accepted model draws can be chosen and thus there are
many possible HD and FEVD variants. Therefore the relevant functions SVAR hd, FEVD, and
also GetShock (which stores the estimated historical shock realization as a gretl series into the
workfile) take as an additional argument an integer as an index to pick a certain accepted model
draw. For example, the ChoMoreno.inp example script shipped with the SVAR addon produces
256 accepted draws and its model bundle has the name “mod”. After it is run we could in
principle pick arbitrarily any draw between 1 and 256.

However, the aim is typically to use a draw which is somehow representative of the entire
model distribution. Thus the possibility of specifying a draw index manually is only offered for
more flexibility as a kind of override option.

While it is beyond the scope of this user guide to provide a discussion of the possible con-
ceptual approaches to find a suitable unique model among the many accepted draws, the SVAR
addon provides the SVAR SRgetbest convenience function to help with this task.

For example, continuing with ChoMoreno.inp, say you are most interested in the impulse
response of inflation (INFL, 2nd variable) to the shock Demand (1st shock) not immediately,
but after one quarter. That is, you want to find that accepted model which has a response of
inflation to a demand impulse at lag 1 which is as close as possible to the median response across
all accepted draws. The relevant call to find this model’s index number would be:

SVAR_SRgetbest(&mod, "INFL", "Demand", 1, , 1)

The function is documented in the appendix, but note that the first scalar argument with
value 1 chooses the starting IRF horizon where 0 would be equivalent to the contemporaneous
impact, so here it is after one period. The following argument would determine how many of the
following periods should be considered; here we do not want to consider anything beyond the first

24Most of these require a fully identified model, i.e. where the number of identified shocks corresponds to the
number of endogenous variables. This might be partly generalized in the future.

38

lag, so we can leave it at the default value zero and hence do not need to specify that argument.
The trailing argument value 1 chooses the median as the target (0 would be the mean).25

We find that the representative model in this particular sense is the one with index 58; by
construction the associated impulse response value is very close to the median, namely 0.171297.
The SVAR SRgetbest function stores this index number 58 in the model bundle under the key
bestdraw. The functions that require a unique model parametrization such as SVAR hd, FEVD,
GetShock, and IRFplot will automatically use the associated draw (unless the user overrides it
with her own choice as described above). This carries over to the higher-level interface functions
such that you could write calls like the following as always:

FEVDplot(&mod, 1)

IRFplot(&mod, 1, 2)

HDplot(&mod)

Since a single accepted draw by itself does not contain any information about the parameter
uncertainty, this kind of IRF plot only shows a single line without any intervals. For spe-
cially designed plots for the set-identified situation please refer to the functions SVAR SRirf and
SVAR spagplot as explained above.

References

Amisano, G. and Giannini, C. (1997). Topics in structural VAR econometrics. Springer-Verlag,
2nd edition.

Arias, J. E., Rubio-Ramı́rez, J. F., and Waggoner, D. F. (2018). Inference based on structural
vector autoregressions identified with sign and zero restrictions: Theory and applications.
Econometrica, 86(2):685–720.

Bacchiocchi, E. (2011). Identification in structural VAR models with different volatility regimes.
Departmental Working Papers 2011-39, Department of Economics, Management and Quanti-
tative Methods at Università degli Studi di Milano.

Blanchard, O. and Quah, D. (1989). The dynamic effects of aggregate demand and aggregate
supply shocks. American Economic Review, 79(4):655–73.

Brüggemann, R., Jentsch, C., and Trenkler, C. (2016). Inference in vars with conditional het-
eroskedasticity of unknown form. Journal of Econometrics, 191(1):69–85.

Fachin, S. and Bravetti, L. (1996). Asymptotic normal and bootstrap inference in structural
VAR analysis. Journal of Forecasting, 15(4):329–341.

Fagan, G., Henry, J., and Mestre, R. (2005). An area-wide model for the Euro area. Economic
Modelling, 22(1):39 – 59.

Gonzalo, J. and Ng, S. (2001). A systematic framework for analyzing the dynamic effects of
permanent and transitory shocks. Journal of Economic Dynamics and Control, 25(10):1527–
1546.

Johansen, S. (1995). Maximum Likelihood Inference in Co-Integrated Vector Autoregressive Pro-
cesses. Oxford University Press.

25The concrete targeted number turns out to be 0.171304. This could also be found inside the bundle with
nv = 2 and ns = 1 (and of course n = 3) as mod.SRirfmeds[2, (ns-1)*n + nv] or equivalently mod.SRirfmeds[2,

2].

39

Kilian, L. (1998). Small-sample confidence intervals for impulse response functions. The Review
of Economics and Statistics, 80(2):218–230.

Kilian, L. and Lütkepohl, H. (2017). Structural Vector Autoregressive Analysis – Themes in
Modern Econometrics. Cambridge University Press.

Kilian, L. and Murphy, D. P. (2014). The role of inventories and speculative trading in the global
market for crude oil. Journal of Applied Econometrics, 29:454–478.

King, R. G., Plosser, C. I., Stock, J. H., and Watson, M. (1991). Stochastic trends and economic
fluctuations. American Economic Review, 81(4):819–40.

Lütkepohl, H. (1990). Asymptotic distributions of impulse response functions and forecast er-
ror variance decompositions of vector autoregressive models. The Review of Economics and
Statistics, 72(1):116–25.

Lütkepohl, H. (2006). Cointegrated structural VAR analysis. In Hübler, O., editor, Modern
Econometric Analysis, chapter 6, pages 73–86. Springer.

Lütkepohl, H. and Krätzig, M., editors (2004). Applied Time Series Econometrics. Cambridge
University Press.

Pagan, A. (1995). Three econometric methodologies: An update. In Oxley, L., Roberts, C.,
George, D., and Sayer, S., editors, Surveys in Econometrics, pages 30–41. Basil Blackwell.

Rubio-Ramirez, J., Waggoner, D., and Zha, T. (2010). Structural vector autoregressions: Theory
of identification and algorithms for inference. Review of Economic Studies, 77(2):665–696.

Runkle, D. E. (1987). Vector autoregressions and reality. Journal of Business & Economic
Statistics, 5(4):437–42.

Sims, C. A. (1980). Macroeconomics and reality. Econometrica, 48:1–48.

40

A The GUI interface

This section introduces the GUI interface with which most of the available calculations can be
accomplished as well and which can be accessed via the Model > Time Series > Multivariate
> Structural VAR menu entry of the the graphical gretl client. While we recommend using the
script interface to access the full capabilities of the SVAR package, the GUI interface may be
less intimidating for less experienced users. The GUI component covers everything but

1. the SVEC case (see section 7) where the cointegration properties of the system are exploited
for special long-run restrictions.

2. Set-restricted models, described in section 8.

For the GUI in the SVEC case there is a preliminary additional function package SVEC GUI
available on the gretl package server which uses this SVAR addon as its backend.

Figure 10: Plain Cholesky model through the GUI interface (earlier SVAR version)

Many important contents of the window displayed in Figure 10 should be rather self-explanatory;
the model type chooser, the list of endogenous VAR variables, another (optional) list of exoge-
nous variables, the lag order, and further down the number of bootstrap replications along with

41

the nominal bootstrap confidence level (leave the number of replications at the default value
zero to skip the bootstrap), and finally the choice of the precise optimization algorithm from the
drop-down menu at the bottom, where as before the scoring algorithm is the default.

The other function parameters will be explained now. First there are three checkboxes that
specify the deterministic terms to be included in the model.26 Note that it is still possible
to manually specify the deterministic terms as in the script interface, namely as part of the
exogenous regressor list. Next, the horizon parameter sets the desired maximum impulse response
horizon as explained above for the script interface, and can be left at zero to invoke the default
settings.

A.1 Identifying constraints

The two central inputs for the C and AB model types are the identifying constraints. In the
SVAR GUI they must be given as pattern matrices that can only have two types of entries:
Each entry with a ”missing” value denotes an unrestricted element, and every entry with a
valid numerical value will be restricted to just that value. You can either pre-define the pattern
matrices before you call the SVAR package and then choose the corresponding name of the matrix
in the drop-down menu, or you have to click on the “+” button next to the function argument
field and specify the matrix on the spot in the following standard gretl matrix creation dialog.27

If you do not wish to restrict any of the involved matrices, just leave the function argument at
the default ”null” value.

For a C model, as indicated by the function argument labels the first restriction pattern
matrix refers to the short-run restrictions, while the second pattern matrix must be used for the
long-run restrictions. If you choose an AB model instead, these matrix inputs serve to hold the
restrictions on B and A, respectively. Note the reversed ordering of B and A here, which reflects
the fact that if A is the identity matrix then B is the same thing as the short-run restriction C
matrix, so these latter two matrices belong together.

A.2 Bootstrap parameters and cumulation

The next checkbox after the bootstrap specification concerns the activation of the bias correction
that was already explained in relation to the script interface. Following is another checkbox that
activates a check for identification, see section 6.

Towards the end of the SVAR GUI window you have another matrix argument which serves to
tell the package which of the impulse responses should be provided in cumulated form. You need
to provide a (row or column) vector that holds the corresponding integer indices of the variables
to be cumulated referring to the list of endogenous variables. Say your list of endogenous variables
is “foo baz bar” and the responses of foo and bar should be cumulated, then you would need to
pass a vector {1, 3} (or {1; 3}).28 Note that you can type an expression of this sort into the
matrix entry box directly, as shown in Figure 11.

26The seasonal dummies are automatically centered, which should only matter in the rather exotic case without
a constant term, however.

27Hint: with recent gretl versions it is possible to initialize the matrix to hold only missing values, by entering
na or nan as the initial fill value. Then you just have to edit the actually restricted elements afterwards.

28This way of specifying the responses to be cumulated in the GUI of SVAR may change in the future, perhaps
by using another list of variables instead.

42

Figure 11: Entering a matrix specification directly

A.3 The output window

After specifying all necessary function arguments and clicking OK, you are presented—possibly
after having to wait for the CPU intensive bootstrap to finish—with a first output window
holding the basic estimation results, for example of the C matrix or of the A and B matrices.
If the provided restrictions are over-identifying the corresponding LR test result is also printed
out.

In the SVAR output window (see Figure 13 below) three toolbar buttons deserve special
mention: The “Save” button allows you to save the printed output, but more importantly you
can also save the entire bundle that was returned by the SVAR package as an icon (element) of
the current gretl session. When you open (view) the bundle again later, some information about
the model specification will also be shown. (And the session can in turn later be saved into
a session file.) Next, for saving only selected members of the SVAR bundle there is the “Save
bundle content” button. Finally you have the “Graph” button which provides the access to the
central SVAR analyses, namely the impulse responses, the error variance as well as the historical
decompositions.

A.4 An example

For example, suppose we wanted to estimate a C model like the one used as example so far,
with the only difference that we want the C matrix to be upper triangular, rather than lower
triangular. Via a script, you would use the function SVAR restrict(), as in

Force C_{2,1} to 0

SVAR_restrict(&Mod, "C", 2, 1, 0)

but you can do the same via the GUI interface by using a pattern matrix, which must be a n×n
matrix (that is, the same size as C).

Figure 12: Template matrix

Suppose we call the pattern matrix TMPL and that we select the option “Build Numerically”
(of course, with 2 rows and 2 columns in this example). When you’re done, you return to the

43

main SVAR window (be sure to select C-model as the model type). After clicking “OK”, the
results window will appear, as in Figure 13. Note that the estimated C matrix is now upper
triangular.29

From the output window, you can save the model bundle to the Icon view by clicking on the
leftmost icon30 and re-use it as needed for further processing.

Figure 13: Output window

29The same pattern matrix can also be used in scripting for the SVAR restrict() function, since gretl 2024c.
30The visual appearance of the icons on your computer may be different from the one shown in Figure 12, as

they depend on your software setup. The number and ordering of the icons, however, should be the same on all
systems.

44

B Some details of the numerical algorithm in SVAR SRdraw

We explore the space of possible rotations via H random draws from the space of rotation
matrices. Once the VAR parameters (Φ̂i and Σ̂) are computed, this can be done by either

1. applying the random rotation (20) to the Cholesky factor of Σ̂, and computing the Mi

matrices from the Φ̂i matrices, or

2. sampling from the posterior distribution31 of the parameter and get new matrices Σ̃ and
Φ̃i, and then compute the Mi matrices from those.

Let’s call option 1 the “frequentist” option and option 2 the “Bayesian” option. However, let us
be clear that option 1 uses the fixed point estimates of the reduced-form coefficients and therefore
does not take parameter uncertainty into account. This current state of affairs could be general-
ized even within the frequentist paradigm, e.g. by adding another bootstrap layer. Furthermore,
option 2 effectively applies some perturbation to the reduced-form coefficients centered around
the likelihood point estimates, which essentially corresponds to a flat or uninformative Bayesian
prior. Some might argue that this kind of prior is relatively close in spirit to a frequentist
approach.

In any case, this choice corresponds to a Boolean flag which is the third argument to the
SVAR SRdraw function: the default, 0, is to skip the sampling from the posterior and just use the
frequentist point estimates.

What happens inside this function? First, the relevant items from the model bundle are
copied: this of course includes the VAR parameters and Σ̂, but we’ll also need (X ′X)−1 for the
Bayesian option. Then, for each iteration:

1. For the Bayesian option, first we draw from the posterior of the VAR parameters (this is
where we need (X ′X)−1); in the frequentist case, we just use Φ̂i and Σ̂.

2. We then create a bundle containing the draw above, a generated rotation matrix Q and the
number of deterministic terms in the VAR; this bundle is used by the gen_irfs internal
function that computes the IRFs for the simulated parameters. Note that:

• We generate the rotation matrix Q, but we don’t perform any kind of sign checks on
its elements. If no point restriction are present, we just use the QR decomposition
algorithm; otherwise, we generate the columns of Q sequentially in such a way that the
matrix C in equation (20) satisfies them by construction. Our algorithm is comparable
to the one described in Arias et al. (2018).

• we generate one Q per iterations, so the number that Kilian and Lütkepohl (2017) call
N on page32 441 (Step 2) is fixed at 1 (this wouldn’t be difficult to change if needed);

• we compute all the IRFs up to the desired horizon even if we do not need all of them for
checking the sign restrictions. (Perhaps we could optimise this, but the computational
gain would likely be marginal.)

3. Now we check if the generated Mi matrices satisfy the restrictions; this entails three steps:

(a) For each set of sign restrictions, we generate a row vector with n elements telling us
if that particular restriction is met by each of the rotated shocks. The convention is
that 1 means “yes”, 0 means “no” and -1 means “yes, but the sign of the shock must
be flipped”.

31The standard Normal-inverse Wishart distribution is used.
32This is the page of the official CUP version. In the “unofficial” pdf file that has been circulating for a while

it’s on page 432.

45

(b) All these row vectors are coalesced into a matrix and passed to the check_id function,
that checks if there is a sensible way to map the rotated shocks to the desired structural
shocks. Note that this function returns a matrix in which there could be more than one
candidate for each shock. The internal function normalize takes care of establishing
a one-to-one correspondence; if the sign restrictions are met, then we reshuffle the
IRFs taking care of the structural shocks desired ordering and possible sign flips.

(c) At this point –if the draw is still considered good to go– the Mi matrices should
contain the IRFs in the appropriate positions: [Mk]i,j contains the impact at k steps
of the j-th shock to the i-th observable, where the ordering of the observables is the
one implicit in the input list and the order of the shocks is the one given by the snames
bundle element. Therefore, we can proceed with checking the exotic restrictions (if
any).

(d) Checking the exotic restrictions is done in a conceptually simple way: Provided that
the current draw has not failed any of the imposed restrictions up to this point, the
derived impulse responses are internally relabeled as “M” and each of the supplied
exotic restriction expression is applied verbatim to the IRF matrix M , separately for
each of the specified horizons.

(e) [tba: explain check of super-exotic restrictions]

4. If all the restrictions are met, we accept the draw and store the results away as an element
of the bundle array that we eventually return. Otherwise the draw is discarded.

46

C Alphabetical list of (public) functions

The name of the model bundle which is passed around in pointer form between most of these
functions is determined by the user when the bundle is assigned from a call to SVAR setup. To
avoid confusion, it is assumed in the following that that bundle is named "Smod" (although the
internal name of the argument inside the local function scope is of course arbitrary and need not
be harmonized).

(The function signatures below are given as-is with the asterisk “*” denoting the pointer
argument, but remember that in gretl ’s language hansl in a function call the pointer has to be
specified with an ampersand character as “&Smod”.)

FEVD (bundle *Smod, int drawix[0])

Returns an h × n2 matrix with the Forecast Error Variance Decomposition from the structural
IRFs, as contained in the model Smod. The FEVD for variable k is the block of columns from
(k − 1)n + 1 to kn (where n is the number of variables in the VAR).

The drawix argument can typically be omitted, see GetShock.

FEVDplot (bundle *Smod, int vnum[0], int keypos[0:2:1], int drawix[0])

Plots on screen the Forecast Error Variance Decomposition for a variable.
Arguments:

1. A bundle holding the model.

2. The progressive number of the variable (0 means all).

3. The position of the legend, if any (optional; default = right).

The drawix argument can typically be omitted, see GetShock.

FEVDsave (string outfilename, bundle *Smod, int vnum[0], int keypos[0:2:1],
int drawix[0])

Saves the Forecast Error Variance Decomposition for a variable to a graphic file, whose format
is identified by its extension.
Arguments:

1. The graphic file name.

2. A bundle holding the model.

3. The progressive number of the variable (0 means all).

4. The position of the legend, if any (optional; default = right).

The drawix argument can typically be omitted, see GetShock.

47

GetShock (bundle *Smod, int i[1], int drawix[0])

Equivalent to the recommended SVAR getshock, but with an alternative interface: Instead of
specifying the name of the shock of interest its position in the names of shocks array (Smod.snames)
must be given in i.

HDplot (bundle *Smod, int vnum[0], int drawix[0])

Plots on screen the Historical Decomposition for a variable.
Arguments:

1. A bundle holding the model.

2. The progressive number of the variable (0 means all).

The drawix argument can typically be omitted, see GetShock.

HDsave (string outfilename, bundle *Smod, int vnum[0], int drawix[0])

Saves the Historical Decomposition for a variable to a graphic file, whose format is identified by
its extension.
Arguments:

1. The graphic file name.

2. A bundle holding the model (pointer form).

3. The progressive number of the variable (0 means all).

The drawix argument can typically be omitted, see GetShock.

IRFplot (bundle *Smod, int snum, int vnum, int keypos[0:2:1], int drawix[0])

Plots an impulse response function on screen.
Arguments:

1. A bundle holding the model.

2. The progressive number of the shock (may be negative, in which case the IRF is flipped).

3. The progressive number of the variable.

4. The position of the legend, if any (optional; default = right).

The drawix argument can typically be omitted, see GetShock.

IRFsave (string outfilename, bundle *Smod, int snum, int vnum, int keypos[0:2:1],
int drawix[0])

Saves an impulse response function to a graphic file, whose format is identified by its extension.
Arguments:

48

1. The graphic file name.

2. A bundle holding the model (pointer form).

3. The progressive number of the shock (may be negative, in which case the IRF is flipped).

4. The progressive number of the variable.

5. The location of the legend / key; 0=off, 1=outside/right (default), 2=below

The drawix argument can typically be omitted, see GetShock.

SVAR boot (bundle *Smod, int rep[0::2000], scalar alpha[0:1:0.9], bool quiet[1],
string btypestr[null], int biascorr[-1:2:-1])

Perform a bootstrap analysis of a model. Returns the number of bootstrap replications in which
the model failed to converge.
Arguments:

1. A bundle holding the model (pointer form).

2. (Optional) the number of bootstrap replications (default: 2000).

3. (Optional) the coverage probability used for the confidence bands (e.g. for 0.90 the 0.05
and 0.95 quantiles will be used; default: 0.9).

4. (Optional) omit the table with bootstrap means and standard errors (default: yes).

5. (Optional) the choice of bootstrap type: can be any one of “resampling”, one of the wild
variants—namely “wildN” (with “wild” as an alias), “wildR” or “wildM”—or “MBB” for
moving blocks. The default is to leave the choice in the model as-is.

6. (Optional) bias correction choice: 0 for none, 1 for partial, 2 for full; the default value of
−1 preserves whatever setting is the model.

Note that the bias correction option currently only applies to non-SVEC models.

SVAR coint (bundle *Smod, int dcase[1:5:3], matrix jbeta, matrix jalpha[null],
bool verbose[0]), list rexo[null])

Necessary for a SVEC model, adds the needed information for subsequent estimation.
Arguments:

1. A bundle holding the model.

2. A code for the constant/trend combination (1 to 5, as per Johansen; default 3).

3. The cointegration matrix (required33).

4. The loadings matrix (optional, will be estimated via OLS if omitted or empty).
33In the accompanying but technically separate package SVEC GUI the corresponding input is optional and would

be automatically estimated.

49

5. An optional verbosity switch (default 0).

6. (Currently unused: list of further restricted exogenous variables)

SVAR cumulate (bundle *Smod, int nv)

Stores into the model the fact that the cumulated IRFs for the nv-th variable are desired. This
is typically used jointly with long-run restrictions.

SVAR estimate (bundle *Smod, int verbosity[1])

Estimates the model by maximum likelihood. Its second argument is a scalar, which controls
the verbosity of output. If omitted, standard output is printed. If set to 2 or higher, the output
of the identification check is printed, too.

If you’re sure about it, the identification check before the estimation of the structural form
can be suppressed in SVAR setup (or by manually setting Smod.checkident to 0).

SVAR getshock (bundle *Smod, string sname[null], int drawix[0])

Returns a series for the current workfile, namely the estimate of the structural shock given in
sname via equation (2), in which VAR residuals are used instead of the one-step-ahead prediction
errors ut. If omitted, the default is to retrieve the first shock.

The drawix argument is only meaningful in the set identification (sign restriction) case and
overrides from which of the accepted model draws the coefficients should be taken. Normally
this draw index should instead be determined with the help of the SVAR SRgetbest function and
can be omitted here. This index can range from 1 to the number of accepted draws. In order to
work the SR type model must have been set up such that all accepted draws are stored in the
model bundle. (See SVAR setup, default is yes.)

SVAR HD (bundle *Smod, string vname[null], int drawix[0])

Returns a list of series with the “historical decomposition” of the variable given in vname, de-
composing it into a deterministic component and n stochastic components. The names of the
resulting series are as follows: if the name of the decomposed variable is foo, then the historical
component attributable to the first structural shock is called hd foo 1, the one attributable to the
second structural shock is called hd foo 2, and so on. Finally, the one for the first deterministic
component is called hd foo det.

If the vname argument is omitted, the default is to target the first variable.
The drawix argument can typically be omitted, see SVAR getshock.

SVAR hd (bundle *Smod, int nv, int drawix[0])

Equivalent to the recommended SVAR HD, but with an alternative interface: Instead of specifying
the name of the target variable its position in the list of endogenous variables must be given in
nv.

50

SVAR ident (bundle *Smod, int verbose[0])

Returns a 0/1 scalar checking if a model is identified by applying (among other things) the
algorithm described in Amisano and Giannini (1997). Its second argument controls the verbosity
of output. If set to a non-zero value, a representation of the restrictions and a few messages are
printed as checks are performed.

In case redundant restrictions are found, these are dropped in the model bundle to facilitate
further estimation.

SVAR namedrestrict (bundle *Smod, string code, string yname, string sname, scalar
d[0])

An alternative interface for point restrictions, requiring the names of the respective shock and
variable pair instead of the index numbers used in SVAR restrict. An example based on the
main sample script is given in the included script file simple C named.inp.

For the first two arguments Smod and code, see the explanation for SVAR restrict. However,
the type codes "Adiag" and "Bdiag" make no sense here and are not allowed.

The next two string arguments yname and sname refer to the variable and shock names in the
model; while the shock names have to be user-defined before calling this function, the variable
names are automatically taken from the model setup. Using unrecognized names will cause an
error. Notice that for the A-matrix in an AB model no shock is directly involved, and thus it
may be more natural to use the indexation form in SVAR restrict.

Finally, the scalar restriction value d works again as in SVAR restrict, with the same default
value of zero.

SVAR restrict (bundle *Smod, string code, numeric r, int c[0], scalar d[0])

Sets up point constraints for an existing model. The function takes at most five arguments:

1. A pointer to the model for which we want to set up the restriction(s).

2. A code for which type of restriction we want:

"C" Applicable to C-type models (including SVEC). Used for short-run restrictions.

"lrC" Applicable to C-type models (including SVEC in principle). Used for long-run
restrictions.

"A" Applicable to AB models. Used for constraints on the A matrix.

"B" Applicable to AB models. Used for constraints on the B matrix.

"Adiag" Applicable to AB models. Used for constraints on the whole diagonal of the A
matrix (see below).

"Bdiag" Applicable to AB models. Used for constraints on the whole diagonal of the B
matrix (see below).

3. A numeric input, namely a matrix or an integer, whose interpretation depends on the
restriction type:

51

Case 1a applies to codes "C", "lrC", "A" and "B", and r is a scalar integer: Then the
argument indicates the row of the restricted element. This input can be combined
with the remaining two optional arguments.

Case 1b applies to the same model codes as before, but r is an n-by-n matrix: Then the
input is taken to be a full restriction pattern matrix, i.e. any valid number in that
matrix is taken directly as a restricted value, while unrestricted elements must be
given as NAs. Typically, a previously created named matrix argument will be used,
but an anonymous matrix literal for on-the-fly use is also valid, as per standard hansl
syntax. In this matrix usage case, the remaining arguments c and d are redundant
and unused.

Case 2 applies to codes "Adiag" and "Bdiag". The argument specifies what kind of
restriction is to be placed on the diagonal: any valid scalar indicates that the diagonal
of A (or B) is set to that value. Almost invariably, this is used with the value 1.
IMPORTANT: if this argument is NA, all non-diagonal elements are constrained to 0,
while diagonal elements are left unrestricted.

4. An integer: the column of the restricted element, for the codes "C", "lrC", "A" and "B".
Otherwise, unused and can then be omitted.

5. A scalar: for the codes "C", "lrC", "A" and "B", the fixed value to which the matrix
element should be set (may be omitted if 0). Otherwise, unused and can then be omitted.

A few examples:

• SVAR restrict(&M, "C", 3, 2, 0); in a C model called M, sets C3,2 = 0. As a conse-
quence, the IRF for variable number 3 with respect to the shock number 2 starts from
zero.

• SVAR restrict(&foo, "A", 1, 2, 0); in an AB model called foo, sets A1,2 = 0.

• SVAR restrict(&MyMod, "lrC", 5, 3, 0); in a C model called MyMod, restricts C such
that the long-run impact of shock number 3 on variable number 5 is 0. This implies that
the cumulated IRF for variable 5 with respect to shock 3 tends to zero.

• SVAR restrict(&Mod2, "B", {NA, 0; NA, NA}) specifies a pattern matrix in a 2-dimensional
system to restrict the 1,2-element of the B matrix to zero.

• SVAR restrict(&bar, "Adiag", 1); in an AB model called bar, sets Ai,i = 1 for 1 ≤ i ≤
n.

• SVAR restrict(&baz, "Bdiag", NA); in an AB model called baz, sets Bi,j = 0 for i ̸= j.

If the restrictions are found to conflict with other ones already implied by the pre-existing
constraints, they will just be ignored and a warning will be printed.

Note that this function can be used (albeit in a limited way) in the context of set-identified
models. See section 8.3 for more details.

SVAR setup (string type, list Y, list X, int varorder, bool checkident[1])

Returns a bundle with the initialised model.
Arguments:

52

1. A type string: valid values are "C", "plain", "AB", "SVEC", and now also "SR".

2. A list containing the endogenous variables.

3. A list containing the exogenous variables.

4. A positive integer, the VAR order.

5. A switch: For traditional (non set-identified) models it means to activate or suppress
the automatic identification check before estimation of the structural form (default on).
Otherwise (for type "SR") this doesn’t make sense, and the meaning of the switch is instead
whether to store all the produced IRF data from the accepted draws into the model bundle
(default yes). Since the bundle’s size will be much larger with all the draws, sometimes you
may want to avoid the storage. (You do not need to keep the raw data for standard IRF
plots, but you will need it for ”spaghetti” plots and in case you change your mind about
the coverage probability of the error bands later.)

SVAR spagplot (bundle Smod, string vname, string sname, string fname (optional))

Relating to a set identified (sign restricted) model, does a “spaghetti” plot of the IRFs, i.e.
simply plotting the IRF of each accepted draw as a thin line. This complementary analysis
avoids the criticism of aggregating horizon-per-horizon. In order to work the data of the draws
must have been stored inside the model bundle (which is the default).

The plot will be displayed in interactive mode unless a file name or path location in the
“fname” argument, in which case the file extension determines the output graphics format pro-
duced by gnuplot.
Arguments:

1. the model bundle (not pointerized, since nothing will be stored)

2. the name of the target variable

3. the name of the shock of interest

4. optional file name (inside the current workdir) or full path of the output file (default:
display plot on screen)

SVAR SRdraw (bundle *Smod, int rep, bool DO BAYES[0], scalar coveralpha[0.9],
int maxiter[10000])

Relating to a set identified (sign restricted) model, this function draws random rotations of the
arbitrary baseline Cholesky model until rep draws satisfying the sign restrictions have come up,
or until the maxiter limit is hit. Therefore the number of good draws can be anything between
zero and rep. If the DO BAYES flag is on, the VAR parameters (including Sigma) are resampled
too (from a standard Normal-Wishart distribution); otherwise, they are kept fixed at the OLS
estimates.

This is the heart of the set identification algorithm and will take a while to run. (The goal is
to speed it up in the future, e.g. by parallelizing it on multicore machines.)

53

Returns: array of bundles, one for each accepted draws. By default you would not need
to produce or grab this object directly because this array would be stored inside the main model
bundle as member acc draws and then processed automatically. So only use it under special
circumstances.
Arguments:

1. pointer to the SVAR model bundle

2. the number of (accepted) draws H to aim for

3. Boolean flag for the Bayesian option (default = 0→ frequentist / no parameter uncertainty)

4. the desired empirical coverage of the calculated intervals (default 90%)

5. Maximum number of attempted draws (default = 10000)

SVAR SRexotic (bundle *Smod, string chkstr, strings shocks,
int length[0], int ini[0])

Relating to a set identified (sign restricted) model, this is an experimental function serving to
specify ”exotic” restrictions, i.e. those that intrinsically involve more than one variable-shock
pair.34 See section 8 for an explanation of the usage.
Arguments:

1. model bundle in pointerized form

2. A string with a valid numerical evaluation of some function of the individual IRFs. This
expression will be evaluated at each of the horizons specified by ini and length. In this
expression string the IRF matrix must be hardcoded as ”M”, so the concrete impulse
responses (variable-shock pairs) must appear as ”M[2,1]”, or ”M[2,4]”, etc. Cross-horizon
restrictions are not possible (yet?).

3. array of strings, the collection of all shock names that play a role in this restriction35

4. see SVAR SRplain (length)

5. see SVAR SRplain (ini)

SVAR SRfull (bundle *Smod, string yname, string sname, scalar lo (optional),
scalar hi (optional), int ini[0], int fin[0])

Relating to a set identified (sign restricted) model, this function serves to impose restrictions
that are more general than sign restrictions in the narrow sense but are still not ”exotic” in the
sense that they only conern a single IRF (single variable-shock pair).
Arguments:

34Here we are not talking about the case of having several restrictions where each of them concerns a dif-
ferent variable-shock pair. Such a scenario is of course already covered by the more standard approaches, see
SVAR SRplain, SVAR SRfull, simply applying and combining several restrictions. Instead, the question here is
how to deal with any additional restriction which intrinsically links more than one impulse response.

35This information is in principle already contained in the restriction expression, but we are too lazy to parse
that string properly and want to be on the safe side, so we shift that responsibility to the user – later on it may
also serve as a cross-check to catch unwanted input errors.

54

1. model bundle in pointerized form

2. name of the target variable of the relevant IRF

3. name of the shock of the relevant IRF

4. lower bound for the IRF to satisfy this restriction (default is minus infinity)

5. upper bound for the IRF to satisfy this restriction (default is infinity)

6. starting horizon from which to evaluate the IRF (default zero is on impact)

7. end horizon up to which to evaluate the IRF (default zero is on impact)

Each of the bounds lo, hi is optional, but at least one of them has to be specified to make it a
meaningful restriction. In contrast, both ini, fin could be left at their defaults (be omitted),
which would mean a restriction only associated with the impact effect.

SVAR SRirf (bundle Smod, strings whichvars [optional],
strings whichshocks [optional], bool meanormed[0])

Relating to a set identified (sign restricted) model, does IRF plots based on all accepted draws.
The empirical coverage level of the plotted confidence bands (or credible sets, if you like) must
have been chosen previously at the stage of getting the draws (see SVAR SRdraw, but also see
SVAR SRresetalpha).

Returns: array of strings, where each string array element holds the created gnuplot
plotting code for one of the chosen set of sign-restricted / set-identified IRF plots, for potential
further use. Simply ignore or discard the return value if it is not needed.
Arguments:

1. the model bundle (not pointerized, since nothing will be stored)

2. array of strings: collection of all target variable names to consider (default: all)

3. array of strings: collection of all shock names of interest (default: all)

4. switch to choose medians as the center line of the plots (default: 0/mean)

It is not possible to exclude single variable-shock pairs, simply delete any unwanted plots after-
wards.

SVAR SRgetbest (bundle *Smod, string vname, string sname, int ini[0::0],
int length[0::0], int disttarg[0:1:0], string loss[null])

Relating to a set identified (sign restricted) model, this function returns the (scalar) index number
among all accepted draws of that particular draw which has a certain impulse response (as
specified by the user in this call) closest to the central tendency of all draws. Also stores this
number in the model bundle under “bestdraw”.
Arguments:

1. A bundle holding the model (pointer form).

55

2. The name of the target variable in the interesting IRF.

3. The name of the shock in the interesting IRF.

4. The first period/horizon at which the IRF should be compared. (Default 0, on impact)

5. The length of the horizon over which the IRF should be compared. (Default 0, only for
the single period given before)

6. A switch choosing whether to target the mean (0) or the median (1) of the IRF distribution.
(Default 0)

7. The loss function name to evaluate deviations from the target. Possible values are “quad”
(default) and “abs”.

SVAR SRplain (bundle *Smod, string yname, string sname, string what,
int length[0], int ini[0])

Relating to a set identified model, this function serves to impose standard sign restrictions.
Arguments:

1. model bundle in pointerized form

2. name of the target variable of the relevant IRF

3. name of the shock of the relevant IRF

4. either ”+” or ”-” to specify the wanted sign

5. for how many (horizon) periods after ini the restriction should apply (default zero, just
at the particular point given by ini)

6. starting horizon from which to evaluate the IRF (default zero / on impact)

Both length, ini could be left at their defaults (be omitted), which would mean a restriction
only associated with the impact effect. If only the trailing argument ini is omitted, then the
restriction must hold up to horizon length.

SVAR SRresetalpha (bundle *Smod, scalar alpha)

Relating to a set identified model, this function allows to redefine the desired coverage level of
the pointwise confidence intervals without having to repeat the time-consuming model drawing
stage. If necessary, this function would typically be called before SVAR SRirf.
Arguments:

1. model bundle in pointerized form

2. desired new coverage probability of IRF confidence intervals

56

D Contents of the model bundle

Basic setup
step done so far
type integer, model type (1: PLAIN, 2: C, 3: AB, 4: SVEC)
n, k numbers of endogenous and exogenous variables

p VAR order
T number of observations

t1, t2 initial and final observations
Y endogenous variables data matrix
X exogenous variables data matrix

calc lr switch to get long-run matrix lrmat in short-run models
checkident switch indicating whether to check identification before estimation

calinfo bundle, calendar info: the “t1”, “t2” and “pd” keys are taken from the cor-
responding accessors when the model was created. The “limitobs” matrix is
a 2-row matrix with a numerical representation of the dates for the first and
last observations

VAR
VARpar autoregressive parameters

mu coefficients for the deterministic (/exogenous) terms
U residuals from base VAR (As matrix; this used to be E before the notation

change in version 1.95. Please adapt your scripts.)
Sigma unrestricted residual covariance matrix
jalpha (SVEC only) cointegration loadings
jbeta (SVEC only) cointegration coefficients
crank (SVEC only) cointegration rank (inferred from jbeta)
jcase (SVEC only) deterministic setup (1 to 5)

SVAR setup
Rd1 short-run constraints on B (and therefore C in non-AB models)

Rd1l long-run constraints on C
Rd0 short-run constraints on A in AB models

horizon horizon for structural VMA
cumul vector of cumuland variables
ncumul number of cumuland variables
Ynames names for VAR variables (string array)
Xnames names for exogenous (string array) variables, if any
snames names for shocks (string array)

optmeth integer between 0 and 4, optimisation method
normalize switch for shock rescaling, see section 2.4

57

SVAR post-estimation
S1, S2, C estimated A, B, C

lrmat estimated long-run matrix
theta identified coefficients as vector
vcv covariance matrix of these coefficients

IRFs IRF matrix (see section 2.2)
LL0, LL1 Unrestricted and restricted maximized likelihoods

Bootstrap-related
nboot integer, number of bootstrap replications

boot alpha scalar, bootstrap confidence level (coverage)
bootdata output from the bootstrap (see section 2.5)
biascorr 0 for no bias correction, 1 for partial, 2 for full
BCiter integer, number of replications for the bias correction

boottype 1 for standard residual resampling, 2-4 for residual-based wild bootstraps (2:
Normal, 3: Rademacher, 4: Mammen), 5 for moving blocks

movblocklen integer, changes the block length for the moving blocks bootstrap (otherwise:
use 10% of the sample length)

58

Set-identification (sign restrictions) -related
SRiter integer, number of draws actually done
SRacc integer, number of accepted draws stored and used

SRid snames strings array, names of those shocks that are subject to sign (and similar)
restrictions, subset of snames

SRest matrix, internal representation of the (non-exotic) set identification restric-
tions; each row has: variable id number, lower bound, upper bound, starting
horizon, end horizon, shock id number

exoticSR bundle, holding internal representation of exotic (and in the future also super-
exotic) restrictions; contains a strings array checks with the user-supplied
restriction expressions, a two-column matrix spans with starting and ending
horizons for the respective restriction, and a vector super holding indicators
(zero or one) whether the restriction is super-exotic36

SRcoveralpha scalar, chosen coverage of the confidence intervals (or credible sets)
SRirfmeans matrix, holding the horizon-by-horizon pointwise means of the accepted IRF

draws; horizons in h + 1 rows and the variable/shock combinations in n ∗
numshocks columns

SRirfmeds matrix, holding the horizon-by-horizon pointwise medians of the accepted
IRF draws; dimensions see SRirfmeans

SRirfserrs matrix, the horizon-by-horizon pointwise (pseudo) standard errors of the ac-
cepted IRF draws; dimensions see SRirfmeans

SRlo cb matrix, the horizon-by-horizon pointwise lower bounds of the confidence in-
tervals (or credible sets), quantile-based (not symmetric around the means or
medians); dimensions see SRirfmeans

SRhi cb matrix, ditto for the upper bounds
storeSRirfs switch indicating whether the IRF outcomes from all accepted draws will be

stored in the main model bundle (see also acc draws)
acc draws array of bundles, collecting the outcomes and data of all accepted draws; this

member is absent if suppressed at the setup stage. The data type and the
stored representation of the draws is still experimental and subject to change.

bestdraw positive integer to index the best of all accepted draws in acc draws according
to criteria specified in call to SVAR SRgetbest. Zero if undefined.

E Changelog (after v1.2)

for gretl version 2024c, October 2024

• Get rid of version number since SVAR is a gretl addon, and starting with gretl 2024b such
official addons inherit the version number directly from gretl itself.

• Extend the SVAR restrict function to accept full restriction pattern matrices.

• Extend the SVAR SRirf function to return the created plotting codes in a strings array
(returned nothing before, just ran the plots).

• Use a more efficient normal-inverse-Wishart generation algorithm.

59

• Properly generate the uniformly distributed rotation matrices (internally with the new
gen haar function).

• Fix a bug with the spaghetti plot (for set-id models) in case of partial identification.

• Try to fix more sub-cases with only “exotic” restrictions (and no standard set-id restric-
tions); but probably more work needed.

• Fix minor bug (not noticeable with standard usage): do not internally require the bundle
member E from the old-style (pre 1.95) notation anymore. While we’re at it, do not carry
this compatiblity copy around anymore at all, so the estimated residuals are now exclusively
in the matrix member U.

Version 2.1, November 2023

• Add the “calinfo” bundle to the model bundle.

• Switch to the “stacked-bars” version for historical decomposition plots.

Version 2.0, June/July 2023

• Implement mixed (sign- and zero-) restrictions. Deprecate SRgetbest in favour of SVAR SRgetbest.

• Move the internal function drawbootres to the extra addon, and along the way fix a bug
with the moving blocks bootstrap, the explicit choice of the block length was not honored
(probably introduced in 2021).

• Fix for ”spaghetti” plots with output paths that include spaces.

Version 1.98, May 2023

• Fix documentation on sign restrictions.

Version 1.97, July 2022

• Fix fatal bug preventing the output of plots with HDsave() and FEVDsave(). Use the new
commute() function internally.

Version 1.96, December 2021

• Fix bug in path to plot files on MS Windows.

Version 1.95, June 2021

• Start cleaning up and modernizing the internals, and big jump making 2021a the required
gretl version because of that.

• Swap notation to stay in line with most of the literature, ε are now the structural shocks
and u become the prediction errors (reduced form). For SVAR scripting this means that
the residual matrix E in the bundle is now called U.

60

Version 1.94, April 2021

• Fix bug (introduced in 1.32 or so): for AB-models, the C matrix was not updated over
bootstrap iterations, leading to zero-width confidence intervals for the impact effect.

• Bump version requirement to 2018c to accommodate some internal changes.

Version 1.93, December 2020

• Add helper function SVAR SRresetalpha. (Hide IRF plotdata as redundant because of
that.)

• Enable saving sign-restriction spaghetti plot to file.

Version 1.92, August/September 2020

• Clarify documentation for Bayesian draws in set-id models.

• Replace deprecated funcerr() with errorif(), therefore need gretl 2020b for the sign restric-
tion part.

Version 1.91, April 2020

• Minor plot legend fix for GUI usage; a fix of DoF calculation for Bayesian redrawing; catch
the case of no accepted draws more gracefully.

• Introduce new convenience function SRgetbest to find the best draw according to user-
specified IRF criterion.

• New functions with alternative interface: SVAR HD (wrapper for SVAR hd) and SVAR getshock
(wrapper for GetShock).

Version 1.90, March 2020

• Major new feature: set-identified model estimation (a.k.a. sign restrictions; scripting in-
terface only).

Version 1.52, November 2019

• Fix the Luetkepohl (2008) check for SVECs with weakly exogenous variables, and actually
process the existing extra check whether a restriction might be redundant, which is relevant
mostly in the case of some weakly exogenous variables. Also for SVECs, check whether a
long-run restriction really applies to a permanent shock.

• The identification check output is now suppressed by default to avoid clutter. (It is still
run by default, but quietly.)

• Some documentation updates.

Version 1.51, September 2019

• Also add the moving blocks bootstrap by Brüggemann et al. (2016) as an option.

61

Version 1.5, September 2019

• The documentation of the bootstrap α level did not match the actual implementation.
This has been changed such that boot alpha really represents the nominal coverage of the
confidence intervals around each impulse response. (This quantity is often denoted with
1 − α instead, but for backward compatibility we stick to α.) Attention: This change
means that existing scripts will produce systematically different (wider) confidence bands
with this version.

• Add the option ’boottype’ to choose some wild bootstrap variants to account for het-
eroskedasticity.

• Reformat the identification check output.

• Add the possibility to choose the bias correction directly in the call to SVAR boot.

Version 1.4, March 2019

• catches of wrong user input: catch the case when no restrictions are given, to prevent other
errors; catch a missing cointegration setup when trying to estimate a SVEC; add a linear
dependency check on the exogenous terms in SVAR setup; catch the case where restrictions
would not work (imp2exp) and print out a message

• fixes in the SVEC case especially with further exogenous variables: fix indexing error
and mis-concatenation, and companion matrix in vecm est with exogenous; and fix the
restricted terms in the bootstrap

• internal changes: simplify centered seasonals creation in determ(), replace isnull with !exists
(and vice versa)

• interface: allow omission of alpha in SVAR coint

• New argument ’checkident’ in SVAR setup. Checking identification is now default in script
use.

• A new restriction check in the SVEC case (Luetkepohl 2008).

Version 1.36, July 2018

• Update this documentation to reflect previous changes.

• fix a transposed matrix product in SVECM estimation for cases 2 and 4

Version 1.35, May 2018

• Enable 0 index (meaning “all”) in plotting functions

Version 1.33 and 1.34, April 2018

• Fix breakage in init_C function

• Allow a C-model with no estimated parameters

• Fix constant in cointegrated case

62

Version 1.31 and 1.32, January 2018

• Update this documentation to reflect some previous changes.

• Fix failing printout for bootstrap. (v1.32: Sanitize further the printout of the long-run
matrix.)

• Enable long-run matrix calculation and reporting also for SVEC models.

Version 1.3, December 2017

• The full bias correction now also corrects the estimated A/B/C matrices explicitly, not
only the implied IRFs.

• Make it clear that long-run restrictions are not supported in AB models.

• Calculate the long-run matrix and put it into the model bundle as lrmat. Also add a
boolean switch calc lr to the model bundle to force its calculation when it would normally
not be done (in models with short-run constraints only).

• The case of a SVEC model with Blanchard-Quah restrictions on top might not have been
handled correctly, and should be OK now (but the bootstrap is currently not allowed in
this case).

• Require gretl version >2016c or >2017a due to internal changes.

63

	1 Introduction
	2 C models
	2.1 A simple example
	2.2 Base estimation via the SVAR package
	2.3 Algorithm choice
	2.4 Displaying the Impulse Responses
	2.5 Bootstrapping
	2.6 More general restrictions and a shortcut

	3 More on plotting
	3.1 Plotting the FEVD
	3.2 Historical decomposition

	4 C-models with long-run restrictions (Blanchard-Quah style)
	4.1 A modicum of theory
	4.2 Example
	4.3 Combining short- and long-run restrictions

	5 AB models
	5.1 A simple example

	6 Checking for identification
	7 Structural VEC Models
	7.1 Syntax
	7.2 A hands-on example

	8 Set-identified SVARs
	8.1 Notation
	8.2 Set identification
	8.2.1 Sign restrictions (practicalities)
	8.2.2 Interval restrictions
	8.2.3 General (``exotic'') set restrictions

	8.3 Mixed restrictions
	8.4 The workflow for set identification
	8.5 Historical and forecast error variance decompositions

	A The GUI interface
	A.1 Identifying constraints
	A.2 Bootstrap parameters and cumulation
	A.3 The output window
	A.4 An example

	B Some details of the numerical algorithm in SVAR_SRdraw
	C Alphabetical list of (public) functions
	D Contents of the model bundle
	E Changelog (after v1.2)

