Volumetric and Phase Behavior of Propane-Benzene System

J. W. GLANVILLE ${ }^{1}$, B. H. SAGE, AND W. N. LACEY
California Institute of Technology, Pasadena 4, Calif.

Abstract

The specific volume of mixtures of propane and benzene was determined at pressures from approximately 100 to 10,000 pounds per square inch absolute at seven temperatures between 40° and $460^{\circ} \mathrm{F}$. The composition of the dew-point gas was measured at five temperatures between 10° and $460^{\circ} \mathrm{F}$. for pressures between the vapor pressure of benzene and the critical pressure of the system. The results are presented in tabular form, with a limited number of illustrative diagrams.

THE volumetric behavior of propane has been investigated in some detail ($1,4,9$) and the critical state has been well established (2). Recently (7) the volume of this hydrocarbon was measured at pressures up to 10,000 pounds per square inch (all pressures reported in pounds per square inch, absolute) in the temperature interval between 100° and $460^{\circ} \mathrm{F}$. and good agreement between these recent measurements and earlier data was obtained. It is believed that the volumetric characteristics of this hydrocarbon are sufficiently well known for most industrial purposes within this temperature interval.
Benzene has also been the subject of relatively extensive experimental investigation. Its volume as a function of pressure has been studied over several different ranges of pressure and temperature ($5,6,10$). Satisfactory agreement was obtained among the several sets of volumetric data, including information relating to the vapor pressure of this compound, and it appears that within the temperature range from 100° and $460^{\circ} \mathrm{F}$. the volumetric behavior of this compound is well established for pressures up to 10,000 pounds per square inch. No phase equilibrium or volumetric data concerning the behavior of mixtures of propane and benzene appear to be available in the range of conditions of industrial interest.
balance (8) which was calibrated against the vapor pressure of carbon dioxide (3) at the ice point as a standard. The variation in the calibration of this instrument in a decade was less than 0.04%. The temperature of measurement was known within $0.03^{\circ} \mathrm{F}$. relative to the International Platinum Scale. The effective volume of the working cell was established with an uncertainty of 0.1% at the minimum total volume of the apparatus. The average uncertainty in this variable was considered to be 0.04%. The samples of propane and benzene were added by the use of weighing bombs (8) with an uncertainty of 0.02%. From the foregoing data it is estimated that the probable uncertainty in the reported values of the molal volume was 0.25%. The composition of the gas phase, coexisting with liquid, was determined by withdrawing samples from the above-described equipment under isobaricisothermal conditions. The compositions of the samples withdrawn were established by gas density measurements.

materials

The propane employed in this study was obtained from the Phillips Petroleum Company and was reported to contain less than 0.001 mole fraction impurities. This material was subjected to fractionation in a glass column packed with helices. The initial and final tenths of the overhead were discarded in the course of a fractionation carried out at a reflux ratio of approximately 50. The purified hydrocarbon was stored in a steel weighing bomb (8). It was found that at $100^{\circ} \mathrm{F}$. a change in quality (fraction of the sample in the gas phase) from 0.03 to 0.5 resulted in a change in the two-phase pressure of less than 0.2 pound per square inch. In addition, the value of the vapor pressure at $280^{\circ} \mathrm{F}$. agreed closely with recently published data ((γ).
The benzene was purchased as the chemically pure grade and

METHODS AND EQUIPMENT

The equipment employed in this study has already been described (8). In principle the procedure involved the introduction of known weights of propane and benzene into a stainless steel vessel whose effective volume was modified by the introduction or withdrawal of mercury. Equilibrium was obtained by the use of mechanical agitation and the temperature was controlled by immersing the vessel in an agitated oil bath. The temperature relative to the International Platinum Scale was determined from the indications of a strain-free platinum resistance thermometer which was compared with the indications of a similar instrument calibrated it the National Bureau of Standards. The pressure within the vessel was meastured by means of a

[^0]

Figure 1. Specific Volume of Mixture Containing 0.4507 Weight Fraction Propane

Table I. Volumetric Behavior of Propane-Benzene System

Pressure, Lb./ Sq. In. Abs.	Weight Fraction Propane							
	0.1207		0.2692		0.4507		0.8095	
	$2^{\text {a }}$	$V^{\text {a }}$	Z	\checkmark	Z	\checkmark	Z	V
Dew point Bubble point	$0.01456(60.6) 6$	0.02020	0.02231 (94.4)	0.02195	0.02896 (122.1)	0.02458	0.04019 (165.4)	0.03035
80 100	$\begin{aligned} & 0.01922 \\ & 0.02402 \end{aligned}$	$\begin{aligned} & 0.02020 \\ & 0.02019 \end{aligned}$	0.02364	0.02195				
125 150 150	${ }_{0}^{0.03002}$	0.02019	0.02959	0.02194	0.02964	0.02457	\ldots	
200	0.04799	0.02017	0.04721	0.02192	${ }_{0.04734}$	${ }_{0}^{0.02453}$	0.04855	0.03032
	0.07195	0.02016	0.07072	0.02189	0.07089	0.02449	0.07258	0.03022
400 500	0.09584 0.197 0.197	0.02014 0.02012	${ }_{0}^{0.09421}$	${ }_{0}^{0.02187}$	${ }_{0}^{0.09433}$	0.02444	${ }_{0}^{0.09645}$	0.03012
600	${ }_{0} 0.1435$	0.02010	0.1410	0.02182	0.1409	0.02434	0.14372	0.02992
800	0.1910	0.02007	0.1876	0.02177	0.1872	0.02425	0.19041	0.02973
1000 1250	0.2384 0.2973	${ }_{0}^{0.02004}$	$\begin{aligned} & 0.2339 \\ & 0.2914 \end{aligned}$	$\begin{aligned} & 0.02172 \\ & 0.02165 \end{aligned}$	$\begin{aligned} & 0.2332 \\ & 0.2903 \end{aligned}$	0.02417	${ }_{0}^{0.2366}$	0.02955
1500	${ }_{0}^{0.3518}$	0.01994	- 0.3488	0.02159	0.2903 0.3468	0.02406 0.02396	0.2937 0.3502	${ }^{0.02935}$
1750	0.4143	0.01990	0.4057	0.02153	0.4031	${ }_{0} 0202387$	${ }_{0} .4060$	0.02898
2000	0.4725	${ }_{0}^{0.019886}$	0.4624	0.02147	0.4589	0.02378	${ }_{0}^{0.4615}$	0.02882
2500	0.5305 0.6880	${ }_{0}^{0.01982}$	0.6188	0.02141 0.02135	${ }_{0}^{0.5145}$	0.02370 0.02362	0.5163	0.02866
2750	0.6455	0.01973	0.6298	0.02129	${ }_{0}^{0.6248}$	0.02355	0.6246	0.028837
3000 3500	0.7027 0.8169	0.01969 0.01962	- $\begin{gathered}0.6862 \\ 0.7972\end{gathered}$	${ }^{0.02124}$	${ }^{0.6796}$	0.02348	0.6780	0.02823
4000	0.9298	0.01954		${ }_{0} 0.02106$	0.7884 0.8964	${ }_{0.02322}$	0.7840 0.8893	0.02798
4500	1.0423	0.01947	1.0162	0.02097	1.0031	0.02310	0.9932	0.02757
5000	1.1539	0.01940	1.1248	0.02089	1.1098	0.02300	1.0972	
${ }_{6000}$	${ }_{1}^{1.3754}$	0.01927	1.3401	0.02074	1.3205	0.02281	1.3013	0.02709
7000	-1.5930	0.01913	1.5526	0.02061	1. 52390	0.02264	1. 5002	0.02677
8000 9000	1.8082 2.0225	0.01900 0.01889	${ }_{\text {1 }}^{1.7661}$	0.02050 0.02040	1.7342	0.02247	1.6947	0.02646
10,000	$\stackrel{2.02889}{ }$	0.01882	- ${ }_{2.1872}$	0.02040 0.02031	1.9361 2.1355	0.02229 0.02213	1.8863 2.0735	0.02618 0.02590
Dew point Bubble point	0.02448 (107.3) 60.02123		0.03946 (174.3)	0.002328	0.005341 (232.4)	0.02637	0.08091 (328.9)	0.03402
125	0.02849	0.02121	\ldots	...				
150	0.03417	0.02120					\ldots	
200 300	0.04549 0.06811	0.02117 0.02113	0.04526 0.06781	${ }_{0}^{0.02327} 0$	0.06886	0.02634		
	0.09064	0.02109						
500	0.1131	0.02105	0.1126	${ }_{0} 0.02316$	${ }_{0}^{0.09158}$	0.02627 0.02620	0.09790 0.12148	0.03385 0.03360
600 800	0.1355 0.1801	0.02102 0.02095	0.1349 0.1793	0.02312 0.02304 0.020	0.1367 0.1813	0.02614	0.14473	0.03336
	0.2243							
1250	0.2795	0.02081	0.2780	0.02287	${ }^{0.2885}$	${ }_{0}^{0.025738}$	0.2351 0.2899	0.03252 0.03208
1750	0.3888 0.388	${ }_{0}^{0.020688}$		0.22278 0.02270	0.3345 0.3882	${ }^{0.02559} 0$	0.3439 0.3972	0.03171 0.03139
2000	0.4433	0.02063	0.4400	0.02262	0.4412	0.02532		0.03111
2250	${ }^{0.4975}$	${ }_{0}^{0.02058}$	0.4930	${ }_{0}^{0.02253}$	0.4939	0.02519	0.5021	0.03086
2750	0.6054	0.02049	0.5883	${ }_{0.02237}$	0.5459	${ }_{0}^{0} 02494$	- 0.6049	0.03063 0.03042
3000	0.6592	0.02045	0.6507	0.02230	0.6492			
${ }^{3500}$	0.7657	0.02036	0.7543	0.02216	0.7510	0.02462	0.7555	0.02985
4000 4500	0.8712 0.9757	0.02027 0.02018	0.8566 0.9589	0.02202 0.02191	0.8516 0.9509	0.02443 0.0245	0.8532	0.02950
								. 0.2918
6000	${ }_{1}^{1.2855}$	0.02009 0.01994	1.0601	${ }_{0}^{0.02180} 0$	1.0495 1.2451	${ }_{0}^{0.02408}$	1.0456	0.02892
7000	1.4884	0.01979	1.4576	0.02141	1.4378	${ }_{0} .02357$	1.4208	${ }_{0} 0.028846$
8000	1.6916	0.01968	1.6534	0.02125	1. 6270	0.02334	1.6023	0.02770
9000 10,000	1.8924 2.0858	0.01957 0.01945	1.8469 2.0385	0.02110 0.02096	1.8137 1.9986	0.02312 0.02293	1.7798 1.9530	0.02735 0.02701
		0.01945		0.02096	1.9986	0.02293	1.9530	0.02701
Dew point Bubble point	$0.03772(172.6) b$ b 0.02231		0.06238 (282.3)	0.002492	0.08950 (392.0)	0.02874	$0.1565(571.8)$	0.04152
200 300	$\begin{aligned} & 0.04368 \\ & 0.06541 \end{aligned}$	0.02230 0.02226	0.06624	0.02490				
	0.08705				0.09129			
500	0.1086	0.02218	0.1097	0:02474	0.1135	0.02858		
600 800	0.1301 0.1729	0.02214 0.02206	${ }^{0.1312}$	0.02466 0.02452		0.02845 0.02820	$\begin{aligned} & 0.1623 \\ & 0.2044 \end{aligned}$	$\begin{aligned} & 0.04103 \\ & 0.03876 \end{aligned}$
1000	0.2153	0.02198	0.2163	0.02439	0.2222	0.02797		
1250 1500	${ }_{0}^{0.2680}$		0.2687	0.02424	0.2751	0.02769	0.2986	0.03623
1750	0.3723	0.02172	0.3719	0.02410 0.02397	0.3270 0.3783 0	${ }_{0}^{0.02744} 0$	0.3502 0.4009	${ }_{0}^{0.03540} 0$
${ }_{2500}^{2250}$	0.4749 0.5260	${ }^{0.02155}$	0.4736 0.5238	${ }^{0.02344}$	${ }^{0.4792}$	${ }^{0.02680}$	${ }_{0} 0.5002$	0.03372
2750	0.5767	0.02141	${ }_{0} 0.5735$	0.02352	0.5782	${ }_{0}^{0.02646}$	0.5490 0.5970	0.03331 0.03293
		0.02134						
3500	${ }^{0.7274}$	0.02122	0.7206	0.02322	0.7234	0.02602	0.7381	0.03199
${ }_{4500}^{4000}$	0.8266 0.9256	0.02110 0.02100	0.8175 0.9133	0.02305 0.02289	0.8188 0.9128	${ }^{0.02576}$	0.8299 0.9202	0.03147 0.03102
5000 6000	${ }^{1} 1.0235$	0.02090 0.02072	1.0082 1.1954	0.02274	1. 00062	${ }_{0}^{0.02533}$	1.0096	0.03063
7000	1.2176	${ }^{0.02072}$	${ }_{1}^{1.3810}$		1.1900	0.02496	1.1854	0.02997
8000	1.5961	0.02037	1.5634	0.02204	${ }_{1}^{1.5462}$	${ }_{0}^{0.02433}$	${ }_{1}^{1.5279}$	${ }_{0}^{0.02897}$
9000 10,000	1.7833 1.9677	0.02023 0.02009	1.7437 1.9232	0.02185 0.02169	${ }^{1.7208}$	0.02406	1.6951	0.02857
		0.02009		0.02169	1.8943		1.8564	0.02816

a $Z=$ compressibility factor $=P V M / R T ; V=$ specific volume, oubic feet per pound.
b Figures in parentheses represent bubble-point or dew-point pressure in pounds per square inch absolute.

Table I, Volumetric Behavior of Propane-Benzene System (Continued)
Pressure, Lb.
Sq. In. Abs.
Dew. point
Bubble point
200
300
400
500
600
800
1000
1250
1500
1750
2000
2250
2500
2750
3000
3500
4000
4500
5000
6000
7000
8000
9000
10.000

0.1207		0.2692		0.4507		0.8095	
$Z^{\text {a }}$	V^{a}	2	V	Z	V	Z	V
$0.05636(263.1)^{b}$	0.02380	$\begin{aligned} & 0.8732 \\ & 0.09570(113.0) \\ & (335.8) \end{aligned}$	$\begin{aligned} & 0.9484 \\ & 0.02695 \end{aligned}$	$\begin{aligned} & 0.8644(168.5) \\ & 0.1406(595.4) \end{aligned}$	$\begin{aligned} & 0.7026 \\ & 0.03236 \end{aligned}$		\cdots
0.06419	0.02377					$\begin{aligned} & 0.8937 \\ & 0.8368 \end{aligned}$	$\begin{aligned} & 0.7377 \\ & 0.4605 \end{aligned}$
0.08536	0.02371					0.7742	0.3195
0.1064	0.02365	0.1095	0.02688			0.7058	¢. 2330
0.1274	0.02359	0.1308	0.02676	0.1416	0.03232	0.6248	0.1719
0.1691	0.02348	0.1729	0.02653	0.1841	0.03153	0.4064	0.08387
0.2104	0.02337	0.2145	0.02632	0.2258	0.03093	0.3120	0.05151
0.2614	0.02323	0.2655	0.02607	0.2768	0.03033	0.3308	0.04369
0.3119	0.02310	0.3157	0.02583	0.3271	0.02987	0.3798	0.04180
0.3620	0.02298	0.3652	0.02561	0.3768	0.02949	0.4221	0.03982
0.4115	0.02286	0.4138	0.02539	0.4259	0.02917	0.4673	0.03857
0.4607	0.02275	0.4620	0.02520	0.4742	0.02887	0.5124	003760
0.5095	0.02264	0.5097	0.02502	0.5217	0.02858	0.6674	0.03681
0.5577	0.02253	0.5573	0.02487	0.5688	0.02833	0.6018	$0.0361{ }^{\circ}$
0.6057	0.02243	0.6043	0.02472	0.6147	0.02807	0.6460	0.03555
0.7009	0.02225	0.6973	0.02445	0.7062	0.02763	$0.733 \overline{0}$	0.03460
0.7946	0.02207	0.7894	0.02422	0.7958	0.02725	0.8185	0.03378
0.8878	0.02192	0.8807	0.02402	0.8843	0.02692	0.9039	0.03316
0.9797	0.02177	0.9708	0.02383	0.9719	0.02662	0.9864	0.03257
1.1611	0.02150	1.1484	0.02349	1.1459	0.02616	1.1485	0.03160
1.3401	0.02127	1.3215	0.02317	1.3151	0.02573	1.3093	0.03088
1.5172	0.02107	1.4921	0.02289	1.4817	0.02537	1.4693	0.03032
1.6939	0.02091	1.6602	0.02264	1.6457	0.02504	1.6262	0.02983
1.8677	0.02075	1.8268	0.02242	1.8071	0.02475	1.7784	0.02936

Dew point
Bubble point
200
300
400
500
600
800
1000
1250
1500
1750
2000
2250
2500
2750
3000
3500
4000
4500
5000
6000
7000
8000
9000
10,000

$0.088226(383.7)$	0.02557	
\ldots	\ldots	0.
0.08555	0.02569	
0.1064	0.02556	
0.1270	0.02542	
0.1676	0.02517	0.
0.2077	0.02495	0.
0.2574	0.02473	0.
0.3063	0.02453	0.
0.3548	0.02435	0.
0.4030	0.02420	0.
0.4505	0.02405	0.
0.4975	0.02390	0.
0.5440	0.02376	0.
0.5900	0.02362	0.
0.6810	0.02337	0.
0.7703	0.02313	0.7
0.8587	0.02292	0.8
0.9458	0.02272	0.94
1.1175	0.02237	1.
1.2868	0.02207	1.
1.4520	0.02180	1.
1.6185	0.02160	1.

Dew point
Bubble point
200
300
400
500
600
800
1000
1250
1500
1750
2000
2250
2500
2750
3000
3500
4000
4500
5000
6000
7000
8000
9000
10,000

$0.1185(536.6){ }^{\text {b }}$	$0 . \dot{0} \dot{8} 852$	$\begin{aligned} & 0.7128(410.3) \\ & 0.2055(814.3) \end{aligned}$	$\begin{aligned} & 0.2478 \\ & 0.03600 \end{aligned}$	\cdots	.	\cdots	\ldots
					\ldots	. \cdot,	
				0.9018	0.7282	0.9342	0.8962
				0.8636	0.4 .582	0.9048	0.5787
				0.8084	0.3217	0.8740	0.4192
				0.7478	$0.2380 \cdot$	0.8422	0.3232
0.1316	0.02831			0.6790	0.1802	0.8113	0.2594
0.1721	0.02777			0.5078	0.1010	0.7468	0.1791
0.2114	0.02730	0.2366	0.03375	0.3808	0.06062	0.6860	0.1316
0.2598	0.02684	0.2827	0.03226	0.3531	0.04524	0.6228	0.09560
0.3073	0.02645	0.3288	0.03127	0.3788	0.04019	0.0838	0.07468
0.3540	0.02612	0.3742	0.03050	0.4155	0.03779	0.5722	0.06274
0.3999	0.02582	0.4192	0.02990	0.4557	0.03627	0.5804	0.05568
0.4454	0.02556	0.4636	0.02939	0.4963	0.03512	0.6011	0.05126
0.4904	0.02533	0.5077	0.02897	0.5370	0.03420	0.6278	0.04818
0.5350	0.02512	0.5510	0.02858	0.5777	0.03344	0.6584	0.04594
0.5790	0.02492	0.5939	0.02824	0.6182	0.03280	0.6917	0.04424
0.6666	0.02459	0.6785	0.02765	0.6988	0.03178	0.7509	0.04144
0.7528	0.02430	0.7616	0.02716	0.7787	0.03099	0.8256	0.03960
0.8371	0.02402	0.8442	0.02676	0.8575	0.03033	0.8976	0.03827
0.9197	0.02375	0.9251	0.02639	0.9554	0.02978	0.9725	0.03732
1.0818	0.02328	1.0840	0.02577	1.0893	0.02890	1.1139	0.03562
1.2415	0.02290	1.2382	0.02523	1.2406	0.02821	1.2503	0.03427
1.3990	0.02258	1.3804	0.02479	1.3873	0.02760	1.3880	0.03329
1.5558	0.02232	1.5402	0.02441	1.5320	0.02710	1.5249	0.03251
1.7100	0.02208	1.6868	0.02406	1.6781	0.02671	1.6615	0.03188

Table I. Volumetric Behavior of Propane-Benzene System (Concluded)

Pressure, Lb./ Sq. In. Abs.	Weight Fraction Propane							
	0.1207		0.2692		0.4507		0.8095	
	Z^{a}	V^{a}	Z	V	Z	V	Z	V
Dew point								
Bubble point		0.03369	\cdots
200			0.9039	0.6896	0.9332	0.7946	$0.9498{ }^{\circ}$	0.9747
300			0.8528	0.4338	0.8937	0.5073	0.9255	0.6332
400			0.7960	0.3037	0.8560	0.3644	0.9021	0.4629
500			0.7330	0.2237	0.8137	0.2771	0.8780	0.3604
600			0.6636	0.1688	0.7695	0.2184	0.8540	0.2921
800	0.18889	0.03262	0.4820	0.09194	0.6757	0.1439	0.8062	0.2068
1000	0.2250	0.03108	0.3395	0.05180	0.5821	0.09912	0.7651	0.1570
1250	0.2715	0.03009	0.3300	0.04028	0.4939	0.06729	0.7220	0.1186
1500	0.3172	0.02921	0.3612	0.03674	0.4690	0.05325	0.6885	0.09421
1750	0.3621	0.02858	0.3990	0.03479	0.4789	0.04660	0.6700	0.07858
2000	0.4063	0.02806	0.4390	0.03349	0.5020	0.04275	0.6655	0.06830
2250	0.4499	0.02762	0.4788	0.03247	0.5334	0.04037	0.6718	0.06128
2500	0.4928	0.02723	0.5185	0.03165	0.5694	0.03879	0.6868	0.05639
2750	0.5351	0.02688	0.5595	0.03105	0.6042	0.03744	0.7081	0.05285
3000	0.5771	0.02657	0.6002	0.03053	0.6395	0.03630	0.7333	0.05017
3500	0.6801	0.02605	0.6796	0.02963	0.7121	0.03465	0.7905	0.04636
4000	0.7419	0.02562	0.7584	0.02893	0.7866	0.03349	0.8522	0.04378
4500	0.8226	0.02525	0.8361	0.02835	0.8588	0.03250	0.9153	0.04175
5000	0.9020	0.02492	0.9126	0.02785	0.9307	0.03170	0.9798	0.04022
6000	1.0506	0.02437	1.0632	0.02704	1.0726	0.03044	1.1091	0.03794
7000	1.2112	0.02390	1.2093	0.02636	1.2145	0.02954	1.2363	0.03625
8000	1.3593	0.02347	1.3511	0.02577	1.2547	0.02887	1.3642	0.03500
9000	1.5058	0.02311	1.4922	0.02530	1.4962	0.02831	1.4917	0.03402
10,000	1.6484	0.02277	1.6318	0.02490	1.6316	0.02778	1.6175	0.03320
a $Z=$ compressibility factor $=P V M / R T ; V=$ specific volume, cubic feet per pound. b Figures in parentheses represent bubble-point or dew-point pressure in pounds per square inch absolute.								

Figure 2. Pressure-Composition Diagram of Propane-Benzene System

Table II. Ratio of Actual to Ideal Volume of Mixtures of Propane and Benzene

Pressure, Lb./Sq. In.	Weight Fraction Propane			
Abs.	0.1207	0.2692	0.4507	0.8095
		$0^{0.9700}$	F .	
2000	0.9950	0.9790	0.9770	0.9907
4000	0.9990	0.9864	0.9868	0.9968
10,000	1.0000	0.9985	0.9968	1.0012
2000	0.9792	0.9578	F-0.9531	0.9738
4000	0.9920	0.9796	0.9795	0.9906
10,000	1.0055	0.9982	0.9983	1.0018
2000	0.9294	0.8919	0.8732	0.9405
4000	0.9880	0.9689	0.9660	0.9836
10,000	1.0028	1.1407	0.9988	1. 0016

was subjected to three sequential partial crystallizations. The initial and final tenths of the material to melt or crystallize were discarded in each case. The purified material was fractionated in a 30 -plate glass column at a relatively low pressure. The initial and final eighths of the overhead were discarded. The index of refraction of the purified material as determined at $77^{\circ} \mathrm{F}$. for the D-lines of sodium was 1.503 . The specific volume at $100^{\circ} \mathrm{F}$. and atmospheric pressure was 0.1861 cubic foot per pound. The material was stored in a steel weighing bomb until ready for use.

EXPERIMENTAL RESULTS

The influence of pressure and temperature upon the specific volume of four mixtures of propane and benzene was determined at seven temperatures between 100° and $460^{\circ} \mathrm{F}$. These measurements were extended to a maximum pressure of 10,000 pounds per square inch. Table I records the specific volume of the four mixtures in the single-phase region. The data have been smoothed to even values of pressure for the temperatures studied experimentally.

The values of bubble-point pressure were obtained from discontinuity in the first derivative of the specific volume with respect to pressure. Figure 1 shows the specific volume of a mixture containing 0.4507 weight fraction propane. The density of the experimental points is typical of all of the data obtained. The curves were based upon the smoothed data and it was found that the average deviation of the individual experimental measurements from the smoothed data was less than 0.05%.
In Table II are recorded values of the ratio of the experimentally determined specific volume to that predicted on the basis of additive volumes of the components (6,7). The deviation from additive volumes is somewhat larger than is experienced in the case of mixtures of aliphatic hydrocarbons.
The composition of the dew-point gas was determined at a series of pressures for five temperatures. The results of these

Figure 3. Gas-Liquid Equilibrium Constants for Propane and Benzene
measurements are recorded as a pressure-composition diagram in Figure 2. The experimental points shown were those obtained from the directly measured compositions of the gas phase and from the bubble-point states determined from the volumetric data. Table III presents the compositions of the coexisting phases, together with values of the equilibrium constants for both components. Figure 3 portrays the behavior of the system in terms of the product of pressure and the equilibrium constant for each component. The deviation from Raoult's law at the lower temperatures is complex in that this product for propane exhibits minima at $100^{\circ}, 160^{\circ}$, and $220^{\circ} \mathrm{F}$. The behavior under these conditions does not resemble that found for mixtures of the paraffin hydrocarbons. At the higher temperatures the relation between equilibrium constant and pressure is similar to that found in binary hydrocarbon systems.

The presentation of the data for the equilibrium constant of benzene at temperatures below $280^{\circ} \mathrm{F}$. is inadequate in Figure 3. In order to show this region in somewhat greater detail, the ratio of the actual equilibrium constant to the equilibrium constant established from Raoult's law has been depicted as a function of pressure in Figure 4. The relationship of this ratio to other variables is described by the following equation:

$$
\begin{equation*}
\frac{K}{K_{R}}=\frac{Y P}{X P^{\prime \prime}} \tag{1}
\end{equation*}
$$

In this equation, K is the gas-liquid equilibrium constant for the component under consideration, K_{R} is its equilibrium constant as predicted by Raoult's law, Y and X are the mole fractions of the component in the gas and liquid phases, respectively, P is the pressure, and $P^{\prime \prime}$ is the vapor pressure of the pure component.
The precision of determination of the relatively small mole fraction of benzene in the gas phase at $100^{\circ} \mathrm{F}$. was not great and

Table III. Phase Compositions in Propane-Benzene System

Pressure,
Lb.
Abs.
Abs.
Weight Fraction Propane
$\frac{\text { Equilibrium Constant }}{\text { Propana }}$

$\overparen{0} .0000$	0.0000
0.7378	0.0228
0.8490	0.0624
0.9000	0.1194
0.9310	0.1980
0.9505	0.3038
0.9831	0.6801
1.0000	1.0000

F.	
149.7	1.0000
20.70	0.1741
8.525	0.1021
4.808	0.0734
3.128	0.0579
2.213	0.0506
1.250	0.0445
1.000	0.0417

11.1^{a}
20
40
60
80
100
150
200
250
300
350
$383.8 b$
29.2^{a}
40
60
80
100
150
200
250
300
350
400
450
500
550
600
$639 d$
647^{a}
80
100
150
200
200
300
350
400
450
500
500
600
650
700
750
$769{ }^{4}$
126^{a}
150
2000
2500
3300
3500
4400
7500
550
600
660
770
7750
880
885
859

0.0000	0.0000
0.0923	0.0103
0.2332	0.0323
0.3304	0.0552
0.4030	0.0793
0.4588	0.1048
0.5022	0.1312
0.5362	0.1600
0.5650	0.1905
0.5848	0.2234
0.6042	0.2576
0.6185	0.2917
0.6266	0.3358
0.6278	0.3794
0.6227	0.4290
0.5773	0.4968
0.549	0.549

$\stackrel{10.08}{8.433}$
0.100 8.433
6
4.275
4.978

${ }^{22} 1^{a}$
222.1^{a}
250
300
350
400
450
400
550
600
650
700
750
800
850
$867 d$

0.0000	0.0000
0.0571	0.0097
0.1456	0.0283
0.2059	0.0450
0.2588	0.0691
0.3062	0.0866
0.3384	0.1053
0.3685	0.1265
0.3944	0.1500
0.4184	0.1754
0.4366	0.2027
0.4461	0.2308
0.4419	0.2597
0.4132	0.3038
0.349	0.349

6.430
5.702
4.733
4.036
3.566
3.06
2.7
2.482
2.28
2.0
1.8
1.89
1.69
1.52
1.273
1.00 1.0000 0.9188
0.8077
a Vapor pressure of benzene.
${ }^{6}$ All walues at $220^{\circ} \mathrm{F}$. were interpolated.
d Estimated critical states.

Figure 4. Ratio of Actual to Raoult's Law Equilibrium Constant for Benzene
for mixtures of the aliphatic hydrocarbons of comparable volatility is not surprising when the difference in molecular structure of the compounds is considered.

ACKNOWLEDGMENT

This work was carried out as part of the activities of a Polymerization Process Corporation Fellowship. Financial support from this source made the study possible. H. H. Reamer supervised the details of the laboratory work and Betty Kendall and Virginia Berry carried out the details of the calculations.

LITERATURE CITED

(1) Beattie, Kay, and Kaminsky, J. Am. Chem. Soc., 59, 1589 (1937).
(2) Beattie, Poffenberger, and Hadlock, J. Chem. Phys., 3, 96 (1935).
(3) Bridgeman, J. Am. Chem. Soc., 49, 1174 (1927).
(4) Dana, Jenkins, Burdick, and Timm, Refrig. Eng., 12, 387 (1926).
(5) Gibson and Kincaid, J. Am. Chem.' Soc., 60, 511 (1938).
(6) Glanville and Sage, Ind. Eng. Chem., 41, 1272 (1949).
(7) Reamer, Sage, and Lacey, Ibid., 41, 482 (1949).
(8) Sage and Lacey, Trans. Am. Inst. Mining

Met. Engrs., 136, 136 (1940).
(9) Sage, Schaafsma, and Lacey, Ind. Eng. Chem., 26, 1218 (1934). (10) Young, Sci. Proc. Roy. Dublin Soc., 12, 374 (1910).

Recerved August 22, 1949.
the corresponding curve in Figure 4 is dotted for this reason. The ratio of the equilibrium constants approaches unity at the vapor pressure of benzene at each temperature. The greater deviation from Raoult's law in the case of the propane-benzene system than

Reaction of Iron with Organic Sulfur Compounds

LYLE A. HAMILTON and W. W. WOODS

Socony-Vacuum Oil Company, Inc., Paulsboro, N. J.

ABETTER knowledge of the reaction of organic sulfur compounds with iron and other common metals is of interest, particularly in the fields of corrosion and extreme pressure lubrication. Crude petroleum oils contain large amounts of sulfur in various forms and corrosion of equipment through chemical attack by the sulfur is encountered at various stages of processing. Low temperature corrosion from sulfur in reduced forms (at below $100^{\circ} \mathrm{C}$.) is generally associated with free sulfur, hydrogen sulfide, or polysulfides. This problem has been dis-
cussed in the literature on pipe-line corrosion and its prevention, and in many reports on corrosion by sulfur, sulfides, and hydrogen sulfide.

Corrosion by organic sulfur compounds or by decomposition products of organic sulfur compounds becomes more important in processing operations wherein the sulfur-containing petroleum is in contact with metals at temperatures above $100^{\circ} \mathrm{C}$. When petroleum is cracked at temperatures of 400° to $500^{\circ} \mathrm{C}$. and higher, a large portion of the sulfur is eliminated as hydrogen

In the temperature range 125° to $275^{\circ} \mathrm{C}$., many organic compounds containing bivalent sulfur react with iron. In this reaction a major portion of the sulfur is transferred to the iron as a material which is insoluble in organic liquids and appears to be principally ferrous sulfide. This reaction is common both to corrosion problems in this temperature range and to the action of sulfur compounds as extreme pressure lubricant additives, a problem in controlled corrosion. The extent of the reactions of sulfurized terpene hydrocarbons, sulfurized sperm oil, and n-dodecyl mercaptan with iron is compared over the temperature range 100° to $275^{\circ} \mathrm{C}$., and an attempt is
made to establish a sulfur balance throughout the range. Experiments on the reaction of copper with several sulfur compounds are reported. A division of sulfur compounds into two classes, based on extreme pressure lubricant tests, is made. Within one group the rate of reaction with iron appears to correlate with effectiveness in these tests. Compounds in the second group which appear to react with iron at the same rate are quite ineffective. Two different corrosion processes appear to be involved; both of these terminate in the formation of the same iron sulfide on the iron surface. Chemical differences between the processes are not known but presumably must exist.

[^0]: ${ }^{1}$ Present address, Humble Oil and Refining Company, Houston, Tex.

