
Άσκηση Ε6 

 

• Αρχικός όγκος διαλύματος: V0 = 1 m3 

• Αρχική συγκέντρωση: [Α0] = 1 Μ 

• Τροφοδοσία: Fv = 2 m3/h με [B0] = 1M 

• Χρόνος τροφοδοσίας: tΤΕΛ = 1 h 

• Αντίδραση: Α + Β → Γ + Δ 

με r2 = K [B]   και   Κ = 2 h-1 

• Πυκνότητα ρ σταθερή 

 

Λύση 

Το δοχείο του παραπάνω σχήματος είναι ένας αντιδραστήρας semi-batch, δηλαδή ο 

αντιδραστήρας έχει τροφοδοσία εισόδου αλλά δεν έχει έξοδο. Σε μία τέτοια περίπτωση, 

ο όγκος του διαλύματος αλλάζει με τον χρόνο, οπότε και υπάρχει όρος συσσώρευσης 

στο ισοζύγιο μάζας. Σε αυτή την περίπτωση όμως, ο όγκος δεν μπορεί να θεωρηθεί 

σταθερός και άρα δεν μπορεί να βγει από το διαφορικό του όρου της συσσώρευση στο 

ισοζύγιο μάζας: 

 

(𝛴𝜐𝜎𝜎ώ𝜌𝜀𝜐𝜎𝜂) = (𝛦ί𝜎𝜊𝛿𝜊𝜍) − (Έ𝜉𝜊𝛿𝜊𝜍) ± (𝛢𝜈𝜏ί𝛿𝜌𝛼𝜎𝜂) 

 

→ 
𝑑𝑛𝑖
𝑑𝑡
= 𝑛̇𝑖,𝑖𝑛 − 𝑛̇𝑖,𝑜𝑢𝑡 ± 𝑛̇𝑖,𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 

 

→
𝑑(𝑉𝑡 𝐶𝑖)

𝑑𝑡
= 𝐹𝑣  𝐶𝑖,𝑖𝑛 − 𝐹𝑣 𝐶𝑖,𝑜𝑢𝑡 ± 𝑉𝑡 𝑟     (1) 

 

Όπως είναι φανερό από την σχέση (1) (γενικό ισοζύγιο μάζας), πρέπει να βρεθεί μία 

σχέση η οποία θα συνδέσει τον όγκο του διαλύματος με τον χρόνο. Για τον λόγο αυτό, 

μπορούμε να εκμεταλλευτούμε το ολικό ισοζύγιο μάζας του διαλύματος: 

 

𝑑𝑚

𝑑𝑡
=  𝑚̇𝑖𝑛 − 𝑚̇𝑜𝑢𝑡  →  

𝑑(𝜌 𝑉𝑡)

𝑑𝑡
=  𝜌 𝐹𝑣   

 

𝜌=𝜎𝜏𝛼𝜃
→      

𝑑𝑉𝑡
𝑑𝑡
= 𝐹𝑣 →  ∫ 𝑑𝑉𝑡

𝑉𝑡

𝑉0

= ∫ 𝐹𝑣  𝑑𝑡
𝑡

0

 

 

→ 𝑉𝑡 = 𝑉0 + 𝐹𝑣  𝑡     (2) 



Εφαρμόζουμε ισοζύγιο μάζας (σχέση (1)) για το συστατικό Α: 

 

𝑑(𝑉𝑡 [𝛢])

𝑑𝑡
= 𝐹𝑣  [𝛢]𝑖𝑛 − 𝐹𝑣 [𝛢]𝑜𝑢𝑡 ± 𝑉𝑡 𝑟  

 

→ 
𝑑(𝑉𝑡 [𝛢])

𝑑𝑡
= ±𝑉𝑡 𝑟 →   

𝑑(𝑉𝑡 [𝛢])

𝑑𝑡
= −𝑉𝑡 𝑟2  

 

→  
𝑑(𝑉𝑡 [𝛢])

𝑑𝑡
= −𝑉𝑡 𝐾 [𝐵]       (3) 

 

Για να μπορέσει να επιλυθεί το ισοζύγιο του συστατικού Α, είναι απαραίτητο να 

βρεθεί η σχέση που συνδέει την συγκέντρωση του συστατικού Β με τον χρόνο. Για τον 

λόγο αυτό, εφαρμόζουμε ισοζύγιο μάζας για το συστατικό Β: 

 

𝑑(𝑉𝑡 [𝛣])

𝑑𝑡
= 𝐹𝑣  [𝛣]𝑖𝑛 − 𝐹𝑣 [𝛣]𝑜𝑢𝑡 ± 𝑉𝑡 𝑟  

 

→ 
𝑑(𝑉𝑡 [𝛣])

𝑑𝑡
= 𝐹𝑣  [𝛣0] − 𝑉𝑡 𝐾 [𝐵] 

 

Για την επίλυση της παραπάνω σχέσης, εκμεταλλευόμαστε την βασική σχέση 

διαφόρισης: 

 

𝑑

𝑑𝑡
(𝑓(𝑡) 𝑔(𝑡)) = 𝑔(𝑡)

𝑑(𝑓(𝑡))

𝑑𝑡
+ 𝑓(𝑡)

𝑑(𝑔(𝑡))

𝑑𝑡
  

 

Συνεπώς: 

 

[𝛣]
𝑑(𝑉𝑡)

𝑑𝑡
+ 𝑉𝑡

𝑑([𝛣])

𝑑𝑡
= 𝐹𝑣  [𝛣0] − 𝑉𝑡 𝐾 [𝐵] 

 

(2)
→  [𝛣]

𝑑(𝑉0 + 𝐹𝑣  𝑡 )

𝑑𝑡
+ (𝑉0 + 𝐹𝑣  𝑡)

𝑑([𝛣])

𝑑𝑡
= 𝐹𝑣 [𝛣0] − (𝑉0 + 𝐹𝑣 𝑡) 𝐾 [𝐵] 

 

→ [𝛣]𝐹𝑣 + (𝑉0 + 𝐹𝑣 𝑡)
𝑑([𝛣])

𝑑𝑡
= 𝐹𝑣  [𝛣0] − (𝑉0 + 𝐹𝑣  𝑡) 𝐾 [𝐵] 

 



→ (𝑉0 + 𝐹𝑣 𝑡)
𝑑([𝛣])

𝑑𝑡
+ (𝐹𝑣 + 𝐾 𝑉0 +𝐾 𝐹𝑣  𝑡)[𝐵] = 𝐹𝑣 [𝐵0] 

 

→ 
𝑑([𝛣])

𝑑𝑡
+
(𝐹𝑣 + 𝐾 𝑉0 + 𝐾 𝐹𝑣 𝑡)

(𝑉0 + 𝐹𝑣  𝑡)
[𝐵] =

𝐹𝑣 [𝐵0]

(𝑉0 + 𝐹𝑣 𝑡)
 

 

→ 
𝑑[𝐵]

𝑑𝑡
+
2
𝑚3

ℎ
+ 2ℎ−1 ∙ 1 𝑚3 + 2 ℎ−1 ∙ 2

𝑚3

ℎ
∙ 𝑡

1 𝑚3 + 2
𝑚3

ℎ
∙ 𝑡

[𝐵] =
2
𝑚3

ℎ
∙ 1𝑀

1 𝑚3 + 2
𝑚3

ℎ
∙ 𝑡

 

 

→ 
𝑑[𝐵]

𝑑𝑡
+
4 + 4𝑡

1 + 2𝑡
[𝐵] =

2

1 + 2𝑡
     (4) 

 

Η παραπάνω διαφορική εξίσωση είναι γραμμική πρώτης τάξης με γενική μορφή και 

γενική λύση: 

 

𝛤𝜀𝜈𝜄𝜅ή 𝜇𝜊𝜌𝜑ή:         
𝑑𝑦

𝑑𝑡
+ 𝑝(𝑡) 𝑦 = 𝑞(𝑡) 

 

𝛤𝜀𝜈𝜄𝜅ή 𝜆ύ𝜎𝜂:       𝑦(𝑡) = exp (−∫𝑝(𝑡)𝑑𝑡) ∙ [∫𝑞(𝑡) ∙ exp (∫𝑝(𝑡) 𝑑𝑡) 𝑑𝑡 + 𝐶] 

 

Συγκρίνοντας την εξίσωση (4) με την γενική μορφή μίας γραμμικής διαφορικής 

εξίσωσης πρώτης τάξης, έχουμε: 

 

𝑝(𝑡) =
4 + 4𝑡

1 + 2𝑡
=

2

1 + 2𝑡
+ 2  

 

𝑞(𝑡) =
2

1 + 2𝑡
 

 

Επίσης, για ευκολία στις επόμενες πράξεις, υπολογίζουμε: 

 

∫𝑝(𝑡) 𝑑𝑡 = ∫(
2

1 + 2𝑡
+ 2) 𝑑𝑡 = 2∫

1

1 + 2𝑡
𝑑𝑡 + 2∫𝑑𝑡 

 

→ ∫𝑝(𝑡) 𝑑𝑡 = 2 ∙
1

2
∙ ln(1 + 2𝑡) + 2𝑡 



→ ∫𝑝(𝑡) 𝑑𝑡 = ln(1 + 2𝑡) + 2𝑡 

 

Εφαρμόζοντας την γενική λύση στην εξίσωση (4), έχουμε: 

 

[𝐵] = exp (−∫𝑝(𝑡)𝑑𝑡) ∙ [∫𝑞(𝑡) ∙ exp (∫𝑝(𝑡) 𝑑𝑡) 𝑑𝑡 + 𝐶] 

 

→ [𝐵] = exp(−(ln(1 + 2𝑡) + 2𝑡)) ∙ [∫
2

1 + 2𝑡
∙ exp(ln(1 + 2𝑡) + 2𝑡) 𝑑𝑡 + 𝐶] 

 

→ [𝐵] = exp(−(ln(1 + 2𝑡) + 2𝑡)) ∙ [exp(2𝑡) + 𝐶] 

 

→ [𝐵] = (
1

1 + 2𝑡
exp(−2𝑡)) ∙ [exp(2𝑡) + 𝐶] 

 

→ [𝐵] =
1

1 + 2𝑡
+ 𝐶 ∙

exp(−2𝑡)

1 + 2𝑡
     (5) 

 

Για να βρούμε την σταθερά ολοκλήρωσης, C, χρησιμοποιούμε την αρχική συνθήκη:  

 

𝛤𝜄𝛼 𝑡 = 0 →   [𝐵] = 0 

 

→ 0 =
1

1 + 0
+ 𝐶

exp(0)

1 + 0
  →  0 = 1 + 𝐶 

 

→   𝐶 = −1  

 

Συνεπώς, η σχέση (5) γίνεται: 

 

[𝛣] =
1 − exp (−2𝑡)

1 + 2𝑡
       (6) 

 

Έχοντας βρει την σχέση που συνδέει την συγκέντρωση του Β με τον χρόνο, 

επιστρέφουμε στην εξίσωση (3): 

 

𝑑(𝑉𝑡 [𝛢])

𝑑𝑡
= −𝑉𝑡 𝐾 [𝐵] → [𝛢]

𝑑(𝑉𝑡)

𝑑𝑡
+ 𝑉𝑡

𝑑([𝛢])

𝑑𝑡
= −𝑉𝑡 𝐾 [𝐵]  



→  [𝛢]𝐹𝑣 + (𝑉0 + 𝐹𝑣  𝑡)
𝑑([𝛢])

𝑑𝑡
= −(𝑉0 + 𝐹𝑣  𝑡) 𝐾 [𝐵] 

 

→ 
𝑑([𝛢])

𝑑𝑡
+

𝐹𝑣
𝑉0 + 𝐹𝑣  𝑡

 [𝛢] = −𝐾[𝐵] →  
𝑑[𝐴]

𝑑𝑡
+

2

1 + 2 𝑡
 [𝛢] = −2

1 − exp(−2𝑡)

1 + 2𝑡
 

 

→ 
𝑑[𝐴]

𝑑𝑡
+

2

1 + 2 𝑡
 [𝛢] =

2 exp(−2𝑡) − 2

1 + 2𝑡
       (7) 

 

Η εξίσωση (7) είναι επίσης μία γραμμική διαφορική εξίσωση πρώτης τάξης και 

συγκρίνοντάς την με την γενική μορφή, έχουμε: 

 

𝑝(𝑡) =
2

1 + 2 𝑡
  

 

𝑞(𝑡) =
2 exp(−2𝑡) − 2

1 + 2𝑡
 

 

Επίσης, για ευκολία στις επόμενες πράξεις, υπολογίζουμε: 

 

∫𝑝(𝑡) 𝑑𝑡 = ∫
2

1 + 2 𝑡
𝑑𝑡 = ln(1 + 2𝑡) 

 

Εφαρμόζοντας την γενική λύση στην εξίσωση (7), έχουμε: 

 

[𝐴] = exp(− ln(1 + 2𝑡)) ∙ [∫
2 exp(−2𝑡) − 2

1 + 2𝑡
∙ exp(ln(1 + 2𝑡)) 𝑑𝑡 + 𝐶] 

 

→ [𝐴] =
1

1 + 2𝑡
∙ [2∫(exp(−2𝑡) − 2) 𝑑𝑡 + 𝐶] 

 

→ [𝐴] =
1

1 + 2𝑡
 (− exp(−2𝑡) − 2𝑡 + 𝐶)  

 

Για τον υπολογισμό της σταθεράς ολοκλήρωσης, C, χρησιμοποιούμε την αρχική 

συνθήκη: 

 

𝛤𝜄𝛼 𝑡 = 0 →  [𝐴] = [𝐴0] = 1 



→ 1 =
1

1 + 0
(−1 − 0 + 𝐶) →   𝐶 = 2 

 

Επομένως: 

 

[𝐴] =
−exp(−2𝑡) − 2𝑡 + 2

1 + 2𝑡
        (8)  

 

Η συγκέντρωση του Α γίνεται ίση με το μηδέν για χρόνο: 

 

(8) →   0 =
−exp(−2𝑡) − 2𝑡 + 2

1 + 2𝑡
→  − exp(−2𝑡) − 2𝑡 + 2 = 0 

 

→   𝑡 = 0.921 ℎ 

 

Σε αυτό το χρόνο, η συγκέντρωση του Β θα είναι ίση με : 

 

[𝛣] =
1 − exp (−2 ∙ 0.921)

1 + 2 ∙ 0.921
→   [𝛣] = 0.296 𝛭 

 

Για t ≥ 0.921 h, θα έχει καταναλωθεί όλο το Α μέσα στον αντιδραστήρα, οπότε μέχρι 

την ολοκλήρωση της μίας ώρας, που είναι ο χρόνος για τον οποίο τροφοδοτείται Β 

μέσα στον αντιδραστήρα, το Β θα συσσωρεύεται.  


