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Foreword

The need for a textbook on earthquake engineering was first pointed out by the eminent
consulting engineer, John R. Freeman (1855–1932). Following the destructive Santa Bar-
bara, California earthquake of 1925, he became interested in the subject and searched the
Boston Public Library for relevant books. He found that not only was there no textbook
on earthquake engineering, but the subject itself was not mentioned in any of the books
on structural engineering. Looking back, we can see that in 1925 engineering education
was in an undeveloped state, with computing done by slide rule and curricula that did not
prepare the student for understanding structural dynamics. In fact, no instruments had been
developed for recording strong ground motions, and society appeared to be unconcerned
about earthquake hazards.

In recent years books on earthquake engineering and structural dynamics have been
published, but the present book by Professor Anil K. Chopra fills a niche that exists be-
tween more elementary books and books for advanced graduate studies. The author is a
well-known expert in earthquake engineering and structural dynamics, and his book will
be valuable to students not only in earthquake-prone regions but also in other parts of
the world, for a knowledge of structural dynamics is essential for modern engineering. The
book presents material on vibrations and the dynamics of structures and demonstrates the
application to structural motions caused by earthquake ground shaking. The material in
the book is presented very clearly with numerous worked-out illustrative examples, so that
even a student at a university where such a course is not given should be able to study the
book on his or her own time. Readers who are now practicing engineering should have no
difficulty in studying the subject by means of this book. An especially interesting feature
of the book is the application of structural dynamics theory to important issues in the seis-
mic response and design of multistory buildings. The information presented in this book

xxi



xxii Foreword

will be of special value to those engineers who are engaged in actual seismic design and
want to improve their understanding of the subject.

Although the material in the book leads to earthquake engineering, the information
presented is also relevant to wind-induced vibrations of structures, as well as man-made
motions such as those produced by drophammers or by heavy vehicular traffic. As a text-
book on vibrations and structural dynamics, this book has no competitors and can be rec-
ommended to the serious student. I believe that this is the book for which John R. Freeman
was searching.

George W. Housner
California Institute of Technology



Preface

PHILOSOPHY AND OBJECTIVES

This book on dynamics of structures is conceived as a textbook for courses in civil engi-
neering. It includes many topics in the theory of structural dynamics, and applications of
this theory to earthquake analysis, response, design, and evaluation of structures. No prior
knowledge of structural dynamics is assumed in order to make this book suitable for the
reader learning the subject for the first time. The presentation is sufficiently detailed and
carefully integrated by cross-referencing to make the book suitable for self-study. This fea-
ture of the book, combined with a practically motivated selection of topics, should interest
professional engineers, especially those concerned with analysis and design of structures
in earthquake country.

In developing this book, much emphasis has been placed on making structural dy-
namics easier to learn by students and professional engineers because many find this sub-
ject to be difficult. To achieve this goal, the presentation has been structured around several
features: The mathematics is kept as simple as each topic will permit. Analytical proce-
dures are summarized to emphasize the key steps and to facilitate their implementation by
the reader. These procedures are illustrated by over 120 worked-out examples, including
many comprehensive and realistic examples where the physical interpretation of results is
stressed. Some 500 figures have been carefully designed and executed to be pedagogically
effective; many of them involve extensive computer simulations of dynamic response of
structures. Photographs of structures and structural motions recorded during earthquakes
are included to relate the presentation to the real world.

xxiii



xxiv Preface

The preparation of this book has been inspired by several objectives:

• Relate the structural idealizations studied to the properties of real structures.

• Present the theory of dynamic response of structures in a manner that emphasizes
physical insight into the analytical procedures.

• Illustrate applications of the theory to solutions of problems motivated by practical
applications.

• Interpret the theoretical results to understand the response of structures to various
dynamic excitations, with emphasis on earthquake excitation.

• Apply structural dynamics theory to conduct parametric studies that bring out several
fundamental issues in the earthquake response, design, and evaluation of multistory
buildings.

This mode of presentation should help the reader to achieve a deeper understanding
of the subject and to apply with confidence structural dynamics theory in tackling practi-
cal problems, especially in earthquake analysis, design, and evaluation of structures, thus
narrowing the gap between theory and practice.

EVOLUTION OF THE BOOK

Since the book first appeared in 1995, it has been revised and expanded in several ways,
resulting in the second edition (2001) and third edition (2007). Prompted by an increasing
number of recordings of ground motions in the proximity of the causative fault, Chap-
ter 6 was expanded to identify special features of near-fault ground motions and com-
pare them with the usual far-fault ground motions. Because of the increasing interest in
seismic performance of bridges, examples on dynamics of bridges and their earthquake
response were added in several chapters. In response to the growing need for simpli-
fied dynamic analysis procedures suitable for performance-based earthquake engineering,
Chapter 7 was expanded to provide a fuller discussion relating the earthquake-induced de-
formations of inelastic and elastic systems, and to demonstrate applications of the inelastic
design spectrum to structural design for allowable ductility, displacement-based design,
and seismic evaluation of existing structures. Chapter 19 (now Chapter 20) was rewritten
completely to incorporate post-1990 advances in earthquake analysis and response of in-
elastic buildings. Originally limited to three building codes—United States, Canada, and
Mexico—Chapter 21 (now Chapter 22) was expanded to include the Eurocode. The addi-
tion of Chapter 22 (now Chapter 23) was motivated by the adoption of performance-based
guidelines for evaluating existing buildings by the structural engineering profession.

In response to reader requests, the frequency-domain method of dynamic analysis
was included, but presented as an appendix instead of weaving it throughout the book.
This decision was motivated by my goal to keep the mathematics as simple as each topic
permits, thus making structural dynamics easily accessible to students and professional
engineers.



What’s New in this Edition xxv

WHAT’S NEW IN THIS EDITION

Dynamics of Structures has been well received in the 19 years since it was first pub-
lished. It continues to be used as a textbook at universities in the United States and many
other countries, and enjoys a wide professional readership as well. Translations in Japanese,
Korean, Chinese, Greek, Spanish, and Persian have been published. Preparation of the
fourth edition provided me with an opportunity to improve, expand, and update the book.

Chapter 14 has been added, requiring renumbering of Chapters 14 to 22 as 15 to 23
(the new numbering is reflected in the rest of the Preface); Chapters 5 and 16 underwent
extensive revision; Chapters 12 and 13 have been expanded; and Chapters 22 and 23 have
been updated. Specific changes include:

• Chapter 14 on nonclassically damped systems has been added. This addition has
been motivated by growing interest in such systems that arise in several practi-
cal situations: for example, structures with supplemental energy-dissipating sys-
tems or on a base isolation system, soil–structure systems, and fluid-structure
systems.

• Chapters 5 and 16 on numerical evaluation of dynamic response have been rewritten
to conform with the ways these numerical methods are usually implemented in com-
puter software, and to offer an integrated presentation of nonlinear static analysis—
also known as pushover analysis—and nonlinear dynamic analysis.

• A section has been added at the end of Chapter 12 to present a general version of the
mode acceleration superposition method for more complex excitations, such as wave
forces on offshore drilling platforms.

• Chapter 13 has been extended to include two topics that so far have been con-
fined to the research literature, but are of practical interest: (1) combining peak
responses of a structure to individual translational components of ground motion to
estimate its peak response to multicomponent excitation; and (2) response-spectrum-
based equations to determine an envelope that bounds the joint response trajectory
of all simultaneously acting forces that control the seismic design of a structural
element.

• Chapters 22 and 23 have been updated to reflect the current editions of building codes
for designing new buildings, and of performance-based guidelines and standards for
evaluating existing buildings.

• The addition of Chapter 14 prompted minor revision of Chapters 2, 4, 6, 10,
and 12.

• Several new figures, photographs, worked-out examples, and end-of-chapter prob-
lems have been added.

Using the book in my teaching and reflecting on it over the years suggested improve-
ments. The text has been clarified and polished throughout, and a few sections have been
reorganized to enhance the effectiveness of the presentation.



xxvi Preface

SUBJECTS COVERED

This book is organized into three parts: I. Single-Degree-of-Freedom Systems; II. Multi-
Degree-of-Freedom Systems; and III. Earthquake Response, Design, and Evaluation of
Multistory Buildings.

Part I includes eight chapters. In the opening chapter the structural dynamics prob-
lem is formulated for simple elastic and inelastic structures, which can be idealized as
single-degree-of-freedom (SDF) systems, and four methods for solving the differential
equation governing the motion of the structure are reviewed briefly. We then study the dy-
namic response of linearly elastic systems (1) in free vibration (Chapter 2), (2) to harmonic
and periodic excitations (Chapter 3), and (3) to step and pulse excitations (Chapter 4).
Included in Chapters 2 and 3 is the dynamics of SDF systems with Coulomb damping, a
topic that is normally not included in civil engineering texts, but one that has become rel-
evant to earthquake engineering, because energy-dissipating devices based on friction are
being used in earthquake-resistant construction. After presenting numerical time-stepping
methods for calculating the dynamic response of SDF systems (Chapter 5), the earthquake
response of linearly elastic systems and of inelastic systems is studied in Chapters 6 and
7, respectively. Coverage of these topics is more comprehensive than in texts presently
available; included are details on the construction of response and design spectra, ef-
fects of damping and yielding, and the distinction between response and design spectra.
The analysis of complex systems treated as generalized SDF systems is the subject of
Chapter 8.

Part II includes Chapters 9 through 18 on the dynamic analysis of multi-degree-of-
freedom (MDF) systems. In the opening chapter of Part II the structural dynamics problem
is formulated for structures idealized as systems with a finite number of degrees of freedom
and illustrated by numerous examples; also included is an overview of methods for solving
the differential equations governing the motion of the structure. Chapter 10 is concerned
with free vibration of systems with classical damping and with the numerical calculation
of natural vibration frequencies and modes of the structure. Chapter 11 addresses several
issues that arise in defining the damping properties of structures, including experimental
data—from forced vibration tests on structures and recorded motions of structures during
earthquakes—that provide a basis for estimating modal damping ratios, and analytical pro-
cedures to construct the damping matrix, if necessary. Chapter 12 is concerned with the
dynamics of linear systems, where the classical modal analysis procedure is emphasized.
Part C of this chapter represents a “new” way of looking at modal analysis that facilitates
understanding of how modal response contributions are influenced by the spatial distribu-
tion and the time variation of applied forces, leading to practical criteria on the number of
modes to include in response calculation. In Chapter 13, modal analysis procedures for
earthquake analysis of classically damped systems are developed; both response history
analysis and response spectrum analysis procedures are presented in a form that provides
physical interpretation; the latter procedure estimates the peak response of MDF systems
directly from the earthquake response or design spectrum. The procedures are illustrated
by numerous examples, including coupled lateral-torsional response of unsymmetric-plan
buildings and torsional response of nominally symmetric buildings. The chapter ends
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with response spectrum-based procedures to consider all simultaneously acting forces that
control the design of a structural element, and to estimate the peak response of a structure
to multicomponent earthquake excitation. The modal analysis procedure is extended in
Chapter 14 to response history analysis; of nonclassically damped systems subjected to
earthquake excitation. For this purpose, we first revisit classically damped systems and re-
cast the analysis procedures of Chapters 10 and 13 in a form that facilitates their extension
to the more general case.

Chapter 15 is devoted to the practical computational issue of reducing the number
of degrees of freedom in the structural idealization required for static analysis in order
to recognize that the dynamic response of many structures can be well represented by
their first few natural vibration modes. In Chapter 16 numerical time-stepping methods
are presented for MDF systems not amenable to classical modal analysis: systems with
nonclassical damping or systems responding into the range of nonlinear behavior. Chap-
ter 17 is concerned with classical problems in the dynamics of distributed-mass systems;
only one-dimensional systems are included. In Chapter 18 two methods are presented for
discretizing one-dimensional distributed-mass systems: the Rayleigh–Ritz method and the
finite element method. The consistent mass matrix concept is introduced, and the accuracy
and convergence of the approximate natural frequencies of a cantilever beam, determined
by the finite element method, are demonstrated.

Part III of the book contains five chapters concerned with earthquake response de-
sign, and evaluation of multistory buildings, a subject not normally included in structural
dynamics texts. Several important and practical issues are addressed using analytical pro-
cedures developed in the preceding chapters. In Chapter 19 the earthquake response of
linearly elastic multistory buildings is presented for a wide range of two key parameters:
fundamental natural vibration period and beam-to-column stiffness ratio. Based on these
results, we develop an understanding of how these parameters affect the earthquake re-
sponse of buildings and, in particular, the relative response contributions of the various
natural modes, leading to practical information on the number of higher modes to include
in earthquake response calculations. Chapter 20 is concerned with the important subject of
earthquake response of multistory buildings deforming into their inelastic range. Part A of
the chapter presents rigorous nonlinear response history analysis; identifies the important
influence of modeling assumptions, key structural parameters, and ground motion details
on seismic demands; and determines the strength necessary to limit the story ductility
demands in a multistory building. Recognizing that rigorous nonlinear response history
analysis remains an onerous task, the modal pushover analysis (MPA) procedure—an ap-
proximate analysis procedure—is developed in Part B of the chapter. In this procedure,
seismic demands are estimated by nonlinear static analyses of the structure subjected to
modal inertia force distributions. Base isolation is the subject of Chapter 21. Our goal is
to study the dynamic behavior of buildings supported on base isolation systems with the
limited objective of understanding why and under what conditions isolation is effective in
reducing the earthquake-induced forces in a structure. In Chapter 22 we present the seis-
mic force provisions in four building codes—International Building Code (United States),
National Building Code of Canada, Eurocode, and Mexico Federal District Code—together
with their relationship to the theory of structural dynamics developed in Chapters 6, 7, 8,
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and 13. Subsequently, the code provisions are evaluated in light of the results of dynamic
analysis of buildings presented in Chapters 19 and 20. Performance-based guidelines and
standards for evaluating existing buildings consider inelastic behavior explicitly in esti-
mating seismic demands at low performance levels, such as life safety and collapse pre-
vention. In Chapter 23, selected aspects of the nonlinear dynamic procedure and of the
nonlinear static procedure in these documents—ATC-40, FEMA 356, and ASCE 41-06—
are presented and discussed in light of structural dynamics theory developed in Chapters 7
and 20.

A NOTE FOR INSTRUCTORS

This book is suitable for courses at the graduate level and at the senior undergraduate level.
No previous knowledge of structural dynamics is assumed. The necessary background is
available through the usual courses required of civil engineering undergraduates. These
include:

• Static analysis of structures, including statically indeterminate structures and matrix
formulation of analysis procedures (background needed primarily for Part II)

• Structural design

• Rigid-body dynamics

• Mathematics: ordinary differential equations (for Part I), linear algebra (for Part II),
and partial differential equations (for Chapter 17 only)

By providing an elementary but thorough treatment of a large number of topics, this
book permits unusual flexibility in selection of the course content at the discretion of the
instructor. Several courses can be developed based on the material in this book. Here are a
few examples.

Almost the entire book can be covered in a one-year course:

• Title: Dynamics of Structures I (1 semester)

Syllabus: Chapter 1; Sections 1 and 2 of Chapter 2; Parts A and B of Chapter 3;
Chapter 4; selected topics from Chapter 5; Sections 1 to 7 of Chapter 6; Sections 1
to 7 of Chapter 7; selected topics from Chapter 8; Sections 1 to 4 and 9 to 11 of
Chapter 9; Parts A and B of Chapter 10; Sections 1 and 2 of Chapter 11; Parts A and
B of Chapter 12; Sections 1, 2, 7, and 8 (excluding the CQC method) of Chapter 13;
and selected topics from Part A of Chapter 22

• Title: Dynamics of Structures II (1 semester)

Syllabus: Sections 5 to 7 of Chapter 9; Sections 3 to 5 of Chapter 11; Parts C and D
of Chapter 12; Sections 3 to 11 of Chapter 13; selected parts of Chapters 14, 15, 17,
19 to 21, and 23; and Appendix A.
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The selection of topics for the first course has been dictated in part by the need to provide
comprehensive coverage, including dynamic and earthquake analysis of MDF systems, for
students taking only one course.

Abbreviated versions of the outline above can be organized for two quarter courses.
One possibility is as follows:

• Title: Dynamics of Structures I (1 quarter)

Syllabus: Chapter 1; Sections 1 and 2 of Chapter 2; Sections 1 to 4 of Chapter 3;
Sections 1 and 2 of Chapter 4; selected topics from Chapter 5; Sections 1 to 7 of
Chapter 6; Sections 1 to 7 of Chapter 7; selected topics from Chapter 8; Sections 1
to 4 and 9 to 11 of Chapter 9; Parts A and B of Chapter 10; Part B of Chapter 12;
Sections 1, 2, 7, and 8 (excluding the CQC method) of Chapter 13.

• Title: Dynamics of Structures II (1 quarter)

Syllabus: Sections 5 to 7 of Chapter 9; Sections 3 to 9 of Chapter 13; and selected
topics from Chapters 19 to 23

A one-semester course emphasizing earthquake engineering can be organized as
follows:

• Title: Earthquake Dynamics of Structures

Syllabus: Chapter 1; Sections 1 and 2 of Chapter 2; Sections 1 and 2 of Chapter 4;
Chapters 6 and 7; selected topics from Chapter 8; Sections 1 to 4 and 9 to 11 of
Chapter 9; Parts A and B of Chapter 10; Part A of Chapter 11; Sections 1 to 3 and
7 to 11 of Chapter 13; and selected topics from Chapters 19 to 23.

Solving problems is essential for students to learn structural dynamics. For this
purpose the first 18 chapters include 373 problems. Chapters 19 through 23 do not include
problems, for two reasons: (1) no new dynamic analysis procedures are introduced in these
chapters; (2) this material does not lend itself to short, meaningful problems. However, the
reader will find it instructive to work through the examples presented in Chapters 19 to 23
and to reproduce the results. The computer is essential for solving some of the problems,
and these have been identified. In solving these problems, it is assumed that the student
will have access to computer programs such as MATLAB or MATHCAD. Solutions to
these problems are available to instructors as a download from the publisher.

In my lectures at Berkeley, I develop the theory on the blackboard and illustrate it
by PowerPoint slides of the more complex figures in the book; enlarged versions of many
of the figures, which are suitable for making slides for use in the classroom, are available
to instructors as a download from the publisher. Despite requests for a complete set of
PowerPoint slides, they have not been developed because I do not think this approach is the
most effective strategy for teaching dynamics of structures. Resources for the International
Edition are accessible to instructors at www.pearsoninternationaleditions.com/chopra.
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A NOTE FOR PROFESSIONAL ENGINEERS

Many professional engineers encouraged me during 1980s to prepare a book more com-
prehensive than Dynamics of Structures, A Primer, a monograph published in 1981 by the
Earthquake Engineering Research Institute. This need, I hope, is filled by the present book.
Having been conceived as a textbook, it includes the formalism and detail necessary for
students, but these features should not deter the professional from using the book, because
its philosophy and style are aimed to facilitate learning the subject by self-study.

For professional engineers interested in earthquake analysis, response, design, and
evaluation of structures, I suggest the following reading path through the book: Chapters 1
and 2; Chapters 6 to 9; Parts A and B of Chapter 10; Part A of Chapter 11; and Chapters 13
and 19 to 23.

REFERENCES

In this introductory text it is impractical to acknowledge sources for the information pre-
sented. References have been omitted to avoid distracting the reader. However, I have
included occasional comments to add historical perspective and, at the end of almost every
chapter, a brief list of publications suitable for further reading.

S.I. EDITION

The growing demand for an S.I. version of the book prompted Pearson to make a ma-
jor investment to convert the fourth U.S. edition to S.I. units. I applaud this initiative.
Preparation of the S.I. edition has been challenging, especially because it required unit
conversion of many figures and solutions to numerous examples; some of them involved
extensive computer simulation of earthquake response of structures.

YOUR COMMENTS ARE INVITED

Although the U.S. editions have been almost free of errors, the S.I. edition may be prone to
error because of the protracted and convoluted conversion process, and because most of the
numerical examples were not redesigned or solved from scratch by us. Therefore, I request
that instructors, students, and professional engineers write to me (chopra@berkeley.edu) if
they identify errors, or if they have suggestions for improvements or clarifications. I thank
you in advance for taking the time and interest to do so.

Anil K. Chopra
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1

Equations of Motion, Problem
Statement, and Solution Methods

PREVIEW

In this opening chapter, the structural dynamics problem is formulated for simple struc-
tures that can be idealized as a system with a lumped mass and a massless supporting
structure. Linearly elastic structures as well as inelastic structures subjected to applied
dynamic force or earthquake-induced ground motion are considered. Then four methods
for solving the differential equation governing the motion of the structure are reviewed
briefly. The chapter ends with an overview of how our study of the dynamic response of
single-degree-of-freedom systems is organized in the chapters to follow.

1.1 SIMPLE STRUCTURES

We begin our study of structural dynamics with simple structures, such as the pergola
shown in Fig. 1.1.1 and the elevated water tank of Fig. 1.1.2. We are interested in under-
standing the vibration of these structures when subjected to a lateral (or horizontal) force
at the top or horizontal ground motion due to an earthquake.

We call these structures simple because they can be idealized as a concentrated or
lumped mass m supported by a massless structure with stiffness k in the lateral direction.
Such an idealization is appropriate for this pergola with a heavy concrete roof supported
by light-steel-pipe columns, which can be assumed as massless. The concrete roof is very
stiff and the flexibility of the structure in lateral (or horizontal) motion is provided entirely
by the columns. The idealized system is shown in Fig. 1.1.3a with a pair of columns
supporting the tributary length of the concrete roof. This system has a lumped mass m

3
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Figure 1.1.1 This pergola at the Macuto-Sheraton Hotel near Caracas, Venezuela, was
damaged by earthquake on July 29, 1967. The Magnitude 6.5 event, which was centered
about 24 km from the hotel, overstrained the steel pipe columns, resulting in a permanent
roof displacement of 22.86 cm. (From the Steinbrugge Collection, National Information
Service for Earthquake Engineering, University of California, Berkeley.)

equal to the mass of the roof shown, and its lateral stiffness k is equal to the sum of the
stiffnesses of individual pipe columns. A similar idealization, shown in Fig. 1.1.3b, is
appropriate for the tank when it is full of water. With sloshing of water not possible in a
full tank, it is a lumped mass m supported by a relatively light tower that can be assumed
as massless. The cantilever tower supporting the water tank provides lateral stiffness k to
the structure. For the moment we will assume that the lateral motion of these structures is
small in the sense that the supporting structures deform within their linear elastic limit.

We shall see later in this chapter that the differential equation governing the lateral
displacement u(t) of these idealized structures without any external excitation—applied
force or ground motion—is

mü + ku = 0 (1.1.1)

where an overdot denotes differentiation with respect to time; thus u̇ denotes the velocity of
the mass and ü its acceleration. The solution of this equation, presented in Chapter 2, will
show that if the mass of the idealized systems of Fig. 1.1.3 is displaced through some initial
displacement u(0), then released and permitted to vibrate freely, the structure will oscillate
or vibrate back and forth about its initial equilibrium position. As shown in Fig. 1.1.3c, the
same maximum displacement occurs oscillation after oscillation; these oscillations con-
tinue forever and these idealized systems would never come to rest. This is unrealistic,
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Figure 1.1.2 This reinforced-concrete tank
on a 12.2-m tall single concrete column,
located near the Valdivia Airport, was
undamaged by the Chilean earthquakes
of May 1960. When the tank is full of
water, the structure can be analyzed as a
single-degree-of freedom system. (From
the Steinbrugge Collection, National
Information Service for Earthquake
Engineering, University of California,
Berkeley.)

of course. Intuition suggests that if the roof of the pergola or the top of the water tank were
pulled laterally by a rope and the rope were suddenly cut, the structure would oscillate with
ever-decreasing amplitude and eventually come to rest. Such experiments were performed
on laboratory models of one-story frames, and measured records of their free vibration

•
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Figure 1.1.3 (a) Idealized pergola; (b) idealized water tank; (c) free vibration due to
initial displacement.



6 Equations of Motion, Problem Statement, and Solution Methods Chap. 1

response are presented in Fig. 1.1.4. As expected, the motion of these model structures
decays with time, with the decay being more rapid for the plexiglass model relative to the
aluminum frame.

(a)

Figure 1.1.4 (a) Aluminum and plexiglass model
frames mounted on a small shaking table used
for classroom demonstration at the University of
California at Berkeley (courtesy of T. Merport); (b)
free vibration record of aluminum model; (c) free
vibration record of plexiglass model.
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The process by which vibration steadily diminishes in amplitude is called damping.
The kinetic energy and strain energy of the vibrating system are dissipated by various
damping mechanisms that we shall mention later. For the moment, we simply recognize
that an energy-dissipating mechanism should be included in the structural idealization in
order to incorporate the feature of decaying motion observed during free vibration tests
of a structure. The most commonly used damping element is the viscous damper, in part
because it is the simplest to deal with mathematically. In Chapters 2 and 3 we introduce
other energy-dissipating mechanisms.

1.2 SINGLE-DEGREE-OF-FREEDOM SYSTEM

The system considered is shown schematically in Fig. 1.2.1. It consists of a mass m con-
centrated at the roof level, a massless frame that provides stiffness to the system, and a
viscous damper (also known as a dashpot) that dissipates vibrational energy of the system.
The beam and columns are assumed to be inextensible axially.

This system may be considered as an idealization of a one-story structure. Each
structural member (beam, column, wall, etc.) of the actual structure contributes to the
inertial (mass), elastic (stiffness or flexibility), and energy dissipation (damping) properties
of the structure. In the idealized system, however, each of these properties is concentrated
in three separate, pure components: mass component, stiffness component, and damping
component.

The number of independent displacements required to define the displaced posi-
tions of all the masses relative to their original position is called the number of degrees
of freedom (DOFs) for dynamic analysis. More DOFs are typically necessary to define
the stiffness properties of a structure compared to the DOFs necessary for representing
inertial properties. Consider the one-story frame of Fig. 1.2.1, constrained to move only
in the direction of the excitation. The static analysis problem has to be formulated with
three DOFs—lateral displacement and two joint rotations—to determine the lateral stiff-
ness of the frame (see Section 1.3). In contrast, the structure has only one DOF—lateral
displacement—for dynamic analysis if it is idealized with mass concentrated at one loca-
tion, typically the roof level. Thus we call this a single-degree-of-freedom (SDF) system.

(a)

Massless
frame

Viscous
damper

p(t)

uMass

(b)

u
ut

ug

Figure 1.2.1 Single-degree-of-freedom system: (a) applied force p(t); (b) earthquake-
induced ground motion.
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Two types of dynamic excitation will be considered: (1) external force p(t) in the lat-
eral direction (Fig. 1.2.1a), and (2) earthquake-induced ground motion ug(t) (Fig. 1.2.1b).
In both cases u denotes the relative displacement between the mass and the base of the
structure.

1.3 FORCE–DISPLACEMENT RELATION

Consider the system shown in Fig. 1.3.1a with no dynamic excitation subjected to an ex-
ternally applied static force fS along the DOF u as shown. The internal force resisting the
displacement u is equal and opposite to the external force fS (Fig. 1.3.1b). It is desired
to determine the relationship between the force fS and the relative displacement u associ-
ated with deformations in the structure during oscillatory motion. This force–displacement
relation would be linear at small deformations but would become nonlinear at larger de-
formations (Fig. 1.3.1c); both nonlinear and linear relations are considered (Fig. 1.3.1c
and d).

To determine the relationship between fS and u is a standard problem in static struc-
tural analysis, and we assume that the reader is familiar with such analyses. Thus the
presentation here is brief and limited to those aspects that are essential.

(a)

fS
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External force

(b)
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(d)

Figure 1.3.1
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1.3.1 Linearly Elastic Systems

For a linear system the relationship between the lateral force fS and resulting deformation
u is linear, that is,

fS = ku (1.3.1)

where k is the lateral stiffness of the system; its units are force/length. Implicit in Eq. (1.3.1)
is the assumption that the linear fS–u relationship determined for small deformations of
the structure is also valid for larger deformations. This linear relationship implies that fS

is a single-valued function of u (i.e., the loading and unloading curves are identical). Such
a system is said to be elastic; hence we use the term linearly elastic system to emphasize
both properties.

Consider the frame of Fig. 1.3.2a with bay width L , height h, elastic modulus E ,
and second moment of the cross-sectional area (or moment of inertia)† about the axis of
bending = Ib and Ic for the beam and columns, respectively; the columns are clamped
(or fixed) at the base. The lateral stiffness of the frame can readily be determined for two
extreme cases: If the beam is rigid [i.e., flexural rigidity E Ib = ∞ (Fig. 1.3.2b)],

k =
∑

columns

12E Ic

h3
= 24

E Ic

h3
(1.3.2)

On the other hand, for a beam with no stiffness [i.e., E Ib = 0 (Fig. 1.3.2c)],

k =
∑

columns

3E Ic

h3
= 6

E Ic

h3
(1.3.3)

Observe that for the two extreme values of beam stiffness, the lateral stiffness of the frame
is independent of L , the beam length or bay width.

The lateral stiffness of the frame with an intermediate, realistic stiffness of the beam
can be calculated by standard procedures of static structural analysis. The stiffness ma-
trix of the frame is formulated with respect to three DOFs: the lateral displacement u

EIb

EIc

• •
L

•
•

h

(a)

u

fS

(b)

EIb = ∞

u

fS

(c)

EIb = 0

u

fS

Figure 1.3.2

†In this book the preferred term for I is second moment of area instead of the commonly used moment of
inertia; the latter will be reserved for defining inertial effects associated with the rotational motion of rigid bodies.
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and the rotations of the two beam–column joints (Fig. 1.3.2a). By static condensation or
elimination of the rotational DOFs, the lateral force–displacement relation of Eq. (1.3.1) is
determined. Applying this procedure to a frame with L = 2h and E Ib = E Ic, its lateral
stiffness is obtained (see Example 1.1):

k = 96

7

E Ic

h3
(1.3.4)

The lateral stiffness of the frame can be computed similarly for any values of Ib,
Ic, L , and h using the stiffness coefficients for a uniform flexural element presented in
Appendix 1. If shear deformations in elements are neglected, the result can be written in
the form

k = 24E Ic

h3

12ρ + 1

12ρ + 4
(1.3.5)

where ρ = (E Ib/L)÷ (2E Ic/h) is the beam-to-column stiffness ratio (to be elaborated in
Section 18.1.1). For ρ = 0, ∞, and 1

4 , Eq. (1.3.5) reduces to the results of Eqs. (1.3.3),
(1.3.2), and (1.3.4), respectively. The lateral stiffness is plotted as a function of ρ in
Fig. 1.3.3; it increases by a factor of 4 as ρ increases from zero to infinity.

10–4 10–3 10–2 10–1 100 101 102

6

24

k 
/ (

E
I c

 / 
h3 )

ρ

Figure 1.3.3 Variation of lateral stiffness, k, with beam-to-column stiffness ratio, ρ.

Example 1.1

Calculate the lateral stiffness for the frame shown in Fig. E1.1a, assuming the elements to be
axially rigid.

(a)
• •

L  = 2h

•
•

h EIc EIc

EIb
u2 u3

u1

(b)

k21 = 6EIc / h
2 k31 = 6EIc / h

2

k11 =2(12EIc)

h3
u1 = 1

(c)

k22 = 4EIc / h + 4EIb / L
k32 = 2EIb / L

k12 =6EIc

h2
u2 = 1

Figure E1.1
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Solution This structure can be analyzed by any of the standard methods, including moment
distribution. Here we use the definition of stiffness influence coefficients to solve the problem.

The system has the three DOFs shown in Fig. E1.1a. To obtain the first column of the
3×3 stiffness matrix, we impose unit displacement in DOF u1, with u2 = u3 = 0. The forces
ki1 required to maintain this deflected shape are shown in Fig. E1.1b. These are determined
using the stiffness coefficients for a uniform flexural element presented in Appendix 1. The
elements ki2 in the second column of the stiffness matrix are determined by imposing u2 = 1
with u1 = u3 = 0; see Fig. E1.1c. Similarly, the elements ki3 in the third column of the
stiffness matrix can be determined by imposing displacements u3 = 1 with u1 = u2 = 0.
Thus the 3× 3 stiffness matrix of the structure is known and the equilibrium equations can be
written. For a frame with Ib = Ic subjected to lateral force fS , they are

E Ic

h3

[
24 6h 6h
6h 6h2 h2

6h h2 6h2

]{
u1
u2
u3

}
=
{

fS
0
0

}
(a)

From the second and third equations, the joint rotations can be expressed in terms of lateral
displacement as follows:{

u2
u3

}
= −

[
6h2 h2

h2 6h2

]−1 [ 6h
6h

]
u1 = − 6

7h

[
1
1

]
u1 (b)

Substituting Eq. (b) into the first of three equations in Eq. (a) gives

fS =
(

24E Ic

h3
− E Ic

h3

6

7h
〈6h 6h〉

[
1
1

])
u1 = 96

7

E Ic

h3
u1 (c)

Thus the lateral stiffness of the frame is

k = 96

7

E Ic

h3
(d)

This procedure to eliminate joint rotations, known as the static condensation method, is
presented in textbooks on static analysis of structures. We return to this topic in Chapter 9.

1.3.2 Inelastic Systems

Determined by experiments, the force–deformation relation for a structural steel compo-
nent undergoing cyclic deformations expected during earthquakes is shown in Fig. 1.3.4.
The initial loading curve is nonlinear at the larger amplitudes of deformation, and the un-
loading and reloading curves differ from the initial loading branch; such a system is said
to be inelastic. This implies that the force–deformation relation is path dependent, i.e., it
depends on whether the deformation is increasing or decreasing. Thus the resisting force
is an implicit function of deformation:

fS = fS(u) (1.3.6)

The force–deformation relation for the idealized one-story frame (Fig. 1.3.1a) deforming
into the inelastic range can be determined in one of two ways. One approach is to use
methods of nonlinear static structural analysis. For example, in analyzing a steel structure
with an assumed stress–strain law, the analysis keeps track of the initiation and spreading
of yielding at critical locations and formation of plastic hinges to obtain the initial loading
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Figure 1.3.4 Force–deformation relation for a structural steel component. (From
H. Krawinkler, V. V. Bertero, and E. P. Popov, “Inelastic Behavior of Steel Beam-to-
Column Subassemblages,” Report No. EERC 71-7, University of California, Berkeley,
1971.)

curve (o–a) shown in Fig. 1.3.1c. The unloading (a–c) and reloading (c–a) curves can be
computed similarly or can be defined from the initial loading curve using existing hypothe-
ses. Another approach is to define the inelastic force–deformation relation as an idealized
version of the experimental data, such as in Fig. 1.3.4.

We are interested in studying the dynamic response of inelastic systems because
many structures are designed with the expectation that they will undergo some cracking,
yielding, and damage during intense ground shaking caused by earthquakes.

1.4 DAMPING FORCE

As mentioned earlier, the process by which free vibration steadily diminishes in amplitude
is called damping. In damping, the energy of the vibrating system is dissipated by various
mechanisms, and often more than one mechanism may be present at the same time. In
simple “clean” systems such as the laboratory models of Fig. 1.1.4, most of the energy
dissipation presumably arises from the thermal effect of repeated elastic straining of the
material and from the internal friction when a solid is deformed. In actual structures,
however, many other mechanisms also contribute to the energy dissipation. In a vibrating
building these include friction at steel connections, opening and closing of microcracks
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in concrete, and friction between the structure itself and nonstructural elements such as
partition walls. It seems impossible to identify or describe mathematically each of these
energy-dissipating mechanisms in an actual building.

As a result, the damping in actual structures is usually represented in a highly ideal-
ized manner. For many purposes the actual damping in a SDF structure can be idealized
satisfactorily by a linear viscous damper or dashpot. The damping coefficient is selected
so that the vibrational energy it dissipates is equivalent to the energy dissipated in all the
damping mechanisms, combined, present in the actual structure. This idealization is there-
fore called equivalent viscous damping, a concept developed further in Chapter 3.

Figure 1.4.1a shows a linear viscous damper subjected to a force fD along the DOF u.
The internal force in the damper is equal and opposite to the external force fD (Fig. 1.4.1b).
As shown in Fig. 1.4.1c, the damping force fD is related to the velocity u̇ across the linear
viscous damper by

fD = cu̇ (1.4.1)

where the constant c is the viscous damping coefficient; it has units of force× time/length.
Unlike the stiffness of a structure, the damping coefficient cannot be calculated from

the dimensions of the structure and the sizes of the structural elements. This should not
be surprising because, as we noted earlier, it is not feasible to identify all the mechanisms
that dissipate vibrational energy of actual structures. Thus vibration experiments on actual
structures provide the data for evaluating the damping coefficient. These may be free
vibration experiments that lead to data such as those shown in Fig. 1.1.4; the measured rate
at which motion decays in free vibration will provide a basis for evaluating the damping
coefficient, as we shall see in Chapter 2. The damping property may also be determined
from forced vibration experiments, a topic that we study in Chapter 3.

The equivalent viscous damper is intended to model the energy dissipation at defor-
mation amplitudes within the linear elastic limit of the overall structure. Over this range of
deformations, the damping coefficient c determined from experiments may vary with the
deformation amplitude. This nonlinearity of the damping property is usually not consid-
ered explicitly in dynamic analyses. It may be handled indirectly by selecting a value for
the damping coefficient that is appropriate for the expected deformation amplitude, usually
taken as the deformation associated with the linearly elastic limit of the structure.

(a)

fD

fD

u

fD

fD
External force

Resisting force

(b)

c
1

fD

u̇

(c)

Figure 1.4.1
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Additional energy is dissipated due to inelastic behavior of the structure at larger
deformations. Under cyclic forces or deformations, this behavior implies formation of a
force–deformation hysteresis loop (Fig. 1.3.1c). The damping energy dissipated during
one deformation cycle between deformation limits ± uo is given by the area within the
hysteresis loop abcda (Fig. 1.3.1c). This energy dissipation is usually not modeled by a
viscous damper, especially if the excitation is earthquake ground motion, for reasons we
note in Chapter 7. Instead, the most common, direct, and accurate approach to account for
the energy dissipation through inelastic behavior is to recognize the inelastic relationship
between resisting force and deformation, such as shown in Figs. 1.3.1c and 1.3.4, in solving
the equation of motion (Chapter 5). Such force–deformation relationships are obtained
from experiments on structures or structural components at slow rates of deformation, thus
excluding any energy dissipation arising from rate-dependent effects. The usual approach
is to model this damping in the inelastic range of deformations by the same viscous damper
that was defined earlier for smaller deformations within the linearly elastic range.

1.5 EQUATION OF MOTION: EXTERNAL FORCE

Figure 1.5.1a shows the idealized one-story frame introduced earlier subjected to an exter-
nally applied dynamic force p(t) in the direction of the DOF u. This notation indicates
that the force p varies with time t . The resulting displacement of the mass also varies with
time; it is denoted by u(t). In Sections 1.5.1 and 1.5.2 we derive the differential equation
governing the displacement u(t) by two methods using (1) Newton’s second law of motion,
and (2) dynamic equilibrium. An alternative point of view for the derivation is presented
in Section 1.5.3.

1.5.1 Using Newton’s Second Law of Motion

The forces acting on the mass at some instant of time are shown in Fig. 1.5.1b. These
include the external force p(t), the elastic (or inelastic) resisting force fS (Fig. 1.3.1), and
the damping resisting force fD (Fig. 1.4.1). The external force is taken to be positive in
the direction of the x-axis, and the displacement u(t), velocity u̇(t), and acceleration ü(t)
are also positive in the direction of the x-axis. The elastic and damping forces are shown

(a)

p(t)

u
m

fS
fD

m p(t)

(b)

fS
fD

fI p(t)

(c)

Figure 1.5.1
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acting in the opposite direction because they are internal forces that resist the deformation
and velocity, respectively.

The resultant force along the x-axis is p − fS − fD , and Newton’s second law of
motion gives

p − fS − fD = mü or mü + fD + fS = p(t) (1.5.1)

This equation after substituting Eqs. (1.3.1) and (1.4.1) becomes

mü + cu̇ + ku = p(t) (1.5.2)

This is the equation of motion governing the deformation or displacement u(t) of the
idealized structure of Fig. 1.5.1a, assumed to be linearly elastic, subjected to an external
dynamic force p(t). The units of mass are force/acceleration.

This derivation can readily be extended to inelastic systems. Equation (1.5.1) is
still valid and all that needs to be done is to replace Eq. (1.3.1), restricted to linear systems,
by Eq. (1.3.6), valid for inelastic systems. For such systems, therefore, the equation of
motion is

mü + cu̇ + fS(u) = p(t) (1.5.3)

1.5.2 Dynamic Equilibrium

Having been trained to think in terms of equilibrium of forces, structural engineers may
find D’Alembert’s principle of dynamic equilibrium particularly appealing. This principle
is based on the notion of a fictitious inertia force, a force equal to the product of mass
times its acceleration and acting in a direction opposite to the acceleration. It states that
with inertia forces included, a system is in equilibrium at each time instant. Thus a free-
body diagram of a moving mass can be drawn, and principles of statics can be used to
develop the equation of motion.

Figure 1.5.1c is the free-body diagram at time t with the mass replaced by its inertia
force, which is shown by a dashed line to distinguish this fictitious force from the real
forces. Setting the sum of all the forces equal to zero gives Eq. (1.5.1b),† which was
derived earlier by using Newton’s second law of motion.

1.5.3 Stiffness, Damping, and Mass Components

In this section the governing equation for the idealized one-story frame is formulated based
on an alternative viewpoint. Under the action of external force p(t), the state of the system
is described by displacement u(t), velocity u̇(t), and acceleration ü(t); see Fig. 1.5.2a.
Now visualize the system as the combination of three pure components: (1) the stiffness
component: the frame without damping or mass (Fig. 1.5.2b); (2) the damping component:
the frame with its damping property but no stiffness or mass (Fig. 1.5.2c); and (3) the mass
component: the roof mass without the stiffness or damping of the frame (Fig. 1.5.2d).

†Two or more equations in the same line with the same equation number will be referred to as equations a,
b, c, etc., from left to right.
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=

p(t)

Displacement u
Velocity u̇
Acceleration ü

(a)

+

fS

Displacement u

(b)

+

fD

Velocity u̇

(c)

fI

Acceleration ü

(d)

Figure 1.5.2 (a) System; (b) stiffness component; (c) damping component; (d) mass component.

The external force fS on the stiffness component is related to the displacement u by
Eq. (1.3.1) if the system is linearly elastic, the external force fD on the damping com-
ponent is related to the velocity u̇ by Eq. (1.4.1), and the external force f I on the mass
component is related to the acceleration by f I = mü. The external force p(t) applied
to the complete system may therefore be visualized as distributed among the three com-
ponents of the structure, and fS + fD + f I must equal the applied force p(t) leading to
Eq. (1.5.1b). Although this alternative viewpoint may seem unnecessary for the simple
system of Fig. 1.5.2a, it is useful for complex systems (Chapter 9).

Example 1.2

A small one-story industrial building, 6 by 10 m in plan, is shown in Fig. E1.2 with
moment frames in the north–south direction and braced frames in the east–west direction.
The mass of the structure can be idealized as 150 kg/m2 lumped at the roof level. The hori-
zontal cross bracing is at the bottom chord of the roof trusses. All columns are HE-A 200
sections; their second moments of cross-sectional area about the x and y axes are Ix =
2510 cm4 and 925 cm4, respectively; for steel, E = 200,000 MPa. The vertical cross-bracings
are made of 25 mm-diameter rods. Formulate the equation governing free vibration in (a) the
north–south direction and (b) the east–west direction.

I

I I

I

Horizontal bracing

• •

•
•

6 m

10
 m

(a)

x

y
N Roof truss

•
••

•
4 

m
1 

m

• •
10 m

(b) (c)

Vertical
bracing

• •
6 m

(d)

A, E

•

•

•

•
L

u
fS
p

•
•

θ
δ

Figure E1.2 (a) Plan; (b) east and west elevations; (c) north and south elevations; (d) cross brace.
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Solution The mass lumped at the roof is

m = 150× 10× 6 = 9000 kg

Because of the horizontal cross-bracing, the roof can be treated as a rigid diaphragm.

(a) North–south direction. Because of the roof truss, each column behaves as a
clamped–clamped column and the lateral stiffness of the two moment frames (Fig. E1.2b)
is

kN-S = 4

(
12E Ix

h3

)
= 4

12(200,000× 106)(2510× 10(−8))

(4)3

= 3.675× 106 N/m = 3675 kN/m

and the equation of motion is

mü + (kN-S) u = 0 (a)

(b) East–west direction. Braced frames, such as those shown in Fig. E1.2c, are usu-
ally designed as two superimposed systems: an ordinary rigid frame that supports vertical
(dead and live) loads, plus a vertical bracing system, generally regarded as a pin-connected
truss that resists lateral forces. Thus the lateral stiffness of a braced frame can be estimated as
the sum of the lateral stiffnesses of individual braces. The stiffness of a brace (Fig. E1.2d) is
kbrace = (AE/L) cos2 θ . This can be derived as follows.

We start with the axial force–deformation relation for a brace:

p = AE

L
δ (b)

By statics fS = p cos θ , and by kinematics u = δ/ cos θ . Substituting p = fS/ cos θ and
δ = u cos θ in Eq. (b) gives

fS = kbraceu kbrace = AE

L
cos2 θ (c)

For the brace in Fig. E1.2c, cos θ = 6/
√

42 + 62 = 0.8321, A = 4.909 cm2,
L = 7.21 m, and

kbrace = (4.909× 10(−4))(200,000× 106)

7.21
(0.8321)2

= 9.425× 106 N/m = 9425 kN/m

Although each frame has two cross-braces, only the one in tension will provide lateral resis-
tance; the one in compression will buckle at small axial force and will contribute little to the
lateral stiffness. Considering the two frames

kE-W = 2× 9425 = 18,850 kN/m

and the equation of motion is

mü + (kE-W) u = 0 (d)

Observe that the error in neglecting the stiffness of columns is small: kcol = 2× 12E Iy/h3 =
694 kN/m versus kbrace = 9425 kN/m

Example 1.3

A 120-m-long concrete, box-girder bridge on four supports—two abutments and two sym-
metrically located bents—is shown in Fig. E1.3. The cross-sectional area of the bridge deck



Abutment 1

Abutment 2

Bent 1

Bent 2
x

y

Longitudinal

Transverse

40 m

40 m

40 m

Deck

(a)

(b)

Bridge deck

Footings

z

x

8 m

(c) k k

Figure E1.3
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is 12 m2. The mass of the bridge is idealized as lumped at the deck level; the density of
concrete is 2400 kg/m3. The mass of the bents may be neglected. Each bent consists of three
8-m-tall columns of circular cross section with Iy′ = Iz′ = 0.15 m4 (Fig. E1.3b). Formulate
the equation of motion governing free vibration in the longitudinal direction. The elastic
modulus of concrete is E = 20,000 MPa.

Solution The mass per unit length lumped at the deck level is (12)(2400) = 28,800 kg/m.
The total mass lumped at the deck level is

m = 28,800× 120 = 3.456× 106 kg

and the corresponding mass is

m = w

g
= 6919

32.2
= 3136.073 kN-sec2/m

The longitudinal stiffness of the bridge is computed assuming the bridge deck to displace
rigidly as shown in Fig. E1.3c. Each column of a bent behaves as a clamped–clamped column.
The longitudinal stiffness provided by each bent is

kbent = 3

(
12E Iz′

h3

)
= 3

[
12(20,000× 106)(0.15)

83

]
= 2.109× 108 N/m = 210,900 kN/m

Two bents provide a total stiffness of

k = 2× kbent = 2× 210,900 = 421,800 kN/m

The equation governing the longitudinal displacement u is

mü + ku = 0

1.6 MASS–SPRING–DAMPER SYSTEM

We have introduced the SDF system by idealizing a one-story structure (Fig. 1.5.1a), an
approach that should appeal to structural engineering students. However, the classic SDF
system is the mass–spring–damper system of Fig. 1.6.1a. The dynamics of this system is
developed in textbooks on mechanical vibration and elementary physics. If we consider
the spring and damper to be massless, the mass to be rigid, and all motion to be in the
direction of the x-axis, we have an SDF system. Figure 1.6.1b shows the forces acting
on the mass; these include the elastic resisting force, fS = ku, exerted by a linear spring
of stiffness k, and the damping resisting force, fD = cu̇, due to a linear viscous damper.
Newton’s second law of motion then gives Eq. (1.5.1b). Alternatively, the same equation
is obtained using D’Alembert’s principle and writing an equilibrium equation for forces in
the free-body diagram, including the inertia force (Fig. 1.6.1c). It is clear that the equation
of motion derived earlier for the idealized one-story frame of Fig. 1.5.1a is also valid for
the mass–spring–damper system of Fig. 1.6.1a.
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Friction-free surface

(a)

u

m p(t)

k

c

ku

cu̇
p(t)

mg

mg

(b)

ku

cu̇
p(t)mü

mg

mg

(c)

Figure 1.6.1 Mass–spring–damper system.

Example 1.4

Derive the equation of motion of the mass m suspended from a spring at the free end of a
cantilever steel beam shown in Fig. E1.4a. For steel, E = 200,000 MPa. Neglect the mass of
the beam and spring.

• •
L = 3 m

50-mm diameter

k = 3500 N/m

mg

p(t)

(a) (b)

ū
st

u

Undeformed position

Static equilibrium

(c)

fS

p(t)

mg

mǖ

(d)

fS

fS

δ

Figure E1.4 (a) System; (b) undeformed, deformed, and static equilibrium positions;
(c) free-body diagram; (d) spring and beam forces.

Solution Figure E1.4b shows the deformed position of the free end of the beam, spring, and
mass. The displacement of the mass ū is measured from its initial position with the beam
and spring in their original undeformed configuration. Equilibrium of the forces of Fig. E1.4c
gives

m ¨̄u + fS = w + p(t) (a)
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where

fS = keū (b)

and the effective stiffness ke of the system remains to be determined. The equation of motion
is

m ¨̄u + keū = w + p(t) (c)

The displacement ū can be expressed as

ū = δst + u (d)

where δst is the static displacement due to mass m and u is measured from the position of
static equilibrium. Substituting Eq. (d) in Eq. (a) and noting that (1) ¨̄u = ü because δst does
not vary with time, and (2) keδst = mg gives

mü + keu = p(t) (e)

Observe that this is the same as Eq. (1.5.2) with c = 0 for a spring–mass system oriented in
the horizontal direction (Fig. 1.6.1). Also note that the equation of motion (e) governing u,
measured from the static equilibrium position, is unaffected by gravity forces.

For this reason we usually formulate a dynamic analysis problem for a linear system
with its static equilibrium position as the reference position. The displacement u(t) and as-
sociated internal forces in the system will represent the dynamic response of the system. The
total displacements and forces are obtained by adding the corresponding static quantities to
the dynamic response.

The effective stiffness ke remains to be determined. It relates the static force fS to the
resulting displacement u by

fS = keu (f)
where

u = uspring + ubeam (g)

where ubeam is the deflection of the right end of the beam and uspring is the deformation in the
spring. With reference to Fig. E1.4d,

fS = kuspring = kbeamubeam (h)

In Eq. (g), substitute for u from Eq. (f) and the uspring and ubeam from Eq. (h) to obtain

fS

ke
= fS

k
+ fS

kbeam
or ke = kkbeam

k + kbeam
(i)

Now k = 3500 N/m and

kbeam = 3E I

L3
= 3(200,000× 106)(π(0.025)4/4)

33
= 6816 N/m

Substituting for k and kbeam in Eq. (i) gives

ke = 2313 N/m

As mentioned earlier, the gravity forces can be omitted from the formulation of the
governing equation for the system of Fig. E1.4 provided that the displacement u is measured
from the static equilibrium position. However, the gravity loads must be considered if they act
as either restoring forces (Example 1.5) or as destabilizing forces (Example 1.6).
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Example 1.5

Derive the equation governing the free motion of a simple pendulum (Fig. E1.5a), which
consists of a point mass m suspended by a light string of length L .

L

m

O

(a)

T

fI
mg

(b)

θ

Figure E1.5 (a) Simple pendulum;
(b) free-body diagram.

Solution Figure E1.5a shows the displaced position of the pendulum defined by the angle θ
measured from the vertical position, and Fig. E1.5b shows the free-body diagram of the mass.
The forces acting are the weight mg, tension T in the string, and D’Alembert’s fictitious inertia
force f I = mL θ̈ .

Equilibrium of the moments of forces about O gives

mL2θ̈ + mgL sin θ = 0 (a)

This is a nonlinear differential equation governing θ .
For small rotations, sin θ � θ and the equation of motion [Eq. (a)] can be rewritten as

θ̈ + g

L
θ = 0 (b)

Example 1.6

The system of Fig. E1.6 consists of a mass m attached to a rigid massless bar of length L joined
to its support by a rotational spring of stiffness k. Derive the equation of motion. Neglect
rotational inertia and assume small deflections. What is the mass that causes buckling?

w

k

(a)

•
•

L

fI

w

O

(b)

θ

fS

Figure E1.6

Solution Figure E1.6b shows the displaced position of the system defined by the angle θ
measured from the vertical position and the free-body diagram, which includes the gravita-
tional forces mg, the spring force (moment) fS = kθ , and D’Alembert’s fictitious inertia force
f I = mL θ̈ .
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Equilibrium of the moments about O gives

f I L + fS = mgL sin θ

or

mL2θ̈ + kθ = mgL sin θ (a)

For small rotations sin θ � θ and Eq. (a) can be rewritten as

mL2θ̈ + (k − mgL)θ = 0 (b)

Observe that the gravity load reduces the effective stiffness of the system. If the mass
m = k/(gL), the effective stiffness is zero and the system becomes unstable under gravita-
tional forces. Thus, the critical mass that causes buckling is

mcr = k

gL
(c)

1.7 EQUATION OF MOTION: EARTHQUAKE EXCITATION

In earthquake-prone regions, the principal problem of structural dynamics that concerns
structural engineers is the response of structures subjected to earthquake-induced motion
of the base of the structure. The displacement of the ground is denoted by ug , the total (or
absolute) displacement of the mass by ut , and the relative displacement between the mass
and ground by u (Fig. 1.7.1). At each instant of time these displacements are related by

ut (t) = ug(t)+ u(t) (1.7.1)

Both ut and ug refer to the same inertial frame of reference and their positive directions
coincide.

The equation of motion for the idealized one-story system of Fig. 1.7.1a subjected to
earthquake excitation can be derived by any one of the approaches introduced in Section
1.5. Here we choose to use the concept of dynamic equilibrium. From the free-body
diagram including the inertia force f I , shown in Fig. 1.7.1b, the equation of dynamic
equilibrium is

f I + fD + fS = 0 (1.7.2)

(a)

u
ut

ug

fS
fD

fI

(b) Figure 1.7.1
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Only the relative motion u between the mass and the base due to structural deformation
produces elastic and damping forces (i.e., the rigid-body component of the displacement
of the structure produces no internal forces). Thus for a linear system, Eqs. (1.3.1) and
(1.4.1) are still valid. The inertia force f I is related to the acceleration üt of the mass by

f I = müt (1.7.3)

Substituting Eqs. (1.3.1), (1.4.1), and (1.7.3) in Eq. (1.7.2) and using Eq. (1.7.1) gives

mü + cu̇ + ku = −müg(t) (1.7.4)

This is the equation of motion governing the relative displacement or deformation u(t) of
the linearly elastic structure of Fig. 1.7.1a subjected to ground acceleration üg(t).

For inelastic systems, Eq. (1.7.2) is valid, but Eq. (1.3.1) should be replaced by
Eq. (1.3.6). The resulting equation of motion is

mü + cu̇ + fS(u) = −müg(t) (1.7.5)

Comparison of Eqs. (1.5.2) and (1.7.4), or of Eqs. (1.5.3) and (1.7.5), shows that
the equations of motion for the structure subjected to two separate excitations—ground
acceleration üg(t) and external force= −müg(t)—are one and the same. Thus the relative
displacement or deformation u(t) of the structure due to ground acceleration üg(t) will be
identical to the displacement u(t) of the structure if its base were stationary and if it were
subjected to an external force = −müg(t). As shown in Fig. 1.7.2, the ground motion can
therefore be replaced by the effective earthquake force (indicated by the subscript “eff”):

peff(t) = −müg(t) (1.7.6)

This force is equal to mass times the ground acceleration, acting opposite to the accelera-
tion. It is important to recognize that the effective earthquake force is proportional to the
mass of the structure. Thus the structural designer increases the effective earthquake force
if the structural mass is increased.

Although the rotational components of ground motion are not measured during earth-
quakes, they can be estimated from the measured translational components and it is of
interest to apply the preceding concepts to this excitation. For this purpose, consider the
cantilever tower of Fig. 1.7.3a, which may be considered as an idealization of the water
tank of Fig. 1.1.2, subjected to base rotation θg . The total displacement ut of the mass is

üg(t)

=

peff(t)  = −müg(t)

Stationary base

Figure 1.7.2 Effective earthquake force: horizontal ground motion.



Sec. 1.7 Equation of Motion: Earthquake Excitation 25

•
•

h

(a)

g

g

u
ut

Stationary base

(b)

peff(t)  = −mh ¨
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Figure 1.7.3 Effective earthquake force: rotational ground motion.

made up of two parts: u associated with structural deformation and a rigid-body compo-
nent hθg , where h is the height of the mass above the base. At each instant of time these
displacements are related by

ut (t) = u(t)+ hθg(t) (1.7.7)

Equations (1.7.2) and (1.7.3) are still valid, but the total acceleration üt (t) must now be
determined from Eq. (1.7.7). Putting all these equations together leads to

mü + cu̇ + ku = −mhθ̈g(t) (1.7.8)

The effective earthquake force associated with ground rotation is

peff(t) = −mhθ̈g(t) (1.7.9)

Example 1.7

A uniform rigid slab of total mass m is supported on four columns of height h rigidly con-
nected to the top slab and to the foundation slab (Fig. E1.7a). Each column has a rectangular
cross section with second moments of area Ix and Iy for bending about the x- and y-axes,
respectively. Determine the equation of motion for this system subjected to rotation ugθ of the
foundation about a vertical axis. Neglect the mass of the columns.

Solution The elastic resisting torque or torsional moment fS acting on the mass is shown in
Fig. E1.7b, and Newton’s second law gives

− fS = IO üt
θ (a)

where

ut
θ (t) = uθ (t)+ ugθ (t) (b)

Here uθ is the rotation of the roof slab relative to the ground and IO = m(b2 + d2)/12 is the
moment of inertia of the roof slab about the axis normal to the slab passing through its center
of mass O . The units of moment of inertia are force× (length)2/acceleration. The torque fS
and relative rotation uθ are related by

fS = kθuθ (c)
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Figure E1.7

where kθ is the torsional stiffness. To determine kθ , we introduce a unit rotation, uθ = 1,
and identify the resisting forces in each column (Fig. E1.7c). For a column with both ends
clamped, kx = 12E Iy/h3 and ky = 12E Ix/h3. The torque required to equilibrate these
resisting forces is

kθ = 4

(
kx

d

2

d

2

)
+ 4

(
ky

b

2

b

2

)
= kx d2 + kyb2 (d)

Substituting Eqs. (c), (d), and (b) in (a) gives

IO üθ + (kx d2 + kyb2)uθ = −IO ügθ (e)

This is the equation governing the relative rotation uθ of the roof slab due to rotational
acceleration ügθ of the foundation slab.

1.8 PROBLEM STATEMENT AND ELEMENT FORCES

1.8.1 Problem Statement

Given the mass m, the stiffness k of a linearly elastic system, or the force–deformation
relation fS(u) for an inelastic system, the damping coefficient c, and the dynamic
excitation—which may be an external force p(t) or ground acceleration üg(t)—a
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fundamental problem in structural dynamics is to determine the response of an SDF
system: the idealized one-story system or the mass–spring–damper system. The term
response is used in a general sense to include any response quantity, such as displace-
ment, velocity, or acceleration of the mass; also, an internal force or internal stress in the
structure. When the excitation is an external force, the response quantities of interest are
the displacement or deformation u(t), velocity u̇(t), and acceleration ü(t) of the mass. For
earthquake excitation, both the total (or absolute) and the relative values of these quanti-
ties may be needed. The relative displacement u(t) associated with deformations of the
structure is the most important since the internal forces in the structure are directly related
to u(t).

1.8.2 Element Forces

Once the deformation response history u(t) has been evaluated by dynamic analysis
of the structure (i.e., by solving the equation of motion), the element forces—bending
moments, shears, and axial forces—and stresses needed for structural design can be
determined by static analysis of the structure at each instant in time (i.e., no additional
dynamic analysis is necessary). This static analysis of a one-story linearly elastic frame
can be visualized in two ways:

1. At each instant, the lateral displacement u is known to which joint rotations
are related and hence they can be determined; see Eq. (b) of Example 1.1. From the
known displacement and rotation of each end of a structural element (beam and col-
umn) the element forces (bending moments and shears) can be determined through the
element stiffness properties (Appendix 1); and stresses can be obtained from element
forces.

2. The second approach is to introduce the equivalent static force, a central concept
in earthquake engineering as we shall see in Chapter 6. At any instant of time t this force fS

is the static (slowly applied) external force that will produce the deformation u determined
by dynamic analysis. Thus

fS(t) = ku(t) (1.8.1)

where k is the lateral stiffness of the structure. Alternatively, fS can be interpreted as
the external force that will produce the same deformation u in the stiffness component of
the structure [i.e., the system without mass or damping (Fig. 1.5.2b)] as that determined
by dynamic analysis of the structure [i.e., the system with mass, stiffness, and damping
(Fig. 1.5.2a)]. Element forces or stresses can be determined at each time instant by static
analysis of the structure subjected to the force fS determined from Eq. (1.8.1). It is unnec-
essary to introduce the equivalent static force concept for the mass–spring–damper system
because the spring force, also given by Eq. (1.8.1), can readily be visualized.

For inelastic systems the element forces can be determined by appropriate modifi-
cations of these procedures to recognize that such systems are typically analyzed by time-
stepping procedures with iteration within a time step (Chapter 5).
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Why is external force in the second approach defined as fS(t) and not as f I (t)?
From Eq. (1.7.2), − f I (t) = fS(t)+ fD(t) = ku(t)+ cu̇(t). It is inappropriate to include
the velocity-dependent damping force because for structural design the computed element
stresses are to be compared with allowable stresses that are specified based on static tests
on materials (i.e., tests conducted at slow loading rates).

1.9 COMBINING STATIC AND DYNAMIC RESPONSES

In practical application we need to determine the total forces in a structure, including those
existing before dynamic excitation of the structure and those resulting from the dynamic
excitation. For a linear system the total forces can be determined by combining the results
of two separate analyses: (1) static analysis of the structure due to dead and live loads,
temperature changes, and so on; and (2) dynamic analysis of the structure subjected to the
time-varying excitation. This direct superposition of the results of two analyses is valid
only for linear systems.

The analysis of nonlinear systems cannot, however, be separated into two indepen-
dent analyses. The dynamic analysis of such a system must recognize the forces and de-
formations already existing in the structure before the onset of dynamic excitation. This is
necessary, in part, to establish the initial stiffness property of the structure required to start
the dynamic analysis.

1.10 METHODS OF SOLUTION OF THE DIFFERENTIAL EQUATION

The equation of motion for a linear SDF system subjected to external force is the second-
order differential equation derived earlier:

mü + cu̇ + ku = p(t) (1.10.1)

The initial displacement u(0) and initial velocity u̇(0) at time zero must be specified to
define the problem completely. Typically, the structure is at rest before the onset of dy-
namic excitation, so that the initial velocity and displacement are zero. A brief review of
four methods of solution is given in the following sections.

1.10.1 Classical Solution

Complete solution of the linear differential equation of motion consists of the sum of the
complementary solution uc(t) and the particular solution up(t), that is, u(t) = uc(t) +
up(t). Since the differential equation is of second order, two constants of integration are
involved. They appear in the complementary solution and are evaluated from a knowledge
of the initial conditions.
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Example 1.8

Consider a step force: p(t) = po, t ≥ 0. In this case, the differential equation of motion for a
system without damping (i.e., c = 0) is

mü + ku = po (a)

The particular solution for Eq. (a) is

up(t) = po

k
(b)

and the complementary solution is

uc(t) = A cosωnt + B sinωnt (c)

where A and B are constants of integration and ωn =
√

k/m.
The complete solution is given by the sum of Eqs. (b) and (c):

u(t) = A cosωnt + B sinωnt + po

k
(d)

If the system is initially at rest, u(0) = 0 and u̇(0) = 0 at t = 0. For these initial conditions
the constants A and B can be determined:

A = − po

k
B = 0 (e)

Substituting Eq. (e) in Eq. (d) gives

u(t) = po

k
(1− cosωnt) (f)

The classical solution will be the principal method we will use in solving the dif-
ferential equation for free vibration and for excitations that can be described analytically,
such as harmonic, step, and pulse forces.

1.10.2 Duhamel’s Integral

Another well-known approach to the solution of linear differential equations, such as
the equation of motion of an SDF system, is based on representing the applied force as
a sequence of infinitesimally short impulses. The response of the system to an applied
force, p(t), at time t is obtained by adding the responses to all impulses up to that time.
We develop this method in Chapter 4, leading to the following result for an undamped
SDF system:

u(t) = 1

mωn

∫ t

0
p(τ ) sin[ωn(t − τ)] dτ (1.10.2)

where ωn =
√

k/m. Implicit in this result are “at rest” initial conditions. Equation (1.10.2),
known as Duhamel’s integral, is a special form of the convolution integral found in text-
books on differential equations.

Example 1.9

Using Duhamel’s integral, we determine the response of an SDF system, assumed
to be initially at rest, to a step force, p(t) = po, t ≥ 0. For this applied force, Eq. (1.10.2)
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specializes to

u(t) = po

mωn

∫ t

0
sin[ωn(t − τ)] dτ = po

mωn

[
cosωn(t − τ)

ωn

]τ=t

τ=0

= po

k
(1− cosωnt)

This result is the same as that obtained in Section 1.10.1 by the classical solution of the differ-
ential equation.

Duhamel’s integral provides an alternative method to the classical solution if the
applied force p(t) is defined analytically by a simple function that permits analytical eval-
uation of the integral. For complex excitations that are defined only by numerical values of
p(t) at discrete time instants, Duhamel’s integral can be evaluated by numerical methods.
Such methods are not included in this book, however, because more efficient numerical
procedures are available to determine dynamic response; some of these are presented in
Chapter 5.

1.10.3 Frequency-Domain Method

The Laplace and Fourier transforms provide powerful tools for the solution of linear dif-
ferential equations, in particular the equation of motion for a linear SDF system. Because
the two transform methods are similar in concept, here we mention only the use of Fourier
transform, which leads to the frequency-domain method of dynamic analysis.

The Fourier transform P(ω) of the excitation function p(t) is defined by

P(ω) = F[p(t)] =
∫ ∞
−∞

p(t)e−iωt dt (1.10.3)

The Fourier transform U (ω) of the solution u(t) of the differential equation is then given
by

U (ω) = H(ω)P(ω) (1.10.4)

where the complex frequency-response function H(ω) describes the response of the system
to harmonic excitation. Finally, the desired solution u(t) is given by the inverse Fourier
transform of U (ω):

u(t) = 1

2π

∫ ∞
−∞

H(ω)P(ω)eiωt dω (1.10.5)

Straightforward integration can be used to evaluate the integral of Eq. (1.10.3) but contour
integration in the complex plane is necessary for Eq. (1.10.5). Closed-form results can be
obtained only if p(t) is a simple function, and application of the Fourier transform method
was restricted to such p(t) until high-speed computers became available.

The Fourier transform method is now feasible for the dynamic analysis of linear
systems to complicated excitations p(t) or üg(t) that are described numerically. In such
situations, the integrals of both Eqs. (1.10.3) and (1.10.5) are evaluated numerically by the
discrete Fourier transform method using the fast Fourier transform algorithm developed in
1965. These concepts are developed in Appendix A.
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Figure 1.10.1 These two reinforced-concrete dome-shaped containment structures house
the nuclear reactors of the San Onofre power plant in California. For design purposes,
their fundamental natural vibration period was computed to be 0.15 s assuming the base as
fixed, and 0.50 s considering soil flexibility. This large difference in the period indicates
the important effect of soil–structure interaction for these structures. (Courtesy of Southern
California Edison.)

The frequency-domain method of dynamic analysis is symbolized by Eqs. (1.10.3)
and (1.10.5). The first gives the amplitudes P(ω) of all the harmonic components that
make up the excitation p(t). The second equation can be interpreted as evaluating the har-
monic response of the system to each component of the excitation and then superposing
the harmonic responses to obtain the response u(t). The frequency-domain method, which
is an alternative to the time-domain method symbolized by Duhamel’s integral, is espe-
cially useful and powerful for dynamic analysis of structures interacting with unbounded
media. Examples are (1) the earthquake response analysis of a structure where the ef-
fects of interaction between the structure and the unbounded underlying soil are signifi-
cant (Fig. 1.10.1), and (2) the earthquake response analysis of concrete dams interacting
with the water impounded in the reservoir that extends to great distances in the upstream
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Figure 1.10.2 Morrow Point Dam, a 142-m-high arch dam, on the Gunnison River,
Colorado. Determined by forced vibrations tests, the fundamental natural vibration pe-
riod of the dam in antisymmetric vibration is 0.268 s with the reservoir partially full and
0.303 s with a full reservoir. (Courtesy of U.S Bureau of Reclamation.)

direction (Fig. 1.10.2). Because earthquake analysis of such complex structure–soil and
structure–fluid systems is beyond the scope of this book, a comprehensive presentation of
the frequency-domain method of dynamic analysis is not included. However, an introduc-
tion to the method is presented in Appendix A.

1.10.4 Numerical Methods

The preceding three dynamic analysis methods are restricted to linear systems and cannot
consider the inelastic behavior of structures anticipated during earthquakes if the ground
shaking is intense. The only practical approach for such systems involves numerical time-
stepping methods, which are presented in Chapter 5. These methods are also useful for
evaluating the response of linear systems to excitation—applied force p(t) or ground
motion üg(t)—which is too complicated to be defined analytically and is described only
numerically.
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1.11 STUDY OF SDF SYSTEMS: ORGANIZATION

We will study the dynamic response of linearly elastic SDF systems in free vibration
(Chapter 2), to harmonic and periodic excitations (Chapter 3), to step and pulse excita-
tions (Chapter 4), and to earthquake ground motion (Chapter 6). Because most structures
are designed with the expectation that they will deform beyond the linearly elastic limit
during major, infrequent earthquakes, the inelastic response of SDF systems is studied in
Chapter 7. The time variation of response r(t) to these various excitations will be of inter-
est. For structural design purposes, the maximum value (over time) of response r contains
the crucial information, for it is related to the maximum forces and deformations that a
structure must be able to withstand. We will be especially interested in the peak value of
response, or for brevity, peak response, defined as the maximum of the absolute value of
the response quantity:

ro ≡ max
t
|r(t)| (1.11.1)

By definition the peak response is positive; the algebraic sign is dropped because it is
usually irrelevant for design. Note that the subscript o attached to a response quantity
denotes its peak value.
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APPENDIX 1: STIFFNESS COEFFICIENTS FOR A FLEXURAL
ELEMENT

From the slope deflection equations, we can write the stiffness coefficients for a
linearly elastic, prismatic (uniform) frame element. These are presented in Fig. A1.1
for an element of length L , second moment of area I , and elastic modulus E . The stiffness
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coefficients for joint rotation are shown in part (a) and those for joint translation in part (b)
of the figure.

Now consider the element shown in Fig. A1.1c with its two nodes identified as a
and b that is assumed to be axially inextensible. Its four degrees of freedom are the nodal
translations ua and ub and nodal rotations θa and θb. The bending moments at the two
nodes are related to the four DOFs as follows:

Ma = 4E I

L
θa + 2E I

L
θb + 6E I

L2
ua − 6E I

L2
ub (A1.1)

Mb = 2E I

L
θa + 4E I

L
θb + 6E I

L2
ua − 6E I

L2
ub (A1.2)

The shearing forces at the two nodes are related to the four DOFs as follows:

Va = 12E I

L3
ua − 12E I

L3
ub + 6E I

L2
θa + 6E I

L2
θb (A1.3)

Vb = −12E I

L3
ua + 12E I

L3
ub − 6E I

L2
θa − 6E I

L2
θb (A1.4)

At each instant of time, the nodal forces Ma , Mb, Va , and Vb are calculated from ua , ub,
θa , and θb. The bending moment and shear at any other location along the element are
determined by statics applied to the element of Fig. A1.1c.

P R O B L E M S

1.1–
1.3

Starting from the basic definition of stiffness, determine the effective stiffness of the combined
spring and write the equation of motion for the spring–mass systems shown in Figs. P1.1 to
P1.3.

u

m p(t)

k2

k1

Figure P1.1

u

m p(t)
k1

• k2

Figure P1.2

u

m p(t)

k2

k1

k3

Figure P1.3

1.4 Derive the equation governing the free motion of a simple pendulum that consists of a rigid
massless rod pivoted at point O with a mass m attached at the tip (Fig. P1.4). Linearize the
equation, for small oscillations, and determine the natural frequency of oscillation.
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O

L

m

θ

Figure P1.4

1.5 Consider the free motion in the xy plane of a compound pendulum that consists of a rigid rod
suspended from a point (Fig. P1.5). The length of the rod is L and its mass m is uniformly
distributed. The width of the uniform rod is b and the thickness is t . The angular displacement
of the centerline of the pendulum measured from the y-axis is denoted by θ(t).
(a) Derive the equation governing θ(t).
(b) Linearize the equation for small θ .
(c) Determine the natural frequency of small oscillations.
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L
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Figure P1.5
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1.6 Repeat Problem 1.5 for the system shown in Fig. P1.6, which differs in only one sense: its
width varies from zero at O to b at the free end.

1.7 Develop the equation governing the longitudinal motion of the system of Fig. P1.7. The rod is
made of an elastic material with elastic modulus E ; its cross-sectional area is A and its length
is L . Ignore the mass of the rod and measure u from the static equilibrium position.

•
•

L A, E

m

p(t)
u

Figure P1.7
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1.8 A rigid disk of mass m is mounted at the end of a flexible shaft (Fig. P1.8). Neglecting the
weight of the shaft and neglecting damping, derive the equation of free torsional vibration of
the disk. The shear modulus (of rigidity) of the shaft is G.

•
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L d

O

• •
R

θ

Figure P1.8

1.9–
1.11

Write the equation governing the free vibration of the systems shown in Figs. P1.9 to P1.11.
Assuming the beam to be massless, each system has a single DOF defined as the vertical
deflection under the mass m. The flexural rigidity of the beam is E I and the length is L .
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Figure P1.9
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1.12 Determine the natural frequency of a mass m suspended from a spring at the midpoint of a
simply supported beam (Fig. P1.12). The length of the beam is L , and its flexural rigidity is
E I . The spring stiffness is k. Assume the beam to be massless.
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Figure P1.12
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1.13 Derive the equation of motion for the frame shown in Fig. P1.13. The flexural rigidity of
the beam and columns is as noted. The mass lumped at the beam is m; otherwise, assume the
frame to be massless and neglect damping. By comparing the result with Eq. (1.3.2), comment
on the effect of base fixity.

• •
L

•
•

h
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EIc EIc
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Figure P1.13

1.14 Write the equation of motion for the one-story, one-bay frame shown in Fig. P1.14. The
flexural rigidity of the beam and columns is as noted. The mass lumped at the beam is m;
otherwise, assume the frame to be massless and neglect damping. By comparing this equation
of motion with the one for Example 1.1, comment on the effect of base fixity.
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1.15–
1.16

Write the equation of motion of the one-story, one-bay frame shown in Figs. P1.15 and P1.16.
The flexural rigidity of the beam and columns is as noted. The mass lumped at the beam is
m; otherwise, assume the frame to be massless and neglect damping. Check your result from
Problem 1.15 against Eq. (1.3.5). Comment on the effect of base fixity by comparing the two
equations of motion.
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1.17 A heavy rigid platform of mass m is supported by four columns, hinged at the top and the bot-
tom, and braced laterally in each side panel by two diagonal steel wires as shown in Fig. P1.17.
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Each diagonal wire is pretensioned to a high stress; its cross-sectional area is A and elastic
modulus is E . Neglecting the mass of the columns and wires, derive the equation of motion
governing free vibration in (a) the x-direction, and (b) the y-direction. (Hint: Because of
high pretension, all wires contribute to the structural stiffness, unlike Example 1.2, where the
braces in compression do not provide stiffness.)
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h

•

•

h

• •
h

Figure P1.17

1.18 Derive the equation of motion governing the torsional vibration of the system of Fig. P1.17
about the vertical axis passing through the center of the platform.

1.19 An automobile is crudely idealized as a lumped mass m supported on a spring–damper sys-
tem as shown in Fig. P1.19. The automobile travels at constant speed v over a road whose
roughness is known as a function of position along the road. Derive the equation of motion.
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Figure P1.19
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Free Vibration

PREVIEW

A structure is said to be undergoing free vibration when it is disturbed from its static equi-
librium position and then allowed to vibrate without any external dynamic excitation. In
this chapter we study free vibration leading to the notions of the natural vibration frequency
and damping ratio for an SDF system. We will see that the rate at which the motion decays
in free vibration is controlled by the damping ratio. Thus the analytical results describing
free vibration provide a basis to determine the natural frequency and damping ratio of a
structure from experimental data of the type shown in Fig. 1.1.4.

Although damping in actual structures is due to several energy-dissipating mech-
anisms acting simultaneously, a mathematically convenient approach is to idealize them
by equivalent viscous damping. Consequently, this chapter deals primarily with viscously
damped systems. However, free vibration of systems in the presence of Coulomb friction
forces is analyzed toward the end of the chapter.

2.1 UNDAMPED FREE VIBRATION

The motion of linear SDF systems, visualized as an idealized one-story frame or a mass–
spring–damper system, subjected to external force p(t) is governed by Eq. (1.5.2). Setting
p(t) = 0 gives the differential equation governing free vibration of the system, which for
systems without damping (c = 0) specializes to

mü + ku = 0 (2.1.1)
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Free vibration is initiated by disturbing the system from its static equilibrium position by
imparting the mass some displacement u(0) and velocity u̇(0) at time zero, defined as the
instant the motion is initiated:

u = u(0) u̇ = u̇(0) (2.1.2)

Subject to these initial conditions, the solution to the homogeneous differential equation is
obtained by standard methods (see Derivation 2.1):

u(t) = u(0) cosωnt + u̇(0)

ωn
sinωnt (2.1.3)

where

ωn =
√

k

m
(2.1.4)

Equation (2.1.3) is plotted in Fig. 2.1.1. It shows that the system undergoes vibra-
tory (or oscillatory) motion about its static equilibrium (or undeformed, u = 0) position;
and that this motion repeats itself after every 2π/ωn seconds. In particular, the state (dis-
placement and velocity) of the mass at two time instants, t1 and t1 + 2π/ωn , is identical:
u(t1) = u(t1 + 2π/ωn) and u̇(t1) = u̇(t1 + 2π/ωn). These equalities can easily be proved,
starting with Eq. (2.1.3). The motion described by Eq. (2.1.3) and shown in Fig. 2.1.1 is
known as simple harmonic motion.

The portion a–b–c–d–e of the displacement–time curve describes one cycle of free
vibration of the system. From its static equilibrium (or undeformed) position at a, the
mass moves to the right, reaching its maximum positive displacement uo at b, at which
time the velocity is zero and the displacement begins to decrease and the mass returns
back to its equilibrium position c, at which time the velocity is maximum and hence the

u(0)

u

t

u(0)˙

1

a

b

c

d

e

Amplitude, uo

Tn = 2 / n

a b

uo

c d

uo

e

ωπ

Figure 2.1.1 Free vibration of a system without damping.
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mass continues moving to the left, reaching its minimum displacement −uo at d, at which
time the velocity is again zero and the displacement begins to decrease again and the mass
returns to its equilibrium position at e. At time instant e, 2π/ωn seconds after time instant
a, the state (displacement and velocity) of the mass is the same as it was at time instant a,
and the mass is ready to begin another cycle of vibration.

The time required for the undamped system to complete one cycle of free vibration
is the natural period of vibration of the system, which we denote as Tn , in units of sec-
onds. It is related to the natural circular frequency of vibration, ωn , in units of radians per
second:

Tn = 2π

ωn
(2.1.5)

A system executes 1/Tn cycles in 1 s. This natural cyclic frequency of vibration is
denoted by

fn = 1

Tn
(2.1.6)

The units of fn are hertz (Hz) [cycles per second (cps)]; fn is obviously related to ωn

through

fn = ωn

2π
(2.1.7)

The term natural frequency of vibration applies to both ωn and fn .
The natural vibration properties ωn , Tn , and fn depend only on the mass and stiffness

of the structure; see Eqs. (2.1.4) to (2.1.6). The stiffer of two SDF systems having the same
mass will have the higher natural frequency and the shorter natural period. Similarly, the
heavier (more mass) of two structures having the same stiffness will have the lower natural
frequency and the longer natural period. The qualifier natural is used in defining Tn , ωn ,
and fn to emphasize the fact that these are natural properties of the system when it is
allowed to vibrate freely without any external excitation. Because the system is linear,
these vibration properties are independent of the initial displacement and velocity. The
natural frequency and period of the various types of structures of interest to us vary over a
wide range, as shown in Figs. 1.10.1, 1.10.2, and 2.1.2a–f.

The natural circular frequency ωn , natural cyclic frequency fn , and natural period Tn

defined by Eqs. (2.1.4) to (2.1.6) can be expressed in the alternative form

ωn =
√

g

δst
fn = 1

2π

√
g

δst
Tn = 2π

√
δst

g
(2.1.8)

where δst = mg/k, and where g is the acceleration due to gravity. This is the static de-
flection of the mass m suspended from a spring of stiffness k; it can be visualized as the
system of Fig. 1.6.1 oriented in the vertical direction. In the context of the one-story frame
of Fig. 1.2.1, δst is the lateral displacement of the mass due to lateral force mg.



Figure 2.1.2a Alcoa Building, San
Francisco, California. The fundamental
natural vibration periods of this 26-story
steel building are 1.67 s for north–south
(longitudinal) vibration, 2.21 s for east–west
(transverse) vibration, and 1.12 s for
torsional vibration about a vertical axis.
These vibration properties were determined
by forced vibration tests. (Courtesy of
International Structural Slides.)

Figure 2.1.2b Transamerica Building, San
Francisco, California. The fundamental
natural vibration periods of this 49-story
steel building, tapered in elevation, are
2.90 s for north–south vibration and also
for east–west vibration. These vibration
properties were determined by forced
vibration tests. (Courtesy of International
Structural Slides.)
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Figure 2.1.2c Medical Center Building, Richmond, California. The fundamental natural
vibration periods of this three-story steel frame building are 0.63 s for vibration in the
long direction, 0.74 s in the short direction, and 0.46 s for torsional vibration about a
vertical axis. These vibration properties were determined from motions of the building
recorded during the 1989 Loma Prieta earthquake. (Courtesy of California Strong Motion
Instrumentation Program.)

Figure 2.1.2d Pine Flat Dam on the Kings River, near Fresno, California. The funda-
mental natural vibration period of this 122-m-high concrete gravity dam was measured by
forced vibration tests to be 0.288 s and 0.306 s with the reservoir depth at 94.5 m and
105 m, respectively.
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Figure 2.1.2e Golden Gate Bridge, San Francisco, California. The fundamental natural
vibration periods of this suspension bridge with the main span of 1280 m are 18.2 s for
transverse vibration, 10.9 s for vertical vibration, 3.81 s for longitudinal vibration, and
4.43 s for torsional vibration. These vibration properties were determined from recorded
motions of the bridge under ambient (wind, traffic, etc.) conditions. (Courtesy of Interna-
tional Structural Slides.)

Figure 2.1.2f Reinforced-concrete
chimney, located in Aramon, France. The
fundamental natural vibration period of
this 250-m-high chimney is 3.57 s; it was
determined from records of wind-induced
vibration.
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The undamped system oscillates back and forth between the maximum displacement
uo and minimum displacement −uo. The magnitude uo of these two displacement values
is the same; it is called the amplitude of motion and is given by

uo =
√

[u(0)]2 +
[

u̇(0)

ωn

]2

(2.1.9)

The amplitude uo depends on the initial displacement and velocity. Cycle after cycle it
remains the same; that is, the motion does not decay. We had mentioned in Section 1.1 this
unrealistic behavior of a system if a damping mechanism to represent dissipation of energy
is not included.

The natural frequency of the one-story frame of Fig. 1.3.2a with lumped mass m and
columns clamped at the base is

ωn =
√

k

m
k = 24E Ic

h3

12ρ + 1

12ρ + 4
(2.1.10)

where the lateral stiffness comes from Eq. (1.3.5) and ρ = (E Ib/L) ÷ (2E Ic/h). For the
extreme cases of a rigid beam, ρ = ∞, and a beam with no stiffness, ρ = 0, the lateral
stiffnesses are given by Eqs. (1.3.2) and (1.3.3) and the natural frequencies are

(ωn)ρ=∞ =
√

24E Ic

mh3
(ωn)ρ=0 =

√
6E Ic

mh3
(2.1.11)

The natural frequency is doubled as the beam-to-column stiffness ratio, ρ, increases
from 0 to∞; its variation with ρ is shown in Fig. 2.1.3.

The natural frequency is similarly affected by the boundary conditions at the base
of the columns. If the columns are hinged at the base rather than clamped and the beam
is rigid, ωn =

√
6E Ic/mh3, which is one-half of the natural frequency of the frame with

clamped-base columns.
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Figure 2.1.3 Variation of natural frequency, ωn , with beam-to-column stiffness ratio, ρ.
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Derivation 2.1

The solution of Eq. (2.1.1), a linear, homogeneous, second-order differential equation with
constant coefficients, has the form

u = eλt (a)

where the constant λ is unknown. Substitution into Eq. (2.1.1) gives

(mλ2 + k)eλt = 0

The exponential term is never zero, so

(mλ2 + k) = 0 (b)

Known as the characteristic equation, Eq. (b) has two roots:

λ1,2 = ±iωn (c)

where i = √−1. The general solution of Eq. (2.1.1) is

u(t) = a1eλ1t + a2eλ2t

which after substituting Eq. (c) becomes

u(t) = a1eiωn t + a2e−iωn t (d)

where a1 and a2 are complex-valued constants yet undetermined. By using the Euler relations,
eix = cos x + i sin x and e−i x = cos x − i sin x , equation (d) can be rewritten as

u(t) = A cosωnt + B sinωnt (e)

where A and B are real-valued constants yet undetermined. Equation (e) is differentiated to
obtain

u̇(t) = −ωn A sinωnt + ωn B cosωnt (f)

Evaluating Eqs. (e) and (f) at time zero gives the constants A and B in terms of the initial
displacement u(0) and initial velocity u̇(0):

u(0) = A u̇(0) = ωn B (g)

Substituting for A and B from Eq. (g) into Eq. (e) leads to the solution given in Eq. (2.1.3).

Example 2.1

For the one-story industrial building of Example 1.2, determine the natural circular frequency,
natural cyclic frequency, and natural period of vibration in (a) the north–south direction and
(b) the east–west direction.

Solution (a) North–south direction:

(ωn)N−S =
√

3.675× 106

9000
= 20.21 rad/s

(Tn)N−S = 2π

20.21
= 0.311 s

( fn)N−S = 1

0.311
= 3.22 Hz
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(b) East–west direction:

(ωn)E−W =
√

1.885× 107

9000
= 45.77 rad/s

(Tn)E−W = 2π

45.77
= 0.137 s

( fn)E−W = 1

0.137
= 7.28 Hz

Observe that the natural frequency is much higher (and the natural period much shorter) in
the east–west direction because the vertical bracing makes the system much stiffer, although
the columns of the frame are bending about their weak axis; the vibrating mass is the same in
both directions.

Example 2.2

For the three-span box girder bridge of Example 1.3, determine the natural circular frequency,
natural cyclic frequency, and natural period of vibration for longitudinal motion.

Solution

ωn =
√

k

m
=
√

4.218× 108

3.456× 106
= 11.05 rad/s

Tn = 2π

11.05
= 0.569 s

fn = 1

0.569
= 1.76 Hz

Example 2.3

Determine the natural cyclic frequency and the natural period of vibration of a mass of 10 kg
suspended as described in Example 1.4.

Solution

fn = 1

2π

√
ke

m

fn = 1

2π

√
2313

10
= 2.42 Hz

Tn = 1

fn
= 0.413 s
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Example 2.4

Consider the system described in Example 1.7 with b = 9 m, d = 6 m, h = 4 m, slab mass
= 500 kg/m2, and the lateral stiffness of each column in the x and y directions is kx = 300
and ky = 200, both in kN/m. Determine the natural frequency and period of torsional motion
about the vertical axis.

Solution From Example 1.7, the torsional stiffness kθ and the moment of inertia IO are

kθ = kx d2 + kyb2 = (300× 103)(6)2 + (200× 103)(4)2

= 3.08× 107 N-m/rad = 30,800 kN-m/rad

IO = m
b2 + d2

12
= (500)(6)(4)

[
(6)2 + (4)2

12

]
= 340,000 kg-m2

ωn =
√

kθ
IO
= 9.52 rad/s fn = 1.51 Hz Tn = 0.66 s

2.2 VISCOUSLY DAMPED FREE VIBRATION

Setting p(t) = 0 in Eq. (1.5.2) gives the differential equation governing free vibration of
SDF systems with damping:

mü + cu̇ + ku = 0 (2.2.1a)

Dividing by m gives
ü + 2ζωnu̇ + ω2

nu = 0 (2.2.1b)

where ωn =
√

k/m as defined earlier and

ζ = c

2mωn
= c

ccr
(2.2.2)

We will refer to

ccr = 2mωn = 2
√

km = 2k

ωn
(2.2.3)

as the critical damping coefficient, for reasons that will appear shortly; and ζ is the damp-
ing ratio or fraction of critical damping. The damping constant c is a measure of the
energy dissipated in a cycle of free vibration or in a cycle of forced harmonic vibration
(Section 3.8). However, the damping ratio—a dimensionless measure of damping—is a
property of the system that also depends on its mass and stiffness. The differential equa-
tion (2.2.1) can be solved by standard methods (similar to Derivation 2.1) for given initial
displacement u(0) and velocity u̇(0). Before writing any formal solution, however, we
examine the solution qualitatively.

2.2.1 Types of Motion

Figure 2.2.1 shows a plot of the motion u(t) due to initial displacement u(0) for three val-
ues of ζ . If c < ccr or ζ < 1, the system oscillates about its equilibrium position with a pro-
gressively decreasing amplitude. If c = ccr or ζ = 1, the system returns to its equilibrium
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Figure 2.2.1 Free vibration of underdamped, critically damped, and overdamped systems.

position without oscillating. If c > ccr or ζ > 1, again the system does not oscillate and
returns to its equilibrium position, as in the ζ = 1 case, but at a slower rate.

The damping coefficient ccr is called the critical damping coefficient because it is
the smallest value of c that inhibits oscillation completely. It represents the dividing line
between oscillatory and nonoscillatory motion.

The rest of this presentation is restricted to underdamped systems (c < ccr) because
structures of interest—buildings, bridges, dams, nuclear power plants, offshore structures,
etc.—all fall into this category, as typically, their damping ratio is less than 0.10. There-
fore, we have little reason to study the dynamics of critically damped systems (c = ccr) or
overdamped systems (c > ccr). Such systems do exist, however; for example, recoil mech-
anisms, such as the common automatic door closer, are overdamped; and instruments used
to measure steady-state values, such as a scale measuring dead weight, are usually criti-
cally damped. Even for automobile shock absorber systems, however, damping is usually
less than half of critical, ζ < 0.5.

2.2.2 Underdamped Systems

The solution to Eq. (2.2.1) subject to the initial conditions of Eq. (2.1.2) for systems with
c < ccr or ζ < 1 is (see Derivation 2.2)

u(t) = e−ζωn t

[
u(0) cosωDt + u̇(0)+ ζωnu(0)

ωD
sinωDt

]
(2.2.4)

where

ωD = ωn

√
1− ζ 2 (2.2.5)

Observe that Eq. (2.2.4) specialized for undamped systems (ζ = 0) reduces to Eq. (2.1.3).
Equation (2.2.4) is plotted in Fig. 2.2.2, which shows the free vibration response of

an SDF system with damping ratio ζ = 0.05, or 5%. Included for comparison is the free
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Figure 2.2.2 Effects of damping on free vibration.

vibration response of the same system but without damping, presented earlier in Fig. 2.1.1.
Free vibration of both systems is initiated by the same initial displacement u(0) and ve-
locity u̇(0), and hence both displacement–time plots start at t = 0 with the same ordinate
and slope. Equation (2.2.4) and Fig. 2.2.2 indicate that the natural frequency of damped
vibration is ωD , and it is related by Eq. (2.2.5) to the natural frequency ωn of the system
without damping. The natural period of damped vibration, TD = 2π/ωD , is related to the
natural period Tn without damping by

TD = Tn√
1− ζ 2

(2.2.6)

The displacement amplitude of the undamped system is the same in all vibration cycles,
but the damped system oscillates with amplitude decreasing with every cycle of vibration.
Equation (2.2.4) indicates that the displacement amplitude decays exponentially with time,
as shown in Fig. 2.2.2. The envelope curves ±ρe−ζωn t , where

ρ =
√

[u(0)]2 +
[

u̇(0)+ ζωnu(0)

ωD

]2

(2.2.7)

touch the displacement–time curve at points slightly to the right of its peak values.
Damping has the effect of lowering the natural frequency from ωn to ωD and length-

ening the natural period from Tn to TD . These effects are negligible for damping ratios
below 20%, a range that includes most structures, as shown in Fig. 2.2.3, where the ratio
ωD/ωn = Tn/TD is plotted against ζ . For most structures the damped properties ωD and
TD are approximately equal to the undamped properties ωn and Tn , respectively. For sys-
tems with critical damping, ωD = 0 and TD = ∞. This is another way of saying that the
system does not oscillate, as shown in Fig. 2.2.1.
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The more important effect of damping is on the rate at which free vibration decays.
This is displayed in Fig. 2.2.4, where the free vibration due to initial displacement u(0) is
plotted for four systems having the same natural period Tn but differing damping ratios:
ζ = 2, 5, 10, and 20%.
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Figure 2.2.4 Free vibration of systems with four levels of damping: ζ = 2, 5, 10, and 20%.

Derivation 2.2

Substituting Eq. (a) of Derivation 2.1 into Eq. (2.2.1b) gives(
λ2 + 2ζωnλ+ ω2

n

)
eλt = 0

which is satisfied for all values of t if

λ2 + 2ζωnλ+ ω2
n = 0 (a)

Equation (a), which is known as the characteristic equation, has two roots:

λ1,2 = ωn

(
−ζ ± i

√
1− ζ 2

)
(b)
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which are complex-valued for ζ < 1. The general solution of Eq. (2.2.1b) is

u(t) = a1eλ1t + a2eλ2t (c)

which after substituting Eq. (b) becomes

u(t) = e−ζωn t
(
a1eiωDt + a2e−iωDt

)
(d)

where a1 and a2 are complex-valued constants as yet undetermined and ωD is defined in
Eq. (2.2.5). As in Derivation 2.1, the term in parentheses in Eq. (d) can be rewritten in terms
of trigonometric functions to obtain

u(t) = e−ζωn t (A cosωDt + B sinωDt) (e)

where A and B are real-valued constants yet undetermined. These can be expressed in terms
of the initial conditions by proceeding along the lines of Derivation 2.1:

A = u(0) B = u̇(0)+ ζωnu(0)

ωD
(f)

Substituting for A and B in Eq. (e) leads to the solution given in Eq. (2.2.4).
We now make two observations that will be useful later: (1) λ1 and λ2 in Eq. (b) are a

complex conjugate pair, denoted by λ and λ̄; and (2) a1 and a2 must also be a conjugate pair
because u(t) is real-valued. Thus, Eq. (c) can be written as

u(t) = beλt + b̄eλ̄t (g)

where b is a complex-valued constant.

2.2.3 Decay of Motion

In this section a relation between the ratio of two successive peaks of damped free vibration
and the damping ratio is presented. The ratio of the displacement at time t to its value a
full vibration period TD later is independent of t . Derived from Eq. (2.2.4), this ratio is
given by the first equality in

u(t)

u(t + TD)
= exp(ζωnTD) = exp

(
2πζ√
1− ζ 2

)
(2.2.8)

and the second equality is obtained by utilizing Eqs. (2.2.6) and (2.1.5). This result also
gives the ratio ui/ui+1 of successive peaks (maxima) shown in Fig. 2.2.5, because these
peaks are separated by period TD:

ui

ui+1
= exp

(
2πζ√
1− ζ 2

)
(2.2.9)

The natural logarithm of this ratio, called the logarithmic decrement, we denote by δ:

δ = ln
ui

ui+1
= 2πζ√

1− ζ 2
(2.2.10)

If ζ is small,
√

1− ζ 2 � 1 and this gives an approximate equation:

δ � 2πζ (2.2.11)
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Figure 2.2.6 shows a plot of the exact and approximate relations between δ and ζ . It is
clear that Eq. (2.2.11) is valid for ζ < 0.2, which covers most practical structures.

If the decay of motion is slow, as is the case for lightly damped systems such as the
aluminum model in Fig. 1.1.4, it is desirable to relate the ratio of two amplitudes several
cycles apart, instead of successive amplitudes, to the damping ratio. Over j cycles the
motion decreases from u1 to uj+1. This ratio is given by

u1

uj+1
= u1

u2

u2

u3

u3

u4
· · · uj

uj+1
= e jδ

Therefore,

δ = (1/ j) ln (u1/uj+1) � 2πζ (2.2.12)

To determine the number of cycles elapsed for a 50% reduction in displacement amplitude,
we obtain the following relation from Eq. (2.2.12):

j50% � 0.11/ζ (2.2.13)

This equation is plotted in Fig. 2.2.7.
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2.2.4 Free Vibration Tests

Because it is not possible to determine analytically the damping ratio ζ for practical struc-
tures, this elusive property should be determined experimentally. Free vibration experi-
ments provide one means of determining the damping. Such experiments on two one-story
models led to the free vibration records presented in Fig. 1.1.4; a part of such a record
is shown in Fig. 2.2.8. For lightly damped systems the damping ratio can be determined
from

ζ = 1

2π j
ln

ui

ui+ j
or ζ = 1

2π j
ln

üi

üi+ j
(2.2.14)

The first of these equations is equivalent to Eq. (2.2.12), which was derived from the
equation for u(t). The second is a similar equation in terms of accelerations, which are
easier to measure than displacements. It can be shown to be valid for lightly damped
systems.

Time

üi üi+1 üi+2 üi+3 üi+4

TD TD

Figure 2.2.8 Acceleration record of a freely vibrating system.
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The natural period TD of the system can also be determined from the free vibration
record by measuring the time required to complete one cycle of vibration. Comparing this
with the natural period obtained from the calculated stiffness and mass of an idealized sys-
tem tells us how accurately these properties were calculated and how well the idealization
represents the actual structure.

Example 2.5

Determine the natural vibration period and damping ratio of the plexiglass frame model
(Fig. 1.1.4a) from the acceleration record of its free vibration shown in Fig. 1.1.4c.

Solution The peak values of acceleration and the time instants they occur can be read from
the free vibration record or obtained from the corresponding data stored in a computer during
the experiment. The latter provides the following data:

Peak Time, ti (s) Peak, üi (g)

1 1.110 0.915
11 3.844 0.076

TD = 3.844− 1.110

10
= 0.273 s ζ = 1

2π(10)
ln

0.915g

0.076g
= 0.0396 or 3.96%

Example 2.6

A free vibration test is conducted on an empty elevated water tank such as the one in Fig. 1.1.2.
A cable attached to the tank applies a lateral (horizontal) force of 80 kN and pulls the tank
horizontally by 5 cm. The cable is suddenly cut and the resulting free vibration is recorded.
At the end of four complete cycles, the time is 2.0 s and the amplitude is 2.5 cm. From these
data compute the following: (a) damping ratio; (b) natural period of undamped vibration;
(c) stiffness; (d) weight; (e) damping coefficient; and (f) number of cycles required for the
displacement amplitude to decrease to 0.5 cm.

Solution (a) Substituting ui = 5 cm, j = 4, and ui+ j = 0.5 cm in Eq. (2.2.14a) gives

ζ = 1

2π(4)
ln

5

2.5
= 0.0276 = 2.76%

Assumption of small damping implicit in Eq. (2.2.14a) is valid.

(b) TD = 2.0

4
= 0.5 s; Tn � TD = 0.5 s

(c) k = 80× 103

0.05
= 1.6× 106 N/m = 1600 kN/m

(d) ωn = 2π

Tn
= 2π

0.5
= 12.57 rad/s;

m = k

ω2
n
= 1.6× 106

(12.57)2
= 10, 132 kg

(e) c = ζ (2√km) = 0.0276
[

2
√
(1.6× 106)(10, 132)

]
= 7023 N-s/m
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(f) ζ � 1

2π j
ln

u1

u1+ j
; j � 1

2π(0.0276)
ln

5

0.5
= 13.28 cycles ∼ 13 cycles

Example 2.7

The weight of water required to fill the tank of Example 2.6 is 40,000 kg. Determine the
natural vibration period and damping ratio of the structure with the tank full.

Solution

m = 10, 132+ 40, 000 = 50, 132 kg

Tn = 2π

√
m

k
= 2π

√
50, 132

1.6× 106
= 1.11 s

ζ = c

2
√

km
= 7023

2
√
(1.6× 106)(50, 132)

= 0.0124 = 1.24%

Observe that the damping ratio is now smaller (1.24% compared to 2.76% in Example 2.6)
because the mass of the full tank is larger and hence the critical damping coefficient is larger.

2.3 ENERGY IN FREE VIBRATION

The energy input to an SDF system by imparting to it the initial displacement u(0) and
initial velocity u̇(0) is

EI = 1

2
k[u(0)]2 + 1

2
m[u̇(0)]2 (2.3.1)

At any instant of time the total energy in a freely vibrating system is made up of two
parts, kinetic energy EK of the mass and potential energy equal to the strain energy ES of
deformation in the spring:

EK (t) = 1

2
m[u̇(t)]2 ES(t) = 1

2
k[u(t)]2 (2.3.2)

Substituting u(t) from Eq. (2.1.3) for an undamped system leads to

EK (t) = 1

2
mω2

n

[
−u(0) sinωnt + u̇(0)

ωn
cosωnt

]2

(2.3.3)

ES(t) = 1

2
k

[
u(0) cosωnt + u̇(0)

ωn
sinωnt

]2

(2.3.4)

The total energy is

EK (t)+ ES(t) = 1

2
k[u(0)]2 + 1

2
m[u̇(0)]2 (2.3.5)

wherein Eq. (2.1.4) has been utilized together with a well-known trigonometric identity.
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Thus, the total energy is independent of time and equal to the input energy of Eq. (2.3.1),
implying conservation of energy during free vibration of a system without damping.

For systems with viscous damping, the kinetic energy and potential energy could be
determined by substituting u(t) from Eq. (2.2.4) and its derivative u̇(t) into Eq. (2.3.2).
The total energy will now be a decreasing function of time because of energy dissipated in
viscous damping, which over the time duration 0 to t1 is

ED =
∫

fD du =
∫ t1

o
(cu̇)u̇ dt =

∫ t1

o
cu̇2 dt (2.3.6)

All the input energy will eventually get dissipated in viscous damping; as t1 goes to∞, the
dissipated energy, Eq. (2.3.6), tends to the input energy, Eq. (2.3.1).

2.4 COULOMB-DAMPED FREE VIBRATION

In Section 1.4 we mentioned that damping in actual structures is due to several energy-
dissipating mechanisms acting simultaneously, and a mathematically convenient approach
is to idealize them by equivalent viscous damping. Although this approach is sufficiently
accurate for practical analysis of most structures, it may not be appropriate when special
friction devices have been introduced in a building to reduce its vibrations during earth-
quakes. Currently, there is much interest in such application and we return to them in
Chapter 7. In this section the free vibration of systems under the presence of Coulomb
friction forces is analyzed.

Coulomb damping results from friction against sliding of two dry surfaces. The fric-
tion force F = μN , where μ denotes the coefficients of static and kinetic friction, taken
to be equal, and N the normal force between the sliding surfaces. The friction force is
assumed to be independent of the velocity once the motion is initiated. The direction of the
friction force opposes motion, and the sign of the friction force will change when the direc-
tion of motion changes. This necessitates formulation and solution of two differential equa-
tions, one valid for motion in one direction and the other valid when motion is reversed.

Figure 2.4.1 shows a mass–spring system with the mass sliding against a dry surface,
and the free-body diagrams for the mass, including the inertia force, for two directions of

(a)

u

m
k

Coefficient
of friction

ku

mg

N

F = N

fI

(b) Direction of Motion

ku

mg

N

F = N

fI

(c) Direction of Motion

μ

μ μ

Figure 2.4.1
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motion. The equation governing the motion of the mass from right to left is

mü + ku = F (2.4.1)

for which the solution is

u(t) = A1 cosωnt + B1 sinωnt + uF (2.4.2)

where uF = F/k. For motion of the mass from left to right, the governing equation is

mü + ku = −F (2.4.3)
for which the solution is

u(t) = A2 cosωnt + B2 sinωnt − uF (2.4.4)

The constants A1, B1, A2, and B2 depend on the initial conditions of each successive
half-cycle of motion; ωn =

√
k/m and the constant uF may be interpreted as the static

deformation of the spring due to friction force F . Each of the two differential equations is
linear, but the overall problem is nonlinear because the governing equation changes every
half-cycle of motion.

Let us study the motion of the system of Fig. 2.4.1 starting with some given initial
conditions and continuing until the motion ceases. At time t = 0, the mass is displaced a
distance u(0) to the right and released from rest such that u̇(0) = 0. For the first half-cycle
of motion, Eq. (2.4.2) applies with the constants A1 and B1 determined from the initial
conditions at t = 0:

A1 = u(0)− uF B1 = 0

Substituting these in Eq. (2.4.2) gives

u(t) = [u(0)− uF ] cosωnt + uF 0 ≤ t ≤ π/ωn (2.4.5)

This is plotted in Fig. 2.4.2; it is a cosine function with amplitude = u(0)− uF and shifted
in the positive u direction by uF . Equation (2.4.5) is valid until the velocity becomes zero
again at t = π/ωn = Tn/2 (Fig. 2.4.2); at this instant u = −u(0)+ 2uF .

Starting from this extreme left position, the mass moves to the right with its motion
described by Eq. (2.4.4). The constants A2 and B2 are determined from the conditions at
the beginning of this half-cycle:

A2 = u(0)− 3uF B2 = 0

Substituting these in Eq. (2.4.4) gives

u(t) = [u(0)− 3uF ] cosωnt − uF π/ωn ≤ t ≤ 2π/ωn (2.4.6)

This is plotted in Fig. 2.4.2; it is a cosine function with reduced amplitude = u(0) − 3uF

and shifted in the negative u direction by uF . Equation (2.4.6) is valid until the velocity
becomes zero again at t = 2π/ωn = Tn (Fig. 2.4.2); at this time instant u = u(0)− 4uF .

At t = 2π/ωn the motion reverses and is described by Eq. (2.4.2), which after eval-
uating the constants A1 and B1 becomes

u(t) = [u(0)− 5uF ] cosωnt + uF 2π/ωn ≤ t ≤ 3π/ωn (2.4.7)
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u

t

u(0)

Tn/2 Tn 3Tn/2 2Tn
5Tn/2

3Tn

uF
−uF

4uF

Linear decay

Figure 2.4.2 Free vibration of a system with Coulomb friction.

This is a cosine function with its amplitude reduced further to u(0) − 5uF and shifted, as
before, in the positive u direction by uF .

The time taken for each half-cycle is π/ωn and the duration of a full cycle, the natural
period of vibration, is

Tn = 2π

ωn
(2.4.8)

Observe that the natural period of a system with Coulomb damping is the same as for the
system without damping. In contrast, viscous damping had the effect of lengthening the
natural period [Eq. (2.2.6)].

In each cycle of motion, the amplitude is reduced by 4uF ; that is, the displacements
ui and ui+1 at successive maxima are related by

ui+1 = ui − 4uF (2.4.9)

Thus the envelopes of the displacement–time curves are straight lines, as shown in Fig. 2.4.2,
instead of the exponential functions for systems with viscous damping.

When does the free vibration of a system with Coulomb friction stop? In each cycle
the amplitude is reduced by 4uF . Motion stops at the end of the half-cycle for which the
amplitude is less than uF . At that point the spring force acting on the mass is less than
the friction force, ku < F , and motion ceases. In Fig. 2.4.2 this occurs at the end of the
third cycle. The final rest position of the mass is displaced from its original equilibrium
position and represents a permanent deformation in which the friction force and spring
force are locked in. Shaking or tapping the system will usually jar it sufficiently to restore
equilibrium.

Damping in real structures must be due partly to Coulomb friction, since only this
mechanism can stop motion in free vibration. If the damping were purely viscous, motion
theoretically continues forever, although at infinitesimally small amplitudes. This is an
academic point, but it is basic to an understanding of damping mechanisms.

The various damping mechanisms that exist in real structures are rarely modeled
individually. In particular, the Coulomb frictional forces that must exist are not considered
explicitly unless frictional devices have been incorporated in the structure. Even with such
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devices it is possible to use equivalent viscous damping to obtain approximate results for
dynamic response (Chapter 3).

Example 2.8

A small building consists of four steel frames, each with a friction device, supporting a
reinforced-concrete slab, as shown schematically in Fig. E2.8a. The normal force across each
of the spring-loaded friction pads is adjusted to equal 2.5% of the slab weight (Fig. E2.8c).
A record of the building motion in free vibration along the x-axis is shown in Fig. E2.8d.
Determine the effective coefficient of friction.

Solution
1. Assumptions: (a) the mass of the frame is negligible compared to the slab.

(b) Energy dissipation due to mechanisms other than friction is negligible, a reasonable as-
sumption because the amplitude of motion decays linearly with time (Fig. E2.8d).

2. Determine Tn and uF .

Tn = 4.5

9
= 0.5 s ωn = 2π

0.5
= 4π

4uF = 11− 0.2

9
= 1.2 cm uF = 0.3 cm

x

y

R/C slab
mass = m

Steel frame

(c)

• •

•
•

4 m

3 m

Friction
device

Brace

u

p

(a)

u

p

0.025 w

(b)

0 1 2 3 4 5
−12

−8

−4

0

4

8

12

u,
 c

m

t, s

(d)

11

0.2

α
μ

Figure E2.8
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3. Determine the coefficient of friction. The friction force along each brace is
μ(0.025mg) and its component in the lateral direction is (0.025μmg) cosα. The total friction
force in the lateral direction due to the four braces, two in each of the two frames, is

F = 4(0.025 μmg) cosα = (0.1 μmg)

(
4

5

)
= 0.08 μmg

uF = F

k
= 0.08 μmg

k
= 0.08 μg

ω2
n

μ = uFω
2
n

0.08 g
= (0.3× 10(−2))(4π)2

0.08 g
= 0.603

P R O B L E M S

2.1 A heavy table is supported by flat steel legs (Fig. P2.1). Its natural period in lateral vibration
is 0.5 s. When a 30 kg plate is clamped to its surface, the natural period in lateral vibration is
lengthened to 0.75 s. What are the mass and the lateral stiffness of the table?

Tn = 0.5 s Tn = 0.75 s

Figure P2.1

2.2 An electromagnet weighing 2000 N and suspended by a spring having a stiffness of 20 kN/m
(Fig. P.2.2a) lifts 100 N of iron scrap (Fig. P2.2b). Determine the equation describing the
motion when the electric current is turned off and the scrap is dropped (Fig. P2.2c).

Figure P2.2
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2.3 A mass m is at rest, partially supported by a spring and partially by stops (Fig. P2.3). In
the position shown, the spring force is mg/2. At time t = 0 the stops are rotated, suddenly
releasing the mass. Determine the motion of the mass.

k

m

u

Figure P2.3

2.4 The mass of the wooden block shown in Fig. P2.4 is 5 kg and the spring stiffness is
15000 N/m. A bullet of mass 0.2 kg is fired at a speed of 20 m/s into the block and becomes
embedded in the block. Determine the resulting motion u(t) of the block.

vo

m
k

Figure P2.4

2.5 A mass m1 hangs from a spring k and is in static equilibrium. A second mass m2 drops
through a height h and sticks to m1 without rebound (Fig. P2.5). Determine the subsequent
motion u(t) measured from the static equilibrium position of m1 and k.

m2

k

m1

•
•

h

Figure P2.5

2.6 The packaging for an instrument can be modeled as shown in Fig. P2.6, in which the instru-
ment of mass m is restrained by springs of total stiffness k inside a container; m = 5 kg and
k = 8000 N/m. The container is accidentally dropped from a height of 1 m above the ground.
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m

k/2

k/2

u

1 m

Figure P2.6

Assuming that it does not bounce on contact, determine the maximum deformation of the
packaging within the box and the maximum acceleration of the instrument.

2.7 Consider a diver weighing 90 kg at the end of a diving board that cantilevers out 1 m. The
diver oscillates at a frequency of 2 Hz. What is the flexural rigidity E I of the diving board?

2.8 Show that the motion of a critically damped system due to initial displacement u(0) and initial
velocity u̇(0) is

u(t) = {u(0)+ [u̇(0)+ ωnu(0)] t} e−ωn t

2.9 Show that the motion of an overcritically damped system due to initial displacement u(0) and
initial velocity u̇(0) is

u(t) = e−ζωn t
(

A1e−ω
′
Dt + A2eω

′
Dt
)

where ω′D = ωn

√
ζ 2 − 1 and

A1 =
−u̇(0)+

(
−ζ +

√
ζ 2 − 1

)
ωnu(0)

2ω′D

A2 =
u̇(0)+

(
ζ +

√
ζ 2 − 1

)
ωnu(0)

2ω′D

2.10 Derive the equation for the displacement response of a viscously damped SDF system due to
initial velocity u̇(0) for three cases: (a) underdamped systems; (b) critically damped systems;
and (c) overdamped systems. Plot u(t)÷ u̇(0)/ωn against t/Tn for ζ = 0.1, 1, and 2.

2.11 For a system with damping ratio ζ , determine the number of free vibration cycles required to
reduce the displacement amplitude to 10% of the initial amplitude; the initial velocity is zero.

2.12 What is the ratio of successive amplitudes of vibration if the viscous damping ratio is known
to be (a) ζ = 0.01, (b) ζ = 0.05, or (c) ζ = 0.25?

2.13 The supporting system of the tank of Example 2.6 is enlarged with the objective of increasing
its seismic resistance. The lateral stiffness of the modified system is double that of the original
system. If the damping coefficient is unaffected (this may not be a realistic assumption),
for the modified tank determine (a) the natural period of vibration Tn , and (b) the damping
ratio ζ .
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2.14 The vertical suspension system of an automobile with a mass of 1300 kg is idealized as a
viscously damped SDF system. Under the weight of the car the suspension system deflects
5 cm. The suspension is designed to be critically damped.
(a) Calculate the damping and stiffness coefficients of the suspension.
(b) With four passengers in the car, each with a mass of 70 kg, what is the effective damping
ratio?
(c) Calculate the natural frequency of damped vibration for case (b).

2.15 The stiffness and damping properties of a mass–spring–damper system are to be determined
by a free vibration test; the mass is given as m = 20 kg. In this test the mass is displaced 2 cm
by a hydraulic jack and then suddenly released. At the end of 20 complete cycles, the time is
3 s and the amplitude is 0.5 cm. Determine the stiffness and damping coefficients.

2.16 A machine weighing 100 kg is mounted on a supporting system consisting of four springs
and four dampers. The vertical deflection of the supporting system under the weight of the
machine is measured as 2 cm. The dampers are designed to reduce the amplitude of vertical
vibration to one-eighth of the initial amplitude after two complete cycles of free vibration.
Find the following properties of the system: (a) undamped natural frequency, (b) damping
ratio, and (c) damped natural frequency. Comment on the effect of damping on the natural
frequency.

2.17 Determine the natural vibration period and damping ratio of the aluminum frame model
(Fig. 1.1.4a) from the acceleration record of its free vibration shown in Fig. 1.1.4b.

2.18 Show that the natural vibration frequency of the system in Fig. E1.6a is ω′n = ωn(1 −
w/wcr)

1/2, where ωn is the natural vibration frequency computed neglecting the action of
gravity, and wcr is the buckling weight.

2.19 An impulsive force applied to the roof slab of the building of Example 2.8 gives it an initial
velocity of 50 cm/s to the right. How far to the right will the slab move? What is the maximum
displacement of the slab on its return swing to the left?

2.20 An SDF system consisting of a weight, spring, and friction device is shown in Fig. P2.20.
This device slips at a force equal to 10% of the weight, and the natural vibration period of the
system is 0.25 s. If this system is given an initial displacement of 5 cm and released, what will
be the displacement amplitude after six cycles? In how many cycles will the system come to
rest?

F = 0.1 mg

u

mg

k
Figure P2.20
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Response to Harmonic and
Periodic Excitations

PREVIEW

The response of SDF systems to harmonic excitation is a classical topic in structural dy-
namics, not only because such excitations are encountered in engineering systems (e.g.,
force due to unbalanced rotating machinery), but also because understanding the response
of structures to harmonic excitation provides insight into how the system will respond to
other types of forces. Furthermore, the theory of forced harmonic vibration has several
useful applications in earthquake engineering.

In Part A of this chapter the basic results for response of SDF systems to harmonic
force are presented, including the concepts of steady-state response, frequency-response
curve, and resonance. Applications of these results to experimental evaluation of the nat-
ural vibration frequency and damping ratio of a structure, to isolation of vibration, and to
the design of vibration-measuring instruments is the subject of Part B; also included is the
concept of equivalent viscous damping. This concept is used in Part C to obtain approx-
imate solutions for the response of systems with rate-independent damping or Coulomb
friction; these results are then shown to be good approximations to the “exact” solutions.
A procedure to determine the response of SDF systems to periodic excitation is presented
in Part D. A Fourier series representation of the excitation, combined with the results for
response to harmonic excitations, provides the desired procedure.

65
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PART A: VISCOUSLY DAMPED SYSTEMS: BASIC RESULTS

3.1 HARMONIC VIBRATION OF UNDAMPED SYSTEMS

A harmonic force is p(t) = po sinωt or po cosωt , where po is the amplitude or maximum
value of the force and its frequency ω is called the exciting frequency or forcing frequency;
T = 2π/ω is the exciting period or forcing period (Fig. 3.1.1a). The response of SDF
systems to a sinusoidal force will be presented in some detail, along with only brief com-
ments on the response to a cosine force because the concepts involved are similar in the
two cases.

Setting p(t) = po sinωt in Eq. (1.5.2) gives the differential equation governing the
forced harmonic vibration of the system, which for systems without damping specializes to

mü + ku = po sinωt (3.1.1)

This equation is to be solved for the displacement or deformation u(t) subject to the initial
conditions

u = u(0) u̇ = u̇(0) (3.1.2)

where u(0) and u̇(0) are the displacement and velocity at the time instant the force is
applied. The particular solution to this differential equation is (see Derivation 3.1)

up(t) = po

k

1

1− (ω/ωn)2
sinωt ω �= ωn (3.1.3)

The complementary solution of Eq. (3.1.1) is the free vibration response determined in
Eq. (d) of Derivation 2.1:

uc(t) = A cosωnt + B sinωnt (3.1.4)

and the complete solution is the sum of the complementary and particular solutions:

u(t) = A cosωnt + B sinωnt + po

k

1

1− (ω/ωn)2
sinωt (3.1.5)

The constants A and B are determined by imposing the initial conditions, Eq. (3.1.2), to
obtain the final result (see Derivation 3.1):

u(t) = u(0) cosωnt +
[

u̇(0)

ωn
− po

k

ω/ωn

1− (ω/ωn)2

]
sinωnt︸ ︷︷ ︸

transient

+ po

k

1

1− (ω/ωn)2
sinωt︸ ︷︷ ︸

steady state

(3.1.6a)
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Figure 3.1.1 (a) Harmonic force; (b) response of undamped system to harmonic force; ω/ωn = 0.2,
u(0) = 0.5po/k, and u̇(0) = ωn po/k.

Equation (3.1.6a) has been plotted for ω/ωn = 0.2, u(0) = 0.5po/k, and u̇(0) = ωn po/k
as the solid line in Fig. 3.1.1. The sinωt term in this equation is the particular solution of
Eq. (3.1.3) and is shown by the dashed line.

Equation (3.1.6a) and Fig. 3.1.1 show that u(t) contains two distinct vibration com-
ponents: (1) the sinωt term, giving an oscillation at the forcing or exciting frequency;
and (2) the sinωnt and cosωnt terms, giving an oscillation at the natural frequency of the
system. The first of these is the forced vibration or steady-state vibration, for it is present
because of the applied force no matter what the initial conditions. The latter is the free
vibration or transient vibration, which depends on the initial displacement and velocity. It
exists even if u(0) = u̇(0) = 0, in which case Eq. (3.1.6a) specializes to

u(t) = po

k

1

1− (ω/ωn)2

(
sinωt − ω

ωn
sinωnt

)
(3.1.6b)
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The transient component is shown as the difference between the solid and dashed lines in
Fig. 3.1.1, where it is seen to continue forever. This is only an academic point because
the damping inevitably present in real systems makes the free vibration decay with time
(Section 3.2). It is for this reason that this component is called transient vibration.

The steady-state dynamic response, a sinusoidal oscillation at the forcing frequency,
may be expressed as

u(t) = (ust)o

[
1

1− (ω/ωn)2

]
sinωt (3.1.7)

Ignoring the dynamic effects signified by the acceleration term in Eq. (3.1.1) gives
the static deformation (indicated by the subscript “st”) at each instant:

ust(t) = po

k
sinωt (3.1.8)

The maximum value of the static deformation is

(ust)o = po

k
(3.1.9)

which may be interpreted as the static deformation due to the amplitude po of the force; for
brevity we will refer to (ust)o as the static deformation. The factor in brackets in Eq. (3.1.7)
has been plotted in Fig. 3.1.2 against ω/ωn , the ratio of the forcing frequency to the natural
frequency. For ω/ωn < 1 or ω < ωn this factor is positive, indicating that u(t) and p(t)
have the same algebraic sign (i.e., when the force in Fig. 1.2.1a acts to the right, the system
would also be displaced to the right). The displacement is said to be in phase with the
applied force. For ω/ωn > 1 or ω > ωn this factor is negative, indicating that u(t) and
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p(t) have opposing algebraic signs (i.e., when the force acts to the right, the system would
be displaced to the left). The displacement is said to be out of phase relative to the applied
force.

To describe this notion of phase mathematically, Eq. (3.1.7) is rewritten in terms of
the amplitude uo of the vibratory displacement u(t) and phase angle φ:

u(t) = uo sin(ωt − φ) = (ust)o Rd sin(ωt − φ) (3.1.10)

where

Rd = uo

(ust)o
= 1

| 1− (ω/ωn)2 | and φ =
{

0◦ ω < ωn

180◦ ω > ωn
(3.1.11)

For ω < ωn , φ = 0◦, implying that the displacement varies as sinωt , in phase with the
applied force. For ω > ωn , φ = 180◦, indicating that the displacement varies as −sinωt ,
out of phase relative to the force. This phase angle is shown in Fig. 3.1.3 as a function of
the frequency ratio ω/ωn .
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Figure 3.1.3 Deformation response factor
and phase angle for an undamped system
excited by harmonic force.
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The deformation (or displacement) response factor Rd is the ratio of the amplitude
uo of the dynamic (or vibratory) deformation to the static deformation (ust)o. Figure 3.1.3,
which shows Eq. (3.1.11a) for Rd plotted as a function of the frequency ratio ω/ωn , permits
several observations: If ω/ωn is small (i.e., the force is “slowly varying”), Rd is only
slightly larger than 1 and the amplitude of the dynamic deformation is essentially the same
as the static deformation. If ω/ωn >

√
2 (i.e., ω is higher than ωn

√
2), Rd < 1 and the

dynamic deformation amplitude is less than the static deformation. As ω/ωn increases
beyond

√
2, Rd becomes smaller and approaches zero as ω/ωn → ∞, implying that the

vibratory deformation due to a “rapidly varying” force is very small. If ω/ωn is close to
1 (i.e., ω is close to ωn), Rd is many times larger than 1, implying that the deformation
amplitude is much larger than the static deformation.

The resonant frequency is defined as the forcing frequency at which Rd is maxi-
mum. For an undamped system the resonant frequency is ωn and Rd is unbounded at this
frequency. The vibratory deformation does not become unbounded immediately, however,
but gradually, as we demonstrate next.

If ω = ωn , the solution given by Eq. (3.1.6b) is no longer valid. In this case the
choice of the function C sinωt for a particular solution fails because it is also a part of the
complementary solution. The particular solution now is

up(t) = − po

2k
ωnt cosωnt ω = ωn (3.1.12)

and the complete solution for at-rest initial conditions, u(0) = u̇(0) = 0, is (see Deriva-
tion 3.2)

u(t) = −1

2

po

k
(ωnt cosωnt − sinωnt) (3.1.13a)

or

u(t)

(ust)o
= −1

2

(
2π t

Tn
cos

2π t

Tn
− sin

2π t

Tn

)
(3.1.13b)

This result is plotted in Fig. 3.1.4, which shows that the time taken to complete one
cycle of vibration is Tn . The local maxima of u(t), which occur at t = ( j − 1/2)Tn ,
are π( j − 1/2)(ust)o— j = 1, 2, 3, . . .—and the local minima, which occur at t = jTn ,
are −π j (ust)o— j = 1, 2, 3, . . . . In each cycle the deformation amplitude increases by

| uj+1 | − | uj |= (ust)o[π( j + 1)− π j] = πpo

k

The deformation amplitude grows indefinitely, but it becomes infinite only after an in-
finitely long time.

This is an academic result and should be interpreted appropriately for real structures.
As the deformation continues to increase, at some point in time the system would fail if
it is brittle. On the other hand, the system would yield if it is ductile, its stiffness would
decrease, and its “natural frequency” would no longer be equal to the forcing frequency,
and Eq. (3.1.13) or Fig. 3.1.4 would no longer be valid.
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Figure 3.1.4 Response of undamped system to sinusoidal force of frequency ω = ωn ; u(0) =
u̇(0) = 0.

Derivation 3.1

The particular solution of Eq. (3.1.1), a linear second-order differential equation, is of the form

up(t) = C sinωt (a)

Differentiating this twice gives

ü p(t) = −ω2C sinωt (b)

Substituting Eqs. (a) and (b) in the differential equation (3.1.1) leads to a solution for C :

C = po

k

1

1− (ω/ωn)2
(c)

which is combined with Eq. (a) to obtain the particular solution presented in Eq. (3.1.3).

To determine the constants A and B in Eq. (3.1.5), it is differentiated:

u̇(t) = −ωn A sinωnt + ωn B cosωnt + po

k

ω

1− (ω/ωn)2
cosωt (d)

Evaluating Eqs. (3.1.5) and (d) at t = 0 gives

u(0) = A u̇(0) = ωn B + po

k

ω

1− (ω/ωn)2
(e)

These two equations give

A = u(0) B = u̇(0)

ωn
− po

k

ω/ωn

1− (ω/ωn)2
(f)

which are substituted in Eq. (3.1.5) to obtain Eq. (3.1.6a).
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Derivation 3.2

If ω = ωn , the particular solution of Eq. (3.1.1) is of the form

up(t) = Ct cosωnt (a)

Substituting Eq. (a) in Eq. (3.1.1) and solving for C yields

C = − po

2k
ωn (b)

which is combined with Eq. (a) to obtain the particular solution, Eq. (3.1.12).
Thus the complete solution is

u(t) = A cosωnt + B sinωnt − po

2k
ωnt cosωnt (c)

and the corresponding velocity is

u̇(t) = −ωn A sinωnt + ωn B cosωnt − po

2k
ωn cosωnt + po

2k
ω2

nt sinωnt (d)

Evaluating Eqs. (c) and (d) at t = 0 and solving the resulting algebraic equations gives

A = u(0) B = u̇(0)

ωn
+ po

2k
Specializing for at-rest initial conditions gives

A = 0 B = po

2k
which are substituted in Eq. (c) to obtain Eq. (3.1.13a).

3.2 HARMONIC VIBRATION WITH VISCOUS DAMPING

3.2.1 Steady-State and Transient Responses

Including viscous damping the differential equation governing the response of SDF
systems to harmonic force is

mü + cu̇ + ku = po sinωt (3.2.1)

This equation is to be solved subject to the initial conditions

u = u(0) u̇ = u̇(0) (3.2.2)

The particular solution of this differential equation is (from Derivation 3.3)

up(t) = C sinωt + D cosωt (3.2.3)

where

C = po

k

1− (ω/ωn)
2

[1− (ω/ωn)2]2 + [2ζ (ω/ωn)]2

D = po

k

−2ζω/ωn

[1− (ω/ωn)2]2 + [2ζ (ω/ωn)]2

(3.2.4)

The complementary solution of Eq. (3.2.1) is the free vibration response given by Eq. (f)
of Derivation 2.2:

uc(t) = e−ζωn t (A cosωDt + B sinωDt)
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where ωD = ωn

√
1− ζ 2. The complete solution of Eq. (3.2.1) is

u(t) = e−ζωn t (A cosωDt + B sinωDt)︸ ︷︷ ︸
transient

+C sinωt + D cosωt︸ ︷︷ ︸
steady state

(3.2.5)

where the constants A and B can be determined by standard procedures (e.g., see Deriva-
tion 3.1) in terms of the initial displacement u(0) and initial velocity u̇(0). As noted in
Section 3.1, u(t) contains two distinct vibration components: forced vibration (excitation
frequency ω terms) and free vibration (natural frequency ωn terms).

Equation (3.2.5) is plotted in Fig. 3.2.1 for ω/ωn = 0.2, ζ = 0.05, u(0) = 0.5po/k,
and u̇(0) = ωn po/k; the total response is shown by the solid line and the forced response
by the dashed line. The difference between the two is the free response, which decays
exponentially with time at a rate depending on ω/ωn and ζ ; eventually, the free response
becomes negligible, hence we call it transient response; compare this with no decay for
undamped systems in Fig. 3.1.1. After awhile, essentially the forced response remains, and
we therefore call it steady-state response and focus on it for the rest of this chapter (after
Section 3.2.2). It should be recognized, however, that the largest deformation peak may
occur before the system has reached steady state; see Fig. 3.2.1.

0 0.5 1 1.5 2
t/T

−2

−1

0

1

2

u(
t)

/(
u st

) o

Total Response

Steady-state Response

Figure 3.2.1 Response of damped system to harmonic force; ω/ωn = 0.2, ζ = 0.05,
u(0) = 0.5po/k, and u̇(0) = ωn po/k.

Derivation 3.3

Dividing Eq. (3.2.1) by m gives

ü + 2ζωnu̇ + ω2
nu = po

m
sinωt (a)

The particular solution of Eq. (a) is of the form

up(t) = C sinωt + D cosωt (b)
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Substituting Eq. (b) and its first and second derivatives in Eq. (a) gives

[(ω2
n − ω2)C − 2ζωnωD] sinωt + [2ζωnωC + (ω2

n − ω2)D] cosωt = po

m
sinωt (c)

For Eq. (c) to be valid for all t , the coefficients of the sine and cosine terms on the two sides
of the equation must be equal. This requirement gives two equations in C and D which, after
dividing by ω2

n and using the relation k = ω2
nm, become

[
1−

(
ω

ωn

)2
]

C −
(

2ζ
ω

ωn

)
D = po

k
(d)

(
2ζ

ω

ωn

)
C +

[
1−

(
ω

ωn

)2
]

D = 0 (e)

Solving the two algebraic equations (d) and (e) leads to Eq. (3.2.4).

3.2.2 Response for ω = ωn

In this section we examine the role of damping in the rate at which steady-state response
is attained and in limiting the magnitude of this response when the forcing frequency is
the same as the natural frequency. For ω = ωn , Eq. (3.2.4) gives C = 0 and D =
−(ust)o/2ζ ; for ω = ωn and zero initial conditions, the constants A and B in Eq. (3.2.5)
can be determined: A = (ust)o/2ζ and B = (ust)o/2

√
1− ζ 2. With these solutions for A,

B, C , and D, Eq. (3.2.5) becomes

u(t) = (ust)o
1

2ζ

[
e−ζωn t

(
cosωDt + ζ√

1− ζ 2
sinωDt

)
− cosωnt

]
(3.2.6)

This result is plotted in Fig. 3.2.2 for a system with ζ = 0.05. A comparison of Fig. 3.2.2
for damped systems and Fig. 3.1.4 for undamped systems shows that damping lowers each
peak and limits the response to the bounded value:

uo = (ust)o

2ζ
(3.2.7)

For lightly damped systems the sinusoidal term in Eq. (3.2.6) is small and ωD �
ωn; thus

u(t) � (ust)o
1

2ζ
(e−ζωn t − 1)︸ ︷︷ ︸

envelope function

cosωnt (3.2.8)

The deformation varies with time as a cosine function, with its amplitude increasing with
time according to the envelope function shown by dashed lines in Fig. 3.2.2.

The amplitude of the steady-state deformation of a system to a harmonic force with
ω = ωn and the rate at which steady state is attained is strongly influenced by damping.
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Figure 3.2.2 Response of damped system with ζ = 0.05 to sinusoidal force of frequency ω = ωn ;
u(0) = u̇(0) = 0.
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Figure 3.2.3 Response of three systems—ζ = 0.01, 0.05, and 0.1—to sinusoidal force
of frequency ω = ωn ; u(0) = u̇(0) = 0.

The important influence of the damping ratio on the amplitude is seen in Fig. 3.2.3, where
Eq. (3.2.6) is plotted for three damping ratios: ζ = 0.01, 0.05, and 0.1. To study how the
response builds up to steady state, we examine the peak uj after j cycles of vibration. A
relation between uj and j can be written by substituting t = jTn in Eq. (3.2.8), setting
cosωnt = 1, and using Eq. (3.2.7) to obtain

| uj |
uo
= 1− e−2πζ j (3.2.9)

This relation is plotted in Fig. 3.2.4 for ζ = 0.01, 0.02, 0.05, 0.10, and 0.20. The discrete
points are joined by curves to identify trends, but only integer values of j are meaningful.
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Figure 3.2.4 Variation of response amplitude with number of cycles of harmonic force
with frequency ω = ωn .

The lighter the damping, the larger is the number of cycles required to reach a certain
percentage of uo, the steady-state amplitude. For example, the number of cycles required
to reach 95% of uo is 48 for ζ = 0.01, 24 for ζ = 0.02, 10 for ζ = 0.05, 5 for ζ = 0.10,
and 2 for ζ = 0.20.

3.2.3 Maximum Deformation and Phase Lag

The steady-state deformation of the system due to harmonic force, described by Eqs. (3.2.3)
and (3.2.4), can be rewritten as

u(t) = uo sin(ωt − φ) = (ust)o Rd sin(ωt − φ) (3.2.10)

where the response amplitude uo =
√

C2 + D2 and φ = tan−1(−D/C). Substituting for
C and D gives the deformation response factor:

Rd = uo

(ust)o
= 1√

[1− (ω/ωn)2]2 + [2ζ (ω/ωn)]2
(3.2.11)

φ = tan−1 2ζ (ω/ωn)

1− (ω/ωn)2
(3.2.12)

Equation (3.2.10) is plotted in Fig. 3.2.5 for three values of ω/ωn and a fixed value of
ζ = 0.20. The values of Rd and φ computed from Eqs. (3.2.11) and (3.2.12) are identified.
Also shown by dashed lines is the static deformation [Eq. (3.1.8)] due to p(t), which varies
with time just as does the applied force, except for the constant k. The steady-state motion
is seen to occur at the forcing period T = 2π/ω, but with a time lag = φ/2π ; φ is called
the phase angle or phase lag.
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Figure 3.2.6 Deformation response factor and phase angle for a damped system excited
by harmonic force.

A plot of the amplitude of a response quantity against the excitation frequency is
called a frequency-response curve. Such a plot for deformation u is given by Fig. 3.2.6,
wherein the deformation response factor Rd [from Eq. (3.2.11)] is plotted as a function
of ω/ωn for a few values of ζ ; all the curves are below the ζ = 0 curve in Fig. 3.1.3.
Damping reduces Rd and hence the deformation amplitude at all excitation frequencies.
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The magnitude of this reduction is strongly dependent on the excitation frequency and is
examined next for three regions of the excitation-frequency scale:

1. If the frequency ratio ω/ωn � 1 (i.e., T 	 Tn , implying that the force is “slowly
varying”), Rd is only slightly larger than 1 and is essentially independent of damping. Thus

uo � (ust)o = po

k
(3.2.13)

This result implies that the amplitude of dynamic response is essentially the same as the
static deformation and is controlled by the stiffness of the system.

2. If ω/ωn 	 1 (i.e., T � Tn , implying that the force is “rapidly varying”), Rd

tends to zero as ω/ωn increases and is essentially unaffected by damping. For large values
of ω/ωn , the (ω/ωn)

4 term is dominant in Eq. (3.2.11), which can be approximated by

uo � (ust)o
ω2

n

ω2
= po

mω2
(3.2.14)

This result implies that the response is controlled by the mass of the system.

3. If ω/ωn � 1 (i.e., the forcing frequency is close to the natural frequency of the
system), Rd is very sensitive to damping and, for the smaller damping values, Rd can be
several times larger than 1, implying that the amplitude of dynamic response can be much
larger than the static deformation. If ω = ωn , Eq. (3.2.11) gives

uo = (ust)o

2ζ
= po

cωn
(3.2.15)

This result implies that the response is controlled by the damping of the system.

The phase angle φ, which defines the time by which the response lags behind the
force, varies with ω/ωn as shown in Fig. 3.2.6. It is examined next for the same three
regions of the excitation-frequency scale:

1. If ω/ωn � 1 (i.e., the force is “slowly varying”), φ is close to 0◦ and the dis-
placement is essentially in phase with the applied force, as in Fig. 3.2.5a. When the force
in Fig. 1.2.1a acts to the right, the system would also be displaced to the right.

2. If ω/ωn 	 1 (i.e., the force is “rapidly varying”), φ is close to 180◦ and the
displacement is essentially of opposite phase relative to the applied force, as in Fig. 3.2.5c.
When the force acts to the right, the system would be displaced to the left.

3. Ifω/ωn = 1 (i.e., the forcing frequency is equal to the natural frequency), φ = 90◦

for all values of ζ , and the displacement attains its peaks when the force passes through
zeros, as in Fig. 3.2.5b.

Example 3.1

The displacement amplitude uo of an SDF system due to harmonic force is known for two
excitation frequencies. At ω = ωn , uo = 15 cm; at ω = 5ωn , uo = 0.06 cm. Estimate the
damping ratio of the system.
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Solution At ω = ωn , from Eq. (3.2.15),

uo = (ust)o
1

2ζ
= 15 (a)

At ω = 5ωn , from Eq. (3.2.14),

uo � (ust)o
1

(ω/ωn)2
= (ust)o

25
= 0.06 (b)

From Eq. (b), (ust)o = 1.5 cm. Substituting in Eq. (a) gives ζ = 0.05.

3.2.4 Dynamic Response Factors

In this section we introduce deformation (or displacement), velocity, and acceleration
response factors that are dimensionless and define the amplitude of these three response
quantities. The steady-state displacement of Eq. (3.2.10) is repeated for convenience:

u(t)

po/k
= Rd sin(ωt − φ) (3.2.16)

where the deformation response factor Rd is the ratio of the amplitude uo of the dynamic
(or vibratory) deformation to the static deformation (ust)o; see Eq. (3.2.11).

Differentiating Eq. (3.2.16) gives an equation for the velocity response:

u̇(t)

po/
√

km
= Rv cos(ωt − φ) (3.2.17)

where the velocity response factor Rv is related to Rd by

Rv = ω

ωn
Rd (3.2.18)

Differentiating Eq. (3.2.17) gives an equation for the acceleration response:

ü(t)

po/m
= −Ra sin(ωt − φ) (3.2.19)

where the acceleration response factor Ra is related to Rd by

Ra =
(
ω

ωn

)2

Rd (3.2.20)

Observe from Eq. (3.2.19) that Ra is the ratio of the amplitude of the vibratory acceleration
to the acceleration due to force po acting on the mass.

The dynamic response factors Rd , Rv , and Ra are plotted as functions of ω/ωn in
Fig. 3.2.7. The plots of Rv and Ra are new, but the one for Rd is the same as that in
Fig. 3.2.6. The deformation response factor Rd is unity at ω/ωn = 0, peaks at ω/ωn < 1,
and approaches zero as ω/ωn →∞. The velocity response factor Rv is zero at ω/ωn = 0,
peaks at ω/ωn = 1, and approaches zero as ω/ωn →∞. The acceleration response factor
Ra is zero at ω/ωn = 0, peaks at ω/ωn > 1, and approaches unity as ω/ωn → ∞. For
ζ > 1/

√
2 no peak occurs for Rd and Ra .
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Figure 3.2.7 Deformation, velocity, and acceleration response factors for a damped
system excited by harmonic force.

The simple relations among the dynamic response factors

Ra

ω/ωn
= Rv = ω

ωn
Rd (3.2.21)

make it possible to present all three factors in a single graph. The Rv–ω/ωn data in the
linear plot of Fig. 3.2.7b are replotted as shown in Fig. 3.2.8 on four-way logarithmic
graph paper. The Rd and Ra values can be read from the diagonally oriented logarithmic
scales that are different from the vertical scale for Rv . This compact presentation makes it
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Figure 3.2.8 Four-way logarithmic plot of deformation, velocity, and acceleration
response factors for a damped system excited by harmonic force.

possible to replace the three linear plots of Fig. 3.2.7 by a single plot. The concepts under-
lying construction of this four-way logarithmic graph paper are presented in Appendix 2.

3.2.5 Resonant Frequencies and Resonant Responses

A resonant frequency is defined as the forcing frequency at which the largest response
amplitude occurs. Figure 3.2.7 shows that the peaks in the frequency-response curves
for displacement, velocity, and acceleration occur at slightly different frequencies. These
resonant frequencies can be determined by setting to zero the first derivative of Rd , Rv , and
Ra with respect to ω/ωn; for ζ < 1/

√
2 they are:

Displacement resonant frequency: ωn

√
1− 2ζ 2

Velocity resonant frequency: ωn

Acceleration resonant frequency: ωn ÷
√

1− 2ζ 2

For an undamped system the three resonant frequencies are identical and equal to the
natural frequency ωn of the system. Intuition might suggest that the resonant frequencies
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for a damped system should be at its natural frequency ωD = ωn

√
1− ζ 2, but this does not

happen; the difference is small, however. For the degree of damping usually embodied in
structures, typically well below 20%, the differences among the three resonant frequencies
and the natural frequency are small.

The three dynamic response factors at their respective resonant frequencies are

Rd = 1

2ζ
√

1− ζ 2
Rv = 1

2ζ
Ra = 1

2ζ
√

1− ζ 2
(3.2.22)

3.2.6 Half-Power Bandwidth

An important property of the frequency response curve for Rd is shown in Fig. 3.2.9, where
the half-power bandwidth is defined. If ωa and ωb are the forcing frequencies on either side
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Figure 3.2.9 Definition of half-power bandwidth.

of the resonant frequency at which the amplitude uo is 1/
√

2 times the resonant amplitude,
then for small ζ

ωb − ωa

ωn
= 2ζ (3.2.23)

This result, derived in Derivation 3.4, can be rewritten as

ζ = ωb − ωa

2ωn
or ζ = fb − fa

2 fn
(3.2.24)



84 Response to Harmonic and Periodic Excitations Chap. 3

where f = ω/2π is the cyclic frequency. This important result enables evaluation of dam-
ping from forced vibration tests without knowing the applied force (Section 3.4).

Derivation 3.4

Equating Rd from Eq. (3.2.11) and 1/
√

2 times the resonant amplitude of Rd given by
Eq. (3.2.22), by definition, the forcing frequencies ωa and ωb satisfy the condition

1√[
1− (ω/ωn)2

]2 + [2ζ (ω/ωn)]2
= 1√

2

1

2ζ
√

1− ζ 2
(a)

Inverting both sides, squaring them, and rearranging terms gives(
ω

ωn

)4

− 2(1− 2ζ 2)

(
ω

ωn

)2

+ 1− 8ζ 2(1− ζ 2) = 0 (b)

Equation (b) is a quadratic equation in (ω/ωn)
2, the roots of which are(

ω

ωn

)2

= (1− 2ζ 2)± 2ζ
√

1− ζ 2 (c)

where the positive sign gives the larger root ωb and the negative sign corresponds to the smaller
root ωa .

For the small damping ratios representative of practical structures, the two terms con-
taining ζ 2 can be dropped and

ω

ωn
� (1± 2ζ )1/2 (d)

Taking only the first term in the Taylor series expansion of the right side gives
ω

ωn
� 1± ζ (e)

Subtracting the smaller root from the larger one gives

ωb − ωa

ωn
� 2ζ (f)

3.2.7 Steady-State Response to Cosine Force

The differential equation to be solved is

mü + cu̇ + ku = po cosωt (3.2.25)

The particular solution given by Eq. (3.2.3) still applies, but in this case the constants C
and D are

C = po

k

2ζ (ω/ωn)[
1− (ω/ωn)2

]2 + [2ζ (ω/ωn)]
2

D = po

k

1− (ω/ωn)
2[

1− (ω/ωn)2
]2 + [2ζ (ω/ωn)]

2

(3.2.26)
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These are determined by the procedure of Derivation 3.3. The steady-state response given
by Eqs. (3.2.3) and (3.2.26) can be expressed as

u(t) = uo cos(ωt − φ) = (ust)o Rd cos(ωt − φ) (3.2.27)

where the amplitude uo, the deformation response factor Rd , and the phase angle φ are the
same as those derived in Section 3.2.3 for a sinusoidal force. This similarity in the steady-
state responses to the two harmonic forces is not surprising since the two excitations are
the same except for a time shift.

PART B: VISCOUSLY DAMPED SYSTEMS: APPLICATIONS

3.3 RESPONSE TO VIBRATION GENERATOR

Vibration generators (or shaking machines) were developed to provide a source of har-
monic excitation appropriate for testing full-scale structures. In this section theoreti-
cal results for the steady-state response of an SDF system to a harmonic force caused
by a vibration generator are presented. These results provide a basis for evalua-
ting the natural frequency and damping of a structure from experimental data
(Section 3.4).

3.3.1 Vibration Generator

Figure 3.3.1 shows a vibration generator having the form of two flat baskets rotating in
opposite directions about a vertical axis. By placing various numbers of lead weights
in the baskets, the magnitudes of the rotating weights can be altered. The two coun-
terrotating masses, me/2, are shown schematically in Fig. 3.3.2 as lumped masses with
eccentricity = e; their locations at t = 0 are shown in (a) and at some time t in (b). The
x-components of the inertia forces of the rotating masses cancel out, and the y-components
combine to produce a force

p(t) = (meeω2) sinωt (3.3.1)

By bolting the vibration generator to the structure to be excited, this force can be transmit-
ted to the structure. The amplitude of this harmonic force is proportional to the square of
the excitation frequency ω. Therefore, it is difficult to generate force at low frequencies
and impractical to obtain the static response of a structure.

3.3.2 Structural Response

Assuming that the eccentric mass me is small compared to the mass m of the structure, the
equation governing the motion of an SDF system excited by a vibration generator is

mü + cu̇ + ku = (meeω2
)

sinωt (3.3.2)
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Figure 3.3.1 Counterrotating eccentric weight vibration generator.

The amplitudes of steady-state displacement and of steady-state acceleration of the SDF
system are given by the maximum values of Eqs. (3.2.16) and (3.2.19) with po = meeω2.
Thus

uo = mee

k
ω2 Rd = mee

m

(
ω

ωn

)2

Rd (3.3.3)

üo = mee

m
ω2 Ra = meeω2

n

m

(
ω

ωn

)2

Ra (3.3.4)

me /2 me /2

• •
e

(a)

mee
2/2

mee
2/2

tt

p(t) = (mee
2) sin t

(b)

ω ω

ω

ω
ω

ω

ωω

Figure 3.3.2 Vibration generator: (a) initial position; (b) position and forces at time t .
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The acceleration amplitude of Eq. (3.3.4) is plotted as a function of the frequency ratio
ω/ωn in Fig. 3.3.3. For forcing frequencies ω greater than the natural frequency ωn of the
system, the acceleration increases rapidly with increasing ω because the amplitude of the
exciting force, Eq. (3.3.1), is proportional to ω2.

3.4 NATURAL FREQUENCY AND DAMPING FROM
HARMONIC TESTS

The theory of forced harmonic vibration, presented in the preceding sections of this chap-
ter, provides a basis to determine the natural frequency and damping of a structure from
its measured response to a vibration generator. The measured damping provides data for
an important structural property that cannot be computed from the design of the structure.
The measured value of the natural frequency is the “actual” property of a structure against
which values computed from the stiffness and mass properties of structural idealizations
can be compared. Such research investigations have led to better procedures for developing
structural idealizations that are representative of actual structures.

3.4.1 Resonance Testing

The concept of resonance testing is based on the result of Eq. (3.2.15), rewritten as

ζ = 1

2

(ust)o

(uo)ω=ωn

(3.4.1)

The damping ratio ζ is calculated from experimentally determined values of (ust)o and of
uo at forcing frequency equal to the natural frequency of the system.† Usually, the accel-
eration amplitude is measured and uo = üo/ω

2. This seems straightforward except that
the true value ωn of the natural frequency is unknown. The natural frequency is detected

†Strictly speaking, this is not the resonant frequency; see Section 3.2.5.
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experimentally by utilizing the earlier result that the phase angle is 90◦ if ω = ωn . Thus the
structure is excited at forcing frequency ω, the phase angle is measured, and the exciting
frequency is adjusted progressively until the phase angle is 90◦.

If the displacement due to static force po—the amplitude of the harmonic force—
can be obtained, Eq. (3.4.1) provides the damping ratio. As mentioned earlier, it is difficult
for a vibration generator to produce a force at low frequencies and impractical to obtain
a significant static force. An alternative is to measure the static response by some other
means, such as by pulling on the structure. In this case, Eq. (3.4.1) should be modified to
recognize any differences in the force applied in the static test relative to the amplitude of
the harmonic force.

3.4.2 Frequency-Response Curve

Because of the difficulty in obtaining the static structural response using a vibration gener-
ator, the natural frequency and damping ratio of a structure are usually determined by ob-
taining the frequency-response curve experimentally. The vibration generator is operated
at a selected frequency, the structural response is observed until the transient part damps
out, and the amplitude of the steady-state acceleration is measured. The frequency of the
vibration generator is adjusted to a new value and the measurements are repeated. The
forcing frequency is varied over a range that includes the natural frequency of the system.
A frequency-response curve in the form of acceleration amplitude versus frequency may
be plotted directly from the measured data. This curve is for a force with amplitude propor-
tional to ω2 and would resemble the frequency-response curve of Fig. 3.3.3. If each mea-
sured acceleration amplitude is divided by ω2, we obtain the frequency–acceleration curve
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Figure 3.4.1 Evaluating damping from frequency-response curve.
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for a constant-amplitude force. This curve from measured data would resemble a curve
in Fig. 3.2.7c. If the measured accelerations are divided by ω4, the resulting frequency–
displacement curve for a constant-amplitude force would be an experimental version of the
curve in Fig. 3.2.7a.

The natural frequency and damping ratio can be determined from any one of the
experimentally obtained versions of the frequency-response curves of Figs. 3.3.3, 3.2.7c,
and 3.2.7a. For the practical range of damping the natural frequency fn is essentially equal
to the forcing frequency at resonance. The damping ratio is calculated by Eq. (3.2.24) us-
ing the frequencies fa and fb, determined, as illustrated in Fig. 3.4.1, from the experimen-
tal curve shown schematically. Although this equation was derived from the frequency–
displacement curve for a constant-amplitude harmonic force, it is approximately valid for
the other response curves mentioned earlier as long as the structure is lightly damped.

Example 3.2

The plexiglass frame of Fig. 1.1.4 is mounted on a shaking table that can apply harmonic base
motions of specified frequencies and amplitudes. At each excitation frequency ω, acceleration
amplitudes ügo and üt

o of the table and the top of the frame, respectively, are recorded. The
transmissibility TR = üt

o/ügo is compiled and the data are plotted in Fig. E3.2. Determine the
natural frequency and damping ratio of the plexiglass frame from these data.

Solution The peak of the frequency-response curve occurs at 3.59 Hz. Assuming that the
damping is small, the natural frequency fn = 3.59 Hz.

The peak value of the transmissibility curve is 12.8. Now draw a horizontal line at
12.8/

√
2 = 9.05 as shown. This line intersects the frequency-response curve at fb = 3.74 Hz

and fa = 3.44 Hz. Therefore, from Eq. (3.2.24),

ζ = 3.74− 3.44

2 (3.59)
= 0.042 = 4.2%
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This damping value is slightly higher than the 3.96% determined from a free vibration test on
the model (Example 2.5).

Note that we have used Eq. (3.2.24) to determine the damping ratio of the system from
its transmissibility (TR) curve, whereas this equation had been derived from the frequency–
displacement curve. This approximation is appropriate because at excitation frequencies in
the range fa to fb, the numerical values of TR and Rd are close; this is left for the reader to
verify after an equation for TR is presented in Section 3.6.

3.5 FORCE TRANSMISSION AND VIBRATION ISOLATION

Consider the mass–spring–damper system shown in the left inset in Fig. 3.5.1 subjected to
a harmonic force. The force transmitted to the base is

fT (t) = fS(t)+ fD(t) = ku(t)+ cu̇(t) (3.5.1)
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Figure 3.5.1 Transmissibility for harmonic excitation. Force transmissibility and ground
motion transmissibility are identical.
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Substituting Eq. (3.2.10) for u(t) and Eq. (3.2.17) for u̇(t) and using Eq. (3.2.18) gives

fT (t) = (ust)o Rd [k sin(ωt − φ)+ cω cos(ωt − φ)] (3.5.2)

The maximum value of fT (t) over t is

( fT )o = (ust)o Rd

√
k2 + c2ω2

which, after using (ust)o = po/k and ζ = c/2mωn , can be expressed as

( fT )o

po
= Rd

√
1+

(
2ζ
ω

ωn

)2

Substituting Eq. (3.2.11) for Rd gives an equation for the ratio of the maximum transmitted
force to the amplitude po of the applied force, known as the transmissibility (TR) of the
system:

TR =
{

1+ [2ζ (ω/ωn)]2

[1− (ω/ωn)2]2 + [2ζ (ω/ωn)]
2

}1/2

(3.5.3)

Note that if the spring is rigid, ωn = ∞ and TR = 1, implying that ( fT )0 = p0.
The transmissibility is plotted in Fig. 3.5.1 as a function of the frequency ratio ω/ωn

for several values of the damping ratio ζ . Logarithmic scales have been chosen to highlight
the curves for large ω/ωn , the region of interest. While damping decreases the amplitude
of motion at all excitation frequencies (Fig. 3.2.7), increase in damping reduces the trans-
mitted force only if ω/ωn >

√
2. For the transmitted force to be less than the applied force,

that is, TR < 1, the stiffness of the support system and hence the natural frequency should
be small enough so that ω/ωn >

√
2. No damping is desired in the support system because,

in this frequency range, damping increases the transmitted force. This implies a trade-off
between a soft spring to reduce the transmitted force and an acceptable static displacement.

If the applied force arises from a rotating machine, its frequency will vary as it starts
to rotate and increases its speed to reach the operating frequency. In this case the choice of
a flexible support system to minimize the transmitted force must be a compromise. It must
have sufficient damping to limit the force transmitted while passing through resonance,
but not enough to add significantly to the force transmitted at operating speeds. Luckily,
natural rubber is a very satisfactory material and is often used for the isolation of vibration.

3.6 RESPONSE TO GROUND MOTION AND VIBRATION ISOLATION

In this section we determine the response of an SDF system (see the right inset in Fig. 3.5.1)
to harmonic ground motion:

üg(t) = ügo sinωt (3.6.1)

For this excitation the governing equation is Eq. (1.7.4), where the forcing function is
peff(t) = −müg(t) = −mügo sinωt , the same as Eq. (3.2.1) for an applied harmonic force
with po replaced by −mügo. Making this substitution in Eqs. (3.1.9) and (3.2.10) gives

u(t) = −mügo

k
Rd sin(ωt − φ) (3.6.2)
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The acceleration of the mass is

üt (t) = üg(t)+ ü(t) (3.6.3)

Substituting Eq. (3.6.1) and the second derivative of Eq. (3.6.2) gives an equation for üt (t)
from which the amplitude or maximum value üt

o can be determined (see Derivation 3.5):

TR = üt
o

ügo
=
{

1+ [2ζ (ω/ωn)]2[
1− (ω/ωn)2

]2 + [2ζ (ω/ωn)]
2

}1/2

(3.6.4)

The ratio of acceleration üt
o transmitted to the mass and amplitude ügo of ground accelera-

tion is also known as the transmissibility (TR) of the system. From Eqs. (3.6.4) and (3.5.3)
it is clear that the transmissibility for the ground excitation problem is the same as for the
applied force problem.

Therefore, Fig. 3.5.1 also gives the ratio üt
o/ügo as a function of the frequency ratio

ω/ωn . If the excitation frequency ω is much smaller than the natural frequency ωn of the
system, üt

o � ügo (i.e., the mass moves rigidly with the ground, both undergoing the same
acceleration). If the excitation frequency ω is much higher than the natural frequency ωn of
the system, üt

o � 0 (i.e., the mass stays still while the ground beneath it moves). This is the
basic concept underlying isolation of a mass from a moving base by using a very flexible
support system. For example, buildings have been mounted on natural rubber bearings to
isolate them from ground-borne vertical vibration—typically with frequencies that range
from 25 to 50 Hz—due to rail traffic.

Before closing this section, we mention without derivation the results of a related
problem. If the ground motion is defined as ug(t) = ugo sinωt , it can be shown that the
amplitude ut

o of the total displacement ut (t) of the mass is given by

TR = ut
o

ugo
=
{

1+ [2ζ (ω/ωn)]2[
1− (ω/ωn)2

]2 + [2ζ (ω/ωn)]
2

}1/2

(3.6.5)

Comparing this with Eq. (3.6.4) indicates that the transmissibility for displacements and
accelerations is identical.

Example 3.3

A sensitive instrument with mass 50 kg is to be installed at a location where the vertical ac-
celeration is 0.1g at a frequency of 10 Hz. This instrument is mounted on a rubber pad of
stiffness 14 kN/m and damping such that the damping ratio for the system is 10%. (a) What
acceleration is transmitted to the instrument? (b) If the instrument can tolerate only an accel-
eration of 0.005g, suggest a solution assuming that the same rubber pad is to be used. Provide
numerical results.

Solution (a) Determine TR.

ωn =
√

14× 103

50
= 16.73 rad/s

ω

ωn
= 2π(10)

16.73
= 3.755
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Substituting these in Eq. (3.6.4) gives

TR = üt
o

ügo
=
√

1+ [2(0.1)(3.755)]2

[1− (3.755)2]2 + [2(0.1)(3.755)]2
= 0.0953

Therefore, üt
o = (0.0953)ügo = (0.0953)0.1g = 0.0095g.

(b) Determine the added mass to reduce acceleration. The transmitted acceleration can
be reduced by increasing ω/ωn , which requires reducing ωn by mounting the instrument on
mass mb. Suppose that we add a mass mb = 60 kg; the total mass = 110 kg, and

ω′n =
√

14× 103

110
= 11.28 rad/s

ω

ω′n
= 5.569

To determine the damping ratio for the system with added mass, we need the damping coeffi-
cient for the rubber pad:

c = ζ (2mωn) = 0.1(2)(50)(16.73) = 167.3 N-s/m

Then

ζ ′ = c

2(m + mb)ω
′
n
= 167.3

2(110)(11.28)
= 0.0674

Substituting for ω/ω′n and ζ ′ in Eq. (3.6.4) gives üt
o/ügo = 0.0416; üt

o = 0.0042g which is
satisfactory because it is less than 0.005g.

Instead of selecting an added mass by judgment, it is possible to set up a quadratic
equation for the unknown mass, which will give üt

o = 0.005g.

Example 3.4

An automobile is traveling along a multispan elevated roadway supported every 30 m. Long-
term creep has resulted in a 16 cm deflection at the middle of each span (Fig. E3.4a). The
roadway profile can be approximated as sinusoidal with an amplitude of 8 cm and period of
30 m. The SDF system shown is a simple idealization of an automobile, appropriate for a “first
approximation” study of the ride quality of the vehicle. When fully loaded, the mass of the
automobile is 1800 kg. The stiffness of the automobile suspension system is 140 kN/m, and
its viscous damping coefficient is such that the damping ratio of the system is 40%. Determine

• •• •
30 m 30 m

••8 cm

)b()a(
ut

ug

w

ck

Figure E3.4
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(a) the amplitude ut
o of vertical motion ut (t) when the automobile is traveling at 60 km/h, and

(b) the speed of the vehicle that would produce a resonant condition for ut
o.

Solution Assuming that the tires are infinitely stiff and they remain in contact with the road,
the problem can be idealized as shown in Fig. E3.4b. The vertical displacement of the tires is
ug(t) = ugo sinωt , where ugo = 8 cm. The forcing frequency ω = 2π/T , where the forcing
period T = L/v, the time taken by the automobile to cross the span; therefore, ω = 2πv/L .

(a) Determine ut
o.

v = 60 km/h = 16.67 m/s ω = 2π(16.67)

30
= 3.491 rad/s

ωn =
√

k

m
=
√

140× 103

1800
= 8.819 rad/s

ω

ωn
= 0.396

Substituting these data in Eq. (3.6.5) gives

ut
o

ugo
=
{

1+ [2(0.4)(0.396)]2

[1− (0.396)2]2 + [2(0.4)(0.396)]2

}1/2

= 1.164

ut
o = 1.164ugo = 1.164(8) = 8.73 cm

(b) Determine the speed at resonance. If ζ were small, resonance would occur ap-
proximately at ω/ωn = 1. However, automobile suspensions have heavy damping, to reduce
vibration. In this case, ζ = 0.4, and for such large damping the resonant frequency is sig-
nificantly different from ωn . By definition, resonance occurs for ut

o when TR (or TR2) is
maximum over all ω. Substituting ζ = 0.4 in Eq. (3.6.5) and introducing β = ω/ωn gives

TR2 = 1+ 0.64β2

(1− 2β2 + β4)+ 0.64β2
= 1+ 0.64β2

β4 − 1.36β2 + 1

d(TR)2

dβ
= 0⇒ β = 0.893⇒ ω = 0.893ωn = 0.893(8.819) = 7.872 rad/s

Resonance occurs at this forcing frequency, which implies a speed of

v = ωL

2π
= (7.872)(30)

2π
= 37.59 m/s = 135 km/h

Example 3.5

Repeat part (a) of Example 3.4 if the vehicle is empty (driver only) with a total mass of
1400 kg.

Solution Since the damping coefficient c does not change but the mass m does, we need to
recompute the damping ratio for an empty vehicle from

c = 2ζ f
√

km f = 2ζe

√
kme

where the subscripts f and e denote full and empty conditions, respectively. Thus

ζe = ζ f

(
m f

me

)1/2

= 0.4

(
1800

1400

)1/2

= 0.454
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For an empty vehicle

ωn =
√

k

m
=
√

140× 103

1400
= 10 rad/s

ω

ωn
= 3.491

10
= 0.349

Substituting for ω/ωn and ζ in Eq. (3.6.5) gives

ut
o

ugo
=
{

1+ [2(0.462)(0.349)]2

[1− (0.349)2]2 + [2(0.462)(0.349)]2

}1/2

= 1.124

ut
o = 1.124ugo = 1.124(8) = 8.43 cm

Derivation 3.5

Equation (3.6.2) is first rewritten as a linear combination of sine and cosine functions. This
can be accomplished by substituting Eqs. (3.2.11) and (3.2.12) for the Rd and φ, respectively,
or by replacing po in Eq. (3.2.4) with −mügo and substituting in Eq. (3.2.3). Either way the
relative displacement is

u(t) = −mügo

k

{
[1− (ω/ωn)

2] sinωt − [2ζ (ω/ωn)] cosωt

[1− (ω/ωn)2]2 + [2ζ (ω/ωn)]2

}
(a)

Differentiating this twice and substituting it in Eq. (3.6.3) together with Eq. (3.6.1) gives

üt (t) = ügo (C1 sinωt + D1 cosωt) (b)

where

C1 = 1− (ω/ωn)
2 + 4ζ 2(ω/ωn)

2

[1− (ω/ωn)2]2 + [2ζ (ω/ωn)]2
D1 = −2ζ (ω/ωn)

3

[1− (ω/ωn)2]2 + [2ζ (ω/ωn)]2
(c)

The acceleration amplitude is

üt
o = ügo

√
C2

1 + D2
1 (d)

This result, after substituting for C1 and D1 from Eq. (c) and some simplification, leads to
Eq. (3.6.4).

3.7 VIBRATION-MEASURING INSTRUMENTS

Measurement of vibration is of great interest in many aspects of structural engineering.
For example, measurement of ground shaking during an earthquake provides basic data
for earthquake engineering, and records of the resulting motions of a structure provide
insight into how structures respond during earthquakes. Although measuring instruments
are highly developed and intricate, the basic element of these instruments is some form of
a transducer. In its simplest form a transducer is a mass–spring–damper system mounted
inside a rigid frame that is attached to the surface whose motion is to be measured. Fig-
ure 3.7.1 shows a schematic drawing of such an instrument to record the horizontal
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Figure 3.7.1 Schematic drawing of a vibration-measuring instrument and recorded motion.

motion of a support point; three separate transducers are required to measure the three com-
ponents of motion. When subjected to motion of the support point, the transducer mass
moves relative to the frame, and this relative displacement is recorded after suitable mag-
nification. It is the objective of this brief presentation to discuss the principle underlying
the design of vibration-measuring instruments so that the measured relative displacement
provides the desired support motion—acceleration or displacement.

3.7.1 Measurement of Acceleration

The motion to be measured generally varies arbitrarily with time and may include many
harmonic components covering a wide range of frequencies. It is instructive, however, to
consider first the measurement of simple harmonic motion described by Eq. (3.6.1). The
displacement of the instrument mass relative to the moving frame is given by Eq. (3.6.2),
which can be rewritten as

u(t) = −
(

1

ω2
n

Rd

)
üg

(
t − φ

ω

)
(3.7.1)

The recorded u(t) is the base acceleration modified by a factor−Rd/ω
2
n and recorded with

a time lag φ/ω. As shown in Fig. 3.2.6, Rd and φ vary with the forcing frequency ω, but
ω2

n is an instrument constant independent of the support motion.
The object of the instrument design is to make Rd and φ/ω as independent of excita-

tion frequency as possible because then each harmonic component of acceleration will be
recorded with the same modifying factor and the same time lag. Then, even if the motion to
be recorded consists of many harmonic components, the recorded u(t) will have the same
shape as the support motion with a constant shift of time. This constant time shift simply
moves the time scale a little, which is usually not important. According to Fig. 3.7.2 (which
is a magnified plot of Fig. 3.2.6 with additional damping values), if ζ = 0.7, then over the
frequency range 0 ≤ ω/ωn ≤ 0.50, Rd is close to 1 (less than 2.5% error) and the variation
of φ with ω is close to linear, implying that φ/ω is essentially constant. Thus an instru-
ment with a natural frequency of 50 Hz and a damping ratio of 0.7 has a useful frequency
range from 0 to 25 Hz with negligible error. These are the properties of modern, com-
mercially available instruments designed to measure earthquake-induced ground accelera-
tion. Because the measured amplitude of u(t) is proportional to Rd/ω

2
n , a high-frequency

instrument will result in a very small displacement that is substantially magnified in these
instruments for proper measurement.
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Figure 3.7.2 Variation of Rd and φ with frequency ratio ω/ωn for ζ = 0.6, 0.65, 0.7,
and 0.75.

Figure 3.7.3 shows a comparison of the actual ground acceleration üg(t) =
0.1g sin 2π f t and the measured relative displacement of Rdüg(t − φ/ω), except for the
instrument constant −1/ω2

n in Eq. (3.7.1). For excitation frequencies f = 20 and 10 Hz,
the measured motion has accurate amplitude, but the error at f = 40 Hz is noticeable; and
the time shift, although not identical for the three frequencies, is similar. If the ground ac-
celeration is the sum of the three harmonic components, this figure shows that the recorded
motion matches the ground acceleration in amplitude and shape reasonably well but not
perfectly.

The accuracy of the recorded motion u(t) can be improved by separating u(t) into its
harmonic components and correcting one component at a time, by calculating üg(t−φ/ω)
from the measured u(t) using Eq. (3.7.1) with Rd determined from Eq. (3.2.11) and known
instrument properties ωn and ζ . Such corrections are repeated for each harmonic compo-
nent in u(t), and the corrected components are then synthesized to obtain üg(t). These
computations can be carried out by discrete Fourier transform procedures, which are intro-
duced in Appendix A.
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Figure 3.7.3 Comparison of actual ground acceleration and measured motion by an
instrument with fn = 50 Hz and ζ = 0.7.

3.7.2 Measurement of Displacement

It is desired to design the transducer so that the relative displacement u(t) measures the
support displacement ug(t). This is achieved by making the transducer spring so flexible
or the transducer mass so large, or both, that the mass stays still while the support beneath
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it moves. Such an instrument is unwieldy because of the heavy mass and soft spring, and
because it must accommodate the anticipated support displacement, which may be as large
as 91 cm during earthquakes.

To examine the basic concept further, consider harmonic support displacement

ug(t) = ugo sinωt (3.7.2)

With the forcing function peff(t) = −müg(t) = mω2ugo sinωt , Eq. (1.7.4) governs the
relative displacement of the mass; this governing equation is the same as Eq. (3.2.1) for
applied harmonic force with po replaced by mω2ugo. Making this substitution in
Eq. (3.2.10) and using Eqs. (3.1.9) and (3.2.20) gives

u(t) = Raugo sin(ωt − φ) (3.7.3)

For excitation frequencies ω much higher than the natural frequency ωn , Ra is close to
unity (Fig. 3.2.7c) and φ is close to 180◦, and Eq. (3.7.3) becomes

u(t) = −ugo sinωt (3.7.4)

This recorded displacement is the same as the support displacement [Eq. (3.7.2)] except
for the negative sign, which is usually inconsequential. Damping of the instrument is not
a critical parameter because it has little effect on the recorded motion if ω/ωn is very
large.

3.8 ENERGY DISSIPATED IN VISCOUS DAMPING

Consider the steady-state motion of an SDF system due to p(t) = po sinωt . The energy
dissipated by viscous damping in one cycle of harmonic vibration is

ED =
∫

fD du =
∫ 2π/ω

0
(cu̇)u̇ dt =

∫ 2π/ω

0
cu̇2 dt

= c
∫ 2π/ω

0
[ωuo cos(ωt − φ)]2 dt = πcωu2

o = 2πζ
ω

ωn
ku2

o (3.8.1)

The energy dissipated is proportional to the square of the amplitude of motion. It
is not a constant value for any given amount of damping and amplitude since the energy
dissipated increases linearly with excitation frequency.

In steady-state vibration, the energy input to the system due to the applied force is
dissipated in viscous damping. The external force p(t) inputs energy to the system, which
for each cycle of vibration is

EI =
∫

p(t) du =
∫ 2π/ω

0
p(t)u̇ dt

=
∫ 2π/ω

0
[po sinωt][ωuo cos(ωt − φ)] dt = π pouo sin φ (3.8.2)
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Utilizing Eq. (3.2.12) for phase angle, this equation can be rewritten as (see Derivation 3.6)

EI = 2πζ
ω

ωn
ku2

o (3.8.3)

Equations (3.8.1) and (3.8.3) indicate that EI = ED .
What about the potential energy and kinetic energy? Over each cycle of harmonic

vibration the changes in potential energy (equal to the strain energy of the spring) and
kinetic energy are zero. This can be confirmed as follows:

ES =
∫

fS du =
∫ 2π/ω

0
(ku)u̇ dt

=
∫ 2π/ω

0
k[uo sin(ωt − φ)][ωuo cos(ωt − φ)] dt = 0

EK =
∫

f I du =
∫ 2π/ω

0
(mü)u̇ dt

=
∫ 2π/ω

0
m[−ω2uo sin(ωt − φ)][ωuo cos(ωt − φ)] dt = 0

The preceding energy concepts help explain the growth of the displacement ampli-
tude caused by harmonic force with ω = ωn until steady state is attained (Fig. 3.2.2). For
ω = ωn , φ = 90◦ and Eq. (3.8.2) gives

EI = π pouo (3.8.4)

The input energy varies linearly with the displacement amplitude (Fig. 3.8.1). In contrast,
the dissipated energy varies quadratically with the displacement amplitude (Eq. 3.8.1). As
shown in Fig. 3.8.1, before steady state is reached, the input energy per cycle exceeds
the energy dissipated during the cycle by damping, leading to a larger amplitude of dis-
placement in the next cycle. With growing displacement amplitude, the dissipated energy
increases more rapidly than does the input energy. Eventually, the input and dissipated
energies will match at the steady-state displacement amplitude uo, which will be bounded
no matter how small the damping. This energy balance provides an alternative means of

EIED

EI = ED

E
ne

rg
y

uo

Amplitude
Figure 3.8.1 Input energy EI and energy
dissipated ED in viscous damping.
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finding uo due to harmonic force with ω = ωn; equating Eqs. (3.8.1) and (3.8.4) gives

π pouo = πcωnu2
o (3.8.5)

Solving for uo leads to

uo = po

cωn
(3.8.6)

This result agrees with Eq. (3.2.7), obtained by solving the equation of motion.
We will now present a graphical interpretation for the energy dissipated in viscous

damping. For this purpose we first derive an equation relating the damping force fD to the
displacement u:

fD = cu̇(t) = cωuo cos(ωt − φ)

= cω
√

u2
o − u2

o sin2(ωt − φ)

= cω
√

u2
o − [u(t)]2

This can be rewritten as (
u

uo

)2

+
(

fD

cωuo

)2

= 1 (3.8.7)

which is the equation of the ellipse shown in Fig. 3.8.2a. Observe that the fD–u curve
is not a single-valued function but a loop known as a hysteresis loop. The area enclosed
by the ellipse is π(uo)(cωuo) = πcωu2

o, which is the same as Eq. (3.8.1). Thus the area
within the hysteresis loop gives the dissipated energy.

u

u > 0˙

u < 0˙

uo

c uo

fD

(a)

uo

fS = ku
kuo

fD + fS

Loading, u̇ > 0

Unloading, u̇ < 0

u

(b)

ω c uoω

Figure 3.8.2 Hysteresis loops for (a) viscous damper; (b) spring and viscous damper in parallel.
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It is of interest to examine the total (elastic plus damping) resisting force because
this is the force that is measured in an experiment:

fS + fD = ku(t)+ cu̇(t)

= ku + cω
√

u2
o − u2 (3.8.8)

A plot of fS + fD against u is the ellipse of Fig. 3.8.2a rotated as shown in Fig. 3.8.2b
because of the ku term in Eq. (3.8.8). The energy dissipated by damping is still the area en-
closed by the ellipse because the area enclosed by the single-valued elastic force, fS = ku,
is zero.

The hysteresis loop associated with viscous damping is the result of dynamic hystere-
sis since it is related to the dynamic nature of the loading. The loop area is proportional
to excitation frequency; this implies that the force–deformation curve becomes a single-
valued curve (no hysteresis loop) if the cyclic load is applied slowly enough (ω = 0). A
distinguishing characteristic of dynamic hysteresis is that the hysteresis loops tend to be
elliptical in shape rather than pointed, as in Fig. 1.3.1c, if they are associated with plastic
deformations. In the latter case, the hysteresis loops develop even under static cyclic loads;
this phenomenon is therefore known as static hysteresis because the force–deformation
curve is insensitive to deformation rate.

In passing, we mention two measures of damping: specific damping capacity and
the specific damping factor. The specific damping capacity, ED/ESo, is that fractional part
of the strain energy, ESo = ku2

o/2, which is dissipated during each cycle of motion; both
ED and ESo are shown in Fig. 3.8.3. The specific damping factor, also known as the loss
factor, is defined as

ξ = 1

2π

ED

ESo
(3.8.9)

If the energy could be removed at a uniform rate during a cycle of simple harmonic motion
(such a mechanism is not realistic), ξ could be interpreted as the energy loss per radian
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g 
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e

Figure 3.8.3 Definition of energy loss
ED in a cycle of harmonic vibration and
maximum strain energy ESo.
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divided by the strain energy, ESo. These two measures of damping are not often used in
structural vibration since they are most useful for very light damping (e.g., they are useful
in comparing the damping capacity of materials).

Derivation 3.6

Equation (3.8.2) gives the input energy per cycle where the phase angle, defined by Eq. (3.2.12),
can be expressed as

sin φ =
(

2ζ
ω

ωn

)
Rd =

(
2ζ

ω

ωn

)
uo

po/k

Substituting this in Eq. (3.8.2) gives Eq. (3.8.3).

3.9 EQUIVALENT VISCOUS DAMPING

As introduced in Section 1.4, damping in actual structures is usually represented by equiv-
alent viscous damping. It is the simplest form of damping to use since the governing
differential equation of motion is linear and hence amenable to analytical solution, as seen
in earlier sections of this chapter and in Chapter 2. The advantage of using a linear equation
of motion usually outweighs whatever compromises are necessary in the viscous damping
approximation. In this section we determine the damping coefficient for viscous damping
so that it is equivalent in some sense to the combined effect of all damping mechanisms
present in the actual structure; these were mentioned in Section 1.4.

The simplest definition of equivalent viscous damping is based on the measured re-
sponse of a system to harmonic force at exciting frequency ω equal to the natural frequency
ωn of the system. The damping ratio ζeq is calculated from Eq. (3.4.1) using measured val-
ues of uo and (ust)o. This is the equivalent viscous damping since it accounts for all the
energy-dissipating mechanisms that existed in the experiments.

Another definition of equivalent viscous damping is that it is the amount of damping
that provides the same bandwidth in the frequency-response curve as obtained experimen-
tally for an actual system. The damping ratio ζeq is calculated from Eq. (3.2.24) using the
excitation frequencies fa , fb, and fn (Fig. 3.4.1) obtained from an experimentally deter-
mined frequency-response curve.

The most common method for defining equivalent viscous damping is to equate the
energy dissipated in a vibration cycle of the actual structure and an equivalent viscous sys-
tem. For an actual structure the force-displacement relation is obtained from an experiment
under cyclic loading with displacement amplitude uo; such a relation of arbitrary shape is
shown schematically in Fig. 3.9.1. The energy dissipated in the actual structure is given
by the area ED enclosed by the hysteresis loop. Equating this to the energy dissipated in
viscous damping given by Eq. (3.8.1) leads to

4πζeq
ω

ωn
ESo = ED or ζeq = 1

4π

1

ω/ωn

ED

ESo
(3.9.1)
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Figure 3.9.1 Energy dissipated ED in a
cycle of harmonic vibration determined from
experiment.

where the strain energy, ESo = ku2
o/2, is calculated from the stiffness k determined by

experimentation.
The experiment leading to the force–deformation curve of Fig. 3.9.1 and hence ED

should be conducted at ω = ωn , where the response of the system is most sensitive to
damping. Thus Eq. (3.9.1) specializes to

ζeq = 1

4π

ED

ESo
(3.9.2)

The damping ratio ζeq determined from a test at ω = ωn would not be correct at any other
exciting frequency, but it would be a satisfactory approximation (Section 3.10.2).

It is widely accepted that this procedure can be extended to model the damping in
systems with many degrees of freedom. An equivalent viscous damping ratio is assigned
to each natural vibration mode of the system (defined in Chapter 10) in such a way that the
energy dissipated in viscous damping matches the actual energy dissipated in the system
when the system vibrates in that mode at its natural frequency.

In this book the concept of equivalent viscous damping is restricted to systems vi-
brating at amplitudes within the linearly elastic limit of the overall structure. The energy
dissipated in inelastic deformations of the structure has also been modeled as equivalent
viscous damping in some research studies. This idealization is generally not satisfactory,
however, for the large inelastic deformations of structures expected during strong earth-
quakes. We shall account for these inelastic deformations and the associated energy dis-
sipation by nonlinear force–deformation relations, such as those shown in Fig. 1.3.4 (see
Chapters 5 and 7).

Example 3.6

A body moving through a fluid experiences a resisting force that is proportional to the square
of the speed, fD = ±au̇2, where the positive sign applies to positive u̇ and the negative sign
to negative u̇. Determine the equivalent viscous damping coefficient ceq for such forces acting
on an oscillatory system undergoing harmonic motion of amplitude uo and frequency ω. Also
find its displacement amplitude at ω = ωn .
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Solution If time is measured from the position of largest negative displacement, the har-
monic motion is

u(t) = −uo cosωt

The energy dissipated in one cycle of motion is

ED =
∫

fD du =
∫ 2π/ω

0
fDu̇ dt = 2

∫ π/ω

0
fDu̇ dt

= 2

∫ π/ω

0
(au̇2)u̇ dt = 2aω3u3

o

∫ π/ω

0
sin3 ωt dt = 8

3 aω2u3
o

Equating this to the energy dissipated in viscous damping [Eq. (3.8.1)] gives

πceqωu2
o =

8

3
aω2u3

o or ceq = 8

3π
aωuo (a)

Substituting ω = ωn in Eq. (a) and the ceq for c in Eq. (3.2.15) gives

uo =
(

3π

8a

po

ω2
n

)1/2

(b)

PART C: SYSTEMS WITH NONVISCOUS DAMPING

3.10 HARMONIC VIBRATION WITH RATE-INDEPENDENT DAMPING

3.10.1 Rate-Independent Damping

Experiments on structural metals indicate that the energy dissipated internally in cyclic
straining of the material is essentially independent of the cyclic frequency. Similarly,
forced vibration tests on structures indicate that the equivalent viscous damping ratio is
roughly the same for all natural modes and frequencies. Thus we refer to this type of
damping as rate-independent linear damping. Other terms used for this mechanism of in-
ternal damping are structural damping, solid damping, and hysteretic damping. We prefer
not to use these terms because the first two are not especially meaningful, and the third is
ambiguous because hysteresis is a characteristic of all materials or structural systems that
dissipate energy.

Rate-independent damping is associated with static hysteresis due to plastic strain,
localized plastic deformation, crystal plasticity, and plastic flow in a range of stresses
within the apparent elastic limit. On the microscopic scale the inhomogeneity of stress dis-
tribution within crystals and stress concentration at crystal boundary intersections
produce local stress high enough to cause local plastic strain even though the average
(macroscopic) stress may be well below the elastic limit. This damping mechanism does
not include the energy dissipation in macroscopic plastic deformations, which as men-
tioned earlier, is handled by a nonlinear relationship between force fS and deformation u.
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The simplest device that can be used to represent rate-independent linear damping
during harmonic motion at frequency ω is to assume that the damping force is proportional
to velocity and inversely proportional to frequency:

fD = ηk

ω
u̇ (3.10.1)

where k is the stiffness of the structure and η is a damping coefficient. The energy dissi-
pated by this type of damping in a cycle of vibration at frequency ω is independent of ω
(Fig. 3.10.1). It is given by Eq. (3.8.1) with c replaced by ηk/ω:

ED = πηku2
o = 2πηESo (3.10.2)

In contrast, the energy dissipated in viscous damping [Eq. (3.8.1)] increases linearly with
the forcing frequency as shown in Fig. 3.10.1.
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Viscous damping
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ω
Figure 3.10.1 Energy dissipated in viscous
damping and rate-independent damping.

Rate-independent damping is easily described if the excitation is harmonic and we
are interested only in the steady-state response of this system. Difficulties arise in trans-
lating this damping mechanism back to the time domain. Thus it is most useful in the
frequency-domain method of analysis (Appendix A).

3.10.2 Steady-State Response to Harmonic Force

The equation governing harmonic motion of an SDF system with rate-independent linear
damping, denoted by a crossed box in Fig. 3.10.2, is Eq. (3.2.1) with the damping term
replaced by Eq. (3.10.1):

mü + ηk

ω
u̇ + ku = p(t) (3.10.3)

The mathematical solution of this equation is quite complex for arbitrary p(t).
Here we consider only the steady-state motion due to a sinusoidal forcing function,
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Figure 3.10.2 SDF system with
rate-independent linear damping.

p(t) = po sinωt , which is described by

u(t) = uo sin(ωt − φ) (3.10.4)

The amplitude uo and phase angle φ are

uo = (ust)o
1√[

1− (ω/ωn)2
]2 + η2

(3.10.5)

φ = tan−1 η

1− (ω/ωn)2
(3.10.6)

These results are obtained by modifying the viscous damping ratio in Eqs. (3.2.11) and
(3.2.12) to reflect the damping force associated with rate-independent damping, Eq. (3.10.1).
In particular, ζ was replaced by

ζ = c

cc
= ηk/ω

2mωn
= η

2(ω/ωn)
(3.10.7)

Shown in Fig. 3.10.3 by solid lines are plots of uo/(ust)o and φ as a function of the
frequency ratio ω/ωn for damping coefficient η = 0, 0.2, and 0.4; the dashed lines are
described in the next section. Comparing these results with those in Fig. 3.2.6 for viscous
damping, two differences are apparent: First, resonance (maximum amplitude) occurs at
ω = ωn , not at ω < ωn . Second, the phase angle for ω = 0 is φ = tan−1 η instead of zero
for viscous damping; this implies that motion with rate-independent damping can never be
in phase with the forcing function.

These differences between forced vibration with rate-independent damping and forced
vibration with viscous damping are not significant, but they are the source of some diffi-
culty in reconciling physical data. In most damped vibration, damping is not viscous, and
to assume that it is without knowing its real physical characteristics is an assumption of
some error. In the next section this error is shown to be small when the real damping is
rate independent.

3.10.3 Solution Using Equivalent Viscous Damping

In this section an approximate solution for the steady-state harmonic response of a system
with rate-independent damping is obtained by modeling this damping mechanism as equiv-
alent viscous damping.

Matching dissipated energies at ω = ωn led to Eq. (3.9.2), where ED is given by
Eq. (3.10.2), leading to the equivalent viscous damping ratio:

ζeq = η

2
(3.10.8)
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Figure 3.10.3 Response of system with rate-independent damping: exact solution and
approximate solution using equivalent viscous damping.

Substituting this ζeq for ζ in Eqs. (3.2.10) to (3.2.12) gives the system response. The
resulting amplitude uo and phase angle φ are shown by the dashed lines in Fig. 3.10.3.
This approximate solution matches the exact result at ω = ωn because that was the cri-
terion used in selecting ζeq (Fig. 3.10.1). Over a wide range of excitation frequencies the
approximate solution is seen to be accurate enough for many engineering applications.
Thus Eq. (3.10.3)—which is difficult to solve for arbitrary force p(t) that contains many
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harmonic components of different frequenciesω—can be replaced by the simpler Eq. (3.2.1)
for a system with equivalent viscous damping defined by Eq. (3.10.8). This is the basic ad-
vantage of equivalent viscous damping.

3.11 HARMONIC VIBRATION WITH COULOMB FRICTION

3.11.1 Equation of Motion

Shown in Fig. 3.11.1 is a mass–spring system with Coulomb friction force F = μN that
opposes sliding of the mass. As defined in Section 2.4, the coefficients of static and kinetic
friction are assumed to be equal to μ, and N is the normal force across the sliding surfaces.
The equation of motion is obtained by including the exciting force in Eqs. (2.4.1) and
(2.4.2) governing the free vibration of the system:

mü + ku ± F = p(t) (3.11.1)

The sign of the friction force changes with the direction of motion; the positive sign applies
if the motion is from left to right (u̇ > 0) and the negative sign is for motion from right
to left (u̇ < 0). Each of the two differential equations is linear, but the overall problem is
nonlinear because the governing equation changes every half-cycle of motion. Therefore,
exact analytical solutions would not be possible except in special cases.

Friction force ± F
m p(t)

k

Figure 3.11.1 SDF system with Coulomb
friction.

3.11.2 Steady-State Response to Harmonic Force

An exact analytical solution for the steady-state response of the system of Fig. 3.11.1
subjected to harmonic force was developed by J. P. Den Hartog in 1933. The analysis
is not included here, but his results are shown by solid lines in Fig. 3.11.2; the dashed lines
are described in the next section. The displacement amplitude uo, normalized relative to
(ust)o = po/k, and the phase angle φ are plotted as a function of the frequency ratio ω/ωn

for three values of F/po. If there is no friction, F = 0 and uo/(ust)o = (Rd)ζ=0, the same
as in Eq. (3.1.11) for an undamped system. The friction force reduces the displacement
amplitude uo, with the reduction depending on the frequency ratio ω/ωn .

At ω = ωn the amplitude of motion is not limited by Coulomb friction if

F

po
<
π

4
(3.11.2)
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Figure 3.11.2 Deformation response factor and phase angle of a system with Coulomb
friction excited by harmonic force. Exact solution from J. P. Den Hartog; approximate
solution is based on equivalent viscous damping.

which is surprising since F = (π/4)po represents a large friction force, but can be ex-
plained by comparing the energy EF dissipated in friction against the input energy EI .
The energy dissipated by Coulomb friction in one cycle of vibration with displacement
amplitude uo is the area of the hysteresis loop enclosed by the friction force–displacement
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diagram (Fig. 3.11.3):

EF = 4Fuo (3.11.3)

Friction
force

Displacementuo−uo

−F

F

Figure 3.11.3 Hysteresis loop for
Coulomb friction.

Observe that the dissipated energy in a vibration cycle is proportional to the ampli-
tude of the cycle. The energy EI input by the harmonic force applied at ω = ωn is also
proportional to the displacement amplitude. If Eq. (3.11.2) is satisfied, it can be shown that

EF < EI

that is, the energy dissipated in friction per cycle is less than the input energy (Fig. 3.11.4).
Therefore, the displacement amplitude would increase cycle after cycle and grow with-
out bound. This behavior is quite different from that of systems with viscous damping or
rate-independent damping. For these forms of damping, as shown in Section 3.8, the dis-
sipated energy increases quadratically with displacement amplitude, and the displacement
amplitude is bounded no matter how small the damping. In connection with the fact that
infinite amplitudes occur at ω = ωn if Eq. (3.11.2) is satisfied, the phase angle shows a
discontinuous jump at ω = ωn (Fig. 3.11.2).

EI

EF

E
ne

rg
y

Amplitude
Figure 3.11.4 Input energy EI and energy
dissipated EF by Coulomb friction.
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3.11.3 Solution Using Equivalent Viscous Damping

In this section an approximate solution for the steady-state harmonic response of a system
with Coulomb friction is obtained by modeling this damping mechanism by equivalent
viscous damping. Substituting EF , the energy dissipated by Coulomb friction given by
Eq. (3.11.3), for ED in Eq. (3.9.1) provides the equivalent viscous damping ratio:

ζeq = 2

π

1

ω/ωn

uF

uo
(3.11.4)

where uF = F/k. The approximate solution for the displacement amplitude uo is obtained
by substituting ζeq for ζ in Eq. (3.2.11):

uo

(ust)o
= 1{[

1− (ω/ωn)2
]2 + [(4/π)(uF/uo)]

2
}1/2

This contains uo on the right side also. Squaring and solving algebraically, the normalized
displacement amplitude is

uo

(ust)o
=
{
1− [(4/π)(F/po)]

2}1/2

1− (ω/ωn)2
(3.11.5)

This approximate result is valid provided that F/po < π/4. The approximate solution
cannot be used if F/po > π/4 because then the quantity under the radical is negative and
the numerator is imaginary.

These approximate and exact solutions are compared in Fig. 3.11.2. If the friction
force is small enough to permit continuous motion, this motion is practically sinusoidal
and the approximate solution is close to the exact solution. If the friction force is large,
discontinuous motion with stops and starts results, which is much distorted relative to a
sinusoid, and the approximate solution is poor.

The approximate solution for the phase angle is obtained by substituting ζeq for ζ in
Eq. (3.2.12):

tan φ = (4/π)(uF/uo)

1− (ω/ωn)2

Substituting for uo from Eq. (3.11.5) gives

tan φ = ± (4/π)(F/po){
1− [(4/π)(F/po)]

2}1/2 (3.11.6)

For a given value of F/po, the tan φ is constant but with a positive value if ω/ωn < 1 and
a negative value if ω/ωn > 1. This is shown in Fig. 3.11.2, where it is seen that the phase
angle is discontinuous at ω = ωn for Coulomb friction.

Example 3.7

The structure of Example 2.8 with friction devices deflects 5 cm under a lateral force of
p = 2000 kN. What would be the approximate amplitude of motion if the lateral force is
replaced by the harmonic force p(t) = 2000 sinωt , where the forcing period T = 1 s?
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Solution The data (given and from Example 2.8) are

(ust)o = po

k
= 5 cm uF = 0.3 cm

ω

ωn
= Tn

T
= 0.5

1
= 0.5

Calculate uo from Eq. (3.11.5).

F

po
= F/k

po/k
= uF

(ust)o
= 0.3

5
= 0.06

Substituting for F/po in Eq. (3.11.5) gives

uo

(ust)o
=
{

1− [(4/π)0.06]2
}1/2

1− (0.5)2 = 1.3294

uo = 1.3294(5) = 6.65 cm

PART D: RESPONSE TO PERIODIC EXCITATION

A periodic function is one in which the portion defined over T0 repeats itself indefinitely
(Fig. 3.12.1). Many forces are periodic or nearly periodic. Under certain conditions,
propeller forces on a ship, wave loading on an offshore platform, and wind forces induced
by vortex shedding on tall, slender structures are nearly periodic. Earthquake ground mo-
tion usually has no resemblance to a periodic function. However, the base excitation arising
from an automobile traveling on an elevated freeway that has settled because of long-term
creep may be nearly periodic.

• • • •
T0 T0 T0

t

p

Figure 3.12.1 Periodic excitation.

We are interested in analyzing the response to periodic excitation for yet another
reason. The analysis can be extended to arbitrary excitations utilizing discrete Fourier
transform techniques. These are introduced in Appendix A.
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3.12 FOURIER SERIES REPRESENTATION

A function p(t) is said to be periodic with period T0 if it satisfies the following relation-
ship:

p(t + jT0) = p(t) j = −∞, . . . ,−3,−2,−1, 0, 1, 2, 3, . . . ,∞
A periodic function can be separated into its harmonic components using the Fourier

series:

p(t) = a0 +
∞∑

j=1

aj cos jω0t +
∞∑

j=1

bj sin jω0t (3.12.1)

where the fundamental harmonic in the excitation has the frequency

ω0 = 2π

T0
(3.12.2)

The coefficients in the Fourier series can be expressed in terms of p(t) because the sine
and cosine functions are orthogonal:

a0 = 1

T0

∫ T0

0
p(t) dt (3.12.3)

aj = 2

T0

∫ T0

0
p(t) cos jω0t dt j = 1, 2, 3, . . . (3.12.4)

bj = 2

T0

∫ T0

0
p(t) sin jω0t dt j = 1, 2, 3, . . . (3.12.5)

The coefficient a0 is the average value of p(t); coefficients aj and bj are the amplitudes of
the j th harmonics of frequency jω0.

Theoretically, an infinite number of terms are required for the Fourier series to con-
verge to p(t). In practice, however, a few terms are sufficient for good convergence. At
a discontinuity, the Fourier series converges to a value that is the average of the values
immediately to the left and to the right of the discontinuity.

3.13 RESPONSE TO PERIODIC FORCE

A periodic excitation implies that the excitation has been in existence for a long time, by
which time the transient response associated with the initial displacement and velocity has
decayed. Thus, we are interested in finding the steady-state response, just as for harmonic
excitation. The response of a linear system to a periodic force can be determined by com-
bining the responses to individual excitation terms in the Fourier series.

The response of an undamped system to constant force p(t) = a0 is given by Eq. (f)
of Example 1.8, in which the cosωt term will decay because of damping (see Section 4.3),
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leaving the steady-state solution.†

u0(t) = a0

k
(3.13.1)

The steady-state response of a viscously damped SDF system to harmonic
cosine force p(t) = aj cos( jω0t) is given by Eqs. (3.2.3) and (3.2.26) with ω replaced
by jω0:

uc
j (t) =

aj

k

2ζβj sin jω0t + (1− β2
j ) cos ( jω0t)

(1− β2
j )

2 + (2ζβj )2
(3.13.2)

where

βj = jω0

ωn
(3.13.3)

Similarly, the steady-state response of the system to sinusoidal force p(t)= bj

sin ( jω0t) is given by Eqs. (3.2.3) and (3.2.4) with ω replaced by jω0:

us
j (t) =

bj

k

(1− β2
j ) sin jω0t − 2ζβj cos ( jω0t)

(1− β2
j )

2 + (2ζβj )2
(3.13.4)

If ζ = 0 and one of βj = 1, the steady-state response is unbounded and not meaningful
because the transient response never decays (see Section 3.1); in the following it is assumed
that ζ �= 0 and βj �= 1.

The steady-state response of a system with damping to periodic excitation p(t) is the
combination of responses to individual terms in the Fourier series:

u(t) = u0(t)+
∞∑

j=1

uc
j (t)+

∞∑
j=1

us
j (t) (3.13.5)

Substituting Eqs. (3.13.1), (3.13.2), and (3.13.4) into (3.13.5) gives

u(t) = a0

k
+
∞∑

j=1

1

k

1

(1− β2
j )

2 + (2ζβj )2

{[
aj (2ζβj )+ bj (1− β2

j )
]

sin ( jω0t)

+ [aj (1− β2
j )− bj (2ζβj )

]
cos ( jω0t)

}
(3.13.6)

The response u(t) is a periodic function with period T0.
The relative contributions of the various harmonic terms in Eq. (3.13.6) depend on

two factors: (1) the amplitudes aj and bj of the harmonic components of the forcing func-
tion p(t), and (2) the frequency ratio βj . The response will be dominated by those har-
monic components for which βj is close to unity [i.e., the forcing frequency jω0 is close
to the natural frequency (see Fig. 3.2.6)].

†The notation u0 used here includes the subscript zero consistent with a0; this should not be confused with
uo with the subscript “oh” used earlier to denote the maximum value of u(t).
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Example 3.8

The periodic force shown in Fig. E3.8a is defined by

p(t) =
{

po 0 ≤ t ≤ T0/2
−po T0/2 ≤ t ≤ T0

(a)

p

0 1 2
t / T0

(a)

–1.5

0

1.5
j = 1

j = 3 j = 5
j = 7

p j
(t

) 
/ p

o

(b)

0

–1.5

0

1.5 Three terms Four terms

t / T0

p(
t)

 / 
p o

(c)

–2

0

2 j = 1j = 3

j = 5

j = 7

u j
(t

) 
/ (

u s
t) o

(d)

00.25 0.5 0.25 0.5

–2

0

2
Three terms Four terms

t / T0

u(
t)

 / 
(u

st
) o

(e)

Figure E3.8
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Substituting this in Eqs. (3.12.3) to (3.12.5) gives the Fourier series coefficients:

a0 = 1

T0

∫ T0

0
p(t) dt = 0 (b)

aj = 2

T0

∫ T0

0
p(t) cos ( jω0t) dt

= 2

T0

[
po

∫ T0/2

0
cos ( jω0t) dt + (−po)

∫ T0

T0/2
cos ( jω0t) dt

]
= 0 (c)

bj = 2

T0

∫ T0

0
p(t) sin ( jω0t) dt

= 2

T0

[
po

∫ T0/2

0
sin ( jω0t) dt + (−po)

∫ T0

T0/2
sin ( jω0t) dt

]

=
{

0 j even
4po/ jπ j odd

(d)

Thus the Fourier series representation of p(t) is

p(t) =
∑

pj (t) = 4po

π

∞∑
j=1,3,5

1

j
sin ( jω0t) (e)

The first four terms of this series are shown in Fig. E3.8b, where the frequencies and
relative amplitudes—1, 1

3 , 1
5 , and 1

7 —of the four harmonics are apparent. The cumulative sum
of the Fourier terms is shown in Fig. E3.8c, where four terms provide a reasonable represen-
tation of the forcing function. At t = T0/2, where p(t) is discontinuous, the Fourier series
converges to zero, the average value of p(T0/2).

The response of an SDF system to the forcing function of Eq. (e) is obtained by substi-
tuting Eqs. (b), (c), and (d) in Eq. (3.13.6) to obtain

u(t) = (ust)o
4

π

∞∑
j=1,3,5

1

j

(1− β2
j ) sin ( jω0t)− 2ζβj cos ( jω0t)

(1− β2
j )

2 + (2ζβj )2
(f)

Shown in Fig. E3.8d are the responses of an SDF system with natural period Tn = T0/4 and
damping ratio ζ = 5% to the first four loading terms in the Fourier series of Eq. (e). These
are plots of individual terms in Eq. (f) with βj = jω0/ωn = jTn/T0 = j/4. The relative
amplitudes of these terms are apparent. None of them is especially large because none of the
βj values is especially close to unity; note that βj = 1

4 , 3
4 , 5

4 , 7
4 , and so on. The cumulative

sum of the individual response terms of Eq. (f) is shown in Fig. E3.8e, where the contribution
of the fourth term is seen to be small. The higher terms would be even smaller because the
amplitudes of the harmonic components of p(t) decrease with j and βj would be even farther
from unity.
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APPENDIX 3: FOUR-WAY LOGARITHMIC GRAPH PAPER

Rv is plotted as a function of ω/ωn on log-log graph paper [i.e., log Rv is the ordinate and
log(ω/ωn) the abscissa]. Equation (3.2.21) gives

log Rv = log
ω

ωn
+ log Rd (A3.1)

If Rd is a constant, Eq. (A3.1) represents a straight line with slope of +1. Grid lines
showing constant Rd would therefore be straight lines of slope +1, and the Rd -axis would
be perpendicular to them (Fig. A3.1). Equation (3.2.21) also gives

log Rv = − log
ω

ωn
+ log Ra (A3.2)

If Ra is a constant, Eq. (A3.2) represents a straight line with slope of −1. Grid lines
showing constant Ra would be straight lines of slope −1, and the Ra-axis would be per-
pendicular to them (Fig. A3.1).

With reference to Fig. A3.1, the scales are established as follows:

1. With the point (Rv = 1, ω/ωn = 1) as the origin, draw a vertical Rv-axis and a
horizontal ω/ωn-axis with equal logarithmic scales.

2. The mark A on the Ra-axis would be located at the point (Rv = A1/2, ω/ωn = A1/2)

in order to satisfy

Ra = ω

ωn
Rv (A3.3)

Rv and ω/ωn are taken to be equal because the Ra-axis has a slope of +1. This
procedure is shown for A = 9, leading to the scale marks 3 on the Rv and ω/ωn

axes.

3. The mark D on the Rd -axis would be located at the point (Rv = D1/2, ω/ωn =
D−1/2) in order to satisfy

Rd = Rv ÷ ω

ωn
(A3.4)
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Figure A3.1 Construction of four-way logarithmic graph paper.

and the condition that the Rd -axis has a slope of −1. This procedure is shown for
D = 4, leading to the scale mark 2 on the Rv-axis and to the scale mark 1

2 on the
ω/ωn-axis.

The logarithmic scales along the Rd and Ra axes are equal but not the same as the
Rv and ω/ωn scales.

P R O B L E M S

Part A

3.1 The mass m, stiffness k, and natural frequency ωn of an undamped SDF system are unknown.
These properties are to be determined by harmonic excitation tests. At an excitation frequency
of 4 Hz, the response tends to increase without bound (i.e., a resonant condition). Next, a mass
�m = 2 kg is attached to the mass m and the resonance test is repeated. This time resonance
occurs at f = 3 Hz. Determine the mass and the stiffness of the system.
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3.2 An SDF system is excited by a sinusoidal force. At resonance the amplitude of displacement
was measured to be 5 cm. At an exciting frequency of one-tenth the natural frequency of the
system, the displacement amplitude was measured to be 0.5 cm. Estimate the damping ratio
of the system.

3.3 In a forced vibration test under harmonic excitation it was noted that the amplitude of motion
at resonance was exactly four times the amplitude at an excitation frequency 20% higher than
the resonant frequency. Determine the damping ratio of the system.

3.4 A machine is supported on four steel springs for which damping can be neglected. The natural
frequency of vertical vibration of the machine–spring system is 200 cycles per minute. The
machine generates a vertical force p(t) = p0 sinωt . The amplitude of the resulting steady-
state vertical displacement of the machine is uo = 0.5 cm when the machine is running at
20 revolutions per minute (rpm), 2.605 cm at 180 rpm, and 0.062 cm at 600 rpm. Calculate
the amplitude of vertical motion of the machine if the steel springs are replaced by four rubber
isolators that provide the same stiffness, but introduce damping equivalent to ζ = 25% for the
system. Comment on the effectiveness of the isolators at various machine speeds.

3.5 An air-conditioning unit with a mass of 500 kg is bolted at the middle of two parallel simply
supported steel beams (Fig. P3.5). The clear span of the beams is 3 m. The second moment
of cross-sectional area of each beam is 400 cm4. The motor in the unit runs at 300 rpm and
produces an unbalanced vertical force of 250 N at this speed. Neglect the mass of the beams
and assume 1% viscous damping in the system; for steel E = 200,000 MPa. Determine the
amplitudes of steady-state deflection and steady-state acceleration (in g’s) of the beams at
their midpoints which result from the unbalanced force.

Steel beams
Air-conditioning unit

1.5 m 1.5 m
Figure P3.5

3.6 (a) Show that the steady-state response of an SDF system to a cosine force, p(t) = po cosωt ,
is given by

u(t) = po

k

[
1− (ω/ωn)

2
]

cosωt + [2ζ (ω/ωn)] sinωt[
1− (ω/ωn)2

]2 + [2ζ (ω/ωn)]2

(b) Show that the maximum deformation due to cosine force is the same as that due to sinu-
soidal force.

3.7 (a) Show that ωr = ωn(1 − 2ζ 2)1/2 is the resonant frequency for displacement amplitude of
an SDF system.
(b) Determine the displacement amplitude at resonance.

3.8 (a) Show that ωr = ωn(1− 2ζ 2)−1/2 is the resonant frequency for acceleration amplitude of
an SDF system.
(b) Determine the acceleration amplitude at resonance.
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3.9 (a) Show that ωr = ωn is the resonant frequency for velocity amplitude of an SDF system.
(b) Determine the velocity amplitude at resonance.

Part B

3.10 A one-story reinforced concrete building has a roof mass of 200,000 kg, and its natural fre-
quency is 4 Hz. This building is excited by a vibration generator with two weights, each 20 kg,
rotating about a vertical axis at an eccentricity of 30 cm. When the vibration generator runs
at the natural frequency of the building, the amplitude of roof acceleration is measured to be
0.02g. Determine the damping of the structure.

3.11 The steady-state acceleration amplitude of a structure caused by an eccentric-mass vibration
generator was measured for several excitation frequencies. These data are as follows:

Frequency (Hz) Acceleration (10−3g) Frequency (Hz) Acceleration (10−3g)

1.337 0.68 1.500 7.10
1.378 0.90 1.513 5.40
1.400 1.15 1.520 4.70
1.417 1.50 1.530 3.80
1.438 2.20 1.540 3.40
1.453 3.05 1.550 3.10
1.462 4.00 1.567 2.60
1.477 7.00 1.605 1.95
1.487 8.60 1.628 1.70
1.493 8.15 1.658 1.50
1.497 7.60

Determine the natural frequency and damping ratio of the structure.

3.12 Consider an industrial machine of mass m supported on spring-type isolators of total stiffness
k. The machine operates at a frequency of f hertz with a force unbalance po.
(a) Determine an expression giving the fraction of force transmitted to the foundation as a
function of the forcing frequency f and the static deflection δst = mg/k. Consider only the
steady-state response.
(b) Determine the static deflection δst for the force transmitted to be 10% of po if f = 20 Hz.

3.13 For the automobile in Example 3.4, determine the amplitude of the force developed in the
spring of the suspension system when the automobile is traveling at 60 km/h.

3.14 Determine the speed of the automobile in Example 3.4 that would produce a resonant condi-
tion for the spring force in the suspension system.

3.15 A vibration isolation block is to be installed in a laboratory so that the vibration from adjacent
factory operations will not disturb certain experiments (Fig. P3.15). If the mass of the isolation
block is 1000 kg and the surrounding floor and foundation vibrate at 1500 cycles per minute,
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determine the stiffness of the isolation system such that the motion of the isolation block is
limited to 10% of the floor vibration; neglect damping.

Isolation block

Figure P3.15

3.16 An SDF system is subjected to support displacement ug(t) = ugo sinωt . Show that the
amplitude ut

o of the total displacement of the mass is given by Eq. (3.6.5).

3.17 The natural frequency of an accelerometer is 50 Hz, and its damping ratio is 70%. Com-
pute the recorded acceleration as a function of time if the input acceleration is üg(t) =
0.1g sin 2πft for f = 10, 20, and 40 Hz. A comparison of the input and recorded accel-
erations was presented in Fig. 3.7.3. The accelerometer is calibrated to read the input acceler-
ation correctly at very low values of the excitation frequency. What would be the error in the
measured amplitude at each of the given excitation frequencies?

3.18 An accelerometer has the natural frequency fn = 25 Hz and damping ratio ζ = 60%. Write an
equation for the response u(t) of the instrument as a function of time if the input acceleration
is üg(t) = ügo sin 2π f t . Sketch the ratio ω2

nuo/ügo as a function of f / fn . The accelerom-
eter is calibrated to read the input acceleration correctly at very low values of the excitation
frequency. Determine the range of frequencies for which the acceleration amplitude can be
measured with an accuracy of ±1%. Identify this frequency range on the above-mentioned
plot.

3.19 The natural frequency of an accelerometer is fn = 50 Hz, and its damping ratio is ζ = 70%.
Solve Problem 3.18 for this accelerometer.

3.20 If a displacement-measuring instrument is used to determine amplitudes of vibration at fre-
quencies very much higher than its own natural frequency, what would be the optimum instru-
ment damping for maximum accuracy?

3.21 A displacement meter has a natural frequency fn = 0.5 Hz and a damping ratio ζ = 0.6.
Determine the range of frequencies for which the displacement amplitude can be measured
with an accuracy of ±1%.

3.22 Repeat Problem 3.21 for ζ = 0.7.

3.23 Show that the energy dissipated per cycle for viscous damping can be expressed by

ED = πp2
o

k

2ζ (ω/ωn)[
1− (ω/ωn)2

]2 + [2ζ (ω/ωn)]2

3.24 Show that for viscous damping the loss factor ξ is independent of the amplitude and propor-
tional to the frequency.
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Part C

3.25 The properties of the SDF system of Fig. P2.20 are as follows: w = 2000 kN, F = 200 kN,
and Tn = 0.25 s. Determine an approximate value for the displacement amplitude due to
harmonic force with amplitude 400 kN and period 0.30 s.

Part D

3.26 An SDF system with natural period Tn and damping ratio ζ is subjected to the periodic force
shown in Fig. P3.26 with an amplitude po and period T0.
(a) Expand the forcing function in its Fourier series.
(b) Determine the steady-state response of an undamped system. For what values of T0 is the
solution indeterminate?
(c) For T0/Tn = 2, determine and plot the response to individual terms in the Fourier series.
How many terms are necessary to obtain reasonable convergence of the series solution?

t

p

−To −To/2 0 To/2 To 2To

po

Figure P3.26
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4

Response to Arbitrary, Step, and
Pulse Excitations

PREVIEW

In many practical situations the dynamic excitation is neither harmonic nor periodic. Thus
we are interested in studying the dynamic response of SDF systems to excitations varying
arbitrarily with time. A general result for linear systems, Duhamel’s integral, is derived
in Part A of this chapter. This result is used in Part B to study the response of systems
to step force, linearly increasing force, and step force with finite rise time. These results
demonstrate how the dynamic response of the system is affected by the rise time.

An important class of excitations that consist of essentially a single pulse is consid-
ered in Part C. The time variation of the response to three different force pulses is studied,
and the concept of shock spectrum is introduced to present graphically the maximum re-
sponse as a function of td/Tn , the ratio of pulse duration to the natural vibration period. It is
then demonstrated that the response to short pulses is essentially independent of the pulse
shape and that the response can be determined using only the pulse area. Most of the anal-
yses and results presented are for systems without damping because the effect of damping
on the response to a single pulse excitation is usually not important; this is demonstrated
toward the end of the chapter.

PART A: RESPONSE TO ARBITRARILY TIME-VARYING
FORCES

A general procedure is developed to analyze the response of an SDF system subjected to
force p(t) varying arbitrarily with time. This result will enable analytical evaluation of
response to forces described by simple functions of time.

125
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We seek the solution of the differential equation of motion

mü + cu̇ + ku = p(t)

subject to the initial conditions

u(0) = 0 u̇(0) = 0

In developing the general solution, p(t) is interpreted as a sequence of impulses of in-
finitesimal duration, and the response of the system to p(t) is the sum of the responses to
individual impulses. These individual responses can conveniently be written in terms of
the response of the system to a unit impulse.

4.1 RESPONSE TO UNIT IMPULSE

A very large force that acts for a very short time but with a time integral that is finite is
called an impulsive force. Shown in Fig. 4.1.1 is the force p(t) = 1/ε, with time duration
ε starting at the time instant t = τ . As ε approaches zero the force becomes infinite;
however, the magnitude of the impulse, defined by the time integral of p(t), remains equal
to unity. Such a force in the limiting case ε → 0 is called the unit impulse. The Dirac
delta function δ(t − τ) mathematically defines a unit impulse centered at t = τ .

According to Newton’s second law of motion, if a force p acts on a body of mass m,
the rate of change of momentum of the body is equal to the applied force, that is,

d

dt
(mu̇) = p (4.1.1)

1/m
1 t

h(t – )

Undamped system
Damped system

(b)

1/

p

t

(a) ε

ε
τ

τ

τ

Figure 4.1.1 (a) Unit impulse; (b) response to unit impulse.
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For constant mass, this equation becomes

p = mü (4.1.2)

Integrating both sides with respect to t gives∫ t2

t1

p dt = m(u̇2 − u̇1) = m�u̇ (4.1.3)

The integral on the left side of this equation is the magnitude of the impulse. The product
of mass and velocity is the momentum. Thus Eq. (4.1.3) states that the magnitude of the
impulse is equal to the change in momentum.

This result is also applicable to an SDF mass–spring–damper system if the spring or
damper has no effect. Such is the case because the impulsive force acts for an infinitesi-
mally short duration. Thus a unit impulse at t = τ imparts to the mass, m, the velocity
[from Eq. (4.1.3)]

u̇(τ ) = 1

m
(4.1.4)

but the displacement is zero prior to and up to the impulse:

u(τ ) = 0 (4.1.5)

A unit impulse causes free vibration of the SDF system due to the initial velocity and
displacement given by Eqs. (4.1.4) and (4.1.5). Substituting these in Eq. (2.2.4) gives the
response of viscously damped systems:

h(t − τ) ≡ u(t) = 1

mωD
e−ζωn(t−τ) sin[ωD(t − τ)] t ≥ τ (4.1.6)

This unit impulse-response function, denoted by h(t − τ), is shown in Fig. 4.1.1b, together
with the special case of ζ = 0.

If the excitation is a unit impulse ground motion, based on Eq. (1.7.6), peff(t) =
−mδ(t − τ), then Eq. (4.1.4) becomes u̇(τ ) = −1 and Eq. (4.1.6) changes to

h(t − τ) = − 1

ωD
e−ζωn(t−τ) sin [ωD(t − τ)] t ≥ τ (4.1.7)

4.2 RESPONSE TO ARBITRARY FORCE

A force p(t) varying arbitrarily with time can be represented as a sequence of infinites-
imally short impulses (Fig. 4.2.1). The response of a linear dynamic system to one of
these impulses, the one at time τ of magnitude p(τ ) dτ , is this magnitude times the unit
impulse-response function:

du(t) = [p(τ ) dτ ]h(t − τ) t > τ (4.2.1)
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Figure 4.2.1 Schematic explanation of convolution integral.

The response of the system at time t is the sum of the responses to all impulses up to that
time (Fig. 4.2.1). Thus

u(t) =
∫ t

0
p(τ )h(t − τ) dτ (4.2.2)
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This is known as the convolution integral, a general result that applies to any linear dynamic
system.

Specializing Eq. (4.2.2) for the SDF system by substituting Eq. (4.1.7) for the unit
impulse response function gives Duhamel’s integral:

u(t) = 1

mωD

∫ t

0
p(τ )e−ζωn(t−τ) sin [ωD(t − τ)] dτ (4.2.3)

For an undamped system this result simplifies to

u(t) = 1

mωn

∫ t

0
p(τ ) sin [ωn(t − τ)] dτ (4.2.4)

Implicit in this result are “at rest” initial conditions, u(0) = 0 and u̇(0) = 0. If the initial
displacement and velocity are u(0) and u̇(0), the resulting free vibration response given by
Eqs. (2.2.4) and (2.1.3) should be added to Eqs. (4.2.3) and (4.2.4), respectively. Recall
that we had used Eq. (4.2.4) in Section 1.10.2, where four methods for solving the equation
of motion were introduced.

Duhamel’s integral provides a general result for evaluating the response of a linear
SDF system to arbitrary force. This result is restricted to linear systems because it is
based on the principle of superposition. Thus it does not apply to structures deforming
beyond their linearly elastic limit. If p(τ ) is a simple function, closed-form evaluation
of the integral is possible and Duhamel’s integral is an alternative to the classical method
for solving differential equations (Section 1.10.1). If p(τ ) is a complicated function that
is described numerically, evaluation of the integral requires numerical methods. These
will not be presented in this book, however, because they are not particularly efficient.
More effective methods for numerical solution of the equation of motion are presented in
Chapter 5.

PART B: RESPONSE TO STEP AND RAMP FORCES

4.3 STEP FORCE

A step force jumps suddenly from zero to po and stays constant at that value (Fig. 4.3.1b).
It is desired to determine the response of an undamped SDF system (Fig. 4.3.1a) starting
at rest to the step force:

p(t) = po (4.3.1)

The equation of motion has been solved (Section 1.10.2) using Duhamel’s integral to obtain

u(t) = (ust)o(1− cosωnt) = (ust)o

(
1− cos

2π t

Tn

)
(4.3.2)

where (ust)o = po/k, the static deformation due to force po.
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Figure 4.3.1 (a) SDF system; (b) step force; (c) dynamic response.

The normalized deformation or displacement, u(t)/(ust)o, is plotted against normal-
ized time, t/Tn , in Fig. 4.3.1c. It is seen that the system oscillates at its natural period about
a new equilibrium position, which is displaced through (ust)o from the original equilib-
rium position of u = 0. The maximum displacement can be determined by differentiating
Eq. (4.3.2) and setting u̇(t) to zero, which gives ωn sinωnt = 0. The values to of t that
satisfy this condition are

ωnto = jπ or to = j

2
Tn (4.3.3)

where j is an odd integer; even integers correspond to minimum values of u(t). The
maximum value uo of u(t) is given by Eq. (4.3.2) evaluated at t = to; these maxima are all
the same:

uo = 2(ust)o (4.3.4)

Thus a suddenly applied force produces twice the deformation it would have caused as a
slowly applied force.

The response of a system with damping can be determined by substituting Eq. (4.3.1)
in Eq. (4.2.3) and evaluating Duhamel’s integral to obtain

u(t) = (ust)o

[
1− e−ζωn t

(
cosωDt + ζ√

1− ζ 2
sinωDt

)]
(4.3.5)

For analysis of damped systems the classical method (Section 1.10.1) may be easier,
however, than evaluating Duhamel’s integral. The differential equation to be solved is

mü + cu̇ + ku = po (4.3.6)

Its complementary solution is given by Eq. (f) of Derivation 2.2, the particular solution is
up = po/k, and the complete solution is

u(t) = e−ζωn t (A cosωDt + B sinωDt)+ po

k
(4.3.7)
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where the constants A and B are to be determined from initial conditions. For a system
starting from rest, u(0) = u̇(0) = 0 and

A = − po

k
B = − po

k

ζ√
1− ζ 2

Substituting these constants in Eq. (4.3.7) gives the same result as Eq. (4.3.5). When
specialized for undamped systems this result reduces to Eq. (4.3.2), already presented in
Fig. 4.3.1c.

Equation (4.3.5) is plotted in Fig. 4.3.1c for two additional values of the damping
ratio. With damping the overshoot beyond the static equilibrium position is smaller, and
the oscillations about this position decay with time. The damping ratio determines the
amount of overshoot and the rate at which the oscillations decay. Eventually, the system
settles down to the static deformation, which is also the steady-state deformation.

4.4 RAMP OR LINEARLY INCREASING FORCE

In Fig. 4.4.1b, the applied force p(t) increases linearly with time. Naturally, it cannot
increase indefinitely, but our interest is confined to the time duration where p(t) is still
small enough that the resulting spring force is within the linearly elastic limit of the spring.

While the equation of motion can be solved by any one of several methods, we
illustrate use of Duhamel’s integral to obtain the solution. The applied force

p(t) = po
t

tr
(4.4.1)

is substituted in Eq. (4.2.4) to obtain

u(t) = 1

mωn

∫ t

0

po

tr
τ sinωn(t − τ) dτ

u
p(t)

m
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0
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Figure 4.4.1 (a) SDF system; (b) ramp force; (c) dynamic and static responses.



132 Response to Arbitrary, Step, and Pulse Excitations Chap. 4

This integral is evaluated and simplified to obtain

u(t) = (ust)o

(
t

tr
− sinωnt

ωntr

)
= (ust)o

(
t

Tn

Tn

tr
− sin 2π t/Tn

2π tr/Tn

)
(4.4.2)

where (ust)o = po/k, the static deformation due to force po.
Equation (4.4.2) is plotted in Fig. 4.4.1c for tr/Tn = 2.5, wherein the static deforma-

tion at each time instant,

ust(t) = p(t)

k
= (ust)o

t

tr
(4.4.3)

is also shown; ust(t) varies with time in the same manner as p(t) and the two differ by the
scale factor 1/k. It is seen that the system oscillates at its natural period Tn about the static
solution.

4.5 STEP FORCE WITH FINITE RISE TIME

Since in reality a force can never be applied suddenly, it is of interest to consider a dynamic
force that has a finite rise time, tr , but remains constant thereafter, as shown in Fig. 4.5.1b:

p(t) =
{

po(t/tr ) t ≤ tr
po t ≥ tr

(4.5.1)

The excitation has two phases: ramp or rise phase and constant phase.
For a system without damping starting from rest, the response during the ramp phase

is given by Eq. (4.4.2), repeated here for convenience:

u(t) = (ust)o

(
t

tr
− sinωnt

ωntr

)
t ≤ tr (4.5.2)

The response during the constant phase can be determined by evaluating Duhamel’s
integral after substituting Eq. (4.5.1) in Eq. (4.2.4). Alternatively, existing solutions for
free vibration and step force could be utilized to express this response as

u(t) = u(tr ) cosωn(t − tr )+ u̇(tr )

ωn
sinωn(t − tr )+ (ust)o[1− cosωn(t − tr )] (4.5.3)

u
p(t)

m
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k

p

po

tr
t

0

(b)
Figure 4.5.1 (a) SDF system; (b) step
force with finite rise time.
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The third term is the solution for a system at rest subjected to a step force starting at t = tr ;
it is obtained from Eq. (4.3.2). The first two terms in Eq. (4.5.3) account for free vibration
of the system resulting from its displacement u(tr ) and velocity u̇(tr ) at the end of the ramp
phase. Determined from Eq. (4.5.2), u(tr ) and u̇(tr ) are substituted in Eq. (4.5.3) to obtain

u(t) = (ust)o

{
1+ 1

ωntr

[
(1− cosωntr ) sinωn(t − tr )

− sinωntr cosωn(t − tr )
]}

t ≥ tr (4.5.4a)

This equation can be simplified, using a trigonometric identity, to

u(t) = (ust)o

{
1− 1

ωntr

[
sinωnt − sinωn(t − tr )

]}
t ≥ tr (4.5.4b)

The normalized deformation, u(t)/(ust)o, is a function of the normalized time, t/Tn ,
because ωnt = 2π(t/Tn). This function depends only on the ratio tr/Tn because ωntr =
2π(tr/Tn), not separately on tr and Tn . Figure 4.5.2 shows u(t)/(ust)o plotted against t/Tn

for several values of tr/Tn , the ratio of the rise time to the natural period. Each plot is valid
for all combinations of tr and Tn with the same ratio tr/Tn . Also plotted is ust(t) = p(t)/k,
the static deformation at each time instant. These results permit several observations:

1. During the force-rise phase the system oscillates at the natural period Tn about the
static solution.

2. During the constant-force phase the system oscillates also at the natural period Tn

about the static solution.

3. If the velocity u̇(tr ) is zero at the end of the ramp, the system does not vibrate during
the constant-force phase.

4. For smaller values of tr/Tn (i.e., short rise time), the response is similar to that due
to a sudden step force; see Fig. 4.3.1c.

5. For larger values of tr/Tn , the dynamic displacement oscillates close to the static so-
lution, implying that the dynamic effects are small (i.e., a force increasing slowly—
relative to Tn—from 0 to po affects the system like a static force).

The deformation attains its maximum value during the constant-force phase of the
response. From Eq. (4.5.4a) the maximum value of u(t) is

uo = (ust)o

[
1+ 1

ωntr

√
(1− cosωntr )2 + (sinωntr )2

]
(4.5.5)

Using trigonometric identities and Tn = 2π/ωn , Eq. (4.5.5) can be simplified to

Rd ≡ uo

(ust)o
= 1+ | sin(π tr/Tn)|

π tr/Tn
(4.5.6)

The deformation response factor Rd depends only on tr/Tn , the ratio of the rise time to the
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Figure 4.5.2 Dynamic response of undamped SDF system to step force with finite rise
time; static solution is shown by dashed lines.

natural period. A graphical presentation of this relationship, as in Fig. 4.5.3, is called the
response spectrum for the step force with finite rise time.

This response spectrum characterizes the problem completely. In this case it contains
information on the normalized maximum response, uo/(ust)o, of all SDF systems (without
damping) due to any step force po with any rise time tr . The response spectrum permits
several observations:

1. If tr < Tn/4 (i.e., a relatively short rise time), uo � 2(ust)o, implying that the
structure “sees” this excitation like a suddenly applied force.

2. If tr > 3Tn (i.e., a relatively long rise time), uo � (ust)o, implying that this excitation
affects the structure like a static force.
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3. If tr/Tn = 1, 2, 3, . . . , uo = (ust)o, because u̇(tr ) = 0 at the end of the force-
rise phase, and the system does not oscillate during the constant-force phase; see
Fig. 4.5.2.
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Figure 4.5.3 Response spectrum for step force with finite rise time.

PART C: RESPONSE TO PULSE EXCITATIONS

We next consider an important class of excitations that consist of essentially a single pulse,
such as shown in Fig. 4.6.1. Air pressures generated on a structure due to aboveground
blasts or explosions are essentially a single pulse and can usually be idealized by simple
shapes such as those shown in the left part of Fig. 4.6.2. The dynamics of structures
subjected to such excitations was the subject of much work during the 1950s and 1960s.

Time

Force

Figure 4.6.1 Single-pulse excitation.

4.6 SOLUTION METHODS

The response of the system to such pulse excitations does not reach a steady-state condi-
tion; the effects of the initial conditions must be considered. The response of the system
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Figure 4.6.2 Expressing pulse force as superposition of simple functions: (a) rectangular pulse;
(b) half-cycle sine pulse; (c) triangular pulse.

to such pulse excitations can be determined by one of several analytical methods: (1) the
classical method for solving differential equations, (2) evaluating Duhamel’s integral, and
(3) expressing the pulse as the superposition of two or more simpler functions for which
response solutions are already available or easier to determine.

The last of these approaches is illustrated in Fig. 4.6.2 for three pulse forces. For ex-
ample, the rectangular pulse is the step function p1(t) plus the step function p2(t) of equal
amplitude, but after a time interval td has passed. The desired response is the sum of the re-
sponses to each of these step functions, and these responses can be determined readily from
the results of Section 4.3. A half-cycle sine pulse is the result of adding a sine function
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of amplitude po starting at t = 0 [p1(t) in Fig. 4.6.2b] and another sine function of the
same frequency and amplitude starting at t = td [p2(t) in Fig. 4.6.2b]. The desired re-
sponse is the sum of the total (transient plus steady state) responses to the two sinusoidal
forces, obtained using the results of Section 3.1. Similarly, the response to the symmetri-
cal triangular pulse is the sum of the responses to the three ramp functions in Fig. 4.6.2c;
the individual responses come from Section 4.4. Thus the third method involves adapting
existing results and manipulating them to obtain the desired response.

We prefer to use the classical method in evaluating the response of SDF systems to
pulse forces because it is closely tied to the dynamics of the system. Using the classical
method the response to pulse forces will be determined in two phases. The first is the
forced vibration phase, which covers the duration of the excitation. The second is the
free vibration phase, which follows the end of the pulse force. Much of the presentation
concerns systems without damping because, as will be shown in Section 4.11, damping
has little influence on response to pulse excitations.

4.7 RECTANGULAR PULSE FORCE

We start with the simplest type of pulse, the rectangular pulse shown in Fig. 4.7.1. The
equation to be solved is

mü + ku = p(t) =
{ po t ≤ td

0 t ≥ td
(4.7.1)

with at-rest initial conditions: u(0) = u̇(0) = 0. The analysis is organized in two phases.

1. Forced vibration phase. During this phase, the system is subjected to a step force.
The response of the system is given by Eq. (4.3.2), repeated for convenience:

u(t)

(ust)o
= 1− cosωnt = 1− cos

2π t

Tn
t ≤ td (4.7.2)

2. Free vibration phase. After the force ends at td , the system undergoes free
vibration, defined by modifying Eq. (2.1.3) appropriately:

u(t) = u(td) cosωn(t − td)+ u̇(td)

ωn
sinωn(t − td) t ≥ td (4.7.3)
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Figure 4.7.1 (a) SDF system;
(b) rectangular pulse force.
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This free vibration is initiated by the displacement and velocity of the mass at t = td ,
determined from Eq. (4.7.2):

u(td) = (ust)o[1− cosωntd ] u̇(td) = (ust)oωn sinωntd (4.7.4)

Substituting these in Eq. (4.7.3) gives

u(t)

(ust)o
= (1− cosωntd) cosωn(t − td)+ sinωntd sinωn(t − td) t ≥ td

which can be simplified, using a trigonometric identity, to

u(t)

(ust)o
= cosωn(t − td)− cosωnt t ≥ td

Expressing ωn = 2π/Tn and using trigonometric identities enables us to rewrite these
equations as

u(t)

(ust)o
=
(

2 sin
π td
Tn

)
sin

[
2π

(
t

Tn
− 1

2

td
Tn

)]
t ≥ td (4.7.5)

Response history. The normalized deformation u(t)/(ust)o given by Eqs. (4.7.2)
and (4.7.5) is a function of t/Tn . It depends only on td/Tn , the ratio of the pulse duration to
the natural vibration period of the system, not separately on td or Tn , and has been plotted
in Fig. 4.7.2 for several values of td/Tn . Also shown in dashed lines is the static solution
ust(t) = p(t)/k at each time instant due to p(t). The nature of the response is seen to
vary greatly by changing just the duration td of the pulse. However, no matter how long
the duration, the dynamic response is not close to the static solution, because the force is
suddenly applied.

While the force is applied to the structure, the system oscillates about the shifted
position, (ust)o = po/k, at its own natural period Tn . After the pulse has ended, the system
oscillates freely about the original equilibrium position at its natural period Tn , with no
decay of motion because the system is undamped. If td/Tn = 1, 2, 3, . . . , the system
stays still in its original undeformed configuration during the free vibration phase, because
the displacement and velocity of the mass are zero when the force ends.

Each response result of Fig. 4.7.2 is applicable to all combinations of systems and
forces with fixed td/Tn . Implicit in this figure, however, is the presumption that the natural
period Tn of the system is constant and the pulse duration td varies. By modifying the time
scale, the results can be presented for a fixed value of td and varying values of Tn .

Maximum response. Over each of the two phases, forced vibration and free
vibration, separately, the maximum value of response is determined next. The larger of the
two maxima is the overall maximum response.

The number of local maxima or peaks that develop in the forced vibration phase
depends on td/Tn (Fig. 4.7.2); more such peaks occur as the pulse duration lengthens. The
first peak occurs at to = Tn/2 with the deformation

uo = 2(ust)o (4.7.6)
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Figure 4.7.2 Dynamic response of undamped SDF system to rectangular pulse force;
static solution is shown by dashed lines.

consistent with the results derived in Section 4.3. Thus td must be longer than Tn/2 for at
least one peak to develop during the forced vibration phase. If more than one peak develops
during this phase, they all have this same value and occur at to = 3Tn/2, 5Tn/2, and so on,
again consistent with the results of Section 4.3.

As a corollary, if td is shorter than Tn/2, no peak will develop during the forced
vibration phase (Fig. 4.7.2), and the response simply builds up from zero to u(td). The
displacement at the end of the pulse is given by Eq. (4.7.4a), rewritten to emphasize the



140 Response to Arbitrary, Step, and Pulse Excitations Chap. 4

parameter td/Tn:

u(td) = (ust)o

(
1− cos

2π td
Tn

)
(4.7.7)

The maximum deformation during the forced vibration phase, Eqs. (4.7.6) and (4.7.7),
can be expressed in terms of the deformation response factor:

Rd = uo

(ust)o
=
{

1− cos(2π td/Tn) td/Tn ≤ 1
2

2 td/Tn ≥ 1
2

(4.7.8)

This relationship is shown as “forced response” in Fig. 4.7.3a.
In the free vibration phase the system oscillates in simple harmonic motion, given by

Eq. (4.7.3), with an amplitude

uo =
√

[u(td)]2 +
[

u̇(td)

ωn

]2

(4.7.9)
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Figure 4.7.3 Response to rectangular pulse force: (a) maximum response during each of
forced vibration and free vibration phases; (b) shock spectrum.
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which after substituting Eq. (4.7.4) and some manipulation becomes

uo = 2(ust)o

∣∣∣∣sin
π td
Tn

∣∣∣∣ (4.7.10)

The corresponding deformation response factor,

Rd ≡ uo

(ust)o
= 2

∣∣∣∣sin
π td
Tn

∣∣∣∣ (4.7.11)

depends only on td/Tn and is shown as “free response” in Fig. 4.7.3a.
Having determined the maximum response during each of the forced and free vi-

bration phases, we now determine the overall maximum. Figure 4.7.3a shows that if
td/Tn > 1

2 , the overall maximum is the peak (or peaks because all are equal) in u(t)
that develops during the forced vibration phase because it will not be exceeded in free vi-
bration; see Fig. 4.7.2 for td/Tn = 1.25. This observation can also be deduced from the
mathematical results: the Rd of Eq. (4.7.11) for the free vibration phase can never exceed
the Rd = 2, Eq. (4.7.8b), for the forced vibration phase.

If td/Tn < 1
2 , Fig. 4.7.3a shows that the overall maximum is the peak (or peaks

because all are equal) in u(t) that develops during the free vibration phase. In this case the
response during the forced vibration phase has built up from zero at t = 0 to u(td) at the
end of the pulse, Eq. (4.7.7), and u̇(td) given by Eq. (4.7.4b) is positive; see Fig. 4.7.2 for
td/Tn = 1

8 or 1
4 . As a result, the first peak in free vibration is larger than u(td).

Finally, if td/Tn = 1
2 , Fig. 4.7.3a shows that the overall maximum is given by either

the forced-response maximum or the free-response maximum because the two are equal.
The first peak occurs exactly at the end of the forced vibration phase (Fig. 4.7.2), the
velocity u̇(td) = 0, and the peaks in free vibration are the same as u(td). This observation is
consistent with Eqs. (4.7.8) and (4.7.11) because both of them give Rd = 2 for td/Tn = 1

2 .
In summary, the deformation response factor that defines the overall maximum re-

sponse is

Rd = uo

(ust)o
=
{

2 sinπ td/Tn td/Tn ≤ 1
2

2 td/Tn ≥ 1
2

(4.7.12)

Clearly, Rd depends only on td/Tn , the ratio of the pulse duration to the natural period of
the system, not separately on td or Tn . This relationship is shown in Fig. 4.7.3b.

Such a plot, which shows the maximum deformation of an SDF system as a function
of the natural period Tn of the system (or a related parameter), is called a response spec-
trum. When the excitation is a single pulse, the terminology shock spectrum is also used
for the response spectrum. Figure 4.7.3b then is the shock spectrum for a rectangular pulse
force. The shock spectrum characterizes the problem completely.

The maximum deformation of an undamped SDF system having a natural period Tn

to a rectangular pulse force of amplitude po and duration td can readily be determined if
the shock spectrum for this excitation is available. Corresponding to the ratio td/Tn , the
deformation response factor Rd is read from the spectrum, and the maximum deformation
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is computed from

uo = (ust)o Rd = po

k
Rd (4.7.13)

The maximum value of the equivalent static force (Section 1.8.2) is

fSo = kuo = po Rd (4.7.14)

that is, the applied force po multiplied by the deformation response factor. As mentioned
in Section 1.8.2, static analysis of the structure subjected to fSo gives the internal forces
and stresses.

Example 4.1

A one-story building, idealized as a 4 m-high frame with two columns hinged at the base and
a rigid beam, has a natural period of 0.5 s. Each column is a European standard steel section
IPE 220. Its properties for bending about its major axis are Ix = 2772 cm4, S = Ix/c =
252 cm3; E = 200,000 MPa. Neglecting damping, determine the maximum response of this
frame due to a rectangular pulse force of amplitude 20 kN and duration td = 0.2 s. The
response quantities of interest are displacement at the top of the frame and maximum bending
stress in the columns.

Solution
1. Determine Rd .

td
Tn
= 0.2

0.5
= 0.4

Rd = uo

(ust)o
= 2 sin

π td
Tn
= 2 sin(0.4π) = 1.902

2. Determine the lateral stiffness of the frame.

kcol = 3E I

L3
= 3(200,000× 106)(2772× 10(−8))

43
= 259,875 N/m = 259.9 kN/m.

k = 2× 259.9 = 519.8 kN/m.

3. Determine (ust)o.

(ust)o = po

k
= 20× 103

259.9× 103
= 0.03848 m = 3.85 cm.

4. Determine the maximum dynamic deformation.

uo = (ust)o Rd = (3.85)(1.902) = 7.32 cm.

5. Determine the bending stress. The resulting bending moments in each column are
shown in Fig. E4.1c. At the top of the column the bending moment is largest and is given by

M = 3E I

L2
uo =

[
3(200,000× 106)(2772× 10−8)

42

]
(7.32× 10(−2)) = 76,084 N-m = 76.1 kN-m

Alternatively, we can find the bending moment from the equivalent static force:

fSo = po Rd = 20(1.902) = 38.0 kN
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Figure E4.1

Because both columns are identical in cross section and length, the force fSo will be shared
equally. The bending moment at the top of the column is

M = fSo

2
h =

(
38.0

2

)
4 = 76.1 kN-m.

The bending stress is largest at the outside of the flanges at the top of the columns:

σ = M

S
= 76.1× 103

252× 10(−6)
= 3.019× 108 N/m2 = 301.9 MPa

The stress distribution is shown in Fig. E4.1d.

4.8 HALF-CYCLE SINE PULSE FORCE

The next pulse we consider is a half-cycle of sinusoidal force (Fig. 4.8.1b). The response
analysis procedure for this pulse is the same as developed in Section 4.7 for a rectangular
pulse, but the mathematical derivation becomes a little complicated. The solution of the
governing equation

mü + ku = p(t) =
{

po sin(π t/td) t ≤ td
0 t ≥ td

(4.8.1)

with at-rest initial conditions is presented separately for (1) ω ≡ π/td �= ωn or td/Tn �= 1
2

and (2) ω = ωn or td/Tn = 1
2 . For each case the analysis is organized in two phases: forced

vibration and free vibration.

u
p(t)

m

(a)

k

p

po

td
t

0

(b)
Figure 4.8.1 (a) SDF system;
(b) half-cycle sine pulse force.
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Case 1: td/Tn �= 1
2

Forced Vibration Phase. The force is the same as the harmonic force p(t) =
po sinωt considered earlier with frequency ω = π/td . The response of an undamped
SDF system to such a force is given by Eq. (3.1.6b) in terms of ω and ωn , the excitation
and natural frequencies. The excitation frequency ω is not the most meaningful way of
characterizing the pulse because, unlike a harmonic force, it is not a periodic function. A
better characterization is the pulse duration td , which will be emphasized here. Using the
relations ω = π/td and ωn = 2π/Tn , and defining (ust)o = po/k, as before, Eq. (3.1.6b)
becomes

u(t)

(ust)o
= 1

1− (Tn/2td)2

[
sin

(
π

t

td

)
− Tn

2td
sin

(
2π

t

Tn

)]
t ≤ td (4.8.2)

Free Vibration Phase. After the force pulse ends, the system vibrates freely with its
motion described by Eq. (4.7.3). The displacement u(td) and velocity u̇(td) at the end of the
pulse are determined from Eq. (4.8.2). Substituting these in Eq. (4.7.3), using trigonometric
identities and manipulating the mathematical quantities, we obtain

u(t)

(ust)o
= (Tn/td) cos(π td/Tn)

(Tn/2td)2 − 1
sin

[
2π

(
t

Tn
− 1

2

td
Tn

)]
t ≥ td (4.8.3)

Case 2: td/Tn = 1
2

Forced Vibration Phase. The forced response is now given by Eq. (3.1.13b), re-
peated here for convenience:

u(t)

(ust)o
= 1

2

(
sin

2π t

Tn
− 2π t

Tn
cos

2π t

Tn

)
t ≤ td (4.8.4)

Free Vibration Phase. After the force pulse ends at t = td , free vibration of the
system is initiated by the displacement u(td) and velocity u̇(td) at the end of the force
pulse. Determined from Eq. (4.8.4), these are

u(td)

(ust)o
= π

2
u̇(td) = 0 (4.8.5)

The second equation implies that the displacement in the forced vibration phase reaches its
maximum at the end of this phase. Substituting Eq. (4.8.5) in Eq. (4.7.3) gives the response
of the system after the pulse has ended:

u(t)

(ust)o
= π

2
cos 2π

(
t

Tn
− 1

2

)
t ≥ td (4.8.6)

Response history. The time variation of the normalized deformation, u(t)/
(ust)o, given by Eqs. (4.8.2) and (4.8.3) is plotted in Fig. 4.8.2 for several values of td/Tn .
For the special case of td/Tn = 1

2 , Eqs. (4.8.4) and (4.8.6) describe the response of the syst-
em, and these are also plotted in Fig. 4.8.2. The nature of the response is seen to vary greatly
by changing just the duration td of the pulse. Also plotted in Fig. 4.8.2 is ust(t) = p(t)/k,
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Figure 4.8.2 Dynamic response of undamped SDF system to half-cycle sine pulse force;
static solution is shown by dashed lines.

the static solution. The difference between the two curves is an indication of the dynamic
effects, which are seen to be small for td = 3Tn because this implies that the force is
varying slowly relative to the natural period Tn of the system.

The response during the force pulse contains both frequencies ω and ωn and it is
positive throughout. After the force pulse has ended, the system oscillates freely about
its undeformed configuration with constant amplitude for lack of damping. If td/Tn =
1.5, 2.5, . . ., the mass stays still after the force pulse ends because both the displacement
and velocity of the mass are zero when the force pulse ends.
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Maximum response. As in the preceding section, the maximum values of
response over each of the two phases, forced vibration and free vibration, are determined
separately. The larger of the two maxima is the overall maximum response.

During the forced vibration phase, the number of local maxima or peaks that develop
depends on td/Tn (Fig. 4.8.2); more such peaks occur as the pulse duration lengthens.
The time instants to when the peaks occur are determined by setting to zero the velocity
associated with u(t) of Eq. (4.8.2), leading to

cos
π to
td
= cos

2π to
Tn

This equation is satisfied by

(to)l = ∓2l

1∓ 2(td/Tn)
td l = 1, 2, 3, . . . (4.8.7)

where the negative signs (numerator and denominator) are associated with local minima
and the positive signs with local maxima. Thus the local maxima occur at time instants

(to)l = 2l

1+ 2(td/Tn)
td l = 1, 2, 3, . . . (4.8.8)

While this gives an infinite number of (to)l values, only those that do not exceed td are
relevant. For td/Tn = 3, Eq. (4.8.8) gives three relevant time instants: to = 2

7 td , 4
7 td ,

and 6
7 td ; l = 4 gives to = 8

7 td , which is not valid because it exceeds td . Substituting in
Eq. (4.8.2) the (to)l values of Eq. (4.8.8) gives the local maxima uo, which can be expressed
in terms of the deformation response factor:

Rd = uo

(ust)o
= 1

1− (Tn/2td)2

(
sin

2πl

1+ 2td/Tn
− Tn

2td
sin

2πl

1+ Tn/2td

)
(4.8.9)

Figure 4.8.3a shows these peak values plotted as a function of td/Tn . For each td/Tn

value the above-described computations were implemented and then repeated for many
td/Tn values. If 0.5 ≤ td/Tn ≤ 1.5, only one peak, l = 1, occurs during the force
pulse. A second peak develops if td/Tn > 1.5, but it is smaller than the first peak if
1.5 < td/Tn < 2.5. A third peak develops if td/Tn > 2.5. The second peak is larger than
the first and third peaks if 2.5 < td/Tn < 4.5. Usually, we will be concerned only with the
largest peak because that controls the design of the system. The shock spectrum for the
largest peak of the forced response is shown in Fig. 4.8.3b.

If td/Tn <
1
2 , no peak occurs during the forced vibration phase (Fig. 4.8.2). This

becomes clear by examining the time of the first peak, Eq. (4.8.8), with l = 1:

to = 2

1+ 2td/Tn
td

If this to exceeds td , and it does for all td < Tn/2, no peak develops during the force pulse;
the response builds up from zero to u(td), obtained by evaluating Eq. (4.8.2) at t = td :

u(td)

(ust)o
= Tn/2td
(Tn/2td)2 − 1

sin

(
2π

td
Tn

)
(4.8.10)
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Figure 4.8.3 Response to half-cycle sine pulse force: (a) response maxima during forced
vibration phase; (b) maximum responses during each of forced vibration and free vibration
phases; (c) shock spectrum.

This is the maximum response during the forced vibration phase and it defines the defor-
mation response factor over the range 0 ≤ td/Tn <

1
2 in Fig. 4.8.3a and b.

In the free vibration phase the response of a system is given by the sinusoidal function
of Eq. (4.8.3), and its amplitude is

Rd = uo

(ust)o
= (Tn/td) cos(π td/Tn)

(Tn/2td)2 − 1
(4.8.11)
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This equation describes the maximum response during the free vibration phase and is plot-
ted in Fig. 4.8.3b.

For the special case of td/Tn = 1
2 , the maximum response during each of the forced

and free vibration phases can be determined from Eqs. (4.8.4) and (4.8.6), respectively; the
two maxima are the same:

Rd = uo

(ust)o
= π

2
(4.8.12)

The overall maximum response is the larger of the two maxima determined sepa-
rately for the forced and free vibration phases. Figure 4.8.3b shows that if td > Tn/2,
the overall maximum is the largest peak that develops during the force pulse. On the
other hand, if td < Tn/2, the overall maximum is given by the peak response during the
free vibration phase. For the special case of td = Tn/2, as mentioned earlier, the two
individual maxima are equal. The overall maximum response is plotted against td/Tn

in Fig. 4.8.3c; for each td/Tn it is the larger of the two plots of Fig. 4.8.3b. This is
the shock spectrum for the half-cycle sine pulse force. If it is available, the maximum
deformation and equivalent static force can readily be determined using Eqs. (4.7.13)
and (4.7.14).

4.9 SYMMETRICAL TRIANGULAR PULSE FORCE

Consider next an SDF system initially at rest and subjected to the symmetrical triangular
pulse shown in Fig. 4.9.1. The response of an undamped SDF system to this pulse could
be determined by any of the methods mentioned in Section 4.6. For example, the classical
method could be implemented in three separate phases: 0 ≤ t ≤ td/2, td/2 ≤ t ≤ td , and
t ≥ td . The classical method was preferred in Sections 4.8 and 4.9 because it is closely
tied to the dynamics of the system, but is abandoned here for expedience. Perhaps the
easiest way to solve the problem is to express the triangular pulse as the superposition
of the three ramp functions shown in Fig. 4.6.2c. The response of the system to each of
these ramp functions can readily be determined by appropriately adapting Eq. (4.4.2) to
recognize the slope and starting time of each of the three ramp functions. These three
individual responses are added to obtain the response to the symmetrical triangular pulse.

u
p(t)

m

(a)

k

p

po

tdtd /2
t

0

(b)
Figure 4.9.1 (a) SDF system;
(b) triangular pulse force.
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Figure 4.9.2 Dynamic response of undamped SDF system to triangular pulse force; static
solution is shown by dashed lines.

The final result is

u(t)

(ust)o
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2

(
t

td
− Tn

2π td
sin 2π

t

Tn

)
0 ≤ t ≤ td

2
(4.9.1a)

2

{
1− t

td
+ Tn

2π td

[
2 sin

2π

Tn

(
t − 1

2
td

)
− sin 2π

t

Tn

]}
td
2
≤ t ≤ td (4.9.1b)

2

{
Tn

2π td

[
2 sin

2π

Tn

(
t − 1

2
td

)
− sin

2π

Tn
(t − td)− sin 2π

t

Tn

]}
t ≥ td (4.9.1c)
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The variation of the normalized dynamic deformation u(t)/(ust)o and of the static solution
ust(t)/(ust)o with time is shown in Fig. 4.9.2 for several values of td/Tn . The dynamic
effects are seen to decrease as the pulse duration td increases beyond 2Tn . The first peak
develops right at the end of the pulse if td = Tn/2, during the pulse if td > Tn/2, and
after the pulse if td < Tn/2. The maximum response during free vibration (Fig. 4.9.3a)
was obtained by finding the maximum value of Eq. (4.9.1c). The corresponding plot for
maximum response during the forced vibration phase (Fig. 4.9.3a) was obtained by finding
the largest of the local maxima of Eq. (4.9.1b), which is always larger than the maximum
value of Eq. (4.9.1a).

The overall maximum response is the larger of the two maxima determined sepa-
rately for the forced and free vibration phases. Figure 4.9.3a shows that if td > Tn/2, the
overall maximum is the largest peak that develops during the force pulse. On the other
hand, if td < Tn/2, the overall maximum is the peak response during the free vibration
phase, and if td = Tn/2, the forced and free response maxima are equal. The overall max-
imum response is plotted against td/Tn in Fig. 4.9.3b. This is the shock spectrum for the
symmetrical triangular pulse force.
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Figure 4.9.3 Response to triangular pulse force: (a) maximum response during each of forced
vibration and free vibration phases; (b) shock spectrum.
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4.10 EFFECTS OF PULSE SHAPE AND APPROXIMATE ANALYSIS
FOR SHORT PULSES

The shock spectra for the three pulses of rectangular, half-cycle sine, and triangular shapes,
each with the same value of maximum force po, are presented together in Fig. 4.10.1. As
shown in the preceding sections, if the pulse duration td is longer than Tn/2, the overall
maximum deformation occurs during the pulse. Then the pulse shape is of great signifi-
cance. For the larger values of td/Tn , this overall maximum is influenced by the rapidity
of the loading. The rectangular pulse in which the force increases suddenly from zero to
po produces the largest deformation. The triangular pulse in which the increase in force is
initially slowest among the three pulses produces the smallest deformation. The half-cycle
sine pulse in which the force initially increases at an intermediate rate causes deformation
that for many values of td/Tn is larger than the response to the triangular pulse.

If the pulse duration td is shorter than Tn/2, the overall maximum response of the
system occurs during its free vibration phase and is controlled by the time integral of the
pulse. This can be demonstrated by considering the limiting case as td/Tn approaches
zero. As the pulse duration becomes extremely short compared to the natural period of the
system, it becomes a pure impulse of magnitude

I =
∫ td

0
p(t) dt (4.10.1)

The response of the system to this impulsive force is the unit impulse response of
Eq. (4.1.6) times I:

u(t) = I
(

1

mωn
sinωnt

)
(4.10.2)
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Figure 4.10.1 Shock spectra for three force pulses of equal amplitude.
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The maximum deformation,

uo = I
mωn

= I
k

2π

Tn
(4.10.3)

is proportional to the magnitude of the impulse.
Thus the maximum deformation due to the rectangular impulse of magnitude I =

potd is

uo

(ust)o
= 2π

td
Tn

(4.10.4)

that due to the half-cycle sine pulse with I = (2/π)potd is

uo

(ust)o
= 4

td
Tn

(4.10.5)

and that due to the triangular pulse of magnitude I = potd/2 is

uo

(ust)o
= π td

Tn
(4.10.6)

These pure impulse solutions, which vary linearly with td/Tn (Fig. 4.10.1), are exact if
td/Tn = 0; for all other values of td , they provide an upper bound to the true maximum
deformation since the effect of the pulse has been overestimated by assuming it to be
concentrated at t = 0 instead of being spread out over 0 to td . Over the range td/Tn <

1
4 , the

pure impulse solution is close to the exact response. The two solutions differ increasingly
as td/Tn increases up to 1

2 . For larger values of td/Tn , the deformation attains its overall
maximum during the pulse and the pure impulse solution is meaningless because it assumes
that the maximum occurs in free vibration.

The preceding observations suggest that if the pulse duration is much shorter than the
natural period, say td < Tn/4, the maximum deformation should be essentially controlled
by the magnitude (or area) of the pulse, independent of its shape. This expectation is
confirmed by considering the rectangular pulse of amplitude po/2, the triangular pulse
of amplitude po, and the half-cycle sine pulse of amplitude (π/4)po; these three pulses
have the same magnitude: 1

2 potd . For these three pulses, the shock spectra, determined by
appropriately scaling the plots of Fig. 4.10.1, are presented in Fig. 4.10.2; observe that the
quantity plotted now is uo÷ po/k, where po is the amplitude of the triangular pulse but not
of the other two. Equation (4.10.3) with I = 1

2 potd gives the approximate result

uo

po/k
= π td

Tn
(4.10.7)

which is also shown in Fig. 4.10.2. It is clear that for td < Tn/4, the shape of the pulse has
little influence on the response, and the response can be determined using only the pulse
magnitude. This conclusion is valid even if the pulse has a complicated shape.
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Figure 4.10.2 Shock spectra for three force pulses of equal magnitude.

Example 4.2

The 20-m-high full water tank of Example 2.7 is subjected to the force p(t) shown in Fig. E4.2,
caused by an aboveground explosion. Determine the maximum base shear and bending mo-
ment at the base of the tower supporting the tank.

Solution For this water tank, from Example 2.7, mass m = 50,132 kg, k = 1600 kN/m.
Tn = 1.11 s, and ζ = 1.24%. The ratio td/Tn = 0.08/1.11 = 0.072. Because td/Tn < 0.25,
the forcing function may be treated as a pure impulse of magnitude

I =
∫ 0.08

0
p(t) dt = 0.02

2
[0+ 2(200)+ 2(80)+ 2(20)+ 0] = 6 kN-s

where the integral is calculated by the trapezoidal rule. Neglecting the effect of damping, the
maximum displacement is

uo = I
k

2π

Tn
= (6× 103)2π

(1600× 103)(1.11)
= 0.0212 m = 2.12 cm

The equivalent static force fSo associated with this displacement is [from Eq. (1.8.1)]

fSo = kuo = (1600× 103)(0.0212) = 33,896 N = 33.9 kN

The resulting shearing forces and bending moments over the height of the tower are shown in
Fig. E4.2. The base shear and moment are Vb = 33.9 kN and Mb = 678 kN-m
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•
•
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0.
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0.
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0.
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0.
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•

•
•

33.9 kN 33.9 kN

Shears Moments
678 kN-m

Figure E4.2
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4.11 EFFECTS OF VISCOUS DAMPING

If the excitation is a single pulse, the effect of damping on the maximum response is usu-
ally not important unless the system is highly damped. This is in contrast to the results
of Chapter 3, where damping was seen to have an important influence on the maximum
steady-state response of systems to harmonic excitation at or near resonance.

For example, if the excitation frequency of harmonic excitation is equal to the natural
frequency of the system, a tenfold increase in the damping ratio ζ , from 1% to 10%, results
in a tenfold decrease in the deformation response factor Rd , from 50 to 5. Damping is so
influential because of the cumulative energy dissipated in the many (the number depends
on ζ ) vibration cycles prior to attainment of steady state; see Figs. 3.2.2, 3.2.3, and 3.2.4.

In contrast, the energy dissipated by damping is small in systems subjected to pulse-
type excitations. Consider a viscously damped system subjected to a half-cycle sine pulse
with td/Tn = 1

2 (which implies that ω = ωn) and ζ = 0.1. The variation of deformation
with time (Fig. 4.11.1a) indicates that the maximum deformation (point b) is attained at
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Figure 4.11.1 (a) Response of damped system (ζ = 0.1) to a half-cycle sine pulse force with
td/Tn = 1

2 ; (b) force–deformation diagram showing energy dissipated in viscous damping.
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Figure 4.11.2 Shock spectra for a half-cycle sine pulse force for five damping values.

the end of the pulse before completion of a single vibration cycle. The total (elastic plus
damping) force–deformation diagram of Fig. 4.11.1b indicates that before the maximum
response is reached, the energy dissipated in viscous damping is only the small shaded area
multiplied by p2

o/k. Thus the influence of damping on maximum response is expected to
be small.

This prediction is confirmed by the shock spectrum for the half-cycle sine pulse
presented in Fig. 4.11.2. For ζ = 0, this spectrum is the same as the spectrum of Fig. 4.8.3c
for undamped systems. For ζ �= 0 and for each value of td/Tn , the dynamic response of
the damped system was computed by a numerical time-stepping procedure (Chapter 5)
and the maximum deformation was determined. In the case of the system acted upon by
a half-cycle sine pulse of duration td = Tn/2, increase in the damping ratio from 1% to
10% reduces the maximum deformation by only 12%. Thus a conservative but not overly
conservative estimate of the response of many practical structures with damping to pulse-
type excitations may be obtained by neglecting damping and using the earlier results for
undamped systems.

4.12 RESPONSE TO GROUND MOTION

The response spectrum characterizing the maximum response of SDF systems to ground
motion üg(t) can be determined from the response spectrum for the applied force p(t)
with the same time variation as üg(t). This is possible because as shown in Eq. (1.7.6), the
ground acceleration can be replaced by the effective force, peff(t) = −müg(t).

The response spectrum for applied force p(t) is a plot of Rd = uo/(ust)o, where
(ust)o = po/k, versus the appropriate system and excitation parameters: ω/ωn for
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harmonic excitation and td/Tn for pulse-type excitation. Replacing po by (peff)o gives

(ust)o = (peff)o

k
= mügo

k
= ügo

ω2
n

(4.12.1)

where ügo is the maximum value of üg(t) and the negative sign in peff(t) has been dropped.
Thus

Rd = uo

(ust)o
= ω2

nuo

ügo
(4.12.2)

Therefore, the response spectra presented in Chapters 3 and 4 showing the response uo/(ust)o
due to applied force also give the response ω2

nuo/ügo to ground motion.
For undamped systems subjected to ground motion, Eqs. (1.7.4) and (1.7.3) indi-

cate that the total acceleration of the mass is related to the deformation through üt (t) =
−ω2

nu(t). Thus the maximum values of the two responses are related by üt
o = ω2

nuo.
Substituting in Eq. (4.12.2) gives

Rd = üt
o

ügo
(4.12.3)

Thus the earlier response spectra showing the response uo/(ust)o of undamped systems
subjected to applied force also display the response üt

o/ügo to ground motion.
As an example, the response spectrum of Fig. 4.8.3c for a half-cycle sine pulse force

also gives the maximum values of responses ω2
nuo/ügo and üt

o/ügo due to ground acceler-
ation described by a half-cycle sine pulse.

Example 4.3

Consider the SDF model of an automobile described in Example 3.4 running over the speed
bump shown in Fig. E4.3 at velocity v. Determine the maximum force developed in the
suspension spring and the maximum vertical acceleration of the mass if (a) v = 10 km/h, and
(b) v = 20 km/h.

Half-cycle sine function

• •1 m

•
•

15 cm

v

m = 1800 kg

 = 0.4140 kN/m ζ

Figure E4.3
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Solution
1. Determine the system and excitation parameters.

m = 1800 kg

k = 140 kN/m

ωn = 8.819 rad/s Tn = 0.712 s

v = 10 km/h = 2.778 m/s td = 1

2.778
= 0.36 s

td
Tn
= 0.505

v = 20 km/h = 5.556 m/s td = 1

5.556
= 0.18 s

td
Tn
= 0.253

The vertical ground displacement ug(t) = 0.15 sin(π t/td ) for 0 ≤ t ≤ td and is zero
for t < 0 and t > td . Two differentiations lead to an equation for ground acceleration:
üg(t) = −(0.15π2/t2

d ) sin(π t/td ) plus terms containing delta functions. The latter terms are
due to the kink in the ground profile at the beginning and the end of the speed bump (Fig.
E4.3). As a result, the ground acceleration is not a single pulse—in contrast to the ground dis-
placement. Thus, the method presented in Section 4.12 is not applicable unless the latter terms
are dropped, an approximation that may be appropriate at very low speeds. Such an approx-
imate solution is presented to illustrate application of the method. With this approximation,
ügo = 0.15π2/t2

d .
2. Determine Rd for the td/Tn values above from Fig. 4.11.2.

Rd =
{

0.9579 v = 10 km/h
0.5739 v = 20 km/h

Obviously, Rd cannot be read accurately to three or four significant digits; these values are
from the numerical data used in plotting Fig. 4.11.2.

3. Determine the maximum force, fSo.

uo =
ügo

ω2
n

Rd = 3.75

(
Tn

td

)2

Rd

uo =

⎧⎪⎪⎨
⎪⎪⎩

3.75

(
1

0.505

)2

0.9579 = 14.1 cm v = 10 km/h

3.75

(
1

0.253

)2

0.5739 = 33.7 cm v = 20 km/h

fSo = kuo = 140uo =
{

19.7 kN v = 10 km/h
47.2 kN v = 20 km/h

Observe that the force in the suspension is much larger at the higher speed. The large defor-
mation of the suspension suggests that it may deform beyond its linearly elastic limit.

4. Determine the maximum acceleration, üt
o. Equation (4.12.3) provides a relation

between üt
o and Rd that is exact for systems without damping but is approximate for damped
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systems. These approximate results can readily be obtained for this problem:

üt
o = ügo Rd = 0.15π2

t2
d

Rd

üt
o =

⎧⎪⎪⎨
⎪⎪⎩

[
0.15π2

(0.36)2

]
0.9579 = 10.94 m/s2 v = 10 km/h[

0.15π2

(0.18)2

]
0.5739 = 26.22 m/s2 v = 20 km/h

Observe that the acceleration of the mass is much larger at the higher speed; at both speeds, it
exceeds 1g, indicating that the SDF model would lift off from the road.

To evaluate the error in the approximate solution for üt
o, a numerical solution of the

equation of motion was carried out, leading to the “exact” value of üt
o = 13.15 m/s2 for

v = 10 km/h.
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P R O B L E M S

Part A

4.1 Show that the maximum deformation u0 of an SDF system due to a unit impulse force, p(t) =
δ(t), is

uo = 1

mωn
exp

(
− ζ√

1− ζ 2
tan−1

√
1− ζ 2

ζ

)

Plot this result as a function of ζ . Comment on the influence of damping on the maximum
response.

4.2 Consider the deformation response g(t) of an SDF system to a unit step function p(t) = 1,
t ≥ 0, and h(t) due to a unit impulse p(t) = δ(t). Show that h(t) = ġ(t).

4.3 An SDF undamped system is subjected to a force p(t) consisting of a sequence of two im-
pulses, each of magnitude I , as shown in Fig. P4.3.
(a) Plot the displacement response of the system for td/Tn = 1

8 , 1
4 , and 1. For each case show

the response to individual impulses and the combined response.
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t

p

I

I
td

Figure P4.3

(b) Plot uo ÷ (I/mωn) as a function of td/Tn . Indicate separately the maximum occurring at
t ≤ td and t ≥ td . Such a plot is called the response spectrum for this excitation.

4.4 Repeat Problem 4.3 for the case of the two impulses acting in the same direction.

4.5 (a) Show that the motion of an undamped system starting from rest due to a suddenly applied
force po that decays exponentially with time (Fig. P4.5) is

u(t)

(ust)o
= 1

1+ a2/ω2
n

[
a

ωn
sinωnt − cosωnt + e−at

]
Note that a has the same units as ωn .
(b) Plot this motion for selected values of a/ωn = 0.01, 0.1, and 1.0.
(c) Show that the steady-state amplitude is

uo

(ust)o
= 1√

1+ a2/ω2
n

When is the steady-state motion reached?

t

p

p
o

p(t) = p
o
e−at

Figure P4.5

4.6 (a) Determine the motion of an undamped system starting from rest due to the force p(t)
shown in Fig. P4.6; b > a.
(b) Plot the motion for b = 2a for three values of a/ωn = 0.05, 0.1, and 0.5.

t

p

p
o p(t) = p

o
(e−at−e−bt)

Figure P4.6
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Part B

4.7 Using the classical method for solving differential equations, derive Eq. (4.4.2), which de-
scribes the response of an undamped SDF system to a linearly increasing force; the initial
conditions are u(0) = u̇(0) = 0.

4.8 An elevator is idealized as a weight of mass m supported by a spring of stiffness k. If the
upper end of the spring begins to move with a steady velocity v, show that the distance ut that
the mass has risen in time t is governed by the equation

müt + kut = kvt

If the elevator starts from rest, show that the motion is

ut (t) = vt − v

ωn
sinωnt

Plot this result.

4.9 (a) Determine the maximum response of a damped SDF system to a step force.
(b) Plot the maximum response as a function of the damping ratio.

4.10 The deformation response of an undamped SDF system to a step force having finite rise time
is given by Eqs. (4.5.2) and (4.5.4). Derive these results using Duhamel’s integral.

4.11 Derive Eqs. (4.5.2) and (4.5.4) by considering the excitation as the sum of two ramp functions
(Fig. P4.11). For t ≤ tr , u(t) is the solution of the equation of motion for the first ramp
function. For t ≥ tr , u(t) is the sum of the responses to the two ramp functions.

t

p

tr

po

p1(t) = pot/tr

p2(t) = −po(t − tr)/tr Figure P4.11

4.12 The elevated water tank of Fig. P4.12 has a mass of 50,000 kg when full with water. The tower
has a lateral stiffness of 1500 kN/m. Treating the water tower as an SDF system, estimate the
maximum lateral displacement due to each of the two dynamic forces shown without any
“exact” dynamic analysis. Instead, use your understanding of how the maximum response
depends on the ratio of the rise time of the applied force to the natural vibration period of the
system; neglect damping.

4.13 An SDF system with natural vibration period Tn is subjected to an alternating step force
(Fig. P4.13). Note that p(t) is periodic with period Tn .
(a) Determine the displacement as a function of time; the initial conditions are u(0) =
u̇(0) = 0.
(b) Plot the response.
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(c) Show that the displacement peaks are given by un/(ust)o = (−1)n−12n, where n is the
number of half cycles of p(t).

Part C

4.14 Determine the response of an undamped system to a rectangular pulse force of amplitude
po and duration td by considering the pulse as the superposition of two step excitations
(Fig. 4.6.2).

4.15 Using Duhamel’s integral, determine the response of an undamped system to a rectangular
pulse force of amplitude po and duration td .

4.16 Determine the response of an undamped system to a half-cycle sine pulse force of amplitude
po and duration td by considering the pulse as the superposition of two sinusoidal excitations
(Fig. 4.6.2); td/Tn �= 1

2 .

4.17 The one-story building of Example 4.1 is modified so that the columns are clamped at the
base instead of hinged. For the same excitation determine the maximum displacement at the
top of the frame and maximum bending stress in the columns. Comment on the effect of base
fixity.
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4.18 Determine the maximum response of the frame of Example 4.1 to a half-cycle sine pulse force
of amplitude po = 25 kN and duration td = 0.25 s. The response quantities of interest are:
displacement at the top of the frame and maximum bending stress in columns.

4.19 An SDF undamped system is subjected to a full-cycle sine pulse force (Fig. P4.19).
(a) Derive equations describing u(t) during the forced and free vibration phases.
(b) Plot the response u(t)/(ust)o versus t/Tn for various values of td/Tn ; on the same plots
show the static response ust(t)/(ust)o.
(c) Determine the peak response uo, defined as the maximum of the absolute value of u(t),
during (i) the forced vibration phase, and (ii) the free vibration phase.
(d) Plot Rd = uo/(ust)o for each of the two phases as a function of td/Tn .
(e) Plot the shock spectrum.
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−p
o
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d

Figure P4.19

4.20 Derive equations (4.9.1) for the displacement response of an undamped SDF system to a sym-
metrical triangular pulse by considering the pulse as the superposition of three ramp functions
(Fig. 4.6.2).

4.21 An undamped system is subjected to the triangular pulse in Fig. P4.21.
(a) Show that the displacement response is

u(t)

(ust)o
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

t

td
− 1

2π

(
Tn

td

)
sin

2π t

Tn
0 ≤ t ≤ td

cos
2π

Tn
(t − td )+ 1

2π

(
Tn

td

)
sin

2π

Tn
(t − td )− 1

2π

(
Tn

td

)
sin

2π t

Tn
t ≥ td

Plot the response for two values of td/Tn = 1
2 and 2.

(b) Derive equations for the deformation response factor Rd during (i) the forced vibration
phase, and (ii) the free vibration phase.
(c) Plot Rd for the two phases against td/Tn . Also plot the shock spectrum.

t

p
p

o

t
d Figure P4.21
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4.22 Derive equations for the deformation u(t) of an undamped SDF system due to the force p(t)
shown in Fig. P4.22 for each of the following time ranges: t ≤ t1, t1 ≤ t ≤ 2t1, 2t1 ≤ t ≤ 3t1,
and t ≥ 3t1.

t

p

t1 2t1 3t1 

po

Figure P4.22

4.23 An SDF system is subjected to the force shown in Fig. P4.22. Determine the maximum
response during free vibration of the system and the time instant the first peak occurs.

4.24 To determine the maximum response of an undamped SDF system to the force of Fig. P4.22
for a particular value of td/Tn , where td = 3t1, you would need to identify the time range
among the four time ranges mentioned in Problem 4.22 during which the overall maximum
response would occur, and then find the value of that maximum. Such analyses would need to
be repeated for many values of td/Tn to determine the complete shock spectrum. Obviously,
this is time consuming but necessary if one wishes to determine the complete shock spectrum.
However, the spectrum for small values of td/Tn can be determined by treating the force as an
impulse. Determine the shock spectrum by this approach and plot it. What is the error in this
approximate result for td/Tn = 1

4 ?

4.25 (a) Determine the response of an undamped SDF system to the force shown in Fig. P4.25 for
each of the following time intervals: (i) 0 ≤ t ≤ td/2, (ii) td/2 ≤ t ≤ td , and (iii) t ≥ td .
Assume that u(0) = u̇(0) = 0.
(b) Determine the maximum response uo during free vibration of the system. Plot the defor-
mation response factor Rd = uo/(ust)o as a function of td/Tn over the range 0 ≤ td/Tn ≤ 4.
(c) If td 	 Tn , can the maximum response be determined by treating the applied force as a
pure impulse? State reasons for your answer.
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p

td /2

td 

po

−po

Figure P4.25

4.26 The 20-m-high water tank of Examples 2.6 and 2.7 is subjected to the force p(t) shown in
Fig. E4.2a. The maximum response of the structure with the tank full (mass = 50,132 kg)
was determined in Example 4.2.
(a) If the tank is empty (mass = 10, 132 kg), calculate the maximum base shear and bending
moment at the base of the tower supporting the tank.
(b) By comparing these results with those for the full tank (Example 4.2), comment on the
effect of mass on the response to impulsive forces. Explain the reason.
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5

Numerical Evaluation of
Dynamic Response

PREVIEW

Analytical solution of the equation of motion for a single-degree-of-freedom system is
usually not possible if the excitation—applied force p(t) or ground acceleration üg(t)—
varies arbitrarily with time or if the system is nonlinear. Such problems can be tackled
by numerical time-stepping methods for integration of differential equations. A vast body
of literature, including major chapters of several books, exists about these methods for
solving various types of differential equations that arise in the broad subject area of applied
mechanics. The literature includes the mathematical development of these methods; their
accuracy, convergence, and stability properties; and computer implementation.

Only a brief presentation of a very few methods that are especially useful in dynamic
response analysis of SDF systems is included here, however. This presentation is intended
to provide only the basic concepts underlying these methods and to provide a few computa-
tional algorithms. Although these would suffice for many practical problems and research
applications, the reader should recognize that a wealth of knowledge exists on this subject.

5.1 TIME-STEPPING METHODS

For an inelastic system the equation of motion to be solved numerically is

mü + cu̇ + fS(u) = p(t) or −müg(t) (5.1.1)

subject to the initial conditions

u0 = u(0) u̇0 = u̇(0)

165
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The system is assumed to have linear viscous damping, but other forms of damping, in-
cluding nonlinear damping, could be considered, as will become obvious later. However,
this is rarely done for lack of information on damping, especially at large amplitudes of
motion. The applied force p(t) is given by a set of discrete values pi = p(ti ), i = 0 to N
(Fig. 5.1.1). The time interval

�ti = ti+1 − ti (5.1.2)

is usually taken to be constant, although this is not necessary. The response is determined at
the discrete time instants ti , denoted as time i ; the displacement, velocity, and acceleration
of the SDF system are ui , u̇i , and üi , respectively. These values, assumed to be known,
satisfy Eq. (5.1.1) at time i :

müi + cu̇i + ( fS)i = pi (5.1.3)

where ( fS)i is the resisting force at time i ; ( fS)i = kui for a linearly elastic system but
would depend on the prior history of displacement and on the velocity at time i if the
system were nonlinear. The numerical procedures to be presented will enable us to deter-
mine the response quantities ui+1, u̇i+1, and üi+1 at time i + 1 that satisfy Eq. (5.1.1) at

p

t

p0

t0 t1

p1

t2

p2

ti

pi

ti+1

pi+1

Δti

u

tu0

u1

u2

ui
ui+1

t0 t1 t2 ti ti+1

Figure 5.1.1 Notation for time-stepping methods.
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time i + 1:

müi+1 + cu̇i+1 + ( fS)i+1 = pi+1 (5.1.4)

When applied successively with i = 0, 1, 2, 3, . . . , the time-stepping procedure gives the
desired response at all time instants i = 1, 2, 3, . . . . The known initial conditions, u0 =
u(0) and u̇0 = u̇(0), provide the information necessary to start the procedure.

Stepping from time i to i + 1 is usually not an exact procedure. Many approximate
procedures are possible that are implemented numerically. The three important require-
ments for a numerical procedure are (1) convergence—as the time step decreases, the nu-
merical solution should approach the exact solution, (2) stability—the numerical solution
should be stable in the presence of numerical round-off errors, and (3) accuracy—the nu-
merical procedure should provide results that are close enough to the exact solution. These
important issues are discussed briefly in this book; comprehensive treatments are available
in books emphasizing numerical solution of differential equations.

Three types of time-stepping procedures are presented in this chapter: (1) methods
based on interpolation of the excitation function, (2) methods based on finite difference
expressions of velocity and acceleration, and (3) methods based on assumed variation of
acceleration. Only one method is presented in each of the first two categories and two from
the third group.

5.2 METHODS BASED ON INTERPOLATION OF EXCITATION

A highly efficient numerical procedure can be developed for linear systems by interpolating
the excitation over each time interval and developing the exact solution using the methods
of Chapter 4. If the time intervals are short, linear interpolation is satisfactory. Figure 5.2.1
shows that over the time interval ti ≤ t ≤ ti+1, the excitation function is given by

p(τ ) = pi + �pi

�ti
τ (5.2.1a)

t

p

Interpolated: p( )

Actual

pi

pi+1

ti ti+1

Δti

τ

τ

Figure 5.2.1 Notation for linearly
interpolated excitation.
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where

�pi = pi+1 − pi (5.2.1b)

and the time variable τ varies from 0 to �ti . For algebraic simplicity, we first consider
systems without damping; later, the procedure will be extended to include damping. The
equation to be solved is

mü + ku = pi + �pi

�ti
τ (5.2.2)

subject to initial conditions u(0) = ui and u̇(0) = u̇i . The response u(τ ) over the time
interval 0 ≤ τ ≤ �ti is the sum of three parts: (1) free vibration due to initial displacement
ui and velocity u̇i at τ = 0, (2) response to step force pi with zero initial conditions, and
(3) response to ramp force (�pi/�ti )τ with zero initial conditions. Adapting the available
solutions for these three cases from Sections 2.1, 4.3, and 4.4, respectively, gives

u(τ ) = ui cosωnτ + u̇i

ωn
sinωnτ + pi

k
(1− cosωnτ)+ �pi

k

(
τ

�ti
− sinωnτ

ωn �ti

)
(5.2.3a)

and differentiating u(τ ) leads to

u̇(τ )

ωn
= −ui sinωnτ + u̇i

ωn
cosωnτ + pi

k
sinωnτ + �pi

k

1

ωn �ti
(1− cosωnτ) (5.2.3b)

Evaluating these equations at τ = �ti gives the displacement ui+1 and velocity u̇i+1 at
time i + 1:

ui+1 = ui cos(ωn �ti )+ u̇i

ωn
sin(ωn �ti )

+ pi

k
[1− cos(ωn �ti )]+ �pi

k

1

ωn �ti
[ωn �ti − sin(ωn �ti )] (5.2.4a)

u̇i+1

ωn
= −ui sin(ωn �ti )+ u̇i

ωn
cos(ωn �ti )

+ pi

k
sin(ωn �ti )+ �pi

k

1

ωn �ti
[1− cos(ωn �ti )] (5.2.4b)

These equations can be rewritten after substituting Eq. (5.2.1b) as recurrence formulas:

ui+1 = Aui + Bu̇i + Cpi + Dpi+1 (5.2.5a)

u̇i+1 = A′ui + B ′u̇i + C ′ pi + D′ pi+1 (5.2.5b)

Repeating the derivation above for under-critically damped systems (i.e., ζ < 1)
shows that Eqs. (5.2.5) also apply to damped systems with the expressions for the coeffi-
cients A, B, . . . , D′ given in Table 5.2.1. They depend on the system parameters ωn , k,
and ζ , and on the time interval �t ≡ �ti .

Since the recurrence formulas are derived from exact solution of the equation of
motion, the only restriction on the size of the time step �t is that it permit a close approxi-
mation to the excitation function and that it provide response results at closely spaced time
intervals so that the response peaks are not missed. This numerical procedure is especially
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TABLE 5.2.1 COEFFICIENTS IN RECURRENCE FORMULAS (ζ < 1)

A = e−ζωn �t

(
ζ√

1− ζ 2
sinωD �t + cosωD �t

)

B = e−ζωn �t

(
1

ωD
sinωD �t

)

C = 1

k

{
2ζ

ωn �t
+ e−ζωn �t

[(
1− 2ζ 2

ωD �t
− ζ√

1− ζ 2

)
sinωD �t −

(
1+ 2ζ

ωn �t

)
cosωD �t

]}

D = 1

k

[
1− 2ζ

ωn �t
+ e−ζωn �t

(
2ζ 2 − 1

ωD �t
sinωD �t + 2ζ

ωn �t
cosωD �t

)]

A′ = −e−ζωn �t

(
ωn√

1− ζ 2
sinωD �t

)

B′= e−ζωn �t

(
cosωD �t − ζ√

1− ζ 2
sinωD �t

)

C ′= 1

k

{
− 1

�t
+ e−ζωn �t

[(
ωn√

1− ζ 2
+ ζ

�t
√

1− ζ 2

)
sinωD �t + 1

�t
cosωD �t

]}

D′= 1

k�t

[
1− e−ζωn �t

(
ζ√

1− ζ 2
sinωD �t + cosωD �t

)]

useful when the excitation is defined at closely spaced time intervals—as for earthquake
ground acceleration—so that the linear interpolation is essentially perfect. If the time step
�t is constant, the coefficients A, B, . . . , D′ need to be computed only once.

The exact solution of the equation of motion required in this numerical procedure is
feasible only for linear systems. It is conveniently developed for SDF systems, as shown
above, but would be impractical for MDF systems unless their response is obtained by the
superposition of modal responses (Chapters 12 and 13).

Example 5.1

An SDF system has the following properties: m = 45,594 kg, k = 18 kN/cm, Tn = 1 s
(ωn = 6.283 rad/s), and ζ = 0.05. Determine the response u(t) of this system to p(t) defined
by the half-cycle sine pulse force shown in Fig. E5.1 by (a) using piecewise linear interpolation
of p(t) with �t = 0.1 s, and (b) evaluating the theoretical solution.

Solution
1. Initial calculations

e−ζωn �t = 0.9691 ωD = ωn

√
1− ζ 2 = 6.275

sinωD �t = 0.5872 cosωD �t = 0.8095
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t, s

p, kN

0.6

50

25

43.3
50

43.3

25

50 sin ( t / 0.6)

Piecewise linear
interpolation

π

Figure E5.1

Substituting these in Table 5.2.1 gives

A = 0.8129 B = 0.09067 s−1 C = 0.006864 cm/kN D = 0.003529 cm/kN

A′ = −3.5795 s−1 B′ = 0.7559 C ′ = 0.09493 cm/kN-s D′ = 0.1039 cm/kN-s

2. Apply the recurrence equations (5.2.5). The resulting computations are summarized
in Tables E5.1a and E5.1b.

TABLE E5.1a NUMERICAL SOLUTION USING LINEAR INTERPOLATION OF EXCITATION

ti pi Cpi Dpi+1 Bu̇i u̇i Aui ui Theoretical ui
s kN cm cm cm cm/s cm cm cm

0.0 0.0000 0.0000 0.0882 0.0000 0.0000 0.0000 0.0000 0.0000
0.1 25.0000 0.1716 0.1528 0.2356 2.5982 0.0717 0.0882 0.0911
0.2 43.3013 0.2972 0.1764 0.7727 8.5221 0.5135 0.6317 0.6477
0.3 50.0000 0.3432 0.1528 1.2230 13.4884 1.4307 1.7599 1.8021
0.4 43.3013 0.2972 0.0882 1.1918 13.1440 2.5605 3.1497 3.2236
0.5 25.0000 0.1716 0.0000 0.4870 5.3708 3.3636 4.1377 4.2338
0.6 0.0000 0.0000 0.0000 −0.7596 −8.3777 3.2698 4.0222 4.1149
0.7 0.0000 0.0000 0.0000 −1.8797 −20.7311 2.0406 2.5102 2.5681
0.8 0.0000 0.0000 0.0000 −2.2357 −24.6571 0.1308 0.1609 0.1648
0.9 0.0000 0.0000 0.0000 −1.7423 −19.2155 −1.7111 −2.1049 −2.1532
1.0 0.0000 −6.9914 −3.4534 −3.5329

3. Compute the theoretical response. Equation (3.2.5)—valid for t ≤ 0.6 s,
Eq. (2.2.4) modified appropriately—valid for t ≥ 0.6 s, and the derivatives of these two
equations are evaluated for each ti ; the results are given in Tables E5.1a and E5.1b.

4. Check the accuracy of the numerical results. The numerical solution based on
piecewise linear interpolation of the excitation agrees reasonably well with the theoretical
solution. The discrepancy arises because the half-cycle sine curve has been replaced by the
series of straight lines shown in Fig. E5.1. With a smaller �t the piecewise linear approxima-
tion would be closer to the half-cycle sine curve, and the numerical solution would be more
accurate.
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TABLE E5.1b NUMERICAL SOLUTION USING LINEAR INTERPOLATION OF EXCITATION

ti pi C ′ pi D′ pi+1 A′ui ui B′u̇i u̇i Theoretical u̇i
s kN cm/s cm/s cm/s cm cm/s cm/s cm/s

0.0 0.0000 0.0000 2.5982 0.0000 0.0000 0.0000 0.0000 0.0000
0.1 25.0000 2.3734 4.5003 −0.3158 0.0882 1.9642 2.5982 2.6575
0.2 43.3013 4.1109 5.1965 −2.2612 0.6317 6.4423 8.5221 8.7175
0.3 50.0000 4.7468 4.5003 −6.2997 1.7599 10.1966 13.4884 13.7983
0.4 43.3013 4.1109 2.5982 −11.2746 3.1497 9.9363 13.1440 13.4466
0.5 25.0000 2.3734 0.0000 −14.8112 4.1377 4.0601 5.3708 5.4952
0.6 0.0000 0.0000 0.0000 −14.3979 4.0222 −6.3332 −8.3777 −8.5694
0.7 0.0000 0.0000 0.0000 −8.9853 2.5102 −15.6718 −20.7311 −21.2076
0.8 0.0000 0.0000 0.0000 −0.5758 0.1609 −18.6397 −24.6571 −25.2247
0.9 0.0000 0.0000 0.0000 7.5347 −2.1049 −14.5261 −19.2155 −19.6585
1.0 0.0000 −3.4534 −6.9914 −7.1534

5.3 CENTRAL DIFFERENCE METHOD

This method is based on a finite difference approximation of the time derivatives of dis-
placement (i.e., velocity and acceleration). Taking constant time steps, �ti = �t , the
central difference expressions for velocity and acceleration at time i are

u̇i = ui+1 − ui−1

2�t
üi = ui+1 − 2ui + ui−1

(�t)2
(5.3.1)

Substituting these approximate expressions for velocity and acceleration into Eq. (5.1.3),
specialized for linearly elastic systems, gives

m
ui+1 − 2ui + ui−1

(�t)2
+ c

ui+1 − ui−1

2�t
+ kui = pi (5.3.2)

In this equation ui and ui−1 are assumed known (from implementation of the pro-
cedure for the preceding time steps). Transferring these known quantities to the right side
leads to[

m

(�t)2
+ c

2�t

]
ui+1 = pi −

[
m

(�t)2
− c

2�t

]
ui−1 −

[
k − 2m

(�t)2

]
ui (5.3.3)

or

k̂ui+1 = p̂i (5.3.4)

where

k̂ = m

(�t)2
+ c

2�t
(5.3.5)

and

p̂i = pi −
[

m

(�t)2
− c

2�t

]
ui−1 −

[
k − 2m

(�t)2

]
ui (5.3.6)
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TABLE 5.3.1 CENTRAL DIFFERENCE METHOD†

1.0 Initial calculations

1.1 ü0 = p0 − cu̇0 − ku0

m
.

1.2 u−1 = u0 −�t u̇0 + (�t)2

2
ü0.

1.3 k̂ = m

(�t)2
+ c

2�t
.

1.4 a = m

(�t)2
− c

2�t
.

1.5 b = k − 2m

(�t)2
.

2.0 Calculations for time step i

2.1 p̂i = pi − aui−1 − bui .

2.2 ui+1 = p̂i

k̂
.

2.3 If required: u̇i = ui+1 − ui−1

2�t
; üi = ui+1 − 2ui + ui−1

(�t)2
.

3.0 Repetition for the next time step

Replace i by i + 1 and repeat steps 2.1, 2.2, and 2.3 for the next time step.

The unknown ui+1 is then given by

ui+1 = p̂i

k̂
(5.3.7)

The solution ui+1 at time i + 1 is determined from the equilibrium condition, Eq. (5.1.3),
at time i without using the equilibrium condition, Eq. (5.1.4), at time i + 1. Such methods
are called explicit methods.

Observe in Eq. (5.3.6) that known displacements ui and ui−1 are used to compute
ui+1. Thus u0 and u−1 are required to determine u1; the specified initial displacement u0

is known. To determine u−1, we specialize Eq. (5.3.1) for i = 0 to obtain

u̇0 = u1 − u−1

2�t
ü0 = u1 − 2u0 + u−1

(�t)2
(5.3.8)

Solving for u1 from the first equation and substituting in the second gives

u−1 = u0 −�t (u̇0)+ (�t)2

2
ü0 (5.3.9)

† If the excitation is ground acceleration üg(t), according to Eq. (1.7.6), replace pi by −mügi in Ta-
ble 5.3.1. The computed ui , u̇i , and üi give response values relative to the ground. If needed, the total velocity
and acceleration can be computed readily: u̇t

i = u̇i + u̇gi and üt
i = üi + ügi .
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The initial displacement u0 and initial velocity u̇0 are given, and the equation of motion at
time 0 (t0 = 0),

mü0 + cu̇0 + ku0 = p0

provides the acceleration at time 0:

ü0 = p0 − cu̇0 − ku0

m
(5.3.10)

Table 5.3.1 summarizes the above-described procedure as it might be implemented on the
computer.

The central difference method will “blow up,” giving meaningless results, in the
presence of numerical round-off if the time step chosen is not short enough. The specific
requirement for stability is

�t

Tn
<

1

π
(5.3.11)

This is never a constraint for SDF systems because a much smaller time step should be
chosen to obtain results that are accurate. Typically, �t/Tn ≤ 0.1 to define the response
adequately, and in most earthquake response analyses even a shorter time step, typically
�t = 0.01 to 0.02 s, is chosen to define the ground acceleration üg(t) accurately.

Example 5.2

Solve Example 5.1 by the central difference method using �t = 0.1 s.

Solution

1.0 Initial calculations
m = 45,594 kg = 0.45594 kN-s2/cm k = 18 kN/cm c = 0.2865 kN-s/cm

u0 = 0 cm u̇0 = 0 cm/s

1.1 ü0 = p0 − cu̇0 − ku0

m
= 0.

1.2 u−1 = u0 − (�t)u̇0 + (�t)2

2
ü0 = 0.

1.3 k̂ = m

(�t)2
+ c

2�t
= 47.03 kN/cm.

1.4 a = m

(�t)2
− c

2�t
= 44.16 kN/cm.

1.5 b = k − 2m

(�t)2
= −73.19 kN/cm.

2.0 Calculations for each time step

2.1 p̂i = pi − aui−1 − bui = pi − 44.16ui−1 + 73.19ui .

2.2 ui+1 = p̂i

k̂
= p̂i

47.03
.

3.0 Computational steps 2.1 and 2.2 are repeated for i = 0, 1, 2, 3, . . . leading to Table E5.2,
wherein the theoretical result (from Table E5.1a) is also included.
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TABLE E5.2 NUMERICAL SOLUTION BY CENTRAL DIFFERENCE METHOD

ti pi ui−1 ui p̂i ui+1 Theoretical ui+1
s kN cm cm kN cm cm

0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.10 25.0000 0.0000 0.0000 25.0000 0.5316 0.0911
0.20 43.3013 0.0000 0.5316 82.2092 1.7482 0.6477
0.30 50.0000 0.5316 1.7482 154.4666 3.2847 1.8021
0.40 43.3013 1.7482 3.2847 206.4993 4.3911 3.2236
0.50 25.0000 3.2847 4.3911 201.3217 4.2810 4.2338
0.60 0.0000 4.3911 4.2810 119.4009 2.5390 4.1149
0.70 0.0000 4.2810 2.5390 −3.2318 −0.0687 2.5681
0.80 0.0000 2.5390 −0.0687 −117.1569 −2.4913 0.1648
0.90 0.0000 −0.0687 −2.4913 −179.2984 −3.8127 −2.1532
1.00 0.0000 −2.4913 −3.8127 −169.0254 −3.5943 −3.5329

5.4 NEWMARK’S METHOD

5.4.1 Basic Procedure

In 1959, N. M. Newmark developed a family of time-stepping methods based on the fol-
lowing equations:

u̇i+1 = u̇i + [(1− γ )�t] üi + (γ �t)üi+1 (5.4.1a)

ui+1 = ui + (�t)u̇i +
[
(0.5− β)(�t)2

]
üi +

[
β(�t)2

]
üi+1 (5.4.1b)

The parameters β and γ define the variation of acceleration over a time step and determine
the stability and accuracy characteristics of the method. Typical selection for γ is 1

2 , and
1
6 ≤ β ≤ 1

4 is satisfactory from all points of view, including that of accuracy. These
two equations, combined with the equilibrium equation (5.1.4) at the end of the time step,
provide the basis for computing ui+1, u̇i+1, and üi+1 at time i + 1 from the known ui ,
u̇i , and üi at time i . Iteration is required to implement these computations because the
unknown üi+1 appears in the right side of Eq. (5.4.1).

For linear systems it is possible to modify Newmark’s original formulation, however,
to permit solution of Eqs. (5.4.1) and (5.1.4) without iteration. Before describing this
modification, we demonstrate that two special cases of Newmark’s method are the well-
known constant average acceleration and linear acceleration methods.

5.4.2 Special Cases

For these two methods, Table 5.4.1 summarizes the development of the relationship be-
tween responses ui+1, u̇i+1, and üi+1 at time i + 1 to the corresponding quantities at time
i . Equation (5.4.2) describes the assumptions that the variation of acceleration over a
time step is constant, equal to the average acceleration, or varies linearly. Integration
of ü(τ ) gives Eq. (5.4.3) for the variation u̇(τ ) of velocity over the time step in which
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TABLE 5.4.1 AVERAGE ACCELERATION AND LINEAR ACCELERATION METHODS

Constant Average Acceleration Linear Acceleration

t

ü

ti ti+1

üi+1

üi

Δt

t

ü

ti ti+1

üi+1

üi

Δt

τ τ

ü(τ ) = 1

2
(üi+1 + üi ) ü(τ ) = üi + τ

�t
(üi+1 − üi ) (5.4.2)

u̇(τ ) = u̇i + τ2 (üi+1 + üi ) u̇(τ ) = u̇i + üi τ + τ 2

2�t
(üi+1 − üi ) (5.4.3)

u̇i+1 = u̇i + �t

2
(üi+1 + üi ) u̇i+1 = u̇i + �t

2
(üi+1 + üi ) (5.4.4)

u(τ ) = ui + u̇i τ + τ
2

4
(üi+1 + üi ) u(τ ) = ui + u̇i τ + üi

τ 2

2
+ τ 3

6�t
(üi+1 − üi ) (5.4.5)

ui+1 = ui + u̇i �t + (�t)2

4
(üi+1 + üi ) ui+1 = ui + u̇i �t + (�t)2

(
1

6
üi+1 + 1

3
üi

)
(5.4.6)

τ = �t is substituted to obtain Eq. (5.4.4) for the velocity u̇i+1 at time i + 1. Integration
of u̇(τ ) gives Eq. (5.4.5) for the variation u(τ ) of displacement over the time step in which
τ = �t is substituted to obtain Eq. (5.4.6) for the displacement ui+1 at time i+1. Compar-
ing Eqs. (5.4.4) and (5.4.6) with Eq. (5.4.1) demonstrates that Newmark’s equations with
γ = 1

2 and β = 1
4 are the same as those derived assuming constant average acceleration,

and those with γ = 1
2 and β = 1

6 correspond to the assumption of linear variation of
acceleration.

5.4.3 Linear Systems

For linear systems, it is possible to modify Newmark’s original formulation, to permit solu-
tion of Eqs. (5.4.1) and (5.1.4) without iteration. Specialized for linear systems, Eq. (5.1.4)
becomes

müi+1 + cu̇i+1 + kui+1 = pi+1 (5.4.7)

From Eq. (5.4.1b), üi+1 can be expressed in terms of ui+1:

üi+1 = 1

β(�t)2
(ui+1 − ui )− 1

β�t
u̇i −

(
1

2β
− 1

)
üi (5.4.8)
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Substituting Eq. (5.4.8) into Eq. (5.4.1a) gives

u̇i+1 = γ

β�t
(ui+1 − ui )+

(
1− γ

β

)
u̇i +�t

(
1− γ

2β

)
üi (5.4.9)

Next, Eqs. (5.4.8) and (5.4.9) are substituted into the governing equation (5.4.7) at time
i + 1. This substitution gives

k̂ui+1 = p̂i+1 (5.4.10)

where

k̂ = k + γ

β�t
c + 1

β(�t)2
m (5.4.11)

and

p̂i+1 = pi+1 +
[

1

β(�t)2
m + γ

β�t
c

]
ui +

[
1

β�t
m +

(
γ

β
− 1

)
c

]
u̇i

+
[(

1

2β
− 1

)
m +�t

(
γ

2β
− 1

)
c

]
üi (5.4.12)

With k̂ and p̂i+1 known from the system properties m, k, and c, algorithm parameters γ
and β, and the state of the system at time i defined by ui , u̇i , and üi , the displacement at
time i + 1 is computed from

ui+1 = p̂i+1

k̂
(5.4.13)

Once ui+1 is known, the velocity u̇i+1 and acceleration üi+1 can be computed from
Eqs. (5.4.9) and (5.4.8), respectively.

The acceleration can also be obtained from the equation of motion at time i + 1:

üi+1 = pi+1 − cu̇i+1 − kui+1

m
(5.4.14)

rather than by Eq. (5.4.8). Equation (5.4.14) is needed to obtain ü0 to start the time-
stepping computations [see Eq. (5.3.10)].

In Newmark’s method, the solution at time i + 1 is determined from Eq. (5.4.7), the
equilibrium condition at time i + 1. Such methods are called implicit methods. Although
the resisting force is an implicit function of the unknown ui+1, it was easy to calculate for
linear systems.

Table 5.4.2 summarizes the time-stepping solution using Newmark’s method as it
might be implemented on the computer.
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TABLE 5.4.2 NEWMARK’S METHOD: LINEAR SYSTEMS†

Special cases
(1) Constant average acceleration method (γ = 1

2 , β = 1
4 )

(2) Linear acceleration method (γ = 1
2 , β = 1

6 )

1.0 Initial calculations

1.1 ü0 = p0 − cu̇0 − ku0

m
.

1.2 Select �t .

1.3 a1 = 1

β(�t)2
m + γ

β�t
c; a2 = 1

β�t
m +

(
γ

β
− 1

)
c; and

a3 =
(

1

2β
− 1

)
m +�t

(
γ

2β
− 1

)
c.

1.4 k̂ = k + a1.

2.0 Calculations for each time step, i = 0, 1, 2, . . .

2.1 p̂i+1 = pi+1 + a1 ui + a2 u̇i + a3 üi .

2.2 ui+1 = p̂i+1

k̂
.

2.3 u̇i+1 = γ

β�t
(ui+1 − ui )+

(
1− γ

β

)
u̇i +�t

(
1− γ

2β

)
üi .

2.4 üi+1 = 1

β(�t)2
(ui+1 − ui )− 1

β�t
u̇i −

(
1

2β
− 1

)
üi .

3.0 Repetition for the next time step. Replace i by i + 1 and implement steps 2.1 to 2.4 for the
next time step.

Newmark’s method is stable if

�t

Tn
≤ 1

π
√

2

1√
γ − 2β

(5.4.15)

For γ = 1
2 and β = 1

4 this condition becomes

�t

Tn
<∞ (5.4.16a)

This implies that the constant average acceleration method is stable for any �t , no matter
how large; however, it is accurate only if �t is small enough, as discussed at the end of

†If the excitation is ground acceleration üg(t), according to Eq. (1.7.6), replace pi by−mügi in Table 5.4.2.
The computed ui , u̇i , and üi give response values relative to the ground. If needed, the total velocity and accel-
eration can be computed readily: u̇t

i = u̇i + u̇gi and üt
i = üi + ügi .
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Section 5.3. For γ = 1
2 and β = 1

6 , Eq. (5.4.15) indicates that the linear acceleration
method is stable if

�t

Tn
≤ 0.551 (5.4.16b)

However, as in the case of the central difference method, this condition has little signifi-
cance in the analysis of SDF systems because a much shorter time step than 0.551Tn must
be used to obtain an accurate representation of the excitation and response.

Example 5.3

Solve Example 5.1 by the constant average acceleration method using �t = 0.1 s.

Solution

1.0 Initial calculations

m = 0.4559 kN-s2/cm k = 18 kN/cm c = 0.2865 kN-s/cm

u0 = 0 u̇0 = 0 p0 = 0

1.1 ü0 = p0 − cu̇0 − ku0

m
= 0

1.2 �t = 0.1

1.3 a1 = 4

(�t)2
m + 2

�t
c = 188.1055; a2 = 4

�t
m + c = 18.5241; and

a3 = m = 0.4559

1.4 k̂ = k + a1 = 206.1055

2.0 Calculations for each time step, i = 0, 1, 2, . . .

2.1 p̂i+1 = pi+1 + a1ui + a2u̇i + a3üi = pi+1 + 188.1055ui + 18.5241u̇i + 0.4559üi

2.2 ui+1 = p̂i+1

k̂
= p̂i+1

206.1055

2.3 u̇i+1 = 2

�t
(ui+1 − ui )− u̇i

2.4 üi+1 = 4

(�t)2
(ui+1 − ui )− 4

�t
u̇i − üi

3.0 Repetition for the next time step. Steps 2.1 to 2.4 are repeated for successive time steps
and are summarized in Table E5.3, where the theoretical result (from Table E5.1a) is
also included.

Example 5.4

Solve Example 5.1 by the linear acceleration method using �t = 0.1 s.

Solution

1.0 Initial calculations

m = 0.4559 kN-s2/cm k = 18 kN/cm c = 0.2865 kN-s/cm

u0 = 0 cm u̇0 = 0 cm/s p0 = 0 kN
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TABLE E5.3 NUMERICAL SOLUTION BY AVERAGE ACCELERATION METHOD

p̂i üi u̇i ui Theoretical
ti pi (Step 2.1) (Step 2.4) (Step 2.3) (Step 2.2) ui

0.0 0.0000 0.0000 0.0000 0.0000 0.0000
0.1 25.0000 25.0000 48.5188 2.4259 0.1213 0.0911
0.2 43.3013 133.1779 64.3902 8.0714 0.6462 0.6477
0.3 50.0000 350.4201 34.3676 13.0093 1.7002 1.8021
0.4 43.3013 619.7724 −31.9927 13.1280 3.0071 3.2236
0.5 25.0000 819.2431 −106.0050 6.2281 3.9749 4.2338
0.6 0.0000 814.7342 −151.8716 −6.6657 3.9530 4.1149
0.7 0.0000 550.8603 −93.6151 −18.9400 2.6727 2.5681
0.8 0.0000 109.2222 −5.8945 −23.9155 0.5299 0.1648
0.9 0.0000 −346.0168 79.0081 −20.2598 −1.6788 −2.1532
1.0 0.0000 −655.0694 131.5900 −9.7299 −3.1783 −3.5329

1.1 ü0 = p0 − cu̇0 − ku0

m
= 0

1.2 �t = 0.1

1.3 a1 = 6

(�t)2
m + 3

�t
c = 282.1583; a2 = 6

�t
m + 2c = 27.9294; and

a3 = 2m + �t

2
c = 0.9262

1.4 k̂ = k + a1 = 300.1583

2.0 Calculations for each time step, i = 0, 1, 2, . . .

2.1 p̂i+1 = pi+1 + a1 ui + a2 u̇i + a3 üi = pi+1 + 282.1583ui + 27.9294u̇i + 0.9262üi

2.2 ui+1 = p̂i+1

k̂
= p̂i+1

300.1583

2.3 u̇i+1 = 3

�t
(ui+1 − ui )− 2u̇i − �t

2
üi

2.4 üi+1 = 6

(�t)2
(ui+1 − ui )− 6

�t
u̇i − 2üi

3.0 Repetition for the next time step. Steps 2.1 to 2.4 are repeated for successive time steps
and are summarized in Table E5.4, where the theoretical result (from Table E5.1a) is
also included.

Observe that the numerical results obtained by the linear acceleration method are
closer to the theoretical solution (Table E5.4), hence more accurate, than those from the
constant average acceleration method (Table E5.3).
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TABLE E5.4 NUMERICAL SOLUTION BY LINEAR ACCELERATION METHOD

p̂i üi u̇i ui Theoretical
ti pi (Step 2.1) (Step 2.4) (Step 2.3) (Step 2.2) ui

0.0 0.0000 0.0000 0.0000 0.0000 0.0000
0.1 25.0000 25.0000 49.9736 2.4987 0.0833 0.0911
0.2 43.3013 182.8744 65.7141 8.2831 0.6093 0.6477
0.3 50.0000 514.1131 33.7157 13.2546 1.7128 1.8021
0.4 43.3013 928.0028 −35.3623 13.1722 3.0917 3.2236
0.5 25.0000 1232.4913 −110.9537 5.8564 4.1061 4.2338
0.6 0.0000 1219.3816 −155.6844 −7.4755 4.0625 4.1149
0.7 0.0000 793.2768 −91.8632 −19.8528 2.6429 2.5681
0.8 0.0000 106.1440 1.3566 −24.3782 0.3536 0.1648
0.9 0.0000 −579.8317 88.7500 −19.8729 −1.9318 −2.1532
1.0 0.0000 −1017.8955 139.2057 −8.4751 −3.3912 −3.5329

5.5 STABILITY AND COMPUTATIONAL ERROR

5.5.1 Stability

Numerical procedures that lead to bounded solutions if the time step is shorter than some
stability limit are called conditionally stable procedures. Procedures that lead to bounded
solutions regardless of the time-step length are called unconditionally stable procedures.
The average acceleration method is unconditionally stable. The linear acceleration method
is stable if �t/Tn < 0.551, and the central difference method is stable if �t/Tn < 1/π .
Obviously, the latter two methods are conditionally stable.

The stability criteria are not restrictive (i.e., they do not dictate the choice of time
step) in the analysis of SDF systems because �t/Tn must be considerably smaller than
the stability limit (say, 0.1 or less) to ensure adequate accuracy in the numerical results.
Stability of the numerical method is important, however, in the analysis of MDF systems,
where it is often necessary to use unconditionally stable methods (Chapter 16).

5.5.2 Computational Error

Error is inherent in any numerical solution of the equation of motion. We do not discuss
error analysis from a mathematical point of view. Rather, we examine two important char-
acteristics of numerical solutions to develop a feel for the nature of the errors, and then
mention a simple, useful way of managing error.

Consider the free vibration problem

mü + ku = 0 u(0) = 1 and u̇(0) = 0
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Figure 5.5.1 Free vibration solution by four numerical methods (�t/Tn = 0.1) and the theoretical
solution.

for which the theoretical solution is

u(t) = cosωnt (5.5.1)

This problem is solved by four numerical methods: central difference method, av-
erage acceleration method, linear acceleration method, and Wilson’s method. The last of
these methods is available elsewhere; see the references at the end of the chapter. The
numerical results obtained using �t = 0.1Tn are compared with the theoretical solution
in Fig. 5.5.1. This comparison shows that some numerical methods may predict that the
displacement amplitude decays with time, although the system is undamped, and that the
natural period is elongated or shortened.

Figure 5.5.2 shows the amplitude decay AD and period elongation PE in the four
numerical methods as a function of �t/Tn; AD and PE are defined in part (b) of the fig-
ure. The mathematical analyses that led to these data are not presented, however. Three
of the methods predict no decay of displacement amplitude. Wilson’s method contains
decay of amplitude, however, implying that this method introduces numerical damping
in the system; the equivalent viscous damping ratio ζ̄ is shown in part (a) of the fig-
ure. Observe the rapid increase in the period error in the central difference method near
�t/Tn = 1/π , the stability limit for the method. The central difference method intro-
duces the largest period error. In this sense it is the least accurate of the methods con-
sidered. For �t/Tn less than its stability limit, the linear acceleration method gives the
least period elongation. This property, combined with no amplitude decay, makes this
method the most suitable method (of the methods presented) for SDF systems. However,
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Figure 5.5.2 (a) Amplitude decay versus �t/Tn ; (b) definition of AD and PE; (c) period elongation
versus �t/Tn .

we shall arrive at a different conclusion for MDF systems because of stability requirements
(Chapter 16).

The choice of time step also depends on the time variation of the dynamic excita-
tion, in addition to the natural vibration period of the system. Figure 5.5.2 suggests that
�t = 0.1Tn would give reasonably accurate results. The time step should also be short
enough to keep the distortion of the excitation function to a minimum. A very fine time
step is necessary to describe numerically the highly irregular earthquake ground acceler-
ation recorded during earthquakes; typically, �t = 0.02 s and the time step chosen for
computing structural response should not be longer.

One useful, although unsophisticated technique for selecting the time step is to solve
the problem with a time step that seems reasonable, then repeat the solution with a slightly
smaller time step and compare the results, continuing the process until two successive
solutions are close enough.
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The preceding discussion of stability and accuracy applies strictly to linear systems.
The reader should consult other references for how these issues affect nonlinear response
analysis.

5.6 NONLINEAR SYSTEMS: CENTRAL DIFFERENCE METHOD

The dynamic response of a system beyond its linearly elastic range is generally not amen-
able to analytical solution even if the time variation of the excitation is described by a
simple function. Numerical methods are therefore essential in the analysis of nonlinear
systems. The central difference method can easily be adapted for solving the nonlinear
equation of motion, Eq. (5.1.3), at time i . Substituting Eqs. (5.3.1), the central difference
approximation for velocity and acceleration, gives Eq. (5.3.2) with kui replaced by ( fS)i ,
which can be rewritten to obtain the following expression for response at time i + 1:

k̂ui+1 = p̂i (5.6.1)

where

k̂ = m

(�t)2
+ c

2�t
(5.6.2)

and

p̂i = pi −
[

m

(�t)2
− c

2�t

]
ui−1 + 2m

(�t)2
ui − ( fS)i (5.6.3)

Comparing these equations with those for linear systems, it is seen that the only difference
is in the definition for p̂i . With this modification Table 5.3.1 also applies to nonlinear
systems.

The resisting force ( fS)i appears explicitly, as it depends only on the response at
time i , not on the unknown response at time i + 1. Thus it is easily calculated, making the
central difference method perhaps the simplest procedure for nonlinear systems.

5.7 NONLINEAR SYSTEMS: NEWMARK’S METHOD

In this section, Newmark’s method described earlier for linear systems is extended to non-
linear systems. Recall that this method determines the solution at time i + 1 from the
equilibrium condition at time i + 1, i.e., Eq. (5.1.4) for nonlinear systems. Because the
resisting force ( fS)i+1 is an implicit nonlinear function of the unknown ui+1, iteration is
required in this method. This requirement is typical of implicit methods. It is instructive
first to develop the Newton–Raphson method of iteration for static analysis of a nonlinear
SDF system.
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5.7.1 Newton–Raphson Iteration

Dropping the inertia and damping terms in the equation of motion [Eq. (5.1.1)] gives the
nonlinear equation to be solved in a static problem:

fS (u) = p (5.7.1)

The task is to determine the deformation u due to a given external force p, where the
nonlinear force–deformation relation fS(u) is defined for the system to be analyzed.

Suppose that after j cycles of iteration, u( j) is an estimate of the unknown displace-
ment and we are interested in developing an iterative procedure that provides an improved
estimate u( j+1). For this purpose, expanding the resisting force f ( j+1)

S in Taylor series
about the known estimate u( j) gives

f ( j+1)
S = f ( j)

S +
∂ fS

∂u

∣∣∣∣
u( j)

(
u( j+1) − u( j)

)+ 1

2

∂2 fS

∂u2

∣∣∣∣
u( j)

(
u( j+1) − u( j)

)2 + · · · (5.7.2)

If u( j) is close to the solution, the change in u, �u( j) = u( j+1) − u( j), will be small and
the second- and higher-order terms can be neglected, leading to the linearized equation

f ( j+1)
S � f ( j)

S + k( j)
T �u( j) = p (5.7.3)

or

k( j)
T �u( j) = p − f ( j)

S = R( j) (5.7.4)

where k( j)
T = ∂ fS

∂u

∣∣∣∣
u( j)

is the tangent stiffness at u( j). Solving the linearized equation

(5.7.4) gives �u( j) and an improved estimate of the displacement:

u( j+1) = u( j) +�u( j) (5.7.5)

The iterative procedure is described next with reference to Fig. 5.7.1. Associated
with u( j) is the force f ( j)

S , which is not equal to the applied force p, and a residual force
is defined: R( j) = p − f ( j)

S . The additional displacement due to this residual force is
determined from Eq. (5.7.4), leading to u( j+1). This new estimate of the solution is used
to find a new value of the residual force R( j+1) = p− f ( j+1)

S . The additional displacement
�u( j+1) due to this residual force is determined by solving

k( j+1)
T �u( j+1) = R( j+1) (5.7.6)

This additional displacement is used to find a new value of the displacement:

u( j+2) = u( j+1) +�u( j+1) (5.7.7)

and a new value of the residual force R( j+2), and the process is continued until convergence
is achieved. This iterative process is known as the Newton–Raphson method.

Convergence rate. It can be proven that near the end of the iteration process the
Newton–Raphson algorithm converges with quadratic rate to the exact solution u, that is,∣∣ u − u( j+1)

∣∣ ≤ c
∣∣u − u( j)

∣∣2, where c is a constant that depends on the second derivative



Sec. 5.7 Nonlinear Systems: Newmark’s Method 185

k
T
(1)

1

k
T
(2)

1
R(1)

R(2)

R(3) R(4)

Δu(1) Δu(2) Δu(3)

u

u(1) u(2) u(3) u(4)

f
S

f
S
  (1)

p

(a)

1

k
T
(1)

Δu(1) Δu(2) Δu(3)

u

u(1) u(2) u(3) u(4)

R

p

R(1)

R(2)

R(3)

R(4)

(b)

Figure 5.7.1 Newton–Raphson iteration: (a) applied and resisting forces; (b) residual force.

of the resisting force or the change in tangent stiffness. This result implies that near the
solution the error in the ( j + 1)th iterate (equal to the difference between u and u( j+1)) is
less than the square of the error in the previous iterate u( j).

Convergence criteria. After each iteration the solution is checked and the iter-
ative process is terminated when some measure of the error in the solution is less than a
specified tolerance. Typically, one or more of the following convergence (or acceptance)
criteria are enforced:

1. Residual force is less than a tolerance:∣∣R( j)
∣∣ ≤ εR (5.7.8a)

Conventional values for the tolerance εR range from 10−3 to 10−8.

2. Change in displacement is less than a tolerance:∣∣�u( j)
∣∣ ≤ εu (5.7.8b)

Conventional values for the tolerance εu range from 10−3 to 10−8.

3. Incremental work done by the residual force acting through the change in displace-
ment is less than a tolerance:

1
2

∣∣�u( j)R( j)
∣∣ ≤ εw (5.7.8c)

Tolerance εw must be at or near the computer (machine) tolerance because the left
side is a product of small quantities.

Modified Newton–Raphson iteration. To avoid computation of the tangent
stiffness for each iteration, the initial stiffness at the beginning of a time step may be used
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Figure 5.7.2 Modified Newton–Raphson iteration: (a) applied and resisting forces; (b) residual
force.

as the constant stiffness for all iterations within the time step. This modified Newton–
Raphson iteration is illustrated in Fig. 5.7.2, where it can be seen that convergence is now
slower. At each iteration the residual force R( j) is now larger, as seen by comparing Figs.
5.7.1 and 5.7.2, and more iterations will be required to achieve convergence.

5.7.2 Newmark’s Method

We have now developed Newton–Raphson iteration to solve a nonlinear equilibrium equa-
tion [e.g., Eq. (5.7.1)] that governs the static problem. In dynamic analysis the goal is to
determine response quantities ui+1, u̇i+1 and üi+1 at time i + 1 that satisfy Eq. (5.1.4),
which can be written as

( f̂ S) i+1 = pi+1 (5.7.9)

where

( f̂ S)i+1 = müi+1 + cu̇i+1 + ( fS)i+1 (5.7.10)

By including the inertia and damping forces in defining the “resisting force” f̂ S , the dy-
namic analysis equation (5.7.9) is of the same form as the static analysis equation (5.7.1).

Thus, we can adapt the Taylor series expansion of Eq. (5.7.2) to Eq. (5.7.9), interpret
( f̂s)i+1 as a function of ui+1, and drop the second- and higher-order terms to obtain an
equation analogous to Eq. (5.7.3):

( f̂ S)
( j+1)
i+1 � ( f̂ S)

( j)
i+1 +

∂ f̂ S

∂ui+1
�u( j) = pi+1 (5.7.11)
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where

�u( j) = u( j+1)
i+1 − u( j)

i+1 (5.7.12)

Differentiating Eq. (5.7.10) at the known displacement u( j)
i+1 gives

∂ f̂ S

∂ui+1
= m

∂ ü

∂ui+1
+ c

∂ u̇

∂ui+1
+ ∂ fS

∂ui+1

where the derivatives in inertia and damping terms on the right side can be determined
from Eqs. (5.4.8) and (5.4.9), respectively, which were derived from Newmark’s equa-
tion (5.4.1):

∂ ü

∂ui+1
= 1

β(�t)2
∂ u̇

∂ui+1
= γ

β�t

Putting together the preceding two equations and recalling the definition of tangent stiff-
ness (Section 5.7.1) gives

(k̂T )
( j)
i+1 ≡

∂ f̂ S

∂ui+1
= (kT )

( j)
i+1 +

γ

β�t
c + 1

β(�t)2
m (5.7.13)

With the preceding definition of (k̂T )
( j)
i+1, Eq. (5.7.11) can be written as

(k̂T )
( j)
i+1�u( j) = pi+1 − ( f̂ S)

( j)
i+1 ≡ R̂( j)

i+1 (5.7.14)

Substituting Eqs. (5.4.8) and (5.4.9) in Eq. (5.7.10) and then combining it with the right
side of Eq. (5.7.14) leads to the following expression for the residual force:

R̂( j)
i+1 = pi+1 − ( fS)

( j)
i+1 −

[
1

β(�t)2
m + γ

β�t
c

] (
u( j)

i+1 − ui

)
+
[

1

β�t
m +

(
γ

β
− 1

)
c

]
u̇i

+
[(

1

2β
− 1

)
m +�t

(
γ

2β
− 1

)
c

]
üi (5.7.15)

Note that the linearized equation (5.7.14) for the jth iteration in dynamic analysis is similar
in form to the corresponding equation (5.7.4) in static analysis. However, there is an im-
portant difference in the two equations in that damping and inertia terms are now included
in both the tangent stiffness k̂T (Eq. 5.7.13) and the residual force R̂ (Eq. 5.7.15). The first,
fourth, and fifth terms on the right side of Eq. (5.7.15) do not change from one iteration
to the next. The second and third terms need to be updated with every new estimate of
displacement u( j)

i+1 during iteration.
Equation (5.7.14) provides the basis for the Newton–Raphson iteration method, sum-

marized in step 3.0 of Table 5.7.1. Once ui+1 is determined, the rest of the computation
proceeds as for linear systems; in particular, üi+1 and u̇i+1 are determined from Eqs. (5.4.8)
and (5.4.9), respectively. Table 5.7.1 summarizes Newmark’s algorithm as it might be im-
plemented on the computer.
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TABLE 5.7.1 NEWMARK’S METHOD: NONLINEAR SYSTEMS

Special cases
(1) Average acceleration method (γ = 1

2 , β = 1
4 )

(2) Linear acceleration method (γ = 1
2 , β = 1

6 )

1.0 Initial calculations
1.1 State determination: ( fS)0 and (kT )0.

1.2 ü0 = p0 − cu̇0 − ( fS)0

m
.

1.3 Select �t .

1.4 a1 = 1

β(�t)2
m + γ

β�t
c; a2 = 1

β�t
m +

(
γ

β
− 1

)
c; and

a3 =
(

1

2β
− 1

)
m +�t

(
γ

2β
− 1

)
c.

2.0 Calculations for each time instant, i = 0, 1, 2, . . .

2.1 Initialize j = 1, u( j)
i+1 = ui , ( fS)

( j)
i+1 = ( fS)i , and (kT )

( j)
i+1 = (kT )i .

2.2 p̂i+1 = pi+1 + a1 ui + a2 u̇i + a3 üi .

3.0 For each iteration, j = 1, 2, 3 . . .

3.1 R̂( j)
i+1 = p̂i+1 − ( fS)

( j)
i+1 − a1 u( j)

i+1.

3.2 Check convergence; If the acceptance criteria are not met, implement steps 3.3 to
3.7; otherwise, skip these steps and go to step 4.0.

3.3 (k̂T )
( j)
i+1 = (kT )

( j)
i+1 + a1.

3.4 �u( j) = R̂( j)
i+1 ÷ (k̂T )

( j)
i+1.

3.5 u( j+1)
i+1 = u( j)

i+1 +�u( j).

3.6 State determination: ( fS)
( j+1)
i+1 and (kT )

( j+1)
i+1 .

Replace j by j + 1 and repeat steps 3.1 to 3.6; denote final value as ui+1.

4.0 Calculations for velocity and acceleration

4.1 u̇i+1 = γ

β�t
(ui+1 − ui )+

(
1− γ

β

)
u̇i +�t

(
1− γ

2β

)
üi .

4.2 üi+1 = 1

β(�t)2
(ui+1 − ui )− 1

β�t
u̇i −

(
1

2β
− 1

)
üi .

5.0 Repetition for next time step. Replace i by i + 1 and implement steps 2.0 to 4.0 for the
next time step.

Example 5.5

An SDF system has the same properties as in Example 5.1, except that the restoring force–
deformation relation is elastoplastic with yield deformation uy = 2 cm and yield force fy =
36 kN (Fig. E5.5). Determine the response u(t) of this system (starting from rest) to the
half-cycle sine pulse force in Fig. E5.1 using the constant average acceleration method with
�t = 0.1 s and Newton–Raphson iteration.
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Solution

1.0 Initial calculations

m = 0.4559 kN-s2/cm k = 18 kN/cm c = 0.2865 kN-s/cm

u0 = 0 cm u̇0 = 0 cm/s p0 = 0 kN

1.1 State determination: ( fS)0 = 0 and (kT )0 = k = 18

1.2 ü0 = p0 − cu̇0 − ( fS)0

m
= 0

1.3 �t = 0.1

1.4 a1 = 4

(�t)2
m + 2

�t
c = 188.1060; a2 = 4

�t
m + c = 18.5241; and

a3 = m = 0.4559

As an example, the calculations of steps 2.0, 3.0, and 4.0 in Table 5.7.1 are implemented as
follows for the time step that begins at 0.3 s and ends at 0.4 s.

2.0 Calculations for i = 3

2.1 Initialize j = 1

u(1)i+1= u(1)i = 1.7002, ( fS)
(1)
i+1= ( fS)

(1)
i = 30.6034, and (kT )

(1)
i+1= (kT )

(1)
i =18

2.2 p̂i+1 = pi+1 + 188.1060ui + 18.5241u̇i + 0.4559üi = 619.7710

3.0 First iteration, j = 1

3.1 R̂(1)i+1 = p̂i+1 − ( fS)
(1)
i+1 − 188.1060u(1)i+1

= 619.7710− 30.6034− 319.8162 = 269.3514

3.2 Check of convergence: Because
∣∣∣R̂(1)i+1

∣∣∣ = 269.3514 exceeds εR = 10−3, chosen

for this example, implement steps 3.3 to 3.7.
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3.3 (k̂T )
(1)
i+1 = (kT )

(1)
i+1 + a1 = 18+ 188.1060 = 206.1060

3.4 �u(1) = R̂(1)i+1 ÷ (k̂T )
(1)
i+1 = 269.3514÷ 206.1060 = 1.3069

3.5 u(2)i+1 = u(1)i+1 +�u(1) = 1.7002+ 1.3069 = 3.0070

3.6 State determination: ( fS)
(2)
i+1 and (kT )

(2)
i+1

( fS)
(2)
i+1 = ( fS)i + k(u(2)i+1 − ui ) = 30.6034+ (18× 1.3069) = 54.1269

Because ( fS)
(2)
i+1 > kuy , ( fS)

(2)
i+1 = kuy = 36 and (kT )

(2)
i+1 = 0

3.0 Second iteration, j = 2

3.1 R̂(2)i+1 = p̂i+1 − ( fS)
(2)
i+1 − 188.1060u(2)i+1

= 619.7710− 36− 565.6441 = 18.1269

3.2 Check of convergence: Because
∣∣∣R̂(2)i+1

∣∣∣ = 18.1269 exceeds εR , implement steps

3.3 to 3.7.

3.3 (k̂T )
(2)
i+1 = (kT )

(2)
i+1 + a1 = 0+ 188.1060 = 188.1060

3.4 �u(2) = R̂(2)i+1 ÷ (k̂T )
(2)
i+1 = 18.1269÷ 188.1060 = 0.0964

3.5 u(3)i+1 = u(2)i+1 +�u(2) = 3.0070+ 0.0964 = 3.1034

3.6 State determination: ( fS)
(3)
i+1 and (kT )

(3)
i+1

( fS)
(3)
i+1 = ( fS)i + k(u(3)i+1 − ui ) = 30.6034+ (18× 1.4032) = 55.8615

Because ( fS)
(3)
i+1 > kuy , ( fS)

(3)
i+1 = kuy = 36 and (kT )

(3)
i+1 = 0

3.0 Third iteration, j = 3

3.1 R̂(3)i+1 = p̂i+1 − ( fS)
(3)
i+1 − 188.1060u(3)i+1

= 619.7710− 36− 583.7710 = 0

3.2 Check of convergence: Because
∣∣∣R̂(3)i+1

∣∣∣ = 0 is less than εR , skip steps 3.3 to 3.7;

set u4 = u(3)4 = 3.1034.

4.0 Calculations velocity and acceleration

4.1 u̇i+1 = 2

�t
(ui+1 − ui )− u̇i = 2

0.1
(3.1034− 1.7002)− 13.0092 = 15.0553.

4.2 üi+1 = 4

(�t)2
(ui+1 − ui )− 4

�t
u̇i − üi

= 4

(0.1)2
(3.1034− 1.7002)− 4

0.1
13.0092− 34.3673 = 6.5534.

The calculations during the time step 0.3 to 0.4 s are shown in Table E5.5.

5.0 Repetition for next time step. After replacing i by i + 1, steps 2.0 to 4.0 are repeated
for successive time steps and are summarized in Table E5.5.
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TABLE E5.5 NUMERICAL SOLUTION BY CONSTANT AVERAGE ACCELERATION METHOD WITH
NEWTON–RAPHSON ITERATION

R̂i or (kT )i or (k̂T )i or ui or

ti pi R̂( j)
i (kT )

( j)
i (k̂T )

( j)
i �u( j) u( j+1)

i ( fS)
( j+1)
i u̇i üi

0.0 0.0000 18 0.0000 0.0000 0.0000
0.1 25.0000 25.0000 18 206.1060 0.1213 0.1213 2.1833 2.4259 48.5187
0.2 43.3013 108.1778 18 206.1060 0.5249 0.6462 11.6309 8.0714 64.3899
0.3 50.0000 217.2418 18 206.1060 1.0540 1.7002 30.6034 13.0092 34.3673
0.4 43.3013 269.3514 18 206.1060 1.3069 3.0070 36.0000

18.1269 0 188.1060 0.0964 3.1034 36.0000 15.0553 6.5534
0.5 25.0000 270.8730 0 188.1060 1.4400 4.5434 36.0000 13.7448 −32.7628
0.6 0.0000 203.6718 0 188.1060 1.0828 5.6262 36.0000 7.9102 −83.9283
0.7 0.0000 72.2635 0 188.1060 0.3842 6.0103 36.0000 −0.2269 −78.8151
0.8 0.0000 −76.1390 0 188.1060 −0.4048 5.6056 28.7142

7.2858 18 206.1060 0.0353 5.6409 29.3505 −7.1614 −59.8736
0.9 0.0000 −189.3075 18 206.1060 −0.9185 4.7224 12.8176 −11.2085 −21.0693
1.0 0.0000 −230.0518 18 206.1060 −1.1162 3.6062 −7.2737 −11.1151 22.9376

During the next three time steps (after 0.4 s), the system is on the yielding branch
ab. In other words, the stiffness ki = 0 remains constant, and no iteration is necessary.
Between 0.6 and 0.7 s the velocity changes sign from positive to negative, implying that
the deformation begins to decrease, the system begins to unload along the branch bc, and
the stiffness ki = 18. However, we have ignored this change during the time step, implying
that the system stays on the branch ab and no iteration is necessary.

The computation for the time step starting at 0.6 s can be more accurate by finding,
by a process of iteration, the time step at which u̇ = 0. Then the calculations can be carried
out with stiffness ki = 0 over the first part of the time step and with ki = 18 over the second
part of the time step. Alternatively, a smaller time step can be used for improved accuracy.

Note that the solution over a time step is not exact because equilibrium is satisfied
only at the beginning and end of the time step, not at all time instants within the time step.
This implies that the energy balance equation (Chapter 7) is violated. The discrepancy in
energy balance, usually calculated at the end of the excitations, is an indication of the error
in the numerical solution.

Example 5.6

Repeat Example 5.5 using modified Newton–Raphson iteration within each time step of�t =
0.1 s.

Solution The procedure of Table 5.7.1 is modified to use the initial stiffness at the beginning
of a time step as the constant stiffness for all iterations within the time step. The computations
in steps 1.0 to 2.0 are identical to those presented in Example 5.5, but steps for 3.0 are now
different. To illustrate these differences, step 3.0 in the modified Table 5.7.1 is implemented
for the time step that begins at 0.3 s and ends at 0.4 s.
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3.0 First iteration, j = 1

3.1 R̂(1)i+1 = p̂i+1 − ( fS)
(1)
i+1 − 104.5 u(1)i+1

= 619.7710− 30.6034− 319.8162 = 269.3514

3.2 Check of convergence: Because
∣∣∣R̂(1)i+1

∣∣∣ = 269.3514 exceeds εR , implement steps

3.3 to 3.7.

3.3 (k̂T )i+1 = (kT )i+1 + a1 = 18+ 188.1060 = 206.1060

3.4 �u(1) = R̂(1)i+1 ÷ (k̂T )i+1 = 269.3514÷ 206.1060 = 1.3069

3.5 u(2)i+1 = u(1)i+1 +�u(1) = 1.7002+ 1.3069 = 3.0070

3.6 State determination: ( fS)
(2)
i+1

( fS)
(2)
i+1 = ( fS)i + k

(
u(2)i+1 − ui

)
= 30.6034+ (18× 1.3069) = 54.1269

Because ( fS)
(2)
i+1 > kuy , ( fS)

(2)
i+1 = kuy = 36

3.0 Second iteration j = 2

3.1 R̂(2)i+1 = p̂i+1 − ( fS)
(2)
i+1 − 104.5u(2)i+1

= 619.7710− 36− 565.6441 = 18.1269

3.2 Check of convergence: Because
∣∣∣R̂(2)i+1

∣∣∣ = 18.1269 exceeds εR , implement steps

3.3 to 3.7.

3.3 (k̂T )i+1 = 206.1060

3.4 �u(2) = R̂(2)i+1 ÷ (k̂T )i+1 = 18.1269÷ 206.1060 = 0.0879

3.5 u(3)i+1 = u(2)i+1 +�u(2) = 3.0070+ 0.0879 = 3.0950

3.6 State determination: evaluate ( fS)
(3)
i+1

( fS)
(3)
i+1 = ( fS)i + k(u(3)i+1 − ui ) = 30.6034+ (18× 1.3948) = 55.7100

Because ( fS)
(3)
i+1 > kuy , ( fS)

(3)
i+1 = kuy = 36

3.0 Third iteration, j = 3

3.1 R̂(3)i+1 = p̂i+1 − ( fS)
(3)
i+1 − 104.5u(3)i+1

= 619.7710− 36− 582.1879 = 1.5831

3.2 Check of convergence: Because
∣∣∣R̂(3)i+1

∣∣∣ = 1.5831 exceeds εR , implement steps 3.3

to 3.7.

3.3 (k̂T )i+1 = 206.1060

3.4 �u(3) = R̂(3)i+1 ÷ (k̂T )i+1 = 1.5831÷ 206.1060 = 7.681E − 3
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3.5 u(4)i+1 = u(3)i+1 +�u(3) = 3.0950+ 7.681E − 3 = 3.1027

3.6 State determination: ( fS)
(4)
i+1

( fS)
(4)
i+1 = ( fS)i + k(u(4)i+1 − ui ) = 30.6034+ (18× 1.4025) = 55.8482

Because ( fS)
(4)
i+1 > kuy , ( fS)

(4)
i+1 = kuy = 36

These calculations and those for additional iterations during the time step 0.3 to 0.4 s are
shown in Table E5.6.

TABLE E5.6 NUMERICAL SOLUTION BY CONSTANT AVERAGE ACCELERATION METHOD
WITH MODIFIED NEWTON–RAPHSON ITERATION

R̂i or (kT )i or (k̂T )i or ui or

ti pi R̂( j)
i (kT )

( j)
i (k̂T )

( j)
i �u( j) u( j+1)

i ( fS)
( j+1)
i u̇i üi

0.0 0.0000 18 0.0000 0.0000 0.0000
0.1 25.0000 25.0000 18 206.1060 0.1213 0.1213 2.1833 2.4259 45.5187
0.2 43.3013 108.1778 18 206.1060 0.5249 0.6462 11.6309 8.0714 64.3899
0.3 50.0000 217.2418 18 206.1060 1.0540 1.7002 30.6034 13.0092 34.3673
0.4 43.3013 269.3514 18 206.1060 1.3069 3.0070 36.0000

18.1269 8.795E-02 3.0950 36.0000
1.5831 7.681E-03 3.1027 36.0000
0.1383 6.708E-04 3.1034 36.0000
1.207E-02 5.858E-05 3.1034 36.0000
1.055E-03 5.116E-06 3.1034 36.0000 15.0552 6.5532

0.5 25.0000 270.8727 0 188.1060 1.4400 4.5434 36.0000 13.7448 −32.7628
0.6 0.0000 203.6715 0 188.1060 1.0827 5.6262 36.0000 7.9102 −83.9283
0.7 0.0000 72.2632 0 188.1060 0.3842 6.0103 36.0000 −0.2270 −78.8151
0.8 0.0000 −76.1393 0 188.1060 −0.4048 5.6056 28.7142

7.2858 3.873E-02 5.6443 29.4114
−0.6972 −3.706E-03 5.6406 29.3446

6.671E-02 3.547E-04 5.6409 29.3510
−6.384E-03 −3.394E-05 5.6409 29.3504 −7.1615 −59.8747

0.9 0.0000 −189.3093 18 206.1060 −0.9185 4.7224 12.8173 −11.2086 −21.0687
1.0 0.0000 −230.0532 18 206.1060 −1.1162 3.6062 −7.2741−11.1151 22.9384

The original Newton–Raphson iteration converges more rapidly than the modified
Newton–Raphson iteration, as is apparent by comparing Tables E5.5 and E5.6 that summa-
rize results from the two methods, respectively. Observe the following: (1) The results of
the first iteration are identical in the two cases because both use the initial tangent stiffness.
Consequently, the resisting force ( fS)

(2)
i+1 and the residual force R̂(2)i+1 are identical. (2) By

using the current tangent stiffness (kT )
(2)
i+1 and the associated value of (k̂T )

(2)
i+1

from Eq. (5.7.13) in the second iteration, the original Newton–Raphson method leads to a
smaller residual force R̂(3)i+1 = 0 (Example 5.5) compared to R̂(3)i+1 = 1.5831 from the modified
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Newton–Raphson method (Example 5.6). (3) Because at each iteration the residual force R̂( j)
i+1

is now smaller, convergence is achieved in fewer iterations; for this time step of this example,
two iterations are required in the original Newton–Raphson method (Example 5.5) compared
to five iterations in the modified Newton–Raphson method (Example 5.6).
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P R O B L E M S

5.1 In Section 5.2 we developed recurrence formulas for numerical solution of the equation of
motion of a linear SDF system based on linear interpolation of the forcing function p(t) over
each time step. Develop a similar procedure using a piecewise-constant representation of the
forcing function wherein the value of the force in the interval ti to ti+1 is a constant equal to
p̃i (Fig. P5.1). Show that the recurrence formulas for the response of an undamped system
are

ui+1 = ui cos(ωn �ti )+ u̇i
sin(ωn �ti )

ωn
+ p̃i

k
[1− cos(ωn �ti )]

u̇i+1 = ui [−ωn sin(ωn �ti )]+ u̇i cos(ωn �ti )+ p̃i

k
ωn sin(ωn �ti )

Specialize the recurrence formulas for the following definition of the piecewise-constant force:
p̃i = (pi + pi+1)/2. Write the recurrence formulas in the following form:

ui+1 = Aui + Bu̇i + Cpi + Dpi+1

u̇i+1 = A′ui + B′u̇i + C ′ pi + D′ pi+1

with equations for the constants A, B, C , . . . , D′.
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∗5.2 Solve Example 5.1 using the piecewise-constant approximation of the forcing function;
neglect damping in the SDF system.

∗5.3 Solve the problem in Example 5.1 by the central difference method, implemented by a
computer program in a language of your choice, using �t = 0.1 s. Note that this problem
was solved as Example 5.2 and that the results were presented in Table E5.2.

∗5.4 Repeat Problem 5.3 using �t = 0.05 s. How does the time step affect the accuracy of the
solution?

∗5.5 An SDF system has the same mass and stiffness as in Example 5.1, but the damping ratio
is ζ = 20%. Determine the response of this system to the excitation of Example 5.1 by
the central difference method using �t = 0.05 s. Plot the response as a function of time,
compare with the solution of Problem 5.3, and comment on how damping affects the peak
response.

∗5.6 Solve the problem in Example 5.1 by the central difference method using �t = 1
3 s. Carry

out your solution to 2 s, and comment on what happens to the solution and why.
∗5.7 Solve the problem in Example 5.1 by the constant average acceleration method, imple-

mented by a computer program in a language of your choice, using �t = 0.1 s. Note
that this problem was solved as Example 5.3, and the results are presented in Table E5.3.
Compare these results with those of Example 5.2, and comment on the relative accuracy of
the constant average acceleration and central difference methods.

∗5.8 Repeat Problem 5.7 using �t = 0.05 s. How does the time step affect the accuracy of the
solution?

∗5.9 Solve the problem in Example 5.1 by the constant average acceleration method using�t =
1
3 s. Carry out the solution to 2 s, and comment on the accuracy and stability of the solution.

∗5.10 Solve the problem of Example 5.1 by the linear acceleration method, implemented by a
computer program in a language of your choice, using �t = 0.1 s. Note that this problem
was solved as Example 5.4 and that the results are presented in Table E5.4. Compare with
the solution of Example 5.3, and comment on the relative accuracy of the constant average
acceleration and linear acceleration methods.

∗5.11 Repeat Problem 5.10 using �t = 0.05 s. How does the time step affect the accuracy of the
solution?

*Denotes that a computer is necessary to solve this problem.
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∗5.12 Solve the problem of Example 5.5 by the central difference method, implemented by a
computer program in a language of your choice, using �t = 0.05 s.

∗5.13 Solve Example 5.5 by the constant average acceleration method with Newton–Raphson
iteration, implemented by a computer program in a language of your choice. Note that this
problem was solved as Example 5.5 and the results were presented in Table E5.5.

∗5.14 Solve Example 5.6 by the constant average acceleration method with modified Newton–
Raphson iteration, implemented by a computer program in a language of your choice. Note
that this problem was solved as Example 5.6 and the results were presented in Table E5.6.

∗5.15 Solve Example 5.5 by the linear acceleration method with Newton–Raphson iteration using
�t = 0.1 s.

∗5.16 Solve Example 5.5 by the linear acceleration method with modified Newton–Raphson iter-
ation using �t = 0.1 s.

*Denotes that a computer is necessary to solve this problem.



6

Earthquake Response of
Linear Systems

PREVIEW

One of the most important applications of the theory of structural dynamics is in analyzing
the response of structures to ground shaking caused by an earthquake. In this chapter we
study the earthquake response of linear SDF systems to earthquake motions. By definition,
linear systems are elastic systems, and we shall also refer to them as linearly elastic sys-
tems to emphasize both properties. Because earthquakes can cause damage to many struc-
tures, we are also interested in the response of yielding or inelastic systems, the subject of
Chapter 7.

The first part of this chapter is concerned with the earthquake response—deforma-
tion, internal element forces, stresses, and so on—of simple structures as a function of time
and how this response depends on the system parameters. Then we introduce the response
spectrum concept, which is central to earthquake engineering, together with procedures to
determine the peak response of systems directly from the response spectrum. This is fol-
lowed by a study of the characteristics of earthquake response spectra, which leads into the
design spectrum for the design of new structures and safety evaluation of existing struc-
tures against future earthquakes. The important distinctions between design and response
spectra are identified and the chapter closes with a discussion of two types of response
spectra that are not used commonly.

6.1 EARTHQUAKE EXCITATION

For engineering purposes the time variation of ground acceleration is the most useful way
of defining the shaking of the ground during an earthquake. The ground acceleration üg(t)
appears on the right side of the differential equation (1.7.4) governing the response of

197



198 Earthquake Response of Linear Systems Chap. 6

structures to earthquake excitation. Thus, for given ground acceleration the problem to be
solved is defined completely for an SDF system with known mass, stiffness, and damping
properties.

The basic instrument to record three components of ground shaking during earth-
quakes is the strong-motion accelerograph (Fig. 6.1.1), which does not record continu-
ously but is triggered into motion by the first waves of the earthquake to arrive. This is
because even in earthquake-prone regions such as California and Japan, there may not be

(a)

(b)

Figure 6.1.1 Strong motion accelerographs: (a) SMA-1, an analog-recording instrument with un-
damped natural frequency of 25 Hz and damping 60% of critical; (b) SSA-2, a digital recording
instrument with undamped natural frequency of 50 Hz and damping 70% of critical. (Courtesy of
Kinemetrics, Inc.)
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any strong ground motion from earthquakes to record for months, or even years, at a time.
Consequently, continual recordings of hundreds of such instruments would be a wasteful
exercise. After triggering, the recording continues for some minutes or until the ground
shaking falls again to imperceptible levels. Clearly, the instruments must be regularly
maintained and serviced so that they produce a record when shaking occurs.

The basic element of an accelerograph is a transducer element, which in its sim-
plest form is an SDF mass–spring–damper system (Section 3.7). Therefore, the transducer
element is characterized by its natural frequency fn and viscous damping ratio ζ ; typi-
cally, fn = 25 Hz and ζ = 60% for modern analog accelerographs; and fn = 50 Hz
and ζ = 70% in modern digital accelerographs.† These transducer parameters enable the
digital instrument to record, without excessive distortion, acceleration–time functions con-
taining frequencies from very low up to, say, 30 Hz; the analog instrument is accurate over
a narrower frequency range, say, up to 15 Hz.

Ideally, many stations should be instrumented prior to an earthquake to record the
ground motions. However, not knowing when and exactly where earthquakes will occur
and having limited budgets for installation and maintenance of instruments, it is not always
possible to obtain such recordings in the region of strongest shaking. For example, no
strong-motion records were obtained from two earthquakes that caused much destruction:
Killari, Maharashtra, India, September 30, 1993; and Guam, a U.S. territory, August 8,
1993; only one record resulted from the devastating earthquake in Haiti, January 12, 2010.
In contrast, an earthquake in Japan or California, two well-instrumented regions, can be
expected to produce a large number of records. For example, the magnitude 9.0 Tohoku
earthquake on March 11, 2011, near the east coast of Honshu, Japan, produced several
hundred records of strong shaking.

The first strong-motion accelerogram was recorded during the Long Beach earth-
quake of 1933, and as of April 2011, over 3000 records have now been obtained. As might
be expected, most of these records are of small motion and only a fraction of them have
acceleration of 20% g or more. The geographical distribution of these ground motion
records is very uneven. A large majority of them are from California, Japan, and Taiwan;
most of the intense records are from six earthquakes: the San Fernando earthquake of
February 9, 1971, the Loma Prieta earthquake of October 17, 1989, and the Northridge
earthquake of January 17, 1994, in California; the Kobe earthquake of January 16, 1995,
and the Tohoku earthquake of March 11, 2011, in Japan; and the Chi-Chi earthquake of
September 20, 1999 in Taiwan. The peak values of accelerations recorded at many different
locations during the Loma Prieta earthquake are shown in Fig. 6.1.2. These acceleration
values are largest near the epicenter of the earthquake and tend to decrease with distance
from the fault causing the earthquake. However, the accelerations recorded at similar dis-
tances may vary significantly because of several factors, especially local soil conditions.

Figure 6.1.3 shows a collection of representative acceleration–time records of earth-
quake ground motions in the region of strong shaking. One horizontal component is given

†It should be noted that most if not all of the digital accelerographs use a force-balance type of transducer,
for which two parameters will not completely define the instrument response, which is that of a higher-order (than
a mass–spring–damper) system.



Figure 6.1.2 Peak horizontal ground accelerations recorded during the Loma Prieta earthquake of
October 17, 1989. (Courtesy of R. B. Seed.)
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Figure 6.1.4 North–south component of horizontal ground acceleration recorded at the
Imperial Valley Irrigation District substation, El Centro, California, during the Imperial
Valley earthquake of May 18, 1940. The ground velocity and ground displacement were
computed by integrating the ground acceleration.

for each location and earthquake. All have been plotted to the same acceleration and time
scale. The wide and very real variability of amplitude, duration, and general appearance of
different records can be clearly seen. One of these records is enlarged in Fig. 6.1.4. This is
the north–south component of the ground motion recorded at a site in El Centro, Califor-
nia, during the Imperial Valley, California, earthquake of May 18, 1940.† At this scale it
becomes apparent that ground acceleration varies with time in a highly irregular manner.
No matter how irregular, the ground motion is presumed to be known and independent of
the structural response. This is equivalent to saying that the foundation soil is rigid, im-
plying no soil–structure interaction. If the structure were founded on very flexible soil, the
motion of the structure and the resulting forces imposed on the underlying soil can modify
the base motion.

The ground acceleration is defined by numerical values at discrete time instants.
These time instants should be closely spaced to describe accurately the highly irregular
variation of acceleration with time. Typically, the time interval is chosen to be 1

100 to 1
50 of

a second, requiring 1500 to 3000 ordinates to describe the ground motion of Fig. 6.1.4.

†This ground acceleration is used extensively in this book and, for brevity, will be called El Centro ground
motion, although three components of motion have been recorded at the same site during several earthquakes
after 1940.
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The top curve in Fig. 6.1.4 shows the variation of El Centro ground acceleration
with time. The peak ground acceleration ügo is 0.319g. The second curve is the ground
velocity, obtained by integrating the acceleration–time function. The peak ground veloc-
ity u̇go is 33.12 cm/s. Integration of ground velocity provides the ground displacement,
presented as the lowest trace. The peak ground displacement ugo is 21.34 cm. It is
difficult to determine accurately the ground velocity and displacement because analog
accelerographs do not record the initial part—until the accelerograph is triggered—of
the acceleration–time function, and thus the base (zero acceleration) line is unknown.
Digital accelerographs overcome this problem by providing a short memory so that the
onset of ground motion is measured.

In existence are several different versions of the El Centro ground motion. The varia-
tions among them arise from differences in (1) how the original analog trace of acceleration
versus time was digitized into numerical data, and (2) the procedure chosen to introduce
the missing baseline in the record. The version shown in Fig. 6.1.4 is used throughout this
book and is tabulated in Appendix 6.

6.2 EQUATION OF MOTION

Equation (1.7.4) governs the motion of a linear SDF system (Fig. 6.2.1) subjected to ground
acceleration üg(t). Dividing this equation by m gives

ü + 2ζωn u̇ + ω2
n u = −üg(t) (6.2.1)

It is clear that for a given üg(t), the deformation response u(t) of the system depends only
on the natural frequency ωn or natural period Tn of the system and its damping ratio, ζ ;
writing formally, u ≡ u(t, Tn, ζ ). Thus any two systems having the same values of Tn

and ζ will have the same deformation response u(t) even though one system may be more
massive than the other or one may be stiffer than the other.

Ground acceleration during earthquakes varies irregularly to such an extent (see
Fig. 6.1.4) that analytical solution of the equation of motion must be ruled out. Therefore,
numerical methods are necessary to determine the structural response, and any of the meth-
ods presented in Chapter 5 could be used. The response results presented in this chapter
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Figure 6.2.1 Single-degree-of-freedom systems.
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were obtained by exact solution of the equation of motion for the ground motion varying
linearly over every time step, �t = 0.02 s (Section 5.2).

6.3 RESPONSE QUANTITIES

Of greatest interest in structural engineering is the deformation of the system, or displace-
ment u(t) of the mass relative to the moving ground, to which the internal forces are lin-
early related. These are the bending moments and shears in the beams and columns of the
one-story frame of Fig. 6.2.1a or the spring force in the system of Fig. 6.2.1b. Knowing the
total displacement ut (t) of the mass would be useful in providing enough separation be-
tween adjacent buildings to prevent their pounding against each other during an earthquake.
Pounding is the cause of damage to several buildings during almost every earthquake (see
Fig. 6.3.1). Similarly, the total acceleration üt (t) of the mass would be needed if the struc-
ture is supporting sensitive equipment and the motion imparted to the equipment is to be
determined.

The numerical solution of Eq. (6.2.1) can be implemented to provide results for rel-
ative quantities u(t), u̇(t), and ü(t) as well as total quantities ut (t), u̇t (t), and üt (t).

Figure 6.3.1 Two images of pounding damage to the Sanborns Building (shorter) and
33 Reforma Avenue Building (taller), Mexico City due to Mexico earthquake of July 28,
1957. (From the Steinbrugge Collection, National Information Service for Earthquake
Engineering, University of California, Berkeley.)
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6.4 RESPONSE HISTORY

For a given ground motion üg(t), the deformation response u(t) of an SDF system depends
only on the natural vibration period of the system and its damping ratio. Figure 6.4.1a
shows the deformation response of three different systems due to El Centro ground accel-
eration. The damping ratio, ζ = 2%, is the same for the three systems, so that only the dif-
ferences in their natural periods are responsible for the large differences in the deformation
responses. It is seen that the time required for an SDF system to complete a cycle of vibra-
tion when subjected to this earthquake ground motion is very close to the natural period
of the system. (This interesting result, valid for typical ground motions containing a wide
range of frequencies, can be proven using random vibration theory, not included in this
book.) The peak deformation [Eq. (1.11.1)] is also noted in each case. Observe that among
these three systems, the longer the vibration period, the greater the peak deformation. As
will be seen later, this trend is neither perfect nor valid over the entire range of periods.

Figure 6.4.1b shows the deformation response of three systems to the same ground
motion. The vibration period Tn is the same for the three systems, so that the differences

–25

0

25

6.79 cm

–25

0

25

15.15 cm

0 10 20 30
–25

0

25

Time, s

18.96 cm

25.17 cm

18.96 cm

0 10 20 30
Time, s

13.64 cm

D
ef

or
m

at
io

n 
u,

 c
m

Tn = 0.5 s,  = 0.02

Tn = 1 s,  = 0.02

Tn = 2 s,  = 0.02

Tn = 2 s,  = 0

Tn = 2 s,  = 0.02

Tn = 2 s,  = 0.05

)b()a(

ζ ζ

ζ ζ

ζ ζ
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in their deformation responses are associated with their damping. We observe the expected
trend that systems with more damping respond less than lightly damped systems. Because
the natural period of the three systems is the same, their responses display a similarity in
the time required to complete a vibration cycle and in the times the maxima and minima
occur.

Once the deformation response history u(t) has been evaluated by dynamic analysis
of the structure, the internal forces can be determined by static analysis of the structure
at each time instant. Two methods to implement such analysis were mentioned in Sec-
tion 1.8. Between them, the preferred approach in earthquake engineering is based on the
concept of the equivalent static force fS (Fig. 6.4.2) because it can be related to earthquake
forces specified in building codes; fS was defined in Eq. (1.8.1), which is repeated here for
convenience:

fS(t) = ku(t) (6.4.1)

•
•

h

fS(t)

Vb(t)

Mb(t) Figure 6.4.2 Equivalent static force.

where k is the lateral stiffness of the frame (Fig. 6.2.1a). Expressing k in terms of the mass
m gives

fS(t) = m ω2
n u(t) = m A(t) (6.4.2)

where

A(t) = ω2
n u(t) (6.4.3)

Observe that the equivalent static force is m times A(t), the pseudo-acceleration, not m
times the total acceleration üt (t). This distinction is discussed in Section 6.6.3.

The pseudo-acceleration response A(t) of the system can readily be computed from
the deformation response u(t). For the three systems with Tn = 0.5, 1, and 2 s, all having
ζ = 0.02, u(t) is available in Fig. 6.4.1. Multiplying each u(t) by the corresponding ω2

n =
(2π/Tn)

2 gives the pseudo-acceleration responses for these systems; they are presented in
Fig. 6.4.3, where the peak value is noted for each system.

For the one-story frame the internal forces (e.g., the shears and moments in the
columns and beam, or stress at any location) can be determined at a selected instant of
time by static analysis of the structure subjected to the equivalent static lateral force fS(t)
at the same time instant (Fig. 6.4.2). Thus a static analysis of the structure would be neces-
sary at each time instant when the responses are desired. In particular, the base shear Vb(t)
and the base overturning moment Mb(t) are

Vb(t) = fS(t) Mb(t) = h fS(t) (6.4.4a)
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where h is the height of the mass above the base. We put Eq. (6.4.2) into these equations
to obtain

Vb(t) = m A(t) Mb(t) = hVb(t) (6.4.4b)

If the SDF system is viewed as a mass–spring–damper system (Fig. 6.2.1b), the
notion of equivalent static force is not necessary. One can readily visualize that the spring
force is given by Eq. (6.4.1).

6.5 RESPONSE SPECTRUM CONCEPT

G. W. Housner was instrumental in the widespread acceptance of the concept of the earth-
quake response spectrum—initiated by M. A. Biot in 1932—as a practical means of
characterizing ground motions and their effects on structures. Now a central concept in
earthquake engineering, the response spectrum provides a convenient means to summa-
rize the peak response of all possible linear SDF systems to a particular component of
ground motion. It also provides a practical approach to applying the knowledge of struc-
tural dynamics to the design of structures and development of lateral force requirements in
building codes.

A plot of the peak value of a response quantity as a function of the natural vibration
period Tn of the system, or a related parameter such as circular frequency ωn or cyclic
frequency fn , is called the response spectrum for that quantity. Each such plot is for SDF
systems having a fixed damping ratio ζ , and several such plots for different values of ζ are
included to cover the range of damping values encountered in actual structures. Whether
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the peak response is plotted against fn or Tn is a matter of personal preference. We have
chosen the latter because engineers prefer to use natural period rather than natural fre-
quency because the period of vibration is a more familiar concept and one that is intuitively
appealing.

A variety of response spectra can be defined depending on the response quantity that
is plotted. Consider the following peak responses:

uo(Tn, ζ ) ≡ max
t
|u(t, Tn, ζ )|

u̇o(Tn, ζ ) ≡ max
t
|u̇(t, Tn, ζ )|

üt
o(Tn, ζ ) ≡ max

t
|üt (t, Tn, ζ )|

The deformation response spectrum is a plot of uo against Tn for fixed ζ . A similar plot
for u̇o is the relative velocity response spectrum, and for üt

o is the acceleration response
spectrum.

6.6 DEFORMATION, PSEUDO-VELOCITY, AND
PSEUDO-ACCELERATION RESPONSE SPECTRA

In this section the deformation response spectrum and two related spectra, the pseudo-
velocity and pseudo-acceleration response spectra, are discussed. As shown in Section 6.4,
only the deformation u(t) is needed to compute internal forces. Obviously, then, the de-
formation spectrum provides all the information necessary to compute the peak values of
deformation D ≡ uo and internal forces. The pseudo-velocity and pseudo-acceleration
response spectra are included, however, because they are useful in studying characteristics
of response spectra, constructing design spectra, and relating structural dynamics results
to building codes.

6.6.1 Deformation Response Spectrum

Figure 6.6.1 shows the procedure to determine the deformation response spectrum. The
spectrum is developed for El Centro ground motion, shown in part (a) of this figure. The
time variation of the deformation induced by this ground motion in three SDF systems is
presented in part (b). For each system the peak value of deformation D ≡ uo is determined
from the deformation history. (Usually, the peak occurs during ground shaking; however,
for lightly damped systems with very long periods the peak response may occur during
the free vibration phase after the ground shaking has stopped.) The peak deformations are
D = 6.79 cm for a system with natural period Tn = 0.5 s and damping ratio ζ = 2%;
D = 15.15 cm for a system with Tn = 1 s and ζ = 2%; and D = 18.96 cm for a system
with Tn = 2 s and ζ = 2%. The D value so determined for each system provides one point
on the deformation response spectrum; these three values of D are identified in Fig. 6.6.1c.
Repeating such computations for a range of values of Tn while keeping ζ constant at
2% provides the deformation response spectrum shown in Fig. 6.6.1c. As we shall show
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Figure 6.6.1 (a) Ground acceleration; (b) deformation response of three SDF systems with ζ = 2%
and Tn = 0.5, 1, and 2 s; (c) deformation response spectrum for ζ = 2%.

later, the complete response spectrum includes such spectrum curves for several values of
damping.

6.6.2 Pseudo-velocity Response Spectrum

Consider a quantity V for an SDF system with natural frequency ωn related to its peak
deformation D ≡ uo due to earthquake ground motion:

V = ωn D = 2π

Tn
D (6.6.1)

The quantity V has units of velocity. It is related to the peak value of strain energy ESo

stored in the system during the earthquake by the equation

ESo = mV 2

2
(6.6.2)
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This relationship can be derived from the definition of strain energy and using Eq. (6.6.1)
as follows:

ESo = ku2
o

2
= k D2

2
= k(V /ωn)

2

2
= mV 2

2

The right side of Eq. (6.6.2) is the kinetic energy of the structural mass m with velocity
V , called the peak pseudo-velocity. The prefix pseudo is used because V is not equal to
the peak relative velocity u̇o, although it has the correct units. We return to this matter in
Section 6.12.

The pseudo-velocity response spectrum is a plot of V as a function of the natural
vibration period Tn , or natural vibration frequency fn , of the system. For the ground mo-
tion of Fig. 6.6.1a the peak pseudo-velocity V for a system with natural period Tn can
be determined from Eq. (6.6.1) and the peak deformation D of the same system available
from the response spectrum of Fig. 6.6.1c, which has been reproduced in Fig. 6.6.2a. As
an example, for a system with Tn = 0.5 s and ζ = 2%, D = 6.79 cm; from Eq. (6.6.1),
V = (2π/0.5)6.79 = 85.3 cm/s. Similarly, for a system with Tn = 1 s and the same
ζ , V = (2π/1)15.15 = 95.2 cm/s; and for a system with Tn = 2 s and the same ζ ,
V = (2π/2)18.96 = 59.6 cm/s. These three values of peak pseudo-velocity V are identi-
fied in Fig. 6.6.2b. Repeating such computations for a range of values of Tn while keeping
ζ constant at 2% provides the pseudo-velocity spectrum shown in Fig. 6.6.2b.

6.6.3 Pseudo-acceleration Response Spectrum

Consider a quantity A for an SDF system with natural frequency ωn related to its peak
deformation D ≡ uo due to earthquake ground motion:

A = ω2
n D =

(
2π

Tn

)2

D (6.6.3)

The quantity A has units of acceleration and is related to the peak value of base shear Vbo

[or the peak value of the equivalent static force fSo, Eq. (6.4.4a)]:

Vbo = fSo = m A (6.6.4)

This relationship is simply Eq. (6.4.4b) specialized for the time of peak response with the
peak value of A(t) denoted by A. The peak base shear can be written in the form

Vbo = A

g
w (6.6.5)

wherew is the weight of the structure and g the gravitational acceleration. When written in
this form, A/g may be interpreted as the base shear coefficient or lateral force coefficient.
It is used in building codes to represent the coefficient by which the structural weight is
multiplied to obtain the base shear.

Observe that the base shear is equal to the inertia force associated with the mass
m undergoing acceleration A. This quantity defined by Eq. (6.6.3) is generally different
from the peak acceleration üt

o of the system. It is for this reason that we call A the peak
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Figure 6.6.2 Response spectra (ζ = 0.02) for El Centro ground motion: (a) deforma-
tion response spectrum; (b) pseudo-velocity response spectum; (c) pseudo-acceleration
response spectrum.

pseudo-acceleration; the prefix pseudo is used to avoid possible confusion with the true
peak acceleration üt

o. We return to this matter in Section 6.12.
The pseudo-acceleration response spectrum is a plot of A as a function of the natural

vibration period Tn , or natural vibration frequency fn , of the system. For the ground motion
of Fig. 6.6.1a, the peak pseudo-acceleration A for a system with natural period Tn and
damping ratio ζ can be determined from Eq. (6.6.3), and the peak deformation D of the
system from the spectrum of Fig. 6.6.2a. As an example, for a system with Tn = 0.5 s
and ζ = 2%, D = 6.79 cm; from Eq. (6.6.3), A = (2π/0.5)26.79 = 1.09g, where
g = 9.81 m/s2. Similarly, for a system with Tn = 1 s and the same ζ , A = (2π/1)215.15 =
0.610g; and for a system with Tn = 2 s and the same ζ , A = (2π/2)218.96 = 0.191g.
Note that the same values for A are also available as the peak values of A(t) presented
in Fig. 6.4.3. These three values of peak pseudo-acceleration are identified in Fig. 6.6.2c.
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Repeating such computations for a range of values of Tn while keeping ζ constant at 2%
provides the pseudo-acceleration spectrum shown in Fig. 6.6.2c.

6.6.4 Combined D–V–A Spectrum

Each of the deformation, pseudo-velocity, and pseudo-acceleration response spectra for a
given ground motion contains the same information, no more and no less. The three spec-
tra are simply different ways of presenting the same information on structural response.
Knowing one of the spectra, the other two can be obtained by algebraic operations using
Eqs. (6.6.1) and (6.6.3).

Why do we need three spectra when each of them contains the same information?
One of the reasons is that each spectrum directly provides a physically meaningful quan-
tity. The deformation spectrum provides the peak deformation of a system. The pseudo-
velocity spectrum is related directly to the peak strain energy stored in the system during
the earthquake; see Eq. (6.6.2). The pseudo-acceleration spectrum is related directly to the
peak value of the equivalent static force and base shear; see Eq. (6.6.4). The second reason
lies in the fact that the shape of the spectrum can be approximated more readily for design
purposes with the aid of all three spectral quantities rather than any one of them alone; see
Sections 6.8 and 6.9. For this purpose a combined plot showing all three of the spectral
quantities is especially useful. This type of plot was developed for earthquake response
spectra, apparently for the first time, by A. S. Veletsos and N. M. Newmark in 1960.
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This integrated presentation is possible because the three spectral quantities are in-
terrelated by Eqs. (6.6.1) and (6.6.3), rewritten as

A

ωn
= V = ωn D or

Tn

2π
A = V = 2π

Tn
D (6.6.6)

Observe the similarity between these equations relating D, V , and A and Eq. (3.2.21) for
the dynamic response factors Rd , Rv , and Ra for an SDF system subjected to harmonic
excitation. Equation (3.2.21) permitted presentation of Rd , Rv , and Ra , all together, on
four-way logarithmic paper (Fig. 3.2.8), constructed by the procedure described in Ap-
pendix 3 (Chapter 3). Similarly, the graph paper shown in Fig. A6.1 (Appendix 6) with
four-way logarithmic scales can be constructed to display D, V , and A, all together. The
vertical and horizontal scales for V and Tn are standard logarithmic scales. The two scales
for D and A sloping at +45◦ and −45◦, respectively, to the Tn-axis are also logarithmic
scales but not identical to the vertical scale; see Appendix 3.

Once this graph paper has been constructed, the three response spectra—deforma-
tion, pseudo-velocity, and pseudo-acceleration—of Fig. 6.6.2 can readily be combined into
a single plot. The pairs of numerical data for V and Tn that were plotted in Fig. 6.6.2b on
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linear scales are replotted in Fig. 6.6.3 on logarithmic scales. For a given natural period
Tn , the D and A values can be read from the diagonal scales. As an example, for Tn = 2 s,
Fig. 6.6.3 gives D = 18.96 cm and A = 0.191g. (Actually, these numbers cannot be
read so accurately from the graph; in this case they were available from Fig. 6.6.2.) The
four-way plot is a compact presentation of the three—deformation, pseudo-velocity, and
pseudo-acceleration—response spectra, for a single plot of this form replaces the three
plots of Fig. 6.6.2.

A response spectrum should cover a wide range of natural vibration periods and sev-
eral damping values so that it provides the peak response of all possible structures. The
period range in Fig. 6.6.3 should be extended because tall buildings and long-span bridges,
among other structures, may have longer vibration periods (Fig. 2.1.2), and several damp-
ing values should be included to cover the practical range of ζ = 0 to 20%. Figure 6.6.4
shows spectrum curves for ζ = 0, 2, 5, 10, and 20% over the period range 0.02 to 50 s.
This, then, is the response spectrum for the north–south component of ground motion
recorded at one location during the Imperial Valley earthquake of May 18, 1940. Because
the lateral force or base shear for an SDF system is related through Eq. (6.6.5) to A/g, we
also plot this normalized pseudo-acceleration spectrum in Fig. 6.6.5. Similarly, because
the peak deformation is given by D, we also plot this deformation response spectrum
in Fig. 6.6.6.

The response spectrum has proven so useful in earthquake engineering that spec-
tra for virtually all ground motions strong enough to be of engineering interest are now

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

Tn, s

f S
o 

/ w
 =

 A
 / 

g

Figure 6.6.5 Normalized pseudo-acceleration, or base shear coefficient, response spec-
trum for El Centro ground motion; ζ = 0, 2, 5, 10, and 20%.
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computed and published soon after they are recorded. Enough of them have been obtained
to give us a reasonable idea of the kind of motion that is likely to occur in future earth-
quakes, and how response spectra are affected by distance to the causative fault, local soil
conditions, and regional geology.

6.6.5 Construction of Response Spectrum

The response spectrum for a given ground motion component üg(t) can be developed by
implementation of the following steps:

1. Numerically define the ground acceleration üg(t); typically, the ground motion ordi-
nates are defined every 0.02 s.

2. Select the natural vibration period Tn and damping ratio ζ of an SDF system.

3. Compute the deformation response u(t) of this SDF system due to the ground motion
üg(t) by any of the numerical methods described in Chapter 5. [In obtaining the
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Figure 6.6.6 Deformation response spectrum for El Centro ground motion; ζ = 0, 2, 5, 10, and
20%.
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responses shown in Fig. 6.6.1, the exact solution of Eq. (6.2.1) for ground motion
assumed to be piecewise linear over every �t = 0.02 s was used; see Section 5.2.]

4. Determine uo, the peak value of u(t).

5. The spectral ordinates are D = uo, V = (2π/Tn)D, and A = (2π/Tn)
2 D.

6. Repeat steps 2 to 5 for a range of Tn and ζ values covering all possible systems of
engineering interest.

7. Present the results of steps 2 to 6 graphically to produce three separate spectra like
those in Fig. 6.6.2 or a combined spectrum like the one in Fig. 6.6.4.

Considerable computational effort is required to generate an earthquake response
spectrum. A complete dynamic analysis to determine the time variation (or history) of the
deformation of an SDF system provides the data for one point on the spectrum correspond-
ing to the Tn and ζ of the system. Each curve in the response spectrum of Fig. 6.6.4 was
produced from such data for 112 values of Tn unevenly spaced over the range Tn = 0.02
to 50 s.

Example 6.1

Derive equations for and plot deformation, pseudo-velocity, and pseudo-acceleration response
spectra for ground acceleration üg(t) = u̇goδ(t), where δ(t) is the Dirac delta function and
u̇go is the increment in velocity, or the magnitude of the acceleration impulse. Only consider
systems without damping.

Solution
1. Determine the response history. The response of an SDF system to p(t) = δ(t − τ)

is available in Eq. (4.1.6). Adapting that solution to peff(t) = −müg(t) = −mu̇goδ(t)
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gives

u(t) = − u̇go

ωn
sinωnt (a)

The peak value of u(t) is

uo =
u̇go

ωn
(b)

2. Determine the spectral values.

D ≡ uo =
u̇go

ωn
= u̇go

2π
Tn (c)

V = ωn D = u̇go A = ω2
n D = 2π u̇go

Tn
(d)

Two of these response spectra are plotted in Fig. E6.1.

6.7 PEAK STRUCTURAL RESPONSE FROM THE RESPONSE
SPECTRUM

If the response spectrum for a given ground motion component is available, the peak value
of deformation or of an internal force in any linear SDF system can be determined readily.
This is the case because the computationally intensive dynamic analyses summarized in
Section 6.6.5 have already been completed in generating the response spectrum. Corre-
sponding to the natural vibration period Tn and damping ratio ζ of the system, the values
of D, V , or A are read from the spectrum, such as Fig. 6.6.6, 6.6.4, or 6.6.5. Now all
response quantities of interest can be expressed in terms of D, V , or A and the mass or
stiffness properties of the system. In particular, the peak deformation of the system is

uo = D = Tn

2π
V =

(
Tn

2π

)2

A (6.7.1)

and the peak value of the equivalent static force fSo is [from Eqs. (6.6.4) and (6.6.3)]

fSo = k D = m A (6.7.2)

Static analysis of the one-story frame subjected to lateral force fSo (Fig. 6.7.1) provides
the internal forces (e.g., shears and moments in columns and beams). This involves ap-
plication of well-known procedures of static structural analysis, as will be illustrated later

•
•

h

fSo

Vbo

Mbo
Figure 6.7.1 Peak value of equivalent
static force.
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by examples. We emphasize again that no further dynamic analysis is required beyond
that necessary to determine u(t). In particular, the peak values of shear and overturning
moment at the base of the one-story structure are

Vbo = k D = m A Mbo = hVbo (6.7.3)

We note that any one of these response spectra—deformation, pseudo-velocity, or
pseudo-acceleration—is sufficient for computing the peak deformations and forces re-
quired in structural design. For such applications the velocity or acceleration spectra
(defined in Section 6.5) are not required, but for completeness we discuss these spectra
briefly at the end of this chapter.

Example 6.2

A 4-m-long vertical cantilever, a 100-mm-nominal-diameter standard steel pipe, supports a
1650-kg mass attached at the tip as shown in Fig. E6.2. The properties of the pipe are: outside
diameter, do = 114 mm, inside diameter di = 102 mm, thickness t = 6 mm, and second
moment of cross-sectional area, I = 301 cm4, elastic modulus E = 200,000 MPa, and mass
= 16.06 kg/m. Determine the peak deformation and bending stress in the cantilever due to the
El Centro ground motion. Assume that ζ = 2%.

Solution The lateral stiffness of this SDF system is

k = 3E I

L3
= 3(200,000× 106)(301× 10(−8))

43
= 28,219 N/m

The total mass of the pipe is 16.06 × 4 = 64.24 kg, which may be neglected relative to the
lumped mass of 1650 kg. Thus

m = 1650 kg

The natural vibration frequency and period of the system are

ωn =
√

k

m
=
√

1650

28,219
= 4.135 rad/s Tn = 1.52 s

From the response spectrum curve for ζ = 2% (Fig. E6.2b), for Tn = 1.52 s, D = 12.5 cm
and A = 0.219 g (these values were not actually read from the figure, but from the numerical
values used to create the figure.) The peak deformation is

uo = D = 12.5 cm

The peak value of the equivalent static force is

fSo = A × m = 0.219× 9.81× 1650 = 3540 N

The bending moment diagram is shown in Fig. E6.2d with the maximum moment at the base
= 14.2 kN-m. Points A and B shown in Fig. E6.2e are the locations of maximum bending
stress:

σmax = Mc

I
= (14.2× 103)(0.114/2)

(301× 10(−8))
= 2.69× 108 N/m2 = 269 MPa
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Thus, σ = +269 MPa at A and σ = −269 MPa at B, where+ denotes tension. The algebraic
signs of these stresses are irrelevant because the direction of the peak force is not known, as
the pseudo-acceleration spectrum is, by definition, positive.

Example 6.3

The stress computed in Example 6.2 exceeded the allowable stress and the designer decided
to increase the size of the pipe. The revised properties are do = 219 mm, di = 203 mm,
t = 8.2 mm, and I = 3018 cm4. Comment on the advantages and disadvantages of using the
bigger pipe.



220 Earthquake Response of Linear Systems Chap. 6

Solution

k = 3(200,000× 106)(3018× 10(−8))

43
= 282,938 N/m

ωn =
√

282,938

1650
= 13.09 rad/s Tn = 0.480 s

From the response spectrum (Fig. E6.2b): D = 7.16 cm and A = 1.25 g. Therefore,

uo = D = 7.16 cm

fSo = 1.25× 9.81× 1650 = 20,233 N

Mbase = 20,233× 4 = 80,932 N-m

σmax = (80,932)(0.219/2)[
3018× 10(−8)

] = 2.94× 108 N/m2 = 294 MPa

Using the 200-mm-diameter pipe decreases the deformation from 12.5 cm to 7.16 cm. How-
ever, contrary to the designer’s objective, the bending stress increases slightly.

This example points out an important difference between the response of structures to
earthquake excitation and to a fixed value of static force. In the latter case, the stress would
decrease, obviously, by increasing the member size. In the case of earthquake excitation, the
increase in pipe diameter shortens the natural vibration period from 1.52 s to 0.48 s, which for
this response spectrum has the effect of increasing the equivalent static force fSo. Whether
the bending stress decreases or increases by increasing the pipe diameter depends on the in-
crease in section modulus, I/c, and the increase or decrease in fSo, depending on the response
spectrum.

Example 6.4

A small one-story reinforced-concrete building is idealized for purposes of structural analysis
as a massless frame supporting a total dead load of 3000 kg at the beam level (Fig. E6.4a).
The frame is 8 m wide and 4 m high. Each column and the beam has a 25 cm2 cross section.
Assume that the Young’s modulus of concrete is 20 GPa and the damping ratio for the building
is estimated as 5%. Determine the peak response of this frame to the El Centro ground motion.
In particular, determine the peak lateral deformation at the beam level and plot the diagram of
bending moments at the instant of peak response.

25 cm2

25 cm2

3000 kg

•
•

4 m

•• 8 m

)b()a(

fSo = 22.37 kN

(c)

27.9

16.8

(

)

16.8 kN/m

16.8

(

)

27.9

16.8

(

)

Figure E6.4 (a) Frame; (b) equivalent static force; (c) bending moment diagram.
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Solution The lateral stiffness of such a frame was calculated in Chapter 1: k = 96E I/7h3,
where E I is the flexural rigidity of the beam and columns and h is the height of the frame.
For this particular frame,

k = 96(20× 109)(0.254/12)

7× 43
= 1.395× 106 N/m = 1395 kN/m

The natural vibration period is

Tn = 2π√
k/m
= 2π

√
3000

1.395× 106
= 0.29 s

For Tn = 0.29 and ζ = 0.05, we read from the response spectrum of Fig. 6.6.4: D = 1.60 cm
and A = 0.76g. Peak deformation: uo = D = 1.60 cm. Equivalent static force: fSo =
A × m = 0.76× 9.81× 3000 = 22,367 N. Static analysis of the frame for this lateral force,
shown in Fig. E6.4b, gives the bending moments that are plotted in Fig. E6.4c.

Example 6.5

The frame of Example 6.4 is modified for use in a building to be located on sloping ground
(Fig. E6.5). The beam is now made much stiffer than the columns and can be assumed to be
rigid. The cross sections of the two columns are 25 cm square, as before, but their lengths are
4 m and 8 m, respectively. Determine the base shears in the two columns at the instant of peak
response due to the El Centro ground motion. Assume the damping ratio to be 5%.

Solution
1. Compute the natural vibration period.

k = 12(20× 109)(0.254/12)

43
+ 12(20× 109)(0.254/12)

83

= 1.221× 106 + 1.526× 105 = 1.373× 106 N/m = 1373 kN/m

Tn = 2π

√
3000

1.373× 106
= 0.29 s

2. Compute the shear force at the base of the short and long columns.

uo = D = 1.61 cm, A = 0.75 g

Vshort = kshortuo = (1.221× 106)(1.61× 10(−2)) = 19,690 N

Vlong = klonguo = (1.373× 105)(1.61× 10(−2)) = 2461 N

• •
8 m

•
•

4 m

•
•

8 m

Figure E6.5
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Observe that both columns go through equal deformation. Undergoing equal deformations, the
stiffer column carries a greater force than the flexible column; the lateral force is distributed
to the elements in proportion to their relative stiffnesses. Sometimes this basic principle has,
inadvertently, not been recognized in building design, leading to unanticipated damage of the
stiffer elements.

Example 6.6

For the three-span box-girder bridge of Example 1.3, determine the base shear in each of
the six columns of the two bents due to El Centro ground motion applied in the longitudinal
direction. Assume the damping ratio to be 5%.

Solution The mass of the bridge deck was computed in Example 1.3: m = 3.46 × 106 kg.
The natural period of longitudinal vibration of the bridge was computed in Example 2.2:
Tn = 0.569 s. For Tn = 0.569 s and ζ = 0.05, we read from the response spectrum of
Fig. 6.6.4: D = 6.524 cm and A = 0.812g.

All the columns have the same stiffness and they go through equal deformation uo =
D = 6.524 cm. Thus, the base shear will be the same in all columns, which can be computed
in one of two ways: The total equivalent static force on the bridge is [from Eq. (6.6.5)]

fSo = 0.812× 9.81× 3.46× 106 = 2.756× 104 kN

Base shear for one column, Vb = 2.756×107÷6 = 4.593×106 N = 4593 kN. Alternatively,
the base shear in each column is

Vb = kcoluo = 7.04× 107 × 6.524× 10(−2) = 4.593× 106 N = 4593 kN

6.8 RESPONSE SPECTRUM CHARACTERISTICS

We now study the important properties of earthquake response spectra. Figure 6.8.1 shows
the response spectrum for El Centro ground motion together with ügo, u̇go, and ugo, the
peak values of ground acceleration, ground velocity, and ground displacement, respec-
tively, identified in Fig. 6.1.4. To show more directly the relationship between the response
spectrum and the ground motion parameters, the data of Fig. 6.8.1 have been presented
again in Fig. 6.8.2 using normalized scales: D/ugo, V /u̇go, and A/ügo. Figure 6.8.3 shows
one of the spectrum curves of Fig. 6.8.2, the one for 5% damping, together with an ideal-
ized version shown in dashed lines; the latter will provide a basis for constructing smooth
design spectra directly from the peak ground motion parameters (see Section 6.9). Based
on Figs. 6.8.1 to 6.8.3, we first study the properties of the response spectrum over various
ranges of the natural vibration period of the system separated by the period values at a, b,
c, d , e, and f : Ta = 0.035 s, Tb = 0.125, Tc = 0.5, Td = 3.0, Te = 10, and Tf = 15 s.
Subsequently, we identify the effects of damping on spectrum ordinates.

For systems with very short period, say Tn < Ta = 0.035 s, the peak pseudo-
acceleration A approaches ügo and D is very small. This trend can be understood based on
physical reasoning. For a fixed mass, a very short-period system is extremely stiff or es-
sentially rigid. Such a system would be expected to undergo very little deformation and its
mass would move rigidly with the ground; its peak acceleration should be approximately
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Figure 6.8.1 Response spectrum (ζ = 0, 2, 5, and 10%) and peak values of ground
acceleration, ground velocity, and ground displacement for El Centro ground motion.

equal to ügo (Fig. 6.8.4d). This expectation is confirmed by Fig. 6.8.4, where the ground ac-
celeration is presented in part (a), the total acceleration üt (t) of a system with Tn = 0.02 s
and ζ = 2% in part (b), and the pseudo-acceleration A(t) for the same system in part
(c). Observe that üt (t) and üg(t) are almost identical functions and üt

o � ügo. Further-
more, for lightly damped systems üt (t) � −A(t) and üt

o � A (Section 6.12.2); therefore,
A � ügo.

For systems with a very long period, say Tn > Tf = 15 s, D for all damping
values approaches ugo and A is very small; thus the forces in the structure, which are
related to m A, would be very small. This trend can again be explained by relying on
physical reasoning. For a fixed mass, a very-long-period system is extremely flexible. The
mass would be expected to remain essentially stationary while the ground below moves
(Fig. 6.8.5c). Thus üt (t) � 0, implying that A(t) � 0 (see Section 6.12.2); and u(t) �
−ug(t), implying that D � ugo. This expectation is confirmed by Fig. 6.8.5, where the
deformation response u(t) of a system with Tn = 30 s and ζ = 2% to the El Centro ground
motion is compared with the ground displacement ug(t). Observe that the peak values for
uo and ugo are close and the time variation of u(t) is similar to that of −ug(t), but for
rotation of the baseline. The discrepancy between the two arises, in part, from the loss
of the initial portion of the recorded ground motion prior to triggering of the recording
accelerograph.
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For short-period systems with Tn between Ta = 0.035 s and Tc = 0.50 s, A exceeds
ügo, with the amplification depending on Tn and ζ . Over a portion of this period range,
Tb = 0.125 s to Tc = 0.5 s, A may be idealized as constant at a value equal to ügo amplified
by a factor depending on ζ .

For long-period systems with Tn between Td = 3 s and Tf = 15 s, D generally
exceeds ugo, with the amplification depending on Tn and ζ . Over a portion of this period
range, Td = 3.0 s to Te = 10 s, D may be idealized as constant at a value equal to ugo

amplified by a factor depending on ζ .
For intermediate-period systems with Tn between Tc = 0.5 s and Td = 3.0 s, V

exceeds u̇go. Over this period range, V may be idealized as constant at a value equal to
u̇go, amplified by a factor depending on ζ .

Based on these observations, it is logical to divide the spectrum into three period
ranges (Fig. 6.8.3). The long-period region to the right of point d, Tn > Td , is called
the displacement-sensitive region because structural response is related most directly to
ground displacement. The short-period region to the left of point c, Tn < Tc, is called the
acceleration-sensitive region because structural response is most directly related to ground
acceleration. The intermediate period region between points c and d, Tc < Tn < Td , is
called the velocity-sensitive region because structural response appears to be better related
to ground velocity than to other ground motion parameters. For a particular ground motion,
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Figure 6.8.3 Response spectrum for El Centro ground motion shown by a solid line
together with an idealized version shown by a dashed line; ζ = 5%.

the periods Ta , Tb, Te, and Tf on the idealized spectrum are independent of damping, but
Tc and Td vary with damping.

The preceding observations and discussion have brought out the usefulness of the
four-way logarithmic plot of the combined deformation, pseudo-velocity, and pseudo-
acceleration response spectra. These observations would be difficult to glean from the
three individual spectra.

Idealizing the spectrum by a series of straight lines a–b–c–d–e– f in the four-way
logarithmic plot is obviously not a precise process. For a given ground motion, the period
values associated with the points a, b, c, d, e, and f and the amplification factors for the
segments b–c, c–d, and d–e are somewhat judgmental in the way we have approached
them. However, formal curve-fitting techniques can be used to replace the actual spec-
trum by an idealized spectrum of a selected shape. In any case, the idealized spectrum in
Fig. 6.8.3 is not a close approximation to the actual spectrum. This may not be visually
apparent but becomes obvious when we note that the scales are logarithmic. As we shall
see in the next section, the greatest benefit of the idealized spectrum is in constructing a
design spectrum representative of many ground motions.
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Figure 6.8.4 (a) El Centro ground acceleration; (b) total acceleration response of an
SDF system with Tn = 0.02 s and ζ = 2%; (c) pseudo-acceleration response of the same
system; (d) rigid system.

The periods Ta, Tb, Tc, Td , Te, and Tf separating spectral regions and the ampli-
fication factors for the segments b−c, c−d , and d−e depend on the time variation of
ground motion, in particular, the relative values of peak ground acceleration, velocity, and
displacement, as indicated by their ratios: u̇go/ügo and ugo/u̇go. These ground motion
characteristics depend on the earthquake magnitude, fault-to-site distance, source-to-site
geology, and soil conditions at the site.

Ground motions recorded within the near-fault region of an earthquake at stations
located toward the direction of the fault rupture are qualitatively quite different from the
usual far-fault earthquake ground motions. The fault-normal component of a ground mo-
tion recorded in the near-fault region of the Northridge, California, earthquake of January
17, 1994, displays a long-period pulse in the acceleration history that appears as a coherent
pulse in the velocity and displacements histories (Fig. 6.8.6a). Such a pronounced pulse
does not exist in ground motions recorded at locations away from the near-fault region,
such as the Taft record obtained from the Kern County, California, earthquake of July 21,
1952 (Fig. 6.8.6b).

The ratios u̇go/ügo and ugo/u̇go are very different between the fault normal compo-
nents of near- and far-fault motions. As apparent from the peak values noted in Fig. 6.8.6,
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Figure 6.8.6 Fault-normal component of ground motions recorded at (a) Rinaldi Receiv-
ing Station, 1994 Northridge earthquake, and (b) Taft, 1952 Kern County earthquake.

the ratio u̇go/ügo for near-fault motions is much larger than the ratio for far-fault motions,
whereas the ratio ugo/u̇go for near-fault motions is much smaller. As a result, the response
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Figure 6.8.7 Idealized response spectra for fault-normal component of three near-fault
ground motion records—LP89Lex: Lexington Dam, 1989 Loma Prieta earthquake; NR94rrs:
Rinaldi Receiving Station, 1994 Northridge earthquake; and KB95tato: Takatori Station,
1994 Hygogo-Ken-Nanbu (or Kobe) earthquake—and of the 1952 Taft record; ζ = 5%.

spectra for near- and far-fault motions are very different in shape. Shown in Fig. 6.8.7 are
the idealized versions of response spectra for the fault normal components of one far-fault
motion—the Rinaldi motion of Fig. 6.8.6a—and for three near-fault motions—including
the one in Fig. 6.8.6b (Taft motion)—from earthquakes of similar magnitudes. Comparing
them indicates that the velocity-sensitive region is much narrower and shifted to a longer
period for near-fault motions, and their acceleration- and displacement-sensitive regions
are much wider than those for far-fault motions. Despite these differences, researchers
have demonstrated that response trends identified earlier from the three spectral regions
of far-fault ground motions are generally valid for the corresponding spectral regions of
near-fault ground motions. We return to this assertion in Section 22.3.3.

We now turn to damping, which has significant influence on the earthquake response
spectrum (Figs. 6.6.4 to 6.6.6). The zero damping curve is marked by abrupt jaggedness,
which indicates that the response is very sensitive to small differences in the natural vibra-
tion period. The introduction of damping makes the response much less sensitive to the
period.

Damping reduces the response of a structure, as expected, and the reduction achieved
with a given amount of damping is different in the three spectral regions. In the limit as
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Tn → 0, damping does not affect the response because the structure moves rigidly with
the ground. In the other limit as Tn →∞, damping again does not affect the response be-
cause the structural mass stays still while the ground underneath moves. Among the three
period regions defined earlier, the effect of damping tends to be greatest in the velocity-
sensitive region of the spectrum. In this spectral region the effect of damping depends on
the ground motion characteristics. If the ground motion is nearly harmonic over many cy-
cles (e.g., the record from Mexico City shown in Fig. 6.1.3), the effect of damping would be
especially large for systems near “resonance” (Chapter 3). If the ground motion is short in
duration with only a few major cycles (e.g., the record from Parkfield, California, shown
in Fig. 6.1.3), the influence of damping would be small, as in the case of pulse excitations
(Chapter 4).

Figure 6.8.8 shows the peak pseudo-acceleration A(ζ ), normalized relative to
A(ζ = 0), plotted as a function of ζ for several Tn values. These are some of the data
from the response spectrum of Figs. 6.6.4 and 6.6.5 replotted in a different format. Ob-
serve that the effect of damping is stronger for smaller damping values. This means that
if the damping ratio is increased from 0 to 2%, the reduction in response is greater than
the response reduction, due to an increase in damping from 10% to 12%. The effect of
damping in reducing the response depends on the period Tn of the system, but there is no
clear trend from Fig. 6.8.8. This is yet another indication of the complexity of structural
response to earthquakes.

The motion of a structure and the associated forces could be reduced by increas-
ing the effective damping of the structure. The addition of dampers achieves this goal
without significantly changing the natural vibration periods of the structure. Viscoelastic
dampers have been introduced in many structures; for example, 10,000 dampers were
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installed throughout the height of each tower of the World Trade Center in New York
City to reduce wind-induced motion to within a comfortable range for the occupants. In
recent years there is a growing interest in developing dampers suitable for structures in
earthquake-prone regions. Because the inherent damping in most structures is relatively
small, their earthquake response can be reduced significantly by the addition of dampers.
These can be especially useful in improving the seismic safety of an existing structure. We
will return to this topic in Chapter 7.

6.9 ELASTIC DESIGN SPECTRUM

In this section we introduce the concept of earthquake design spectrum for elastic systems
and present a procedure to construct it from estimated peak values for ground acceleration,
ground velocity, and ground displacement.

The design spectrum should satisfy certain requirements because it is intended for
the design of new structures, or the seismic safety evaluation of existing structures, to resist
future earthquakes. For this purpose the response spectrum for a ground motion recorded
during a past earthquake is inappropriate. The jaggedness in the response spectrum, as
seen in Fig. 6.6.4, is characteristic of that one excitation. The response spectrum for another
ground motion recorded at the same site during a different earthquake is also jagged, but the
peaks and valleys are not necessarily at the same periods. This is apparent from Fig. 6.9.1,
where the response spectra for ground motions recorded at the same site during three past
earthquakes are plotted. Similarly, it is not possible to predict the jagged response spectrum
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in all its detail for a ground motion that may occur in the future. Thus the design spectrum
should consist of a set of smooth curves or a series of straight lines with one curve for each
level of damping.

The design spectrum should, in a general sense, be representative of ground motions
recorded at the site during past earthquakes. If none have been recorded at the site, the
design spectrum should be based on ground motions recorded at other sites under similar
conditions. The factors that one tries to match in the selection include the magnitude of
the earthquake, the distance of the site from the causative fault, the fault mechanism, the
geology of the travel path of seismic waves from the source to the site, and the local soil
conditions at the site. While this approach is feasible for some parts of the world, such as
California and Japan, where numerous ground motion records are available, in many other
regions it is hampered by the lack of a sufficient number of such records. In such situa-
tions compromises in the approach are necessary by considering ground motion records
that were recorded for conditions different from those at the site. Detailed discussion of
these issues is beyond the scope of this book. The presentation here is focused on the nar-
row question of how to develop the design spectrum that is representative of an available
ensemble (or set) of recorded ground motions.

The design spectrum is based on statistical analysis of the response spectra for the
ensemble of ground motions. Suppose that I is the number of ground motions in the en-
semble, the i th ground motion is denoted by üi

g(t), and ui
go, u̇i

go, and üi
go are its peak

displacement, velocity, and acceleration, respectively. Each ground motion is normalized
(scaled up or down) so that all ground motions have the same peak ground acceleration,
say ügo; other bases for normalization can be chosen. The response spectrum for each
normalized ground motion is computed by the procedures described in Section 6.6. At
each period Tn there are as many spectral values as the number I of ground motion records
in the ensemble: Di , V i , and Ai (i = 1, 2, . . . , I ), the deformation, pseudo-velocity, and
pseudo-acceleration spectral ordinates. Such data were generated for an ensemble of 10
earthquake records, and selected aspects of the results are presented in Fig. 6.9.2. The
quantities ugo, u̇go, and ügo in the normalized scales of Fig. 6.9.2 are the average values
of the peak ground displacement, velocity, and acceleration—averaged over the I ground
motions. Statistical analysis of these data provide the probability distribution for the spec-
tral ordinate, its mean value, and its standard deviation at each period Tn . The probability
distributions are shown schematically at three selected Tn values, indicating that the coef-
ficient of variation (= standard deviation ÷ mean value) varies with Tn . Connecting all
the mean values gives the mean response spectrum. Similarly connecting all the mean-
plus-one-standard-deviation values gives the mean-plus-one-standard-deviation response
spectrum. Observe that these two response spectra are much smoother than the response
spectrum for an individual ground motion (Fig. 6.6.4). As shown in Fig. 6.9.2, such a
smooth spectrum curve lends itself to idealization by a series of straight lines much better
than the spectrum for an individual ground motion (Fig. 6.8.3).

Researchers have developed procedures to construct such design spectra from ground
motion parameters. One such procedure, which is illustrated in Fig. 6.9.3, will be sum-
marized later. The recommended period values Ta = 1

33 s, Tb = 1
8 s, Te = 10 s, and

Tf = 33 s, and the amplification factors αA, αV , and αD for the three spectral regions,
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ügo

Vu̇go

D u
go
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TABLE 6.9.1 AMPLIFICATION FACTORS: ELASTIC DESIGN SPECTRA

Median (50th percentile) One Sigma (84.1th percentile)
Damping, ζ

(%) αA αV αD αA αV αD

1 3.21 2.31 1.82 4.38 3.38 2.73
2 2.74 2.03 1.63 3.66 2.92 2.42
5 2.12 1.65 1.39 2.71 2.30 2.01

10 1.64 1.37 1.20 1.99 1.84 1.69
20 1.17 1.08 1.01 1.26 1.37 1.38

Source: N. M. Newmark and W. J. Hall, Earthquake Spectra and Design, Earth-
quake Engineering Research Institute, Berkeley, Calif., 1982, pp. 35 and 36.

TABLE 6.9.2 AMPLIFICATION FACTORS: ELASTIC DESIGN SPECTRAa

Median (50th percentile) One Sigma (84.1th percentile)

αA 3.21− 0.68 ln ζ 4.38− 1.04 ln ζ
αV 2.31− 0.41 ln ζ 3.38− 0.67 ln ζ
αD 1.82− 0.27 ln ζ 2.73− 0.45 ln ζ

Source: N. M. Newmark and W. J. Hall, Earthquake Spectra and
Design, Earthquake Engineering Research Institute, Berkeley, Calif.,
1982, pp. 35 and 36.
aDamping ratio in percent.

were developed by the preceding analysis of a larger ensemble of ground motions recorded
on firm ground (rock, soft rock, and competent sediments). The amplification factors
for two different nonexceedance probabilities, 50% and 84.1%, are given in Table 6.9.1
for several values of damping and in Table 6.9.2 as a function of damping ratio. The
50% nonexceedance probability represents the median value of the spectral ordinates and
the 84.1% approximates the mean-plus-one-standard-deviation value assuming lognormal
probability distribution for the spectral ordinates.

Observe that the period values Ta , Tb, Te, and Tf are fixed; the values in Fig. 6.9.3
are for firm ground. Period values Tc and Td are determined by the intersections of the
constant-A (= αAügo), constant-V (= αV u̇go), and constant-D (= αDugo) branches of the
spectrum. Because αA, αV , and αD are functions of ζ (Tables 6.9.1 and 6.9.2), Tc and Td

depend on the damping ratio.

Summary. A procedure to construct a design spectrum is now summarized with
reference to Fig. 6.9.3:

1. Plot the three dashed lines corresponding to the peak values of ground acceleration
ügo, velocity u̇go, and displacement ugo for the design ground motion.

2. Obtain from Table 6.9.1 or 6.9.2 the values for αA, αV , and αD for the ζ selected.
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3. Multiply ügo by the amplification factor αA to obtain the straight line b–c represent-
ing a constant value of pseudo-acceleration A.

4. Multiply u̇go by the amplification factor αV to obtain the straight line c–d represent-
ing a constant value of pseudo-velocity V .

5. Multiply ugo by the amplification factor αD to obtain the straight line d–e represent-
ing a constant value of deformation D.

6. Draw the line A = ügo for periods shorter than Ta and the line D = ugo for periods
longer than Tf .

7. The transition lines a–b and e– f complete the spectrum.

We now illustrate use of this procedure by constructing the 84.1th percentile design
spectrum for systems with 5% damping. For convenience, a peak ground acceleration
ügo = 1g is selected; the resulting spectrum can be scaled by η to obtain the design spec-
trum corresponding to ügo = ηg. Consider also that no specific estimates for peak ground
velocity u̇go and displacement ugo are provided; thus typical values u̇go/ügo = 122 cm/s/g
and ügo×ugo/u̇2

go = 6, recommended for firm ground, are used. For ügo = 1g, these ratios
give u̇go = 122 cm/s and ugo = 91 cm.

The design spectrum shown in Fig. 6.9.4 is determined by the following steps:

1. The peak parameters for the ground motion: ügo = 1g, u̇go = 122 cm/s, and ugo =
91 cm are plotted.

2. From Table 6.9.1, the amplification factors for the 84.1th percentile spectrum and
5% damping are obtained: αA = 2.71, αV = 2.30, and αD = 2.01.

3–5. The ordinate for the constant-A branch is A = 1g × 2.71 = 2.71g, for the con-
stant-V branch: V = 122 × 2.30 = 280.6 cm/s, and for the constant-D branch:
D = 91× 2.01 = 183 cm. The three branches are drawn as shown.

6. The line A = 1g is plotted for Tn <
1

33 s and D = 91 cm for Tn > 33 s.

7. The transition line b–a is drawn to connect the point A = 2.71g at Tn = 1
8 s to

ügo = 1g at Tn = 1
33 s. Similarly, the transition line e– f is drawn to connect the

point D = 183 cm at Tn = 10 s to ugo = 91 cm at Tn = 33 s.

With the pseudo-velocity design spectrum known (Fig. 6.9.4), the pseudo-
acceleration design spectrum and the deformation design spectrum are determined using
Eq. (6.6.6) and plotted in Figs. 6.9.5 and 6.9.6, respectively. Observe that A approaches
ügo = 1g at Tn = 0 and D tends to ugo = 91 cm at Tn = 50 s. The design spectrum can
be defined completely by numerical values for Ta , Tb, Tc, Td , Te, and Tf , and equations for
A(Tn), V (Tn), or D(Tn) for each branch of the spectrum. As mentioned before, some of
these periods—Ta , Tb, Te, and Tf —are fixed, but others—Tc and Td—depend on damping.
The intersections of A = 2.71g, V = 280.6 cm/s, and D = 183 cm are determined from
Eq. (6.6.6): Tc = 0.66 s and Td = 4.10 s for ζ = 5%. Equations describing various
branches of the pseudo-acceleration design spectrum are given in Fig. 6.9.5.

Repeating the preceding construction of the design spectrum for additional values
of the damping ratio leads to Figs. 6.9.7 to 6.9.10. This, then, is the design spectrum for
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ground motions on firm ground with ügo = 1g, u̇go = 122 cm/s, and ugo = 91 cm in three
different forms: pseudo-velocity, pseudo-acceleration, and deformation. Observe that the
pseudo-acceleration design spectrum has been plotted in two formats: logarithmic scales
(Fig. 6.9.8) and linear scales (Fig. 6.9.9).

The elastic design spectrum provides a basis for calculating the design force and
deformation for SDF systems to be designed to remain elastic. For this purpose the design
spectrum is used in the same way as the response spectrum was used to compute peak
response; see Examples 6.2 to 6.6. The errors in reading spectral ordinates from a four-way
logarithmic plot can be avoided, however, because simple functions of Tn define various
branches of the spectrum in Figs. 6.9.4 to 6.9.6.

Parameters that enter into construction of the elastic design spectrum should be
selected considering the factors that influence ground motion mentioned previously. Thus
the selection of design ground motion parameter ügo, u̇go, and ugo should be based on
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ügo = 1g, u̇go = 122 cm/s, and ugo = 91 cm; ζ = 1, 2, 5, 10, and 20%.

238



Sec. 6.10 Comparison of Design and Response Spectra 239

earthquake magnitude, distance to the earthquake fault, fault mechanism, wave-travel-path
geology, and local soil conditions. Results of research on these factors and related is-
sues are available; they are used to determine site-dependent design spectra for important
projects. Similarly, numerical values for the amplification factors αA, αV , and αD should
be chosen consistent with the expected frequency content of the ground motion.

The selected values of ügo, u̇go, and ugo are consistent with u̇go/ügo = 122 cm/s/g
and ügo × ugo/u̇2

go = 6. These ratios are considered representative of ground motions on
firm ground. For such sites the resulting spectrum may be scaled to conform to the peak
ground acceleration estimated for the site. Thus if this estimate is 0.4g, the spectrum of
Figs. 6.9.7 to 6.9.9 multiplied by 0.4 gives the design spectrum for the site. Such a simple
approach may be reasonable if a site-specific seismic hazard analysis is not planned.

6.10 COMPARISON OF DESIGN AND RESPONSE SPECTRA

It is instructive to compare the “standard” design spectrum developed in Section 6.9 for
firm ground with an actual response spectrum for similar soil conditions. Figure 6.10.1
shows a standard design spectrum for ügo = 0.319g, the peak acceleration for the El
Centro ground motion; the implied values for u̇go and ugo are 38.9 cm/s and 29.0 cm,
respectively, based on the standard ratios mentioned in the preceding paragraph. Also
shown in Fig. 6.10.1 is the response spectrum for the El Centro ground motion; recall that
the actual peak values for this motion are u̇go = 33.12 cm/s and ugo = 21.34 cm. The
El Centro response spectrum agrees well with the design spectrum in the acceleration-
sensitive region, largely because the peak accelerations for the two are matched. However,
the two spectra are considerably different in the velocity-sensitive region because of the
differences (38.9 cm/s versus 33.12 cm/s) in the peak ground velocity. Similarly, they are
even more different in the displacement-sensitive region because of the larger differences
(29.0 cm versus 21.34 cm) in the peak ground displacement.

The response spectrum for an individual ground motion differs from the design
spectrum even if the peak values ügo, u̇go, and ugo for the two spectra are matched. In
Fig. 6.10.2 the response spectrum for the El Centro ground motion is compared with the
design spectrum for ground motion parameters ügo = 0.319g, u̇go = 33.12 cm/s and
ugo = 21.34 cm—the same as for the El Centro ground motion. Two design spectra are
included: the 50th percentile spectrum and the 84.1th percentile spectrum. The agreement
between the response and design spectra is now better because the ground motion parame-
ters are matched. However, significant differences remain: over the acceleration-sensitive
region the response spectrum is close to the 84.1th percentile design spectrum; over the
velocity- and displacement-sensitive regions the response spectrum is between the two de-
sign spectra for some periods and below the median design spectrum for other periods.

Such differences are to be expected because the design spectrum is not intended
to match the response spectrum for any particular ground motion but is constructed to
represent the average characteristics of many ground motions. These differences are due
to the inherent variability in ground motions as reflected in the probability distributions of
the amplification factors and responses; see Fig. 6.9.2.
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6.11 DISTINCTION BETWEEN DESIGN AND RESPONSE SPECTRA

A design spectrum differs conceptually from a response spectrum in two important ways.
First, the jagged response spectrum is a plot of the peak response of all possible SDF
systems and hence is a description of a particular ground motion. The smooth design
spectrum, however, is a specification of the level of seismic design force, or deformation,
as a function of natural vibration period and damping ratio. This conceptual difference
between the two spectra should be recognized, although in some situations, their shapes
may be similar. Such is the case when the design spectrum is determined by statistical
analysis of several comparable response spectra.

Second, for some sites a design spectrum is the envelope of two different elas-
tic design spectra. Consider a site in southern California that could be affected by two
different types of earthquakes: a Magnitude 6.5 earthquake originating on a nearby fault
and a Magnitude 8.5 earthquake on the distant San Andreas fault. The design spectrum
for each earthquake could be determined by the procedure developed in Section 6.9. The
ordinates and shapes of the two design spectra would differ, as shown schematically in
Fig. 6.11.1, because of the differences in earthquake magnitude and distance of the site
from the earthquake fault. The design spectrum for this site is defined as the envelope
of the design spectra for the two different types of earthquakes. Note that the short-period
portion of the design spectrum is governed by the nearby earthquake, while the long-period
portion of the design spectrum is controlled by the distant earthquake.

Before leaving the subject, we emphasize that this limited presentation on construct-
ing elastic design spectra has been narrowly focused on methods that are directly related
to structural dynamics that we have learned. In contrast, modern methods for constructing
design spectra are based on probabilistic seismic hazard analysis, which considers the past
rate of seismic activity on all faults that contribute to the seismic hazard at the site, leading
to the uniform hazard spectrum.
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6.12 VELOCITY AND ACCELERATION RESPONSE SPECTRA

We now return to the relative velocity response spectrum and the acceleration response
spectrum that were introduced in Section 6.5. In one sense there is little motivation to
study these “true” spectra because they are not needed to determine the peak deformations
and forces in a system; for this purpose the pseudo-acceleration (or pseudo-velocity or
deformation) response spectrum is sufficient. A brief discussion of these “true” spectra
is included, however, because the distinction between them and “pseudo” spectra has not
always been made in the early publications, and the two have sometimes been used inter-
changeably.
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To study the relationship between these spectra, we write them in mathematical form.
The deformation response of a linear SDF system to an arbitrary ground motion with zero
initial conditions is given by the convolution integral, Eq. (4.2.2), adapted for earthquake
excitation:

u(t) =
∫ t

0
üg(τ )h(t − τ) dτ (6.12.1)

where the unit impulse response function, h(t − τ), is given by Eq. (4.1.7). Thus,

u(t) = − 1

ωD

∫ t

0
üg(τ )e

−ζωn(t−τ) sin[ωD(t − τ)] dτ (6.12.2)

Using theorems from calculus to differentiate under the integral sign leads to

u̇(t) = −ζωnu(t)−
∫ t

0
üg(τ )e

−ζωn(t−τ) cos[ωD(t − τ)] dτ (6.12.3)

An equation for the acceleration üt (t) of the mass can be obtained by differentiating
Eq. (6.12.3) and adding the ground acceleration üg(t). However, the equation of motion
for the system [Eq. (6.2.1)] provides a more convenient alternative:

üt (t) = −ω2
nu(t)− 2ζωnu̇(t) (6.12.4)

As defined earlier, the relative-velocity spectrum and acceleration spectrum are plots of u̇o

and üt
o, the peak values of u̇(t) and üt (t), respectively, as functions of Tn .

6.12.1 Pseudo-velocity and Relative-velocity Spectra

In Fig. 6.12.1a the relative-velocity response spectrum is compared with the pseudo-velocity
response spectrum, both for El Centro ground motion and systems with ζ = 10%. The lat-
ter spectrum is simply one of the curves of Fig. 6.6.4 presented in a different form. Each
point on the relative-velocity response spectrum represents the peak velocity of an SDF
system obtained from u̇(t) determined by the numerical methods of Chapter 5. The differ-
ences between the two spectra depend on the natural period of the system. For long-period
systems, V is less than u̇o and the differences between the two are large. This can be under-
stood by recognizing that as Tn becomes very long, the mass of the system stays still while
the ground underneath moves. Thus, as Tn →∞, D→ ugo (see Section 6.8 and Fig. 6.8.5)
and u̇o → u̇go. Now D → ugo implies that V → 0 because of Eq. (6.6.1). These trends
are confirmed by the results presented in Fig. 6.12.1a. For short-period systems V exceeds
u̇o, with the differences increasing as Tn becomes shorter. For medium-period systems, the
differences between V and u̇o are small over a wide range of Tn .

In Fig. 6.12.1b the ratio V /u̇o is plotted for three damping values, ζ = 0, 10, and
20%. The differences between the two spectra, as indicated by how much the ratio V /u̇o

differs from unity, are smallest for undamped systems and increase with damping. This can
be explained from Eqs. (6.12.2) and (6.12.3) by observing that for ζ = 0, u̇(t) and ωnu(t)
are the same except for the sine and cosine terms in the integrand. With damping, the first
term in Eq. (6.12.3) contributes to u̇(t), suggesting that u̇(t) would differ from ωnu(t) to a
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Figure 6.12.2 (a) Comparison between pseudo-acceleration and acceleration response
spectra; ζ = 10%; (b) ratio A/üt

o for ζ = 0, 10, and 20%.

greater degree. Over the medium-period range V can be taken as an approximation to u̇o

for the practical range of damping.

6.12.2 Pseudo-acceleration and Acceleration Spectra

The pseudo-acceleration and acceleration response spectra are identical for systems with-
out damping. This is apparent from Eq. (6.12.4), which for undamped systems specializes
to

üt (t) = −ω2
nu(t) (6.12.5)

The peak values of the two sides are therefore equal, that is,

üt
o = ω2

nuo = ω2
n D = A (6.12.6)

With damping, Eq. (6.12.5) is not valid at all times, but only at the time instants when
u̇(t) = 0, in particular when u(t) attains its peak uo. At this instant, −ω2

nuo represents
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the true acceleration of the mass. The peak value üt
o of üt (t) does not occur at the same

instant, however, unless ζ = 0. The peak values üt
o and A occur at the same time and are

equal only for ζ = 0.
Equation (6.12.4) suggests that the differences between A and üt

o are expected to
increase as the damping increases. This expectation is confirmed by the data presented in
Fig. 6.12.2, where the pseudo-acceleration and the acceleration spectra for the El Centro
ground motion are plotted for ζ = 10%, and the ratio A/üt

o is presented for three damping
values. The difference between the two spectra is small for short-period systems and is of
some significance only for long-period systems with large values of damping. Thus for a
wide range of conditions the pseudo-acceleration may be treated as an approximation to
the true acceleration.

As the natural vibration period Tn of a system approaches infinity, the mass of the
system stays still while the ground underneath moves. Thus, as Tn → ∞, üt

o → 0 and
D → ugo; the latter implies that A→ 0 because of Eq. (6.6.3). Both A and (üt )o → 0 as
Tn →∞, but at different rates, as evident from the ratio A/üt

o plotted as a function of Tn;
A→ 0 at a much faster rate because of T 2

n in the denominator of Eq. (6.6.3).
Another way of looking at the differences between the two spectra is by recalling

that m A is equal to the peak value of the elastic-resisting force. In contrast, müt
o is equal

to the peak value of the sum of elastic and damping forces. As seen in Fig. 6.12.3b, the
pseudo-acceleration is smaller than the true acceleration, because it is that part of the true
acceleration which gives the elastic force.

Parenthetically, we note that the widespread adoption of the prefix pseudo is in one
sense misleading. The literal meaning of pseudo (false) is not really appropriate since we
are dealing with approximation rather than with concepts that are in any sense false or in-
appropriate. In fact, there is rarely the need to use the “pseudo”-spectra as approximations
to the “true” spectra because the latter can be computed by the same numerical procedures
as those used for the former. Furthermore, as emphasized earlier, the pseudo quantities
provide the exact values of the desired deformation and forces.
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APPENDIX 6: EL CENTRO, 1940 GROUND MOTION

The north–south component of the ground motion recorded at a site in El Centro,
California, during the Imperial Valley, California, earthquake of May 18, 1940, is shown
in Fig. 6.1.4. This particular version of this record is used throughout this book, and is
required in solving some of the end-of-chapter problems. Numerical values for the ground
acceleration in units of g, the acceleration due to gravity, are presented in Table A6.1.
This includes 1559 data points at equal time spacings of 0.02 s, to be read row by row;
the first value is at t = 0.02 s; acceleration at t = 0 is zero. These data are also avail-
able electronically from the National Information Service for Earthquake Engineering
(NISEE), University of California at Berkeley, on the World Wide Web at the following
URL: <http://nisee.berkeley.edu/data/strong motion/a.k.chopra/index.html>.
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TABLE A6.1 GROUND ACCELERATION DATA

0.00630 0.00364 0.00099 0.00428 0.00758 0.01087 0.00682 0.00277
−0.00128 0.00368 0.00864 0.01360 0.00727 0.00094 0.00420 0.00221

0.00021 0.00444 0.00867 0.01290 0.01713 −0.00343 −0.02400 −0.00992
0.00416 0.00528 0.01653 0.02779 0.03904 0.02449 0.00995 0.00961
0.00926 0.00892 −0.00486 −0.01864 −0.03242 −0.03365 −0.05723 −0.04534
−0.03346 −0.03201 −0.03056 −0.02911 −0.02766 −0.04116 −0.05466 −0.06816
−0.08166 −0.06846 −0.05527 −0.04208 −0.04259 −0.04311 −0.02428 −0.00545

0.01338 0.03221 0.05104 0.06987 0.08870 0.04524 0.00179 −0.04167
−0.08513 −0.12858 −0.17204 −0.12908 −0.08613 −0.08902 −0.09192 −0.09482
−0.09324 −0.09166 −0.09478 −0.09789 −0.12902 −0.07652 −0.02401 0.02849

0.08099 0.13350 0.18600 0.23850 0.21993 0.20135 0.18277 0.16420
0.14562 0.16143 0.17725 0.13215 0.08705 0.04196 −0.00314 −0.04824
−0.09334 −0.13843 −0.18353 −0.22863 −0.27372 −0.31882 −0.25024 −0.18166
−0.11309 −0.04451 0.02407 0.09265 0.16123 0.22981 0.29839 0.23197

0.16554 0.09912 0.03270 −0.03372 −0.10014 −0.16656 −0.23299 −0.29941
−0.00421 0.29099 0.22380 0.15662 0.08943 0.02224 −0.04495 0.01834

0.08163 0.14491 0.20820 0.18973 0.17125 0.13759 0.10393 0.07027
0.03661 0.00295 −0.03071 −0.00561 0.01948 0.04458 0.06468 0.08478
0.10487 0.05895 0.01303 −0.03289 −0.07882 −0.03556 0.00771 0.05097
0.01013 −0.03071 −0.07156 −0.11240 −0.15324 −0.11314 −0.07304 −0.03294
0.00715 −0.06350 −0.13415 −0.20480 −0.12482 −0.04485 0.03513 0.11510
0.19508 0.12301 0.05094 −0.02113 −0.09320 −0.02663 0.03995 0.10653
0.17311 0.11283 0.05255 −0.00772 0.01064 0.02900 0.04737 0.06573
0.02021 −0.02530 −0.07081 −0.04107 −0.01133 0.00288 0.01709 0.03131
−0.02278 −0.07686 −0.13095 −0.18504 −0.14347 −0.10190 −0.06034 −0.01877

0.02280 −0.00996 −0.04272 −0.02147 −0.00021 0.02104 −0.01459 −0.05022
−0.08585 −0.12148 −0.15711 −0.19274 −0.22837 −0.18145 −0.13453 −0.08761
−0.04069 0.00623 0.05316 0.10008 0.14700 0.09754 0.04808 −0.00138

0.05141 0.10420 0.15699 0.20979 0.26258 0.16996 0.07734 −0.01527
−0.10789 −0.20051 −0.06786 0.06479 0.01671 −0.03137 −0.07945 −0.12753
−0.17561 −0.22369 −0.27177 −0.15851 −0.04525 0.06802 0.18128 0.14464

0.10800 0.07137 0.03473 0.09666 0.15860 0.22053 0.18296 0.14538
0.10780 0.07023 0.03265 0.06649 0.10033 0.13417 0.10337 0.07257
0.04177 0.01097 −0.01983 0.04438 0.10860 0.17281 0.10416 0.03551
−0.03315 −0.10180 −0.07262 −0.04344 −0.01426 0.01492 −0.02025 −0.05543
−0.09060 −0.12578 −0.16095 −0.19613 −0.14784 −0.09955 −0.05127 −0.00298
−0.01952 −0.03605 −0.05259 −0.04182 −0.03106 −0.02903 −0.02699 0.02515

0.01770 0.02213 0.02656 0.00419 −0.01819 −0.04057 −0.06294 −0.02417
0.01460 0.05337 0.02428 −0.00480 −0.03389 −0.00557 0.02274 0.00679
−0.00915 −0.02509 −0.04103 −0.05698 −0.01826 0.02046 0.00454 −0.01138
−0.00215 0.00708 0.00496 0.00285 0.00074 −0.00534 −0.01141 0.00361

0.01863 0.03365 0.04867 0.03040 0.01213 −0.00614 −0.02441 0.01375
0.01099 0.00823 0.00547 0.00812 0.01077 −0.00692 −0.02461 −0.04230
−0.05999 −0.07768 −0.09538 −0.06209 −0.02880 0.00448 0.03777 0.01773
−0.00231 −0.02235 0.01791 0.05816 0.03738 0.01660 −0.00418 −0.02496
−0.04574 −0.02071 0.00432 0.02935 0.01526 0.01806 0.02086 0.00793
−0.00501 −0.01795 −0.03089 −0.01841 −0.00593 0.00655 −0.02519 −0.05693
−0.04045 −0.02398 −0.00750 0.00897 0.00384 −0.00129 −0.00642 −0.01156
−0.02619 −0.04082 −0.05545 −0.04366 −0.03188 −0.06964 −0.05634 −0.04303
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TABLE A6.1 GROUND ACCELERATION DATA (Continued )

−0.02972 −0.01642 −0.00311 0.01020 0.02350 0.03681 0.05011 0.02436
−0.00139 −0.02714 −0.00309 0.02096 0.04501 0.06906 0.05773 0.04640

0.03507 0.03357 0.03207 0.03057 0.03250 0.03444 0.03637 0.01348
−0.00942 −0.03231 −0.02997 −0.03095 −0.03192 −0.02588 −0.01984 −0.01379
−0.00775 −0.01449 −0.02123 0.01523 0.05170 0.08816 0.12463 0.16109

0.12987 0.09864 0.06741 0.03618 0.00495 0.00420 0.00345 0.00269
−0.05922 −0.12112 −0.18303 −0.12043 −0.05782 0.00479 0.06740 0.13001

0.08373 0.03745 0.06979 0.10213 −0.03517 −0.17247 −0.13763 −0.10278
−0.06794 −0.03310 −0.03647 −0.03984 −0.00517 0.02950 0.06417 0.09883

0.13350 0.05924 −0.01503 −0.08929 −0.16355 −0.06096 0.04164 0.01551
−0.01061 −0.03674 −0.06287 −0.08899 −0.05430 −0.01961 0.01508 0.04977

0.08446 0.05023 0.01600 −0.01823 −0.05246 −0.08669 −0.06769 −0.04870
−0.02970 −0.01071 0.00829 −0.00314 0.02966 0.06246 −0.00234 −0.06714
−0.04051 −0.01388 0.01274 0.00805 0.03024 0.05243 0.02351 −0.00541
−0.03432 −0.06324 −0.09215 −0.12107 −0.08450 −0.04794 −0.01137 0.02520

0.06177 0.04028 0.01880 0.04456 0.07032 0.09608 0.12184 0.06350
0.00517 −0.05317 −0.03124 −0.00930 0.01263 0.03457 0.03283 0.03109
0.02935 0.04511 0.06087 0.07663 0.09239 0.05742 0.02245 −0.01252
0.00680 0.02611 0.04543 0.01571 −0.01402 −0.04374 −0.07347 −0.03990
−0.00633 0.02724 0.06080 0.03669 0.01258 −0.01153 −0.03564 −0.00677

0.02210 0.05098 0.07985 0.06915 0.05845 0.04775 0.03706 0.02636
0.05822 0.09009 0.12196 0.10069 0.07943 0.05816 0.03689 0.01563
−0.00564 −0.02690 −0.04817 −0.06944 −0.09070 −0.11197 −0.11521 −0.11846
−0.12170 −0.12494 −0.16500 −0.20505 −0.15713 −0.10921 −0.06129 −0.01337

0.03455 0.08247 0.07576 0.06906 0.06236 0.08735 0.11235 0.13734
0.12175 0.10616 0.09057 0.07498 0.08011 0.08524 0.09037 0.06208
0.03378 0.00549 −0.02281 −0.05444 −0.04030 −0.02615 −0.01201 −0.02028
−0.02855 −0.06243 −0.03524 −0.00805 −0.04948 −0.03643 −0.02337 −0.03368
−0.01879 −0.00389 0.01100 0.02589 0.01446 0.00303 −0.00840 0.00463

0.01766 0.03069 0.04372 0.02165 −0.00042 −0.02249 −0.04456 −0.03638
−0.02819 −0.02001 −0.01182 −0.02445 −0.03707 −0.04969 −0.05882 −0.06795
−0.07707 −0.08620 −0.09533 −0.06276 −0.03018 0.00239 0.03496 0.04399

0.05301 0.03176 0.01051 −0.01073 −0.03198 −0.05323 0.00186 0.05696
0.01985 −0.01726 −0.05438 −0.01204 0.03031 0.07265 0.11499 0.07237
0.02975 −0.01288 0.01212 0.03711 0.03517 0.03323 0.01853 0.00383
0.00342 −0.02181 −0.04704 −0.07227 −0.09750 −0.12273 −0.08317 −0.04362
−0.00407 0.03549 0.07504 0.11460 0.07769 0.04078 0.00387 0.00284

0.00182 −0.05513 0.04732 0.05223 0.05715 0.06206 0.06698 0.07189
0.02705 −0.01779 −0.06263 −0.10747 −0.15232 −0.12591 −0.09950 −0.07309
−0.04668 −0.02027 0.00614 0.03255 0.00859 −0.01537 −0.03932 −0.06328
−0.03322 −0.00315 0.02691 0.01196 −0.00300 0.00335 0.00970 0.01605

0.02239 0.04215 0.06191 0.08167 0.03477 −0.01212 −0.01309 −0.01407
−0.05274 −0.02544 0.00186 0.02916 0.05646 0.08376 0.01754 −0.04869
−0.02074 0.00722 0.03517 −0.00528 −0.04572 −0.08617 −0.06960 −0.05303
−0.03646 −0.01989 −0.00332 0.01325 0.02982 0.01101 −0.00781 −0.02662
−0.00563 0.01536 0.03635 0.05734 0.03159 0.00584 −0.01992 −0.00201

0.01589 −0.01024 −0.03636 −0.06249 −0.04780 −0.03311 −0.04941 −0.06570
−0.08200 −0.04980 −0.01760 0.01460 0.04680 0.07900 0.04750 0.01600
−0.01550 −0.00102 0.01347 0.02795 0.04244 0.05692 0.03781 0.01870
−0.00041 −0.01952 −0.00427 0.01098 0.02623 0.04148 0.01821 −0.00506
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TABLE A6.1 GROUND ACCELERATION DATA (Continued )

−0.00874 −0.03726 −0.06579 −0.02600 0.01380 0.05359 0.09338 0.05883
0.02429 −0.01026 −0.04480 −0.01083 −0.01869 −0.02655 −0.03441 −0.02503
−0.01564 −0.00626 −0.01009 −0.01392 0.01490 0.04372 0.03463 0.02098

0.00733 −0.00632 −0.01997 0.00767 0.03532 0.03409 0.03287 0.03164
0.02403 0.01642 0.00982 0.00322 −0.00339 0.02202 −0.01941 −0.06085
−0.10228 −0.07847 −0.05466 −0.03084 −0.00703 0.01678 0.01946 0.02214

0.02483 0.01809 −0.00202 −0.02213 −0.00278 0.01656 0.03590 0.05525
0.07459 0.06203 0.04948 0.03692 −0.00145 0.04599 0.04079 0.03558
0.03037 0.03626 0.04215 0.04803 0.05392 0.04947 0.04502 0.04056
0.03611 0.03166 0.00614 −0.01937 −0.04489 −0.07040 −0.09592 −0.07745
−0.05899 −0.04052 −0.02206 −0.00359 0.01487 0.01005 0.00523 0.00041
−0.00441 −0.00923 −0.01189 −0.01523 −0.01856 −0.02190 −0.00983 0.00224

0.01431 0.00335 −0.00760 −0.01856 −0.00737 0.00383 0.01502 0.02622
0.01016 −0.00590 −0.02196 −0.00121 0.01953 0.04027 0.02826 0.01625
0.00424 0.00196 −0.00031 −0.00258 −0.00486 −0.00713 −0.00941 −0.01168
−0.01396 −0.01750 −0.02104 −0.02458 −0.02813 −0.03167 −0.03521 −0.04205
−0.04889 −0.03559 −0.02229 −0.00899 0.00431 0.01762 0.00714 −0.00334
−0.01383 0.01314 0.04011 0.06708 0.04820 0.02932 0.01043 −0.00845
−0.02733 −0.04621 −0.03155 −0.01688 −0.00222 0.01244 0.02683 0.04121

0.05559 0.03253 0.00946 −0.01360 −0.01432 −0.01504 −0.01576 −0.04209
−0.02685 −0.01161 0.00363 0.01887 0.03411 0.03115 0.02819 0.02917

0.03015 0.03113 0.00388 −0.02337 −0.05062 −0.03820 −0.02579 −0.01337
−0.00095 0.01146 0.02388 0.03629 0.01047 −0.01535 −0.04117 −0.06699
−0.05207 −0.03715 −0.02222 −0.00730 0.00762 0.02254 0.03747 0.04001

0.04256 0.04507 0.04759 0.05010 0.04545 0.04080 0.02876 0.01671
0.00467 −0.00738 −0.00116 0.00506 0.01128 0.01750 −0.00211 −0.02173
−0.04135 −0.06096 −0.08058 −0.06995 −0.05931 −0.04868 −0.03805 −0.02557
−0.01310 −0.00063 0.01185 0.02432 0.03680 0.04927 0.02974 0.01021
−0.00932 −0.02884 −0.04837 −0.06790 −0.04862 −0.02934 −0.01006 0.00922

0.02851 0.04779 0.02456 0.00133 −0.02190 −0.04513 −0.06836 −0.04978
−0.03120 −0.01262 0.00596 0.02453 0.04311 0.06169 0.08027 0.09885

0.06452 0.03019 −0.00414 −0.03848 −0.07281 −0.05999 −0.04717 −0.03435
−0.03231 −0.03028 −0.02824 −0.00396 0.02032 0.00313 −0.01406 −0.03124
−0.04843 −0.06562 −0.05132 −0.03702 −0.02272 −0.00843 0.00587 0.02017

0.02698 0.03379 0.04061 0.04742 0.05423 0.03535 0.01647 0.01622
0.01598 0.01574 0.00747 −0.00080 −0.00907 0.00072 0.01051 0.02030
0.03009 0.03989 0.03478 0.02967 0.02457 0.03075 0.03694 0.04313
0.04931 0.05550 0.06168 −0.00526 −0.07220 −0.06336 −0.05451 −0.04566
−0.03681 −0.03678 −0.03675 −0.03672 −0.01765 0.00143 0.02051 0.03958

0.05866 0.03556 0.01245 −0.01066 −0.03376 −0.05687 −0.04502 −0.03317
−0.02131 −0.00946 0.00239 −0.00208 −0.00654 −0.01101 −0.01548 −0.01200
−0.00851 −0.00503 −0.00154 0.00195 0.00051 −0.00092 0.01135 0.02363

0.03590 0.04818 0.06045 0.07273 0.02847 −0.01579 −0.06004 −0.05069
−0.04134 −0.03199 −0.03135 −0.03071 −0.03007 −0.01863 −0.00719 0.00425

0.01570 0.02714 0.03858 0.02975 0.02092 0.02334 0.02576 0.02819
0.03061 0.03304 0.01371 −0.00561 −0.02494 −0.02208 −0.01923 −0.01638
−0.01353 −0.01261 −0.01170 −0.00169 0.00833 0.01834 0.02835 0.03836

0.04838 0.03749 0.02660 0.01571 0.00482 −0.00607 −0.01696 −0.00780
0.00136 0.01052 0.01968 0.02884 −0.00504 −0.03893 −0.02342 −0.00791
0.00759 0.02310 0.00707 −0.00895 −0.02498 −0.04100 −0.05703 −0.02920
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TABLE A6.1 GROUND ACCELERATION DATA (Continued )

−0.00137 0.02645 0.05428 0.03587 0.01746 −0.00096 −0.01937 −0.03778
−0.02281 −0.00784 0.00713 0.02210 0.03707 0.05204 0.06701 0.08198

0.03085 −0.02027 −0.07140 −0.12253 −0.08644 −0.05035 −0.01426 0.02183
0.05792 0.09400 0.13009 0.03611 −0.05787 −0.04802 −0.03817 −0.02832
0.02970 0.03993 0.05017 0.06041 0.07065 0.08089 −0.00192 −0.08473
−0.01846 −0.00861 −0.03652 −0.06444 −0.06169 −0.05894 −0.05618 −0.06073
−0.06528 −0.04628 −0.02728 −0.00829 0.01071 0.02970 0.03138 0.03306

0.03474 0.03642 0.04574 0.05506 0.06439 0.07371 0.08303 0.03605
−0.01092 −0.05790 −0.04696 −0.03602 −0.02508 −0.01414 −0.03561 −0.05708
−0.07855 −0.06304 −0.04753 −0.03203 −0.01652 −0.00102 0.00922 0.01946
−0.07032 −0.05590 −0.04148 −0.05296 −0.06443 −0.07590 −0.08738 −0.09885
−0.06798 −0.03710 −0.00623 0.02465 0.05553 0.08640 0.11728 0.14815

0.08715 0.02615 −0.03485 −0.09584 −0.07100 −0.04616 −0.02132 0.00353
0.02837 0.05321 −0.00469 −0.06258 −0.12048 −0.09960 −0.07872 −0.05784
−0.03696 −0.01608 0.00480 0.02568 0.04656 0.06744 0.08832 0.10920

0.13008 0.10995 0.08982 0.06969 0.04955 0.04006 0.03056 0.02107
0.01158 0.00780 0.00402 0.00024 −0.00354 −0.00732 −0.01110 −0.00780
−0.00450 −0.00120 0.00210 0.00540 −0.00831 −0.02203 −0.03575 −0.04947
−0.06319 −0.05046 −0.03773 −0.02500 −0.01227 0.00046 0.00482 0.00919

0.01355 0.01791 0.02228 0.00883 −0.00462 −0.01807 −0.03152 −0.02276
−0.01401 −0.00526 0.00350 0.01225 0.02101 0.01437 0.00773 0.00110

0.00823 0.01537 0.02251 0.01713 0.01175 0.00637 0.01376 0.02114
0.02852 0.03591 0.04329 0.03458 0.02587 0.01715 0.00844 −0.00027
−0.00898 −0.00126 0.00645 0.01417 0.02039 0.02661 0.03283 0.03905

0.04527 0.03639 0.02750 0.01862 0.00974 0.00086 −0.01333 −0.02752
−0.04171 −0.02812 −0.01453 −0.00094 0.01264 0.02623 0.01690 0.00756
−0.00177 −0.01111 −0.02044 −0.02977 −0.03911 −0.02442 −0.00973 0.00496

0.01965 0.03434 0.02054 0.00674 −0.00706 −0.02086 −0.03466 −0.02663
−0.01860 −0.01057 −0.00254 −0.00063 0.00128 0.00319 0.00510 0.00999

0.01488 0.00791 0.00093 −0.00605 0.00342 0.01288 0.02235 0.03181
0.04128 0.02707 0.01287 −0.00134 −0.01554 −0.02975 −0.04395 −0.03612
−0.02828 −0.02044 −0.01260 −0.00476 0.00307 0.01091 0.00984 0.00876

0.00768 0.00661 0.01234 0.01807 0.02380 0.02953 0.03526 0.02784
0.02042 0.01300 −0.03415 −0.00628 −0.00621 −0.00615 −0.00609 −0.00602
−0.00596 −0.00590 −0.00583 −0.00577 −0.00571 −0.00564 −0.00558 −0.00552
−0.00545 −0.00539 −0.00532 −0.00526 −0.00520 −0.00513 −0.00507 −0.00501
−0.00494 −0.00488 −0.00482 −0.00475 −0.00469 −0.00463 −0.00456 −0.00450
−0.00444 −0.00437 −0.00431 −0.00425 −0.00418 −0.00412 −0.00406 −0.00399
−0.00393 −0.00387 −0.00380 −0.00374 −0.00368 −0.00361 −0.00355 −0.00349
−0.00342 −0.00336 −0.00330 −0.00323 −0.00317 −0.00311 −0.00304 −0.00298
−0.00292 −0.00285 −0.00279 −0.00273 −0.00266 −0.00260 −0.00254 −0.00247
−0.00241 −0.00235 −0.00228 −0.00222 −0.00216 −0.00209 −0.00203 −0.00197
−0.00190 −0.00184 −0.00178 −0.00171 −0.00165 −0.00158 −0.00152 −0.00146
−0.00139 −0.00133 −0.00127 −0.00120 −0.00114 −0.00108 −0.00101 −0.00095
−0.00089 −0.00082 −0.00076 −0.00070 −0.00063 −0.00057 −0.00051 −0.00044
−0.00038 −0.00032 −0.00025 −0.00019 −0.00013 −0.00006 0.00000
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P R O B L E M S

∗6.1 Determine the deformation response u(t) for 0 ≤ t ≤ 15 s for an SDF system with natural
period Tn = 2 s and damping ratio ζ = 0 to El Centro 1940 ground motion. The ground ac-
celeration values are available at every �t = 0.02 s in Appendix 6. Implement the numerical
time-stepping algorithm of Section 5.2. Plot u(t) and compare it with Fig. 6.4.1.

∗6.2 Solve Problem 6.1 for ζ = 5%.
∗6.3 Solve Problem 6.2 by the central difference method.

6.4 Derive equations for the deformation, pseudo-velocity, and pseudo-acceleration response spec-
tra for ground acceleration üg(t) = u̇goδ(t), where δ(t) is the Dirac delta function and u̇go

is the increment in velocity or the magnitude of the acceleration impulse. Plot the spectra for
ζ = 0 and 10%.

6.5 An SDF undamped system is subjected to ground motion üg(t) consisting of a sequence of
two acceleration impulses, each with a velocity increment u̇go, as shown in Fig. P6.5.
(a) Plot the displacement response of the system td/Tn = 1

8 , 1
4 , 1

2 , and 1. For each case show
the response to individual impulses and the combined response.
(b) Determine the deformation response spectrum for this excitation by plotting uo/(u̇go/ωn)

as a function of td/Tn . Indicate separately the maximum occurring during t ≤ td and during
t ≥ td .
(c) Determine the pseudo-velocity response spectrum for this excitation with td = 0.5 s by
plotting V /u̇go as a function of fn = 1/Tn .

t

ug
..

ugo
.

ugo
.td

Figure P6.5

t

ug
..

ugo
.

ugo
.

td

Figure P6.6

6.6 Repeat Problem 6.5 with the two velocity pulses acting in the same direction (Fig. P6.6).

6.7 Consider harmonic ground motion üg(t) = ügo sin(2π t/T ).
(a) Derive equations for A and for üt

o in terms of the natural vibration period Tn and the
damping ratio ζ of the SDF system. A is the peak value for the pseudo-acceleration, and üt

o
is the peak value of the true acceleration. Consider only the steady-state response.
(b) Show that A and üt

o are identical for undamped systems but different for damped systems.
(c) Graphically display the two response spectra by plotting the normalized values A/ügo and
üt

o/ügo against Tn/T , the ratio of the natural vibration period of the system and the period of
the excitation.

∗Denotes that a computer is necessary to solve this problem.
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6.8–
6.9

Certain types of near-fault ground motion can be represented by a full sinusoidal cycle of
ground acceleration (Fig. P6.8) or a full cosine cycle of ground acceleration (Fig. P6.9).
Assuming that the ground velocity and displacement are both zero at time zero, plot the ground
velocity and ground displacement as a function of time. Determine the pseudo-acceleration
response spectrum for undamped systems. Plot this spectrum against td/Tn . How will the
true-acceleration response spectrum differ?

t

u
g

..

u
go

..

−u
go

..

t
d

Figure P6.8

t

u
g

..

u
go

..

−u
go

..

t
d

Figure P6.9

6.10 A 3-m-long vertical cantilever made of a 150-mm-nominal-diameter standard steel pipe sup-
ports a 1200-kg mass attached at the tip, as shown in Fig. P6.10. The properties of the pipe
are: outside diameter = 168.3 mm, inside diameter = 154.1 mm, thickness = 7.1 mm, second
moment of cross-sectional area I = 1171 cm4, Young’s modulus E = 200,000 MPa, and
mass per unit length = 28.19 kg/m. Determine the peak deformation and the bending stress
in the cantilever due to the El Centro ground motion; assume that ζ = 5%.

1200 kg

•
•

3 m

15
0-

m
m

 s
td

st
ee

l p
ip

e

Figure P6.10

6.11 (a) A full water tank is supported on an 25-m-high cantilever tower. It is idealized as an SDF
system with mass m = 50,000 kg, lateral stiffness k = 700 kN/m, and damping ratio ζ = 5%.
The tower supporting the tank is to be designed for ground motion characterized by the design
spectrum of Fig. 6.9.5 scaled to 0.5g peak ground acceleration. Determine the design values
of lateral deformation and base shear.
(b) The deformation computed for the system in Part (a) seemed excessive to the structural
designer, who decided to stiffen the tower by increasing its size. Determine the design values
of deformation and base shear for the modified system if its lateral stiffness is 1400 kN/m;
assume that the damping ratio is still 5%. Comment on how stiffening the system has affected
the design requirements. What is the disadvantage of stiffening the system?
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(c) If the stiffened tower were to support a tank with a mass of 100,000 kg, determine the
design requirements; assume for purposes of this example that the damping ratio is still 5%.
Comment on how the increased mass has affected the design requirements.

6.12 Solve Problem 6.11 modified as follows: m = 7000 kg in part (a) and m = 14,000 kg in
part (c).

6.13 Solve Problem 6.11 modified as follows: m = 700,000 kg in part (a) and m = 1,400,000 kg
in part (c).

6.14 A one-story reinforced-concrete building is idealized for structural analysis as a massless
frame supporting a dead load of 5000 kg at the beam level. The frame is 8 m wide and 4 m
high. Each column, clamped at the base, has a 25 cm-square cross section. The Young’s
modulus of concrete is 20 GPa, and the damping ratio of the building is estimated as 5%. If
the building is to be designed for the design spectrum of Fig. 6.9.5 scaled to a peak ground
acceleration of 0.5g, determine the design values of lateral deformation and bending moments
in the columns for two conditions:
(a) The cross section of the beam is much larger than that of the columns, so the beam may
be assumed as rigid in flexure.
(b) The beam cross section is much smaller than the columns, so the beam stiffness can be
ignored. Comment on the influence of beam stiffness on the design quantities.

6.15 The columns of the frame of Problem 6.14 with condition (a) (i.e., rigid beam) are hinged at
the base. For the same design earthquake, determine the design values of lateral deformation
and bending moments on the columns. Comment on the influence of base fixity on the design
deformation and bending moments.

6.16 Determine the peak response of the one-story industrial building of Example 1.2 to ground
motion characterized by the design spectrum of Fig. 6.9.5 scaled to a peak ground motion
acceleration of 0.25g.
(a) For north-south excitation determine the lateral displacement of the roof and the bending
moments in the columns.
(b) For east-west excitation determine the lateral displacement of the roof and the axial force
in each brace.

6.17 A small one-story reinforced-concrete building shown in Fig. P6.17 is idealized as a massless
frame supporting a total dead load of 5000 kg at the beam level. Each 25 cm2 column is
hinged at the base; the beam may be assumed to be rigid in flexure; and E = 20,000 MPa.
Determine the peak response of this structure to ground motion characterized by the design
spectrum of Fig. 6.9.5 scaled to 0.25g peak ground acceleration. The response quantities of
interest are the displacement at the top of the frame and the bending moments in the two
columns. Draw the bending moment diagram.

•
•

3 m

•
•

6 m

Figure P6.17
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6.18 A one-story steel frame of 8 m span and 4 m height has the following properties: The
second moments of cross-sectional area for beam and columns are Ib = 6500 cm4 and
Ic = 13,000 cm4, respectively; the elastic modulus for steel is 200,000 MPa. For purposes
of dynamic analysis the frame is considered massless with a mass of 50,000 kg lumped at
the beam level; the columns are clamped at the base; the damping ratio is estimated at 5%.
Determine the peak values of lateral displacement at the beam level and bending moments
throughout the frame due to the design spectrum of Fig. 6.9.5 scaled to a peak ground accel-
eration of 0.5g.

6.19 Solve Problem 6.18 assuming that the columns are hinged at the base. Comment on the
influence of base fixity on the design deformation and bending moments.

6.20 The ash hopper in Fig. 6.20 consists of a bin mounted on a rigid platform supported by four
columns 8 m long. The mass of the platform, bin, and contents is 50,000 kg and may be taken
as a point mass located 2 m above the bottom of the platform. The columns are braced in the
longitudinal direction, that is, normal to the plane of the paper, but are unbraced in the trans-
verse direction. The column properties are: A = 120 cm2, E = 200 GPa, I = 80,000 cm4,
and S = 2800 cm3. Taking damping ratio to be 5%, find the peak lateral displacement and
the peak stress in the columns due to gravity and the earthquake characterized by the design
spectrum of Fig. 6.9.5 scaled to 1

3 g acting in the transverse direction. Take the columns to be
clamped at the base and at the rigid platform. Neglect axial deformation of the column and
gravity effects on the lateral stiffness.

6 m

8 m

2 m

Figure P6.20

6.21 The structure of Example 1.7 subjected to rotational acceleration ügθ = δ(t) of the foundation.
Derive an equation for the rotation uθ (t) of the roof slab in terms of IO , kx , ky , b, and d.
Neglect damping.

6.22 The peak response of the system described in Examples 1.7 and 2.4 due to rotational ground
acceleration ügθ (see Fig. E1.7) is to be determined; ζ = 5%. The design spectrum for
translational ground acceleration (b/2)ügθ is given by Fig. 6.9.5 scaled to a peak ground
acceleration of 0.05g. Determine the displacement at each corner of the roof slab, the base
torque, and the bending moments about the x and y axes at the base of each column.

6.23 For the design earthquake at a site, the peak values of ground acceleration, velocity, and dis-
placement have been estimated: ügo = 0.5g, u̇go = 60 cm/s, and ugo = 50 cm. For systems
with 2% damping ratio, construct the 50th and 84.1th percentile design spectra.
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(a) Plot both spectra, together, on four-way log paper.
(b) Plot the 84.1th percentile spectrum for pseudo-acceleration on log-log paper, and deter-
mine the equations for A(Tn) for each branch of the spectrum and the period values at the
intersections of the branches.
(c) Plot the spectrum of part (b) on a linear-linear graph (the Tn scale should cover the range
0 to 5 s).



7

Earthquake Response of
Inelastic Systems

PREVIEW

We have shown that the peak base shear induced in a linearly elastic system by ground
motion is Vb = (A/g)w, where w is the weight of the system and A is the pseudo-
acceleration spectrum ordinate corresponding to the natural vibration period and damp-
ing of the system (Chapter 6). Most buildings are designed, however, for base shear
smaller than the elastic base shear associated with the strongest shaking that can occur
at the site. This becomes clear from Fig. 7.1, wherein the base shear coefficient A/g
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Figure 7.1 Comparison of base shear
coefficients from elastic design spectrum
and International Building Code.
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from the design spectrum of Fig. 6.9.5, scaled by 0.4 to correspond to peak ground
acceleration of 0.4g, is compared with the base shear coefficient specified in the 2000
International Building Code. This disparity implies that buildings designed for the code
forces would be deformed beyond the limit of linearly elastic behavior when subjected to
ground motions represented by the 0.4g design spectrum. Thus it should not be surprising
that buildings suffer damage during intense ground shaking. However, if an earthquake
causes damage that is too severe to be repaired economically (Figs. 7.2 and 7.3) or it
causes a building to collapse (Fig. 7.4), the design was obviously flawed. The challenge
to the engineer is to design the structure so that the damage is controlled to an acceptable
degree.

The response of structures deforming into their inelastic range during intense ground
shaking is therefore of central importance in earthquake engineering. This chapter is con-
cerned with this important subject. After introducing the elastoplastic system and the
parameters describing the system, the equation of motion is presented and the various
parameters describing the system and excitation are identified. Then the earthquake re-
sponse of elastic and inelastic systems is compared with the objective of understanding
how yielding influences structural response. This is followed by a procedure to deter-
mine the response spectrum for yield force associated with specified values of the duc-
tility factor, together with a discussion of how the spectrum can be used to determine
the design force and deformation for inelastic systems. The chapter closes with a proce-
dure to determine the design spectrum for inelastic systems from the elastic design spec-
trum, followed by a discussion of the important distinction between design and response
spectra.

7.1 FORCE–DEFORMATION RELATIONS

7.1.1 Laboratory Tests

Since the 1960s hundreds of laboratory tests have been conducted to determine the force–
deformation behavior of structural components for earthquake conditions. During an earth-
quake structures undergo oscillatory motion with reversal of deformation. Cyclic tests
simulating this condition have been conducted on structural members, assemblages of
members, reduced-scale models of structures, and on small full-scale structures. The ex-
perimental results indicate that the cyclic force–deformation behavior of a structure de-
pends on the structural material (Fig. 7.1.1) and on the structural system. The force–
deformation plots show hysteresis loops under cyclic deformations because of inelastic
behavior.

Since the 1960s many computer simulation studies have focused on the earthquake
response of SDF systems with their force–deformation behavior defined by idealized ver-
sions of experimental curves, such as in Fig. 7.1.1. For this chapter, the simplest such
idealized force–deformation behavior is chosen.



(a)

(b)

Figure 7.2 The six-story Imperial County Services Building was overstrained by the Im-
perial Valley, California, earthquake of October 15, 1979. The building is located in El
Centro, California, 9 km from the causative fault of the Magnitude 6.5 earthquake; the
peak ground acceleration near the building was 0.23g. The first-story reinforced-concrete
columns were overstrained top and bottom with partial hinging. The four columns at the
right end were shattered at ground level, which dropped the end of the building about
15 cm; see detail. The building was demolished. (Courtesy of K. V. Steinbrugge Collec-
tion, Earthquake Engineering Research Center, University of California at Berkeley.)

259



)b()a(

(d)(c)

Figure 7.3 The O’Higgin’s Tower, built in 2009, is a 21-story reinforced-concrete build-
ing with an unsymmetric (in plan) shear wall and column-resisting system that is discon-
tinuous and highly irregular over height. Located in Concepcion, 104.61 km from the point
of the initial rupture of the fault causing the Magnitude 8.8 Offshore Maule Region, Chile,
earthquake of February 27, 2010, the building experienced very strong shaking. The dam-
age was so extensive–including collapse of its 12th floor–that the building is slated to be
demolished: (a) east face; (b) southeast face; (c) south face; and (d) southeast face: three
upper floors and machine room. (Courtesy of Francisco Medina.)
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(a)

(b)

Figure 7.4 Psychiatric Day Care Center: (a) before and (b) after the San Fernando, Cali-
fornia, earthquake, Magnitude 6.4, February 9, 1971. The structural system for this two-
story reinforced-concrete building was a moment-resisting frame. However, the masonry
walls added in the second story increased significantly the stiffness and strength of this
story. The first story of the building collapsed completely. (Photograph by V. V. Bertero
in W. G. Godden collection, National Information Service for Earthquake Engineering,
University of California, Berkeley.)
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Figure 7.1.1 Force–deformation relations for structural components in different materials: (a) struc-
tural steel (from H. Krawinkler, V. V. Bertero, and E. P. Popov, “Inelastic Behavior of Steel Beam-
to Column Subassemblages,” Report No. EERC 71-7, University of California, Berkeley, 1971);
(b) reinforced concrete [from E. P. Popov and V. V. Bertero, “On Seismic Behavior of Two R/C Struc-
tural Systems for Tall Buildings,” in Structural and Geotechnical Mechanics (ed. W. J. Hall), Prentice
Hall, Englewood Cliffs, N.J., 1977]; (c) masonry [from M. J. N. Priestley, “Masonry,” in Design of
Earthquake Resistant Structures (ed. E. Rosenblueth), Pentech Press, Plymouth, U.K., 1980].

7.1.2 Elastoplastic Idealization

Consider the force–deformation relation for a structure during its initial loading shown
in Fig. 7.1.2. It is convenient to idealize this curve by an elastic–perfectly plastic (or
elastoplastic for brevity) force–deformation relation because this approximation permits,
as we will see later, the development of response spectra in a manner similar to linearly
elastic systems. The elastoplastic approximation to the actual force–deformation curve is

Actual

Idealized

uy

fy

fS

um

u
Figure 7.1.2 Force–deformation
curve during initial loading: actual and
elastoplastic idealization.
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Figure 7.1.3 Elastoplastic
force–deformation relation.

drawn, as shown in Fig. 7.1.2, so that the areas under the two curves are the same at the
value selected for the maximum displacement um . On initial loading this idealized system
is linearly elastic with stiffness k as long as the force is less than fy . Yielding begins when
the force reaches fy , the yield strength. The deformation at which yielding begins is uy ,
the yield deformation. Yielding takes place at constant force fy (i.e., the stiffness is zero).

Figure 7.1.3 shows a typical cycle of loading, unloading, and reloading for an elasto-
plastic system. The yield strength is the same in the two directions of deformation. Unload-
ing from a point of maximum deformation takes place along a path parallel to the initial
elastic branch. Similarly, reloading from a point of minimum deformation takes place
along a path parallel to the initial elastic branch. The cyclic force–deformation relation
is path dependent; for deformation u at time t the resisting force fS depends on the prior
history of motion of the system and whether the deformation is currently increasing or
decreasing. Thus, the resisting force is an implicit function of deformation: fS = fS(u).

7.1.3 Corresponding Linear System

It is desired to evaluate the peak deformation of an elastoplastic system due to earthquake
ground motion and to compare this deformation to the peak deformation caused by the
same excitation in the corresponding linear system. This elastic system is defined to have
the same stiffness as the stiffness of the elastoplastic system during its initial loading; see
Fig. 7.1.4. Both systems have the same mass and damping. Therefore, the natural vibration
period of the corresponding linear system is the same as the period of the elastoplastic
system undergoing small (u ≤ uy) oscillations. At larger amplitudes of motion the natural
vibration period is not defined for inelastic systems.
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Figure 7.1.4 Elastoplastic system and its
corresponding linear system.

7.2 NORMALIZED YIELD STRENGTH, YIELD STRENGTH
REDUCTION FACTOR, AND DUCTILITY FACTOR

The normalized yield strength f y of an elastoplastic system is defined as

f y = fy

fo
= uy

uo
(7.2.1)

where fo and uo are the peak values of the earthquake-induced resisting force and defor-
mation, respectively, in the corresponding linear system. (For brevity the notation fo has
been used instead of fSo employed in preceding chapters.) The second part of Eq. (7.2.1)
is obvious because fy = kuy and fo = kuo. We may interpret fo as the minimum strength
required for the structure to remain linearly elastic during the ground motion. Normal-
ized yield strength less than unity implies that the yield strength of the system is less than
the minimum strength required for the system to remain elastic during the ground motion.
Such a system will yield and deform into the inelastic range. The normalized yield strength
of a system that remains linearly elastic is equal to unity because such a system can be in-
terpreted as an elastoplastic system with fy = fo. This system will deform exactly up to
the yield deformation during the ground motion.

Alternatively, fy can be related to fo through a yield strength reduction factor Ry

defined by

Ry = fo

fy
= uo

uy
(7.2.2)

Obviously, Ry is the reciprocal of f y ; Ry is equal to 1 for linearly elastic systems, and
Ry greater than 1 implies that the system is not strong enough to remain elastic during the
ground motion. Such a system will yield and deform into the inelastic range.

The peak, or absolute (without regard to algebraic sign) maximum, deformation of
the elastoplastic system due to the ground motion is denoted by um . It is meaningful to
normalize um relative to the yield deformation of the system:

μ = um

uy
(7.2.3)

This dimensionless ratio is called the ductility factor. For systems deforming into the
inelastic range, by definition, um exceeds uy and the ductility factor is greater than unity.
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The corresponding linear system may be interpreted as an elastoplastic system with fy =
fo, implying that the ductility factor is unity. Later, we relate the peak deformations um and
uo of the elastoplastic and corresponding linear systems. Their ratio can be expressed as

um

uo
= μ f y = μ

Ry
(7.2.4)

This equation follows directly from Eqs. (7.2.1) to (7.2.3).

7.3 EQUATION OF MOTION AND CONTROLLING PARAMETERS

The governing equation for an inelastic system, Eq. (1.7.5), is repeated here for conve-
nience:

mü + cu̇ + fS(u) = −müg(t) (7.3.1)

where the resisting force fS(u) for an elastoplastic system is shown in Fig. 7.1.3. Equa-
tion (7.3.1) will be solved numerically using the procedures of Chapter 5 to determine u(t).
The response results presented in this chapter were obtained by the average acceleration
method using a time step �t = 0.02 s, which was further subdivided to detect the tran-
sition from elastic to plastic branches, and vice versa, in the force–deformation relation
(Section 5.7).

For a given üg(t), u(t) depends on three system parameters: ωn , ζ , and uy , in ad-
dition to the form of the force–deformation relation; here the elastoplastic form has been
selected. To demonstrate this fact, Eq. (7.3.1) is divided by m to obtain

ü + 2ζωnu̇ + ω2
nuy f̃S(u) = −üg(t) (7.3.2)

where

ωn =
√

k

m
ζ = c

2m ωn
f̃S(u) = fS(u)

fy
(7.3.3)

It is clear from Eq. (7.3.2) that u(t) depends on ωn , ζ , and uy . The quantity ωn is the natural
frequency (Tn = 2π/ωn is the natural period) of the inelastic system vibrating within its
linearly elastic range (i.e., u ≤ uy). It is also the natural frequency of the corresponding
linear system. We will also refer to ωn and Tn as the small-oscillation frequency and small-
oscillation period, respectively, of the inelastic system. Similarly, ζ is the damping ratio of
the system based on the critical damping 2mωn of the inelastic system vibrating within its
linearly elastic range. It is also the damping ratio of the corresponding linear system. The
function f̃ S(u) describes the force–deformation relation in partially dimensionless form,
as shown in Fig. 7.3.1a.

For a given üg(t), the ductility factor μ depends on three system parameters: ωn ,
ζ , and f y ; recall that f y is the normalized yield strength of the elastoplastic system. This
can be demonstrated as follows. First, Eq. (7.3.2) is rewritten in terms of μ(t) ≡ u(t)/uy .
Substituting u(t) = uyμ(t), u̇(t) = uyμ̇(t), and ü(t) = uyμ̈(t) in Eq. (7.3.2) and dividing
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Figure 7.3.1 Force–deformation relations in normalized form.

by uy gives

μ̈+ 2ζωnμ̇+ ω2
n f̃S (μ) = −ω2

n

üg(t)

ay
(7.3.4)

where ay = fy/m may be interpreted as the acceleration of the mass necessary to produce
the yield force fy , and f̃ S(μ) is the force–deformation relation in dimensionless form
(Fig. 7.3.1b). The acceleration ratio üg(t)/ay is the ratio between the ground acceleration
and a measure of the yield strength of the structure. Equation (7.3.4) indicates that doubling
the ground accelerations üg(t) will produce the same response μ(t) as if the yield strength
had been halved.

Second, we observe from Eq. (7.3.4) that for a given üg(t) and form for f̃ S(μ), say
elastoplastic, μ(t) depends on ωn , ζ , and ay . In turn, ay depends on ωn , ζ , and f y ; this can
be shown by substituting Eq. (7.2.1) in the definition of ay = fy/m to obtain ay = ω2

nuo f y ,
and noting that the peak deformation uo of the corresponding linear system depends on ωn

and ζ . We have now demonstrated that for a given üg(t), μ depends on ωn , ζ , and f y .

7.4 EFFECTS OF YIELDING

To understand how the response of SDF systems is affected by inelastic action or yielding,
in this section we compare the response of an elastoplastic system to that of its corre-
sponding linear system. The excitation selected is the El Centro ground motion shown in
Fig. 6.1.4.

7.4.1 Response History

Figure 7.4.1 shows the response of a linearly elastic system with mass m, natural vibration
period Tn = 0.5 s, and no damping. The time variation of deformation shows that the sys-
tem oscillates about its undeformed equilibrium position and the peak deformation, uo =
8.48 cm; this is also the deformation response spectrum ordinate for Tn = 0.5 s and ζ = 0
(Fig. 6.6.6). Also shown is the time variation of the elastic resisting force fS; the peak
value of this force fo is given by fo/mg = 1.37. This is the minimum strength required
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ü

t /g

fo / mg = 1.37

Figure 7.4.1 Response of linear system with Tn = 0.5 s and ζ = 0 to El Centro ground
motion.

for the structure to remain elastic. In passing, note from Eq. (7.3.1) that for undamped
systems, fS(t)/mg = −üt (t)/g; recall that üt is the total acceleration of the mass. Thus
the peak value of this acceleration is üt

o = 1.37g; this is also the acceleration spectrum
ordinate for Tn = 0.5 s and ζ = 0.

Figure 7.4.2 shows the response of an elastoplastic system having the same mass
and initial stiffness as the linearly elastic system, with normalized strength f y = 0.125 (or
yield strength reduction factor Ry = 8). The yield strength of this system is fy = 0.125 fo,
where fo = 1.37mg (Fig. 7.4.1); therefore, fy = 0.125(1.37mg) = 0.171mg. To show
more detail, only the first 10 s of the response is shown in Fig. 7.4.2, which is organized
in four parts: (a) shows the deformation u(t); (b) shows the resisting force fS(t) and ac-
celeration üt (t); (c) identifies the time intervals during which the system is yielding; and
(d) shows the force–deformation relation for one cycle of motion. In the beginning, up
to point b, the deformation is small, fS < fy , and the system is vibrating within its lin-
early elastic range. We now follow in detail a vibration cycle starting at point a when
u and fS are both zero. At this point the system is linearly elastic and remains so until
point b. When the deformation reaches the yield deformation for the first time, identified
as b, yielding begins. From b to c the system is yielding (Fig. c), the force is constant
at fy (Fig. b), and the system is on the plastic branch b–c of the force–deformation re-
lation (Fig. d). At c, a local maximum of deformation, the velocity is zero, and the de-
formation begins to reverse (Fig. a); the system begins to unload elastically along c–d
(Fig. d) and is not yielding during this time (Fig. c). Unloading continues until point d
(Fig. d), when the resisting force reaches zero. Then the system begins to deform and
load in the opposite direction and this continues until fS reaches − fy at point e (Figs. b
and d). Now yielding begins in the opposite direction and continues until point f (Fig. c);
fS = − fy during this time span (Fig. b) and the system is moving along the plastic
branch e– f (Fig. d). At f a local minimum for deformation, the velocity is zero, and the
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Figure 7.4.2 Response of elastoplastic system with Tn = 0.5 s, ζ = 0, and fy = 0.125 to El Centro
ground motion: (a) deformation; (b) resisting force and acceleration; (c) time intervals of yielding; (d)
force–deformation relation.

deformation begins to reverse (Fig. a); the system begins to reload elastically along f –g
(Fig. d) and is not yielding during this time (Fig. c). Reloading brings the resisting force in
the system to zero at g, and it continues along this elastic branch until the resisting force
reaches + fy .

The time variation of deformation of the yielding system differs from that of the elas-
tic system. Unlike the elastic system (Fig. 7.4.1), the inelastic system after it has yielded
does not oscillate about its initial equilibrium position. Yielding causes the system to drift
from its initial equilibrium position, and the system oscillates around a new equilibrium
position until this gets shifted by another episode of yielding. Therefore, after the ground
has stopped shaking, the system will come to rest at a position generally different from its
initial equilibrium position (i.e., permanent deformation remains). Thus a structure that has
undergone significant yielding during an earthquake may not stand exactly vertical at the
end of the motion. For example, the roof of the pergola shown in Fig. 1.1.1 was displaced
by 22.9 cm relative to its original position at the end of the Caracas, Venezuela, earthquake
of July 29, 1967; this permanent displacement resulted from yielding of the pipe columns.
In contrast, a linear system returns to its initial equilibrium position following the decay of
free vibration after the ground has stopped shaking. The peak deformation, 4.34 cm, of the
elastoplastic system is different from the peak deformation, 8.48 cm, of the corresponding
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linear system (Figs. 7.4.1 and 7.4.2); also, these peak values are reached at different times
in the two cases.

We next examine how the response of an elastoplastic system is affected by its yield
strength. Consider four SDF systems all with identical properties in their linearly elas-
tic range: Tn = 0.5 s and ζ = 5%, but they differ in their yield strength: f y = 1,
0.5, 0.25, and 0.125. f y = 1 implies a linearly elastic system; it is the corresponding
linear system for the other three elastoplastic systems. Decreasing values of f y indicate
smaller yield strength fy . The deformation response of these four systems to the El Cen-
tro ground motion is presented in Fig. 7.4.3. The linearly elastic system ( f y = 1) os-
cillates around its equilibrium position and its peak deformation uo = 5.72 cm. The
corresponding peak value of the resisting force is fo = kuo = 0.919mg, the minimum
strength required for a system with Tn = 0.5 and ζ = 5% to remain elastic during the
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Figure 7.4.3 Deformation response and yielding of four systems due to El Centro ground motion;
Tn = 0.5 s, ζ = 5%; and fy = 1, 0.5, 0.25, and 0.125.
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selected ground motion. The other three systems with smaller yield strength— fy = 0.5 fo,
0.25 fo, and 0.125 fo, respectively—are therefore expected to deform into the inelastic
range. This expectation is confirmed by Fig. 7.4.3, where the time intervals of yielding
of these systems are identified. As might be expected intuitively, systems with lower yield
strength yield more frequently and for longer intervals. With more yielding, the perma-
nent deformation up of the structure after the ground stops shaking tends to increase, but
this trend may not be perfect. For the values of Tn and ζ selected, the peak deforma-
tions um of the three elastoplastic systems are smaller than the peak deformation uo of
the corresponding linear system. This is not always the case, however, because the rel-
ative values of um and uo depend on the natural vibration period Tn of the system and
the characteristics of the ground motion, and to a lesser degree on the damping in the
system.

The ductility factor for an elastoplastic system can be computed using Eq. (7.2.4).
For example, the peak deformations of an elastoplastic system with f y = 0.25 and the cor-
responding linear system are um = 4.45 cm and uo = 5.72 cm, respectively. Substituting
for um , uo, and f y in Eq. (7.2.4) gives the ductility factor: μ = (4.45/5.72)(1/0.25) =
3.11. This is the ductility demand imposed on this elastoplastic system by the ground mo-
tion. It represents a requirement on the design of the system in the sense that its ductility
capacity (i.e., the ability to deform beyond the elastic limit) should exceed the ductility
demand.

7.4.2 Ductility Demand, Peak Deformations, and Normalized
Yield Strength

In this section we examine how the ductility demand and the relationship between um and
uo depend on the natural vibration period Tn and on the normalized yield strength f y or
its reciprocal, the yield strength reduction factor Ry . Figure 7.4.4a is a plot of um as a
function of Tn for four values of f y = 1, 0.5, 0.25, and 0.125; uo is the same as um

for f y = 1. (Note that uo and um have been divided by the peak ground displacement
ugo = 21.3 cm; see Fig. 6.1.4.) Figure 7.4.4b shows the ratio um/uo. In Fig. 7.4.5 the
ductility factor μ is plotted versus Tn for the same four values of f y ; μ = 1 if f y = 1. The
response histories presented in Fig. 7.4.3 for systems with Tn = 0.5 s and ζ = 5% provide
the value for uo = 5.72 cm, and um = 4.11, 4.45, and 5.26 cm for f y = 0.5, 0.25, and
0.125, respectively. Two of these four data points are identified in Fig. 7.4.4a. The ductility
demands μ for the three elastoplastic systems are 1.44, 3.11 (computed in Section 7.4.1),
and 7.36, respectively. These three data points are identified in Fig. 7.4.5. Also identified
in these plots are the period values Ta , Tb, Tc, Td , Te, and Tf that define the various spectral
regions; these were introduced in Section 6.8.

We now study the trends for each spectral region based on the data in Figs. 7.4.4
and 7.4.5. For very-long-period systems (Tn > Tf ) in the displacement-sensitive region
of the spectrum, the deformation um of an elastoplastic system is independent of f y and is
essentially equal to the peak deformation uo of the corresponding linear system; the ratio
um/uo � 1. This observation can be explained as follows: For a fixed mass, such a system
is very flexible and, as mentioned in Section 6.8, its mass stays still while the ground
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beneath moves. It experiences a peak deformation equal to the peak ground displacement,
independent of f y . Thus um � uo � ugo and Eq. (7.2.4) gives μ � 1/ f y or μ � Ry , a
result confirmed by Fig. 7.4.5.

For systems with Tn in the velocity-sensitive region of the spectrum, um may be
larger or smaller than uo (i.e., um/uo may or may not exceed 1); both are affected irregu-
larly by variations in f y ; the ductility demand μ may be larger or smaller than Ry ; and the
influence of f y , although small, is not negligible.

For systems in the acceleration-sensitive region of the spectrum, um is greater than
uo, and um/uo increases with decreasing f y (i.e., decreasing yield strength) and decreasing
Tn . Therefore, according to Eq. (7.2.4), the ductility demand can be much larger than Ry ,
an observation confirmed by Fig. 7.4.5. This result implies that the ductility demand on
very-short-period systems may be large even if their strength is only slightly below that
required for the system to remain elastic.

In the preceding paragraphs we have examined the ductility demand and the rela-
tionship between the peak deformations um and uo for elastoplastic and corresponding
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linear systems, and their dependence on Tn and f y or Ry . Researchers have demonstrated
that these relationships identified for the various regions of the response spectrum for one
ground motion are valid for the corresponding spectral regions of other ground motions.
The period values Ta , Tb, Tc, Td , Te, and Tf separating these regions vary from one ground
motion to the next, however, as mentioned in Section 6.8.

7.5 RESPONSE SPECTRUM FOR YIELD DEFORMATION AND YIELD
STRENGTH

For design purposes it is desired to determine the yield strength fy (or yield deformation
uy) of the system necessary to limit the ductility demand imposed by the ground motion
to a specified value. In their 1960 paper, A. S. Veletsos and N. M. Newmark developed a
response spectrum for elastoplastic systems that readily provides the desired information.
We present next a procedure to determine this spectrum, which is central to understanding
the earthquake response and design of yielding structures.

7.5.1 Definitions

Response spectra are plotted for the quantities

Dy = uy Vy = ωn uy Ay = ω2
n uy (7.5.1)

Note that Dy is the yield deformation uy of the elastoplastic system, not its peak defor-
mation um . A plot of Dy against Tn for fixed values of the ductility factor μ is called
the yield–deformation response spectrum. Following the definitions for linearly elastic
systems (Section 6.6), similar plots of Vy and Ay are called the pseudo-velocity response
spectrum and pseudo-acceleration response spectrum, respectively.

These definitions of Dy , Vy , and Ay for elastoplastic systems are consistent with the
definitions of D, V , and A for linear systems. This becomes apparent by interpreting a
linear system with peak deformation uo as an elastoplastic system with yield deformation
uy = uo. Then Eqs. (7.5.1) for the elastoplastic system are equivalent to Eqs. (6.6.1) and
(6.6.3) for linear systems.

The quantities Dy , Vy , and Ay can be presented in a single four-way logarithmic plot
in the same manner as for linear systems. This is possible because these quantities are
related through

Ay

ωn
= Vy = ωn Dy or

Tn

2π
Ay = Vy = 2π

Tn
Dy (7.5.2)

and these relations are analogous to Eq. (6.6.6) relating D, V , and A for linear systems.
The yield strength of an elastoplastic system where w = mg is

fy = Ay

g
w (7.5.3)
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where w = mg is the weight of the system. This result can be derived using Eq. (7.5.1) as
follows:

fy = kuy = m(ω2
nuy) = m Ay = Ay

g
w

Observe that Eq. (7.5.3) is analogous to Eq. (6.7.2), repeated here for convenience:

fo = A

g
w (7.5.4)

where A is the pseudo-acceleration response spectrum for linearly elastic systems.

7.5.2 Yield Strength for Specified Ductility

An interpolative procedure is necessary to obtain the yield strength of an elastoplastic sys-
tem for a specified ductility factor since the response of a system with arbitrarily selected
yield strength will seldom correspond to the desired ductility value. This becomes appar-
ent considering the response results of Fig. 7.4.3 for four systems, all having the same
Tn = 0.5 s and ζ = 5%, but different yield strengths, as defined by the normalized yield
strength f y = 1, 0.5, 0.25, and 0.125. The ductility factors for these four systems are
1, 1.44, 3.11, and 7.36 (Section 7.4.2). Clearly, these results do not provide the f y value
corresponding to a specified ductility factor, say, 4.

These results provide the basis, however, to obtain the desired information. They
lead to a plot showing f y (or Ry) as functions of μ for a fixed Tn and ζ . The solid lines in
Fig. 7.5.1 show such plots for several values of Tn and ζ = 5%. In the plot for Tn = 0.5 s,
three of the four pairs of f y and μ values mentioned in the preceding paragraph are identi-
fied. To develop some insight into the trends, for each f y two values of the ductility factor
are shown: u+m/uy , where u+m is the maximum deformation in the positive direction, and
u−m/uy , where u−m is the absolute value of the largest deformation in the negative direction.
The solid line represents μ, the larger of the two values of the ductility factor.

Contrary to intuition, the ductility factor μ does not always increase monotonically
as the normalized strength f y decreases. In particular, more than one yield strength is
possible corresponding to a given μ. For example, the plot for Tn = 2 s features two
values of f y corresponding to μ = 5. This peculiar phenomenon occurs where the u+m/uy

and u−m/uy curves cross (e.g., points a or b in Fig. 7.5.1). Such a point often corresponds
to a local minimum of the ductility factor, which permits more than one value of f y for a
slightly larger value of μ. For each μ value, it is the largest f y , or the largest yield strength,
that is relevant for design.

The yield strength fy of an elastoplastic system for a specified ductility factor μ can
be obtained using the corresponding f y value and Eq. (7.2.1). To ensure accuracy in this
f y value it is obtained by an iterative procedure, not from a plot like Fig. 7.5.1. From the
available data pairs ( f y, μ) interpolation assuming a linear relation between log( f y) and
log(μ) leads to f y , corresponding to the μ specified. The response history of the system
with this f y is computed to determine the ductility factor. If this is close enough to the
μ specified—say to within 1%—the f y value is considered satisfactory; otherwise, it is
modified until satisfactory agreement is reached.
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7.5.3 Construction of Constant-Ductility
Response Spectrum

The procedure to construct the response spectrum for elastoplastic systems corresponding
to specified levels of ductility factor is summarized as a sequence of steps:

1. Numerically define the ground motion üg(t).

2. Select and fix the damping ratio ζ for which the spectrum is to be plotted.

3. Select a value for Tn .

4. Determine the response u(t) of the linear system with Tn and ζ equal to the values
selected. From u(t) determine the peak deformation uo and the peak force fo = kuo.
Such results for Tn = 0.5 s and ζ = 5% are shown in Fig. 7.4.3a.

5. Determine the response u(t) of an elastoplastic system with the same Tn and ζ and
yield force fy = f y fo, with a selected f y < 1. From u(t) determine the peak
deformation um and the associated ductility factor from Eq. (7.2.4). Repeat such an
analysis for enough values of f y to develop data points ( f y, μ) covering the ductility
range of interest. Such results are shown in Fig. 7.4.3 for f y = 0.5, 0.25, and 0.125,
which provide three data points for the Tn = 0.5 case in Fig. 7.5.1.
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6. a. For a selected μ determine the f y value from the results of step 5 using the
procedure described in Section 7.5.2. If more than one f y value corresponds to
a particular value of μ, the largest value of f y is chosen.

b. Determine the spectral ordinates corresponding to the value of f y determined in
step 6a. Equation (7.2.1) gives uy , from which Dy , Vy , and Ay can be determined
using Eq. (7.5.1). These data provide one point on the response spectrum plots
of Figs. 7.5.2 and 7.5.3.

7. Repeat steps 3 to 6 for a range of Tn resulting in the spectrum valid for the μ value
chosen in step 6a.

8. Repeat steps 3 to 7 for several values of μ.

Constructed by this procedure, the response spectrum for elastoplastic systems with
ζ = 5% subjected to the El Centro ground motion is presented for μ = 1, 1.5, 2, 4, and 8 in
two different forms: linear plot of Ay/g versus Tn (Fig. 7.5.2) and a four-way logarithmic
plot showing Dy , Vy , and Ay (Fig. 7.5.3).

7.6 YIELD STRENGTH AND DEFORMATION FROM THE
RESPONSE SPECTRUM

Given the excitation, say the El Centro ground motion, and the properties Tn and ζ of an
SDF system, it is desired to determine the yield strength for the system consistent with
a ductility factor μ. Corresponding to Tn , ζ , and μ, the value of Ay/g is read from the
spectrum of Fig. 7.5.2 or 7.5.3 and substituted in Eq. (7.5.3) to obtain the desired yield
strength fy . An equation for the peak deformation can be derived in terms of Ay as follows.
From Eq. (7.2.3):

um = μuy (7.6.1)

where

uy = fy

k
=
(

Tn

2π

)2

Ay (7.6.2)

Putting Eqs. (7.6.1) and (7.6.2) together gives

um = μ
(

Tn

2π

)2

Ay (7.6.3)

As an example, for Tn = 0.5 s, ζ = 5%, and μ = 4, Fig. 7.5.2 gives Ay/g = 0.179. From
Eq. (7.5.3), fy = 0.179w. From Eq. (7.6.2), uy = (0.5/2π)20.179g = 1.113 cm, and
Eq. (7.6.1) gives um = 4(1.113) = 4.45 cm.

7.7 YIELD STRENGTH–DUCTILITY RELATION

The yield strength fy required of an SDF system permitted to undergo inelastic defor-
mation is less than the minimum strength necessary for the structure to remain elastic.
Figure 7.5.2 shows that the required yield strength is reduced with increasing values of the
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ductility factor. Even small amounts of inelastic deformation, corresponding to μ = 1.5,
produce a significant reduction in the required strength. Additional reductions are achieved
with increasing values of μ but at a slower rate.

To study these reductions quantitatively, Fig. 7.7.1 shows the normalized yield
strength f y and yield strength reduction factor Ry of elastoplastic systems as a function
of Tn for four values of μ. This is simply the data of Fig. 7.5.2 (or Fig. 7.5.3) plotted in
a different form. From Fig. 7.5.2, for each value of Tn , the μ = 1 curve gives fo/w and
the curve for another μ gives the corresponding fy/w. The normalized strength f y is then
computed from Eq. (7.2.1). For example, consider systems with Tn = 0.5 s; fo = 0.919w
and fy = 0.179w forμ = 4; the corresponding f y = 0.195. Such computations forμ = 1,
1.5, 2, 4, and 8 give f y = 1, 0.442, 0.370, 0.195, and 0.120 (or 100, 44.2, 37.0, 19.5, and
12.0%), respectively; three of these data points are identified in Fig. 7.7.1. Repeating such
computations for a range of Tn leads to Fig. 7.7.1, wherein the period values Ta , Tb, Tc, Td ,
Te, and Tf that define the various spectral regions are identified; these were introduced in
Section 7.4.

The practical implication of these results is that a structure may be designed
for earthquake resistance by making it strong, by making it ductile, or by designing it
for economic combinations of both properties. Consider again an SDF system with
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Tn = 0.5 s and ζ = 5% to be designed for the El Centro ground motion. If this sys-
tem is designed for a strength fo = 0.919w or larger, it will remain within its linearly
elastic range during this excitation; therefore, it need not be ductile. On the other hand, if
it can develop a ductility factor of 8, it need be designed for only 12% of the strength fo

required for elastic behavior. Alternatively, it may be designed for strength equal to 37% of
fo and a ductility capacity of 2; or strength equal to 19.5% of fo and a ductility capacity of
4. For some types of materials and structural members, ductility is difficult to achieve, and
economy dictates designing for large lateral forces; for others, providing ductility is much
easier than providing lateral strength, and the design practice reflects this. If the combina-
tion of strength and ductility provided is inadequate, the structure may be damaged to an
extent that repair is not economical (see Fig. 7.3), or it may collapse (see Fig. 7.4).

The strength reduction permitted for a specified allowable ductility varies with Tn .
As shown in Fig. 7.7.1, the normalized strength f y tends to 1 (and the yield-strength reduc-
tion factor Ry tends to 1), implying no reduction, at the short-period end of the spectrum;
and to f y = 1/μ (i.e., Ry = μ) at the long-period end of the spectrum. In between, f y

determined for a single ground motion varies in an irregular manner. However, smooth
curves can be developed for design purposes (Section 7.10).

The normalized strength for a specified ductility factor also depends on the damp-
ing ratio ζ , but this dependence is not strong. It is usually ignored, therefore, in design
applications.

7.8 RELATIVE EFFECTS OF YIELDING AND DAMPING

Figure 7.8.1 shows the response spectra for linearly elastic systems for three values of vis-
cous damping: ζ = 2, 5, and 10%. For the same three damping values, response spectra
for elastoplastic systems are presented for two different ductility factors: μ = 4 andμ = 8.
From these results the relative effects of yielding and damping are identified in this section.

The effects of yielding and viscous damping are similar in one sense but different in
another. They are similar in the sense that both mechanisms reduce the pseudo-acceleration
Ay and hence the peak value of the lateral force for which the system should be designed.
The relative effectiveness of yielding and damping is quite different, however, in the vari-
ous spectral regions:

1. Damping has negligible influence on the response of systems with Tn > Tf in
the displacement-sensitive region of the spectrum, whereas for such systems the effects of
yielding on the design force are very important, but on the peak deformation um they are
negligible (Fig. 7.4.4).

2. Damping has negligible influence in the response of systems with Tn < Ta in
the acceleration-sensitive region of the spectrum, whereas for such systems the effects of
yielding on the peak deformation and ductility demand are very important (Figs. 7.4.4
and 7.4.5), but on the design force they are small. In the limit as Tn tends to zero, the
pseudo-acceleration A or Ay will approach the peak ground acceleration, implying that
this response parameter is unaffected by damping or yielding.
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3. Damping is most effective in reducing the response of systems with Tn in the
velocity-sensitive region of the spectrum, where yielding is even more effective.

Thus, in general, the effects of yielding cannot be considered in terms of a fixed
amount of equivalent viscous damping. If this were possible, the peak response of inelas-
tic systems could be determined directly from the response spectrum for linearly elastic
systems, which would have been convenient.

The effectiveness of damping in reducing the response is smaller for inelastic systems
and decreases as inelastic deformations increase (Fig. 7.8.1). For example, averaged over
the velocity-sensitive spectral region, the percentage reduction in response resulting from
increasing the damping ratio from 2% to 10% for systems with μ = 4 is about one-half
of the reduction for linearly elastic systems. Thus the added viscoelastic dampers men-
tioned in Section 6.8 may be less beneficial in reducing the response of inelastic systems
compared to elastic systems.

7.9 DISSIPATED ENERGY

The input energy imparted to an inelastic system by an earthquake is dissipated by both
viscous damping and yielding. These energy quantities are defined and discussed in this
section. The various energy terms can be defined by integrating the equation of motion of
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an inelastic system, Eq. (7.3.1), as follows:∫ u

0
mü(t) du +

∫ u

0
cu̇(t) du +

∫ u

0
fS(u) du = −

∫ u

0
müg(t) du (7.9.1)

The right side of this equation is the energy input to the structure since the earthquake
excitation began:

EI (t) = −
∫ u

0
müg(t) du (7.9.2)

This is clear by noting that as the structure moves through an increment of displacement
du, the energy supplied to the structure by the effective force peff(t) = −müg(t) is

d EI = −müg(t) du

The first term on the left side of Eq. (7.9.1) is the kinetic energy of the mass associated
with its motion relative to the ground:

EK (t) =
∫ u

0
mü(t) du =

∫ u̇

0
mu̇(t) du̇ = mu̇2

2
(7.9.3)

The second term on the left side of Eq. (7.9.1) is the energy dissipated by viscous damping,
defined earlier in Section 3.8:

ED(t) =
∫ u

0
fD(t) du =

∫ u

0
cu̇(t) du (7.9.4)

The third term on the left side of Eq. (7.9.1) is the sum of the energy dissipated by yielding
and the recoverable strain energy of the system:

ES(t) = [ fS(t)]2

2k
(7.9.5)

where k is the initial stiffness of the inelastic system. Thus the energy dissipated by yield-
ing is

EY (t) =
∫ u

0
fS(u) du − ES(t) (7.9.6)

Based on these energy quantities, Eq. (7.9.1) is a statement of energy balance for the
system:

EI (t) = EK (t)+ ED(t)+ ES(t)+ EY (t) (7.9.7)

Concurrent with the earthquake response analysis of a system these energy quantities
can be computed conveniently by rewriting the integrals with respect to time. Thus

ED(t) =
∫ t

0
c[u̇(t)]2 dt

EY (t) =
[∫ t

0
u̇ fS(u) dt

]
− ES(t)

(7.9.8)

The kinetic energy EK and strain energy ES at any time t can be computed conveniently
from Eqs. (7.9.3) and (7.9.5), respectively.
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The foregoing energy analysis is for a structure whose mass is acted upon by a force
peff(t) = −müg(t), not for a structure whose base is excited by acceleration üg(t). There-
fore, the input energy term in Eq. (7.9.1) represents the energy supplied by peff(t), not
by üg(t), and the kinetic energy term in Eq. (7.9.1) represents the energy of motion rela-
tive to the base rather than that due to the total motion. As it is the relative displacement
and velocity that cause forces in a structure, an energy equation expressed in terms of the
relative motion is more meaningful than one expressed in terms of absolute velocity and
displacement. Furthermore, the energy dissipated in viscous damping or yielding depends
only on the relative motion.

0

2000

4000

6000

8000

0

8000

6000

4000

2000

0 10 20 30

E
ne

rg
y/

un
it 

m
as

s,
 (

cm
/s

)2

Damping energy ED

•

Kinetic + strain energy: EK + ES

(a)

E
ne

rg
y/

un
it 

m
as

s,
 (

cm
/s

)2

Damping energy ED

Yielding energy EY

•

Kinetic + strain energy: EK + ES

Time, s

(b)
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system, Tn = 0.5 s, ζ = 5%, fy = 0.25.
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Shown in Fig. 7.9.1 is the variation of these energy quantities with time for two
SDF systems subjected to the El Centro ground motion. The results presented are for a
linearly elastic system with natural period Tn = 0.5 s and damping ratio ζ = 0.05, and for an
elastoplastic system with the same properties in the elastic range and normalized strength
f̄ y = 0.25. Recall that the deformation response of these two systems was presented in
Fig. 7.4.3.

The results of Fig. 7.9.1 show that eventually the structure dissipates by viscous
damping and yielding all the energy supplied to it. This is indicated by the fact that the
kinetic energy and recoverable strain energy diminish near the end of the ground shaking.
Viscous damping dissipates less energy from the inelastic system, implying smaller velo-
cities relative to the elastic system. Figure 7.9.1 also indicates that the energy input to a
linear system and to an inelastic system, both with the same Tn and ζ , is not the same.
Furthermore, the input energy varies with Tn for both systems.

The yielding energy shown in Fig. 7.9.1b indicates a demand imposed on the struc-
ture. If this much energy can be dissipated through yielding of the structure, it needs to
be designed only for f̄ y = 0.25 (i.e., one-fourth the force developed in the correspond-
ing linear system). The repeated yielding that dissipates energy causes damage to the
structure, however, and leaves it in a permanently deformed condition at the end of the
earthquake.

7.10 SUPPLEMENTAL ENERGY DISSIPATION DEVICES

If part of this energy could be dissipated through supplemental devices that can easily be
replaced, as necessary, after an earthquake, the structural damage could be reduced. Such
devices may be cost-effective in the design of new structures and for seismic protection
of existing structures. Available devices can be classified into three main categories: fluid
viscous and viscoelastic dampers, metallic yielding dampers, and friction dampers. Only
one of the several devices available in each category is described briefly here.

7.10.1 Fluid Viscous and Viscoelastic Dampers

In the most commonly used viscous damper for seismic protection of structures, a vis-
cous fluid, typically silicone-based fluid, is forced to flow through small orifices within
a closed container (Fig. 7.10.1a). Energy is dissipated due to friction between the fluid
and orifice walls. The damper force–velocity relation, which is a function of the rate of
loading, may be linear or nonlinear. Figure 7.10.1b shows an experimentally determined
force–displacement relation for a damper subjected to sinusoidal force. An elliptical loop
indicates a linear force–velocity relation, as demonstrated analytically in Section 3.10.
Fluid viscous dampers are installed within the skeleton of a building frame, typically in
line with diagonal bracing (Fig. 7.10.1c) or between the towers (or piers) and the deck of
a bridge.



)b()a(

(c)

Piston Head with
Orifices

Silicone FluidPiston Rod Cylinder 15

10

5

0

–5

–10

–15

Fo
rc

e 
(k

ip
)

Displacement (in)

Experimental Data (0.5 Hz)

–5 –4 –3 –2 –1 0 1 2 3 4 5

Figure 7.10.1 (a) Fluid viscous damper: schematic drawing; (b) force–displacement relation; and
(c) diagonal bracing with fluid viscous damper. [Credits: (a) Cameron Black; (b) Cameron Black; and
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(a) (b)

(c)

Figure 7.10.2 (a) Buckling restrained brace (BRB): schematic drawings; (b) force–displacement
relation; and (c) diagonal bracing with BRB. [Credits: (a) Ian Aiken; (b) Cameron Black;
and (c) Ian Aiken.]
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7.10.2 Metallic Yielding Dampers

Metallic dampers dissipate energy through hysteretic behavior of metals when deformed
into their inelastic range. A wide variety of devices have been developed and tested that
dissipate energy in flexural, shear, or extensional deformation modes. Among them, the
buckling restrained brace (BRB) has been widely used in buildings in Japan—where it was
first developed—and in the United States. One such device consists of a steel core encased
in a steel tube filled with mortar (Fig. 7.10.2a). The steel core carries the axial load,
whereas the filler material provides lateral support to the core and prevents its buckling.
Displaying stable hysteresis loops (Fig. 7.10.2b), BRBs are typically installed in Chevron-
type bracing configurations (Fig. 7.10.2c).

7.10.3 Friction Dampers

Various types of energy-dissipating devices, utilizing friction as a means of energy dissipa-
tion, have been developed and tested by researchers. These devices increase the
capacity of the structure to dissipate energy but do not change the natural vibration periods
significantly—by about 10 to 20%. One of these devices is the slotted bolted connection
(SBC). Figure 7.10.3 includes a schematic diagram of an SBC, the resulting almost rectan-
gular hysteresis loop, the SBC connected to the top of chevron braces, and a test structure
with 12 SBCs.
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Figure 7.10.3a, b (a) Schematic diagram of slotted bolted connection (SBC); (b) force–displacement
diagram of an SBC. (Adapted from C. E. Grigorian and E. P. Popov, 1994.)



(c)

(d)

Figure 7.10.3c, d (c) SBC at top of chevron brace in test structure; (d) test structure
with 12 SBCs on the shaking table at the University of California at Berkeley. (Courtesy
of K. V. Steinbrugge Collection, Earthquake Engineering Research Center, University of
California at Berkeley.)
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7.11 INELASTIC DESIGN SPECTRUM

In this section a procedure is presented for constructing the design spectrum for elasto-
plastic systems for specified ductility factors. This could be achieved by constructing the
constant-ductility response spectrum (Section 7.5.3) for many plausible ground motions for
the site and, based on these data, the design spectrum associated with an exceedance prob-
ability could be established. A simpler approach is to develop a constant-ductility design
spectrum from the elastic design spectrum (Section 6.9), multiplying it by the normalized
strength f y or dividing it by the yield strength reduction factor Ry .

7.11.1 Ry–µ–Tn Equations

Figure 7.11.1 shows the yield-strength reduction factor Ry for elastoplastic systems as a
function of Tn for selected values of μ. These data for the El Centro ground motion, which
are the reciprocal of the f̄ y values in Fig. 7.7.1, are shown in Fig. 7.11.1a and the median
value over 20 ground motions in Fig. 7.11.1b. As noted in Section 7.7, the reduction in
yield strength permitted for a specified ductility factor varies with Tn . At the short-period
end of the spectrum, Ry tends to 1, implying no reduction. At the long-period end of
the spectrum, Ry tends to μ. In between, Ry varies with Tn in an irregular manner for a
single ground motion, but its median over the ground motion ensemble varies relatively
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Figure 7.11.1 Yield-strength reduction factor Ry for elastoplastic systems as a function
of Tn for μ = 1, 1.5, 2, 4, and 8; ζ = 5%: (a) El Centro ground motion; (b) LMSR
ensemble of ground motions (median values are presented).
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Figure 7.11.2 Design values of yield-strength reduction factor.

smoothly with Tn , generally increasing significantly with Tn over the acceleration-sensitive
spectral region, but only slightly over the velocity-sensitive region and the Td -to-Tf part of
the displacement-sensitive region; in the period range longer than Tf , Ry decreases as Tn

increases and approaches μ at very long periods.
Based on results similar to those presented in Fig. 7.11.1b, several researchers have

proposed equations for the variation of Ry with Tn and μ. One of the early simpler propos-
als relates Ry to μ in different spectral regions as follows:

Ry =
{ 1 Tn < Ta√

2μ− 1 Tb < Tn < Tc′

μ Tn > Tc

(7.11.1)

where the periods Ta, Tb, . . . , Tf separating the spectral regions were defined in Figs. 6.9.2
and 6.9.3, and Tc′ will become clear later. Equation (7.11.1) is plotted for several values of
μ in a log-log format in Fig. 7.11.2, where sloping straight lines are included to provide
transitions among the three constant segments.

7.11.2 Construction of Constant-Ductility Design Spectrum

It is presumed that the elastic design spectrum a–b–c–d–e– f shown in Fig. 7.11.3 has
been developed by the procedure described in Section 6.9. This elastic design spectrum
is divided by Ry for a chosen value of ductility factor μ [Eq. (7.11.1) and Fig. 7.11.2]
to construct the inelastic design spectrum a′–b′–c′–d ′–e′– f ′ shown in Fig. 7.11.3. This
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implementation involves the following steps:

1. Divide the constant-A ordinate of segment b–c by Ry =
√

2μ− 1 to locate the
segment b′–c′.

2. Divide the constant-V ordinate of segment c–d by Ry =μ to locate the segment c′–d ′.
3. Divide the constant-D ordinate of segment d–e by Ry =μ to locate the segment d ′–e′.
4. Divide the ordinate at f by Ry = μ to locate f ′. Join points f ′ and e′. Draw

Dy = ugo/μ for Tn > 33 s.

5. Take the ordinate a′ of the inelastic spectrum at Tn = 1
33 s as equal to that of point a

of the elastic spectrum. This is equivalent to Ry = 1. Join points a′ and b′.
6. Draw Ay = ügo for Tn <

1
33 s.

The period values associated with points a′, b′, e′, and f ′ are fixed, as shown in
Fig. 7.11.3, at the same values as the corresponding points of the elastic spectrum. For
ground motions on firm ground, Ta = 1

33 s, Tb = 1
8 s, Te = 10 s, and Tf = 33 s (Fig. 6.9.3).

Tc and Td depend on damping because they are determined by the amplification factors αA,
αV , and αD , which depend on damping (Table 6.9.1). The period values Tc′ and Td ′ de-
pend on the values used to reduce the segments b–c, c–d, and d–e of the elastic design
spectrum because the Ry vary with μ. With the selected Ry values of Eq. (7.11.1) for the
three spectral regions, respectively, Td ′ is the same as Td but Tc′ differs from Tc. Td ′ would
differ from Td if Ry was not the same for the c–d and d–e spectral regions. Observe that
the c–d–e– f portion of the spectrum has been reduced by a constant factor μ.
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Consider ground motions on firm ground with peak acceleration ügo = 1g, peak
velocity u̇go = 122 cm/s, and peak displacement ugo = 91 cm. The 84.1th percentile
spectrum is desired for elastoplastic systems with damping ratio ζ = 5% for a ductility
factor of μ = 2. The design spectrum for elastic systems with ζ = 5% and the ground
motion selected was presented in Fig. 6.9.4 and is reproduced in Fig. 7.11.4. The inelastic
spectrum for μ = 2 is determined by the following steps (with reference to Figs. 7.11.3
and 7.11.4):

1. The ordinate A = 2.71g of the constant-A branch is divided by Ry =
√

2μ− 1 =
1.732 for μ = 2 to obtain the ordinate Ay = 1.56g for the segment b′–c′.

2. The ordinate V = 280.6 cm/s of the constant-V branch is divided by Ry = μ = 2 to
obtain the ordinate Vy = 140.3 cm/s for the segment c′–d ′.

3. The ordinate D = 183 cm of the constant-D branch is divided by Ry = μ = 2 to
obtain the ordinate Dy = 91.5 cm for the segment d ′–e′.

4. The ordinate D = 91 cm of the point f is divided by Ry = μ = 2 to obtain the
ordinate Dy = 45.5 cm for the point f ′; points f ′ and e′ are joined by a straight line.
This Dy value also defines the spectrum for Tn > 33 s.
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u̇go = 122 cm/s, and ugo = 91 cm; μ = 1.5, 2, 4, 6, and 8; ζ = 5%.
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5. Point a′, the same as point a, is joined to point b′.
6. The line Ay = ügo = 1g is drawn for Tn <

1
33 s.

The resulting inelastic design spectrum for μ = 2 is shown in Fig. 7.11.4, together with
design spectra for other values ofμ = 1, 1.5, 4, 6, and 8 constructed by the same procedure.

With the pseudo-velocity (Vy) design spectrum known (Fig. 7.11.4), the pseudo-
acceleration (Ay) design spectrum is constructed by using Eq. (7.5.2), and the resulting
spectrum has been plotted in two formats: logarithmic scales (Fig. 7.11.5) and linear scales
(Fig. 7.11.6). Determined from the Ay data of Fig. 7.11.5 and Eq. (7.6.3), the deformation
design spectrum is presented in Fig. 7.11.7. Shown herein is um versus Tn for μ = 1, 1.5,
2, 4, 6, and 8. The μ = 1 curve also gives the deformation uo of the system if it were to
remain elastic. Thus, the ratio um/uo can be determined from Fig. 7.11.7; this is plotted
against Tn in Fig. 7.11.8. Over a wide range of periods, Tn > Tc, the peak deformation
of an inelastic system is independent of μ and equal to the peak deformation of the elastic
(or corresponding linear) system. For shorter Tn , Tn < Tc, the peak deformation of an
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Figure 7.11.5 Inelastic (pseudo-acceleration) design spectrum (84.1th percentile) for
ground motions with ügo = 1g, u̇go = 122 cm/s, and ugo = 91 cm; μ = 1.5, 2, 4, 6,
and 8; ζ = 5%.
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inelastic system exceeds that of the elastic system; for fixed μ, the ratio um/uo increases
as Tn decreases; and for fixed Tn , the ratio um/uo increases with μ.

Researchers have developed results for SDF systems with various inelastic force–
deformation relations (see Section 7.1.1), similar to the data presented in this chapter for
elastoplastic systems. In particular, they have demonstrated that the design spectrum for
elastoplastic systems is generally conservative and may therefore be used for bilinear sys-
tems and stiffness degrading systems.

7.11.3 Equations Relating fy to fo and um to uo

Using Eqs. (7.2.2), (7.2.4), and (7.11.1), simple relations can be developed between the
peak deformations uo and um and between the required yield strengths fo and fy for elastic
and elastoplastic systems; these relations depend on the spectral regions (Fig. 7.11.2):

1. In the period region Tn < Ta , Ry = 1, which implies that

fy = fo um = μuo (7.11.2)
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Figure 7.11.8 Ratio um/uo of peak deformations um and uo of elastoplastic system and
corresponding linear system plotted against Tn ; μ = 1, 1.5, 2, 4, 6, and 8.
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Thus, the required strength for the elastoplastic system is the same for all μ, equal to
the minimum strength required for the system to remain elastic (Fig. 7.11.5). The peak
deformation of the elastoplastic system is μ times that of the elastic system (Fig. 7.11.8).
If fy < fo (i.e., less strength is provided), the ductility demand would be large (Fig. 7.4.5).

2. For the period region Tb < Tn < Tc′ , Ry =
√

2μ− 1, which implies that

fy = fo√
2μ− 1

um = μ√
2μ− 1

uo (7.11.3)†

Thus, the required strength for the elastoplastic system is the minimum strength required
for the system to remain elastic divided by

√
2μ− 1 = 1, 2.65, and 3.87 for μ = 1, 4,

and 8, respectively. The peak deformation of the elastoplastic system is larger than that
of the elastic system by the factor μ/

√
2μ− 1 = 1, 1.51, and 2.06 for μ = 1, 4, and 8,

respectively.

3. For the period region Tn > Tc, Ry = μ, which implies that

fy = fo

μ
um = uo (7.11.4)

Thus, the required strength for the elastoplastic system is the strength demand for the
elastic system divided by μ (Fig. 7.11.6). The peak deformations of the two systems are
the same (Fig. 7.11.8).

Similar relations between fy and fo and between um and uo can be developed to
provide transitions between the relations developed above for the three spectral regions.

7.12 APPLICATIONS OF THE DESIGN SPECTRUM

The inelastic design spectrum, developed in the preceding section, provides a convenient
basis to address questions that arise in the design of new structures and safety evaluation
of existing structures. In this section we discuss three such applications.

7.12.1 Structural Design for Allowable Ductility

First, consider an SDF system to be designed for an allowable ductility μ, which has
been decided based on the allowable deformation and on the ductility capacity that can be
achieved for the materials and design details selected. It is desired to determine the design
yield strength and the design deformation for the system. Corresponding to the allowable
μ and the known values of Tn and ζ , the value of Ay/g is read from the spectrum of
Fig. 7.11.5 or 7.11.6. The minimum yield strength necessary to limit the ductility demand
to the allowable ductility is given by Eq. (7.5.3), repeated here for convenience:

†Although there is little rational basis for doing so, Eq. (7.11.3a) for Tb < Tn < Tc′ can be derived by
equating the areas under the force–deformation relations for elastic and elastoplastic systems (Fig. 7.1.4).
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fy = Ay

g
w (7.12.1)

The peak deformation is given by Eq. (7.6.3), which can be expressed in terms of A,
the pseudo-acceleration design spectrum for elastic systems. For this purpose we use the
relation

Ry = A

Ay
(7.12.2)

which comes from substituting Eqs. (7.5.4) and (7.12.1) in Eq. (7.2.2). Putting Eqs. (7.6.3)
and (7.12.2) together gives

um = μ 1

Ry

(
Tn

2π

)2

A (7.12.3)

The deformation of the inelastic system can be conveniently determined by Eq. (7.6.3)
using the inelastic design spectrum, or by Eq. (7.12.3) using the elastic design spectrum.
The Ry–μ–Tn relation needed in the latter case is available in Eq. (7.11.1) and Fig. 7.11.2.

Example 7.1

Consider a one-story frame with lumped weight w and natural vibration period in the linearly
elastic range, Tn = 0.25 s. Determine the lateral deformation and lateral force (in terms of
w = mg) for which the frame should be designed if (1) the system is required to remain elastic,
(2) the allowable ductility factor is 4, and (3) the allowable ductility factor is 8. Assume that
ζ = 5% and elastoplastic force–deformation behavior. The design earthquake has a peak
acceleration of 0.5g and its elastic design spectrum is given by Fig. 6.9.5 multiplied by 0.5.

Solution For a system with Tn = 0.25 s, A = (2.71g) 0.5 = 1.355g from Fig. 6.9.5
and Ry =

√
2μ− 1 from Eq. (7.11.1) or Fig. 7.11.2. Then, Eq. (7.12.2) gives Ay =

1.355g/
√

2μ− 1 and Eq. (7.12.1) leads to

fy = 1.355w√
2μ− 1

(a)

Substituting known data in Eq. (7.12.3) gives

um = μ√
2μ− 1

(
0.25

2π

)2

1.355g = μ√
2μ− 1

2.104 (b)

Observe that Eqs. (a) and (b) are equivalent to Eq. (7.11.3). Substituting μ = 1, 4, and 8 in
Eqs. (a) and (b) gives the following results.

μ fy/w um (cm)

1 1.355 2.104
4 0.512 3.180
8 0.350 4.345
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7.12.2 Evaluation of an Existing Structure

Consider the problem of estimating the deformation of an existing structure at which its
performance should be evaluated. To illustrate application of the inelastic design spectrum
to the solution of this problem, we consider the simplest possible structure, an SDF system.
The mass m, initial stiffness k at small displacements, and the yield strength fy of the
structure are determined from its properties: dimensions, member sizes, and design details
(reinforcement in reinforced-concrete structures, connections in steel structures, etc.) The
small-oscillation period Tn is computed from the known k and m, and the damping ratio ζ
is estimated by the approach presented in Chapter 11.

For a system with known Tn and ζ , A is read from the elastic design spectrum. From
the known value of fy , Ay is obtained by inverting Eq. (7.12.1):

Ay = fy

w/g
(7.12.4)

With A and Ay known, Ry is calculated from Eq. (7.12.2). Corresponding to this Ry and
Tn determined earlier, μ is calculated from Eq. (7.11.2) or Fig. 7.11.2. Substituting A, Tn ,
Ry , and μ in Eq. (7.12.3) provides an estimate of the peak deformation um .

Example 7.2

Consider a one-story frame with lumped weight w = mg, Tn = 0.25 s, and fy = 0.512w.
Assume that ζ = 5% and elastoplastic force–deformation behavior. Determine the lateral
deformation for the design earthquake defined in Example 7.1.

Solution For a system with Tn = 0.25 s, A = (2.71g)0.5 = 1.355g from Fig. 6.9.5. Equa-
tion (7.12.4) gives

Ay

g
= fy

w
= 0.512w

w
= 0.512

and Eq. (7.12.2) leads to

Ry = A

Ay
= 1.355g

0.512g
= 2.646

Knowing Ry , μ can be computed from Eq. (7.11.1) for Tn = 0.25 s:

μ = 1+ R2
y

2
= 1+ (2.646)2

2
= 4

The desired um is calculated by substituting these values of μ and Ry in Eq. (7.12.3):

um = 4
1

2.646

(
0.25

2π

)2

1.355g = 3.181 cm
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7.12.3 Displacement-Based Structural Design

The inelastic design spectrum is also useful for direct displacement-based design of struc-
tures. The goal is to determine the initial stiffness and yield strength of the structure nec-
essary to limit the deformation to some acceptable value. Applied to an elastoplastic SDF
system (Fig. 7.12.1), such a design procedure may be implemented as a sequence of the
following steps:

1. Estimate the yield deformation uy for the system.

2. Determine acceptable plastic rotation θp of the hinge at the base.

3. Determine the design displacement um from

um = uy + hθp (7.12.5)

and design ductility factor from Eq. (7.2.3).

4. Enter the deformation design spectrum (Fig. 7.11.7) with known um and μ to read
Tn . Determine the initial elastic stiffness

k =
(

2π

Tn

)2

m (7.12.6)

5. Determine the required yield strength

fy = kuy (7.12.7)

6. Select member sizes and detailing (reinforcement in reinforced-concrete structures,
connections in steel structures, etc.) to provide the strength determined from
Eq. (7.12.7). For the resulting design of the structure, calculate its initial elastic
stiffness k and yield deformation uy = fy/k.

7. Repeat steps 2 through 6 until a satisfactory solution is reached.

•
•

h

uy

pθ

Figure 7.12.1 Idealized SDF system.

Example 7.3

Consider a long reinforced-concrete viaduct that is part of a freeway. The total weight of the
superstructure, 20,000 kg/m, is supported on identical bents 10 m high, uniformly spaced at
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40 m. Each bent consists of a single circular column 1.5 m in diameter (Fig. E7.3a). Using the
displacement-based design procedure, design the longitudinal reinforcement of the column for
the design earthquake defined in Example 7.1.

Solution For transverse ground motion the viaduct can be idealized as an SDF system
(Fig. E7.3b) with its lateral stiffness computed from

k = 3E I

h3
(a)

where E is the elastic modulus of concrete, I is the effective second moment of area of the
reinforced-concrete cross section, and h is the column length. Based on the American Con-
crete Institute design provisions ACI 318-95, the effective E I for circular columns subjected
to lateral force is given by

E I = Ec Ig

(
0.2+ 2ρtγ

2 Es

Ec

)
(b)

where Ig is the second moment of area of the gross cross section, Ec and Es are the elastic
moduli of concrete and reinforcing steel, respectively; ρt is the longitudinal reinforcement
ratio, and γ is the ratio of the distances from the center of the column to the center of the
outermost reinforcing bars and to the column edge.

We select the following system properties: concrete strength= 30 MPa, steel strength=
420 MPa, and γ = 0.9. The mass of the idealized SDF system is the tributary mass for one
bent (i.e., the mass of 40-m length of the superstructure):

m = (20, 000)(40) = 8× 105 kg (c)

The step-by-step procedure described earlier in this section is now implemented as
follows:

1. An initial estimate of uy = 5 cm

2. The plastic rotation acceptable at the base of the column is θp = 0.02 rad.

3. The design displacement given by Eq. (7.12.5) is

um = uy + hθp = 5+ 1000× 0.02 = 25 cm

and the design ductility factor is

μ = um

uy
= 25

5
= 5

4. The deformation design spectrum for inelastic systems (Fig. 7.11.7) is shown in
Fig. E7.3c for μ = 5. Corresponding to um = 25 cm, this spectrum gives Tn = 1.120 s
and k is computed by Eq. (7.12.6):

k =
(

2π

1.120

)2

8× 105 = 2.520× 107 N/m

5. The yield strength is given by Eq. (7.12.7):

fy = kuy =
(
2.520× 107

)(
5× 10(−2)

) = 1.2598× 106 N = 1259.8 kN
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Figure E7.3

6. Using ACI 318-95, the circular column is then designed for axial force due to dead
load of 7845 kN due to the superstructure plus 416 kN due to self-weight of the column
and the bending moment due to lateral force = fy : M = h fy = 12,598 kN-m. For
the resulting column design, ρt = 4.7%, flexural strength = 12,676 kN-m, and lateral
strength = 1268 kN. For ρt = 4.7%, Eq. (b) gives EI 5.06 × 106 kN-m2; using this
E I value, Eq. (a) gives k = 15,185 kN/m. The yield deformation is uy = fy/k =
12,598/15,185 = 0.083m = 8.3 cm.

7. Since the yield deformation computed in step 6 differs significantly from the initial esti-
mate of uy = 5 cm, iteration is necessary. The results of such iterations are summarized
in Table E7.3.
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TABLE E7.3 ITERATIVE PROCEDURE FOR DIRECT DISPLACEMENT-BASED DESIGN

uy um Tn k fy ρt Design fy Design k uy
Iteration (cm) (cm) μ (s) (kN/m) (kN) (%) (kN) (kN/m) (cm)

1 5.00 25.00 5.00 1.120 25,196 1260 4.69 1268 15,185 8.35
2 8.35 28.35 3.40 1.270 19,596 1636 6.46 1636 19,471 8.40
3 8.40 28.40 3.38 1.272 19,519 1640 6.51 1646 19,581 8.41
4 8.41 28.41 3.38 1.272 19,516 1640 6.51 1646 19,581 8.41

The procedure converged after four iterations, giving a column design with ρt = 6.51%.
This column has an initial stiffness k = 19,581 kN/m and lateral yield strength fy = 1646 kN.

7.13 COMPARISON OF DESIGN AND RESPONSE SPECTRA

In this section the design spectrum presented in Section 7.11 is compared with the re-
sponse spectrum for elastoplastic systems. Such a comparison for elastic systems was pre-
sented in Section 6.10, and the data presented in Figs. 6.10.1 and 6.10.2 are reproduced in
Figs. 7.13.1 and 7.13.2. Also included now are (1) the inelastic design spectrum for μ = 8
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Figure 7.13.1 Comparison of standard design spectrum (ügo = 0.319g) with response
spectrum for El Centro ground motion; μ = 1 and 8; ζ = 5%.
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ugo = 21.34 cm) with response spectrum for El Centro ground motion; μ = 1 and 8;
ζ = 5%.

determined from the elastic design spectrum using the procedure described in Section 7.11,
and (2) the actual spectrum for the El Centro ground motion for μ = 8, reproduced from
Fig. 7.5.3.

Observe that the differences between the design and response spectra for elastoplas-
tic systems are greater than between the two spectra for elastic systems. For the latter
case, the reasons underlying these differences were discussed in Section 6.10. Additional
discrepancies arise in the two spectra for elastoplastic systems because the jagged varia-
tion of f y with Tn (Fig. 7.7.1) was approximated by simple functions (Fig. 7.11.1). The
errors introduced by this simplification are responsible for the additional discrepancies in
the velocity- and displacement-sensitive regions of the spectrum.
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P R O B L E M S

7.1 The lateral force–deformation relation of the system of Example 6.3 is idealized as elastic–
perfectly plastic. In the linear elastic range of vibration this SDF system has the following
properties: lateral stiffness, k = 283 kN/m, and ζ = 2%. The yield strength fy = 19.1 kN
and the lumped mass m = 1650 kg.
(a) Determine the natural period and damping ratio of this system vibrating at amplitudes
smaller than uy .
(b) Can these properties be defined for motions at larger amplitudes? Explain your answer.
(c) Determine the natural period and damping ratio of the corresponding linear system.
(d) Determine f y and Ry for this system subjected to El Centro ground motion scaled up by
a factor of 3.

∗7.2 Determine by the central difference method the deformation response u(t) for 0 < t < 10 s
of an elastoplastic undamped SDF system with Tn = 0.5 s and f y = 0.125 to El Centro
ground motion. Reproduce Fig. 7.4.2, showing the force–deformation relation in part (d) for
the entire duration.

∗Denotes that a computer is necessary to solve this problem.
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∗7.3 For a system with Tn = 0.5 s and ζ = 5% and El Centro ground motion, verify the follow-
ing assertion: “doubling the ground acceleration üg(t) will produce the same response μ(t)
as if the yield strength had been halved.” Use the deformation–time responses available in
Fig. 7.4.3a–c and generate similar results for an additional system and excitation as necessary.

∗7.4 For a system with Tn = 0.5 s and ζ = 5% and El Centro ground motion, show that for
f y = 0.25 the ductility factor μ is unaffected by scaling the ground motion.

7.5 From the response results presented in Fig. 7.4.3, compute the ductility demands for f̄ y = 0.5,
0.25, and 0.125.

7.6 For the design earthquake at a site, the peak values of ground acceleration, velocity, and dis-
placement have been estimated: ügo = 0.5g, u̇go = 60 cm/s, and ugo = 50 cm. For systems
with a 2% damping ratio and allowable ductility of 3, construct the 84.1th percentile design
spectrum. Plot the elastic and inelastic spectra together on (a) four-way log paper, (b) log-log
paper showing pseudo-acceleration versus natural vibration period, Tn , and (c) linear-linear
paper showing pseudo-acceleration versus Tn from 0 to 5 s. Determine equations A(Tn) for
each branch of the inelastic spectrum and the period values at intersections of branches.

7.7 Consider a vertical cantilever tower that supports a lumped weight w at the top; assume that
the tower mass is negligible, ζ = 5%, and that the force–deformation relation is elastoplastic.
The design earthquake has a peak acceleration of 0.5g, and its elastic design spectrum is given
by Fig. 6.9.5 multiplied by 0.5. For three different values of the natural vibration period in the
linearly elastic range, Tn = 0.02, 0.2, and 2 s, determine the lateral deformation and lateral
force (in terms of w) for which the tower should be designed if (i) the system is required to
remain elastic, and (ii) the allowable ductility factor is 2, 4, or 8. Comment on how the design
deformation and design force are affected by structural yielding.

7.8 Consider a vertical cantilever tower with lumped weight w, Tn = 2 s, and fy = 0.112w.
Assume that ζ = 5% and elastoplastic force–deformation behavior. Determine the lateral
deformation for the elastic design spectrum of Fig. 6.9.5 scaled to a peak ground acceleration
of 0.5g.

7.9 Solve Example 7.3 for an identical structure except for one change: The bents are 4 m high.

∗Denotes that a computer is necessary to solve this problem.
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8

Generalized
Single-Degree-of-Freedom

Systems

PREVIEW

So far in this book we have considered single-degree-of-freedom systems involving a single
point mass (Figs. 1.2.1 and 1.6.1) or the translation of a rigid distributed mass (Fig. 1.1.3a),
which is exactly equivalent to a mass lumped at a single point. Once the stiffness of
the system was determined, the equation of motion was readily formulated, and solution
procedures were presented in Chapters 2 to 7.

In this chapter we develop the analysis of more complex systems treated as SDF
systems, which we call generalized SDF systems. The analysis provides exact results for
an assemblage of rigid bodies supported such that it can deflect in only one shape, but only
approximate results for systems with distributed mass and flexibility. In the latter case, the
approximate natural frequency is shown to depend on the assumed deflected shape. The
same frequency estimate is also determined by the classical Rayleigh’s method, based on
the principle of conservation of energy; this method also provides insight into the error in
the estimated natural frequency.

8.1 GENERALIZED SDF SYSTEMS

Consider, for example, the system of Fig. 8.1.1a, consisting of a rigid, massless bar sup-
ported by a hinge at the left end with two lumped masses, a spring and a damper, attached
to it, subjected to a time-varying external force p(t). Because the bar is rigid, its deflections
can be related to a single generalized displacement z(t) through a shape function ψ(x) as

307



308 Generalized Single-Degree-of-Freedom Systems Chap. 8

(a)
m 1 m 2

p(t)

c k

x

z(t)
u(x, t) = xz(t)

EI(x), m (x)
(b)

x

u(x, t) = (x)z(t)

z(t)

ψ

Figure 8.1.1 Generalized SDF systems.

shown, and can be expressed as

u(x, t) = ψ(x)z(t) (8.1.1)

We have some latitude in choosing the displacement coordinate and, quite arbitrarily, we
have chosen the rotation z of the bar. For this system ψ(x) = x is known exactly from
the configuration of the system and how it is constrained by a hinged support. This is an
SDF system, but it is difficult to replace the two masses by an equivalent mass lumped at a
single point.

Next consider, for example, the system of Fig. 8.1.1b consisting of a cantilever beam
with distributed mass. This system can deflect in an infinite variety of shapes, and for exact
analysis it must be treated as an infinite-degree-of-freedom system. Such exact analysis,
developed in Chapter 16, shows that the system, unlike an SDF system, possesses an infi-
nite number of natural vibration frequencies, each paired with a natural mode of vibration.
It is possible to obtain approximate results that are accurate to a useful degree for the low-
est (also known as fundamental) natural frequency, however, by restricting the deflections
of the beam to a single shape function ψ(x) that approximates the fundamental vibration
mode. The deflections of the beam are then given by Eq. (8.1.1), where the generalized
coordinate z(t) is the deflection of the cantilever beam at a selected location—say the free
end, as shown in Fig. 8.1.1b.

The two systems of Fig. 8.1.1 are called generalized SDF systems because in each
case the displacements at all locations are defined in terms of the generalized coordinate
z(t) through the shape function ψ(x). We will show that the equation of motion for a
generalized SDF system is of the form

m̃z̈ + c̃ż + k̃z = p̃(t) (8.1.2)

where m̃, c̃, k̃, and p̃(t) are defined as the generalized mass, generalized damping, general-
ized stiffness, and generalized force of the system; these generalized properties are associ-
ated with the generalized displacement z(t) selected. Equation (8.1.2) is of the same form
as the standard equation formulated in Chapter 1 for an SDF system with a single lumped
mass. Thus the analysis procedures and response results presented in Chapters 2 to 7 can
readily be adapted to determine the response z(t) of generalized SDF systems. With z(t)
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known, the displacements at all locations of the system are determined from Eq. (8.1.1).
This analysis procedure leads to the exact results for the system of Fig. 8.1.1a because the
shape function ψ(x) could be determined exactly but provides only approximate results
for the system of Fig. 8.1.1b because they are based on an assumed shape function.

The key step in the analysis outlined above that is new is the evaluation of the gen-
eralized properties m̃, c̃, k̃, and p̃(t) for a given system. Procedures are developed to
determine these properties for (1) assemblages of rigid bodies that permit exact evaluation
of the deflected shape (Section 8.2), and (2) multi-degree-of-freedom systems with dis-
tributed mass or several lumped masses which require that a shape function be assumed
that satisfies the displacement boundary conditions (Sections 8.3 and 8.4).

8.2 RIGID-BODY ASSEMBLAGES

In this section the equation of motion is formulated for an assemblage of rigid bodies
with distributed mass supported by discrete springs and dampers subjected to time-varying
forces. In formulating the equation of motion for such generalized SDF systems, appli-
cation of Newton’s second law of motion can be cumbersome, and it is simpler to use
D’Alembert’s principle and include inertia forces in the free-body diagram. The dis-
tributed inertia forces for a rigid body with distributed mass can be expressed in terms of
the inertia force resultants at the center of gravity using the total mass and the moment of
inertia of the body. These properties for rigid plates of three configurations are presented in
Appendix 8.

Example 8.1

The system shown in Fig. E8.1a consists of a rigid bar supported by a fulcrum at O , with
an attached spring and damper subjected to force p(t). The mass m1 of the part O B of the
bar is distributed uniformly along its length. The portions O A and BC of the bar are mass-
less, but a uniform circular plate of mass m2 is attached at the midpoint of BC . Selecting
the counterclockwise rotation about the fulcrum as the generalized displacement and consid-
ering small displacements, formulate the equation of motion for this generalized SDF system,
determine the natural vibration frequency and damping ratio, and evaluate the dynamic re-
sponse of the system without damping subjected to a suddenly applied force po. How would
the equation of motion change with an axial force on the horizontal bar; what is the buckling
load?

Solution
1. Determine the shape function. The L-shaped bar rotates about the fulcrum at O .

Assuming small deflections, the deflected shape is shown in Fig. E8.1b.

2. Draw the free-body diagram and write the equilibrium equation. Figure E8.1c shows
the forces in the spring and damper associated with the displacements of Fig. E8.1b, to-
gether with the inertia forces. Setting the sum of the moments of all forces about O to zero
gives

I1θ̈+
(

m1
L

2
θ̈

)
L

2
+ I2θ̈+(m2L θ̈ )L+

(
m2

L

4
θ̈

)
L

4
+
(

c
L

2
θ̇

)
L

2
+
(

k
3L

4
θ

)
3L

4
= p(t)

L

2
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L/4
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x

u(x, t) = x

θ

(t)
θ L

x′

u(x′, t) = x′ (t)

O

(c)

c(L/2) ˙

p(t)

k(3L/4)

Q

m1(L/2) ¨

I1
¨

m2(L/4) ¨

m2(L ¨)

I2
¨

θ
θ

θ
θ

Figure E8.1

Substituting I1 = m1L2/12 and I2 = m2(L/8)2/2 = m2L2/128 (see Appendix 8)
gives (

m1 L2

3
+ 137

128
m2L2

)
θ̈ + cL2

4
θ̇ + 9kL2

16
θ = p(t)

L

2
(a)

The equation of motion is

m̃θ̈ + c̃θ̇ + k̃θ = p̃(t) (b)

where

m̃ =
(

m1

3
+ 137

128
m2

)
L2 c̃ = cL2

4
k̃ = 9kL2

16
p̃(t) = p(t)

L

2
(c)

3. Determine the natural frequency and damping ratio.

ωn =
√

k̃

m̃
ζ = c̃

2
√

k̃m̃
(d)

4. Solve the equation of motion.

p̃(t) = p(t)L

2
= po L

2
≡ p̃o
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By adapting Eq. (4.3.2), the solution of Eq. (b) with c = 0 is

θ(t) = p̃o

k̃
(1− cosωnt) = 8po

9kL
(1− cosωnt) (e)

5. Determine the displacements.

u(x, t) = xθ(t) u(x ′, t) = x ′θ(t) (f)

where θ(t) is given by Eq. (e).
6. Include the axial force. In the displaced position of the bar, the axial force Q intro-

duces a counterclockwise moment = QLθ . Thus Eq. (b) becomes

m̃θ̈ + c̃θ̇ + (k̃ − QL)θ = p̃(t) (g)

A compressive axial force decreases the stiffness of the system and hence its natural vibration
frequency. These become zero if the axial force is

Qcr = k̃

L
= 9kL

16
This is the critical or buckling axial load for the system.

8.3 SYSTEMS WITH DISTRIBUTED MASS AND ELASTICITY

As an illustration of approximating a system having an infinite number of degrees of free-
dom by a generalized SDF system, consider the cantilever tower shown in Fig. 8.3.1. This
tower has mass m(x) per unit length and flexural rigidity E I (x), and the excitation is
earthquake ground motion ug(t). In this section, first the equation of motion for this sys-
tem without damping is formulated; damping is usually expressed by a damping ratio esti-
mated based on experimental data from similar structures (Chapter 11). Then the equation
of motion is solved to determine displacements and a procedure is developed to determine
the internal forces in the tower. Finally, this procedure is applied to evaluation of the peak
response of the system to earthquake ground motion.

EI(x)
m (x)

•
•

L

(a)

ug

x

u u

z z

(b)

fI (x, t)

fo( )

x

(c)

δ

δ ξ

ξ

Figure 8.3.1 (a) Tower deflections and virtual displacements; (b) inertia forces; (c) equiv-
alent static forces.
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8.3.1 Assumed Shape Function

We assume that the displacement relative to the ground can be expressed by Eq. (8.1.1).
The total displacement of the tower is

ut (x, t) = u(x, t)+ ug(t) (8.3.1)

The shape function ψ(x) in Eq. (8.1.1) must satisfy the displacement boundary con-
ditions (Fig. 8.3.1a). For this tower, these conditions at the base of the tower are ψ(0) = 0
and ψ ′(0) = 0. Within these constraints a variety of shape functions could be chosen. One
possibility is to determine the shape function as the deflections of the tower due to some
static forces. For example, the deflections of a uniform tower with flexural rigidity E I due
to a unit lateral force at the top are u(x) = (3Lx2 − x3)/6E I . If we select the generalized
coordinate as the deflection of some convenient reference point, say the top of the tower,
then z = u(L) = L3/3E I , and

u(x) = ψ(x)z ψ(x) = 3

2

x2

L2
− 1

2

x3

L3
(8.3.2a)

This ψ(x) automatically satisfies the displacement boundary conditions at x = 0 because
it was determined from static analysis of the system. The ψ(x) of Eq. (8.3.2a) may also
be used as the shape function for a nonuniform tower, although it was determined for a
uniform tower. It is not necessary to select the shape function based on deflections due to
static forces, and it could be assumed directly; possibilities are

ψ(x) = x2

L2
and ψ(x) = 1− cos

πx

2L
(8.3.2b)

The three shape functions above have ψ(L) = 1, although this is not necessary. The ac-
curacy of the generalized SDF system formulation depends on the assumed shape function
ψ(x) in which the structure is constrained to vibrate. This issue will be discussed later
together with how to select the shape function.

8.3.2 Equation of Motion

We now proceed to formulate the equation of motion for the tower. At each time instant
the system is in equilibrium under the action of the internal resisting bending moments and
the fictitious inertia forces (Fig. 8.3.1b), which by D’Alembert’s principle are

f I (x, t) = −m(x)üt (x, t)

Substituting Eq. (8.3.1) for ut gives

f I (x, t) = −m(x)[ü(x, t)+ üg(t)] (8.3.3)

The equation of dynamic equilibrium of this generalized SDF system can be formulated
conveniently only by work or energy principles. We prefer to use the principle of virtual
displacements. This principle states that if the system in equilibrium is subjected to vir-
tual displacements δu(x), the external virtual work δWE is equal to the internal virtual
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work δWI :

δWI = δWE (8.3.4)

The external virtual work is due to the forces f I (x, t) acting through the virtual displace-
ments δu(x):

δWE =
∫ L

0
f I (x, t)δu(x) dx

which after substituting Eq. (8.3.3) becomes

δWE = −
∫ L

0
m(x)ü(x, t)δu(x) dx − üg(t)

∫ L

0
m(x)δu(x) dx (8.3.5)

The internal virtual work is due to the bending moments M(x, t) acting through the cur-
vature δκ(x) associated with the virtual displacements:

δWI =
∫ L

0
M(x, t)δκ(x) dx

Substituting

M(x, t) = E I (x)u′′(x, t) δκ(x) = δ[u′′(x)]
where u′′ ≡ ∂2u/∂x2 gives

δWI =
∫ L

0
E I (x)u′′(x, t)δ[u′′(x)] dx (8.3.6)

The internal and external virtual work is expressed next in terms of the generalized
coordinate z and shape function ψ(x). For this purpose, from Eq. (8.1.1) we obtain

u′′(x, t) = ψ ′′(x)z(t) ü(x, t) = ψ(x)z̈(t) (8.3.7)

The virtual displacement is selected consistent with the assumed shape function
(Fig. 8.3.1a), giving Eq. (8.3.8a), and the virtual curvature is defined by Eq. (8.3.8b):

δu(x) = ψ(x) δz δ[u′′(x)] = ψ ′′(x) δz (8.3.8)

Substituting Eqs. (8.3.7b) and (8.3.8a) in Eq. (8.3.5) gives

δWE = −δz
[

z̈
∫ L

0
m(x)[ψ(x)]2 dx + üg(t)

∫ L

0
m(x)ψ(x) dx

]
(8.3.9)

Substituting Eqs. (8.3.7a) and (8.3.8b) in Eq. (8.3.6) gives

δWI = δz
[

z
∫ L

0
E I (x)[ψ ′′(x)]2 dx

]
(8.3.10)

Having obtained the final expressions for δWE and δWI , Eq. (8.3.4) gives

δz
[
m̃z̈ + k̃z + L̃üg(t)

]
= 0 (8.3.11)
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where

m̃ =
∫ L

0
m(x)[ψ(x)]2 dx

k̃ =
∫ L

0
E I (x)[ψ ′′(x)]2 dx

L̃ =
∫ L

0
m(x)ψ(x) dx

(8.3.12)

Because Eq. (8.3.11) is valid for every virtual displacement δz, we conclude that

m̃z̈ + k̃z = −L̃üg(t) (8.3.13a)

This is the equation of motion for the tower assumed to deflect according to the shape func-
tion ψ(x). For this generalized SDF system, the generalized mass m̃, generalized stiffness
k̃, and generalized excitation −L̃üg(t) are defined by Eq. (8.3.12). Dividing Eq. (8.3.13a)
by m̃ gives

z̈ + 2ζωn ż + ω2
nz = −
̃üg(t) (8.3.13b)

where ω2
n = k̃/m̃ and a damping term using an estimated damping ratio ζ has been in-

cluded. This equation is the same as Eq. (6.2.1) for an SDF system, except for the factor


̃ = L̃

m̃
(8.3.14)

8.3.3 Natural Vibration Frequency

Once the generalized properties m̃ and k̃ are determined, the natural vibration frequency of
the system is given by

ω2
n =

k̃

m̃
=

∫ L
0 E I (x)[ψ ′′(x)]2 dx∫ L

0 m(x)[ψ(x)]2 dx
(8.3.15)

8.3.4 Response Analysis

The generalized coordinate response z(t) of the system to specified ground acceleration
can be determined by solving Eq. (8.3.13b) using the methods presented in Chapters 5 and
6. Equation (8.1.1) then gives the displacements u(x, t) of the tower relative to the base.

The next step is to compute the internal forces—bending moments and shears—in
the tower associated with the displacements u(x, t). The second of the two methods de-
scribed in Section 1.8 is used if we are working with deflected shape ψ(x) that is assumed
and not exact, as for generalized SDF systems. In this method internal forces are com-
puted by static analysis of the structure subjected to equivalent static forces. Denoted by
fS(x), these forces are defined as external forces that would cause displacements u(x).
Elementary beam theory gives

fS(x) =
[
E I (x)u′′(x)

]′′
(8.3.16)
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Because u varies with time, so will fS; thus

fS(x, t) = [
E I (x)u′′(x, t)

]′′
(8.3.17)

which after substituting Eq. (8.1.1) becomes

fS(x, t) = [
E I (x)ψ ′′(x)

]′′
z(t) (8.3.18)

These external forces, which depend on derivatives of the assumed shape function, will
give internal forces that are usually less accurate than the displacements, because the
derivatives of the assumed shape function are poorer approximations than the shape func-
tion itself.

The best estimate, best within the constraints of the assumed shape function, for
equivalent static forces is

fS(x, t) = ω2
nm(x)ψ(x)z(t) (8.3.19)

This can be shown to be identical to Eq. (8.3.18) if the assumed shape function is ex-
act, as we shall see in Chapter 16. With an approximate shape function, the two sets of
forces given by Eqs. (8.3.18) and (8.3.19) are not the same locally at all points along the
length of the structure, but the two are globally equivalent (see Derivation 8.1). Further-
more, Eq. (8.3.19) does not involve the derivatives of the assumed ψ(x), and is therefore
a better approximation, relative to Eq. (8.3.18). Internal forces can be determined at each
time instant by static analysis of the tower subjected to forces fS(x, t) determined from
Eq. (8.3.19).

8.3.5 Peak Earthquake Response

Comparing Eq. (8.3.13b) to Eq. (6.2.1) for an SDF system and using the procedure of
Section 6.7 gives the peak value of z(t):

zo = 
̃D = 
̃

ω2
n

A (8.3.20)

where D and A are the deformation and pseudo-acceleration ordinates, respectively, of the
design spectrum at period Tn = 2π/ωn for damping ratio ζ . In Eqs. (8.1.1) and (8.3.19),
z(t) is replaced by zo of Eq. (8.3.20) to obtain the peak values of displacements and equiv-
alent static forces:

uo(x) = 
̃Dψ(x) fo(x) = 
̃m(x)ψ(x)A (8.3.21)

where the conventional subscript S has been dropped from fSo for brevity.
The internal forces—bending moments and shears—in the cantilever tower are ob-

tained by static analysis of the structure subjected to the forces fo(x); see Fig. 8.3.1c. Thus
the shear and bending moment at height x above the base are

Vo(x) =
∫ L

x
fo(ξ) dξ = 
̃A

∫ L

x
m(ξ)ψ(ξ) dξ (8.3.22a)

Mo(x) =
∫ L

x
(ξ − x) fo(ξ) dξ = 
̃A

∫ L

x
(ξ − x)m(ξ)ψ(ξ) dξ (8.3.22b)



316 Generalized Single-Degree-of-Freedom Systems Chap. 8

In particular the shear and bending moment at the base of the tower are

Vbo = Vo(0) = L̃
̃A Mbo =Mo(0) = L̃θ 
̃A (8.3.23)

where L̃ was defined in Eq. (8.3.12) and

L̃θ =
∫ L

0
xm(x)ψ(x) dx (8.3.24)

This completes the approximate evaluation of the earthquake response of a system with
distributed mass and flexibility based on an assumed shape function ψ(x).

8.3.6 Applied Force Excitation

If the excitation were external forces p(x, t) instead of ground motion üg(t), the equation
of motion could be derived following the methods of Section 8.3.2, leading to

m̃z̈ + k̃z = p̃(t) (8.3.25)

where the generalized force

p̃(t) =
∫ L

0
p(x, t)ψ(x) dx (8.3.26)

Observe that the only difference in the two equations (8.3.25) and (8.3.13a) is in the exci-
tation term.

Derivation 8.1

The equivalent static forces from elementary beam theory, Eq. (8.3.17), are written as

fS(x, t) =M′′(x, t) (a)

where the internal bending moments

M(x, t) = E I (x)u′′(x, t) (b)

We seek lateral forces f̃ S(x, t) that do not involve the derivatives of M(x, t) and at
each time instant are in equilibrium with the internal bending moments; equilibrium is sat-
isfied globally for the system (but not at every location x). Using the principle of virtual
displacements, the external work done by the unknown forces f̃ S(x, t) in acting through the
virtual displacement δu(x) equals the internal work done by the bending moments acting
through the curvatures δκ(x) associated with the virtual displacements:∫ L

0
f̃ S(x, t)δu(x) dx =

∫ L

0
M(x, t)δκ(x) dx (c)

This equation is rewritten by substituting Eq. (8.3.8a) for δu(x) in the left side and by using
Eq. (8.3.10) for the integral on the right side; thus

δz

∫ L

0
f̃ S(x, t)ψ(x) dx = δz

[
z(t)

∫ L

0
E I (x)

[
ψ ′′(x)

]2
dx

]
(d)
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Utilizing Eq. (8.3.15) and dropping δz, Eq. (d) can be rewritten as∫ L

0

[
f̃ S(x, t)− ω2

nm(x)ψ(x)z(t)
]
ψ(x) dx = 0 (e)

Setting the quantity in brackets to zero gives

fS(x, t) = ω2
nm(x)ψ(x)z(t) (f)

where the tilde above fS has now been dropped. This completes the derivation of Eq. (8.3.19).

Example 8.2

A uniform cantilever tower of length L has mass per unit length = m and flexural rigidity E I
(Fig. E8.2). Assuming that the shape function ψ(x) = 1− cos(πx/2L), formulate the equa-
tion of motion for the system excited by ground motion, and determine its natural frequency.

Solution
1. Determine the generalized properties.

m̃ = m

∫ L

0

(
1− cos

πx

2L

)2
dx = 0.227 mL (a)

k̃ = E I

∫ L

0

(
π2

4L2

)2

cos2 πx

2L
dx = 3.04

E I

L3
(b)

L̃ = m

∫ L

0

(
1− cos

πx

2L

)
dx = 0.363 mL (c)

The computed k̃ is close to the stiffness of the tower under a concentrated lateral force at the
top.

2. Determine the natural vibration frequency.

ωn =
√

k̃

m̃
= 3.66

L2

√
E I

m
(d)

This approximate result is close to the exact natural frequency, ωexact = (3.516/L2)
√

E I/m,
determined in Chapter 16. The error is only 4%.

3. Formulate the equation of motion. Substituting L̃ and m̃ in Eq. (8.3.14) gives 
̃ = 1.6
and Eq. (8.3.13b) becomes

z̈ + ω2
nz = −1.6üg(t) (e)

•
•

L

m, EI
x

(x) = 1 – cos πx
2L

ψ

Figure E8.2
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Example 8.3

A reinforced-concrete chimney, 200 m high, has a uniform hollow circular cross section with
outside diameter 16 m and wall thickness 1 m (Fig. E8.3a). For purposes of preliminary
earthquake analysis, the chimney is assumed clamped at the base, the mass and flexural rigidity
are computed from the gross area of the concrete (neglecting the reinforcing steel), and the
damping is estimated as 5%. The unit mass of concrete is 2400 kg/m3 and its elastic modulus
Ec = 25,000 MPa.

Assuming the shape function as in Example 8.2, estimate the peak displacements, shear
forces, and bending moments for the chimney due to ground motion characterized by the
design spectrum of Fig. 6.9.5 scaled to a peak acceleration 0.25g.

Solution
1. Determine the chimney properties.

Length: L = 200 m

Cross-sectional area: A = π(82 − 72) = 47.12 m2

Mass/unit length: m = 2400× 47.12 = 113,097 kg/m

Second moment of area: I = π

4
(84 − 74) = 1331.250 m4

Flexural rigidity: E I = 3.328× 1013 N-m2

2. Determine the natural period. From Example 8.2,

ωn = 3.66

L2

√
E I

m
= 1.57 rad/s

Tn = 2π

ωn
= 4.00 s

(a)

200 m

a a

x

16 m

Section a-a

1 m

71.5 cm

uo(x)

(b)

fo(x)

(c)

0 3

Vo(x)

14,518 kN 2,147,291 kN-m

(d)

0 1.5

Mo(x)

(e)

• •

Figure E8.3
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3. Determine the peak value of z(t). For Tn = 4.00 s and ζ = 0.05, the design spectrum
gives A/g = 0.25(1.80/4.00) = 0.112. The corresponding deformation is D = A/ω2

n =
44.6 cm. Equation (8.3.20) gives the peak value of z(t):

zo = 1.6D = 1.6× 44.6 = 71.5 cm

4. Determine the peak displacements uo(x) of the tower (Fig. E8.3b).

uo(x) = ψ(x)zo = 71.5
(

1− cos
πx

2L

)
cm

5. Determine the equivalent static forces.

fo(x) = 
̃m(x)ψ(x)A = (1.6)(113,097)
(

1− cos
πx

2L

)
0.112 g

= 199.8
(

1− cos
πx

2L

)
kN/m

These forces are shown in Fig. E8.3c.
6. Compute the shears and bending moments. Static analysis of the chimney subjected

to external forces fo(x) gives the shear forces and bending moments. The results using
Eq. (8.3.22) are presented in Fig. E8.3d and e. If we were interested only in the forces at
the base of the chimney, they could be computed directly from Eq. (8.3.23). In particular, the
base shear is

Vbo = L̃
̃A = (0.363mL)(1.6)0.112 g

= 0.06545mLg = 14,518 kN

This is 6.55% of the total weight of the chimney.

Example 8.4

A simply supported bridge with a single span of L meters has a deck of uniform cross section
with mass m per meter length and flexural rigidity E I . A single wheel load po travels across
the bridge at a uniform velocity of v, as shown in Fig. E8.4. Neglecting damping and assuming
the shape function as ψ(x) = sin(πx/L), determine an equation for the deflection at midspan
as a function of time. The properties of a prestressed-concrete box-girder elevated-freeway
connector are L = 60 m, m = 15,000 kg/m, I = 6 m4, and E = 25,000 MPa. If v = 90 km/h,
determine the impact factor defined as the ratio of maximum deflection at midspan and the
static deflection.

Solution We assume that the mass of the wheel load is small compared to the bridge mass,
and it can be neglected.

1. Determine the generalized mass, generalized stiffness, and natural frequency.

ψ(x) = sin
πx

L
ψ ′′(x) = −π

2

L2
sin

πx

L

m̃ =
∫ L

0
m sin2 πx

L
dx = mL

2
(a)

k̃ =
∫ L

0
E I

(
π2

L2

)2

sin2 πx

L
dx = π4 E I

2L3
(b)

ωn =
√

k̃

m̃
= π2

L2

√
E I

m
(c)
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m, EI

••
L

po

v

(a)

t

p~

L / v

po

(b)

1.5

1.0

0.5

0

u(
L

/2
) 

÷ 
(p

o 
/2

40
0) 0 1 2 2.4

Time t, s

Location of load, m
0 15 30 45 60

(c)

x

Figure E8.4

This happens to be the exact value of the lowest natural frequency of the bridge because
the ψ(x) selected is the exact shape of the fundamental natural vibration mode of a simply
supported beam (see Section 16.3.1).

2. Determine the generalized force. A load po traveling with a velocity v takes time
td = L/v to cross the bridge. At any time t its position is as shown in Fig. E8.4a. Thus the
moving load can be described mathematically as

p(x, t) =
{

poδ(x − vt) 0 ≤ t ≤ td
0 t ≥ td

(d)

where δ(x−vt) is the Dirac delta function centered at x = vt ; it is a mathematical description
of the traveling concentrated load. From Eq. (8.3.26) the generalized force is

p̃(t) =
∫ L

0
p(x, t)ψ(x) dx =

{∫ L
0 poδ(x − vt) sin(πx/L) dx 0 ≤ t ≤ td

0 t ≥ td

=
{

po sin(πvt/L) 0 ≤ t ≤ td
0 t ≥ td

=
{

po sin(π t/td ) 0 ≤ t ≤ td
0 t ≥ td

(e)

This generalized force is the half-cycle sine pulse shown in Fig. E8.4b.
3. Solve the equation of motion.

m̃z̈ + k̃z = p̃(t) (f)

Equations (4.8.2) and (4.8.3) describe the response of an SDF system to a half-cycle sine
pulse. We will adapt this solution to the bridge problem by changing the notation from u(t) to
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z(t) and noting that

td = L

v
Tn = 2π

ωn
(zst)o = po

k̃
= 2po

mLω2
n

The results are

z(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2po

mL

1

ω2
n − (πv/L)2

(
sin

πvt

L
− πv

ωn L
sinωnt

)
t ≤ L/v (g)

−2po

mL

(2πv/ωn L) cos(ωn L/2v)

ω2
n − (πv/L)2

sin[ωn(t − L/2v)] t ≥ L/v (h)

The response is given by Eq. (g) while the moving load is on the bridge span and by Eq. (h)
after the load has crossed the span. These equations are valid provided that ωn �= πv/L or
Tn �= 2L/v.

4. Determine the deflection at midspan.

u(x, t) = z(t)ψ(x) = z(t) sin
πx

L
(i)

At midspan, x = L/2 and

u

(
L

2
, t

)
= z(t) (j)

Thus the deflection at midspan is also given by Eqs. (g) and (h).
5. Numerical results. For the given prestressed-concrete structure and vehicle speed:

m = 15,000 kg/m

E I = (25,000× 106)(6) = 1.5× 1011 N-m2

ωn = π2

(60)2

√
(1.5× 1011)

(15,000)
= 8.670 rad/s

Tn = 0.72 s

v = 90 km/h = 25 m/s

πv

L
= 1.309

L

v
= 60

25
= 2.4 s

Because the duration of the half-cycle sine pulse td = L/v is greater than Tn/2, the maximum
response occurs while the moving load is on the bridge span. This phase of the response is
given by Eqs. (g) and (j):

u(L/2, t) = 2po

(15,000)(60)

1

(8.670)2 − (1.309)2

(
sin 1.309t − 1.309

8.670
sin 8.670t

)

= po

(33,052 kN/m)
(sin 1.309t − 0.1510 sin 8.670t) (k)
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Equation (k) is valid for 0 ≤ t ≤ 2.4 s. The values of midspan deflections calculated
from Eq. (k) at many values of t are shown in Fig. E8.4c; the maximum deflection is uo =
(po/33,052)(1.147). The static deflection is u(L/2) = po L3/48E I = po/33,333 kN/m.
The ratio of these deflections gives the impact factor: 1.157 (i.e., the static load should be
increased by 15.7% to account for the dynamic effect).

Example 8.5

Determine the natural frequency of transverse vibration of the three-span, box-girder bridge
of Example 1.3. Therein several of the properties of this structure were given. In addition,
the second moment of area for transverse bending of the bridge deck is given: Iy = 600 m4.
Neglect torsional stiffness of the bents.

Solution
1. Select the shape function. We select a function appropriate for a beam simply sup-

ported at both ends (Fig. E8.5):

ψ(x) = sin
πx

L
(a)

This shape function is shown in Fig. E8.5.
2. Determine the generalized mass.

m̃ =
∫ L

0
m sin2 πx

L
dx = mL

2
(b)

3. Determine the generalized stiffness.

k̃ =
∫ L

0
E Iy[ψ ′′(x)]2 dx +

∑
kbentψ

2(xbent)

=
∫ L

0
E Iy

(
π2

L2
sin

πx

L

)2

dx + kbent sin2

(
πL/3

L

)
+ kbent sin2

(
π2L/3

L

)

= π4 E Iy

2L3
+ 3

4
kbent + 3

4
kbent

= π4 E Iy

2L3︸ ︷︷ ︸
k̃deck

+ 3

2
kbent︸ ︷︷ ︸

k̃bents

(c)

4. Determine numerical values for m̃ and k̃. From Example 1.3, the mass of the bridge
deck per unit length is 28,800 kg/m.

m̃ = (28,800× 120)

2
= 1,728,000 kg

k̃deck = π4(20,000× 106)(600)

2(120)3
= 3.382× 108 N/m
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x

ψ(x) = sin (πx/L)

•

•

L

Figure E8.5

From Example 1.3, the stiffness of each bent in the longitudinal direction is kbent = 2.109 ×
108 N/m. Because each column in the bent has a circular section, its second moment of area is
the same for bending in the longitudinal or transverse directions. Thus, the transverse stiffness
of each bent is also kbent = 2.109× 108 N/m.

k̃bent = 3

2
kbent = 3

2
(2.109× 108) = 3.164× 108 N/m

k̃ = k̃deck + k̃bents = 3.382× 108 + 3.164× 108 = 6.546× 108 N/m

5. Determine the natural vibration period.

ωn =
√

k̃

m̃
=

√
(6.546× 108)

(1,728,000)
= 19.46 rad/s

Tn = 2π

ωn
= 0.323 s

8.4 LUMPED-MASS SYSTEM: SHEAR BUILDING

As an illustration of approximating a system having several degrees of freedom by a gen-
eralized SDF system, consider the frame shown in Fig. 8.4.1a and earthquake excitation.
The mass of this N -story frame is lumped at the floor levels with mj denoting the mass
at the j th floor. This system has N degrees of freedom: u1, u2, . . . , uN . In this section,
first the equation of motion for this system without damping is formulated; damping is
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m1

mj

mN

1
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j

N

hj

(a)

uj

zzuN

uj

u1

ug

fIN

fIj

fI1

(b)

fNo

fjo

f1o

(c)

δ

δ

Figure 8.4.1 (a) Building displacements and virtual displacements; (b) inertia forces;
(c) equivalent static forces.

usually defined by a damping ratio estimated from experimental data for similar structures
(Chapter 11). Then the equation of motion is solved to determine the peak response—
displacements and internal forces—of the structure to earthquake ground motion.

8.4.1 Assumed Shape Vector

We assume that the floor displacements relative to the ground can be expressed as

uj (t) = ψj z(t) j = 1, 2, . . . , N (8.4.1a)

which in vector form is

u(t) = ψz(t) (8.4.1b)

where ψ is an assumed shape vector that defines the deflected shape. The total displace-
ment of the j th floor is

ut
j (t) = uj (t)+ ug(t) (8.4.2)

8.4.2 Equation of Motion

Before we can formulate the equation of motion for this system, we must define how the
internal forces are related to the displacements. This relationship is especially easy to de-
velop if the beams are rigid axially as well as in flexure and this “shear building” assump-
tion is adequate for our present objectives; however, realistic idealizations of multistory
buildings will be developed in Chapter 9. For this shear building idealization, the shear Vj

in the j th story (which is the sum of the shear in all columns) is related to the story drift
�j = uj − uj−1 through the story stiffness kj :

Vj = kj �j = kj (uj − uj−1) (8.4.3)
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The story stiffness is the sum of the lateral stiffnesses of all columns in the story:

kj =
∑

columns

12E I

h3
(8.4.4)

where E I is the flexural rigidity of a column and h its height.
We now proceed to formulate the equation of motion for the shear building. At

each time instant the system is in equilibrium under the action of the internal story shears
Vj (t) and the fictitious inertia forces (Fig. 8.4.1b), which by D’Alembert’s principle are
f I j = −mj üt

j . Substituting Eq. (8.4.2) for ut
j gives

f I j = −mj [ü j (t)+ üg(t)] (8.4.5)

As before, the principle of virtual displacements provides a convenient approach for
formulating the equation of motion. The procedure is similar to that developed in Section
8.3 for a beam. The external virtual work is due to the forces f I j acting through the virtual
displacements δuj :

δWE =
N∑

j=1

f I j (t) δuj

which after substituting Eq. (8.4.5) becomes

δWE = −
N∑

j=1

mj ü j (t) δuj − üg(t)
N∑

j=1

mj δuj (8.4.6)

The internal virtual work is due to the story shears Vj (t) acting through the story drifts
associated with the virtual displacements:

δWI =
N∑

j=1

Vj (t)(δuj − δuj−1) (8.4.7)

where Vj (t) is related to displacements by Eq. (8.4.3).
The internal and external virtual work can be expressed in terms of the generalized

coordinate z and shape vector ψ by noting that the virtual displacements consistent with
the assumed shape vector (Fig. 8.4.1a) are

δuj = ψj δz or δu = ψ δz (8.4.8)

Proceeding as in Section 8.3 leads to the following equations of external and internal virtual
work:

δWE = −δz
⎡
⎣z̈

N∑
j=1

mjψ
2
j + üg(t)

N∑
j=1

mjψj

⎤
⎦ (8.4.9)

δWI = δz
⎡
⎣z

N∑
j=1

kj (ψj − ψj−1)
2

⎤
⎦ (8.4.10)
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Having obtained these expressions for δWE and δWI , Eq. (8.3.4), after dropping δz (see
Section 8.3.2), gives the equation of motion:

m̃z̈ + k̃z = −L̃üg(t) (8.4.11)

where

m̃ =
N∑

j=1

mjψ
2
j k̃ =

N∑
j=1

kj (ψj − ψj−1)
2 L̃ =

N∑
j=1

mjψj (8.4.12a)

We digress briefly to mention that the preceding derivation would have been easier
if we used a matrix formulation, but we avoided this approach because the stiffness matrix
k and the mass matrix m of a structure are not introduced until Chapter 9. However, most
readers are expected to be familiar with the stiffness matrix of a structure, and as we shall
see in Chapter 9, the mass matrix of the system of Fig. 8.4.1 is a diagonal matrix with
mj j = mj . Using these matrices and the shape vector ψ = 〈ψ1 ψ2 · · · ψN 〉T ,
Eq. (8.4.12a) for the generalized properties becomes

m̃ = ψT mψ k̃ = ψT kψ L̃ = ψT m1 (8.4.12b)

where 1 is a vector with all elements unity. Equation (8.4.12b) for the generalized stiffness
is a general result because, unlike Eq. (8.4.12a), it is not restricted to shear buildings, as
long as k is determined for a realistic idealization of the structure.

Equation (8.4.11) governs the motion of the multistory shear frame assumed to de-
flect in the shape defined by the vector ψ. For this generalized SDF system, the gener-
alized mass m̃, generalized stiffness k̃, and generalized excitation −L̃üg(t) are defined
by Eq. (8.4.12). Dividing Eq. (8.4.11) by m̃ and including a damping term using an
estimated modal damping ratio ζ gives Eqs. (8.3.13b) and (8.3.14), demonstrating that
the same equation of motion applies to both—lumped mass or distributed mass—
generalized SDF systems; the generalized properties m̃, k̃, and L̃ depend on the system,
of course.

8.4.3 Response Analysis

The generalized SDF system can now be analyzed by the methods developed in preceding
chapters for SDF systems. In particular, the natural vibration frequency of the system is
given by

ω2
n =

k̃

m̃
=

∑N
j=1 kj (ψj − ψj−1)

2∑N
j=1 mjψ

2
j

(8.4.13a)

Rewriting this equation in matrix notation gives

ω2
n =

ψT kψ
ψT mψ

(8.4.13b)

The generalized coordinate response z(t) of the system to specified ground acceleration can
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be determined by solving Eq. (8.3.13b) using the methods of Chapters 5 and 6. Equation
(8.4.1) then gives floor displacements relative to the base.

Suppose that it is desired to determine the peak response of the frame to earthquake
excitation characterized by a design spectrum. The peak value of z(t) is still given by
Eq. (8.3.20), and the floor displacements relative to the ground are given by Eq. (8.4.1)
with z(t) replaced by zo:

ujo = ψj zo = 
̃Dψj j = 1, 2, . . . , N (8.4.14)

The equivalent static forces associated with these floor displacements are given by
Eq. (8.3.21b) modified for a lumped-mass system:

f jo = 
̃mjψj A j = 1, 2, . . . , N (8.4.15)

Static analysis of the structure subjected to these floor forces (Fig. 8.4.1c) gives the
shear force Vio in the i th story and overturning moment at the i th floor:

Vio =
N∑

j=i

f jo Mio =
N∑

j=i

(hj − hi ) f jo (8.4.16)

where hi is the height of the i th floor above the base. In particular, the shear and overturn-
ing moment at the base are

Vbo =
N∑

j=1

f jo Mbo =
N∑

j=1

hj fjo

Substituting Eq. (8.4.15) gives

Vbo = L̃
̃A Mbo = L̃θ 
̃A (8.4.17)

where L̃ was defined by Eq. (8.4.12) and

L̃θ =
N∑

j=1

hj mjψj (8.4.18)

Observe that these equations for forces at the base of a lumped-mass system are the same
as derived earlier for distributed-mass systems [Eqs. (8.3.23) and (8.3.24)]; the parameters
L̃ , L̃θ , and 
̃ depend on the system, of course.

Example 8.6

The uniform five-story frame with rigid beams shown in Fig. E8.6a is subjected to ground ac-
celeration üg(t). All the floor masses are m, and all stories have the same height h and stiffness
k. Assuming the displacements to increase linearly with height above the base (Fig. E8.6b),
formulate the equation of motion for the system and determine its natural frequency.
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Solution
1. Determine the generalized properties.

m̃ =
5∑

j=1

mjψ
2
j = m

12 + 22 + 32 + 42 + 52

52
= 11

5
m

k̃ =
5∑

j=1

kj (ψj − ψj−1)
2 = k

12 + 12 + 12 + 12 + 12

52
= k

5

L̃ =
5∑

j=1

mjψj = m
1+ 2+ 3+ 4+ 5

5
= 3m

2. Formulate the equation of motion. Substituting for m̃ and L̃ in Eq. (8.3.14) gives

̃ = 15

11 and Eq. (8.3.13b) becomes

z̈ + ω2
nz = − 15

11 üg(t)

where z is the lateral displacement at the location where ψj = 1, in this case the top of the
frame.

3. Determine the natural vibration frequency.

ωn =
√

k/5

11m/5
= 0.302

√
k

m

This is about 6% higher than ωn = 0.285
√

k/m, the exact frequency of the system determined
in Chapter 12.

Example 8.7

Determine the peak displacements, story shears, and floor overturning moments for the frame
of Example 8.6 with m = 50,000 kg, k = 5500 kN/m, and h = 4 m (Fig. E8.7a) due to
the ground motion characterized by the design spectrum of Fig. 6.9.5 scaled to a peak ground
acceleration of 0.25g.
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k

k

k

k

k

m

m

m

m

m

•
•

5@
4 

m

(a)

30.25 cm

24.20

18.15

12.10

6.05

(b)

151.25 kN

121.00

90.75

60.50

30.25

(c)

151.25 kN

272.25

363.00

423.50

453.75

(d)

553

1549

2877

4426

6085 kN-m

(e)

Figure E8.7

Solution
1. Compute the natural period.

ωn = 0.302

√
5500× 103

50,000
= 3.162 rad/s

Tn = 2π

3.162
= 1.99 s

2. Determine the peak value of z(t). For Tn = 1.99 s and ζ = 0.05, the design spec-
trum gives A/g = 0.25(1.80/1.99) = 0.226 and D = A/ω2

n = 22.18 cm. The peak value
of z(t) is

zo = 15
11 D = 15

11 (22.18) = 30.25 cm

3. Determine the peak values ujo of floor displacements.

u jo = ψj zo ψj = j

5

Therefore, u1o = 6.05, u2o = 12.10, u3o = 18.15, u4o = 24.20, and u5o = 30.25, all in
centimeters (Fig. E8.7b).

4. Determine the equivalent static forces.

f jo = 
̃mjψj A = 15
11 mψj (0.226 g) = 151.2ψj kN

These forces are shown in Fig. E8.7c.
5. Compute the story shears and overturning moments. Static analysis of the structure

subjected to external floor forces f jo, Eq. (8.4.16), gives the story shears (Fig. E8.7d) and
overturning moments (Fig. E8.7e). If we were interested only in the forces at the base, they
could be computed directly from Eq. (8.4.17). In particular, the base shear is

Vbo = L̃
̃A = (3m) 15
11 (0.226 g)

= 0.185(5mg) = 453.75 kN

This is 18.5% of the total weight of the building.
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8.5 NATURAL VIBRATION FREQUENCY BY RAYLEIGH’S METHOD

Although the principle of virtual displacements provides an approximate result for the
natural vibration frequency [Eqs. (8.3.15) and (8.4.13)] of any structure, it is instructive
to obtain the same result by another approach, developed by Lord Rayleigh. Based on
the principle of conservation of energy, Rayleigh’s method was published in 1873. In this
section this method is applied to a mass–spring system, a distributed-mass system, and a
lumped-mass system.

8.5.1 Mass–Spring System

When an SDF system with lumped mass m and stiffness k is disturbed from its equilibrium
position, it oscillates at its natural vibration frequency ωn , and it was shown in Section 2.1
by solving the equation of motion that ωn =

√
k/m. Now we will obtain the same result

using the principle of conservation of energy.
The simple harmonic motion of a freely vibrating mass–spring system, Eq. (2.1.3),

can be described conveniently by defining a new time variable t ′ with its origin as shown
in Fig. 8.5.1a:

u(t ′) = uo sinωnt ′ (8.5.1)

where the frequency ωn is to be determined and the amplitude uo of the motion is given by
Eq. (2.1.9). The velocity of the mass, shown in Fig. 8.5.1b, is

u̇(t ′) = ωnuo cosωnt ′ (8.5.2)
The potential energy of the system is the strain energy in the spring, which is propor-

tional to the square of the spring deformation u (Eq. 2.3.2). Therefore, the strain energy is

•

Tn

t′ = 0t = 0

u

t, t′

uo

(a)

u̇

t, t′

n uo

(b)

ω

Figure 8.5.1 Simple harmonic motion of a
freely vibrating system: (a) displacement;
(b) velocity.
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maximum at t ′ = Tn/4 (also at t ′ = 3Tn/4, 5Tn/4, . . .) when u(t) = uo and is given by

ESo = 1
2 ku2

o (8.5.3)

This is also the total energy of the system because at this t ′ the velocity is zero (Fig. 8.5.1b),
implying that the kinetic energy is zero.

The kinetic energy of the system is proportional to the square of the velocity of the
mass u̇ [Eq. (2.3.2)]. Therefore, the kinetic energy is maximum at t ′ = 0 (also at t ′ = Tn/2,
3Tn/2, . . .) when the velocity u̇(t) = ωnuo and is given by

EK o = 1
2 mω2

nu2
o (8.5.4)

This is also the total energy of the system because at this t ′, the deformation is zero
(Fig. 8.5.1a), implying that the strain energy is zero.

The principle of conservation of energy states that the total energy in a freely vi-
brating system without damping is constant (i.e., it does not vary with time), as shown by
Eq. (2.3.5). Thus the two alternative expressions, EK o and ESo, for the total energy must
be equal, leading to the important result:

maximum kinetic energy, EK o = maximum potential energy, ESo (8.5.5)

Substituting Eqs. (8.5.3) and (8.5.4) gives

ωn =
√

k

m
(8.5.6)

This is the same result for the natural vibration frequency as Eq. (2.1.4) obtained by solving
the equation of motion.

Rayleigh’s method does not provide any significant advantage in obtaining the nat-
ural vibration frequency of a mass–spring system, but the underlying concept of energy
conservation is useful for complex systems, as shown in the next two sections.

8.5.2 Systems with Distributed Mass and Elasticity

As an illustration of such a system, consider the cantilever tower of Fig. 8.3.1 vibrating
freely in simple harmonic motion:

u(x, t ′) = zo sinωnt ′ψ(x) (8.5.7)

where ψ(x) is an assumed shape function that defines the form of deflections, zo is the
amplitude of the generalized coordinate z(t), and the natural vibration frequency ωn is to
be determined. The velocity of the tower is

u̇(x, t ′) = ωnzo cosωnt ′ψ(x) (8.5.8)

The maximum potential energy of the system over a vibration cycle is equal to its strain
energy associated with the maximum displacement uo(x):

ESo =
∫ L

0

1
2 E I (x)[u′′o(x)]

2 dx (8.5.9)
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The maximum kinetic energy of the system over a vibration cycle is associated with the
maximum velocity u̇o(x):

EK o =
∫ L

0

1
2 m(x)[u̇o(x)]

2 dx (8.5.10)

From Eqs. (8.5.7) and (8.5.8), uo(x) = zoψ(x) and u̇o(x) = ωnzoψ(x). Substituting these
in Eqs. (8.5.9) and (8.5.10) and equating EK o to ESo gives

ω2
n =

∫ L
0 E I (x)[ψ ′′(x)]2 dx∫ L

0 m(x)[ψ(x)]2 dx
(8.5.11)

This is known as Rayleigh’s quotient for a system with distributed mass and elasticity; re-
call that the same result, Eq. (8.3.15), was obtained using the principle of virtual displace-
ments. Rayleigh’s quotient is valid for any natural vibration frequency of a multi-degree-
of-freedom system, although its greatest utility is in determining the lowest or fundamental
frequency.

8.5.3 Systems with Lumped Masses

As an illustration of such a system, consider the shear building of Fig. 8.4.1 vibrating freely
in simple harmonic motion,

u(t ′) = zo sinωnt ′ψ (8.5.12)

where the vector ψ is an assumed shape vector that defines the form of deflections, zo is
the amplitude of the generalized coordinate z(t), and the natural vibration frequency ωn

is to be determined. The velocities of the lumped masses of the system are given by the
vector

u̇(t ′) = ωnzo cosωnt ′ψ (8.5.13)

The maximum potential energy of the system over a vibration cycle is equal to its strain
energy associated with the maximum displacements, uo = 〈u1o u2o · · · uNo〉T :

ESo =
N∑

j=1

1
2 kj

(
ujo − uj−1,o

)2
(8.5.14)

The maximum kinetic energy of the system over a vibration cycle is associated with the
maximum velocities, u̇o = 〈u̇1o u̇2o · · · u̇No〉T :

EK o =
N∑

j=1

1
2 mj u̇

2
jo (8.5.15)

From Eqs. (8.5.12) and (8.5.13), ujo = zoψj and u̇ jo = ωnzoψj . Substituting these in
Eqs. (8.5.14) and (8.5.15) and equating EK o to ESo gives

ω2
n =

∑N
j=1 kj (ψj − ψj−1)

2∑N
j=1 mjψ

2
j

(8.5.16a)
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Rewriting this in matrix notation gives

ω2
n =

ψT kψ
ψT mψ

(8.5.16b)

This is Rayleigh’s quotient for the shear building with N lumped masses; recall that the
same result, Eq. (8.4.13), was obtained using the principle of virtual displacements.

8.5.4 Properties of Rayleigh’s Quotient

What makes Rayleigh’s method especially useful for estimating the lowest or fundamental
natural vibration frequency of a system are the properties of Rayleigh’s quotient, presented
formally in Section 10.12 but only conceptually here. First, the approximate frequency
obtained from an assumed shape function is never smaller than the exact value. Second,
Rayleigh’s quotient provides excellent estimates of the fundamental frequency, even with
a mediocre shape function.

Let us examine these properties in the context of a specific system, the cantilever
tower considered in Example 8.2. Its fundamental frequency can be expressed as ωn =
αn

√
E I/mL4 [see Eq. (d) of Example 8.2]. Three different estimates of αn using three

different shape functions are summarized in Table 8.5.1. The second frequency estimate
comes from Example 8.2. The same procedure leads to the results using the other two
shape functions. The percentage error shown is relative to the exact value of αn = 3.516
(Chapter 17).

TABLE 8.5.1 NATURAL FREQUENCY
ESTIMATES FOR A UNIFORM CANTILEVER

ψ(x) αn % Error

3x2/2L2 − x3/2L3 3.57 1.5
1− cos (πx/2L) 3.66 4
x2/L2 4.47 27

Consistent with the properties of Rayleigh’s quotient, the three estimates of the nat-
ural frequency are higher than its exact value. Even if we did not know the exact value, as
would be the case for complex systems, we could say that the smallest value, αn = 3.57, is
the best among the three estimates for the natural frequency. This concept can be used to
determine the exact frequency of a two-DOF system by minimizing the Rayleigh’s quotient
over a shape function parameter.

Why such a large error in the third case of Table 8.5.1? The shape function ψ(x) =
x2/L2 satisfies the displacement boundary conditions at the base of the tower but violates
a force boundary condition at the free end. It implies a constant bending moment over
the height of the tower, but a bending moment at the free end of a cantilever is unrealistic
unless there is a mass at the free end with a moment of inertia. Thus, a shape function that
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satisfies only the geometric boundary conditions does not always ensure an accurate result
for the natural frequency.

An estimate of the natural vibration frequency of a system obtained using Rayleigh’s
quotient can be improved by iterative methods. Such methods are developed in
Chapter 10.

8.6 SELECTION OF SHAPE FUNCTION

The accuracy of the natural vibration frequency estimated using Rayleigh’s quotient de-
pends entirely on the shape function that is assumed to approximate the exact mode shape.
In principle any shape may be selected that satisfies the displacement and force boundary
conditions. In this section we address the question of how a reasonable shape function can
be selected to ensure good results.

For this purpose it is useful to identify the properties of the exact mode shape. In
free vibration the displacements are given by Eq. (8.5.7) and the associated inertia forces
are

f I (x, t) = −m(x)ü(x, t ′) = ω2
nzom(x)ψ(x) sinωnt ′

If ψ(x) were the exact mode shape, static application of these inertia forces at each time
instant will produce deflections given by Eq. (8.5.7), a result that will become evident
in Chapter 16. This concept is not helpful in evaluating the exact mode shape ψ(x)
because the inertia forces involve this unknown shape. However, it suggests that an
approximate shape function ψ(x) may be determined as the deflected shape due to static
forces p(x) = m(x)ψ̃(x), where ψ̃(x) is any reasonable approximation of the exact mode
shape.

In general, this procedure to select the shape function involves more computational
effort than is necessary because, as mentioned earlier, Rayleigh’s method gives excellent
accuracy even if the shape function is mediocre. However, the preceding discussion does
support the concept of determining the shape function from deflections due to a selected
set of static forces. One common selection for these forces is the weight of the struc-
ture applied in an appropriate direction. For the cantilever tower it is the lateral direction
(Fig. 8.6.1a). This selection is equivalent to taking ψ̃(x) = 1 in p(x) = m(x)ψ̃(x).
Another selection includes several concentrated forces as shown in Fig. 8.6.1b.

The displacement and force boundary conditions are satisfied automatically if the
shape function is determined from the static deflections due to a selected set of forces.
This choice of shape function has the additional advantage that the strain energy can be
calculated as the work done by the static forces in producing the deflections, an approach
that is usually simpler than Eq. (8.5.9). Thus, the maximum strain energy of the system
associated with the forces p(x) in Fig. 8.6.1a is

ESo = 1
2

∫ L

0
p(x)u(x) dx
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p1

pj

xj

•
•

L

EI(x)
m(x)

x

(b)

p(x) = gm(x)

(a) (c)

u(x)

Figure 8.6.1 Shape function from deflections due to static forces.

Equating this ESo to EK o of Eq. (8.5.10) with u̇o(x) = ωnuo(x) and dropping the subscript
“o” gives

ω2
n =

∫ L
0 p(x)u(x) dx∫ L

0 m(x)[u(x)]2 dx
(8.6.1)

This equation with p(x) = po (i.e., uniformly distributed forces) appears in the AASHTO
(American Association of State Highway and Transportation Officials) code to estimate
the fundamental natural frequency of a bridge.

For p(x) = gm(x) in Fig. 8.6.1a, Eq. (8.6.1) becomes

ω2
n = g

∫ L
0 m(x)u(x) dx∫ L

0 m(x)[u(x)]2 dx
(8.6.2)

Similarly, the maximum strain energy of the system associated with deflections u(x)
due to the forces of Fig. 8.6.1b is

ESo = 1
2

∑
pj u(xj )

Equating this ESo to EK o of Eq. (8.5.10) gives

ω2
n =

∑
pj u(xj )∫ L

0 m(x)[u(x)]2 dx
(8.6.3)

Although attractive in principle, selecting the shape function as the static deflections
due to a set of forces can be cumbersome for the nonuniform (variable E I ) tower shown in
Fig. 8.6.1a. A convenient approach is to determine the static deflections of a uniform (con-
stant EI ) tower of the same length, and use the resulting shape function for the nonuniform
tower. The reader is reminded, however, against doing complicated analysis to determine
deflected shapes in the interest of obtaining an extremely accurate natural frequency. The
principal attraction of Rayleigh’s method lies in its ability to provide a useful estimate of
the natural frequency from any reasonable assumption on the shape function that satisfies
the displacement and force boundary conditions.
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Figure 8.6.2 Shape function from deflections due to static forces.

The concept of using the shape function as the static deflections due to a selected set
of forces is also useful for lumped-mass systems. Three sets of forces that may be used
for a multistory building frame are shown in Fig. 8.6.2. The maximum strain energy of the
system associated with deflections uj in the three cases is

ESo = 1
2 pN uN ESo = 1

2

N∑
j=1

pj uj ESo = 1
2 g

N∑
j=1

mj uj

Equating these ESo to EK o of Eq. (8.5.15) with u̇ jo = ωnujo, dropping the subscript “o,”
and simplifying gives

ω2
n =

pN uN∑
mj u2

j

ω2
n =

∑
pj uj∑
mj u2

j

ω2
n =

g
∑

mj uj∑
mj u2

j

(8.6.4)

respectively. Equations (8.6.4b) and (8.6.4c) appear in building codes to estimate the fun-
damental natural frequency of a building (Chapter 21). Unlike Eq. (8.5.16a), these results
are not restricted to a shear building as long as the deflections are calculated using the
actual stiffness properties of the frame.

It is important to recognize that the success of Rayleigh’s method for estimating the
lowest or fundamental natural frequency of a structure depends on the ability to visualize
the corresponding natural mode of vibration that the shape function is intended to approx-
imate. The fundamental mode of a multistory building or of a single-span beam is easy
to visualize because the deflections in this mode are all of the same sign. However, the
mode shape of more complex systems may not be easy to visualize, and even a shape func-
tion calculated from the static deflections due to the self-weight of the structure may not
be appropriate. Consider, for example, a two-span continuous beam. Its symmetric de-
flected shape under its own weight, shown in Fig. 8.6.3a, is not appropriate for computing
the lowest natural frequency because this frequency is associated with the antisymmetric
mode shown in Fig. 8.6.3b. If this mode shape can be visualized, we can approximate it by
the static deflections due to the self-weight of the beam applied downward in one span and
upward in the other span (Fig. 8.6.3b).
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(a)

m(x)g

u(x)

(b)

m(x)g

m(x)g

u(x)

Figure 8.6.3 Shape functions resulting from self-weight applied in appropriate direc-
tions.

Example 8.8

Estimate the natural frequency of a uniform cantilever beam assuming the shape function
obtained from static deflections due to a load p at the free end.

Solution
1. Determine the deflections. With the origin at the clamped end,

u(x) = p

6E I
(3Lx2 − x3) (a)

2. Determine the natural frequency from Eq. (8.6.3).

∑
j

pj u(xj ) = pu(L) = p2 L3

3E I
(b)

∫ L

0
m(x)[u(x)]2 dx = m

p2

(6E I )2

∫ L

0
(3Lx2 − x3)2 dx = 11p2

420

mL7

(E I )2
(c)

Substituting Eqs. (b) and (c) in Eq. (8.6.3) gives

ωn = 3.57

L2

√
E I

m

This is the first frequency estimate in Table 8.5.1.

Example 8.9

Estimate the fundamental natural frequency of the five-story frame in Fig. E8.9 assuming the
shape function obtained from static deflections due to lateral forces equal to floor weights
w = mg.

Solution
1. Determine the deflections due to applied forces. The static deflections are determined

as shown in Fig. E8.9 by calculating the story shears and the resulting story drifts; and adding
these drifts from the bottom to the top to obtain

uT = w

k
〈5 9 12 14 15〉T
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Figure E8.9

2. Determine the natural frequency from Eq. (8.6.4c).

ω2
n = g

w(w/k)(5+ 9+ 12+ 14+ 15)

w(w/k)2(25+ 81+ 144+ 196+ 225)
= 55

671

k

m

ωn = 0.286

√
k

m

This estimate is very close to the exact value, ωexact = 0.285
√

k/m, and better than from a
linear shape function (Example 8.6).

F U R T H E R R E A D I N G

Rayleigh, J. W. S., Theory of Sound, Dover, New York, 1945; published originally in 1894.

APPENDIX 8: INERTIA FORCES FOR RIGID BODIES

The inertia forces for a rigid bar and rectangular and circular rigid plates associated with
accelerations üx , ü y , and θ̈ of the center of mass O (or center of gravity) are shown in
Fig. A8.1. Each rigid body is of uniform thickness, and its total mass m is uniformly
distributed; the moment of inertia IO about the axis normal to the bar or plate and passing
through O is as noted in the figure.
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(b)

müx
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¨
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2
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θ
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θ

Figure A8.1 Inertia forces for rigid plates.

P R O B L E M S

8.1 Repeat parts (a), (b), and (c) of Example 8.1 with one change: Use the horizontal displace-
ment at C as the generalized coordinate. Show that the natural frequency, damping ratio, and
displacement response are independent of the choice of generalized displacement.

8.2 For the rigid-body system shown in Fig. P8.2:
(a) Formulate the equation of motion governing the rotation at O .
(b) Determine the natural frequency and damping ratio.
(c) Determine the displacement response u(x, t) to p(t) = δ(t), the Dirac delta function.

O

Rotational
damper c Mass = m

k

L/2 L/2

p(t)
Mass = m

L/8

L/8

L/8 L/8
Figure P8.2
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8.3 Solve Problem 8.2 with one change: Use the vertical displacement at the center of gravity of
the square plate as the generalized displacement. Show that the results are independent of the
choice of generalized displacement.

8.4 The rigid bar in Fig. P8.4 with a hinge at the center is bonded to a viscoelastic foundation,
which can be modeled by stiffness k and damping coefficient c per unit of length. Using the
rotation of the bar as the generalized coordinate:
(a) Formulate the equation of motion.
(b) Determine the natural vibration frequency and damping ratio.

p(t)p(t) m = mass per unit length

k, c per unit length

L/2 L/2
Figure P8.4

8.5 For the rigid-body system shown in Fig. P8.5:
(a) Choose a generalized coordinate.
(b) Formulate the equation of motion.
(c) Determine the natural vibration frequency and damping ratio.

p(t)
Massless

Mass = m
k

L/2 L/2 L/2 L/2

c

k

Figure P8.5

8.6 Solve Example 8.3 assuming the deflected shape function due to lateral force at the top:

ψ(x) = 3

2

x2

L2
− 1

2

x3

L3

The shear forces and bending moments need to be calculated only at the base and mid-
height. (Note that these forces were determined in Example 8.3 throughout the height of the
chimney.)

8.7 A reinforced-concrete chimney 200 m high has a hollow circular cross section with outside
diameter 16 m at the base and 8 m at the top; the wall thickness is 1 m, uniform over the
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height (Fig. P8.7). Using the approximation that the wall thickness is small compared to the
radius, the mass and flexural stiffness properties are computed from the gross area of concrete
(neglecting reinforcing steel). The chimney is assumed to be clamped at the base, and its
damping ratio is estimated to be 5%. The unit mass of concrete is 2400 kg/m3, and its elastic
modulus Ec = 25,000 MPa. Assuming that the shape function is

ψ(x) = 1− cos
πx

2L

where L is the length of the chimney and x is measured from the base, calculate the following
quantities: (a) the shear forces and bending moments at the base and at the midheight, and (b)
the top deflection due to ground motion defined by the design spectrum of Fig. 6.9.5, which
is scaled to a peak acceleration of 0.25g.

•
•

200 m

16 m
• •

• •
8 m

1 m••

Figure P8.7

8.8 Solve Problem 8.7 asssuming that the shape function is

ψ(x) = 3

2

x2

L2
− 1

2

x3

L3

8.9 Solve Problem 8.7 for a different excitation: a blast force varying linearly over height from
zero at the base to p(t) at the top, where p(t) is given in Fig. P8.9.

p(t)

t, s

p, kN/m

60

0.1 0.25

Figure P8.9
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8.10–
8.11

Three-story shear frames (rigid beams and flexible columns) in structural steel (E=200,000
MPa) are shown in Figs. P8.10 and P8.11; m = 50,000 kg; I = 60,000 cm4; and the modal
damping ratios ζn are 5% for all modes. Assuming that the shape function is given by deflec-
tions due to lateral forces that are equal to the floor weights, determine the floor displacements,
story shears, and overturning moments at the floors and base due to ground motion character-
ized by the design spectrum of Fig. 6.9.5 scaled to a peak ground acceleration of 0.25g.

m

m

m/2

EI

EI

EI

EI

EI

EI

Rigid beams

• •
8 m

•
••

••
•

4 m

4 m

4 m

Figure P8.10

m

m

m/2

EI

2EI/3

EI/3

EI

2EI/3

EI/3

Rigid beams

• •
8 m

•
••

••
•

4 m

4 m

4 m

Figure P8.11

8.12–
8.13

Solve Problems 8.10 and 8.11 using the shape function given by deflections due to a lateral
force at the roof level.

8.14 A five-story frame with rigid beams shown in Fig. P8.14a is subjected to ground acceleration
üg(t); kj are story stiffnesses. Assuming the displacements to increase linearly with height
above the base (Fig. P8.14b), formulate the equation of motion for the system and determine
its natural frequency. Determine the floor displacements, story shears, and floor overturning
moments due to ground motion characterized by the design spectrum of Fig. 6.9.5 scaled to a
peak ground acceleration of 0.25g.

50,000

50,000

50,000

50,000

25,000 kg

36,000

36,000

27,000

27,000

18,000

kj, kN/m

Rigid beams

•
••

••
••

••
•

4 m

4 m

4 m

4 m

4 m

(a) (b)

1

4/5

3/5

2/5

1/5

Figure P8.14
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8.15 Solve Problem 8.14 using the shape function obtained from static deflections due to lateral
forces equal to floor weights.

8.16 Solve Problem 8.14 using the shape function given by deflections due to a lateral force at the
roof level.

8.17 Determine the natural vibration frequency of the inverted L-shaped frame shown in Fig. P8.17
using the shape function given by the deflections due to a vertical force at the free end. Neglect
deformations due to shear and axial force. EI is constant.

m2m•
•

L

•• L

Figure P8.17

Mass = m

••
L

k 2k

1
ψr

Figure P8.18

8.18 (a) By Rayleigh’s method determine the natural vibration frequency of the rigid bar on two
springs (Fig. P8.18) using the shape function shown. Note that the result involves the unknown
ψr . Plot the value of ω2

n as a function of ψr .
(b) Using the properties of Rayleigh’s quotient, determine the exact values of the two vibration
frequencies and the corresponding vibration shapes.

8.19 The umbrella structure shown in Fig. P8.19 consists of a uniform column of flexural rigidity
E I supporting a uniform slab of radius R and mass m. By Rayleigh’s method determine the
natural vibration frequency of the structure. Neglect the mass of the column and the effect of
axial force on column stiffness. Assume that the slab is rigid in flexure and that the column is
axially rigid.

•
•

L

• •
R

Mass = m

Figure P8.19

8.20 By Rayleigh’s method determine the natural vibration frequency of the uniform beam shown
in Fig. P8.20. Assume that the shape function is given by the deflections due to a force applied
at the free end.
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•• • •
2 LL

mIE (x) = m

Figure P8.20

8.21 By Rayleigh’s method determine the natural vibration frequency of transverse vibration of the
three-span, box-girder bridge of Example 8.5. Assume that the shape function is given by
the deflections due to uniform force p(x) = 1 applied in the transverse direction. Neglect
torsional stiffness of the bents.

8.22 Repeat Problem 8.21 using a simpler approach in which the deflections are assumed to be
u(x) = uo sin(πx/L), where uo is the midspan deflection due to uniform force p(x) = 1
applied in the transverse direction.

8.23 Repeat Problem 8.21 using a simpler approach in which the deflections are assumed to be
u(x) = uoψ(x), where uo is the midspan deflection due to uniform force p(x) = 1 applied
in the transverse direction and

ψ(x) = 16

5

[
x

L
− 2

( x

L

)3
+

( x

L

)4
]

Note that ψ(x) is the deflected shape of a simply supported beam without bents subjected to
transverse force p(x) = 1.

8.24 Repeat Problem 8.21 with one change: Consider torsional stiffness of the bents.

8.25 A simply supported bridge with a single span of L meters has a deck of uniform cross section
with mass m per meter length and flexural rigidity E I . An infinitely long, uniformly dis-
tributed force po per meter length (that represents a very long train) travels across the bridge
at a uniform velocity v (Fig. P8.25). Determine an equation for the deflection at midspan as a
function of time. Neglect damping and assume the shape function to be ψ(x) = sin(πx/L).

v

m, EI

••
L

po

∞

Figure P8.25

8.26 A pulsating force p(t) = po cosωt travels across the bridge of Fig. P8.25 at a uniform velocity
of v, as shown in Fig. P8.26. Determine an equation for the deflection at midspan as a function
of time. Neglect damping and assume the shape function to be ψ(x) = sin(πx/L).

m, EI

••
L

p(t)

v

Figure P8.26
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9

Equations of Motion, Problem
Statement, and Solution Methods

PREVIEW

In this opening chapter of Part II the structural dynamics problem is formulated for struc-
tures discretized as systems with a finite number of degrees of freedom. The equations
of motion are developed first for a simple multi-degree-of-freedom (MDF) system; a two-
story shear frame is selected to permit easy visualization of elastic, damping, and inertia
forces. Subsequently, a general formulation is presented for MDF systems subjected to
external forces or earthquake-induced ground motion. This general formulation is then il-
lustrated by several examples and applied to develop the equations of motion for multistory
buildings, first for symmetric-plan buildings and then for unsymmetric-plan buildings.
Subsequently, the formulation for earthquake response analysis is extended to systems
subjected to spatially varying ground motion and to inelastic systems. The chapter ends
with an overview of methods for solving the differential equations governing the motion
of the structure and of how our study of dynamic analysis of MDF systems is organized.

9.1 SIMPLE SYSTEM: TWO-STORY SHEAR BUILDING

We first formulate the equations of motion for the simplest possible MDF system, a highly
idealized two-story frame subjected to external forces p1(t) and p2(t) (Fig. 9.1.1a). In this
idealization the beams and floor systems are rigid (infinitely stiff) in flexure, and several
factors are neglected: axial deformation of the beams and columns, and the effect of axial
force on the stiffness of the columns. This shear-frame or shear-building idealization,
although unrealistic, is convenient for illustrating how the equations of motion for an MDF

347



348 Equations of Motion, Problem Statement, and Solution Methods Chap. 9

(a)

c1

c2

m1

m2

p1(t)

p2(t)

u2

u1

(b)

p2(t)
fS2 fD2

p1(t)
f  aS1

f  bS1

+
⎧
⎪⎨
⎪
⎩

fS1 =

f  aD1

f  bD1

+

⎫
⎪
⎬
⎪
⎭

= fD1

Figure 9.1.1 (a) Two-story shear frame; (b) forces acting on the two masses.

system are developed. Later, we extend the formulation to more realistic idealizations
of buildings that consider beam flexure and joint rotations, and to structures other than
buildings.

The mass is distributed throughout the building, but we will idealize it as concen-
trated at the floor levels. This assumption is generally appropriate for multistory buildings
because most of the building mass is indeed at the floor levels.

Just as in the case of SDF systems (Chapter 1), we assume that a linear viscous
damping mechanism represents the energy dissipation in a structure. If energy dissipation
is associated with the deformational motions of each story, the viscous dampers may be
visualized as shown.

The number of independent displacements required to define the displaced positions
of all the masses relative to their original equilibrium position is called the number of de-
grees of freedom. The two-story frame of Fig. 9.1.1a, with lumped mass at each floor level,
has two DOFs: the lateral displacements u1 and u2 of the two floors in the direction of the
x-axis.

9.1.1 Using Newton’s Second Law of Motion

The forces acting on each floor mass mj are shown in Fig. 9.1.1b. These include the
external force pj (t), the elastic (or inelastic) resisting force fSj , and the damping force
fDj . The external force is taken to be positive along the positive direction of the x-axis.
The elastic and damping forces are shown acting in the opposite direction because they are
internal forces that resist the motions.

Newton’s second law of motion then gives for each mass:

pj − fSj − fDj = mj ü j or mj ü j + fDj + fSj = pj (t) (9.1.1)

Equation (9.1.1) contains two equations for j = 1 and 2, and these can be written in matrix
form: [

m1 0
0 m2

]{
ü1

ü2

}
+
{

fD1

fD2

}
+
{

fS1

fS2

}
=
{

p1(t)
p2(t)

}
(9.1.2)



Sec. 9.1 Simple System: Two-Story Shear Building 349

Equation (9.1.2) can be written compactly as

mü+ fD + fS = p(t) (9.1.3)

by introducing the following notation:

u =
{

u1

u2

}
m =

[
m1 0
0 m2

]
fD =

{
fD1

fD2

}
fS =

{
fS1

fS2

}
p =

{
p1

p2

}

where m is the mass matrix for the two-story shear frame.
Assuming linear behavior, the elastic resisting forces fS are next related to the floor

displacements u. For this purpose we introduce the lateral stiffness kj of the j th story; it
relates the story shear Vj to the story deformation or drift, �j = uj − uj−1, by

Vj = kj �j (9.1.4)

The story stiffness is the sum of the lateral stiffnesses of all columns in the story. For a
story of height h and a column with modulus E and second moment of area Ic, the lateral
stiffness of a column with clamped ends, implied by the shear-building idealization, is
12E Ic/h3. Thus the story stiffness is

kj =
∑

columns

12E Ic

h3
(9.1.5)

With the story stiffnesses defined, we can relate the elastic resisting forces fS1 and
fS2 to the floor displacements, u1 and u2. The force fS1 at the first floor is made up of two
contributions: f a

S1 from the story above, and f b
S1 from the story below. Thus

fS1 = f b
S1 + f a

S1

which, after substituting Eq. (9.1.4) and noting that �1 = u1 and �2 = u2 − u1,
becomes

fS1 = k1u1 + k2(u1 − u2) (9.1.6a)

The force fS2 at the second floor is

fS2 = k2(u2 − u1) (9.1.6b)

Observe that f a
S1 and fS2 are equal in magnitude and opposite in direction because both

represent the shear in the second story. In matrix form Eqs. (9.1.6a) and (9.1.6b) are{
fS1

fS2

}
=
[

k1 + k2 −k2

−k2 k2

]{
u1

u2

}
or fS = ku (9.1.7)

Thus the elastic resisting force vector fS and the displacement vector u are related through
the stiffness matrix k for the two-story shear building.

The damping forces fD1 and fD2 are next related to the floor velocities u̇1 and u̇2.
The j th story damping coefficient cj relates the story shear Vj due to damping effects to
the velocity �̇j associated with the story deformation by

Vj = cj �̇j (9.1.8)
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In a manner similar to Eq. (9.1.6), we can derive

fD1 = c1u̇1 + c2(u̇1 − u̇2) fD2 = c2(u̇2 − u̇1) (9.1.9)

In matrix form Eq. (9.1.9) is{
fD1

fD2

}
=
[

c1 + c2 −c2

−c2 c2

]{
u̇1

u̇2

}
or fD = cu̇ (9.1.10)

The damping resisting force vector fD and the velocity vector u̇ are related through the
damping matrix c for the two-story shear building.

We now substitute Eqs. (9.1.7) and (9.1.10) into Eq. (9.1.3) to obtain

mü+ cu̇+ ku = p(t) (9.1.11)

This matrix equation represents two ordinary differential equations governing the displace-
ments u1(t) and u2(t) of the two-story frame subjected to external dynamic forces p1(t)
and p2(t). Each equation contains both unknowns u1 and u2. The two equations are there-
fore coupled and in their present form must be solved simultaneously.

9.1.2 Dynamic Equilibrium

According to D’Alembert’s principle (Chapter 1), with inertia forces included, a dynamic
system is in equilibrium at each time instant. For the two masses in the system of Fig. 9.1.1a,
Fig. 9.1.2 shows their free-body diagrams, including the inertia forces. Each inertia force
is equal to the product of the mass times its acceleration and acts opposite to the direction
of acceleration. From the free-body diagrams the condition of dynamic equilibrium also
gives Eq. (9.1.3), which leads to Eq. (9.1.11), as shown in the preceding section.

p2(t)
fS2 fD2

fI2

fI1
p1(t) fS1 fD1

Figure 9.1.2 Free-body diagrams.

9.1.3 Mass–Spring–Damper System

We have introduced the linear two-DOF system by idealizing a two-story frame—an
approach that should appeal to structural engineering students. However, the classic
two-DOF system, shown in Fig. 9.1.3a, consists of two masses connected by linear springs
and linear viscous dampers subjected to external forces p1(t) and p2(t). At any instant
of time the forces acting on the two masses are as shown in their free-body diagrams
(Fig. 9.1.3b). The resulting conditions of dynamic equilibrium also lead to Eq. (9.1.11),
with u, m, c, k, and p(t) as defined earlier.
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Friction-free surface

(a)

u1

m 1 p1(t)

k1

c1

u2

m 2 p2(t)

k2

c2

p1(t)
c1u̇1

k1u1

m 1ü1(b) p2(t)

c2 (u̇2 – u̇1)

k2

m 2ü2

 (u2 – u1)

Figure 9.1.3 (a) Two-degree-of-freedom system; (b) free-body diagrams.

Example 9.1a

Formulate the equations of motion for the two-story shear frame shown in Fig. E9.1a.

Solution Equation (9.1.11) is specialized for this system to obtain its equation of motion.
To do so, we note that

m1 = 2m m2 = m

k1 = 2
12(2E Ic)

h3
= 48E Ic

h3
k2 = 2

12(E Ic)

h3
= 24E Ic

h3

Substituting these data in Eqs. (9.1.2) and (9.1.7) gives the mass and stiffness matrices:

m = m
[

2 0
0 1

]
k = 24E Ic

h3

[
3 −1
−1 1

]
Substituting these m and k in Eq. (9.1.11) gives the governing equations for this system with-
out damping:

m
[

2 0
0 1

]{
ü1
ü2

}
+ 24

E Ic

h3

[
3 −1
−1 1

]{
u1
u2

}
=
{

p1(t)
p2(t)

}
Observe that the stiffness matrix is nondiagonal, implying that the two equations are coupled,
and in their present form must be solved simultaneously.

2m

m

p1(t)

p2(t) u2

u1

2EIc

EIc

2EIc

EIc

EIb = ∞

EIb = ∞

h

h

Figure E9.1a
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Displacements uj
Velocities u̇j
Accelerations üj

(a)

p1(t)

p2(t)

=

Displacements uj

(b)

fS1

fS2

+

Velocities u̇j

(c) 

fD1

fD2

+

Accelerations üj

(d)

fI1

fI2

Figure 9.1.4 (a) System; (b) stiffness component; (c) damping component; (d) mass component.

9.1.4 Stiffness, Damping, and Mass Components

In this section the governing equations for the two-story shear frame are formulated based
on an alternative viewpoint. Under the action of external forces p1(t) and p2(t) the state
of the system at any time instant is described by displacements uj (t), velocities u̇ j (t),
and accelerations ü j (t); see Fig. 9.1.4a. Now visualize this system as the combination
of three pure components: (1) stiffness component: the frame without damping or mass
(Fig. 9.1.4b); (2) damping component: the frame with its damping property but no stiffness
or mass (Fig. 9.1.4c); and (3) mass component: the floor masses without the stiffness or
damping of the frame (Fig. 9.1.4d). The external forces fSj on the stiffness component
are related to the displacements by Eq. (9.1.7). Similarly, the external forces fDj on the
damping component are related to the velocities by Eq. (9.1.10). Finally, the external forces
f I j on the mass component are related to the accelerations by fI = mü. The external forces
p(t) on the system may therefore by visualized as distributed among the three components
of the structure. Thus fS+fD+fI must equal the applied forces p(t), leading to Eq. (9.1.3).
This alternative viewpoint may seem unnecessary for the two-story shear frame, but it can
be useful in visualizing the formulation of the equations of motion for complex MDF
systems (Section 9.2).

9.2 GENERAL APPROACH FOR LINEAR SYSTEMS

The formulation of the equations of motion in the preceding sections, while easy to visu-
alize for a shear building and other simple systems, is not suitable for complex structures.
For this purpose a more general approach is presented in this section. We define the three
types of forces—inertia forces, elastic forces, and damping forces—and use the line of
reasoning presented in Section 9.1.4 to develop the equations of motion. Before defining
the forces, we need to discretize the structure and define the DOFs.
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Node

Structural
elements

(a)

u3 u4 u5

u6 u7 u8

u1

u2

(b)

Figure 9.2.1 Degrees of freedom: (a) axial deformation included, 18 DOFs; (b) axial deformation
neglected, 8 DOFs.

9.2.1 Discretization

A frame structure can be idealized as an assemblage of elements—beams, columns, walls—
interconnected at nodal points or nodes (Fig. 9.2.1a). The displacements of the nodes are
the degrees of freedom. In general, a node in a planar two-dimensional frame has three
DOFs—two translations and one rotation. A node in a three-dimensional frame has six
DOFs—three translations (the x , y, and z components) and three rotations (about the x , y,
and z axes).

For example, a two-story, two-bay planar frame has six nodes and 18 DOFs
(Fig. 9.2.1a). Axial deformations of beams can be neglected in analyzing most buildings,
and axial deformations of columns need not be considered for low-rise buildings. With
these assumptions the two-story, two-bay frame has eight DOFs (Fig. 9.2.1b). This is the
structural idealization we use to illustrate a general approach for formulating equations of
motion. The external dynamic forces are applied at the nodes (Fig. 9.2.2). The external
moments p3(t) to p8(t) are zero in most practical cases.

p1(t)

p2(t)

p3(t)

p6(t)

p4(t)

p7(t)

p5(t)

p8(t)

Figure 9.2.2 External dynamic forces,
p(t).
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9.2.2 Elastic Forces

We will relate the external forces fSj on the stiffness component of the structure to the
resulting displacements uj (Fig. 9.2.3a). For linear systems this relationship can be ob-
tained by the method of superposition and the concept of stiffness influence coefficients.

We apply a unit displacement along DOF j , holding all other displacements to zero
as shown; to maintain these displacements, forces must be applied generally along all
DOFs. The stiffness influence coefficient ki j is the force required along DOF i due to unit
displacement at DOF j . In particular, the forces ki1 (i = 1, 2, . . . , 8) shown in Fig. 9.2.3b
are required to maintain the deflected shape associated with u1 = 1 and all other uj = 0.
Similarly, the forces ki4 (i = 1, 2, . . . , 8) shown in Fig. 9.2.3c are required to maintain the
deflected shape associated with u4 = 1 and all other uj = 0. All forces in Fig. 9.2.3 are
shown with their positive signs, but some of them may be negative to be consistent with
the deformations imposed.

The force fSi at DOF i associated with displacements uj , j = 1 to N (Fig. 9.2.3a),
is obtained by superposition:

fSi = ki1u1 + ki2u2 + · · · + ki j u j + · · · + ki N uN (9.2.1)

Node;
no lumped mass

Forces fS
Displacements u fS3 fS4 fS5

fS6 fS7 fS8

fS1

fS2

(a)

k31 k41 k51

k61 k71 k81

k11

k21

u1 = 1

(b)

k34 k44
k54

k64 k74 k84

k14

k24

(c)

u4 = 1

Figure 9.2.3 (a) Stiffness component of frame; (b) stiffness influence coefficients for
u1 = 1; (c) stiffness influence coefficients for u4 = 1.
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One such equation exists for each i = 1 to N . The set of N equations can be written in
matrix form: ⎡

⎢⎢⎣
fS1

fS2
...

fSN

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

k11 k12 · · · k1 j · · · k1N

k21 k22 · · · k2 j · · · k2N
...

...
...

...

kN1 kN2 · · · kN j · · · kN N

⎤
⎥⎥⎦
⎧⎪⎪⎨
⎪⎪⎩

u1

u2
...

uN

⎫⎪⎪⎬
⎪⎪⎭ (9.2.2)

or
fS = ku (9.2.3)

where k is the stiffness matrix of the structure; it is a symmetric matrix (i.e., ki j = kji ).
The stiffness matrix k for a discretized system can be determined by any one of

several methods. The j th column of k can be obtained by calculating the forces ki j

(i = 1, 2, . . . , N ) required to produce uj = 1 (with all other ui = 0). The direct equi-
librium method is feasible to implement such calculations for simple structures with a few
DOFs; it is not practical, however, for complex structures or for computer implementation.
The most commonly used method is the direct stiffness method, wherein the stiffness ma-
trices of individual elements are assembled to obtain the structural stiffness matrix. This
and other methods should be familiar to the reader. Therefore, these methods will not be
developed in this book; we will use the simplest method appropriate for the problem to be
solved.

9.2.3 Damping Forces

As mentioned in Section 1.4, the mechanisms by which the energy of a vibrating structure
is dissipated can usually be idealized by equivalent viscous damping. With this assumption
we relate the external forces fDj acting on the damping component of the structure to the
velocities u̇ j (Fig. 9.2.4). We impart a unit velocity along DOF j , while the velocities in
all other DOFs are kept zero. These velocities will generate internal damping forces that
resist the velocities, and external forces would be necessary to equilibrate these forces.
The damping influence coefficient ci j is the external force in DOF i due to unit velocity in
DOF j . The force fDi at DOF i associated with velocities u̇ j , j = 1 to N (Fig. 9.2.4), is
obtained by superposition:

fDi = ci1u̇1 + ci2u̇2 + · · · + ci j u̇ j + · · · + ci N u̇N (9.2.4)

Node;
no lumped mass

Forces fD

Velocities u̇
fD3

fD4 fD5

fD6 fD7 fD8

fD1

fD2

Figure 9.2.4 Damping component of frame.
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Collecting all such equations for i = 1 to N and writing them in matrix form gives⎡
⎢⎢⎣

fD1

fD2
...

fDN

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

c11 c12 · · · c1 j · · · c1N

c21 c22 · · · c2 j · · · c2N
...

...
...

...

cN1 cN2 · · · cN j · · · cN N

⎤
⎥⎥⎦
⎧⎪⎪⎨
⎪⎪⎩

u̇1

u̇2
...

u̇N

⎫⎪⎪⎬
⎪⎪⎭ (9.2.5)

or
fD = cu̇ (9.2.6)

where c is the damping matrix for the structure.
It is impractical to compute the coefficients ci j of the damping matrix directly from

the dimensions of the structure and the sizes of the structural elements. Therefore, damping
for MDF systems is generally specified by numerical values for the damping ratios, as for
SDF systems, based on experimental data for similar structures (Chapter 11). Methods are
available to construct the damping matrix from known damping ratios (Chapter 11).

9.2.4 Inertia Forces

We will relate the external forces f I j acting on the mass component of the structure to
the accelerations ü j (Fig. 9.2.5a). We apply a unit acceleration along DOF j , while the

Forces fI

Accelerations ü fI3 fI4 fI5

fI6 fI7 fI8

fI1

fI2

Lumped mass at node

(a)

m31 m41 m51

m61 m71 m81

m11

m21

ü1 = 1

(b)

m34 m44 m54

m64 m74 m84

m14

m24

(c)

ü4 = 1

Figure 9.2.5 (a) Mass component of frame; (b) mass influence coefficients for ü1 = 1;
(c) mass influence coefficients for ü4 = 1.
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accelerations in all other DOFs are kept zero. According to D’Alembert’s principle, the fic-
titious inertia forces oppose these accelerations; therefore, external forces will be necessary
to equilibrate these inertia forces. The mass influence coefficient mi j is the external force in
DOF i due to unit acceleration along DOF j . In particular, the forces mi1 (i = 1, 2, . . . , 8)
shown in Fig. 9.2.5b are required in the various DOFs to equilibrate the inertia forces as-
sociated with ü1 = 1 and all other ü j = 0. Similarly, the forces mi4 (i = 1, 2, . . . , 8)
shown in Fig. 9.2.5c are associated with acceleration ü4 = 1 and all other ü j = 0. The
force f I i at DOF i associated with accelerations ü j , j = 1 to N (Fig. 9.2.5a), is obtained
by superposition:

f I i = mi1ü1 + mi2ü2 + · · · + mi j ü j + · · · + mi N üN (9.2.7)

One such equation exists for each i = 1 to N . The set of N equations can be written in
matrix form: ⎡

⎢⎢⎣
f I 1

f I 2
...

f I N

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

m11 m12 · · · m1 j · · · m1N

m21 m22 · · · m2 j · · · m2N
...

...
...

...

m N1 m N2 · · · m N j · · · m N N

⎤
⎥⎥⎦
⎧⎪⎪⎨
⎪⎪⎩

ü1

ü2
...

üN

⎫⎪⎪⎬
⎪⎪⎭ (9.2.8)

or

fI = mü (9.2.9)

where m is the mass matrix. Just like the stiffness matrix, the mass matrix is symmetric
(i.e., mi j = mji ).

The mass is distributed throughout an actual structure, but it can be idealized as
lumped or concentrated at the nodes of the discretized structure; usually, such a lumped-
mass idealization is satisfactory. The lumped mass at a node is determined from the portion
of the weight that can reasonably be assigned to the node. Each structural element is
replaced by point masses at its two nodes, with the distribution of the two masses being
determined by static analysis of the element under its own weight. The lumped mass at
a node of the structure is the sum of the mass contributions of all the structural elements
connected to the node. This procedure is illustrated schematically in Fig. 9.2.6 for a two-
story, two-bay frame where the beam mass includes the floor–slab mass it supports. The
lumped masses ma , mb, and so on, at the various nodes are identified.

Structural element

a b c

d e f

(a)

m a

m b

m c

m d

m e
m f

(b)

m a
m b m c

md
m e m f

(c)

Figure 9.2.6 Lumping of mass at structural nodes.
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Once the lumped masses at the nodes have been calculated, the mass matrix for
the structure can readily be formulated. Consider again the two-story, two-bay frame of
Fig. 9.2.1b. The external forces associated with acceleration ü1 = 1 (Fig. 9.2.5b) are
m11 = m1, where m1 = ma + mb + mc (Fig. 9.2.6c), and mi1 = 0 for i = 2, 3, . . . , 8.
Similarly, the external forces mi4 associated with ü4 = 1 (Fig. 9.2.5c) are zero for all i ,
except possibly for i = 4. The coefficient m44 is equal to the rotational inertia of the mass
lumped at the middle node at the first floor. This rotational inertia has negligible influence
on the dynamics of practical structures; thus, we set m44 = 0.

In general, then, for a lumped-mass idealization, the mass matrix is diagonal:

mi j = 0 i �= j mj j = mj or 0 (9.2.10)

where mj is the lumped mass associated with the j th translational DOF, and mj j = 0 for a
rotational DOF. The mass lumped at a node is associated with all the translational degrees
of freedom of that node: (1) the horizontal (x) and vertical (z) DOFs for a two-dimensional
frame, and (2) all three (x , y, and z) translational DOFs for a three-dimensional frame.

The mass representation can be simplified for multistory buildings because of the
constraining effects of the floor slabs or floor diaphragms. Each floor diaphragm is usually
assumed to be rigid in its own plane but is flexible in bending in the vertical direction,
which is a reasonable representation of the true behavior of several types of floor systems
(e.g., cast-in-place concrete). Introducing this assumption implies that both (x and y) hori-
zontal DOFs of all the nodes at a floor level are related to the three rigid-body DOFs of the
floor diaphragm in its own plane. For the j th floor diaphragm these three DOFs, defined
at the center of mass, are translations ujx and ujy in the x and y directions and rotation ujθ

about the vertical axis (Fig. 9.2.7). Therefore, the mass needs to be defined only in these
DOFs and need not be identified separately for each node. The diaphragm mass gives the
mass associated with DOFs ujx and ujy , and the moment of inertia of the diaphragm about
the vertical axis through O gives the mass associated with DOF ujθ . The diaphragm mass
should include the contributions of the dead load and live load on the diaphragm and of the
structural elements—columns, walls, etc.—and of the nonstructural elements—partition
walls, architectural finishes, etc.—between floors.

The mass idealization for a multistory building becomes complicated if the floor di-
aphragm cannot be assumed as rigid in its own plane (e.g., floor system with wood framing
and plywood sheathing). The diaphragm mass should then be assigned to individual nodes.
The distributed dead and live loads at a floor level are assigned to the nodes at that floor

O ujx

ujyujθ

Figure 9.2.7 Degrees of freedom
for in-plane-rigid floor diaphragm with
distributed mass.
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Figure 9.2.8 Tributary areas for
distributing diaphragm mass to nodes.

in accordance with their respective tributary areas (Fig. 9.2.8). Similarly, the distributed
weights of the structural and nonstructural elements between floors should be distributed
to the nodes at the top and bottom of the story according to statics. The diaphragm flexi-
bility must also be recognized in formulating the stiffness properties of the structure; the
finite element method (Chapter 17) is effective in idealizing flexible diaphragms for this
purpose.

9.2.5 Equations of Motion: External Forces

We now write the equations of motion for an MDF system subjected to external dynamic
forces pj (t), j = 1 to N . The dynamic response of the structure to this excitation is defined
by the displacements uj (t), velocities u̇ j (t), and accelerations ü j (t), j = 1 to N . As
mentioned in Section 9.1.4, the external forces p(t)may be visualized as distributed among
the three components of the structure: fS(t) to the stiffness components (Fig. 9.2.3a), fD(t)
to the damping component (Fig. 9.2.4), and fI (t) to the mass component (Fig. 9.2.5a).
Thus

fI + fD + fS = p(t) (9.2.11)

Substituting Eqs. (9.2.3), (9.2.6), and (9.2.9) into Eq. (9.2.11) gives

mü+ cu̇+ ku = p(t) (9.2.12)

This is a system of N ordinary differential equations governing the displacements u(t) due
to applied forces p(t). Equation (9.2.12) is the MDF equivalent of Eq. (1.5.2) for an SDF
system; each scalar term in the SDF equation has become a vector or a matrix of order N ,
the number of DOFs in the MDF system.

Coupling of equations. The off-diagonal terms in the coefficient matrices m,
c, and k are known as coupling terms. In general, the equations have mass, damping, and
stiffness coupling; however, the coupling in a system depends on the choice of degrees of
freedom used to describe the motion. This is illustrated in Examples 9.2 and 9.3 for the
same physical system with two different choices for the DOFs.
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Example 9.1b

Formulate the equations of motion for the two-story shear frame in Fig. E9.1a using influence
coefficients.

Solution
The two DOFs of this system are u = 〈 u1 u2 〉T .

u1 = 1, u2 = 0

k21

k11

u1 = 1

(a)

k1

k1

(b)

k2

k2

u2 = 1, u1 = 0

k12

k22

u2 = 1

(c)

k2

k2

(d)

Figure E9.1b

1. Determine the stiffness matrix. To obtain the first column of the stiffness matrix, we
impose u1 = 1 and u2 = 0. The stiffness influence coefficients are ki j (Fig. E9.1b). The forces
necessary at the top and bottom of each story to maintain the deflected shape are expressed
in terms of story stiffnesses k1 and k2 [part (b) of the figure], defined in Section 9.1.1 and
determined in Example 9.1a:

k1 = 48E Ic

h3
k2 = 24E Ic

h3
(a)

The two sets of forces in parts (a) and (b) of the figure are one and the same. Thus,

k11 = k1 + k2 = 72E Ic

h3
k21 = −k2 = −24E Ic

h3
(b)
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The second column of the stiffness matrix is obtained in a similar manner by imposing
u2 = 1 with u1 = 0. The stiffness influence coefficients are ki2 [part (c) of the figure] and the
forces necessary to maintain the deflected shape are shown in part (d) of the figure. The two
sets of forces in parts (c) and (d) of the figure are one and the same. Thus,

k12 = −k2 = −24E Ic

h3
k22 = k2 = 24E Ic

h3
(c)

With the stiffness influence cofficients determined, the stiffness matrix is

k = 24E Ic

h3

[
3 −1
−1 1

]
(d)

2. Determine the mass matrix. With the DOFs defined at the locations of the lumped
masses, the diagonal mass matrix is given by Eq. (9.2.10):

m = m
[

2 0
0 1

]
(e)

3. Determine the equations of motion. The governing equations are

mü+ ku = p(t) (f)

where m and k are given by Eqs. (e) and (d), and p(t) = 〈 p1(t) p2(t) 〉T .

Example 9.2

A uniform rigid bar of total mass m is supported on two springs k1 and k2 at the two ends
and subjected to dynamic forces shown in Fig. E9.2a. The bar is constrained so that it can
move only vertically in the plane of the paper; with this constraint the system has two DOFs.

pt
pθ

m

Rigid bar

L/2 L/2

(a)

u1 u2

k1 k2

k1

k11

k21u1 = 1

(c) u1 = 1, u2 = 0

k12 k2

k22

u2 = 1

(d) u1 = 0, u2 = 1

p1 p2ptpθu1 (b)

ü1 = 1
ü2 = 0

(e) ü1 = 1, ü2 = 0

Inertia forces = (m/L)(x/L)

m11 m21

x

(f)

δ

Figure E9.2
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Formulate the equations of motion with respect to displacements u1 and u2 of the two ends as
the two DOFs.

Solution
1. Determine the applied forces. The external forces do not act along the DOFs and

should therefore be converted to equivalent forces p1 and p2 along the DOFs (Fig. E9.2b)
using equilibrium equations. This can also be achieved by the principle of virtual displace-
ments. Thus if we introduce a virtual displacement δu1 along DOF 1, the work done by the
applied forces is

δW = pt
δu1

2
− pθ

δu1

L
(a)

Similarly, the work done by the equivalent forces is

δW = p1δu1 + p2(0) (b)

Because the work done by the two sets of forces should be the same, we equate Eqs. (a) and
(b) and obtain

p1 = pt

2
− pθ

L
(c)

In a similar manner, by introducing a virtual displacement δu2, we obtain

p2 = pt

2
+ pθ

L
(d)

2. Determine the stiffness matrix. Apply a unit displacement u1 = 1 with u2 = 0
and identify the resulting elastic forces and the stiffness influence coefficients k11 and k21
(Fig. E9.2c). By statics, k11 = k1 and k21 = 0. Now apply a unit displacement u2 = 1
with u1 = 0 and identify the resulting elastic forces and the stiffness influence coefficients
(Fig. E9.2d). By statics, k12 = 0 and k22 = k2. Thus the stiffness matrix is

k =
[

k1 0
0 k2

]
(e)

In this case the stiffness matrix is diagonal (i.e., there are no coupling terms) because the two
DOFs are defined at the locations of the springs.

3. Determine the mass matrix. Impart a unit acceleration ü1 = 1 with ü2 = 0, de-
termine the distribution of accelerations of (Fig. E9.2e) and the associated inertia forces, and
identify mass influence coefficients (Fig. E9.2f). By statics, m11 = m/3 and m21 = m/6.
Similarly, imparting a unit acceleration ü2 = 1 with ü1 = 0, defining the inertia forces and
mass influence coefficients, and applying statics gives m12 = m/6 and m22 = m/3. Thus the
mass matrix is

m = m

6

[
2 1
1 2

]
(f)

The mass matrix is coupled, as indicated by the off-diagonal terms, because the mass is dis-
tributed and not lumped at the locations where the DOFs are defined.

4. Determine the equations of motion. Substituting Eqs. (c)–(f) in Eq. (9.2.12) with
c = 0 gives

m

6

[
2 1
1 2

] [
ü1
ü2

]
+
[

k1 0
0 k2

] [
u1
u2

]
=
[
(pt/2)− (pθ /L)
(pt/2)+ (pθ /L)

]
(g)

The two differential equations are coupled because of mass coupling due to the off-diagonal
terms in the mass matrix.
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Example 9.3

Formulate the equations of motion of the system of Fig. E9.2a with the two DOFs defined at
the center of mass O of the rigid bar: translation ut and rotation uθ (Fig. E9.3a).
Solution

1. Determine the stiffness matrix. Apply a unit displacement ut = 1 with uθ = 0 and
identify the resulting elastic forces and ktt and kθ t (Fig. E9.3b). By statics, ktt = k1 + k2
and kθ t = (k2 − k1)L/2. Now, apply a unit rotation uθ = 1 with ut = 0 and identify the
resulting elastic forces and ktθ and kθθ (Fig. E9.3c). By statics, ktθ = (k2 − k1)L/2 and
kθθ = (k1 + k2)L2/4. Thus the stiffness matrix is

k̄ =
[

k1 + k2 (k2 − k1)L/2
(k2 − k1)L/2 (k1 + k2)L2/4

]
(a)

(a)

m

•
O

ut
u

k1 k2

L/2 L/2

Rigid bar

k1 k2

kttk t

ut = 1

(b) ut = 1, u  = 0

k1L/2

k2L/2kt
k

(c) ut = 0, u  = 1 u  = 1

üt = 1

(d) üt = 1, ü  = 0

Inertia forces = − m/L
mtt

m t

(e)

ü
θ

 = 1

(f) üt = 0, ü  = 1

(g)

Inertia forces = − (m/L)x

mtm

x

θ

θ

θ

θ

θθ

θ
θ

θθ

θ

θ

θ
θθ

Figure E9.3
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Observe that now the stiffness matrix has coupling terms because the DOFs chosen are not the
displacements at the locations of the springs.

2. Determine the mass matrix. Impart a unit acceleration üt = 1 with üθ = 0, deter-
mine the acceleration distribution (Fig. E9.3d) and the associated inertia forces, and identify
mtt and mθ t (Fig. E9.3e). By statics, mtt = m and mθ t = 0. Now impart a unit rotational
acceleration üθ = 1 with üt = 0, determine the resulting accelerations (Fig. E9.3f) and
the associated inertia forces, and identify mtθ and mθθ (Fig. E9.3g). By statics, mtθ = 0
and mθθ = mL2/12. Note that mθθ = IO , the moment of inertia of the bar about an
axis that passes through O and is perpendicular to the plane of rotation. Thus the mass
matrix is

m̄ =
[

m 0
0 mL2/12

]
(b)

Now the mass matrix is diagonal (i.e., it has no coupling terms) because the DOFs of this rigid
bar are defined at the mass center.

3. Determine the equations of motion. Substituting u = 〈 ut uθ 〉T , p = 〈 pt pθ 〉T ,
and Eqs. (a) and (b) in Eq. (9.2.12) gives[

m 0
0 mL2

/
12

]{
üt

üθ

}
+
[

k1 + k2 (k2 − k1)L/2
(k2 − k1)L/2 (k1 + k2)L2/4

]{
ut

uθ

}
=
{

pt

pθ

}
(c)

The two differential equations are now coupled through the stiffness matrix.
We should note that if the equations of motion for a system are available in one set of

DOFs, they can be transformed to a different choice of DOF. This concept is illustrated for the
system of Fig. E9.2a. Suppose that the mass and stiffness matrices and the applied force vector
for the system are available for the first choice of DOF, u = 〈 u1 u2 〉T . These displacements
are related to the second set of DOF, ū = 〈 ut uθ 〉T , by{

u1
u2

}
=
[

1 −L/2
1 L/2

]{
ut

uθ

}
or u = aū (d)

where a denotes the coordinate transformation matrix. The stiffness and mass matrices and
the applied force vector for the ū DOFs are given by

k̄ = aT ka m̄ = aT ma p̄ = aT p (e)

Substituting for a from Eq. (d) and for k, m, and p from Example 9.2 into Eq. (e) leads to k̄
and m̄, which are identical to Eqs. (a) and (b) and to the p in Eq. (c).

Example 9.4

A massless cantilever beam of length L supports two lumped masses mL/2 and mL/4 at the
midpoint and free end as shown in Fig. E9.4a. The flexural rigidity of the uniform beam is EI.
With the four DOFs chosen as shown in Fig. E9.4b and the applied forces p1(t) and p2(t),
formulate the equations of motion of the system. Axial and shear deformations in the beam
are neglected.

Solution
The beam consists of two beam elements and three nodes. The left node is constrained

and each of the other two nodes has two DOFs (Fig. E9.4b). Thus, the displacement vector
u = 〈 u1 u2 u3 u4 〉T .



p p
2(t) 1(t)

mL/2 mL/4

• •• •
L/2 L/2

(a)
EI EI

u2 u1
u4 u3

Node (2) Node (1)

Element (1) Element (2)
(b)

u1 = 1, u2 = u3 = u4 = 0

k41

k21
k31

k11

u1 = 1
(c)

24EI / L2

96EI / L3

96EI / L3

24EI / L2

(d)

u2 = 1, u1 = u3 = u4 = 0

k42

k22

k32

k12

u2=1
(e)

24EI / L2

96EI / L3

96EI / L3

24EI / L2

(f)

24EI / L2

96EI / L3

96EI / L3

24EI / L2

u3 = 1, u1 = u2 = u4 = 0

k43

k23
k33

k13

u3 = 1
(g)

24EI / L2

4EI / L

8EI / L

24EI / L2

(h)

u4 =1, u1 = u2 = u3 = 0

k44

k24

k34

k14
u4 = 1

(i)

24EI / L2

4EI / L

8EI / L

24EI / L2

(j)

4EI / L

24EI / L2

24EI / L2

8EI / L

Figure E9.4
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1. Determine the mass matrix. With the DOFs defined at the locations of the lumped
masses, the diagonal mass matrix is given by Eq. (9.2.10):

m =

⎡
⎢⎣

mL/4
mL/2

0
0

⎤
⎥⎦ (a)

2. Determine the stiffness matrix. Several methods are available to determine the stiff-
ness matrix. Here we use the direct equilibrium method based on the definition of stiffness
influence coefficients (Appendix 1).

To obtain the first column of the stiffness matrix, we impose u1 = 1 and u2 = u3 =
u4 = 0. The stiffness influence coefficients are ki1 (Fig. E9.4c). The forces necessary at the
nodes of each beam element to maintain the deflected shape are determined from the beam
stiffness coefficients (Fig. E9.4d). The two sets of forces in figures (c) and (d) are one and the
same. Thus k11 = 96E I/L3, k21 = −96E I/L3, k31 = −24E I/L2, and k41 = −24E I/L2.

The second column of the stiffness matrix is obtained in a similar manner by imposing
u2 = 1 with u1 = u3 = u4 = 0. The stiffness influence coefficients are ki2 (Fig. E9.4e)
and the forces on each beam element necessary to maintain the imposed displacements are
shown in Fig. E9.4f. The two sets of forces in figures (e) and (f) are one and the same.
Thus k12 = −96E I/L3, k32 = 24E I/L2, k22 = 96E I/L3 + 96E I/L3 = 192E I/L3, and
k42 = −24E I/L2 + 24E I/L2 = 0.

The third column of the stiffness matrix is obtained in a similar manner by imposing
u3 = 1 with u1 = u2 = u4 = 0. The stiffness influence coefficients ki3 are shown in
Fig. E9.4g and the nodal forces in Fig. E9.4h. Thus k13 = −24E I/L2, k23 = 24E I/L2,
k33 = 8E I/L , and k43 = 4E I/L .

The fourth column of the stiffness matrix is obtained in a similar manner by imposing
u4 = 1 with u1 = u2 = u3 = 0. The stiffness influence coefficients ki4 are shown in
Fig. E9.4i, and the nodal forces in Fig. E9.4j. Thus k14 = −24E I/L2, k34 = 4E I/L , k24 =
−24E I/L2 + 24E I/L2 = 0, and k44 = 8E I/L + 8E I/L = 16E I/L .

With all the stiffness influence coefficients determined, the stiffness matrix is

k = 8E I

L3

⎡
⎢⎣

12 −12 −3L −3L
−12 24 3L 0
−3L 3L L2 L2/2
−3L 0 L2/2 2L2

⎤
⎥⎦ (b)

3. Determine the equations of motion. The governing equations are

mü+ ku = p(t) (c)

where m and k are given by Eqs. (a) and (b), and p(t) = 〈 p1(t) p2(t) 0 0 〉T .

Example 9.5

Derive the equations of motion of the beam of Example 9.4 (also shown in Fig. E9.5a) ex-
pressed in terms of the displacements u1 and u2 of the masses (Fig. E9.5b).

Solution This system is the same as that in Example 9.4, but its equations of motion will
be formulated considering only the translational DOFs u1 and u2 (i.e., the rotational DOFs u3
and u4 will be excluded).

1. Determine the stiffness matrix. In a statically determinate structure such as the one
in Fig. E9.5a, it is usually easier to calculate first the flexibility matrix and invert it to obtain
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p2(t)               p1(t)

mL/2 mL/4
L/2 L/2

EI EI
(a)

u2 u1

Node (2) Node (1)

Element (1) Element (2)
(b)

fS1 = 1, fS2 = 0

f11
^

fS1 = 1
f21
^

(c)

fS2 = 1, fS1 = 0

f12
^

fS2 = 1

f22
^

(d)

Figure E9.5

the stiffness matrix. The flexibility influence coefficient f̂i j is the displacement in DOF i due
to unit force applied in DOF j (Fig. E9.4c and d). The deflections are computed by standard
procedures of structural analysis to obtain the flexibility matrix:

f̂ = L3

48E I

[
16 5

5 2

]
The off-diagonal elements f̂12 and f̂21 are equal, as expected, because of Maxwell’s theorem
of reciprocal deflections. By inverting f̂, the stiffness matrix is obtained:

k = 48E I

7L3

[
2 −5
−5 16

]
(a)

2. Determine the mass matrix. This is a diagonal matrix because the lumped masses
are located where the DOFs are defined:

m =
[

mL/4
mL/2

]
(b)

3. Determine the equations of motion. Substituting m, k, and p(t) = 〈 p1(t) p2(t) 〉T
in Eq. (9.2.12) with c = 0 gives[

mL/4
mL/2

]{
ü1
ü2

}
+ 48E I

7L3

[
2 −5
−5 16

]{
u1
u2

}
=
{

p1(t)
p2(t)

}
(c)

Example 9.6

Formulate the free vibration equations for the two-element frame of Fig. E9.6a. For both
elements the flexural stiffness is EI, and axial deformations are to be neglected. The frame is
massless with lumped masses at the two nodes as shown.

Solution The two degrees of freedom of the frame are shown. The mass matrix is

m =
[

3m
m

]
(a)

Note that the mass corresponding to ü1 = 1 is 2m + m = 3m because both masses will un-
dergo the same acceleration since the beam connecting the two masses is axially inextensible.

The stiffness matrix is formulated by first evaluating the flexibility matrix and then
inverting it. The flexibility influence coefficients are identified in Fig. E9.6b and c, and the
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(a)

L

L EI

EI

2m m
u1

u2

(b)

fS1 = 1

f11
^

f21
^

(c)

fS2=1

f12
^

f22
^

Figure E9.6

deflections are computed by standard procedures of structural analysis to obtain the flexibility
matrix:

f̂ = L3

6E I

[
2 3
3 8

]
This matrix is inverted to determine the stiffness matrix:

k = 6E I

7L3

[
8 −3
−3 2

]
Thus the equations in free vibration of the system (without damping) are[

3m
m

]{
ü1
ü2

}
+ 6E I

7L3

[
8 −3
−3 2

]{
u1
u2

}
=
{

0
0

}
Example 9.7

Formulate the equations of motion for the two-story frame in Fig. E9.7a. The flexural rigidity
of the beams and columns and the lumped masses at the floor levels are as noted. The dynamic
excitation consists of lateral forces p1(t) and p2(t) at the two floor levels. The story height is
h and the bay width 2h. Neglect axial deformations in the beams and the columns.

2m

m

p1(t)

p2(t) u2

u1
u3

u5

u4

u6

2EI

EI

2EI

EI

2EI

EI

L = 2h

h

h

(a)

k21

k11

k31 k41

k51 k61

u1 = 1

(b)

k23

k13k33

k43

k53 k63

u3 = 1

(c)

Figure E9.7



Sec. 9.3 Static Condensation 369

Solution The system has six degrees of freedom shown in Fig. E9.7a: lateral displacements
u1 and u2 of the floors and joint rotations u3, u4, u5, and u6. The displacement vector is

u = 〈 u1 u2 u3 u4 u5 u6 〉T (a)

The mass matrix is given by Eq. (9.2.10):

m = m

⎡
⎢⎢⎢⎢⎢⎣

2
1

0
0

0
0

⎤
⎥⎥⎥⎥⎥⎦ (b)

The stiffness influence coefficients are evaluated following the procedure of Example 9.4. A
unit displacement is imposed, one at a time, in each DOF while constraining the other five
DOFs, and the stiffness influence coefficients (e.g., shown in Fig. E9.7b and c for u1 = 1 and
u3 = 1, respectively) are calculated by statics from the nodal forces for individual structural
elements associated with the displacements imposed. These nodal forces are determined from
the beam stiffness coefficients (Appendix 1). The result is

k = E I

h3

⎡
⎢⎢⎢⎢⎣

72 −24 6h 6h −6h −6h
−24 24 6h 6h 6h 6h

6h 6h 16h2 2h2 2h2 0
6h 6h 2h2 16h2 0 2h2

−6h 6h 2h2 0 6h2 h2

−6h 6h 0 2h2 h2 6h2

⎤
⎥⎥⎥⎥⎦ (c)

The dynamic forces applied are lateral forces p1(t) and p2(t) at the two floors without
any moments at the nodes. Thus the applied force vector is

p(t) = 〈 p1(t) p2(t) 0 0 0 0 〉T (d)

The equations of motion are

mü+ ku = p(t) (e)

where u, m, k, and p(t) are given by Eqs. (a), (b), (c), and (d), respectively.

9.3 STATIC CONDENSATION

The static condensation method is used to eliminate from dynamic analysis those DOFs
of a structure to which zero mass is assigned; however, all the DOFs are included in the
static analysis. Consider the two-bay, two-story frame shown in Fig. 9.3.1. With axial
deformations in structural elements neglected, the system has eight DOFs for formulat-
ing its stiffness matrix (Fig. 9.3.1a). As discussed in Section 9.2.4, typically the mass of
the structure is idealized as concentrated in point lumps at the nodes (Fig. 9.3.1b), and
the mass matrix contains zero diagonal elements in the rotational DOFs (see also Exam-
ple 9.7). These are the DOFs that can be eliminated from the dynamic analysis of the
structure provided that the dynamic excitation does not include any external forces in the
rotational DOFs, as in the case of earthquake excitation (Section 9.4). Even if included in
formulating the stiffness matrix, the vertical DOFs of the building can also be eliminated
from dynamic analysis—because the inertial effects associated with the vertical DOFs of
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(a)

u3 u4 u5

u6 u7 u8

u1

u2

(b)

u1

u2

Figure 9.3.1 (a) Degrees of freedom (DOFs) for elastic forces—axial deformations
neglected; (b) DOFs for inertia forces.

building frames are usually small—provided that the dynamic excitation does not include
vertical forces at the nodes, as in the case of horizontal ground motion (Section 9.4).

The equations of motion for a system excluding damping [Eq. (9.2.12)] are written
in partitioned form:[

mt t 0
0 0

]{
üt

ü0

}
+
[

kt t kt0

k0t k00

]{
ut

u0

}
=
{

pt (t)
0

}
(9.3.1)

where u0 denotes the DOFs with zero mass and ut the DOFs with mass, also known as
dynamic DOFs; kt0 = kT

0t . The two partitioned equations are

mt t üt + kt t ut + kt0u0 = pt (t) k0t ut + k00u0 = 0 (9.3.2)

Because no inertia terms or external forces are associated with u0, Eq. (9.3.2b) permits a
static relationship between u0 and ut :

u0 = −k−1
00 k0t ut (9.3.3)

Substituting Eq. (9.3.3) in Eq. (9.3.2a) gives

mt t üt + k̂t t ut = pt (t) (9.3.4)

where k̂t t is the condensed stiffness matrix given by

k̂t t = kt t − kT
0t k
−1
00 k0t (9.3.5)

Solution of Eq. (9.3.4) provides the displacements ut (t) in the dynamic DOFs, and at
each instant of time the displacements u0(t) in the condensed DOFs are determined from
Eq. (9.3.3).

Henceforth, for notational convenience, Eq. (9.2.12) will also denote the equations
of motion governing the dynamic DOFs [Eq. (9.3.4)], and it will be understood that only
the dynamic DOFs have been retained. Before closing this section, note that an alternative
method to determine k̂t t is by inverting the flexibility matrix f̂t t . Each column of f̂t t is given
by the displacements ut due to a unit force applied successively in each DOF in ut , which
can be determined by the force method. (This approach was employed in Examples 9.5
and 9.6.)

Example 9.8

Examples 9.4 and 9.5 were concerned with formulating the equations of motion for a can-
tilever beam with two lumped masses. The degrees of freedom chosen in Example 9.5 were
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the translational displacements u1 and u2 at the lumped masses; in Example 9.4 the four DOFs
were u1, u2, and node rotations u3 and u4. Starting with the equations governing these four
DOFs, derive the equations of motion in the two translational DOFs.

Solution The vector of four DOFs is partitioned in two parts: ut = 〈 u1 u2 〉T and u0 =
〈 u3 u4 〉T . The equations of motion governing ut are given by Eq. (9.3.4), where

mt t =
[

mL/4
mL/2

]
pt (t) = 〈 p1(t) p2(t) 〉T (a)

To determine k̂t t , the 4× 4 stiffness matrix determined in Example 9.4 is partitioned:

k =
[

kt t kt0
k0t k00

]
= 8E I

L3

⎡
⎢⎣

12 −12 −3L −3L
−12 24 3L 0

−3L 3L L2 L2/2
−3L 0 L2/2 2L2

⎤
⎥⎦ (b)

Substituting these submatrices in Eq. (9.3.5) gives the condensed stiffness matrix:

k̂t t = 48E I

7L3

[
2 −5
−5 16

]
(c)

This stiffness matrix of Eq. (c) is the same as that obtained in Example 9.5 by inverting the
flexibility matrix corresponding to the two translational DOFs.

Substituting the stiffness submatrices in Eq. (9.3.3) gives the relation between the con-
densed DOF u0 and the dynamic DOF ut :

u0 = Tut T = 1

L

[
2.57 −3.43
0.857 0.857

]
(d)

The equations of motion are given by Eq. (9.3.4), where mt t and pt (t) are defined in
Eq. (a) and k̂t t in Eq. (c). These are the same as Eq. (c) of Example 9.5.

Example 9.9

Formulate the equations of motion for the two-story frame of Example 9.7 governing the
lateral floor displacements u1 and u2.

Solution The equations of motion for this system were formulated in Example 9.7 consid-
ering six DOFs which are partitioned into ut = 〈 u1 u2 〉T and u0 = 〈 u3 u4 u5 u6 〉T .

The equations governing ut are given by Eq. (9.3.4), where

mt t = m
[

2
1

]
pt (t) = 〈 p1(t) p2(t) 〉T (a)

To determine kt t , the 6× 6 stiffness matrix determined in Example 9.7 is partitioned:

k =
[

kt t kt0
k0t k00

]
= E I

h3

⎡
⎢⎢⎢⎢⎢⎣

72 −24 6h 6h −6h −6h
−24 24 6h 6h 6h 6h

6h 6h 16h2 2h2 2h2 0
6h 6h 2h2 16h2 0 2h2

−6h 6h 2h2 0 6h2 h2

−6h 6h 0 2h2 h2 6h2

⎤
⎥⎥⎥⎥⎥⎦ (b)

Substituting these submatrices in Eq. (9.3.5) gives the condensed stiffness matrix:

k̂t t = E I

h3

[
54.88 −17.51
−17.51 11.61

]
(c)
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This is called the lateral stiffness matrix because the DOFs are the lateral displacements of the
floors. It enters into the earthquake analysis of buildings (Section 9.4).

Substituting the stiffness submatrices in Eq. (9.3.3) gives the relation between the con-
densed DOF u0 and the translational DOF ut :

u0 = Tut T = 1

h

⎡
⎢⎣
−0.4426 −0.2459
−0.4426 −0.2459

0.9836 −0.7869
0.9836 −0.7869

⎤
⎥⎦ (d)

The equations of motion are given by Eq. (9.3.4), where mt t and pt are defined in
Eq. (a) and k̂t t in Eq. (c):

m
[

2
1

]{
ü1
ü2

}
+ E I

h3

[
54.88 −17.51
−17.51 11.61

]{
u1
u2

}
=
{

p1(t)
p2(t)

}
(e)

9.4 PLANAR OR SYMMETRIC-PLAN SYSTEMS: GROUND MOTION

One of the important applications of structural dynamics is in predicting how structures
respond to earthquake-induced motion of the base of the structure. In this and following
sections equations of motion for MDF systems subjected to earthquake excitation are for-
mulated. Planar systems subjected to translational and rotational ground motions are con-
sidered in Sections 9.4.1 and 9.4.3, symmetric-plan buildings subjected to translational and
torsional excitations in Sections 9.4.2 and 9.6, and unsymmetric-plan buildings subjected
to translational ground motion in Section 9.5. Systems excited by different prescribed
motions at their multiple supports are the subject of Section 9.7.

9.4.1 Planar Systems: Translational Ground Motion

We start with the simplest case, where all the dynamic degrees of freedom are displace-
ments in the same direction as the ground motion. Two such structures—a tower and a
building frame—are shown in Fig. 9.4.1. The displacement of the ground is denoted by
ug , the total (or absolute) displacement of the mass mj by ut

j , and the relative displacement
between this mass and the ground by uj . At each instant of time these displacements are
related by

ut
j (t) = ug(t)+ uj (t) (9.4.1a)

Such equations for all the N masses can be combined in vector form:

ut (t) = ug(t)1+ u(t) (9.4.1b)

where 1 is a vector of order N with each element equal to unity.
The equation of dynamic equilibrium, Eq. (9.2.11), developed earlier is still valid,

except that p(t) = 0 because no external dynamic forces are applied. Thus

fI + fD + fS = 0 (9.4.2)

Only the relative motions u between the masses and the base due to structural deformations
produce elastic and damping forces (i.e., the rigid-body component of the displacement of
the structure produces no internal forces). Thus for a linear system, Eqs. (9.2.3) and (9.2.6)
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uj
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j

Figure 9.4.1 (a) Building frame; (b) tower.

are still valid. However, the inertia forces fI are related to the total accelerations üt of the
masses, and Eq. (9.2.9) becomes

fI = müt (9.4.3)

Substituting Eqs. (9.2.3), (9.2.6), and (9.4.3) in Eq. (9.4.2) and using Eq. (9.4.1b) gives

mü+ cu̇+ ku = −m1üg(t) (9.4.4)

Equation (9.4.4) contains N differential equations governing the relative displacements
uj (t) of a linearly elastic MDF system subjected to ground acceleration üg(t). The stiffness
matrix in Eq. (9.4.4) refers to the horizontal displacements uj and is obtained by the static
condensation method (Section 9.3) to eliminate the rotational and vertical DOF of the
nodes; hence this k is known as the lateral stiffness matrix.

Comparison of Eq. (9.4.4) with Eq. (9.2.12) shows that the equations of motion for
the structure subjected to two separate excitations—ground acceleration = üg(t) and exter-
nal forces = −mj üg(t)—are one and the same. As shown in Fig. 9.4.2, the ground motion

m 1

m j

m N

üg(t)

=

–m1 üg(t)

–mj üg(t)

–mN üg(t)

Stationary base Figure 9.4.2 Effective earthquake forces.



374 Equations of Motion, Problem Statement, and Solution Methods Chap. 9

can therefore be replaced by the effective earthquake forces:

peff(t) = −m1üg(t) (9.4.5)

A generalization of the preceding derivation is useful if all the DOFs of the system
are not in the direction of the ground motion (later in this section), or if the earthquake ex-
citation is not identical at all the structural supports (Section 9.7). In this general approach
the total displacement of each mass is expressed as its displacement us

j due to static appli-
cation of the ground motion plus the dynamic displacement uj relative to the quasi-static
displacement:

ut
j (t) = us

j (t)+ uj (t) or ut (t) = us(t)+ u(t) (9.4.6)

The quasi-static displacements can be expressed as us(t) = ιug(t), where the influence
vector ι represents the displacements of the masses resulting from static application of a
unit ground displacement; thus Eq. (9.4.6b) becomes

ut (t) = ιug(t)+ u(t) (9.4.7)

The equations of motion are obtained as before, except that Eq. (9.4.7) is used instead of
Eq. (9.4.1b):

mü+ cu̇+ ku = −mιüg(t) (9.4.8)

Now the effective earthquake forces are

peff(t) = −mιüg(t) (9.4.9)

This generalization is of no special benefit in deriving the governing equations for
the systems of Fig. 9.4.1. Static application of ug = 1 to these systems gives uj = 1 for
all j (i.e., ι = 1), as shown in Fig. 9.4.3, where the masses are blank to emphasize that
the displacements are static. Thus, Eqs. (9.4.8) and (9.4.9) become identical to Eqs. (9.4.4)
and (9.4.5), respectively.

We next consider systems with not all the dynamic DOFs in the direction of the
ground motion. An example is shown in Fig. 9.4.4a, where an inverted L-shaped frame
with lumped masses is subjected to horizontal ground motion. Assuming the elements to be

1

j

N

ι1 = 1

ιj = 1

ιN = 1

ug = 1 ug = 1

(a)

1

j

N

ug = 1

ι1 = 1

ιj = 1

ιN = 1

(b)
Figure 9.4.3 Influence vector ι: static
displacements due to ug = 1.
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(a)

m1

m2

m3

u1

u2

u3

(b)

ι1 = 1

ι2 = 1

ι3 = 0

ug = 1

(c)

Stationary base

–m1üg(t)

–(m2 + m3)üg(t)

Figure 9.4.4 (a) L-shaped frame; (b) influence vector ι: static displacements due to
ug = 1; (c) effective earthquake forces.

axially rigid, the three DOFs are as shown; u = 〈 u1 u2 u3 〉T . Static application of
ug = 1 results in the displacements shown in Fig. 9.4.4b. Thus ι = 〈 1 1 0 〉T in
Eq. (9.4.8), and Eq. (9.4.9) becomes

peff(t) = −mιüg(t) = −üg(t)

[m1

m2 + m3

m3

]{ 1
1
0

}
= −üg(t)

[ m1

m2 + m3

0

]

(9.4.10)
Note that the mass corresponding to ü2 = 1 is m2 +m3 because both masses will undergo
the same acceleration since the connecting beam is axially rigid. The effective forces of
Eq. (9.4.10) are shown in Fig. 9.4.4c. Observe that the effective force is zero in the vertical
DOFs because the ground motion is horizontal.

9.4.2 Symmetric-Plan Buildings: Translational Ground
Motion

Consider the N -story building shown in Fig. 9.4.5 having rigid floor diaphragms and sev-
eral frames in each of the x and y directions; the planwise distribution of mass and stiffness
is symmetric about the x and y axes. We show in Section 9.5 that such symmetric-plan
buildings can be analyzed independently in the two lateral directions. The motion of the
building due to ground motion along one of the two axes, say the x-axis, is also governed
by Eq. (9.4.4) with appropriate interpretation of m and k. The mass matrix is a diagonal
matrix with diagonal elements mj j = mj , where mj is the total mass lumped at the j th
floor diaphragm (Section 9.2.4). The stiffness matrix k is the lateral stiffness matrix of the
building for motion in the x-direction.

The lateral stiffness matrix of a building can be determined from the lateral stiffness
matrices of the individual frames of the building. First, the lateral stiffness matrix kxi of the
i th frame oriented in the x-direction is determined by the static condensation procedure to
condense out the joint rotations and vertical displacements at the joints (Section 9.3). This
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Figure 9.4.5 (a) j th floor plan with DOFs noted; (b) frame i , x-direction, with lateral
forces and displacements shown.

lateral stiffness matrix provides the relation between the lateral forces fSi on the i th frame
and the lateral displacements uxi of the frame (Fig. 9.4.5b):

fSi = kxi uxi (9.4.11)

Because the floor diaphragms are assumed to be rigid, all frames undergo the same lateral
displacements:

uxi = ux (9.4.12)

where uT
x = 〈 u1x u2x · · · ujx · · · uN x 〉 are the lateral displacements of the floors

defined at their centers of mass. Substituting Eq. (9.4.12) in Eq. (9.4.11) and adding the
latter equations for all the frames gives

fS = kx ux (9.4.13)

where fS =
∑

i fSi is the vector of lateral forces at the floor centers of mass of the building
and

kx =
∑

i

kxi (9.4.14)

is the x-lateral stiffness of the building. It is a matrix of order N for an N -story building.
Equation (9.4.4) with k = kx governs the x-lateral motion of a multistory building due to
ground motion in the x-direction.

9.4.3 Planar Systems: Rotational Ground Motion

Although the rotational components of ground motion are not measured during earth-
quakes, they can be estimated from the measured translational components, and it is of
interest to apply the preceding concepts to this excitation. For this purpose, consider the
frame of Fig. 9.4.6a subjected to base rotation θg(t). The total displacements ut of the
masses are made up of two parts: u associated with the structural deformations and a
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Figure 9.4.6 (a) Frame; (b) influence vector ι: static displacements due to θg = 1; (c) effective
earthquake forces.

rigid-body component us(t) = ιθg(t) due to static application of ground rotation θg:

ut (t) = u(t)+ ιθg(t) (9.4.15)

Static application of θg = 1 results in the displacements shown in Fig. 9.4.6b; thus ι =
〈 h1 h2 x3 〉T . Equations (9.4.2) and (9.4.3) are still valid, but the total accelerations
üt (t) must now be determined from Eq. (9.4.15). Putting all these equations together
leads to

mü+ cu̇+ ku = −mιθ̈g(t) (9.4.16)

The effective forces associated with ground rotation are shown in Fig. 9.4.6c:

peff(t) = −mιθ̈g(t) = −θ̈g(t)

[ m1h1

(m2 + m3)h2

m3x3

]
(9.4.17)

9.5 ONE-STORY UNSYMMETRIC-PLAN BUILDINGS

We now extend the development of the preceding sections to formulate the equations of
motion for buildings with unsymmetrical plan. Such buildings, when subjected to, say,
the y-component of ground motion, would simultaneously undergo lateral motion in two
horizontal (x and y) directions and torsion about the vertical (z) axis. In this section the
equations governing such coupled lateral-torsional motion are formulated—first for one-
story systems, followed by multistory buildings.

9.5.1 Two-Way Unsymmetric System

System considered. Consider the idealized one-story building shown in
Fig. 9.5.1, consisting of a roof diaphragm, assumed rigid in its own plane, supported on
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Figure 9.5.1 One-story system considered: (a) plan; (b) frame A; (c) frames B and C .

three frames: A, B, and C . Frame A is oriented in the y-direction, located at a distance e
from the y-axis passing through the center of mass (CM) of the diaphragm. Frames B and
C are oriented in the x-direction, located at the same distance d/2 on the two sides of the
x-axis; for simplicity the frames are located at the edge of the diaphragm and we neglect
the frame thickness. The motion of the roof mass will be described by three DOFs defined
at the CM of the roof: displacements ux in the x-direction and uy in the y-direction, and
torsional rotation uθ about the vertical axis.

Force–displacement relation. Let fS represent the vector of statically applied
external forces on the stiffness component of the structure and u the vector of resulting
displacements both defined in terms of the three DOFs. The forces and displacements are
related through { fSx

fSy

fSθ

}
=
[ kxx kxy kxθ

kyx kyy kyθ

kθx kθ y kθθ

][ ux

uy

uθ

]
or fS = ku (9.5.1)

The 3 × 3 stiffness matrix k of the structure can be determined by the direct equilibrium
method (based on the definition of stiffness influence coefficients) or by the direct stiffness
method.

For this purpose the lateral stiffness of each frame is defined. The lateral stiffness ky

of frame A relates the lateral force fS A and displacement u A (Fig. 9.5.1b):

fS A = kyu A (9.5.2)
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The lateral stiffnesses of frames B and C are kx B and kxC , respectively, and they relate the
lateral forces and displacements shown in Fig. 9.5.1c:

fSB = kx BuB fSC = kxC uC (9.5.3)

The lateral stiffness for each frame is determined by the static condensation procedure
described in Section 9.3.

The stiffness matrix of the complete system is determined first by the direct equilib-
rium method. A unit displacement is imposed successively in each DOF, and the stiffness
influence coefficients are determined by statics. The details are presented in Fig. 9.5.2 and
should be self-explanatory. The resulting stiffness matrix for the structure is

k =
[ kx B + kxC 0 (d/2)(kxC − kx B)

0 ky eky

(d/2)(kxC − kx B) eky e2ky + (d2/4)(kx B + kxC)

]
(9.5.4)

Observe that kxy = 0 in Eq. (9.5.4) for the system of Fig. 9.5.1; in general, kxy �= 0.
Alternatively, the stiffness matrix of the structure may be formulated by the direct

stiffness method implemented as follows: Determined first is the transformation matrix
that relates the lateral displacement ui of frame i to ux , uy , and uθ , the global DOF of the
system. This 1 × 3 matrix is denoted by axi if the frame is oriented in the x-direction,
or by ayi if in the y-direction. The lateral displacement of frame A, u A = uy + euθ , or
u A = ay Au, where ay A = 〈 0 1 e 〉. Similarly, the lateral displacement of frame B,
u B = ux − (d/2)uθ , or u B = ax Bu, where ax B = 〈 1 0 −d/2 〉. Finally, the lateral
displacement of frame C , uC = ux + (d/2)uθ , or uC = axC u, where axC = 〈 1 0 d/2 〉.

Second, the stiffness matrix for frame i with respect to global DOF u is determined
from the lateral stiffness kxi or kyi of frame i in local coordinates ui from

ki = aT
xi kxi axi or ki = aT

yi kyi ayi (9.5.5)

The first equation applies to frames oriented in the x-direction and the second to frames
in the y-direction. Substituting the appropriate axi or ayi and kxi or kyi gives the stiffness
matrices kA, kB , and kC of the three frames:

kA =
{ 0

1
e

}
ky〈 0 1 e 〉 = ky

[ 0 0 0
0 1 e
0 e e2

]
(9.5.6)

kB =
{ 1

0
−d/2

}
kx B〈 1 0 −d/2 〉 = kx B

[ 1 0 −d/2
0 0 0
−d/2 0 d2/4

]
(9.5.7)

kC =
{ 1

0
d/2

}
kxC 〈 1 0 d/2 〉 = kxC

[ 1 0 d/2
0 0 0

d/2 0 d2/4

]
(9.5.8)

Finally, the stiffness matrix of the system is

k = kA + kB + kC (9.5.9)
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Figure 9.5.2 Evaluation of stiffness matrix of a one-story, two-way unsymmetric system.

Substituting Eqs. (9.5.6), (9.5.7), and (9.5.8) gives

k =
[ kx B + kxC 0 (d/2)(kxC − kx B)

0 ky eky

(d/2)(kxC − kx B) eky e2ky + (d2/4)(kx B + kxC)

]
(9.5.10)

As expected, this stiffness matrix is the same as that determined earlier from the definition
of stiffness influence coefficients.
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Inertia forces. Since the global DOFs selected are located at the center of mass
O , the inertia forces on the mass component of the structure are

f I x = müt
x f I y = müt

y f I θ = IO üt
θ (9.5.11)

where m is the diaphragm mass distributed uniformly over the plan, IO = m(b2+d2)/12 is
the moment of inertia of the diaphragm about the vertical axis passing through O , and üt

x ,
üt

y , and üt
θ are the x , y, and θ components of the total acceleration of the center of mass.

In matrix form the inertia forces and accelerations are related through the mass matrix:{ f I x

f I y

f Iθ

}
=
[m

m
IO

]{ üt
x

üt
y

üt
θ

}
or fI = müt (9.5.12)

Equations of motion. Substituting Eqs. (9.5.12b) and (9.5.1b) into Eq. (9.4.2)
and excluding damping forces gives

müt + ku = 0 (9.5.13)

Consider the earthquake excitation defined by ügx (t) and ügy(t), the x and y components of
the ground acceleration, and ügθ (t), the rotational acceleration of the base of the building
about the vertical axis. The total accelerations are{ üt

x
üt

y
üt
θ

}
=
{ üx

ü y

üθ

}
+
{ ügx

ügy

ügθ

}
or üt = ü+ üg (9.5.14)

Substituting Eq. (9.5.14) into (9.5.13) and using m and k defined in Eqs. (9.5.12) and
(9.5.10) gives[m

m
IO

]{ üx

ü y

üθ

}
+
[ kxx 0 kxθ

0 kyy kyθ

kθx kθ y kθθ

]{ ux

uy

uθ

}
= −

{ mügx(t)
mügy(t)
IO ügθ (t)

}
(9.5.15)

where

kxx = kx B + kxC kyy = ky kθθ = e2ky + d2

4
(kx B + kxC )

kxθ = kθx = d

2
(kxC − kx B) kyθ = kθ y = eky

(9.5.16)

The three differential equations in Eq. (9.5.15) governing the three DOFs—ux , uy , and
uθ—are coupled through the stiffness matrix because the stiffness properties are not sym-
metric about the x or y axes. Thus the response of the system to the x (and y)-component
of ground motion is not restricted to lateral displacement in the x (and y)-direction, but
will include lateral motion in the transverse direction, y (and x), and torsion of the roof
diaphragm about the vertical axis.

9.5.2 One-Way Unsymmetric System

We next consider a special case of the system of Fig. 9.5.1 for which the lateral stiffness
of frames B and C is identical (i.e., kx B = kxC = kx ). This system is symmetric about
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the x-axis but not about the y-axis. For this one-way unsymmetric system, Eq. (9.5.15)
specializes to[m

m
IO

]{ üx

ü y

üθ

}
+
[ 2kx 0 0

0 ky eky

0 eky e2ky + (d2/2)kx

]{ ux

uy

uθ

}
= −

{mügx(t)
mügy(t)

0

}

(9.5.17)

where the rotational excitation has been dropped. The first of three equations,

müx + 2kx ux = −mügx(t) (9.5.18)

is a familiar SDF equation of motion that governs the response ux of the one-story system
to ground motion in the x-direction; uy and uθ do not enter into this equation. This implies
that motion in the x-direction occurs independent of the motion in the y-direction or of
torsional motion. Such is the case because the system is symmetric about the x-axis.

The second and third equations can be rewritten as[
m

IO

]{
ü y

üθ

}
+
[

ky eky

eky kθθ

]{
uy

uθ

}
= −

[
m

IO

]{
1
0

}
ügy(t) (9.5.19)

These equations governing uy and uθ are coupled through the stiffness matrix because the
stiffness properties are not symmetric about the y-axis. Thus the system response to the
y-component of ground motion is not restricted to the lateral displacement in the y-direction
but includes torsion about a vertical axis.

The separation of the governing equations into Eqs. (9.5.18) and (9.5.19) indicates
that the earthquake response of a system with plan symmetric about the x-axis but unsym-
metric about the y-axis can be determined by two independent analyses: (1) the response of
the structure to ground motion in the x-direction can be determined by solving the SDF sys-
tem equation (9.5.18) by the procedures of Chapter 6; and (2) the coupled lateral-torsional
response of the structure to ground motion in the y-direction can be determined by solving
the two-DOF-system equation (9.5.19) by the procedures of Chapter 13. In passing we ob-
serve that Eq. (9.5.19) can be interpreted as Eq. (9.4.8) without damping with the influence
vector ι = 〈 1 0 〉T .

9.5.3 Symmetric System

We next consider a further special case of the system of Fig. 9.5.1 for which frames B and
C are identical (i.e., kx B = kxC = kx ) and frame A is located at the center of mass (i.e.,
e = 0). For such systems Eq. (9.5.15) specializes to[m

m
IO

]{ üx

ü y

üθ

}
+
[ 2kx 0 0

0 ky 0
0 0 (d2/2)kx

]{ ux

uy

uθ

}
= −

{ mügx(t)
mügy(t)
IO ügθ (t)

}
(9.5.20)

The three equations are now uncoupled, and each is of the same form as the equation for
an SDF system. This uncoupling of equations implies: (1) translational ground motion
in the x- (or y-) direction would cause lateral motion of the system only in the x (or y)
direction; (2) rotational ground motion would cause only torsional motion of the system;
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and (3) response to individual components of ground motion can be determined by solving
only the corresponding equation in Eq. (9.5.20).

9.6 MULTISTORY UNSYMMETRIC-PLAN BUILDINGS

In this section, the equations of motion for a multistory building with plan unsymmetric
about both x and y axes subjected to earthquake excitation are formulated. Figure 9.6.1
shows a schematic idealization of such a system, which consists of some frames oriented
in the y-direction and others in the x-direction. The framing plan and hence stiffness
properties are unsymmetric about both x and y axes; however, the mass distribution of each
floor diaphragm is symmetric about both x and y axes, and the centers of mass O of all
floor diaphragms lie on the same vertical axis. Each floor diaphragm, assumed to be rigid
in its own plane, has three DOFs defined at the center of mass (Fig. 9.6.1a). The DOFs

(a)O
x

y

••
b

•
•

d

Frame i, x-direction

yi

Frame i, y-direction

xi

ujx

ujy
uj

(b)

uNi

uji

u1i

N

j

1

(c)

uNiN

ujij

u1i1

θ

Figure 9.6.1 Multistory system: (a) plan; (b) frame i , y-direction; (c) frame i ,
x-direction.
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for the j th floor are: translation ujx along the x-axis, translation ujy along the y-axis, and
torsional rotation ujθ about the vertical axis; ujx and ujy are defined relative to the ground.

The earthquake excitation is defined by ügx (t) and ügy (t), the x and y components
of ground acceleration, and ügo (t), the rotational ground acceleration about the vertical
axis. Although rotational acceleration of the base of a building is not recorded by strong-
motion accelerographs, in some cases it can be calculated from the translational accelera-
tions recorded at two locations at the base (Section 13.4).

As suggested by the earlier formulation of the equations of motion for a one-story
system, the multistory building would undergo coupled lateral-torsional motion described
by 3N DOFs: ujx , ujy , and ujθ , j = 1, 2, . . . , N . The displacement vector u of size 3N×1
for the system is defined by

u =
{ux

uy

uθ

}

where
ux = 〈 u1x u2x · · · uN x 〉T uy = 〈 u1y u2y · · · uN y 〉T

uθ = 〈 u1θ u2θ · · · uNθ 〉T

The stiffness matrix of this system with respect to the global DOFs u is formulated
by the direct stiffness method by implementing four major steps [similar to Eqs. (9.5.5) to
(9.5.10) for a one-story frame].

Step 1. Determine the lateral stiffness matrix for each frame. For the i th frame
it is determined by the following steps: (a) Define the DOF for the i th frame: lateral
displacements at floor levels, ui = 〈 u1i u2i · · · uNi 〉T (Fig. 9.6.1b and c), and vertical
displacement and rotation of each node. (b) Obtain the complete stiffness matrix for the
i th frame with reference to the frame DOF. (c) Statically condense all the rotational and
vertical DOFs to obtain the N × N lateral stiffness matrix of the i th frame, denoted by
kxi if the frame is oriented in the x-direction, or by kyi if the frame is parallel to the
y-axis.

Step 2. Determine the displacement transformation matrix relating the lateral DOF
ui defined in step 1(a) for the i th frame to the global DOF u for the building. This N × 3N
matrix is denoted by axi if the frame is oriented in the x-direction or ayi if in the y-direction.
Thus

ui = axi u or ui = ayi u (9.6.1)

These transformation matrices are

axi = [ I O −yi I ] or ayi = [ O I xi I ] (9.6.2)
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where xi and yi define the location of the i th frame (Fig. 9.6.1a) oriented in the y- and
x-directions, respectively, I is an identity matrix of order N , and O is a square matrix of
order N with all elements equal to zero.

Step 3. Transform the lateral stiffness matrix for the i th frame to the building
DOF u to obtain

ki = aT
xi kxi axi or ki = aT

yi kyi ayi (9.6.3)

The 3N ×3N matrix ki is the contribution of the i th frame to the building stiffness matrix.

Step 4. Add the stiffness matrices for all frames to obtain the stiffness matrix for
the building:

k =
∑

i

ki (9.6.4)

Substituting Eq. (9.6.2) into Eq. (9.6.3) and the latter into Eq. (9.6.4) leads to

k =
[ kxx kxy kxθ

kyx kyy kyθ

kθx kθ y kθθ

]
(9.6.5)

where

kxx =
∑

i

kxi kyy =
∑

i

kyi kθθ =
∑

i

(x2
i kyi + y2

i kxi )

(9.6.6)

kxy = 0 kxθ = kT
θx =

∑
i

−yi kxi kyθ = kT
θ y =

∑
i

xi kyi

The equations of undamped motion of the building are

[m
m

IO

]{ üx

üy

üθ

}
+
[ kxx kxy kxθ

kyx kyy kyθ

kθx kθ y kθθ

]{ux

uy

uθ

}

= −
[m

m
IO

]({ 1
0
0

}
ügx (t)+

{ 0
1
0

}
ügy (t)+

{ 0
0
1

}
ügθ (t)

)
(9.6.7)

where m is a diagonal matrix of order N , with mj j = mj , the mass lumped at the j th floor
diaphragm; IO is a diagonal matrix of order N with Ij j = IO j , the moment of inertia of
the j th floor diaphragm about the vertical axis through the center of mass; and 1 and 0 are
vectors of dimension N with all elements equal to 1 and zero, respectively.

Considering one component of ground motion at a time, Eq. (9.6.7) indicates that
ground motion in the x-direction can be replaced by effective earthquake forces−mj ügx (t),
ground motion in the y-direction by effective earthquake forces −mj ügy (t), and ground
motion in the θ -direction by effective earthquake forces −IO j ügθ (t); note that these
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effective forces are along the direction of the ground motion component considered and
are zero in the other two directions. Equation (9.6.7) can be interpreted as Eq. (9.4.8) with
the influence vector ι associated with the x, y, and θ components of ground motion given
by the three vectors on the right side of Eq. (9.6.7), respectively.

Because the three sets of DOFs—ux , uy , and uθ— in Eq. (9.6.7) are coupled through
the stiffness matrix, the system when subjected to any one component of ground motion
will respond simultaneously in x-lateral, y-lateral, and torsional motion; such motion is
referred to as coupled lateral-torsional motion.

9.6.1 One-Way Unsymmetric-Plan Buildings

We next consider a special case of the system of Fig. 9.6.1 that has stiffness properties
symmetric about the x-axis. For such systems, the stiffness submatrices kxy = kxθ = 0
and Eq. (9.6.7) may be written as

müx + kxx ux = −m1 ügx (t) (9.6.8a)

[
m

IO

]{
üy

üθ

}
+
[

kyy kyθ

kθ y kθθ

]{
uy

uθ

}
= −

[
m

IO

]{
1
0

}
ügy(t) (9.6.8b)

where the rotational excitation has been dropped temporarily.
Equation (9.6.8) permits the following observations: Ground motion in the x-direc-

tion, an axis of symmetry, would cause the building to undergo only lateral motion in the
x-direction, and this response can be determined by solving the N-DOF system governed by
Eq. (9.6.8a), which is similar to the equations of motion for planar systems [Eq. (9.4.8)].
Ground motion in the y-direction would cause coupled lateral (y)-torsional motion of the
building and this response can be determined by solving the 2N-DOF system governed by
Eq. (9.6.8b).

9.6.2 Symmetric-Plan Buildings

We next consider a further special case of the system of Fig. 9.6.1 that has stiffness prop-
erties symmetric about both x and y axes. For such systems, the stiffness submatrices
kxy = kxθ = kyθ = 0 and Eq. (9.6.7) may be written as

müx + kxx ux = −m1 ügx (t) (9.6.9a)

müy + kyyuy = −m1 ügy(t) (9.6.9b)

IO + kθθuθ = −IO1 ügθ (t) (9.6.9c)

It is clear from Eq. (9.6.9) that a symmetric-plan building subjected to x, y, or θ
components of ground motion—one component at a time—will undergo only x-lateral,
y-lateral, or torsional motion, respectively. As a corollary, a symmetric-plan system
would experience no torsional motion unless the base motion includes rotation about a
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vertical axis; see Section 13.4 for further discussion of this topic. Response of a
symmetric-plan building to an individual component of ground motion can be determined
by solving an N-DOF system governed by Eq. (9.6.9a), Eq. (9.6.9b), or Eq. (9.6.9c), as
appropriate.

9.7 MULTIPLE SUPPORT EXCITATION

So far, we have assumed that all supports where the structure is connected to the ground
undergo identical motion that is prescribed. In this section we generalize the previous
formulation of the equations of motion to allow for different—possibly even
multicomponent—prescribed motions at the various supports. Such multiple-support ex-
citation (or spatially varying excitation) may arise in several situations. First, consider
the earthquake analysis of extended structures such as the Golden Gate Bridge, shown in
Fig. 2.1.2. The ground motion generated by an earthquake on the nearby San Andreas
fault is expected to vary significantly over the 1966-m length of the structure. Therefore,
different motions should be prescribed at the four supports: the base of the two towers and
two ends of the bridge. Second, consider the dynamic analysis of piping in nuclear power
plants. Although the piping may not be especially long, its ends are connected to different
locations of the main structure and would therefore experience different motions during an
earthquake.

For the analysis of such systems the formulation of Section 9.4 is extended to in-
clude the degrees of freedom at the supports (Fig. 9.7.1). The displacement vector now
contains two parts: (1) ut includes the N DOFs of the superstructure, where the super-
script t denotes that these are total displacements; and (2) ug contains the Ng components
of support displacements. The equation of dynamic equilibrium for all the DOFs is written
in partitioned form:[

m mg

mT
g mgg

]{
üt

üg

}
+
[

c cg

cT
g cgg

]{
u̇t

u̇g

}
+
[

k kg

kT
g kgg

]{
ut

ug

}
=
{

0
pg(t)

}
(9.7.1)

⎬

⎫

⎭

⎪⎪⎪⎪⎪

⎪
⎪

Superstructure

DOF: ut

⎨⎧ ⎩⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪

Support DOF: ug

Figure 9.7.1 Definition of superstructure and support DOFs.
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Observe that no external forces are applied along the superstructure DOFs. In Eq. (9.7.1)
the mass, damping, and stiffness matrices can be determined from the properties of the
structure using the procedures presented earlier in this chapter, while the support motions
ug(t), u̇g(t), and üg(t)must be specified. It is desired to determine the displacements ut in
the superstructure DOF and the support forces pg .

To write the governing equations in a form familiar from the earlier formulation for
a single excitation, we separate the displacements into two parts, similar to Eq. (9.4.6):{

ut

ug

}
=
{

us

ug

}
+
{

u
0

}
(9.7.2)

In this equation us is the vector of structural displacements due to static application of the
prescribed support displacements ug at each time instant. The two are related through[

k kg

kT
g kgg

]{
us

ug

}
=
{

0
ps

g

}
(9.7.3)

where ps
g are the support forces necessary to statically impose displacements ug that vary

with time; obviously, us varies with time and is therefore known as the vector of quasi-
static displacements. Observe that ps

g = 0 if the structure is statically determinate or if the
support system undergoes rigid-body motion; for the latter condition an obvious example is
identical horizontal motion of all supports. The remainder u of the structural displacements
are known as dynamic displacements because a dynamic analysis is necessary to evaluate
them.

With the total structural displacements split into quasi-static and dynamic displace-
ments, Eq. (9.7.2), we return to the first of the two partitioned equations (9.7.1):

müt +mgüg + cu̇t + cgu̇g + kut + kgug = 0 (9.7.4)

Substituting Eq. (9.7.2) and transferring all terms involving ug and us to the right side
leads to

mü+ cu̇+ ku = peff(t) (9.7.5)

where the vector of effective earthquake forces is

peff(t) = −(müs +mgüg)− (cu̇s + cgu̇g)− (kus + kgug) (9.7.6)

This effective force vector can be rewritten in a more useful form. The last term drops out
because Eq. (9.7.3) gives

kus + kgug = 0 (9.7.7)

This relation also enables us to express the quasi-static displacements us in terms of the
specified support displacements ug:

us = ιug ι = −k−1kg (9.7.8)
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We call ι the influence matrix because it describes the influence of support displacements
on the structural displacements. Substituting Eqs. (9.7.8) and (9.7.7) in Eq. (9.7.6) gives

peff(t) = −(mι+mg)üg(t)− (cι+ cg)u̇g(t) (9.7.9)

If the ground (or support) accelerations üg(t) and velocities u̇g(t) are prescribed, peff(t)
is known from Eq. (9.7.9), and this completes the formulation of the governing equation
[Eq. (9.7.5)].

Simplification of peff(t). For many practical applications, further simplification
of the effective force vector is possible on two counts. First, the damping term in Eq. (9.7.9)
is zero if the damping matrices are proportional to the stiffness matrices (i.e., c = a1k and
cg = a1kg) because of Eq. (9.7.7); this stiffness-proportional damping will be shown in
Chapter 11 to be unrealistic, however. While the damping term in Eq. (9.7.9) is not zero
for arbitrary forms of damping, it is usually small relative to the inertia term and may
therefore be dropped. Second, for structures with mass idealized as lumped at the DOFs,
the mass matrix is diagonal, implying that mg is a null matrix and m is diagonal. With
these simplifications Eq. (9.7.9) reduces to

peff(t) = −mιüg(t) (9.7.10)

Observe that this equation for the effective earthquake forces associated with multiple-
support excitation is a generalization of Eq. (9.4.9) valid for structures with single support
(and for structures with identical motion at multiple supports). The N × Ng influence
matrix ι was previously an N × 1 vector, and the Ng × 1 vector üg(t) of support motions
was a scalar üg(t).

Interpretation of peff(t). We will find it useful to use a different form of
Eq. (9.7.8a):

us(t) =
Ng∑

l=1

ιlugl(t) (9.7.11)

where ιl , the lth column of the influence matrix ι, is the influence vector associated with
the support displacement ugl . It is the vector of static displacements in the structural DOFs
due to ugl = 1. By using Eqs. (9.7.8) and (9.7.11), the effective force vector, Eq. (9.7.10),
can be expressed as

peff(t) = −
Ng∑

l=1

mιl ügl(t) (9.7.12)

The lth term in Eq. (9.7.12) that denotes the effective earthquake forces due to acceleration
in the lth support DOF is of the same form as Eq. (9.4.9) for structures with single support
(and for structures with identical motion at multiple supports). The two cases differ in an
important sense, however: In the latter case, the influence vector can be determined by
kinematics, but N algebraic equations [Eq. (9.7.7)] are solved to determine each influence
vector ιl for multiple-support excitations.
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Example 9.10

A uniform two-span continuous bridge with flexural stiffness EI is idealized as a lumped-mass
system (Fig. E9.10a). Formulate the equations of motion for the bridge subjected to vertical
motions ug1, ug2, and ug3 of the three supports. Consider only the translational degrees of
freedom. Neglect damping.

• • •
L/2 L/2 L/2 L/2

mm
IEIE

A B C

ug1 ug2 ug3

(a)

3 1 4 2 5

6 7 8 9 10
(b)

ug1 = 1 ι11 = 0.40625

ι21 = – 0.09375

(c)

ug2 = 1
ι12 = 0.6875 ι22 = 0.6875

ug3 = 1

ι13 = – 0.09375

ι23 = 0.40625

Figure E9.10

Solution
1. Formulate the stiffness matrix. With reference to the 10 DOFs identified in

Fig. E9.10b, the stiffness matrix of the system is formulated by the procedure used in Exam-
ple 9.7 for a two-story frame. Static condensation of the rotational DOFs using the procedure
in Section 9.3 leads to the 5 × 5 stiffness matrix with reference to the five translational
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DOFs:

k̂ = E I

L3

⎡
⎢⎢⎣

78.86 30.86 −29.14 −75.43 −5.14
30.86 78.86 −5.14 −75.43 −29.14
−29.14 −5.14 12.86 20.57 0.86
−75.43 −75.43 20.57 109.71 20.57
−5.14 −29.14 0.86 20.57 12.86

⎤
⎥⎥⎦ (a)

2. Partition the stiffness matrix. The vectors of the structural DOF and support DOF
are

u = 〈 u1 u2 〉T and ug = 〈 u3 u4 u5 〉T (b)

The k̂ determined previously is partitioned:

k̂ =
[

k kg

kT
g kgg

]
(c)

where

k = E I

L3

[
78.86 30.86
30.86 78.86

]
(d1)

kg = E I

L3

[−29.14 −75.43 −5.14
−5.14 −75.43 −29.14

]
(d2)

kgg = E I

L3

[
12.86 20.57 0.86
20.57 109.71 20.57

0.86 20.57 12.86

]
(d3)

3. Formulate the mass matrix. Relative to the DOFs u1 and u2, the mass matrix is

m = m
[

1
1

]
(e)

4. Determine the influence matrix.

ι = −k−1kg =
[

0.40625 0.68750 −0.09375
−0.09375 0.68750 0.40625

]
(f)

The influence vectors associated with each of the supports are

ι1 = 〈 0.40625 −0.09375 〉T (g1)

ι2 = 〈 0.68750 0.68750 〉T (g2)

ι3 = 〈−0.09375 0.40625 〉T (g3)

The structural displacements described by each of the influence vectors are shown in
Fig. E9.10c.

5. Determine the equations of motion.

mü+ ku = peff(t) (h)

where m and k are defined by Eqs. (e) and (d1), respectively. The effective force vector is

peff(t) = −
3∑

l=1

mιl ügl(t) (i)

where ιl are given by Eq. (g) and ügl(t) are the support accelerations.
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9.8 INELASTIC SYSTEMS

The force–deformation relation for a structural steel component undergoing cyclic defor-
mations is shown in Fig. 1.3.1c. The initial loading curve is nonlinear at the larger am-
plitudes of deformation, and the unloading and reloading curves differ from the initial
loading branch. Thus the relation between the resisting force vector fS and displacement
vector u is path dependent, that is, it depends on whether the displacements are increasing
or decreasing. Then fS can be expressed as an implicit function of u:

fS = fS(u) (9.8.1)

This general equation replaces Eq. (9.2.3) and Eq. (9.4.8) becomes

mü+ cu̇+ fS(u) = −mιüg(t) (9.8.2)

These are the equations of motion for inelastic MDF systems subjected to ground acceler-
ation üg(t), the same at all support points.

Following the approach outlined in Section 1.4 for SDF systems, the damping matrix
of an MDF system that models the energy dissipation arising from rate-dependent effects
within the linearly elastic range of deformations (see Chapter 11) is also assumed to repre-
sent this damping mechanism in the inelastic range of deformations. The additional energy
dissipated due to inelastic behavior at larger deformations is accounted for by the hysteretic
force–deformation relation used in the numerical time-stepping procedures for solving the
equations of motion (Chapter 16).

These numerical procedures are based on linearizing the equations of motion over
a time step ti to ti + �t and using Newton–Raphson iteration (Section 5.7). The struc-
tural stiffness matrix at ti is formulated by direct assembly of the element stiffness ma-
trices. For each structural element—column, beam, or wall, etc.—the element stiffness
matrix is determined for the state—displacements and velocities—of the system at ti and
the prescribed yielding mechanism of the material. The element stiffness matrices are then
assembled. These procedures are not presented in this structural dynamics text because
the reader is expected to be familiar with static analysis of inelastic systems. However,
we discuss this issue briefly in Chapter 19 in the context of nonlinear analysis of simple
idealizations of multistory buildings.

9.9 PROBLEM STATEMENT

Given the mass matrix m, the stiffness matrix k of a linearly elastic system or the force–
deformation relations fS(u, u̇) for an inelastic system, the damping matrix c, and the
dynamic excitation—which may be external forces p(t) or ground acceleration üg(t)—
a fundamental problem in structural dynamics is to determine the response of the MDF
structure.

The term response denotes any response quantity, such as displacement, velocity,
and acceleration of each mass, and also an internal force or internal stress in the structural
elements. When the excitation is a set of external forces, the displacements u(t), veloc-
ities u̇(t), and accelerations ü(t) are of interest. For earthquake excitations the response
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quantities relative to the ground—u, u̇, and ü—as well as the total responses—ut , u̇t , and
üt —may be needed. The relative displacements u(t) associated with deformations of the
structure are the most important since the internal forces in the structure are directly related
to u(t).

9.10 ELEMENT FORCES

Once the relative displacements u(t) have been determined by dynamic analysis, the
element forces and stresses needed for structural design can be determined by static
analysis of the structure at each time instant (i.e., no additional dynamic analysis is nec-
essary). The static analysis of an MDF system can be visualized in one of two ways:

1. At each time instant the nodal displacements are known from u(t); if u(t) includes
only the dynamic DOF, the displacements in the condensed DOF are given by Eq. (9.3.3).
From the known displacements and rotations of the nodes of each structural element (beam
and column), the element forces (bending moments and shears) can be determined through
the element stiffness properties (Appendix 1), and stresses can be determined from the
element forces.

2. The second approach is to introduce equivalent static forces; at any instant of
time t these forces fS are the external forces that will produce the displacements u at the
same t in the stiffness component of the structure. Thus

fS(t) = ku(t) (9.10.1)

Element forces or stresses can be determined at each time instant by static analysis of the
structure subjected to the forces fS . The repeated static analyses at many time instants can
be implemented efficiently as described in Chapter 13.

For inelastic systems the element forces can be determined by appropriate modifi-
cations of these procedures to recognize that such systems are analyzed by time-stepping
procedures with iteration within a time step (Chapter 16).

To keep the preceding problem statement simple, we have excluded systems sub-
jected to spatially-varying, multiple-support excitations (Section 9.7). Such dynamic re-
sponse analyses involve additional considerations that are discussed in Section 13.5.

9.11 METHODS FOR SOLVING THE EQUATIONS OF MOTION:
OVERVIEW

The dynamic response of linear systems with classical damping that is a reasonable model
for many structures can be determined by classical modal analysis. Classical natural fre-
quencies and modes of vibration exist for such systems (Chapter 10), and their equations of
motion, when transformed to modal coordinates, become uncoupled (Chapters 12 and 13).
Thus the response in each natural vibration mode can be computed independent of the
others, and the modal responses can be combined to determine the total response. Each
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mode responds with its own particular pattern of deformation, the mode shape; with its
own frequency, the natural frequency; and with its own damping. Each modal response
can be computed as a function of time by analysis of an SDF system with the vibration
properties—natural frequency and damping—of the particular mode. These SDF equations
can be solved in closed form for excitations that can be described analytically (Chapters 3
and 4), or they can be solved by time-stepping methods for complicated excitations that
are defined numerically (Chapter 5).

Classical modal analysis is not applicable to a structure consisting of subsystems
with very different levels of damping. For such systems the classical damping model may
not be appropriate, classical vibration modes do not exist, and the equations of motion
cannot be uncoupled by transforming to modal coordinates of the system without damp-
ing. Such systems can be analyzed by (1) transforming the equations of motion to the
eigenvectors of the complex eigenvalue problem that includes the damping matrix (Chap-
ter 14); or (2) direct solution of the coupled system of differential equations (Chapter 16).
The latter approach requires numerical methods because closed-form analytical solutions
are not possible even if the dynamic excitation is a simple, analytically described function
of time and also, of course, if the dynamic excitation is described numerically.

Classical modal analysis is also not applicable to inelastic systems irrespective of the
damping model, classical or nonclassical. The standard approach is to solve directly the
coupled equations in the original nodal displacements by numerical methods (Chapter 16).
The overview of analysis procedures presented in this section is summarized in Fig. 9.11.1.

MDF System Analysis

Chapters 12, 13

Classical modal analysis for

• Linear systems

• Classical damping

Chapter 14

Modal analysis for

• Nonclassically clamped systems

Solutions

• Closed form for simple excitation

• Numerical for complex excitation

Chapter 16

Direct analysis for

• Linear or nonlinear systems

• Classical or nonclassical damping

Solutions

• Numerical

Figure 9.11.1
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P R O B L E M S

9.1 A uniform rigid bar of total mass m is supported on two springs k1 and k2 at the two ends and
subjected to dynamic forces as shown in Fig. P9.1. The bar is constrained so that it can move
only vertically in the plane of the paper. (Note: This is the system of Example 9.2.) Formulate
the equations of motion with respect to the two DOFs defined at the left end of the bar.

pt
p

• •• •
L/2 L/2

u1
u2

k1 k2

θ

Figure P9.1

∗9.2 A uniform simply supported beam of length L , flexural rigidity E I , and mass m per unit
length has been idealized as the lumped-mass system shown in Fig. P9.2. The applied forces
are also shown.
(a) Identify the DOFs to represent the elastic properties and determine the stiffness matrix.
Neglect the axial deformations of the beam.
(b) Identify the DOFs to represent the inertial properties and determine the mass matrix.
(c) Formulate the equations governing the translational motion of the beam.

EI

p1(t) p2(t)

mL/3 mL/3

• •• •• •
L/3 L/3 L/3

Figure P9.2

u1

u2

EI, Massless

Rigid; total mass = m

•
••

•

L

L

Figure P9.4

9.3 Derive the equations of motion of the beam of Fig. P9.2 governing the translational displace-
ments u1 and u2 by starting directly with these two DOFs only.

*Denotes that a computer is necessary to solve this problem.
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9.4 A rigid bar is supported by a weightless column as shown in Fig. P9.4. Evaluate the mass,
flexibility, and stiffness matrices of the system defined for the two DOFs shown. Do not use a
lumped-mass approximation.

9.5 Using the definition of stiffness and mass influence coefficients, formulate the equations of
motion for the two-story shear frame with lumped masses shown in Fig. P9.5. The beams are
rigid and the flexural rigidity of the columns is E I . Neglect axial deformations in all elements.

EI EI

m

m/2

p1(t)

p2(t)

• •
2h

•
••

•

h

h

Rigid beams

Figure P9.5

m

m/2

EI EI

EI

p1(t)

p2(t)

• •
2h

•
••

•

h

h

Figure P9.6

∗9.6 Figure P9.6 shows a two-story frame with lumped masses subjected to lateral forces, together
with some of its properties; in addition, the flexural rigidity is E I for all columns and beams.
(a) Identify the DOFs to represent the elastic properties and determine the stiffness matrix.
Neglect axial deformations in all elements.
(b) Identify the DOFs to represent the inertial properties and determine the mass matrix.
Assume the members to be massless and neglect their rotational inertia.
(c) Formulate the equations governing the motion of the frame in the DOFs in part (b).

9.7–
9.8

Using the definition of stiffness and mass influence coefficients, formulate the equations of
motion for the three-story shear frames with lumped masses shown in Figs. P9.7 and P9.8.
The beams are rigid in flexure, and the flexural rigidity of the columns is as shown. Neglect
axial deformations in all elements.

m

m

m/2

EI

EI

EI

EI

EI

EI

p1(t)

p2(t)

p3(t)
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2h

•
••
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h
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Rigid beams

Figure P9.7
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p1(t)

p2(t)

p3(t)

• •
2h

•
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••
•

h

h

h

Rigid beams

Figure P9.8

*Denotes that a computer is necessary to solve this problem.
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∗9.9–
9.12

Figures P9.9–P9.12 show three-story frames with lumped masses subjected to lateral forces,
together with the flexural rigidity of columns and beams.
(a) Identify the DOFs to represent the elastic properties and determine the stiffness matrix.
Neglect the axial deformation of the members.
(b) Identify the DOFs to represent the inertial properties and determine the mass matrix. As-
sume the members to be massless and neglect their rotational inertia.
(c) Formulate the equations governing the motion of the frame in the DOFs in part (b).
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Figure P9.9
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Figure P9.10
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Figure P9.12

∗9.13 An umbrella structure has been idealized as an assemblage of three flexural elements with
lumped masses at the nodes as shown in Fig. P9.13.

*Denotes that a computer is necessary to solve this problem.
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(a) Identify the DOFs to represent the elastic properties and determine the stiffness matrix.
Neglect axial deformations in all members.
(b) Identify the DOFs to represent the inertial properties and determine the mass matrix.
(c) Formulate the equations of motion governing the DOFs in part (b) when the excitation
is (i) horizontal ground motion, (ii) vertical ground motion, (iii) ground motion in direction
b–d , (iv) ground motion in direction b–c, and (v) rocking ground motion in the plane of the
structure.

a

b

dc

L L

L

mm 3m

EI EI

EI

Figure P9.13

9.14 Figure P9.14 shows a uniform slab supported on four columns rigidly attached to the slab and
clamped at the base. The slab has a total mass m and is rigid in plane and out of plane. Each
column is of circular cross section, and its second moment of cross-sectional area about any
diametrical axis is as noted. With the DOFs selected as ux , uy , and uθ at the center of the
slab, and using influence coefficients:
(a) Formulate the mass and stiffness matrices in terms of m and the lateral stiffness k =
12E I/h3 of the smaller column; h is the height.
(b) Formulate the equations of motion for ground motion in (i) the x-direction, (ii) the
y-direction, and (iii) the direction d–b.

9.15 Repeat Problem 9.14 using the second set of DOFs shown in Fig. P9.15.
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Figure P9.14
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a b
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Figure P9.16
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b
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Figure P9.17

9.16 Repeat Problem 9.14 using the DOFs shown in Fig. P.9.16.

9.17 Repeat Problem 9.14 using the DOFs shown in Fig. P9.17.

9.18 Figure P9.18 shows a three-dimensional pipe abcd clamped at a with mass m at d. All
members are made of the same material and have identical cross sections. Formulate the
equations of motion governing the DOFs ux , uy , and uz when the excitation is ground motion
in (i) x-direction, (ii) y-direction, (iii) z-direction, and (iv) direction a–d. First express the
flexibility matrix in terms of E , I , G, J , and L; then specialize it for G J = 4

5 E I . Consider
flexural and torsional deformations but neglect axial deformations.

ux

uz uy

m

x

z

y
L

L

L

a

b

c

d

Figure P9.18

9.19 Formulate the equations of motion for the system shown in Fig. P9.19 subjected to support
displacements ug1(t) and ug2(t). These equations governing the dynamic components of

ug1 ug2u1

m
k

u2

m
k k

Figure P9.19
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displacements u1 and u2 (total displacements minus quasistatic displacements) should be ex-
pressed in terms of m, k, üg1(t), and üg2(t).

9.20 Figure P9.20 shows a simply supported massless beam with a lumped mass at the center
subjected to motions ug1(t) and ug2(t) at the two supports. Formulate the equation of motion
governing the dynamic component of displacement u (= total displacement − quasi-static
displacement) of the lumped mass. Express this equation in terms of m, E I , L , üg1(t), and
üg2(t).

ug1 ug2u
mEI

• •• •
L L

Figure P9.20

∗9.21 Figure P9.21 shows a pipe in an industrial plant. The pipe is clamped at supports a and b
and has a 90o bend at c. It supports two heavy valves of mass m as shown. Neglecting axial
deformations and pipe mass, formulate the equations of motion for this system subjected to
support displacements ug1(t) and ug2(t). These equations governing the dynamic component
(= total displacement − quasi-static component) of the displacements u1 and u2 should be
expressed in terms of m, EI, and L . How do these governing equations differ from the case of
identical motion at both supports?

ug1

ug2
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L/2

• •
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•
•

L/2

•
•

L/2
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EI

m

m
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u2
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b
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d
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Figure P9.21

∗9.22 Figure P9.22 shows a single-span bridge. Neglecting axial deformations, formulate the equa-
tions of motion for this system subjected to support displacements ug1(t) and ug2(t). These

m/2m/4 m/4

• •• •
L/2 L/2

•
•

L/2
EI EI

EI EI
u1

u2

ug1 ug2
a b

c
d

e

Figure P9.22

∗Denotes that a computer is necessary to solve this problem.
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equations governing the dynamic component (= total displacement− quasi-static component)
of the displacements u1 and u2 should be expressed in terms of m, EI, and L . How do these
governing equations differ from the case of identical motion at both supports?

∗9.23 Figure P9.23 shows a uniform slab supported on four identical columns rigidly attached to
the slab and clamped at the base. The slab has a total mass m and is rigid in plane and out
of plane. Each column is of circular cross section, and its stiffness about any diametrical axis
is as noted. With the DOFs selected as ux , uy , and uθ , formulate the equations of motion
for the system subjected to ground displacements uga(t), ugb(t), ugc(t), and ugd (t) in the
x-direction at the supports of columns a, b, c, and d, respectively. These equations governing
the dynamic component (= total displacement− quasi-static component) of the displacements
ux , uy , and uθ should be expressed in terms of m, b, and k = 12E I/h3 of the columns. How
do these governing equations differ from the case of identical ground motion ug(t) at all
column supports?

ugd ugc

ugbuga

a b

cd

O ux

uyu

k

k

k

k

• •
b

•

•

b

h

θ

Figure P9.23

∗9.24 Formulate the equations of motion for the system of Problem 9.14 subjected to ground dis-
placements uga(t), ugb(t), ugc(t), and ugd (t) in the x-direction at the supports of columns
a, b, c, and d, respectively. These equations governing the dynamic component (= total dis-
placement− quasi-static component) of the displacements ux , uy , and uθ should be expressed
in terms of m, b, h, and the lateral stiffness k = 12E I/h3 of the smaller column. How do
these governing equations differ from the case of identical ground motion ug(t) at all column
supports?

∗9.25 An intake–outlet tower fixed at the base is partially submerged in water and is accessible
from the edge of the reservoir by a foot bridge that is axially rigid and pin-connected to
the tower (Fig. P9.25). (In practice, sliding is usually permitted at the connection. The pin
connection has been used here only for this hypothetical problem.) The 60-m-high uniform
tower has a hollow reinforced-concrete cross section with outside diameter = 8 m and wall
thickness = 40 cm. An approximate value of the flexural stiffness E I may be computed from
the gross properties of the concrete section without the reinforcement; the elastic modulus of
concrete E = 25,000 MPa. For purposes of preliminary analysis the mass of the tower is
lumped as shown at two equally spaced locations, where m is the mass per unit length and L
the total length of the tower; the density of concrete is 2400 kg/m3. (The added mass of the
surrounding water may be neglected here, but it should be considered in practical analysis.)

*Denotes that a computer is necessary to solve this problem.
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It is desired to analyze the response of this structure to support motions ug1(t) and ug2(t).
Formulate the equations of motion governing the dynamic components of displacements u1
and u2 (dynamic component = total displacement − quasi-static component).
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u1

u2
mL/4

mL/2

Bridge
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•
••

•

30 m
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Figure P9.25
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Free Vibration

PREVIEW

By free vibration we mean the motion of a structure without any dynamic excitation—
external forces or support motion. Free vibration is initiated by disturbing the structure
from its equilibrium position by some initial displacements and/or by imparting some ini-
tial velocities.

This chapter on free vibration of MDF systems is divided into three parts. In Part A
we develop the notion of natural frequencies and natural modes of vibration of a structure;
these concepts play a central role in the dynamic and earthquake analysis of linear systems
(Chapters 12 and 13).

In Part B we describe the use of these vibration properties to determine the free
vibration response of systems. Undamped systems are analyzed first. We then define
systems with classical damping and systems with nonclassical damping. The analysis
procedure is extended to systems with classical damping, recognizing that such systems
possess the same natural modes as those of the undamped system.

Part C is concerned with numerical solution of the eigenvalue problem to determine
the natural frequencies and modes of vibration. Vector iteration methods are effective in
structural engineering applications, and we restrict this presentation to such methods. Only
the basic ideas of vector iteration are included, without getting into subspace iteration or
the Lanczos method. Although this limited treatment would suffice for many practical
problems and research applications, the reader should recognize that a wealth of knowledge
exists on the subject.
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PART A: NATURAL VIBRATION FREQUENCIES AND
MODES

10.1 SYSTEMS WITHOUT DAMPING

Free vibration of linear MDF systems is governed by Eq. (9.2.12) with p(t) = 0, which
for systems without damping is

mü+ ku = 0 (10.1.1)

Equation (10.1.1) represents N homogeneous differential equations that are coupled through
the mass matrix, the stiffness matrix, or both matrices; N is the number of DOFs. It is de-
sired to find the solution u(t) of Eq. (10.1.1) that satisfies the initial conditions

u = u(0) u̇ = u̇(0) (10.1.2)

at t = 0. A general procedure to obtain the desired solution for any MDF system is
developed in Section 10.8. In this section the solution is presented in graphical form that
enables us to understand free vibration of an MDF system in qualitative terms.

Figure 10.1.1 shows the free vibration of a two-story shear frame. The story stiff-
nesses and lumped masses at the floors are noted, and the free vibration is initiated by
the deflections shown by curve a in Fig. 10.1.1b. The resulting motion uj of the two
masses is plotted in Fig. 10.1.1d as a function of time; T1 will be defined later.
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Figure 10.1.1 Free vibration of an undamped system due to arbitrary initial displacement:
(a) two-story frame; (b) deflected shapes at time instants a, b, and c; (c) modal coordinates qn(t);
(d) displacement history.
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The deflected shapes of the structure at selected time instants a, b, and c are also shown; the
qn(t) plotted in Fig.10.1.1c are discussed in Example 10.11. The displacement–time plot
for the j th floor starts with the initial conditions uj (0) and u̇ j (0); the uj (0) are identified in
Fig. 10.1.1b and u̇ j (0) = 0 for both floors. Contrary to what we observed in Fig. 2.1.1 for
SDF systems, the motion of each mass (or floor) is not a simple harmonic motion and the
frequency of the motion cannot be defined. Furthermore, the deflected shape (i.e., the ratio
u1/u2) varies with time, as is evident from the differing deflected shapes b and c, which
are in turn different from the initial deflected shape a.

An undamped structure would undergo simple harmonic motion without change of
deflected shape, however, if free vibration is initiated by appropriate distributions of dis-
placements in the various DOFs. As shown in Figs. 10.1.2 and 10.1.3, two characteristic
deflected shapes exist for this two-DOF system such that if it is displaced in one of these
shapes and released, it will vibrate in simple harmonic motion, maintaining the initial de-
flected shape. Both floors vibrate in the same phase, i.e., they pass through their zero,
maximum, or minimum displacement positions at the same instant of time. Each charac-
teristic deflected shape is called a natural mode of vibration of an MDF system.

Observe that the displacements of both floors are in the same direction in the first
mode but in opposite directions in the second mode. The point of zero displacement,
called a node,† does not move at all (Fig. 10.1.3); as the mode number n increases, the
number of nodes increases accordingly (see Fig. 12.8.2).
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Figure 10.1.2 Free vibration of an undamped system in its first natural mode of vibration:
(a) two-story frame; (b) deflected shapes at time instants a, b, c, d, and e; (c) modal coordinate q1(t);
(d) displacement history.

†Recall that we have already used the term node for nodal points in the structural idealization; the two
different uses of node should be clear from the context.
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Figure 10.1.3 Free vibration of an undamped system in its second natural mode of vibration:
(a) two-story frame; (b) deflected shapes at the time instants a, b, c, d, and e; (c) modal coordinate
q2(t); (d) displacement history.

A natural period of vibration Tn of an MDF system is the time required for one cycle
of the simple harmonic motion in one of these natural modes. The corresponding natural
circular frequency of vibration is ωn and the natural cyclic frequency of vibration is fn ,
where

Tn = 2π

ωn
fn = 1

Tn
(10.1.3)

Figures 10.1.2 and 10.1.3 show the two natural periods Tn and natural frequencies ωn

(n = 1, 2) of the two-story building vibrating in its natural modes φn = 〈φ1n φ2n〉T . The
smaller of the two natural vibration frequencies is denoted by ω1, and the larger by ω2.
Correspondingly, the longer of the two natural vibration periods is denoted by T1 and the
shorter one by T2.

10.2 NATURAL VIBRATION FREQUENCIES AND MODES

In this section we introduce the eigenvalue problem whose solution gives the natural fre-
quencies and modes of a system. The free vibration of an undamped system in one of its
natural vibration modes, graphically displayed in Figs. 10.1.2 and 10.1.3 for a two-DOF
system, can be described mathematically by

u(t) = qn(t)φn (10.2.1)
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where the deflected shape φn does not vary with time. The time variation of the displace-
ments is described by the simple harmonic function

qn(t) = An cosωnt + Bn sinωnt (10.2.2)

where An and Bn are constants that can be determined from the initial conditions that
initiate the motion. Combining Eqs. (10.2.1) and (10.2.2) gives

u(t) = φn (An cosωnt + Bn sinωnt) (10.2.3)

where ωn and φn are unknown.
Substituting this form of u(t) in Eq. (10.1.1) gives[−ω2

nmφn + kφn
]
qn(t) = 0

This equation can be satisfied in one of two ways. Either qn(t) = 0, which implies that
u(t) = 0 and there is no motion of the system (this is the so-called trivial solution), or the
natural frequencies ωn and modes φn must satisfy the following algebraic equation:

kφn = ω2
nmφn (10.2.4)

which provides a useful condition. This algebraic equation is called the matrix eigenvalue
problem. When necessary it is called the real eigenvalue problem to distinguish it from
the complex eigenvalue problem mentioned in Chapter 14 for systems with damping. The
stiffness and mass matrices k and m are known; the problem is to determine the scalar ω2

n
and vector φn .

To indicate the formal solution to Eq. (10.2.4), it is rewritten as[
k− ω2

nm
]
φn = 0 (10.2.5)

which can be interpreted as a set of N homogeneous algebraic equations for the N elements
φjn ( j = 1, 2, . . . , N ). This set always has the trivial solution φn = 0, which is not useful
because it implies no motion. It has nontrivial solutions if

det
[
k− ω2

nm
] = 0 (10.2.6)

When the determinant is expanded, a polynomial of order N in ω2
n is obtained. Equa-

tion (10.2.6) is known as the characteristic equation or frequency equation. This equation
has N real and positive roots for ω2

n because m and k, the structural mass and stiffness
matrices, are symmetric and positive definite. The positive definite property of k is assured
for all structures supported in a way that prevents rigid-body motion. Such is the case for
civil engineering structures of interest to us, but not for unrestrained structures such as air-
craft in flight—these are beyond the scope of this book. The positive definite property of
m is also assured because the lumped masses are nonzero in all DOFs retained in the anal-
ysis after the DOFs with zero lumped mass have been eliminated by static condensation
(Section 9.3).

The N roots, ω2
n , of Eq. (10.2.6) determine the N natural frequencies ωn (n =

1, 2, . . . , N ) of vibration, conventionally arranged in sequence from smallest to largest
(ω1 < ω2 < · · · < ωN ). These roots of the characteristic equation are also known as eigen-
values, characteristic values, or normal values. When a natural frequency ωn is known,
Eq. (10.2.5) can be solved for the corresponding vector φn to within a multiplicative con-
stant. The eigenvalue problem does not fix the absolute amplitude of the vectors φn , only
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the shape of the vector given by the relative values of the N displacements φjn ( j =
1, 2, . . . , N ). Corresponding to the N natural vibration frequencies ωn of an N -DOF sys-
tem, there are N independent vectors φn , which are known as natural modes of vibration,
or natural mode shapes of vibration. These vectors are also known as eigenvectors, charac-
teristic vectors, or normal modes. The term natural is used to qualify each of these vibra-
tion properties to emphasize the fact that these are natural properties of the structure in free
vibration, and they depend only on its mass and stiffness properties. The subscript n de-
notes the mode number, and the first mode (n = 1) is also known as the fundamental mode.

As mentioned earlier, during free vibration in each natural mode, an undamped sys-
tem oscillates at its natural frequency with all DOFs of the system vibrating in the same
phase, passing through their zero, maximum, or minimum displacement positions at the
same instant of time. Because this type of natural mode was the subject of Lagrange’s
classical (1811) treatise on mechanics, we will refer to such modes as classical natural
modes. In damped systems, this property is generally violated and classical natural modes
may not exist, as we shall see later.

10.3 MODAL AND SPECTRAL MATRICES

The N eigenvalues and N natural modes can be assembled compactly into matrices. Let
the natural mode φn corresponding to the natural frequency ωn have elements φjn , where
j indicates the DOFs. The N eigenvectors can then be displayed in a single square matrix,
each column of which is a natural mode:

Φ = [φjn
] =

⎡
⎢⎢⎣

φ11 φ12 · · · φ1N

φ21 φ22 · · · φ2N
...

...
. . .

...

φN1 φN2 · · · φN N

⎤
⎥⎥⎦

The matrix Φ is called the modal matrix for the eigenvalue problem, Eq. (10.2.4). The N
eigenvalues ω2

n can be assembled into a diagonal matrix Ω2, which is known as the spectral
matrix of the eigenvalue problem, Eq. (10.2.4):

Ω2 =

⎡
⎢⎢⎣
ω2

1
ω2

2
. . .

ω2
N

⎤
⎥⎥⎦

Each eigenvalue and eigenvector satisfies Eq. (10.2.4), which can be rewritten as the
relation

kφn = mφnω
2
n (10.3.1)

By using the modal and spectral matrices, it is possible to assemble all of such relations
(n = 1, 2, . . . , N ) into a single matrix equation:

kΦ = mΦΩ2 (10.3.2)

Equation (10.3.2) provides a compact presentation of the equations relating all eigenvalues
and eigenvectors.



Sec. 10.4 Orthogonality of Modes 409

10.4 ORTHOGONALITY OF MODES

The natural modes corresponding to different natural frequencies can be shown to satisfy
the following orthogonality conditions. Whenωn �= ωr ,

φT
n kφr = 0 φT

n mφr = 0 (10.4.1)

These important properties can be proven as follows: The nth natural frequency and mode
satisfy Eq. (10.2.4); premultiplying it by φT

r , the transpose of φr , gives
φT

r kφn = ω2
nφ

T
r mφn (10.4.2)

Similarly, the r th natural frequency and mode satisfy Eq. (10.2.4); thus kφr = ω2
r mφr .

Premultiplying by φT
n gives

φT
n kφr = ω2

rφ
T
n mφr (10.4.3)

The transpose of the matrix on the left side of Eq. (10.4.2) will equal the transpose of the
matrix on the right side of the equation; thus

φT
n kφr = ω2

nφ
T
n mφr (10.4.4)

wherein we have utilized the symmetry property of the mass and stiffness matrices. Sub-
tracting Eq. (10.4.3) from (10.4.4) gives

(ω2
n − ω2

r )φ
T
n mφr = 0

Thus Eq. (10.4.1b) is true when ω2
n �= ω2

r , which for systems with positive natural fre-
quencies implies that ωn �= ωr . Substituting Eq. (10.4.1b) in (10.4.3) indicates that
Eq. (10.4.1a) is true when ωn �= ωr . This completes a proof for the orthogonality rela-
tions of Eq. (10.4.1).

We have established the orthogonality relations between modes with distinct fre-
quencies (i.e., ωn �= ωr ). If the frequency equation (10.2.4) has a j-fold multiple root (i.e.,
the system has one frequency repeated j times), it is always possible to find j modes asso-
ciated with this frequency that satisfy Eq. (10.4.1). If these j modes are included with the
modes corresponding to the other frequencies, a set of N modes is obtained that satisfies
Eq. (10.4.1) for n �= r .

The orthogonality of natural modes implies that the following square matrices are
diagonal:

K ≡ ΦT kΦ M ≡ ΦT mΦ (10.4.5)

where the diagonal elements are

Kn = φT
n kφn Mn = φT

n mφn (10.4.6)

Since m and k are positive definite, the diagonal elements of K and M are positive. They
are related by

Kn = ω2
n Mn (10.4.7)

This can be demonstrated from the definitions of Kn and Mn as follows: Substituting
Eq. (10.2.4) in (10.4.6a) gives

Kn = φT
n (ω

2
nmφn) = ω2

n(φ
T
n mφn) = ω2

n Mn
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10.5 INTERPRETATION OF MODAL ORTHOGONALITY

In this section we develop physically motivated interpretations of the orthogonality prop-
erties of natural modes. One implication of modal orthogonality is that the work done
by the nth-mode inertia forces in going through the r th-mode displacements is zero. To
demonstrate this result, consider a structure vibrating in the nth mode with displacements

un(t) = qn(t)φn (10.5.1)

The corresponding accelerations are ün(t) = q̈n(t)φn and the associated inertia forces are

(fI )n = −mün(t) = −mφnq̈n(t) (10.5.2)

Next, consider displacements of the structure in its r th natural mode:

ur (t) = qr (t)φr (10.5.3)

The work done by the inertia forces of Eq. (10.5.2) in going through the displacements of
Eq. (10.5.3) is

(fI )
T
n ur = −

(
φT

n mφr
)

q̈n(t)qr (t) (10.5.4)

which is zero because of the modal orthogonality relation of Eq. (10.4.1b). This completes
the proof.

Another implication of the modal orthogonality properties is that the work done by
the equivalent static forces associated with displacements in the nth mode in going through
the r th-mode displacements is zero. These forces are

(fS)n = kun(t) = kφnqn(t)

and the work they do in going through the displacements of Eq. (10.5.3) is

(fS)
T
n ur =

(
φT

n kφr
)

qn(t)qr (t)

which is zero because of the modal orthogonality relation of Eq. (10.4.1a). This completes
the proof.

10.6 NORMALIZATION OF MODES

As mentioned earlier, the eigenvalue problem, Eq. (10.2.4), determines the natural modes
to only within a multiplicative factor. If the vector φn is a natural mode, any vector pro-
portional to φn is essentially the same natural mode because it also satisfies Eq. (10.2.4).
Scale factors are sometimes applied to natural modes to standardize their elements associ-
ated with various DOFs. This process is called normalization. Sometimes it is convenient
to normalize each mode so that its largest element is unity. Other times it may be advan-
tageous to normalize each mode so that the element corresponding to a particular DOF,
say the top floor of a multistory building, is unity. In theoretical discussions and computer
programs it is common to normalize modes so that the Mn have unit values. In this case
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Mn = φT
n mφn = 1 ΦT mΦ = I (10.6.1)

where I is the identity matrix, a diagonal matrix with unit values along the main diagonal.
Equation (10.6.1) states that the natural modes are not only orthogonal but are normalized
with respect to m. They are then called a mass orthonormal set. When the modes are
normalized in this manner, Eqs. (10.4.6a) and (10.4.5a) become

Kn = φT
n kφn = ω2

n Mn = ω2
n K = ΦT kΦ = Ω2 (10.6.2)

Example 10.1

(a) Determine the natural vibration frequencies and modes of the system of Fig. E10.1a using
the first set of DOFs shown.
(b) Repeat part (a) using the second set of DOFs in Fig. E10.1b.
(c) Show that the natural frequencies and modes determined using the two sets of DOFs are
the same.

(a)

Total mass = m

Rigid

u1 u2

k 2k

• •
L

φ11 = 1
φ21 = 0.366

ω1 = √ 2.536 k / m

(c)

φ12 = 1

φ22 = −1.366

ω2 = √ 9.464 k / m

(b)

ut
uθ

c.g.

φt1 = 1

φθ1 = −0.928/L
First mode

(d)

φt2 = −1 φθ2 = −12.928/L

Second mode

Figure E10.1

Solution (a) The mass and stiffness matrices for the system with the first set of DOFs were
determined in Example 9.2:

m = m

6

[
2 1
1 2

]
k = k

[
1 0
0 2

]
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Then

k− ω2
nm =

[
k − mω2

n/3 −mω2
n/6

−mω2
n/6 2k − mω2

n/3

]
(a)

is substituted in Eq. (10.2.6) to obtain the frequency equation:

m2ω4
n − 12kmω2

n + 24k2 = 0

This is a quadratic equation in ω2
n that has the solutions

ω2
1 =

(
6− 2

√
3
) k

m
= 2.536

k

m
ω2

2 =
(
6+ 2

√
3
) k

m
= 9.464

k

m
(b)

Taking the square root of Eq. (b) gives the natural frequencies ω1 and ω2.
The natural modes are determined by substituting ω2

n = ω2
1 in Eq. (a), and then

Eq. (10.2.5) gives

k
[

0.155 −0.423
−0.423 1.155

]{
φ11
φ21

}
=
{

0
0

}
(c)

Now select any value for one unknown, say φ11 = 1. Then the first or second of the two
equations gives φ21 = 0.366. Substituting ω2

n = ω2
2 in Eq. (10.2.5) gives

k
[−2.155 −1.577
−1.577 −1.155

]{
φ12
φ22

}
=
{

0
0

}
(d)

Selecting φ12 = 1, either of these equations gives φ22 = −1.366. In summary, the two modes
plotted in Fig. E10.1c are

φ1 =
{

1
0.366

}
φ2 =

{
1
−1.366

}
(e)

(b) The mass and stiffness matrices of the system described by the second set of DOF
were developed in Example 9.3:

m =
[

m 0
0 mL2/12

]
k =

[
3k kL/2

kL/2 3kL2/4

]
(f)

Then

k− ω2
nm =

[
3k − mω2

n kL/2
kL/2 (9k − mω2

n)L
2/12

]
(g)

is substituted in Eq. (10.2.6) to obtain

m2ω4
n − 12kmω2

n + 24k2 = 0

This frequency equation is the same as obtained in part (a); obviously, it gives the ω1 and ω2
of Eq. (b).

To determine the nth mode we go back to either of the two equations of Eq. (10.2.5)
with

[
k− ω2m

]
given by Eq. (g). The first equation gives

(
3k − mω2

n

)
φtn + kL

2
φθn = 0 or φθn = −3k − mω2

n

kL/2
φtn (h)

Substituting for ω2
1 = 2.536k/m and ω2

2 = 9.464k/m in Eq. (h) gives

L

2
φθ1 = −0.464φt1

L

2
φθ2 = 6.464φt2
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If φt1 = 1, then φθ1 = −0.928/L , and if φt2 = −1, then φθ2 = −12.928/L . In summary,
the two modes plotted in Fig. E10.1d are

φ1 =
{

1
−0.928/L

}
φ2 =

{ −1
−12.928/L

}
(i)

(c) The same natural frequencies were obtained using the two sets of DOFs. The mode
shapes are given by Eqs. (e) and (i) for the two sets of DOFs. These two sets of results
are plotted in Fig. E10.1c and d and can be shown to be equivalent on a graphical basis.
Alternatively, the equivalence can be demonstrated by using the coordinate transformation
from one set of DOFs to the other. The displacements u = 〈u1 u2〉T are related to the
second set of DOFs, ū = 〈ut uθ 〉T by

{
u1
u2

}
=
[

1 −L/2
1 L/2

]{
ut

uθ

}
or u = aū ( j)

The displacements ū in the first two modes are given by Eq. (i). Substituting the first mode
in Eq. ( j) leads to u = 〈1.464 0.536〉T . Normalizing the vector yields u = 〈1 0.366〉T ,
which is identical to φ1 of Eq. (e). Similarly, substituting the second mode from Eq. (i) in
Eq. ( j) gives u = 〈1 −1.366〉, which is identical to φ2 of Eq. (e).

Example 10.2

Determine the natural frequencies and modes of vibration of the system shown in Fig. E10.2a
and defined in Example 9.5. Show that the modes satisfy the orthogonality properties.

(a)

u2 u1

mL/2 mL/4

EI

L/2 L/2

(b)

0.3274

1

ω1 = 3.15623
EI

mL4

(c)

−1.5274

1

ω2 = 16.2580
EI

mL4

Figure E10.2
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Solution The stiffness and mass matrices were determined in Example 9.5 with reference to
the translational DOFs u1 and u2:

m =
[

mL/4
mL/2

]
k = 48E I

7L3

[
2 −5
−5 16

]
Then

k− ω2m = 48E I

7L3

[
2− λ −5
−5 16− 2λ

]
(a)

where

λ = 7mL4

192E I
ω2 (b)

Substituting Eq. (a) in (10.2.6) gives the frequency equation

2λ2 − 20λ+ 7 = 0

which has two solutions: λ1 = 0.36319 and λ2 = 9.6368. The natural frequencies corre-
sponding to the two values of λ are obtained from Eq. (b)†:

ω1 = 3.15623

√
E I

mL4
ω2 = 16.2580

√
E I

mL4
(c)

The natural modes are determined from Eq. (10.2.5) following the procedure shown in Exam-
ple 10.1 to obtain

φ1 =
{

1
0.3274

}
φ2 =

{
1
−1.5274

}
(d)

These natural modes are plotted in Fig. E10.2b and c.
With the modes known we compute the left side of Eq. (10.4.1):

φT
1 mφ2 = mL

4
〈1 0.3274〉

[
1

2

]{
1
−1.5274

}
= 0

φT
1 kφ2 = 48E I

7L3
〈1 0.3274〉

[
2 −5
−5 16

]{
1
−1.5274

}
= 0

This verifies that the natural modes computed for the system are orthogonal.

Example 10.3

Determine the natural frequencies and modes of vibration of the system shown in Fig. E10.3a
and defined in Example 9.6. Normalize the modes to have unit vertical deflection at the free
end.

Solution The stiffness and mass matrices were determined in Example 9.6 with reference to
DOFs u1 and u2:

m =
[

3m
m

]
k = 6E I

7L3

[
8 −3
−3 2

]

†Six significant digits are included so as to compare with the continuum model of a beam in Chapter 16.
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u1

u2

m2m

EI

EIL

L

(a)

1

2.097

(b) ω1 = 0.6987 EI
mL3

1

1.431

(c) ω2 = 1.874 EI
mL3

Figure E10.3

The frequency equation is Eq. (10.2.6), which, after substituting for m and k, evaluating the
determinant, and defining

λ = 7mL3

6E I
ω2 (a)

can be written as

3λ2 − 14λ+ 7 = 0

The two roots are λ1 = 0.5695 and λ2 = 4.0972. The natural frequencies corresponding to
the two values of λ are obtained from Eq. (a):

ω1 = 0.6987

√
E I

mL3
ω2 = 1.874

√
E I

mL3
(b)

The natural modes are determined from Eq. (10.2.5) following the procedure used in Exam-
ple 10.1 to obtain

φ1 =
{

1
2.097

}
φ2 =

{
1
−1.431

}
(c)

These modes are plotted in Fig. E10.3b and c.
In computing the natural modes the mode shape value for the first DOF had been arbi-

trarily set as unity. The resulting mode is normalized to unit value in DOF u2 by dividing φ1
in Eq. (c) by 2.097. Similarly, the second mode is normalized by dividing φ2 in Eq. (c) by
−1.431. Thus the normalized modes are

φ1 =
{

0.4769
1

}
φ2 =

{−0.6988
1

}
(d)

Example 10.4

Determine the natural frequencies and modes of the system shown in Fig. E10.4a and defined
in Example E9.1, a two-story frame idealized as a shear building. Normalize the modes so
that Mn = 1.

Solution The mass and stiffness matrices of the system, determined in Example 9.1, are

m =
[

2m
m

]
k =

[
3k −k
−k k

]
(a)
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2m

m
u2

u1

2k

k

h

h

(a)

φ

φ

21 = 1

11 = 1/2

First mode
ω1 = √ k/2m

(b)

22 = 1

12 = −1

Second mode
ω2 = √ 2k/m

(c)

φ

φ

Figure E10.4

where k = 24E Ic/h3. The frequency equation is Eq. (10.2.6), which, after substituting for m
and k and evaluating the determinant, can be written as

(2m2)ω4 + (−5km)ω2 + 2k2 = 0 (b)

The two roots are ω2
1 = k/2m and ω2

2 = 2k/m, and the two natural frequencies are

ω1 =
√

k

2m
ω2 =

√
2k

m
(c)

Substituting for k gives

ω1 = 3.464

√
E Ic

mh3
ω2 = 6.928

√
E Ic

mh3
(d)

The natural modes are determined from Eq. (10.2.5) following the procedure used in Exam-
ple 10.1 to obtain

φ1 =
{ 1

2
1

}
φ2 =

{−1
1

}
(e)

These natural modes are shown in Fig. E10.4b and c.
To normalize the first mode, M1 is calculated using Eq. (10.4.6), with φ1 given by

Eq. (e):

M1 = φT
1 mφ1 = m

〈
1
2 1

〉 [ 2
1

]{ 1
2
1

}
= 3

2
m

To make M1 = 1, divide φ1 of Eq. (e) by
√

3m/2 to obtain the normalized mode,

φ1 = 1√
6m

{
1
2

}
For this φ1 it can be verified that M1 = 1. The second mode can be normalized similarly.

Example 10.5

Determine the natural frequencies and modes of the system shown in Fig. E10.5a and defined
earlier in Example 9.9. The story height h = 3 m.
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2m

m
u2

u1

u3

u5

u4

u6

2EI

EI

2EI

EI

2EI

EI

•
••

•

h

h

(a)

φ21 = 1

φ11 = 0.3871

First mode

1 = 2.198√EI/mh3

(b)

φ22 = 1

φ12 = −1.292

Second mode

2= 5.850√EI/mh3

(c)
ω ω

Figure E10.5

Solution With reference to the lateral displacements u1 and u2 of the two floors as the two
DOFs, the mass matrix and the condensed stiffness matrix were determined in Example 9.9:

mt t = m
[

2
1

]
k̂t t = E I

h3

[
54.88 −17.51
−17.51 11.61

]
(a)

The frequency equation is

det(k̂t t − ω2mt t ) = 0 (b)

Substituting for mt t and k̂t t , evaluating the determinant, and obtaining the two roots just as in
Example 10.4 leads to

ω1 = 2.198

√
E I

mh3
ω2 = 5.850

√
E I

mh3
(c)

It is of interest to compare these frequencies for a frame with flexible beams with those for the
frame with flexurally rigid beams determined in Example 10.4. It is clear that beam flexibility
has the effect of lowering the frequencies, consistent with intuition.

The natural modes are determined by solving

(k̂t t − ω2
nmt t )φn = 0 (d)

with ω1 and ω2 substituted successively from Eq. (c) to obtain

φ1 =
{

0.3871
1

}
φ2 =

{−1.292
1

}
(e)

These vectors define the lateral displacements of each floor. They are shown in Fig. E10.5b
and c together with the joint rotations. The joint rotations associated with the first mode are
determined by substituting ut = φ1 from Eq. (e) in Eq. (d) of Example 9.9:⎧⎪⎨

⎪⎩
u3
u4
u5
u6

⎫⎪⎬
⎪⎭ =

1

h

⎡
⎢⎣
−0.4426 −0.2459
−0.4426 −0.2459

0.9836 −0.7869
0.9836 −0.7869

⎤
⎥⎦{ 0.3871

1.0000

}
= 1

h

⎧⎪⎨
⎪⎩
−0.4172
−0.4172
−0.4061
−0.4061

⎫⎪⎬
⎪⎭ (f)
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Similarly, the joint rotations associated with the second mode are obtained by substituting
ut = φ2 from Eq. (e) in Eq. (d) of Example 9.9:⎧⎪⎨

⎪⎩
u3
u4
u5
u6

⎫⎪⎬
⎪⎭ =

1

h

⎧⎪⎨
⎪⎩

0.3258
0.3258
−2.0573
−2.0573

⎫⎪⎬
⎪⎭ (g)

Example 10.6

Figure 9.5.1 shows the plan view of a one-story building. The structure consists of a roof,
idealized as a rigid diaphragm, supported on three frames, A, B, and C , as shown. The roof
mass is 0.5 Mg/m2 and is uniformly distributed. The lateral stiffnesses of the frames are
ky = 1100 kN/m for frame A, and kx = 590 kN/m for frames B and C. The plan dimensions
are b = 12 m and d = 8 m, the eccentricity is e = 0.5 m, and the height of the building is
4 m. Determine the natural periods and modes of vibration of the structure.

Solution

Mass of roof slab: m = 12× 8× 0.5 = 48 Mg

Moment of inertia: IO = m(b2 + d2)

12
= 832 Mg-m2

Lateral motion of the roof diaphragm in the x-direction is governed by Eq. (9.5.18):

müx + 2kx ux = 0 (a)

Thus the natural frequency of x-lateral vibration is

ωx =
√

2kx

m
=
√

2(590)

48
= 4.958 rad/s

The corresponding natural mode is shown in Fig. E10.6c.
The coupled lateral (uy)-torsional (uθ ) motion of the roof diaphragm is governed by

Eq. (9.5.19). Substituting for m and IO gives

m =
[

48
832

]
From Eqs. (9.5.16) and (9.5.19) the stiffness matrix has four elements:

kyy = ky = 1100 kN/m

kyθ = kθ y = eky = 0.5× 1100 = 550 kN

kθθ = e2ky + d2

2
kx = 19155 kN-m

Hence,

k =
[

1100 550
550 19155

]
With k and m known, the eigenvalue problem for this two-DOF system is solved by standard
procedures with the modes normalized so that Mn = 1, to obtain:

Natural frequencies (rad/s): ω1 = 4.496;ω2 = 5.072

Natural modes: φ1 =
{−0.1030

0.0243

}
;φ2 =

{−0.1011
−0.0247

}
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These mode shapes are plotted in Fig. E10.6a and b. The motion of the structure in each
mode consists of translation of the rigid diaphragm coupled with torsion about the vertical
axis through the center of mass.

0.1030 0.0243

ω1 = 4.496 rad/s
(a) First mode

ω2 = 5.072 rad/s
(b) Second mode

0.1011
0.0247

ωx = 4.958 rad/s
(c) Third mode

1

Figure E10.6

Example 10.7

Consider a special case of the system of Example 10.6 in which frame A is located at the
center of mass (i.e., e = 0). Determine the natural frequencies and modes of this system.

Solution Equation (9.5.20) specialized for free vibration of this system gives three equations
of motion:

müx + 2kx ux = 0 müy + kyuy = 0 IO üθ + d2

2
kx uθ = 0 (a)

The first equation of motion indicates that translational motion in the x-direction would occur
at the natural frequency

ωx =
√

2kx

m
=
√

2(590)

(48)
= 4.958 rad/s

This motion is independent of lateral motion uy or torsional motion uθ (Fig. E10.7c). The
second equation of motion indicates that translational motion in the y-direction would occur
at the natural frequency

ωy =
√

ky

m
=
√

1100

48
= 4.787 rad/s

This motion is independent of the lateral motion ux or torsional motion uθ (Fig. E10.7b).
The third equation of motion indicates that torsional motion would occur at the natural
frequency

ωθ =
√

d2kx

2IO
=
√
(8)2(590)

2(832)
= 4.764 rad/s



420 Free Vibration Chap. 10

1

ωθ = 4.764 rad/s
(a) First mode

ωy = 4.787 rad/s
(b) Second mode

1

ωx = 4.958 rad/s
(c) Third mode

1

Figure E10.7

The roof diaphragm would rotate about the vertical axis through its center of mass without
any translation of this point in the x or y directions (Fig. E10.7a).

Observe that the natural frequencies ω1 and ω2 of the unsymmetric-plan system (Ex-
ample 10.6) are different from and more separated than the natural frequencies ωy and ωθ of
the symmetric-plan system (Example 10.7).

10.7 MODAL EXPANSION OF DISPLACEMENTS

Any set of N independent vectors can be used as a basis for representing any other vector
of order N . In the following sections the natural modes are used as such a basis. Thus, a
modal expansion of any displacement vector u has the form

u =
N∑

r=1

φr qr = Φq (10.7.1)

where qr are scalar multipliers called modal coordinates or normal coordinates and q =
〈 q1 q2 · · · qn 〉T . When the φr are known, for a given u it is possible to evaluate the
qr by multiplying both sides of Eq. (10.7.1) by φT

n m:

φT
n mu =

N∑
r=1

(φT
n mφr )qr

Because of the orthogonality relation of Eq. (10.4.1b), all terms in the summation above
vanish except the r = n term; thus

φT
n mu = (φT

n mφn)qn

The matrix products on both sides of this equation are scalars. Therefore,

qn = φT
n mu

φT
n mφn

= φ
T
n mu
Mn

(10.7.2)
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The modal expansion of the displacement vector u, Eq. (10.7.1), is employed in Sec-
tion 10.8 to obtain solutions for the free vibration response of undamped systems. It also
plays a central role in the analysis of forced vibration response and earthquake response of
MDF systems (Chapters 12 and 13).

Example 10.8

For the two-story shear frame of Example 10.4, determine the modal expansion of the dis-
placement vector u = 〈1 1〉T .

Solution The displacement u is substituted in Eq. (10.7.2) together with φ1 = 〈 12 1〉T and
φ2 = 〈−1 1〉T , from Example 10.4, to obtain

q1 =
〈
1
2 1

〉 [ 2m
m

]{
1
1

}
〈
1
2 1

〉 [ 2m
m

]{ 1
2
1

} = 2m

3m/2
= 4

3

q2 =
〈−1 1〉

[
2m

m

]{
1
1

}
〈−1 1〉

[
2m

m

]{−1
1

} = −m

3m
= −1

3

Substituting qn in Eq. (10.7.1) gives the desired modal expansion, which is shown in Fig. E10.8.

= +

= +

1

1

u

4/3

2/3

(4/3)φ1

1/3

−1/3

(−1/3)φ2

Figure E10.8

PART B: FREE VIBRATION RESPONSE

10.8 SOLUTION OF FREE VIBRATION EQUATIONS: UNDAMPED
SYSTEMS

We now return to the problem posed by Eqs. (10.1.1) and (10.1.2) and find its solution.
For the example structure of Fig. 10.1.1a, such a solution was shown in Fig. 10.1.1d. The
differential equation (10.1.1) to be solved had led to the matrix eigenvalue problem of
Eq. (10.2.4). Assuming that the eigenvalue problem has been solved for the natural fre-
quencies and modes, the general solution of Eq. (10.1.1) is given by a superposition of the
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response in individual modes given by Eq. (10.2.3). Thus

u(t) =
N∑

n=1

φn(An cosωnt + Bn sinωnt) (10.8.1)

where An and Bn are 2N constants of integration. To determine these constants, we will
also need the equation for the velocity vector, which is

u̇(t) =
N∑

n=1

φnωn(−An sinωnt + Bn cosωnt) (10.8.2)

Setting t = 0 in Eqs. (10.8.1) and (10.8.2) gives

u(0) =
N∑

n=1

φn An u̇(0) =
N∑

n=1

φnωn Bn (10.8.3)

With the initial displacements u(0) and initial velocities u̇(0) known, each of these two
equation sets represents N algebraic equations in the unknowns An and Bn , respectively.
Simultaneous solution of these equations is not necessary because they can be interpreted
as a modal expansion of the vectors u(0) and u̇(0). Following Eq. (10.7.1), we can
write

u(0) =
N∑

n=1

φnqn(0) u̇(0) =
N∑

n=1

φnq̇n(0) (10.8.4)

where, analogous to Eq. (10.7.2), qn(0) and q̇n(0) are given by

qn(0) = φ
T
n mu(0)

Mn
q̇n(0) = φ

T
n mu̇(0)

Mn
(10.8.5)

Equations (10.8.3) and (10.8.4) are equivalent, implying that An = qn(0) and Bn =
q̇n(0)/ωn . Substituting these in Eq. (10.8.1) gives

u(t) =
N∑

n=1

φn

[
qn(0) cosωnt + q̇n(0)

ωn
sinωnt

]
(10.8.6)

or, alternatively,

u(t) =
N∑

n=1

φnqn(t) (10.8.7)

where

qn(t) = qn(0) cosωnt + q̇n(0)

ωn
sinωnt (10.8.8)

is the time variation of modal coordinates, which is analogous to the free vibration response
of SDF systems [Eq. (2.1.3)]. Equation (10.8.6) provides the displacement u as a function
of time due to initial displacement u(0) and velocity u̇(0); the u(t) is independent of how
the modes are normalized, although qn(t) are not. Assuming that the natural frequencies
ωn and modes φn are available, the right side of Eq. (10.8.6) is known with qn(0) and q̇n(0)
defined by Eq. (10.8.5).
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Example 10.9

Determine the free vibration response of the two-story shear frame of Example 10.4 due to
initial displacement u(0) = 〈 1

2 1 〉T .

Solution The initial displacement and velocity vectors are

u(0) =
{ 1

2
1

}
u̇(0) =

{
0
0

}
For the given u(0), qn(0) are calculated following the procedure of Example 10.8 and using
φn from Eq. (e) of Example 10.4; the results are q1(0) = 1 and q2(0) = 0. Because the initial
velocity u̇(0) is zero, q̇1(0) = q̇2(0) = 0. Inserting qn(0) and q̇n(0) in Eq. (10.8.8) gives the
solution for modal coordinates

q1(t) = 1 cosω1t q2(t) = 0

Substituting qn(t) and φn in Eq. (10.8.7) leads to{
u1(t)
u2(t)

}
=
{ 1

2
1

}
cosω1t

where ω1 =
√

k/2m from Example 10.4. These solutions for q1(t), u1(t), and u2(t) had been
plotted in Fig. 10.1.2c and d. Note that q2(t) = 0 implies that the second mode has no contri-
bution to the response, which is all due to the first mode. Such is the case because the initial
displacement is proportional to the first mode and hence orthogonal to the second mode.

Example 10.10

Determine the free vibration response of the two-story shear frame of Example 10.4 due to
initial displacement u(0) = 〈−1 1〉T .

Solution The calculations proceed as in Example 10.9, leading to q1(0) = 0, q2(0) = 1, and
q̇1(0) = q̇2(0) = 0. Inserting these in Eq. (10.8.8) gives the solutions for modal coordinates:

q1(t) = 0 q2(t) = 1 cosω2t

Substituting qn(t) and φn in Eq. (10.8.7) leads to{
u1(t)
u2(t)

}
=
{−1

1

}
cos ω2t

where ω2 =
√

2k/m from Example 10.4. These solutions for q2(t), u1(t), and u2(t) had
been plotted in Fig. 10.1.3c and d. Note that q1(t) = 0 implies that the first mode has no
contribution to the response and the response is due entirely to the second mode. Such is the
case because the initial displacement is proportional to the second mode and hence orthogonal
to the first mode.

Example 10.11

Determine the free vibration response of the two-story shear frame of Example 10.4 due to
initial displacements u(0) = 〈− 1

2 2 〉T .

Solution Following Example 10.8, qn(0) and q̇n(0) are evaluated: q1(0) = 1, q2(0) = 1,
and q̇1(0) = q̇2(0) = 0. Substituting these in Eq. (10.8.8) gives the solution for modal
coordinates

q1(t) = 1 cosω1t q2(t) = 1 cosω2t
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Substituting qn(t) and φn in Eq. (10.8.7) leads to{
u1(t)
u2(t)

}
=
{ 1

2
1

}
cosω1t +

{−1
1

}
cosω2t

These solutions for qn(t) and uj (t) had been plotted in Fig. 10.1.1c and d. Observe that both
natural modes contribute to the response due to these initial displacements.

10.9 SYSTEMS WITH DAMPING

When damping is included, the free vibration response of the system is governed by
Eq. (9.2.12) with p(t) = 0:

mü+ cu̇+ ku = 0 (10.9.1)

It is desired to find the solution u(t) of Eq. (10.9.1) that satisfies the initial conditions

u = u(0) u̇ = u̇(0) (10.9.2)

at t = 0. Procedures to obtain the desired solution differ depending on the form of damp-
ing: classical or nonclassical; these terms are defined next.

If the damping matrix of a linear system satisfies the identity

cm−1k = km−1c (10.9.3)

all the natural modes of vibration are real-valued and identical to those of the associated un-
damped system; they were determined by solving the real eigenvalue problem, Eq. (10.2.4).
Such systems are said to possess classical damping because they have classical natural
modes, defined in Section 10.2.

To state an important property of classically damped systems, we express the dis-
placement u in terms of the natural modes of the associated undamped system; thus we
substitute Eq. (10.7.1) in Eq. (10.9.1):

mΦq̈+ cΦq̇+ kΦq = 0
Premultiplying by ΦT gives

Mq̈+ Cq̇+Kq = 0 (10.9.4)

where the diagonal matrices M and K were defined in Eq. (10.4.5) and

C = ΦT cΦ (10.9.5)

For classically damped systems, the square matrix C is diagonal. Then, Eq. (10.9.4)
represents N uncoupled differential equations in modal coordinates qn , and classical modal
analysis is applicable to such systems. Such a procedure to solve Eq. (10.9.1) is presented
in Section 10.10.

A linear system is said to possess nonclassical damping if its damping matrix does
not satisfy Eq. (10.9.3). For such systems, the natural modes of vibration are not real-
valued, and the square matrix C of Eq. (10.9.5) is no longer diagonal, thus they are not
amenable to classical modal analysis. Analytical solutions of Eq. (10.9.1) for nonclas-
sically damped systems are presented in Chapter 14, and numerical solution methods in
Chapter 16.
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10.10 SOLUTION OF FREE VIBRATION EQUATIONS: CLASSICALLY
DAMPED SYSTEMS

For classically damped systems, each of the N uncoupled differential equations in
Eq. (10.9.4) is of the form

Mnq̈n + Cnq̇n + Knqn = 0 (10.10.1)

where Mn and Kn were defined in Eq. (10.4.6) and

Cn = φT
n cφn (10.10.2)

Equation (10.10.1) is of the same form as Eq. (2.2.1a) for an SDF system with damping.
Thus the damping ratio can be defined for each mode in a manner analogous to Eq. (2.2.2)
for an SDF system:

ζn = Cn

2Mnωn
(10.10.3)

Dividing Eq. (10.10.1) by Mn gives

q̈n + 2ζnωnq̇n + ω2
nqn = 0 (10.10.4)

This equation is of the same form as Eq. (2.2.1b) governing the free vibration of an
SDF system with damping for which the solution is Eq. (2.2.4). Adapting this result, the
solution for Eq. (10.10.4) is

qn(t) = e−ζnωn t

[
qn(0) cosωnDt + q̇n(0)+ ζnωnqn(0)

ωnD
sinωnDt

]
(10.10.5)

where the nth natural frequency of the system with damping is

ωnD = ωn

√
1− ζ 2

n (10.10.6)

and ωn is the nth natural frequency of the associated undamped system. The displace-
ment response of the system is then obtained by substituting Eq. (10.10.5) for qn(t) in
Eq. (10.8.7):

u(t) =
N∑

n=1

φne−ζnωn t

[
qn(0) cosωnDt + q̇n(0)+ ζnωnqn(0)

ωnD
sinωnDt

]
(10.10.7)

This is the solution of the free vibration problem for classically damped MDF systems.
It provides the displacement u as a function of time due to initial displacement u(0) and
velocity u̇(0). Assuming that the natural frequencies ωn and modes φn of the system with-
out damping are available together with the modal damping ratios ζn , the right side of
Eq. (10.10.7) is known with qn(0) and q̇n(0) defined by Eq. (10.8.5).

Damping influences the natural frequencies and periods of vibration of an MDF sys-
tem according to Eq. (10.10.6), which is of the same form as Eq. (2.2.5) for an SDF system.
Therefore, the effect of damping on the natural frequencies and periods of an MDF system
is small for damping ratios ζn below 20% (Fig. 2.2.3), a range that includes most practical
structures.

In a classically damped MDF system undergoing free vibration in its nth natural
mode, the displacement amplitude at any DOF decreases with each vibration cycle. The



426 Free Vibration Chap. 10

rate of decay depends on the damping ratio ζn in that mode, in a manner similar to SDF
systems. This similarity is apparent by comparing Eq. (10.10.5) with Eq. (2.2.4). Thus
the ratio of two response peaks separated by j cycles of vibration is related to the damping
ratio by Eq. (2.2.12) with appropriate change in notation.

Consequently, the damping ratio in a natural mode of an MDF system can be deter-
mined, in principle, from a free vibration test following the procedure presented in Sec-
tion 2.2.4 for SDF systems. In such a test the structure would be deformed by pulling on it
with a cable that is then suddenly released, thus causing the structure to undergo free vibra-
tion about its static equilibrium position. A difficulty in such tests is to apply the pull and
release in such a way that the structure will vibrate in only one of its natural modes. For
this reason this test procedure is not an effective means to determine damping except pos-
sibly for the fundamental mode. After the response contributions of the higher modes have
damped out, the free vibration is essentially in the fundamental mode, and the damping
ratio for this mode can be computed from the decay rate of vibration amplitudes.

Example 10.12

Determine the free vibration response of the two-story shear frame of Fig. E10.12.1a with
c = √km/200 due to two sets of initial displacement (1) u(0) = 〈 1

2 1 〉T and (2) u(0) =
〈−1 1〉T .

Solution
Part 1 The qn(0) corresponding to this u(0)were determined in Example 10.9: q1(0) =

1 and q2(0) = 0; q̇n(0) = 0. The differential equations governing qn(t) are given by
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Figure E10.12.1 Free vibration of a classically damped system in the first natural mode of vibration:
(a) two-story frame; (b) deflected shapes at time instants a, b, c, d, and e; (c) modal coordinate q1(t);
(d) displacement history.
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Eq. (10.10.4). Because q2(0) and q̇2(0) are both zero, q2(t) = 0 for all times. The response
is given by the n = 1 term in Eq. (10.10.7). Substituting the aforementioned values for q1(0),

q̇1(0), and φ1 =
〈

1
2 1

〉T
gives

{
u1(t)
u2(t)

}
=
{ 1

2
1

}
e−ζ1ω1t

⎛
⎝cosω1Dt + ζ1√

1− ζ 2
1

sinω1Dt

⎞
⎠

where ω1 =
√

k/2m from Example 10.4 and ζ1 = 0.05 from Eq. (10.10.3).
Part 2 The qn(0) corresponding to this u(0) were determined in Example 10.10:

q1(0) = 0 and q2(0) = 1; q̇n(0) = 0. The differential equations governing qn(t) are given by
Eq. (10.10.4). Because q1(0) and q̇1(0) are both zero, q1(t) = 0 at all times. The response is
given by the n = 2 term in Eq. (10.10.7). Substituting for q2(0), q̇2(0), and φ2 = 〈−1 1〉T
gives {

u1(t)
u2(t)

}
=
{−1

1

}
e−ζ2ω2t

⎛
⎝cosω2Dt + ζ2√

1− ζ 2
2

sinω2Dt

⎞
⎠

where ω2 =
√

2k/m from Example 10.4 and ζ2 = 0.10 from Eq. (10.10.3).
Observations The results for free vibration due to initial displacements u(0) = φ1 are

presented in Fig. E10.12.1, and for u(0) = φ2 in Fig. E10.12.2, respectively. The solutions
for qn(t) are presented in part (c) of these figures; the floor displacements uj (t) in part (d);
and the deflected shapes at selected time instants are plotted in part (b) of these figures.
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Figure E10.12.2 Free vibration of a classically damped system in the second natural mode of vibra-
tion: (a) two-story frame; (b) deflected shapes at time instants a, b, c, d, and e; (c) modal coordinate
q2(t); (d) displacement history.
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These results permit the following observations: First, if the initial displacement is
proportional to the nth mode, the response is due entirely to that mode; the other mode has no
contribution. Second, the initial deflected shape is maintained during free vibration, just as in
the case of undamped systems (Figs. 10.1.2 and 10.1.3). Third, the system oscillates at the
frequency ωnD with all floors (or DOFs) vibrating in the same phase, passing through their
zero, maximum, or minimum displacement positions at the same instant of time. Thus, the
system possesses classical natural modes of vibration, defined first in Section 10.2, as expected
of classically damped systems. Although based on results for a system with two DOFs, these
observations are valid for classically damped systems with any number of DOFs.

Example 10.13

Determine the free vibration response of the two-story shear frame of Example 10.12 due to

initial displacements u(0) = 〈− 1
2 2
〉T

.

Solution The qn(0) corresponding to this u(0) were determined in Example 10.11:
qn(0) = 1 and qn(0) = 1; q̇n(0) = 0. Substituting them in Eq. (10.10.5) gives the so-
lution for modal coordinates:

q1(t) = e−ζ1ω1t

⎡
⎣cosω1Dt + ζ1√

1− ζ 2
1

sinω1Dt

⎤
⎦ (a)

q2(t) = e−ζ2ω2t

⎡
⎣cosω2Dt + ζ2√

1− ζ 2
2

sinω2Dt

⎤
⎦ (b)

where, as determined earlier, ω1 =
√

k/2m andω2 =
√

2k/m; ωnD are given by Eq. (10.10.6),
and ζ1 = 0.05 and ζ2 = 0.10 from Eq. (10.10.3).

Substituting qn (t) and φ n in Eq. (10.8.7) leads to

{
u1 (t)
u2 (t)

}
=
{

1/2
1

}
e−ζ1ω1t

⎡
⎣cosω1Dt + ζ1√

1− ζ 2
1

sinω1Dt

⎤
⎦

+
{−1

1

}
e−ζ2ω2t

⎡
⎣cosω2Dt + ζ2√

1− ζ 2
2

sinω2Dt

⎤
⎦

(c)

PART C: COMPUTATION OF VIBRATION PROPERTIES

10.11 SOLUTION METHODS FOR THE EIGENVALUE PROBLEM

Finding the vibration properties—natural frequencies and modes—of a structure requires
solution of the matrix eigenvalue problem of Eq. (10.2.4), which is repeated for
convenience:

kφ = λmφ (10.11.1)
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As mentioned earlier, the eigenvalues λn ≡ ω2
n are the roots of the characteristic equation

(10.2.6):

p(λ) = det[k− λm] = 0 (10.11.2)

where p(λ) is a polynomial of order N , the number of DOFs of the system. This is
not a practical method, especially for large systems (i.e., a large number of DOFs),
because evaluation of the N coefficients of the polynomial requires much computational
effort and the roots of p(λ) are sensitive to numerical round-off errors in the
coefficients.

Finding reliable and efficient methods to solve the eigenvalue problem has been the
subject of much research, especially since development of the digital computer. Most of
the methods available can be classified into three broad categories depending on which
basic property is used as the basis of the solution algorithm: (1) Vector iteration methods
work directly with the property of Eq. (10.11.1). (2) Transformation methods use the or-
thogonality property of modes, Eqs. (10.4.1). (3) Polynomial iteration techniques work on
the fact that p(λn) = 0. A number of solution algorithms have been developed within each
of the foregoing three categories. Combination of two or more methods that belong to the
same or to different categories have been developed to deal with large systems. Two ex-
amples of such combined procedures are the determinant search method and the subspace
iteration method.

All solution methods for eigenvalue problems must be iterative in nature because,
basically, solving the eigenvalue problem is equivalent to finding the roots of the poly-
nomial p(λ). No explicit formulas are available for these roots when N is larger than 4,
thus requiring an iterative solution. To find an eigenpair (λn,φn), only one of them is
calculated by iteration; the other can be obtained without further iteration. For example,
if λn is obtained by iteration, then φn can be evaluated by solving the algebraic equations
(k − λnm)φn = 0. On the other hand, if φn is determined by iteration, λn can be ob-
tained by evaluating Rayleigh’s quotient (Section 10.12). Is it most economical to solve
first for λn and then calculate φn (or vice versa), or to solve for both simultaneously?
The answer to this question and hence the choice among the three procedure categories
mentioned above depends on the properties of the mass and stiffness matrices—size N ,
bandwidth of k, and whether m is diagonal or banded—and on the number of eigenpairs
required.

In structural engineering we are usually analyzing systems with narrowly banded k
and diagonal or narrowly banded m subjected to excitations that excite primarily the lower
few (relative to N ) natural modes of vibration. Inverse vector iteration methods are usually
effective (i.e., reliable in obtaining accurate solutions and computationally efficient) for
such situations, and this presentation is restricted to such methods. Only the basic ideas
of vector iteration are included, without getting into subspace iteration or the Lanczos
method. Similarly, transformation methods and polynomial iteration techniques are ex-
cluded. In short, this is a limited treatment of solution methods for the eigenvalue problem
arising in structural dynamics. This is sufficient for our purposes, but more comprehensive
treatments are available in other books.
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10.12 RAYLEIGH’S QUOTIENT

In this section Rayleigh’s quotient is presented because it is needed in vector iteration
methods; its properties are also presented. If Eq. (10.11.1) is premultiplied by φT , the
following scalar equation is obtained:

φT kφ = λφT mφ

The positive definiteness of m guarantees that φT mφ is nonzero, so that it is permis-
sible to solve for the scalar λ:

λ = φT kφ
φT mφ

(10.12.1)

which obviously depends on the vector φ. This quotient is called Rayleigh’s quotient. It
may also be derived by equating the maximum value of kinetic energy to the maximum
value of potential energy under the assumption that the vibrating system is executing sim-
ple harmonic motion at frequency ω with the deflected shape given by φ (Section 8.5.3).

Rayleigh’s quotient has the following properties, presented without proof:

1. When φ is an eigenvector φn of Eq. (10.11.1), Rayleigh’s quotient is equal to the
corresponding eigenvalue λn .

2. If φ is an approximation to φn with an error that is a first-order infinitesimal,
Rayleigh’s quotient is an approximation to λn with an error which is a second-order
infinitesimal, i.e., Rayleigh’s quotient is stationary in the neighborhoods of the true
eigenvectors. The stationary value is actually a minimum in the neighborhood of the
first eigenvector and a maximum in the vicinity of the Nth eigenvector.

3. Rayleigh’s quotient is bounded between λ1 ≡ ω2
1 and λN ≡ ω2

N , the smallest and
largest eigenvalues, i.e., it provides an upper bound for ω2

1 and lower bound for ω2
N .

A common engineering application of Rayleigh’s quotient involves simply evalu-
ating Eq. (10.12.1) for a trial vector φ that is selected on the basis of physical insight
(Chapter 8). If the elements of an approximate eigenvector whose largest element is unity
are correct to s decimal places, Rayleigh’s quotient can be expected to be correct to about
2s decimal places. Several numerical procedures for solving eigenvalue problems make
use of the stationary property of Rayleigh’s quotient.

10.13 INVERSE VECTOR ITERATION METHOD

10.13.1 Basic Concept and Procedure

We restrict this presentation to systems with a stiffness matrix k that is positive definite,
whereas the mass matrix m may be a banded mass matrix, or it may be a diagonal matrix
with or without zero diagonal elements. The fact that vector iteration methods can han-
dle zero diagonal elements in the mass matrix implies that these methods can be applied
without requiring static condensation of the stiffness matrix (Section 9.3).

Our goal is to satisfy Eq. (10.11.1) by operating on it directly. We assume a trial
vector for φ, say x1, and evaluate the right-hand side of Eq. (10.11.1). This we can do
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except for the eigenvalue λ, which is unknown. Thus we drop λ, which is equivalent to
saying that we set λ = 1. Because eigenvectors can be determined only within a scale
factor, the choice of λ will not affect the final result. With λ = 1 the right-hand side of
Eq. (10.11.1) can be computed:

R1 = mx1 (10.13.1)

Since x1 was an arbitrary choice, in general kx1 �= R1. (If by coincidence we find that
kx1 = R1, the x1 chosen is an eigenvector.) We now set up an equilibrium equation

kx2 = R1 (10.13.2)

where x2 is the displacement vector corresponding to forces R1 and x2 �= x1. Since we
are using iteration to solve for an eigenvector, intuition may suggest that the solution of
x2 of Eq. (10.13.2), obtained after one cycle of iteration, may be a better approximation
to φ than was x1. This is indeed the case, as we shall demonstrate later, and by repeating
the iteration cycle, we obtain an increasingly better approximation to the eigenvector. A
corresponding value for the eigenvalue can be computed using Rayleigh’s quotient, and
the iteration can be terminated when two successive estimates of the eigenvalue are close
enough. As the number of iterations increases, xi+1 approaches φ1 and the eigenvalue
estimate approaches λ1.

Thus the procedure starts with the assumption of a starting iteration vector x1 and
consists of the following steps to be repeated for j = 1, 2, 3, . . . until convergence:

1. Determine x̄j+1 by solving the algebraic equations:

kx̄j+1 = mxj (10.13.3)

2. Obtain an estimate of the eigenvalue by evaluating Rayleigh’s quotient:

λ( j+1) = x̄T
j+1kx̄j+1

x̄T
j+1mx̄j+1

= x̄T
j+1mxj

x̄T
j+1mx̄j+1

(10.13.4)

3. Check convergence by comparing two successive values of λ:

| λ( j+1) − λ( j) |
λ( j+1)

≤ tolerance (10.13.5)

4. If the convergence criterion is not satisfied, normalize x̄j+1:

xj+1 = x̄j+1

(x̄T
j+1mx̄j+1)1/2

(10.13.6)

and go back to the first step and carry out another iteration using the next j .

5. Let l be the last iteration [i.e., the iteration that satisfies Eq. (10.13.5)]. Then

λ1
.= λ(l+1) φ1

.= x̄l+1

(x̄T
l+1mx̄l+1)1/2

(10.13.7)

The basic step in the iteration is the solution of Eq. (10.13.3)—a set of N algebraic
equations—which gives a better approximation to φ1. The calculation in Eq. (10.13.4)



432 Free Vibration Chap. 10

gives an approximation to the eigenvalue λ1 according to Rayleigh’s quotient. It is this ap-
proximation to λ1 that we use to determine convergence in the iteration. Equation (10.13.6)
simply assures that the new vector satisfies the mass orthonormality relation

xT
j+1mxj+1 = 1 (10.13.8)

Although normalizing of the new vector does not affect convergence, it is numerically
useful. If such normalizing is not included, the elements of the iteration vectors grow
(or decrease) in each step, and this may cause numerical problems. Normalizing keeps the
element values similar from one iteration to the next. The tolerance is selected depend-
ing on the accuracy desired. It should be 10−2s or smaller when λ1 is required to 2s-digit
accuracy. Then the eigenvector will be accurate to about s or more digits.

The inverse vector iteration algorithm can be organized a little differently for conve-
nience in computer implementation, but such computational issues are not included in this
presentation.

Example 10.14

The floor masses and story stiffnesses of the three-story frame, idealized as a shear frame, are
shown in Fig. E10.14, where m = 50,000 kg, and k = 325 kN/cm. Determine the fundamental
frequency ω1 and mode shape φ1 by inverse vector iteration.

m

m

m/2

k

7k/9

3k/9

u1

u2

u3

Figure E10.14

Solution The mass and stiffness matrices for the system are

m = m

[
1

1
1
2

]
k = k

9

[
16 −7 0
−7 10 −3

0 −3 3

]

where m = 0.5 kN-s2/cm and k = 325 kN/cm
The inverse iteration algorithm of Eqs. (10.13.3) to (10.13.7) is implemented starting

with an initial vector x1 = 〈1 1 1〉T leading to Table E10.14. The final result is ω1
.=√

144.44 = 12.019 and φ1
.= 〈0.4590 0.9178 1.3762〉T .

10.13.2 Convergence of Iteration

In the preceding section we have merely presented the inverse iteration scheme and stated
that it converges to the first eigenvector associated with the smallest eigenvalue. We now



Sec. 10.13 Inverse Vector Iteration Method 433

TABLE E10.14 INVERSE VECTOR ITERATION FOR THE
FIRST EIGENPAIR

Iteration xj x̄j+1 λ( j+1) xj+1

1

[
1
1
1

] [
0.0038
0.0068
0.0091

]
148.0413

[
0.5364
0.9503
1.2722

]

2

[
0.5364
0.9503
1.2722

] [
0.0033
0.0064
0.0093

]
144.60

[
0.4731
0.9278
1.3531

]

3

[
0.4731
0.9278
1.3531

] [
0.0032
0.0064
0.0095

]
144.45

[
0.4617
0.9201
1.3712

]

4

[
0.4617
0.9201
1.3712

] [
0.0032
0.0064
0.0095

]
144.44

[
0.4594
0.9182
1.3753

]

5

[
0.4594
0.9182
1.3753

] [
0.0032
0.0064
0.0095

]
144.44

[
0.4590
0.9178
1.3762

]

demonstrate this convergence because the proof is instructive, especially in suggesting how
to modify the procedure to achieve convergence to a higher eigenvector.

The modal expansion of vector x is [from Eqs. (10.7.1) and (10.7.2)]

x =
N∑

n=1

φnqn =
N∑

n=1

φn
φT

n mx
φT

n mφn
(10.13.9)

The nth term in this summation represents the nth modal component in x.
The first iteration cycle involves solving the equilibrium equations (10.13.3) with

j = 1: kx̄2 = mx1, where x1 is a trial vector. This solution can be expressed as x̄2 =
k−1mx1. Substituting the modal expansion of Eq. (10.13.9) for x1 gives

x̄2 =
N∑

n=1

k−1mφnqn (10.13.10)

By rewriting Eq. (10.11.1) for the nth eigenpair as k−1mφn = (1/λn)φn and substituting
it in Eq. (10.13.10), we get

x̄2 =
N∑

n=1

1

λn
φnqn = 1

λ1

N∑
n=1

λ1

λn
φnqn (10.13.11)

The second iteration cycle involves solving Eq. (10.13.3) with j = 2: x̄3 = k−1mx̄2,
wherein we have used the unnormalized vector x̄2 instead of the normalized vector x2. This
is acceptable for the present purpose because convergence is unaffected by normalization
and eigenvectors are arbitrary within a multiplicative factor. Following the derivation of
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Eqs. (10.13.10) and (10.13.11), it can be shown that

x̄3 = 1

λ2
1

N∑
n=1

(
λ1

λn

)2

φnqn (10.13.12)

Similarly, the vector x̄j+1 after j iteration cycles can be expressed as

x̄j+1 = 1

λ
j
1

N∑
n=1

(
λ1

λn

) j

φnqn (10.13.13)

Since λ1 < λn for n > 1, (λ1/λn)
j → 0 as j → ∞, and only the n = 1 term in

Eq. (10.13.13) remains significant, indicating that

x̄j+1 → 1

λ
j
1

φ1q1 as j →∞ (10.13.14)

Thus x̄j+1 converges to a vector proportional to φ1. Furthermore, the normalized vector
xj+1 of Eq. (10.13.6) converges to φ1, which is mass orthonormal.

The rate of convergence depends on λ1/λ2, the ratio that appears in the second term
in the summation of Eq. (10.13.13). The smaller this ratio is, the faster is the convergence;
this implies that convergence is very slow when λ2 is nearly equal to λ1. For such situations
the convergence rate can be improved by the procedures of Section 10.14.

If only the first natural modeφ1 and the associated natural frequency ω1 are required,
there is no need to proceed further. This is an advantage of the iteration method. It is un-
necessary to solve the complete eigenvalue problem to obtain one or two of the modes.

10.13.3 Evaluation of Higher Modes

To continue the solution after φ1 and λ1 have been determined, the starting vector is mod-
ified to make the iteration procedure converge to the second eigenvector. The necessary
modification is suggested by the proof presented in Section 10.13.2 to show that the it-
eration process converges to the first eigenvector. Observe that after each iteration cycle
the other modal components are reduced relative to the first modal component because its
eigenvalue λ1 is smaller than all other eigenvalues λn . The iteration process converges to
the first mode for the same reason because (λ1/λn)

j → 0 as j → ∞. In general, the
iteration procedure will converge to the mode with the lowest eigenvalue contained in a
trial vector x.

To make the iteration procedure converge to the second mode, a trial vector x should
therefore be chosen so that it does not contain any first-mode component [i.e., q1 should be
zero in Eq. (10.13.9)] and x is said to be orthogonal to φ1. It is not possible to start a priori
with such an x, however. We therefore start with an arbitrary x and make it orthogonal
to φ1 by the Gram–Schmidt orthogonalization process. This process can also be used to
orthogonalize a trial vector with respect to the first n eigenvectors that have already been
determined so that iteration on the purified trial vectors will converge to the (n+1)th mode,
the mode with the next eigenvalue in ascending sequence.

In principle, the Gram–Schmidt orthogonalization process, combined with the in-
verse iteration procedure, provides a tool for computing the second and higher eigenvalues
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and eigenvectors. This tool is not effective, however, as a general computer method for two
reasons. First, if x1 were made orthogonal to φ1 [i.e., q1 = 0 in Eq. (10.13.9)], theoreti-
cally the iteration will not converge to φ1 but to φ2 (or some other eigenvector—the one
with the next-higher eigenvalue which is contained in the modal expansion of x1). How-
ever, in practice this never occurs since the inevitable round-off errors in finite-precision
arithmetic continuously reintroduce small components of φ1, which the iteration process
magnifies. Second, convergence of the iteration process becomes progressively slower for
the higher modes. It is for these reasons that this method is not developed in this book.

10.14 VECTOR ITERATION WITH SHIFTS: PREFERRED
PROCEDURE

The inverse vector iteration procedure of Section 10.13, combined with the concept of
“shifting” the eigenvalue spectrum (or scale), provides an effective means to improve the
convergence rate of the iteration process and to make it converge to an eigenpair other than
(λ1,φ1). Thus this is the preferred method, as it provides a practical tool for computing as
many pairs of natural vibration frequencies and modes of a structure as desired.

10.14.1 Basic Concept and Procedure

The solutions of Eq. (10.11.1) are the eigenvalues λn and eigenvectors φn; the number of
such pairs equals N , the order of m and k. Figure 10.14.1a shows the eigenvalue spectrum
(i.e., a plot of λ1, λ2, . . . along the eigenvalue axis). Introducing a shift μ in the origin of
the eigenvalue axis (Fig. 10.14.1b) and defining λ̌ as the shifted eigenvalue measured from
the shifted origin gives λ = λ̌+ μ. Substituting this in Eq. (10.11.1) leads to

ǩφ = λ̌mφ (10.14.1)

(a) •
0 λ1 λ2 λ3 λ4 λ5

λ

(b) •
0 λ1

∨
λ2

∨
λ3

∨
λ4

∨
λ5

∨
λ
∨

μ

(c) •
μ

0λ1

∨
λ2

∨
λ3

∨
λ4

∨
λ5

∨
λ
∨

Figure 10.14.1 (a) Eigenvalue spectrum; (b) eigenvalue measured from a shifted origin;
(c) location of shift point for convergence to λ3.
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where

ǩ = k− μm λ̌ = λ− μ (10.14.2)

The eigenvectors of the two eigenvalue problems—original Eq. (10.11.1) and shifted
Eq. (10.14.1)—are the same. This is obvious because if a φ satisfies one equation, it
will also satisfy the other. However, the eigenvalues λ̌ of the shifted problem differ from
the eigenvalues λ of the original problem by the shift μ [Eq. (10.14.2)]. The spectrum of
the shifted eigenvalues λ̌ is also shown in Fig. 10.14.1b with the origin at μ. If the in-
verse vector iteration method of Section 10.13.1 were applied to the eigenvalue problem of
Eq. (10.14.1), it obviously will converge to the eigenvector having the smallest magnitude
of the shifted eigenvalue | λ̌n | (i.e., the eigenvector with original eigenvalue λn closest to
the shift value μ).

If μ were chosen as in Fig. 10.14.1b, the iteration will converge to the first eigen-
vector. The rate of convergence depends on the ratio λ̌1/λ̌2 = (λ1 − μ)/(λ2 − μ). The
convergence rate has improved because this ratio is smaller than the ratio λ1/λ2 for the
original eigenvalue problem. If μ were chosen between λn and λn+1, and μ is closer to λn

than λn+1, the iteration will converge to φn . On the other hand, if μ is closer to λn+1 than
λn , the iteration will converge to φn+1. Thus the “shifting” concept enables computation
of any pair (λn,φn). In particular, if μ were chosen as in Fig. 10.14.1c, the iteration will
converge to the third eigenvector.

Example 10.15

Determine the natural frequencies and modes of vibration of the system of Example 10.14 by
inverse vector iteration with shifting.

Solution Equation (10.14.1) with a selected shift μ is solved by inverse vector iteration.
Selecting the shiftμ1 = 100, ǩ is calculated from Eq. (10.14.2) and the inverse vector iteration

TABLE E10.15a VECTOR ITERATION WITH SHIFT: FIRST
EIGENPAIR

Iteration xj μ x̄j+1 λ( j+1) xj+1

1

[
1
1
1

]
100

[
0.0013
0.0216
0.0311

]
144.91

[
0.4866
0.9309
1.3392

]

2

[
0.4866
0.9309
1.3392

]
100

[
0.0104
0.0207
0.0309

]
144.45

[
0.4607
0.9191
1.3734

]

3

[
0.4607
0.9191
1.3734

]
100

[
0.0103
0.0207
0.0310

]
144.44

[
0.4590
0.9178
1.3762

]

4

[
0.4590
0.9178
1.3762

]
100

[
0.0103
0.0206
0.0310

]
144.44

[
0.4588
0.9177
1.3765

]
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TABLE E10.15b VECTOR ITERATION WITH SHIFT: SECOND EIGENPAIR

Iteration xj μ x̄j+1 λ( j+1) xj+1

1

[
1
1
1

]
600

[
0.0043
0.0027
−0.0130

]
604.08

[
0.5736
0.3641
−1.7541

]

2

[
0.5736
0.3641
−1.7541

]
600

[
0.0138
0.0140
−0.0260

]
649.38

[
0.7251
0.7373
−1.3643

]

3

[
0.7251
0.7373
−1.3643

]
600

[
0.0141
0.0141
−0.0284

]
649.99

[
0.7055
0.7055
−1.4195

]

4

[
0.7055
0.7055
−1.4195

]
600

[
0.0141
0.0141
−0.0283

]
650.00

[
0.7073
0.7074
−1.4136

]

algorithm of Eqs. (10.13.3) to (10.13.7) is implemented starting with an initial vector of x1 =
〈1 1 1〉T leading to Table E10.15a. The final result is ω1 =

√
144.44 = 12.019 and

φ1 = 〈0.4588 0.9177 1.3765〉T . This is obtained in one iteration cycle less than in the
iteration without shift in Example 10.14.

Starting with the shift μ1 = 600 and the same x1, the inverse iteration algorithm leads
to Table E10.15b. The final result is ω2 =

√
650.0 = 25.50 and φ2 = 〈0.7073 0.7075

− 1.4136〉T . Convergence is attained in four iteration cycles.
Starting with the shift μ1 = 1500 and the same x1, the inverse iteration algorithm

leads to Table E10.15c. The final result is ω3 =
√

1516.7 = 38.944 and φ3 = 〈1.1355
− 0.8111 0.3244〉T . Convergence is attained in three cycles.

TABLE E10.15c VECTOR ITERATION WITH SHIFT: THIRD EIGENPAIR

Iteration xj μ x̄j+1 λ( j+1) xj+1

1

[
1
1
1

]
1500

[
0.0159
−0.0128

0.0043

]
1512.2

[
1.0895
−0.8776

0.2924

]

2

[
1.0895
−0.8776

0.2924

]
1500

[
0.0681
−0.0485

0.0194

]
1516.7

[
1.1362
−0.8101

0.3245

]

3

[
1.1362
−0.8101

0.3245

]
1500

[
0.0681
−0.0487

0.0195

]
1516.7

[
1.1355
−0.8111

0.3244

]

10.14.2 Rayleigh’s Quotient Iteration

The inverse iteration method with shifts converges rapidly if a shift is chosen near enough
to the eigenvalue of interest. However, selection of an appropriate shift is difficult without
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knowledge of the eigenvalue. Many techniques have been developed to overcome this
difficulty; one of these is presented in this section.

The Rayleigh quotient calculated by Eq. (10.13.4) to estimate the eigenvalue pro-
vides an appropriate shift value, but it is not necessary to calculate and introduce a new
shift at each iteration cycle. If this is done, however, the resulting procedure is called
Rayleigh’s quotient iteration.

This procedure starts with the assumption of a starting iteration vector x1 and start-
ing shift λ(1) and consists of the following steps to be repeated for j = 1, 2, 3, . . . until
convergence:

1. Determine x̄j+1 by solving the algebraic equations:

[k− λ( j)m]x̄j+1 = mxj (10.14.3)

2. Obtain an estimate of the eigenvalue and the shift for the next iteration from

λ( j+1) = x̄T
j+1mxj

x̄T
j+1mx̄j+1

+ λ( j) (10.14.4)

3. Normalize x̄j+1:

xj+1 = x̄j+1

(x̄T
j+1mx̄j+1)1/2

(10.14.5)

This iteration converges to a particular eigenpair (λn , φn) depending on the starting vector
x1 and the initial shift λ(1). If x1 includes a strong contribution of the eigenvector φn and
λ(1) is close enough to λn , the iteration converges to the eigenpair (λn , φn). The rate of con-
vergence is faster than the standard vector iteration with shift described in Section 10.14.1,
but at the expense of additional computation because a new [k−λ( j)m] has to be factorized
in each iteration.

Example 10.16

Determine all three natural frequencies and modes of the system of Example 10.14 by inverse
vector iteration with the shift in each iteration cycle equal to Rayleigh’s quotient from the
previous cycle.

Solution The iteration procedure of Eqs. (10.14.3) to (10.14.5) is implemented with start-
ing shifts of μ1 = 100, μ2 = 600, and μ3 = 1500, leading to Tables E10.16a, E10.16b,
and E10.16c, respectively, where the final results are ω1 =

√
144.44 = 12.019 and φ1 =

〈0.4588 0.9177 1.3765〉T , ω2 =
√

650.0 = 25.495 andφ2 = 〈0.7071 0.7071 −1.4142〉T ,
and ω3 =

√
1516.67 = 38.944 and φ3 = 〈1.1355 − 0.8111 0.3244〉T .

Observe that convergence is faster when a new shift is used in each iteration cycle. Only
two cycles are required instead of four (Example 10.15) for the first mode, and three instead
of four for the second mode.
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TABLE E10.16a RAYLEIGH’S QUOTIENT ITERATION: FIRST EIGENPAIR

Iteration xj μ x̄j+1 λ( j+1) xj+1

1

[
1
1
1

]
100

[
0.0113
0.0216
0.0311

]
144.91

[
0.4866
0.9309
1.3392

]

2

[
0.4866
0.9309
1.3392

]
144.91

[−0.9930
−1.9861
−2.9793

]
144.44

[−0.4588
−0.9176
−1.3765

]

3

[−0.4588
−0.9176
−1.3765

]
144.44

[
1.3811× 106

2.7623× 106

4.1434× 106

]
144.44

[
0.4588
0.9177
1.3765

]

TABLE E10.16b RAYLEIGH’S QUOTIENT ITERATION: SECOND EIGENPAIR

Iteration xj μ x̄j+1 λ j+1 xj+1

1

[
1
1
1

]
600

[
0.0043
0.0027
−0.0130

]
604.08

[
0.5736
0.3641
−1.7541

]

2

[
0.5736
0.3641
−1.7541

]
604.08

[
0.0150
0.0152
−0.0284

]
649.49

[
0.7236
0.7346
−1.3688

]

3

[
0.7236
0.7346
−1.3688

]
649.49

[
1.3730
1.3729
−2.7461

]
650.00

[
0.7071
0.7071
−1.4143

]

4

[
0.7071
0.7071
−1.4143

]
650.00

[
1.3159× 106

1.3159× 106

−2.6317× 106

]
650.00

[
0.7071
0.7071
−1.4142

]

TABLE E10.16c RAYLEIGH’S QUOTIENT ITERATION: THIRD EIGENPAIR

Iteration xj μ x̄j+1 λ j+1 xj+1

1

[
1
1
1

]
1500

[
0.0159
−0.0128

0.0043

]
1512.24

[
1.0895
−0.8776

0.2924

]

2

[
1.0895
−0.8776

0.2924

]
1512.24

[
0.2564
−0.1831

0.0733

]
1516.67

[
1.1357
−0.8108

0.3245

]

3

[
1.1357
−0.8108

0.3245

]
1516.67

[
1.9742× 104

−1.4102× 104

0.5641× 104

]
1516.67

[
1.1355
−0.8111

0.3244

]
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Application to structural dynamics. In modal analysis of the dynamic re-
sponse of structures, we are interested in the lower J natural frequencies and modes (Chap-
ters 12 and 13); typically, J is much smaller than N , the number of degrees of freedom.
Although Rayleigh’s quotient iteration may appear to be an effective tool for the necessary
computation, it may not always work. For example, with the starting vector x1 and starting
shift λ(1) = 0, Eq. (10.14.4) may provide a value for Rayleigh’s quotient (which, according
to Section 10.12, is always higher than the first eigenvalue), which is also the next shift,
closer to the second eigenvalue than the first, resulting in the iteration converging to the
second mode. Thus it is necessary to supplement Rayleigh’s quotient iteration by another
technique to assure convergence to the lowest eigenpair (λ1, φ1). One possibility is to
use first the inverse iteration without shift, Eqs. (10.13.3) to (10.13.7), for a few cycles to
obtain an iteration vector that is a good approximation (but has not converged) to φ1, and
then start with Rayleigh’s quotient iteration.

Computer implementation of inverse vector iteration with shift should be reliable
and efficient. By reliability we mean that it should give the desired eigenpair. Efficiency
implies that with the fewest iterations and least computation, the method should provide
results to the desired degree of accuracy. Both of these requirements are essential; oth-
erwise, the computer program may skip a desired eigenpair, or the computations may be
unnecessarily time consuming. The issues related to reliability and efficiency of computer
methods for solving the eigenvalue problem are discussed further in other books.

10.15 TRANSFORMATION OF kφ = ω2mφ TO THE
STANDARD FORM

The standard eigenvalue problem Ay = λy arises in many situations in mathematics and
in applications to problems in the physical sciences and engineering. It has therefore at-
tracted much attention and many solution algorithms have been developed and are avail-
able in computer software libraries. These computer procedures could be used to solve the
structural dynamics eigenvalue problem, kφ = ω2mφ, provided that it can be transformed
to the standard form. Such a transformation is presented in this section.

We assume that m is positive definite; that is, it is either a diagonal matrix with
nonzero masses or a banded matrix as in a consistent mass formulation (Chapter 17). If m
is a diagonal matrix with zero mass in some degrees of freedom, these are first eliminated
by static condensation (Section 9.3). Positive definiteness of m implies that m−1 can be
calculated. Premultiplying the structural dynamics eigenvalue problem

kφ = ω2mφ (10.15.1)

by m−1 gives the standard eigenvalue problem:

Aφ = λφ (10.15.2)

where

A = m−1k λ = ω2 (10.15.3)

In general, A is not symmetric, although m and k are both symmetric matrices.
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Because the computational effort could be greatly reduced if A were symmetric, we
seek methods that yield a symmetric A. Consider that m = diag(mj ), a diagonal matrix
with elements mj j = mj , and define m1/2 = diag(m1/2

j ) and m−1/2 = diag(m−1/2
j ). Then

m and the identity matrix I can be expressed as

m = m1/2m1/2 I = m−1/2m1/2 (10.15.4)

Using Eq. (10.15.4), Eq. (10.15.1) can be rewritten as

km−1/2m1/2φ = ω2m1/2m1/2φ

Premultiplying both sides by m−1/2 leads to

m−1/2km−1/2m1/2φ = ω2m−1/2m1/2m1/2φ

Utilizing Eq. (10.15.4b) to simplify the right-hand side of the equation above gives

Ay = λy (10.15.5)

where
A = m−1/2km−1/2 y = m1/2φ λ = ω2 (10.15.6)

Equation (10.15.5) is the standard eigenvalue problem and A is now symmetric.
Thus if a computer program to solve Ay = λy were available, it could be utilized to

determine the natural frequencies ωn and modes φn of a system for which m and k were
known as follows:

1. Compute A from Eq. (10.15.6a).

2. Determine the eigenvalues λn and eigenvectors yn of A by solving Eq. (10.15.5).

3. Determine the natural frequencies and modes by

ωn =
√
λn φn = m−1/2yn (10.15.7)

The transformation of Eq. (10.15.6) can be generalized to situations where the mass
matrix is not diagonal but is banded like the stiffness matrix; such banding is typical of
finite element formulations (Chapter 17). Then, A is a full matrix, although k and m are
banded. This is a major computational disadvantage for large systems. For such situa-
tions the transformation of kφ = ω2mφ to Ay = λy may not be an effective approach,
and the inverse iteration method, which works directly with kφ = ω2mφ, may be more
efficient.
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P R O B L E M S

Parts A and B

10.1 Determine the natural vibration frequencies and modes of the system of Fig. P9.1 with k1 =
k and k2 = 2k in terms of the DOFs in the figure. Show that these results are equivalent to
those presented in Fig. E10.1.

10.2 For the system defined in Problem 9.2:
(a) Determine the natural vibration frequencies and modes; express the frequencies in terms
of m, E I , and L . Sketch the modes and identify the associated natural frequencies.
(b) Verify that the modes satisfy the orthogonality properties.
(c) Normalize each mode so that the modal mass Mn has unit value. Sketch these normal-
ized modes. Compare these modes with those obtained in part (a) and comment on the
differences.

10.3 Determine the free vibration response of the system of Problem 9.2 (and Problem 10.2) due
to each of the three sets of initial displacements: (a) u1(0) = 1, u2(0) = 0; (b) u1(0) =
1, u2(0) = 1; (c) u1(0) = 1, u2(0) = −1. Comment on the relative contribution of the
modes to the response in the three cases. Neglect damping in the system.

10.4 Repeat Problem 10.3(a) considering damping in the system. For each mode the damping
ratio is ζn = 5%.

10.5 For the system defined in Problem 9.4:
(a) Determine the natural vibration frequencies and modes. Express the frequencies in terms
of m, E I , and L , and sketch the modes.
(b) Determine the displacement response due to an initial velocity u̇2(0) imparted to the top
of the system.

10.6 For the two-story shear building shown in Problem 9.5:
(a) Determine the natural vibration frequencies and modes; express the frequencies in terms
of m, E I , and h.
(b) Verify that the modes satisfy the orthogonality properties.
(c) Normalize each mode so that the roof displacement is unity. Sketch the modes and
identify the associated natural frequencies.
(d) Normalize each mode so that the modal mass Mn has unit value. Compare these modes
with those obtained in part (c) and comment on the differences.

10.7 The structure of Problem 9.5 is modified so that the columns are hinged at the base. Deter-
mine the natural vibration frequencies and modes of the modified system, and compare them
with the vibration properties of the original structure determined in Problem 10.6. Comment
on the effect of the column support condition on the vibration properties.

10.8 Determine the free vibration response of the structure of Problem 10.6 (and Problem 9.5)
if it is displaced as shown in Fig. P10.8a and b and released. Comment on the relative
contributions of the two vibration modes to the response that was produced by the two initial
displacements. Neglect damping.
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Rigid beams

m

m/2

EIEI

1 cm

2 cm

(a)

–1 cm

1 cm

(b) Figure P10.8

10.9 Repeat Problem 10.8 for the initial displacement of Fig. P10.8a, assuming that the damping
ratio for each mode is 5%.

∗10.10 Determine the natural vibration frequencies and modes of the system defined in Problem 9.6.
Express the frequencies in terms of m, E I , and h and the joint rotations in terms of h.
Normalize each mode to unit displacement at the roof and sketch it, identifying all DOFs.

10.11–
10.12

For the three-story shear buildings shown in Figs. P9.7 and P9.8:
(a) Determine the natural vibration frequencies and modes; express the frequencies in terms
of m, E I , and h. Sketch the modes and identify the associated natural frequencies.
(b) Verify that the modes satisfy the orthogonality properties.
(c) Normalize each mode so that the modal mass Mn has unit value. Sketch these normal-
ized modes. Compare these modes with those obtained in part (a) and comment on the
differences.

10.13–
10.14

The structures of Figs. P9.7 and P9.8 are modified so that the columns are hinged at the base.
Determine the natural vibration frequencies and modes of the modified system, and compare
them with the vibration properties of the original structures determined in Problems 10.11
and 10.12. Comment on the effect of the column support condition on the vibration proper-
ties.

10.15–
10.16

Determine the free vibration response of the structures of Problems 10.11 and 10.12 (and
Problems 9.7 and 9.8) if they are displaced as shown in Fig. P10.15–P10.16a, b, and c and
released. Plot floor displacements versus t/T1 and comment on the relative contributions
of the three vibration modes to the response that was produced by each of the three initial
displacements. Neglect damping.

Rigid beams

m

m

m/2

1 cm

2 cm

3 cm

(a)

–1 cm

0.25 cm

1 cm

(b)

1 cm

–1 cm

1 cm

(c)

Figure P10.15–P10.16

*Denotes that a computer is necessary to solve this problem.
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10.17–
10.18

Repeat Problems 10.15 and 10.16 for the initial displacement of Fig. P10.15a, assuming that
the damping ratio for each mode is 5%.

∗10.19–
10.22

Determine the natural vibration frequencies and modes of the systems defined in Prob-
lems 9.9 to 9.12. Express the frequencies in terms of m, E I , and h and the joint rotations in
terms of h. Normalize each mode to unit displacement at the roof and sketch it, including all
DOFs.

10.23 (a) For the system in Problem 9.13, determine the natural vibration frequencies and modes.
Express the frequencies in terms of m, E I , and L , and sketch the modes.
(b) The structure is pulled through a lateral displacement u1(0) and released. Determine the
free vibration response.

10.24 For the system defined in Problem 9.14, m = 40,000 kg, k = 250 kN/m, and b = 8 m.
(a) Determine the natural vibration frequencies and modes.
(b) Normalize each mode so that the modal mass Mn has unit value. Sketch these modes.

10.25 Repeat Problem 10.24 using a different set of DOFs—those defined in Problem 9.15. Show
that the natural vibration frequencies and modes determined using the two sets of DOFs are
the same.

10.26 Repeat Problem 10.24 using a different set of DOFs—those defined in Problem 9.16. Show
that the natural vibration frequencies and modes determined using the two sets of DOFs are
the same.

10.27 Repeat Problem 10.24 using a different set of DOFs—those defined in Problem 9.17. Show
that the natural vibration frequencies and modes determined using the two sets of DOFs are
the same.

10.28 For the structure defined in Problem 9.18, determine the natural frequencies and modes.
Normalize each mode such that φT

n φn = 1.

Part C

∗10.29 The floor masses and story stiffnesses of the three-story shear frame are shown in Fig. P10.29,
where m = 45,000 kg and k = 57 kN/mm. Determine the fundamental natural vibration
frequency ω1 and mode φ1 by inverse vector iteration.

m

m

m/2

k

k

k

Rigid beams

Figure P10.29

∗10.30 For the system defined in Problem 10.29, there is concern for possible resonant vibrations
due to rotating machinery mounted at the second-floor level. The operating speed of the

*Denotes that a computer is necessary to solve this problem.
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motor is 430 rpm. Obtain the natural vibration frequency of the structure that is closest to
the machine frequency.

∗10.31 Determine the three natural vibration frequencies and modes of the system defined in Prob-
lem 10.29 by inverse vector iteration with shifting.

∗10.32 Determine the three natural vibration frequencies and modes of the system defined in Prob-
lem 10.29 by inverse vector iteration with the shift in each iteration cycle equal to Rayleigh’s
quotient from the previous cycle.

*Denotes that a computer is necessary to solve this problem.
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11

Damping in Structures

PREVIEW

Several issues that arise in defining the damping properties of structures are discussed in
this chapter. It is impractical to determine the coefficients of the damping matrix directly
from the structural dimensions, structural member sizes, and the damping properties of the
structural materials used. Therefore, damping is generally specified by numerical values
for the modal damping ratios, and these are sufficient for analysis of linear systems with
classical damping. The experimental data that provide a basis for estimating these damp-
ing ratios are discussed in Part A of this chapter, which ends with recommended values for
modal damping ratios. The damping matrix is needed, however, for analysis of linear sys-
tems with nonclassical damping and for analysis of nonlinear structures. Two procedures
for constructing the damping matrix for a structure from the modal damping ratios are pre-
sented in Part B; classically damped systems as well as nonclassically damped systems are
considered.

PART A: EXPERIMENTAL DATA AND RECOMMENDED
MODAL DAMPING RATIOS

11.1 VIBRATION PROPERTIES OF MILLIKAN LIBRARY BUILDING

Chosen as an example to discuss damping, the Robert A. Millikan Library building is
a nine-story reinforced-concrete building constructed in 1966–1967 on the campus of the
California Institute of Technology in Pasadena, California. Figure 11.1.1 is a photograph of

447
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Figure 11.1.1 Millikan Library, California
Institute of Technology, Pasadena,
California. (Courtesy of K. V. Steinbrugge
Collection, Earthquake Engineering
Research Center, University of California at
Berkeley.)

the library building. It is 21.0 by 22.9 m in plan and extends 43.9 m above grade and 48.2 m
above the basement level. This includes an enclosed roof that houses air-conditioning
equipment. Lateral forces in the north–south direction are resisted mainly by the 30 m
reinforced-concrete shear walls located at the east and west ends of the building. In the
east–west direction the 30 m reinforced-concrete walls of the central core, which houses
the elevator and the emergency stairway, provide most of the lateral resistance. Precast
concrete window wall panels are bolted in place on the north and south walls. These were
intended to be architectural but provide stiffness in the east–west direction for low levels
of vibration.

The vibration properties—natural periods, natural modes, and modal damping
ratios—of the Millikan Library have been determined by forced harmonic vibration tests
using the vibration generator shown in Fig. 3.3.1. Such a test leads to a frequency-response
curve that shows a resonant peak corresponding to each natural frequency of the structure;
e.g., the frequency-response curve near the fundamental natural frequency of vibration in
the east–west direction is shown in Fig. 11.1.2. From such data the natural frequency
and damping ratio for the fundamental vibration mode were determined by the methods
of Section 3.4.2, and the results are presented in Table 11.1.1. The natural period for this
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Figure 11.1.2 Frequency response curve for Millikan Library near its fundamental natu-
ral frequency of vibration in the east–west direction; acceleration measured is at the eighth
floor. [Adapted from Jennings and Kuroiwa (1968).]

TABLE 11.1.1 NATURAL VIBRATION PERIODS AND MODAL DAMPING RATIOS OF
MILLIKAN LIBRARY

Fundamental Mode Second Mode
Roof

Excitation Acceleration (g) Period (s) Damping (%) Period (s) Damping (%)

North–South Direction

Vibration 5× 10−3 to 0.51–0.53 1.2–1.8 a a

generator 20× 10−3

Lytle Creek 0.05 0.52 2.9 0.12 1.0
earthquake

San Fernando 0.312 0.62 6.4 0.13 4.7
earthquake

East–West Direction

Vibration 3× 10−3 to 0.66–0.68 0.7–1.5 b b

generator 17× 10−3

Lytle Creek 0.035 0.71 2.2 0.18 3.6
earthquake

San Fernando 0.348 0.98 7.0 0.20 5.9
earthquake

aNot measured.
bData not reliable.



450 Damping in Structures Chap. 11

mode of vibration in the east–west direction was 0.66 s (observe that fn = 1.49 Hz in
Fig. 11.1.2). This value increased roughly 3% over the resonant amplitude range of testing:
acceleration of 3× 10−3g to 17× 10−3g at the roof. The mode shape corresponding to this
mode was found from measurements taken at various floors of the structure but is not
presented here. In the vibration test the damping ratio in the fundamental east–west mode
varied between 0.7 and 1.5%, increasing with the amplitude of response. In the north–south
direction, the natural period of the fundamental mode was 0.51 s, increasing roughly 4%
over the resonant amplitude range of testing: acceleration of 5 × 10−3g to 20 × 10−3g at
the roof. The damping ratio in this mode varied between 1.2 and 1.8%, again increasing
with the amplitude of response.

The Millikan Library is located approximately 30.6 km from the center of the Mag-
nitude 6.4 San Fernando, California, earthquake of February 9, 1971. The strong motion
accelerographs installed in the basement and the roof of the building recorded three com-
ponents (two horizontal and one vertical) of accelerations. The recorded accelerations in
the north–south direction given in Fig. 11.1.3 show that the peak acceleration of 0.202g
at the basement amplified to 0.312g at the roof. Figure 11.1.4 shows that in the east–
west direction the peak acceleration at the basement and roof were 0.185g and 0.348g,
respectively. The accelerations at the roof represent the total motion of the building, which
is composed of the motions of the building relative to the ground plus the motion of the
ground. The total displacement at the roof of the building and the displacement of the base-
ment were obtained by twice-integrating the recorded accelerations. The north–south and
east–west components of the relative displacement of the roof, determined by subtracting
the ground (basement) displacement from the total displacement at the roof, are presented
in Fig. 11.1.5.
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Figure 11.1.3 Accelerations in the north–south direction recorded at Millikan Library
during the 1971 San Fernando, California, earthquake.
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Figure 11.1.4 Accelerations in the east–west direction recorded at Millikan Library dur-
ing the 1971 San Fernando, California, earthquake.
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Figure 11.1.5 Relative displacement of the roof in (a) north–south direction; (b) east–
west direction. [Adapted from Foutch, Housner, and Jennings (1975).]

It can be seen that the horizontal accelerations of the roof of the building are larger
and their time variation is different from the ground (basement) accelerations. These dif-
ferences arise because the building is flexible, not rigid. It is seen in the displacement plots
that the displacement amplitude of the roof relative to the basement was 2.69 cm in the
north–south direction and 6.88 cm in the east–west direction. The building vibrated in the
north–south direction with a fundamental-mode period of approximately six-tenths of a
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second, while in the east–west direction this period was about 1 s. These period values
were estimated as the duration of a vibration cycle in Fig. 11.1.5. More accurate values
for the first few natural periods and modal damping ratios can be determined from the
recorded accelerations at the basement and the roof by system identification procedures
(not presented in this book). The results for the first two modes in the north–south and
east–west directions are presented in Table 11.1.1 for the Millikan Library building.

Acceleration records were also obtained in the basement and on the roof of this build-
ing from the Lytle Creek earthquake of September 12, 1970. The Magnitude 5.4 Lytle
Creek earthquake, centered 64 km from Millikan Library, produced a peak ground acceler-
ation of approximately 0.02g and a roof acceleration of 0.05g in the building, fairly low lev-
els for measured earthquake motion. System identification analysis of these records led to
values for natural periods and damping ratios shown in Table 11.1.1. For the
low-level vibrations due to the Lytle Creek earthquake, the fundamental periods of 0.52
and 0.71 s in the north–south and east–west directions, respectively, were similar to—only
slightly longer than—those determined in vibration generator tests. Similarly, the damping
ratios were slightly increased relative to the vibration generator tests.

For the larger motions of the building during the San Fernando earthquake, the nat-
ural periods and damping ratios were increased significantly relative to the values from
vibration generator tests. The fundamental period in the north–south direction increased
from 0.51 to 0.62 s and the damping ratio increased substantially, to 6.4%. In the east–
west direction the building vibrated with a fundamental period of 0.98 s, which is 50%
longer than the period of 0.66 s during vibration generator tests; the damping increased
substantially, to 7.0%.

The lengthening of natural periods at the larger amplitudes of motion experienced
by the building during the San Fernando earthquake implies a reduction in the stiffness
of the structure. The stiffness in the east–west direction is reduced substantially, although
except for the collapse of bookshelves and minor plaster cracking, the building suffered
no observable damage. The apparent damage of the structure due to the earthquake is
also the cause of the substantial increase in damping. Following the earthquake there is
apparent recovery of the structural stiffness, as suggested by measured natural periods
(not presented here) that are shorter than during the earthquake. Whether this recovery
is complete or only partial appears to depend on how strongly the structure was excited
by the earthquake. These are all indications of the complexity of the behavior of actual
structures during earthquakes. We return to this issue in Chapter 13 (Section 13.6) after we
have presented analytical procedures to compute the response of linearly elastic structures
to specified ground motion.

11.2 ESTIMATING MODAL DAMPING RATIOS

It is usually not feasible to determine the damping properties or natural vibration periods
of a structure to be analyzed in the way they were determined for the Millikan Library.
If the seismic safety of an existing structure is to be evaluated, ideally we would like to
determine experimentally the important properties of the structure, including its damping,
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but this is rarely done, for lack of budget and time. For a new building being designed,
obviously its damping or other properties cannot be measured.

The modal damping ratios for a structure should therefore be estimated using mea-
sured data from similar structures. Although researchers have accumulated a substantial
body of valuable data, it should be used with discretion because some of it is not directly
applicable to earthquake analysis and design. It is clear from the Millikan Library data that
the damping ratios determined from the low-amplitude forced vibration tests should not be
used directly for the analysis of response to earthquakes that cause much larger motions of
the structure, say, up to yielding of the structural materials. Modal damping ratios for such
analysis should be based on data from recorded earthquake motions.

The data that are most useful but hard to come by are from structures shaken strongly
but not deformed into the inelastic range. The damping ratios determined from structural
motions that are small are not representative of the larger damping expected at higher
amplitudes of structural motions. On the other hand, recorded motions of structures that
have experienced significant yielding during an earthquake would provide damping ra-
tios that also include the energy dissipation due to yielding of structural materials. These
damping ratios would not be useful in dynamic analysis because the energy dissipation in
yielding is accounted for separately through nonlinear force–deformation relationships (see
Section 5.7).

Useful data on damping are slow to accumulate because relatively few structures
are installed with permanent accelerographs ready to record motions when an earthquake
occurs and strong earthquakes are infrequent. The bulk of records of earthquake-induced
structural motions in the United States are from multistory buildings in California: more
than 50 buildings in the greater Los Angeles area during the 1971 San Fernando earth-
quake; over 40 buildings in the Monterey Bay and San Francisco Bay areas during the
1989 Loma Prieta earthquake; and over 100 buildings in the greater Los Angeles area dur-
ing the 1994 Northridge earthquake. Furthermore, the recorded motions of only some of
these buildings have been analyzed to determine their natural periods and modal damping
ratios.

Ideally, we would like to have data on damping determined from recorded earthquake
motions of many structures of various types—buildings, bridges, dams, etc.—using differ-
ent materials—steel, reinforced concrete, prestressed concrete, masonry, wood, etc. Such
data would provide the basis for estimating the damping ratios for an existing structure to
be evaluated for its seismic safety or for a new structure to be designed. Until we accumu-
late a sufficiently large database, selection of damping ratios is based on whatever data are
available and expert opinion. Recommended damping values are given in Table 11.2.1 for
two levels of motion: working stress levels or stress levels no more than one-half the yield
point, and stresses at or just below the yield point. For each stress level, a range of damping
values is given; the higher values of damping are to be used for ordinary structures, and
the lower values are for special structures to be designed more conservatively. In addition
to Table 11.2.1, recommended damping values are 3% for unreinforced masonry struc-
tures and 7% for reinforced masonry construction. Most building codes do not recognize
the variation in damping with structural materials; and typically a 5% damping ratio is
implicit in the code-specified earthquake forces and design spectrum.
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TABLE 11.2.1 RECOMMENDED DAMPING VALUES

Type and Condition Damping Ratio
Stress Level of Structure (%)

Working stress, Welded steel, prestressed 2–3
no more than about concrete, well-reinforced
1
2 yield point concrete (only slight cracking)

Reinforced concrete with 3–5
considerable cracking

Bolted and/or riveted steel, 5–7
wood structures with nailed or
bolted joints

At or just below Welded steel, prestressed 5–7
yield point concrete (without complete

loss in prestress)
Prestressed concrete with no 7–10

prestress left
Reinforced concrete 7–10
Bolted and/or riveted steel, 10–15

wood structures with
bolted joints

Wood structures with nailed 15–20
joints

Source: N. M. Newmark, and W. J. Hall, Earthquake Spectra and Design, Earth-
quake Engineering Research Institute, Berkeley, Calif., 1982.

The recommended damping ratios can be used directly for the linearly elastic anal-
ysis of structures with classical damping. For such systems the equations of motion when
transformed to natural vibration modes of the undamped system become uncoupled, and
the estimated modal damping ratios are used directly in each modal equation. This concept
was introduced in Section 10.10 and will be developed further in Chapters 12 and 13.

PART B: CONSTRUCTION OF DAMPING MATRIX

11.3 DAMPING MATRIX

When is the damping matrix needed? The damping matrix must be defined completely if
classical modal analysis is not applicable. Such is the case for structures with nonclassical
damping (see Section 11.5 for examples), even if our interest is confined to their linearly
elastic response. Classical modal analysis is also not applicable to the analysis of nonlinear
systems even if the damping is of classical form. One of the most important nonlinear
problems of interest to us is calculating the response of structures beyond their linearly
elastic range during earthquakes.
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The damping matrix for practical structures should not be calculated from the struc-
tural dimensions, structural member sizes, and the damping of the structural materials used.
One might think that it should be possible to determine the damping matrix for the struc-
ture from the damping properties of individual structural elements, just as the structural
stiffness matrix is determined. However, it is impractical to determine the damping matrix
in this manner because unlike the elastic modulus, which enters into the computation of
stiffness, the damping properties of materials are not well established. Even if these prop-
erties were known, the resulting damping matrix would not account for a significant part of
the energy dissipated in friction at steel connections, opening and closing of microcracks in
concrete, stressing of nonstructural elements—partition walls, mechanical equipment, fire-
proofing, etc.—friction between the structure itself and nonstructural elements, and similar
mechanisms, some of which are even difficult to identify.

Thus the damping matrix for a structure should be determined from its modal damp-
ing ratios, which account for all energy-dissipating mechanisms. As discussed in Sec-
tion 11.2, the modal damping ratios should be estimated from available data on similar
structures shaken strongly during past earthquakes but not deformed into the inelastic
range; lacking such data, the values of Table 11.2.1 are recommended.

11.4 CLASSICAL DAMPING MATRIX

Classical damping is an appropriate idealization if similar damping mechanisms are dis-
tributed throughout the structure (e.g., a multistory building with a similar structural system
and structural materials over its height). In this section we develop two procedures for con-
structing a classical damping matrix for a structure from modal damping ratios that have
been estimated as described in Section 11.2. These two procedures are presented in the
following three subsections.

11.4.1 Rayleigh Damping

Consider first mass-proportional damping and stiffness-proportional damping:

c = a0m and c = a1k (11.4.1)

where the constants a0 and a1 have units of s−1 and s, respectively. For both of these damp-
ing matrices the matrix C of Eq. (10.9.4) is diagonal by virtue of the modal orthogonality
properties of Eq. (10.4.1); therefore, these are classical damping matrices. Physically, they
represent the damping models shown in Fig. 11.4.1 for a multistory building. Stiffness-
proportional damping appeals to intuition because it can be interpreted to model the energy
dissipation arising from story deformations. In contrast, mass-proportional
damping is difficult to justify physically because the air damping it can be interpreted
to model is negligibly small for most structures. Later we shall see that, by themselves,
neither of the two damping models are appropriate for practical application.

We now relate the modal damping ratios for a system with mass-proportional damp-
ing to the coefficient a0. The generalized damping for the nth mode, Eq. (10.9.10), is

Cn = a0 Mn (11.4.2)
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Figure 11.4.1 (a) Mass-proportional damping; (b) stiffness-proportional damping.

and the modal damping ratio, Eq. (10.9.11), is

ζn = a0

2

1

ωn
(11.4.3)

The damping ratio is inversely proportional to the natural frequency (Fig. 11.4.2a). The
coefficient a0 can be selected to obtain a specified value of damping ratio in any one mode,
say ζi for the i th mode. Equation (11.4.3) then gives

a0 = 2ζiωi (11.4.4)

With a0 determined, the damping matrix c is known from Eq. (11.4.1a), and the damping
ratio in any other mode, say the nth mode, is given by Eq. (11.4.3).

Similarly, the modal damping ratios for a system with stiffness-proportional damping
can be related to the coefficient a1. In this case

Cn = a1ω
2
n Mn and ζn = a1

2
ωn (11.4.5)

wherein Eq. (10.2.4) is used. The damping ratio increases linearly with the natural fre-
quency (Fig. 11.4.2a). The coefficient a1 can be selected to obtain a specified value of the
damping ratio in any one mode, say ζj for the j th mode. Equation (11.4.5b) then gives

a1 = 2ζj

ωj
(11.4.6)

With a1 determined, the damping matrix c is known from Eq. (11.4.1b), and the damping
ratio in any other mode is given by Eq. (11.4.5b). Neither of the damping matrices defined
by Eq. (11.4.1) is appropriate for practical analysis of MDF systems. The variations of
modal damping ratios with natural frequencies they represent (Fig. 11.4.2a) are not con-
sistent with experimental data that indicate roughly the same damping ratios for several
vibration modes of a structure.

As a first step toward constructing a classical damping matrix somewhat consistent
with experimental data, we consider Rayleigh damping:
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c = a0m+ a1k (11.4.7)

The damping ratio for the nth mode of such a system is

ζn = a0

2

1

ωn
+ a1

2
ωn (11.4.8)

The coefficients a0 and a1 can be determined from specified damping ratios ζi and ζj for
the i th and j th modes, respectively. Expressing Eq. (11.4.8) for these two modes in matrix
form leads to

1

2

[
1/ωi ωi

1/ωj ωj

]{
a0

a1

}
=
{
ζi

ζj

}
(11.4.9)

These two algebraic equations can be solved to determine the coefficients a0 and a1. If
both modes are assumed to have the same damping ratio ζ , which is reasonable based on
experimental data, then

a0 = ζ 2ωiωj

ωi + ωj
a1 = ζ 2

ωi + ωj
(11.4.10)

The damping matrix is then known from Eq. (11.4.7) and the damping ratio for any other
mode, given by Eq. (11.4.8), varies with natural frequency, as shown in Fig. 11.4.2b.

In applying this procedure to a practical problem, the modes i and j with specified
damping ratios should be chosen to ensure reasonable values for the damping ratios in
all the modes contributing significantly to the response. Consider, for example, that five
modes are to be included in the response analysis and roughly the same damping ratio ζ
is desired for all modes. This ζ should be specified for the first mode and possibly for the
fourth mode. Then Fig. 11.4.2b suggests that the damping ratio for the second and third

ω1 ω2 ω3 ω4

c = a1k

ζn = a1ωn/2

c = a0m

ζn = a0/2ωn

ζn

Natural frequencies ωn

(a)

ζn

Natural frequencies n

(b)

ωi ω

ω

j

ζ

ζn = 

Rayleigh damping
a0

2ωn

+
a1ωn

2

Figure 11.4.2 Variation of modal damping ratios with natural frequency: (a) mass-proportional
damping and stiffness-proportional damping; (b) Rayleigh damping.
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modes will be somewhat smaller than ζ and for the fifth mode it will be somewhat larger
than ζ . The damping ratio for modes higher than the fifth will increase monotonically with
frequency and the corresponding modal responses will be essentially eliminated because
of their high damping.

Example 11.1

The properties of a three-story shear building are given in Fig. E11.1. These include the floor
masses, story stiffnesses, natural frequencies, and modes. Derive a Rayleigh damping matrix
such that the damping ratio is 5% for the first and second modes. Compute the damping ratio
for the third mode.

100,000 kg

200,000

200,000

kstory, kN/cm

1000

1000

1000

ωn = 11.57, 31.62, 43.20 rad/s

φ 1 = φ 2 = φ 3 = 
⎧0.289⎪
⎨0.500
⎪⎩0.577⎭

⎬,
⎫⎪

⎪

⎧–0.577
⎨     0
⎩ 0.577

⎪

⎪ ⎭
⎬,
⎫⎪

⎪

⎧ 0.289
⎨–0.500
⎩ 0.577

⎪

⎪ ⎭
⎬
⎫⎪

⎪

Figure E11.1

Solution
1. Set up the mass and stiffness matrices.

m =
[

200,000
200,000

100,000

]
k = 1000

[
2 −1 0
−1 2 −1

0 −1 1

]
(a)

2. Determine a0 and a1 from Eq. (11.4.9).[
1/11.57 11.57
1/31.62 31.62

]{
a0
a1

}
= 2

{
0.05
0.05

}
(b)

These algebraic equations have the following solution:

a0 = 0.8473 a1 = 0.0023 (c)

3. Evaluate the damping matrix.

c = a0m+ a1k =
[

6.32 −2.31 0
6.32 −2.31

(sym) 3.16

]
kN-s/cm (d)

4. Compute ζ3 from Eq. (11.4.8).

ζ3 = 0.8473

2(43.20)
+ 0.0023(43.20)

2
= 0.0598 (e)
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11.4.2 Caughey Damping

If we wish to specify values for damping ratios in more than two modes, we need to con-
sider the general form for a classical damping matrix (see Derivation 11.1), known as
Caughey damping:

c = m
N−1∑
l=0

al[m−1k]l (11.4.11)

where N is the number of degrees of freedom in the system and al are constants. The first
three terms of the series are

a0m(m−1k)0 = a0m a1m(m−1k)1 = a1k a2m(m−1k)2 = a2km−1k (11.4.12)

Thus Eq. (11.4.11) with only the first two terms is the same as Rayleigh damping. Suppose
that we wish to specify the damping ratios for J modes of an N -DOF system. Then J
terms need to be included in the Caughey series; these could be any J of the N terms in
Eq. (11.4.11). If the first J terms are included,

c = m
J−1∑
l=0

al[m−1k]l (11.4.13)

and the modal damping ratio ζn is given by (see Derivation 11.2)

ζn = 1
2

J−1∑
l=0

alω
2l−1
n (11.4.14)

The coefficients al can be determined from the damping ratios specified in any J modes,
say the first J modes, by solving the J algebraic equations (11.4.14) for the unknowns
al , l = 0 to J − 1. With al determined, the damping matrix c is known from Eq. (11.4.13),
and the damping ratios for modes n = J + 1, J + 2, . . . , N are given by Eq. (11.4.14).
It is recommended that these damping ratios be computed to ensure that their values are
reasonable.

To illustrate that it is important to do so, we present results for an example structure
for which the same damping ratio ζ = 5% was specified for the first four modes, the first
four terms were included in Eq. (11.4.11), and the values of al were determined as de-
scribed above and substituted in Eq. (11.4.14) to determine damping ratio as a function of
frequency. Plotted in Fig. 11.4.3, these results demonstrate that the damping ratio remains
close to (slightly above or slightly below) the desired value ζover the frequency range ω 1

to ω 4, being exactly equal to ζ at the first four natural frequencies, but increases monoton-
ically with frequency higher than ω 4. As a result, the response contributions of the higher
modes will be underestimated to a point that they are essentially excluded. On the other
hand, when the damping ratio ζ was specified for only the first three modes, the same pro-
cedure led to a damping ratio that was close to the desired value over the frequency range
ω 1 to ω 3, but decreased monotonically for modes higher than the third mode, eventually
taking on negative values. These are obviously unrealistic because they imply free vibra-
tion that grows with time instead of decaying with time. In conclusion, Caughey damping
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Figure 11.4.3

should be defined such that modal damping ratios close to the desired value are achieved
for all modes contributing significantly to the response, and none of the ζn values become
negative.

While the general classical damping matrix given by Eq. (11.4.13) makes it possible
to specify the damping ratios in any number of modes, there are two problems associated
with its use. First, the algebraic equations (11.4.14) are numerically ill conditioned be-
cause the coefficients ω−1

n , ωn , ω3
n , ω5

n, . . . can differ by orders of magnitude. Second, if
more than two terms are included in the Caughey series, c is a full matrix, although k is a
banded matrix, and for a lumped-mass system, m is a diagonal matrix. Since the compu-
tational effort for analyzing large systems increases significantly if the damping matrix is
not banded, Rayleigh damping is often assumed in practical analyses.

Example 11.2

For the system of Fig. E11.1, evaluate the classical damping matrix if the damping ratio is 5%
for all three modes.

Solution
1. Caughey series for a 3-DOF system:

c = a0m+ a1k+ a2km−1k (a)

2. Determine a0, a1, and a2 from Eq. (11.4.14):

ζn = a0

2

1

ωn
+ a1

2
ωn + a2

2
ω3

n n = 1, 2, 3 (b)

or [
1/11.57 11.57 (11.57)3

1/31.62 31.62 (31.62)3

1/43.20 43.20 (43.20)3

]{
a0
a1
a2

}
= 2

{
0.05
0.05
0.05

}
(c)

These algebraic equations have the following solution:

a0 = 0.7716 a1 = 0.0030 a2 = −5.649× 10−7 (d)
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3. Evaluate c. Substituting a0, a1, and a2 from Eq. (d) in Eq. (a) gives

c =
[

6.04 −1.83 −0.282
5.48 −1.83

(sym) 2.88

]
kN-s/cm (e)

Derivation 11.1

The natural frequencies ωr and modes φr satisfy

kφr = ω2
r mφr (a)

Premultiplying both sides by φT
n km−1 gives

φT
n

[
km−1k

]
φr = ω2

rφ
T
n kφr = 0 n �= r (b)

wherein the second equality comes from the orthogonality equation (10.4.1a). Premultiplying
both sides of Eq. (a) by φT

n (km−1)2 gives

φT
n

[
(km−1)2k

]
φr = ω2

rφ
T
n

[
km−1km−1m

]
φr

= ω2
rφ

T
n

[
km−1k

]
φr = 0 n �= r (c)

wherein the second equality comes from Eq. (b). By repeated application of this procedure,
a family of orthogonality relations can be obtained which can all be expressed in a compact
form:

φT
n clφr = 0 n �= r (d)

where

cl =
[
km−1

]l
k l = 0, 1, 2, 3, . . . ,∞ (e)

The matrices cl can be written in an alternative form by premultiplying Eq. (e) by the identity
matrix, I = mm−1:

cl = mm−1km−1km−1 · · ·km−1k

= m
[
m−1k

]l
l = 0, 1, 2, 3, . . . ,∞ (f)

Premultiplying Eq. (a) by φT
n mk−1 and following the procedure above, it can be shown that

Eq. (d) is satisfied by another infinite sequence of matrices:

cl = m
[
m−1k

]l
l = −1,−2,−3, . . . ,−∞ (g)

Combining Eqs. (f) and (g) gives

c = m
∞∑

l=−∞
al
[
m−1k

]l
(h)

It can be shown that only N terms in this infinite series are independent, leading to Eq.
(11.4.11) as the general form of classical damping matrices.

Derivation 11.2

For the nth mode the generalized damping is

Cn = φT
n cφn =

N−1∑
l=0

φT
n clφn (a)



462 Damping in Structures Chap. 11

where cl is given by Eq. (f) of Derivation 11.1; and the various terms in this series are

l = 0: φT
n coφn = φT

n (a0m)φn = ao Mn

l = 1: φT
n c1φn = φT

n (a1k)φn = a1ω
2
n Mn

l = 2: φT
n c2φn = φT

n (a2km−1k)φn = a2ω
2
nφ

T
n kφn = a2ω

4
n Mn

wherein Eq. (10.2.4) is used. Thus Eq. (a) becomes

Cn =
N−1∑
l=0

alω
2l
n Mn (b)

The damping ratio for the nth mode, Eq. (10.9.11), is given by

ζn = 1
2

N−1∑
l=0

alω
2l−1
n (c)

which is similar to Eq. (11.4.14).

11.4.3 Superposition of Modal Damping Matrices

An alternative procedure to determine a classical damping matrix from modal damping
ratios can be derived starting with Eq. (10.9.4):

ΦT cΦ = C (11.4.15)

where C is a diagonal matrix with the nth diagonal element equal to the generalized modal
damping:

Cn = ζn(2Mnωn) (11.4.16)

With ζn estimated as described in Section 11.2, C is known from Eq. (11.4.16) and
Eq. (11.4.15) can be rewritten as

c = (ΦT
)−1

CΦ−1 (11.4.17)

Using this equation to compute c may appear to be an inefficient procedure because it
seems to require the inversion of two matrices of order N , the number of DOFs. However,
the inverse of the modal matrix Φ and of ΦT can be determined with little computation
because of the orthogonality property of modes.

Starting with the orthogonality relationship of Eq. (10.4.5b),

ΦT mΦ =M (11.4.18)

it can be shown that

Φ−1 =M−1ΦT m
(
ΦT

)−1 = mΦM−1 (11.4.19)

Because M is a diagonal matrix of generalized modal masses Mn , M−1 is known immedi-
ately as a diagonal matrix with elements= 1/Mn . Thus Φ−1 and

(
ΦT

)−1
can be computed

efficiently from Eq. (11.4.19).
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Substituting Eq. (11.4.19) in Eq. (11.4.17) leads to

c = (mΦM−1)C(M−1ΦT m) (11.4.20)

Since M and C are diagonal matrices, defined by Eqs. (11.4.18) and (11.4.15), respectively,
Eq. (11.4.20) can be expressed as

c = m

(
N∑

n=1

2ζnωn

Mn
φnφ

T
n

)
m (11.4.21)

The nth term in this summation is the contribution of the nth mode with its damping ratio ζn

to the damping matrix c; if this term is not included, the resulting c implies a zero damping
ratio in the nth mode. It is reasonable to include in Eq. (11.4.21) only the first J modes
that are expected to contribute significantly to the response. The lack of damping in modes
J + 1 to N does not create numerical problems if an unconditionally stable time-stepping
procedure is used to integrate the equations of motion; see Chapter 16.

Example 11.3

Determine a damping matrix for the system of Fig. E11.1 by superposing the damping matrices
for the first two modes, each with ζn = 5%.

Solution
1. Determine the individual terms in Eq. (11.4.21).

c1 = 2(0.05)(11.57)

1.0
mφ1φ

T
1 m c2 = 2(0.05)(31.62)

1.0
mφ2φ

T
2 m

=
[

0.386 0.668 0.386
1.16 0.668

(sym) 0.386

]
kN-s/cm =

[
4.22 0 −2.11

0 0
(sym) 1.05

]
kN-s/cm

2. Determine c.

c = c1 + c2 =
[

4.60 0.668 −1.72
1.16 0.668

(sym) 1.44

]
kN-s/cm

Recall that this c implies a zero damping ratio for the third mode.

Example 11.4

Determine the damping matrix for the system of Fig. E11.1 by superposing the damping ma-
trices for the three modes, each with ζn = 5%.

Solution
1. Determine the individual terms in Eq. (11.4.21). The first two terms, c1 and c2, are

already computed in Example 11.3, and

c3 = 2(0.05)(43.20)

1.0
mφ3φ

T
3 m =

[
1.44 −2.49 1.44

4.32 −2.49
(sym) 1.44

]
kN-s/cm

2. Determine c.

c =
3∑

n=1

cn =
[

6.04 −1.83 −0.282
5.48 −1.83

(sym) 2.88

]
kN-s/cm
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Note that this c is the same as in Example 11.2 because ζn = 5% for all three modes in both
examples.

11.5 NONCLASSICAL DAMPING MATRIX

The assumption of classical damping is not appropriate if the system to be analyzed con-
sists of two or more parts with significantly different levels of damping. One such example
is a structure–soil system. While the underlying soil can be assumed as rigid in the anal-
ysis of many structures, soil–structure interaction should be considered in the analysis of
structures with very short natural periods, such as the nuclear containment structure of
Fig. 1.10.1. The modal damping ratio for the soil system would typically be much dif-
ferent than the structure, say 15 to 20% for the soil region compared to 3 to 5% for the
structure. Therefore, the assumption of classical damping would not be appropriate for
the combined structure–soil system, although it may be reasonable for the structure and
soil regions separately. Another example is a concrete dam with water impounded behind
the dam (Fig. 1.10.2). The damping of the water is negligible relative to damping for the
dam, and classical damping is not an appropriate model for the dam–water system. While
substructure methods (not developed in this book) are especially effective for the analysis
of structure–soil and structure–fluid systems, these systems are also analyzed by standard
methods, requiring the damping matrix for the complete system.

The damping matrix for the complete system is constructed by directly assembling
the damping matrices for the two subsystems—structure and soil in the first case, dam and
water in the second. As shown in Fig. 11.5.1, the stiffness and mass matrices of the com-
bined structure–soil system are assembled from the corresponding matrices for the two
subsystems. The portion of these matrices associated with the common DOFs at the
interface (I ) between the two subsystems includes contributions from both subsystems.

Axis of radial symmetry

Structure
(ζ = 0.05)

Foundation soil
(ζf = 0.20)

Structure
k

Soil
kf

I

Structure
m

Soil
mf

I

Structure
c

Soil
cf

I

I denotes degrees of 
freedom at the interface

Figure 11.5.1 Assembly of subsystem matrices.



Chap. 11 Further Reading 465

Thus all that remains to be described is the procedure to construct damping matrices for
the individual subsystems, assumed to be classically damped.

In principle, these subsystem damping matrices could be constructed by any of the
procedures developed in Section 11.4, but Rayleigh damping is perhaps most convenient
for practical analyses. Thus the damping matrices for the structure and the foundation soil
(denoted by subscript f ) are

c = a0m+ a1k c f = a0 f m f + a1 f k f (11.5.1)

The coefficients a0 and a1 are given by Eq. (11.4.10) using an appropriate damping ratio
for the structure, say ζ = 0.05, where ωi and ωj are selected as the frequencies of the i th
and j th natural vibration modes of the combined system without damping. The coefficients
a0 f and a1 f are determined similarly; they would be four times larger if the damping ratio
for the foundation soil region is estimated as ζ f = 0.20.

The assumption of classical damping may not be appropriate either for structures
with special energy-dissipating devices (Section 7.10) or on a base isolation system (Chap-
ter 21), even if the structure itself has classical damping. The nonclassical damping matrix
for the system is constructed by first evaluating the classical damping matrix c for the
structure alone (without the special devices) from the damping ratios appropriate for the
structure, using the procedures of Section 11.4. The damping contributions of the energy-
dissipating devices are then assembled into c to obtain the damping matrix for the complete
system.
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P R O B L E M S

11.1 The properties of a three-story shear building are given in Fig. P11.1. These include the
floor masses, story stiffnesses, natural vibration frequencies, and modes. Derive a Rayleigh
damping matrix such that the damping ratio is 5% for the first and third modes. Compute the
damping ratio for the second mode.

Rigid beamsm/2

m

m

3k/9

7k/9

k

ωn = 12.17, 25.82, 39.44 rad/s

m = 45,000 kg k = 300 kN/cm

φ1 = 2 = 3φφ
0.4837
0.9673
1.4510

⎧⎪
⎨
⎪⎩ ⎭

⎬,
⎫⎪

⎪

–0.7454
–0.7454
1.4907

⎧⎪
⎨
⎪⎩

⎧⎪
⎨
⎪⎩

,
⎭
⎬
⎫⎪

⎪ ⎭
⎬
⎫⎪

⎪
0.8550

–1.1970

–0.3420
 = 

Figure P11.1

11.2 For the system of Fig. P11.1, use Caughey series to determine the classical damping matrix if
the damping ratio is 5% for all three modes.

11.3 Determine a damping matrix for the system of Fig. P11.1 by superimposing the damping
matrices for the first and third modes, each with ζn = 5%. Verify that the resulting damping
matrix gives no damping in the second mode.

11.4 Determine the classical damping matrix for the system of Fig. P11.1 by superimposing the
damping matrices for the three modes, each with ζn = 5%.
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Dynamic Analysis and Response of
Linear Systems

PREVIEW

Now that we have developed procedures to formulate the equations of motion for MDF sys-
tems subjected to dynamic forces (Chapters 9 and 11), we are ready to present the solution
of these equations. In Part A of this chapter we show that the equations for a two-DOF sys-
tem without damping subjected to harmonic forces can be solved analytically. Then we use
these results to explain how a vibration absorber or tuned mass damper works to decrease
or eliminate unwanted vibration. This simultaneous solution of the coupled equations of
motion is not feasible in general, so in Part B we develop the classical modal analysis
procedure. The equations of motion are transformed to modal coordinates, leading to an
uncoupled set of modal equations; each modal equation is solved to determine the modal
contributions to the response, and these modal responses are combined to obtain the total
response. An understanding of the relative response contributions of the various modes
is developed in Part C with the objective of deciding the number of modes to include in
dynamic analysis. The chapter closes with Part D, which includes two analysis procedures
useful in special situations: static correction method and mode acceleration method.

PART A: TWO-DEGREE-OF-FREEDOM SYSTEMS

12.1 ANALYSIS OF TWO-DOF SYSTEMS WITHOUT DAMPING

Consider the two-DOF systems shown in Fig. 12.1.1 excited by a harmonic force p1(t) =
po sinωt applied to the mass m1. For both systems the equations of motion are[

m1 0
0 m2

]{
ü1

ü2

}
+
[

k1 + k2 −k2

−k2 k2

]{
u1

u2

}
=
{

po

0

}
sinωt (12.1.1)

467
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u1

m1

po sin ωt

k1

u2

m2
k2

m1

m2

u2

u1

k1 = Story stiffness

k2

po sin ωt

Rigid beams

Figure 12.1.1 Two-degree-of-freedom systems.

Observe that the equations are coupled through the stiffness matrix. One equation cannot
be solved independent of the other; that is, both equations must be solved simultaneously.
Because the system is undamped, the steady-state solution can be assumed as{

u1(t)
u2(t)

}
=
{

u1o

u2o

}
sinωt

Substituting this into Eq. (12.1.1), we obtain[
k1 + k2 − m1ω

2 −k2

−k2 k2 − m2 ω
2

]{
u1o

u2o

}
=
{

po

0

}
(12.1.2)

or [
k− ω2m

] { u1o

u2o

}
=
{

po

0

}
Premultiplying by [k− ω2m]−1 gives{

u1o

u2o

}
= [k− ω2m

]−1
{

po

0

}
= 1

det [k− ω2m]
adj [k− ω2m]

{
po

0

}
(12.1.3)

where det[·] and adj[·] denote the determinant and adjoint of the matrix[·], respectively.
The frequency equation [Eq. (10.2.6)]

det[k− ω2m] = 0

can be solved for the natural frequencies ω1 and ω2 of the system. In terms of these
frequencies, this determinant can be expressed as

det[k− ω2m] = m1m2(ω
2 − ω2

1)(ω
2 − ω2

2) (12.1.4)

Thus, Eq. (12.1.3) becomes{
u1o

u2o

}
= 1

det[k− ω2m]

[
k2 − m2ω

2 k2

k2 k1 + k2 − m1ω
2

]{
po

0

}
(12.1.5)

or

u1o = po(k2 − m2ω
2)

m1m2(ω2 − ω2
1)(ω

2 − ω2
2)

u2o = pok2

m1m2(ω2 − ω2
1)(ω

2 − ω2
2)

(12.1.6)

Example 12.1

Plot the frequency-response curve for the system shown in Fig. 12.1.1 with m1 = 2m, m2 =
m, k1 = 2k, and k2 = k subjected to harmonic force po applied on mass m1.
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Solution Substituting the given mass and stiffness values in Eq. (12.1.6) gives

u1o = po(k − mω2)

2m2(ω2 − ω2
1)(ω

2 − ω2
2)

u2o = pok

2m2(ω2 − ω2
1)(ω

2 − ω2
2)

(a)

where ω1 =
√

k/2m and ω2 =
√

2k/m; these natural frequencies were obtained in
Example 10.4. For given system parameters, Eq. (a) provides solutions for the response
amplitudes u1o and u2o. It is instructive to rewrite them as

u1o

(u1st)o
= 1− 1

2 (ω/ω1)
2[

1− (ω/ω1)
2
] [

1− (ω/ω2)
2
] u2o

(u2st)o
= 1[

1− (ω/ω1)
2
] [

1− (ω/ω2)
2
] (b)

In these equations the response amplitudes have been divided (u1st)o = po/2k and (u2st)o =
po/2k, the maximum values of the static displacements (a concept introduced in Sec-
tion 3.1), to obtain normalized or nondimensional responses that depend on frequency
ratios ω/ω1 and ω/ω2, not separately on ω, ω1, and ω2.
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Figure E12.1 shows the normalized response amplitudes u1o and u2o plotted against
the frequency ratio ω/ω1. These frequency-response curves show two resonance condi-
tions at ω = ω1 and ω = ω2; at these exciting frequencies the steady-state response is
unbounded. At other exciting frequencies, the vibration is finite and could be calculated
from Eq. (b). Note that there is an exciting frequency where the vibration of the first
mass, where the exciting force is applied, is reduced to zero. This is the entire basis of the
dynamic vibration absorber or tuned mass damper discussed next.

12.2 VIBRATION ABSORBER OR TUNED MASS DAMPER

The vibration absorber is a mechanical device used to decrease or eliminate unwanted
vibration. The description tuned mass damper is often used in modern installation; this
modern name has the advantage of showing its relationship to other types of dampers. In
the brief presentation that follows, we restrict ourselves to the basic principle of a vibration
absorber without getting into the many important aspects of its practical design.

In its simplest form, a vibration absorber consists of one spring and a mass. Such an
absorber system is attached to a SDF system, as shown in Fig. 12.2.1a. The equations of
motion for the main mass m1 and the absorber mass m2 are the same as Eq. (12.1.1). For
harmonic force applied to the main mass we already have the solution given by Eq. (12.1.6).
Introducing the notation

ω∗1 =
√

k1

m1
ω∗2 =

√
k2

m2
μ = m2

m1
(12.2.1)

Operating range
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Figure 12.2.1 (a) Vibration absorber attached to an SDF system; (b) response ampli-
tude versus exciting frequency (dashed curve indicates negative u1o or phase opposite to
excitation); μ = 0.2 and ω∗1 = ω∗2 .
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the available solution can be rewritten as

u1o = po

k1

1− (ω/ω∗2)2[
1+ μ (ω∗2/ω∗1)2 − (ω/ω∗1)2] [1− (ω/ω∗2)2]− μ (ω∗2/ω∗1)2 (12.2.2a)

u2o = po

k1

1[
1+ μ (ω∗2/ω∗1)2 − (ω/ω∗1)2] [1− (ω/ω∗2)2]− μ (ω∗2/ω∗1)2 (12.2.2b)

At exciting frequency ω = ω∗2, Eq. (12.2.2a) indicates that the motion of the main mass
m1 does not simply diminish, it ceases altogether. Figure 12.2.1b shows a plot of response
amplitude u1o ÷ (u1st)o, where (u1st)o = po/k1, versus ω; for this example, the mass
ratio μ = 0.2 and ω∗1 = ω∗2, the absorber being tuned to the natural frequency of the
main system. Because the system has two DOFs, two resonant frequencies exist, and
the response is unbounded at those frequencies. The operating frequency range where
u1o ÷ (u1st)o < 1 is shown.

The usefulness of the vibration absorber becomes obvious if we compare the
frequency-response function of Fig. 12.2.1b with the response of the main mass alone,
without the absorber mass. At ω = ω∗1 the response amplitude of the main mass alone
is unbounded but is zero with the presence of the absorber mass. Thus, if the exciting
frequency ω is close to the natural frequency ω∗1 of the main system, and operating restric-
tions make it impossible to vary either one, the vibration absorber can be used to reduce
the response amplitude of the main system to near zero.

What should be the size of the absorber mass? To answer this question, we use
Eq. (12.2.2b) to determine the motion of the absorber mass at ω = ω∗2:

u2o = − po

k2
(12.2.3)

The force acting on the absorber mass is

k2u2o = ω2m2u2o = −po (12.2.4)

This implies that the absorber system exerts a force equal and opposite to the exciting force.
Thus, the size of the absorber stiffness and mass, k2 and m2, depends on the allowable value
of u2o. There are other factors that affect the choice of the absorber mass. Obviously, a
large absorber mass presents a practical problem. At the same time the smaller the mass
ratio μ, the narrower will be the operating frequency range of the absorber.

The preceding presentation indicates that a vibration absorber has its greatest appli-
cation to synchronous machinery, operating at nearly constant frequency, for it is tuned to
one particular frequency and is effective only over a narrow band of frequencies. However,
vibration absorbers are also used in situations where the excitation is not nearly harmonic.
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The dumbbell-shaped devices that hang from highest-voltage transmission lines are vibra-
tion absorbers used to mitigate the fatiguing effects of wind-induced vibration. Vibration
absorbers have also been used to reduce the wind-induced vibration of tall buildings when
the motions have reached annoying levels for the occupants. An example of this is the
59-story Citicorp Center in midtown Manhattan; completed in 1977, this building has a
37.2 m block of concrete installed on the 59th floor in a movable platform connected to
the building by large hydraulic arms. When the building sways more than 30 cm/s, the
computer directs the arms to move the block in the other direction. This action reduces
such oscillation by 40%, considerably easing the discomfort of the building’s occupants
during high winds.

PART B: MODAL ANALYSIS

12.3 MODAL EQUATIONS FOR UNDAMPED SYSTEMS

The equations of motion for a linear MDF system without damping were derived in Chap-
ter 9 and are repeated here:

mü+ ku = p(t) (12.3.1)

The simultaneous solution of these coupled equations of motion that we have illustrated
in Section 12.1 for a two-DOF system subjected to harmonic excitation is not efficient for
systems with more DOFs, nor is it feasible for systems excited by other types of forces.
Consequently, it is advantageous to transform these equations to modal coordinates, as we
shall see next.

As mentioned in Section 10.7, the displacement vector u of an MDF system can be
expanded in terms of modal contributions. Thus, the dynamic response of a system can be
expressed as

u(t) =
N∑

r=1

φr qr (t) = Φq(t) (12.3.2)

Using this equation, the coupled equations (12.3.1) in uj (t) can be transformed to a set
of uncoupled equations with modal coordinates qn(t) as the unknowns. Substituting Eq.
(12.3.2) in Eq. (12.3.1) gives

N∑
r=1

mφr q̈r (t)+
N∑

r=1

kφr qr (t) = p(t)

Premultiplying each term in this equation by φT
n gives

N∑
r=1

φT
n mφr q̈r (t)+

N∑
r=1

φT
n kφr qr (t) = φT

n p(t)
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Because of the orthogonality relations of Eq. (10.4.1), all terms in each of the summations
vanish, except the r = n term, reducing this equation to

(φT
n mφn)q̈n(t)+ (φT

n kφn)qn(t) = φT
n p(t)

or

Mn q̈n(t)+ Kn qn(t) = Pn(t) (12.3.3)

where

Mn = φT
n mφn Kn = φT

n kφn Pn(t) = φT
n p(t) (12.3.4)

qn(t)

Mn Pn(t)

Kn

Figure 12.3.1 Generalized SDF system for
the nth natural mode.

Equation (12.3.3) may be interpreted as the equation governing the response qn(t) of
the SDF system shown in Fig. 12.3.1 with mass Mn , stiffness Kn , and exciting force Pn(t).
Therefore, Mn is called the generalized mass for the nth natural mode, Kn the generalized
stiffness for the nth mode, and Pn(t) the generalized force for the nth mode. These param-
eters depend only on the nth-mode φn . Thus, if we know only the nth mode, we can write
the equation for qn and solve it without even knowing the other modes. Dividing by Mn

and using Eq. (10.4.7), Eq. (12.3.3) can be rewritten as

q̈n + ω2
n qn = Pn(t)

Mn
(12.3.5)

Equation (12.3.3) or (12.3.5) governs the nth modal coordinate qn(t), the only unknown
in the equation, and there are N such equations, one for each mode. Thus, the set of N
coupled differential equations (12.3.1) in nodal displacements uj (t)— j = 1, 2, . . . , N—
has been transformed to the set of N uncoupled equations (12.3.3) in modal coordinates
qn(t)—n = 1, 2, . . . , N . Written in matrix form the latter set of equations is

Mq̈+Kq = P(t) (12.3.6)

where M is a diagonal matrix of the generalized modal masses Mn , K is a diagonal matrix
of the generalized modal stiffnesses Kn , and P(t) is a column vector of the generalized
modal forces Pn(t). Recall that M and K were introduced in Section 10.4.

Example 12.2

Consider the systems and excitation of Example 12.1. By modal analysis determine the steady-
state response of the system.

Solution The natural vibration frequencies and modes of this system were determined in
Example 10.4, from which the generalized masses and stiffnesses are calculated using
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Eq. (12.3.4). These results are summarized next:

ω1 =
√

k

2m
ω2 =

√
2k

m

φ1 =
〈

1
2 1

〉T
φ2 = 〈−1 1〉T

M1 = 3m

2
M2 = 3m

K1 = 3k

4
K2 = 6k

1. Compute the generalized forces.

P1(t) = φT
1 p(t) = (po/2)︸ ︷︷ ︸

P1o

sin ωt P2(t) = φT
2 p(t) = −po︸︷︷︸

P2o

sin ωt (a)

2. Set up the modal equations.

Mnq̈n + Knqn = Pno sin ωt (b)

3. Solve the modal equations. To solve Eq. (b) we draw upon the solution presented in
Eq. (3.1.7) for an SDF system subjected to harmonic force. The governing equation is

mü + ku = po sin ωt (c)

and its steady-state solution is

u(t) = po

k
C sin ωt C = 1

1− (ω/ωn)2
(d)

where ωn =
√

k/m. Comparing Eqs. (c) and (b), the solution for Eq. (b) is

qn(t) = Pno

Kn
Cn sinωt (e)

where Cn is given by Eq. (d) with ωn interpreted as the natural frequency of the nth mode.
Substituting for Pno and Kn for n = 1 and 2 gives

q1(t) = 2po

3k
C1 sin ωt q2(t) = − po

6k
C2 sin ωt (f)

4. Determine the modal responses. The nth-mode contribution to displacements—from
Eq. (12.3.2)—is un(t) = φnqn(t). Substituting Eq. (f) gives the displacement response due to
the two modes:

u1(t) = φ1
2po

3k
C1 sin ωt u2(t) = φ2

−po

6k
C2 sin ωt (g)

5. Combine the modal responses.

u(t) = u1(t)+ u2(t) or uj (t) = uj1(t)+ uj2(t) j = 1, 2 (h)
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Substituting Eq. (g) and for φ1 and φ2 gives

u1(t) = po

6k
(2C1 + C2) sin ωt u2(t) = po

6k
(4C1 − C2) sin ωt (i)

These results are equivalent to those obtained in Example 12.1 by solving the coupled equa-
tions (12.3.1) of motion.

12.4 MODAL EQUATIONS FOR DAMPED SYSTEMS

When damping is included, the equations of motion for an MDF system are

mü+ cu̇+ ku = p(t) (12.4.1)

Using the transformation of Eq. (12.3.2), where φr are the natural modes of the system
without damping, these equations can be written in terms of the modal coordinates. Un-
like the case of undamped systems (Section 12.3), these modal equations may be coupled
through the damping terms. However, for certain forms of damping that are reasonable
idealizations for many structures, the equations become uncoupled, just as for undamped
systems. We shall demonstrate this next.

Substituting Eq. (12.3.2) in Eq. (12.4.1) gives

N∑
r=1

mφr q̈r (t)+
N∑

r=1

cφr q̇r (t)+
N∑

r=1

kφr qr (t) = p(t)

Premultiplying each term in this equation by φT
n gives

N∑
r=1

φT
n mφr q̈r (t)+

N∑
r=1

φT
n cφr q̇r (t)+

N∑
r=1

φT
n kφr qr (t) = φT

n p(t)

which can be rewritten as

Mn q̈n(t)+
N∑

r=1

Cnr q̇r (t)+ Kn qn(t) = Pn(t) (12.4.2)

where Mn, Kn , and Pn(t) were defined in Eq. (12.3.4) and

Cnr = φT
n cφr (12.4.3)

Equation (12.4.2) exists for each n = 1 to N, and the set of N equations can be written in
matrix form:

M q̈+ C q̇+K q = P(t) (12.4.4)

where M, K, and P(t) were introduced in Eq. (12.3.6) and C is a nondiagonal matrix of
coefficients Cnr . These N equations in modal coordinates qn(t) are coupled through the
damping terms because Eq. (12.4.2) contains more than one modal velocity.
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The modal equations will be uncoupled if the system has classical damping. For
such systems, as defined in Section 10.9, Cnr = 0 if n �= r and Eq. (12.4.2) reduces to

Mnq̈n + Cnq̇n + Knqn = Pn(t) (12.4.5)

where the generalized damping Cn is defined by Eq. (10.9.10). This equation governs the
response of the SDF system shown in Fig. 12.4.1. Dividing Eq. (12.4.5) by Mn gives

q̈n + 2ζnωnq̇n + ω2
nqn = Pn(t)

Mn
(12.4.6)

where ζn is the damping ratio for the nth mode. The damping ratio is usually not computed
using Eq. (10.9.11) but is estimated based on experimental data for structures similar to
the one being analyzed (Chapter 11). Equation (12.4.5) governs the nth modal coordinate
qn(t), and the parameters Mn, Kn, Cn , and Pn(t) depend only on the nth-mode φn , not
on other modes. Thus, we have N uncoupled equations like Eq. (12.4.5), one for each
natural mode. In summary, the set of N coupled differential equations (12.4.1) in nodal
displacements uj (t) has been transformed to the set of N uncoupled equations (12.4.5) in
modal coordinates qn(t).

qn(t)

Mn Pn(t)

Kn

Cn

Figure 12.4.1 Generalized SDF system for
the nth natural mode.

12.5 DISPLACEMENT RESPONSE

For given external dynamic forces defined by p(t), the dynamic response of an MDF sys-
tem can be determined by solving Eq. (12.4.5) or (12.4.6) for the modal coordinate qn(t).
Each modal equation is of the same form as the equation of motion for an SDF system.
Thus, the solution methods and results available for SDF systems (Chapters 3 to 5) can
be adapted to obtain solutions qn(t) for the modal equations. Once the modal coordinates
qn(t) have been determined, Eq. (12.3.2) indicates that the contribution of the nth mode to
the nodal displacements u(t) is

un(t) = φn qn (t) (12.5.1)

and combining these modal contributions gives the total displacements:

u(t) =
N∑

n=1

un(t) =
N∑

n=1

φn qn (t) (12.5.2)

The resulting u(t) is independent of how the modes are normalized, although qn(t) are not.
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This procedure is known as classical modal analysis or the classical mode super-
position method because individual (uncoupled) modal equations are solved to determine
the modal coordinates qn(t) and the modal responses un(t), and the latter are combined to
obtain the total response u(t). More precisely, this method is called the classical mode
displacement superposition method because modal displacements are superposed. For
brevity we usually refer to this procedure as modal analysis. This analysis method is
restricted to linear systems with classical damping. The linearity of the system is implicit
in using the principle of superposition, Eq. (12.3.2). Damping must be of the classical
form in order to obtain modal equations that are uncoupled, a central feature of modal
analysis.

12.6 ELEMENT FORCES

Two procedures described in Section 9.10 are available to determine the forces in various
elements—beams, columns, walls, etc.—of the structure at time instant t from the dis-
placements u(t) at the same time instant. In modal analysis it is instructive to determine
the contributions of the individual modes to the element forces. In the first procedure,
the nth-mode contribution rn(t) to an element force r(t) is determined from modal dis-
placements un(t) using element stiffness properties (Appendix 1). Then the element force
considering contributions of all modes is

r(t) =
N∑

n=1

rn(t) (12.6.1)

In the second procedure, the equivalent static forces associated with the nth-mode re-
sponse are defined using Eq. (9.10.1) with subscript s deleted: fn(t) = kun(t). Substituting
Eq. (12.5.1) and using Eq. (10.2.4) gives

fn(t) = ω2
nmφnqn(t) (12.6.2)

Static analysis of the structure subjected to these external forces at each time instant gives
the element force rn(t). Then the total force r(t) is given by Eq. (12.6.1).

12.7 MODAL ANALYSIS: SUMMARY

The dynamic response of an MDF system to external forces p(t) can be computed by
modal analysis, summarized next as a sequence of steps:

1. Define the structural properties.
a. Determine the mass matrix m and stiffness matrix k (Chapter 9).
b. Estimate the modal damping ratios ζn (Chapter 11).

2. Determine the natural frequencies ωn and modes φn (Chapter 10).
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3. Compute the response in each mode by the following steps:
a. Set up Eq. (12.4.5) or (12.4.6) and solve for qn(t).
b. Compute the nodal displacements un(t) from Eq. (12.5.1).
c. Compute the element forces associated with the nodal displacements un(t) by

implementing one of the two methods described in Section 12.6 for the desired
values of t and the element forces of interest.

4. Combine the contributions of all the modes to determine the total response. In par-
ticular, the nodal displacements u(t) are given by Eq. (12.5.2) and element forces by
Eq. (12.6.1).

Example 12.3

Consider the systems and excitation of Example 12.1. Determine the spring forces Vj (t)
for the system of Fig. 12.1.1a, or story shears Vj (t) in the system of Fig. 12.1.1b, without
introducing equivalent static forces. Consider only the steady-state response.

Solution Steps 1, 2, 3a, and 3b of the analysis summary of Section 12.7 have already been
completed in Example 12.2.

Step 3c: The spring forces in the system of Fig. 12.1.1a or the story shears in the system
of Fig. 12.1.1b are

V1n(t) = k1u1n(t) = k1φ1nqn(t) (a)

V2n(t) = k2 [u2n(t)− u1n(t)] = k2(φ2n − φ1n)qn(t) (b)

Substituting Eq. (f) of Example 12.2 in Eqs. (a) and (b) with n = 1, k1 = 2k, k2 = k, φ11 = 1
2 ,

and φ21 = 1 gives the forces due to the first mode:

V11(t) = 2po

3
C1 sin ωt V21(t) = po

3
C1 sin ωt (c)

Substituting Eq. (f) of Example 12.2 in Eqs. (a) and (b) with n = 2, φ12 = −1, and φ22 = 1
gives the second-mode forces:

V12(t) = po

3
C2 sin ωt V22(t) = − po

3
C2 sin ωt (d)

Step 4b: Substituting Eqs. (c) and (d) in Vj (t) = Vj1(t)+ Vj2(t) gives

V1(t) = po

3
(2C1 + C2) sin ωt V2(t) = po

3
(C1 − C2) sin ωt (e)

Equation (e) gives the time variation of spring forces and story shears. For a given po and ω
and the ωn already determined, all quantities on the right side of these equations are known;
thus Vj (t) can be computed.

Example 12.4

Repeat Example 12.3 using equivalent static forces.

Solution From Eq. (12.6.2), for a lumped-mass system the equivalent static force in the j th
DOF due to the nth mode is

f jn(t) = ω2
nmj φjnqn(t) (a)
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Step 3c: In Eq. (a) with n = 1, substitute m1 = 2m, m2 = m, φ11 = 1
2 , φ21 = 1,

ω2
1 = k/2m, and q1(t) from Eq. (f) of Example 12.2 to obtain

f11(t) = po

3
C1 sin ωt f21(t) = po

3
C1 sin ωt (b)

In Eq. (a) with n = 2, substituting m1 = 2m, m2 = m, φ12 = −1, φ22 = 1, ω2
2 = 2k/m, and

q2(t) from Eq. (f) of Example 12.2 gives

f12(t) = 2po

3
C2 sin ωt f22(t) = − po

3
C2 sin ωt (c)

Static analysis of the systems of Fig. E12.4 subjected to forces f jn(t) gives the two
spring forces and story shears due to the nth mode:

V1n(t) = f1n(t)+ f2n(t) V2n(t) = f2n(t) (d)

Substituting Eq. (b) in Eq. (d) with n = 1 gives the first mode forces that are identical to Eq. (c)
of Example 12.3. Similarly, substituting Eq. (c) in Eq. (d) with n = 2 gives the second-mode
results that are identical to Eq. (d) of Example 12.3.

Step 4: Proceed as in step 4b of Example 12.3.

f1n(t) f2n(t)

f2n(t)

f1n(t)

Figure E12.4

Example 12.5

Consider the system and excitation of Example 12.1 with modal damping ratios ζn . Determine
the steady-state displacement amplitudes of the system.

Solution Steps 1 and 2 of the analysis summary have been completed in Example 12.2.
Step 3: The modal equations without damping were developed in Example 12.2. Now

including damping they become

Mn q̈n + Cn q̇n + Kn qn = Pno sin ωt (a)

where Mn , Kn , and Pno are available and Cn is known in terms of ζn .
To solve Eq. (a), we draw upon the solution presented in Eq. (3.2.3) for an SDF system

with damping subjected to harmonic force. The governing equation is

mü + cu̇ + ku = po sin ωt (b)

and its steady-state solution is

u(t) = po

k
(C sin ωt +D cos ωt) (c)
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with

C = 1− (ω/ωn)
2

[1− (ω/ωn)2]2 + (2ζ ω/ωn)2
D = −2ζ ω/ωn

[1− (ω/ωn)2]2 + (2ζ ω/ωn)2
(d)

where ωn =
√

k/m and ζ = c/2mωn .
Comparing Eqs. (b) and (a), the solution for the latter is

qn(t) = Pno

Kn
(Cn sin ωt +Dn cos ωt) (e)

where Cn and Dn are given by Eq. (d) with ωn interpreted as the natural frequency of the nth
mode and ζ = ζn , the damping ratio for the nth mode. Substituting for Pno and Kn for n = 1
and 2 gives

q1(t) = 2po

3k
(C1 sin ωt +D1 cos ωt) (f)

q2(t) = − po

6k
(C2 sin ωt +D2 cos ωt) (g)

Steps 3b and 4: Substituting φn in Eqs. (12.5.2) gives the nodal displacements:

u1(t) = 1
2 q1(t)− q2(t) u2(t) = q1(t)+ q2(t)

Substituting Eqs. (f) and (g) for qn(t) gives

u1(t) = po

6k
[(2C1 + C2) sin ωt + (2D1 +D2) cos ωt] (h)

u2(t) = po

6k
[(4C1 − C2) sin ωt + (4D1 −D2) cos ωt] (i)

The displacement amplitudes are

u1o = po

6k

√
(2C1 + C2)

2 + (2D1 +D2)
2 (j)

u2o = po

6k

√
(4C1 − C2)

2 + (4D1 −D2)
2 (k)

These ujo can be computed when the amplitude po and frequency ω of the exciting force are
known together with system properties k, ωn , and ζn .

It can be shown that Eqs. (h) and (i), specialized for ζn = 0, are identical to the results
for the system without damping obtained in Example 12.2.

Example 12.6

The dynamic response of the system of Fig. E12.6a to the excitation shown in Fig. E12.6b
is desired. Determine (a) displacements u1(t) and u2(t); (b) bending moments and shears
at sections a, b, c, and d as functions of time; (c) the shearing force and bending moment
diagrams at t = 0.18 s. The system and excitation parameters are E = 200,000 MPa, I =
4000 cm4, L = 300 cm, mL = 0.2952 kN-s2/cm (29,520 kg) and po = 20 kN. Neglect
damping.

Solution The mass and stiffness matrices are available from Example 9.5. The natural
frequencies and modes of this system were determined in Example 10.2. They are ω1 =
3.156

√
E I/mL4 and ω2 = 16.258

√
E I/mL4; φ1 = 〈1 0.3274〉T and φ2 = 〈1 −1.5274〉T .

Substituting for E , I , m, and L gives ω1 = 10.00 and ω2 = 51.51 rad/s.
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u2 u1

p(t)

mL/2 mL/4

•• ••L/2 L/2

(a)

abcd

4.831q1
= 13.23

7.379q1
= 20.21

fS, kN

V, kN

33.44
20.21

M, kN-m

80.48

30.32(

(c)

p

po

t

(b)

598.1q2
=21.44

195.8q2
= 7.02

14.42

7.02

11.10

10.53

(

)

(d)

f2 = 8.21

f1 = 27.23

fS, kN

V, kN
19.02

27.23

M, kN-m

69.37

40.84

(

(e)

Figure E12.6

1. Set up the modal equations.

M1 = φT
1 mφ1 = 0.08962 M2 = φT

2 mφ2 = 0.4181 kN-s2/cm

P1(t) = φT
1

{
po

o

}
= 20 P2(t) = φT

2

{
po

o

}
= 20 kN

The modal equations (12.4.6) are

q̈1 + 102q1 = 20

0.08962
= 223.17 q̈2 + (51.51)2q2 = 20

0.4181
= 47.83 cm/s2 (a)

2. Solve the modal equations. Adapting the SDF system result, Eq. (4.3.2), to Eq. (a)
gives

q1(t) = 223.17

102
(1− cos 10t) = 2.232(1− cos 10t)

q2(t) = 47.83

(51.51)2
(1− cos 51.51t) = 0.0180(1− cos 51.51t)

(b)
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3. Determine the displacement response. Substituting for φ1, φ2, q1(t), and q2(t) in
Eq. (12.5.2) gives

u1(t) = 2.250− 2.232 cos 10t − 0.018 cos 51.51t

u2(t) = 0.703− 0.731 cos 10t + 0.028 cos 51.51t
(c)

4. Determine the equivalent static forces. Substituting for ω2
1, m, andφ1 in Eq. (12.6.2)

gives the forces shown in Fig. E12.6c:

f1(t) =
[

f1(t)
f2(t)

]
1
= 102

[
0.0738

0.1476

]{
1

0.3274

}
q1(t) =

{
7.379
4.831

}
q1(t) (d)

Similarly substituting ω2
2, m, and φ2 gives the forces shown in Fig. E12.6d:

f2(t) =
[

f1(t)
f2(t)

]
2
=
[

195.8
−598.1

]
q2(t) (e)

The combined forces are

f1(t) = 7.379 q1(t)+ 195.8 q2(t) f2(t) = 4.831 q1(t)− 598.1 q2(t) (f)

5. Determine the internal forces. Static analysis of the cantilever beam of Fig. E12.6e
gives the shearing forces and bending moments at the various sections a, b, c,
and d:

Va(t) = Vb(t) = f1(t) Vc(t) = Vd (t) = f1(t)+ f2(t) (g)

Ma(t) = 0 Mb(t) = L

2
f1(t) Md (t) = L f1(t)+ L

2
f2(t) (h)

where f1(t) and f2(t) are known from Eqs. (f) and (b).
6. Determine the internal forces at t = 0.18 s. At t = 0.18 s, from Eq. (b), q1 =

2.739 cm and q2 = 0.0358 cm. Substituting these in Eqs. (d) and (e) gives numerical values
for the equivalent static forces shown in Fig. E12.6c and d, wherein the shearing forces and
bending moments due to each mode are plotted. The combined values of these element forces
are shown in Fig. E12.6e.

PART C: MODAL RESPONSE CONTRIBUTIONS

12.8 MODAL EXPANSION OF EXCITATION VECTOR p(t) = sp(t)

We now consider a common loading case in which the applied forces pj (t) have the same
time variation p(t), and their spatial distribution is defined by s, independent of time. Thus

p(t) = sp(t) (12.8.1)

A central idea of this formulation, which we will find instructive, is to expand the vector s
as

s =
N∑

r=1

sr =
N∑

r=1

�r mφr (12.8.2)
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Premultiplying both sides of Eq. (12.8.2) by φT
n and utilizing the orthogonality property of

modes gives

�n = φ
T
n s

Mn
(12.8.3)

The contribution of the nth mode to s is
sn = �nmφn (12.8.4)

which is independent of how the modes are normalized. This should be clear from the
structure of Eqs. (12.8.3) and (12.8.4).

Equation (12.8.2) may be viewed as an expansion of the distribution s of applied
forces in terms of inertia force distributions sn associated with natural modes. This in-
terpretation becomes apparent by considering the structure vibrating in its nth mode with
accelerations ün (t) = q̈n (t)φn . The associated inertia forces are

(fI )n = −mün (t) = −mφn q̈n (t)

and their spatial distribution, given by the vector mφn , is the same as that of sn .
The expansion of Eq. (12.8.2) has two useful properties: (1) the force vector sn p(t)

produces response only in the nth mode but no response in any other mode; and (2) the
dynamic response in the nth mode is due entirely to the partial force vector sn p(t) (see
Derivation 12.1).

To study the modal expansion of the force vector sp(t) further, we consider the
structure of Fig. 12.8.1: a five-story shear building (i.e., flexurally rigid floor beams and
slabs) with lumped mass m at each floor, and same story stiffness k for all stories.

u5

u4

u3

u2

u1

Floor mass

m

m

m

m

m

Story stiffness

k

k

k

k

k Figure 12.8.1 Uniform five-story shear
building.

The mass and stiffness matrices of the structure are

m = m

⎡
⎢⎢⎢⎣

1
1

1
1

1

⎤
⎥⎥⎥⎦ k = k

⎡
⎢⎢⎢⎣

2 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 1

⎤
⎥⎥⎥⎦
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Determined by solving the eigenvalue problem, the natural frequencies are

ωn = αn

(
k

m

)1/2

where α1 = 0.285, α2 = 0.831, α3 = 1.310, α4 = 1.683, and α5 = 1.919. For a
structure with m = 45 Mg(= 0.45 kN-sec2/cm), the natural vibration modes, which have
been normalized to obtain Mn = 1 kN-sec2/cm, are (Fig. 12.8.2)

φ1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0.253
0.486
0.679
0.818
0.890

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

φ2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−0.679
−0.890
−0.486

0.253
0.818

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

φ3 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0.890
0.253
−0.818
−0.486

0.679

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

φ4 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−0.818
0.679
0.253
−0.890

0.486

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

φ5 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0.486
−0.818

0.890
−0.679

0.253

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

 0.253

0.486

 0.679

 0.818

 0.890

Mode 1

 0.679

0.890

0.486

 0.253

0.818

Mode 2

 0.890

 0.253

0.818

0.486

 0.679

Mode 3

 0.818

 0.679

 0.253

0.890

 0.486

Mode 4

 0.486

0.818

 0.890

0.679

 0.253

Mode 5

Figure 12.8.2 Natural modes of vibration of uniform five-story shear building.

Consider two different sets of applied forces: p(t) = sa p(t) and p(t) = sb p(t),
where sT

a = 〈 0 0 0 0 1 〉 and sT
b = 〈 0 0 0 −1 2 〉; note that the resultant

force is unity in both cases (Fig. 12.8.3). Substituting for m, φn , and s = sa in Eqs. (12.8.4)
and (12.8.3) gives the modal contributions sn:

s1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0.101
0.195
0.272
0.327
0.356

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

s2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−0.250
−0.327
−0.179

0.093
0.301

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

s3 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0.272
0.077
−0.250
−0.149

0.208

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

s4 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−0.179
0.149
0.055
−0.195

0.106

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

s5 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0.055
−0.093

0.101
−0.077

0.029

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

Similarly, for s = sb, the sn vectors are

s1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0.110
0.210
0.294
0.354
0.385

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

s2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−0.423
−0.553
−0.302

0.157
0.508

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

s3 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0.739
0.210
−0.679
−0.403

0.564

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

s4 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−0.685
0.569
0.212
−0.746

0.407

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

s5 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0.259
−0.436

0.475
−0.363

0.135

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
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0.569
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Figure 12.8.3 Modal expansion of excitation vectors sa and sb .

Both sets of vectors are displayed in Fig. 12.8.3. The contributions of the higher modes
to s are larger for sb than for sa , suggesting that these modes may contribute more to the
response if the force distribution is sb than if it is sa . We will return to this observation in
Section 12.11.

Derivation 12.1

The first property can be demonstrated from the generalized force for the r th mode:

Pr (t) = φT
r sn p(t) = �n(φ

T
r mφn)p(t) (a)

Because of Eq. (10.4.1b), the orthogonality property of modes,

Pr (t) = 0 r �= n (b)

indicating that the excitation vector sn p(t) produces no generalized force and hence no re-
sponse in the r th mode, r �= n. Equation (a) for r = n is

Pn(t) = �n Mn p(t) (c)

which is nonzero, implying that sn p(t) produces a response only in the nth mode.
The second property becomes obvious by examining the generalized force for the nth

mode associated with the total force vector:

Pn(t) = φT
n sp(t)

Substituting Eq. (12.8.2) for s gives

Pn(t) =
N∑

r=1

�r
(
φT

n mφr
)

p(t)
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which, after utilizing the orthogonality property of modes, reduces to

Pn(t) = �n Mn p(t) (d)

This generalized force for the complete force vector sp(t) is the same as Eq. (c) associated
with the partial force vector sn p(t).

12.9 MODAL ANALYSIS FOR p(t) = sp(t)

The dynamic analysis of an MDF system subjected to forces p(t) is specialized in this
section for the excitation p(t) = sp(t). The generalized force Pn(t) = �n Mn p(t) for the
nth mode is substituted in Eq. (12.4.6) to obtain the modal equation:

q̈n + 2ζn ωn q̇n + ω2
n qn = �n p(t) (12.9.1)

The factor �n that multiplies the force p(t) is sometimes called a modal participation fac-
tor, but we avoid this terminology because �n has two disadvantages; it is not independent
of how the mode is normalized, or a measure of the contribution of the mode to a response
quantity. Both these drawbacks are overcome by modal contribution factors that are de-
fined in the next section.

We will write the solution qn(t) in terms of the response of an SDF system. Con-
sider such a system with unit mass, and vibration properties—natural frequency ωn and
damping ratio ζn—of the nth mode of the MDF system excited by the force p(t). The
response of this nth-mode SDF system is governed by Eq. (1.5.2) with m = 1 and ζ = ζn ,
which is repeated here with u replaced by Dn to emphasize its connection with the nth
mode:

D̈n + 2ζn ωn Ḋn + ω2
n Dn = p(t) (12.9.2)

Comparing Eqs. (12.9.2) and (12.9.1) gives

qn(t) = �n Dn(t) (12.9.3)

Thus qn(t) is readily available once Eq. (12.9.2) has been solved for Dn(t), utilizing the
available results for SDF systems subjected to, for example, harmonic, step, and impulsive
forces (Chapters 3 and 4).

Then the contribution of the nth mode to nodal displacements u(t), Eq. (12.5.1), is

un(t) = �n φn Dn(t) (12.9.4)

Substituting Eq. (12.9.3) in (12.6.2) gives the equivalent static forces:

fn(t) = sn
[
ω2

n Dn(t)
]

(12.9.5)
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The nth-mode contribution rn(t) to any response quantity r(t) is determined by static anal-
ysis of the structure subjected to forces fn(t). If r st

n denotes the modal static response, the
static value (indicated by superscript “st”) of r due to external forces sn ,† then

rn(t) = r st
n [ω2

n Dn(t)] (12.9.6)

Combining the response contributions of all the modes gives the total response:

r(t) =
N∑

n=1

rn(t) =
N∑

n=1

r st
n

[
ω2

n Dn(t)
]

(12.9.7)

The modal analysis procedure just presented, a special case of the one presented in Sec-
tion 12.7, has the advantage of providing a basis for identifying and understanding the
factors that influence the relative modal contributions to the response, as we shall see in
Section 12.11.

Interpretation of modal analysis. In the first phase of the modal analysis
procedure, the vibration properties—natural frequencies and modes—of the structure are
computed, and the force distribution s is expanded into its modal components sn . The
rest of the procedure is shown schematically in Fig. 12.9.1 to emphasize the underlying
concepts. The contribution rn(t) of the nth mode to the dynamic response is obtained
by multiplying the results of two analyses: (1) static analysis of the structure subjected
to external forces sn , and (2) dynamic analysis of the nth-mode SDF system excited by
the force p(t). Thus, modal analysis requires static analysis of the structure for N sets
of external forces, sn , n = 1, 2, . . . , N , and dynamic analysis of N different SDF
systems. Combining the modal responses gives the dynamic response of the
structure.

12.10 MODAL CONTRIBUTION FACTORS

The contribution rn of the nth mode to response quantity r , Eq. (12.9.6), can be ex-
pressed as

rn(t) = r st rn
[
ω2

n Dn(t)
]

(12.10.1)

where r st is the static value of r due to external forces s and the nth modal contribution
factor:

rn = r st
n

r st
(12.10.2)

†Although we loosely refer to sn as forces, they are dimensionless because p(t) has units of force. Thus,
r st

n does not have the same units as r , but Eq. (12.9.6) gives the correct units for rn and Eq. (12.9.7) for r .
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Figure 12.9.1 Conceptual explanation of modal analysis.
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These modal contribution factors rn have three important properties:

1. They are dimensionless.

2. They are independent of how the modes are normalized.

3. The sum of the modal contribution factors over all modes is unity, that is,

N∑
n=1

rn = 1 (12.10.3)

The first property is obvious from their definition [Eq. (12.10.2)]. The second property
becomes obvious by noting that r st

n is the static effect of sn , which does not depend on
the normalization, and the modal properties do not enter into r st. Equation (12.10.3) can
be proven by recognizing that s = ∑ sn [Eq. (12.8.2)], which implies that r st = ∑ r st

n .
Dividing by r st gives the desired result.

12.11 MODAL RESPONSES AND REQUIRED NUMBER OF MODES

Consider the displacement Dn(t) of the nth-mode SDF system and define its peak value
Dno ≡ max

t
|Dn(t)|. The corresponding value of rn(t), Eq. (12.10.1), is

rno = r strnω
2
n Dno (12.11.1)

We shall rewrite this equation in terms of the dynamic response factor introduced in Chap-
ters 3 and 4. For the nth-mode SDF system governed by Eq. (12.9.2), this factor is
Rdn = Dno/(Dn,st)o, where (Dn, st)o is the peak value of Dn, st(t), the static response.
Obtained by dropping the Ḋn and D̈n terms in Eq. (12.9.2), Dn, st(t) = p(t)/ω2

n and its
peak value is (Dn, st)o = po/ω

2
n . Therefore, Eq. (12.11.1) becomes

rno = por strn Rdn (12.11.2)

The algebraic sign of rno is the same as that of the modal static response r st
n = r strn

because Dno is positive by definition [Eq. (12.11.1)]. Although it has an algebraic sign, rno

will be referred to as the peak value of the contribution of the nth mode to response r or,
for brevity, the peak modal response because it corresponds to the peak value of Dn(t).

Equation (12.11.2) indicates that the peak modal response is the product of four
quantities: (1) the dimensionless dynamic response factor Rdn for the nth-mode SDF sys-
tem excited by force p(t); (2) the dimensionless modal contribution factor rn for the re-
sponse quantity r ; (3) r st, the static value of r due to the external forces s; and (4) po, the
peak value of p(t). The quantities r st and rn depend on the spatial distribution s of the
applied forces but are independent of the time variation p(t) of the forces; on the other
hand, Rdn depends on p(t), but is independent of s.

The modal contribution factor rn and the dynamic response factor Rdn influence the
relative response contributions of the various vibration modes, and hence the minimum



490 Dynamic Analysis and Response of Linear Systems Chap. 12

number of modes that should be included in dynamic analysis. This becomes obvious by
noting that among the four quantities that enter in Eq. (12.11.2), po and r st are independent
of the mode number, but rn and Rdn vary with n.

How many modes should one include in modal analysis? The response contributions
of all the modes must obviously be included in order to obtain the exact value of the
response, but few modes can usually provide sufficiently accurate results. Typically, in
analyzing an N -DOF system, the first J modes are included, where J may be much smaller
than N , and the modal summation of Eq. (12.9.7) is truncated accordingly. Thus, we need
to compute the natural frequencies, natural modes, and the response Dn(t) only for the first
J modes, leading to computational savings.

Before studying the relative response contributions of the various vibration modes
and the number of modes to be included for specific examples, we make a couple of general
observations. If only the first J modes are included, the error in the static response is

eJ = 1−
J∑

n=1

rn (12.11.3)

For a fixed J the error eJ depends on the spatial distribution s of the applied forces. For
any s the error eJ will be zero when all the modes are included (J = N ) because of
Eq. (12.10.3), and the error will be unity when no modes are included (J = 0). Thus,
modal analysis can be truncated when |eJ |, the absolute value of eJ , becomes sufficiently
small for the response quantity r of interest. However, the relative values of Rdn for various
modes also influence the minimum number of modes to be included. Rdn depends on the
time variation p(t) of the applied forces and on the vibration properties ωn and ζn of the
nth mode.

Next, we will study the relative contributions of various modes to the response and
the number of modes that should be included in dynamic analysis with reference to the
structure of Fig. 12.8.1 and the applied force distributions sa and sb in Fig. 12.8.3. For this
purpose, we must investigate the two influencing factors: the modal contribution factor,
which depends on the spatial distribution of forces, and the dynamic response factor, which
is controlled by the time variation of forces.

12.11.1 Modal Contribution Factors

In this section we first describe a procedure to determine the modal contribution factors
for the base shear Vb and roof (N th floor) displacement uN of a multistory building. Fig-
ure 12.11.1 shows the external forces s and sn . The latter is defined by Eq. (12.8.4); in
particular, the lateral force at the j th floor level is the j th element of sn:

sjn = �nmjφjn (12.11.4)

where mj is the lumped mass and φjn the nth-mode shape value at the j th floor. As a result
of the static forces sn (Fig. 12.11.1b), the base shear is

V st
bn =

N∑
j=1

sjn = �n

N∑
j=1

mjφjn (12.11.5)
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Figure 12.11.1 External forces:
(a) s; (b) sn .

and the floor displacements are ust
n = k−1sn . Inserting Eq. (12.8.4) and using Eq. (10.2.4)

gives ust
n =

(
�n/ω

2
n

)
φn . In particular, the roof displacement is

ust
Nn =

�n

ω2
n

φNn (12.11.6)

Equations (12.11.5) and (12.11.6) define the modal static responses r st
n for base shear

and roof displacement. With r st
n known, the modal contribution factor is obtained from

Eq. (12.10.2), where r st is computed by static analysis of the building subjected to forces s
(Fig. 12.11.1a).

Now, we study how the modal contribution factors depend on the spatial distribution
of the applied forces. The procedure just described is used to determine the modal contribu-
tion factors for roof displacement and base shear of the five-story shear frame (Fig. 12.8.1)
for the two different force distribution vectors sa and sb introduced in Section 12.8. These
computations require the modal expansions of sa and sb and the natural modes of the sys-
tem, which are available in Figs. 12.8.2 and 12.8.3. The modal contribution factors and
their cumulative values considering the first J modes are presented in Table 12.11.1. Con-
sistent with Eq. (12.10.3), the sum of modal contribution factors over all modes is unity,
although the convergence may or may not be monotonic. For the structure and force dis-
tributions considered, Table 12.11.1 indicates that the convergence is monotonic for roof
displacement but not for base shear.

The data of Table 12.11.1 permit two useful observations pertaining to relative values
of the modal responses:

1. For a particular spatial distribution of forces, the modal contribution factors for
higher modes are larger for base shear than for roof displacement, suggesting that
the higher modes contribute more to base shear (and other element forces) than to
roof displacement (and other floor displacements).

2. For a particular response quantity, the modal contribution factors for higher modes
are larger for force distribution sb than for sa , suggesting that the higher modes con-
tribute more to a response in the sb case. Recall that the modal expansion of sa and
sb in Section 12.8 had suggested the same conclusion.
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TABLE 12.11.1 MODAL AND CUMULATIVE CONTRIBUTION FACTORS

Mode n or

Force Distribution, sa Force Distribution, sb

Number of

Roof Roof
Displacement Base Shear Displacement Base Shear

Modes, J
u5n

J∑
n=1

u5n V bn

J∑
n=1

V bn u5n

J∑
n=1

u5n V bn

J∑
n=1

V bn

1 0.880 0.880 1.252 1.252 0.792 0.792 1.353 1.353
2 0.087 0.967 −0.362 0.890 0.123 0.915 −0.612 0.741
3 0.024 0.991 0.159 1.048 0.055 0.970 0.431 1.172
4 0.008 0.998 −0.063 0.985 0.024 0.994 −0.242 0.930
5 0.002 1.000 0.015 1.000 0.006 1.000 0.070 1.000

How many modes should be included in modal analysis? We first examine how the
number of modes required to keep the error in static response below some selected value
is influenced by the spatial distribution s of the applied forces. If the objective is to keep
|eJ | < 0.05 (5%) for the base shear, the data of Table 12.11.1 indicate that three modes
suffice for the force distribution sa , whereas all five modes need to be included in the case
of sb. For the same accuracy in the roof displacement, two modes suffice for the force
distribution sa , but three modes are needed in the case of sb. More modes need to be in-
cluded for the force distribution sb than for sa because, as mentioned earlier, the modal
contribution factors for higher modes are larger for sb than for sa .

We next examine how the number of modes required is influenced by the response
quantity of interest. If the objective is to keep |eJ | < 0.05 (5%), three modes need to be
included to determine the base shear for force distribution sa , whereas two modes would
suffice for roof displacement. To achieve the same accuracy for force distribution sb, all five
modes are needed for base shear, whereas three modes would suffice for roof displacement.
More modes need to be included for base shear than for roof displacement because, as
mentioned earlier, the modal contribution factors for higher modes are larger for base shear
than for roof displacement.

It is not necessary to repeat the preceding analysis for all response quantities. Instead,
some of the key response quantities, especially those that are likely to be sensitive to higher
modes, should be identified for deciding the number of modes to be included in modal
analysis.

12.11.2 Dynamic Response Factor

We now study how the modal response contributions depend on the time variation of the
excitation. The dynamic response to p(t) is characterized by the dynamic response fac-
tor Rdn in Eq. (12.11.2). This factor was derived in Chapter 3 for harmonic excitation
(Fig. 3.2.6) and in Chapter 4 for various excitations, including the half-cycle sine pulse
(Fig. 4.8.3c). In Fig. 12.11.2, Rd for harmonic force of period T is plotted against Tn/T
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Figure 12.11.2 Dynamic response factor
for harmonic force; ζ = 5% and 70%.

for SDF systems with natural period Tn and two damping ratios: ζ = 5 and 70%; Rd

for a half-cycle sine pulse force of duration td is plotted against Tn/td in Fig. 12.11.3 for
undamped SDF systems.

How Rdn , the value of Rd for the nth mode, for a given excitation p(t) varies with
n depends on where the natural periods Tn fall on the period scale. In the case of pulse
excitation, Fig. 12.11.3 shows that Rdn varies over a narrow range for a wide range of Tn

and could have similar values for several modes. Thus, several modes would generally have
to be included in modal analysis with their relative response contributions, Eq. (12.11.2),
determined primarily by the relative values of rn , the modal contribution factors. The same
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Figure 12.11.3 Dynamic response factor
for half-cycle sine pulse force; ζ = 0.
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conclusion also applies to highly damped systems subjected to harmonic force because,
as seen in Fig. 12.11.2, several modes could have similar values of Rdn . However, for
lightly damped systems subjected to harmonic excitation, Fig. 12.11.2 indicates that Rdn

is especially large for modes with natural period Tn close to the forcing period T . These
modes would contribute most to the response and are perhaps the only modes that need to
be included in modal analysis unless the modal contribution factors rn for these modes are
much smaller than for some other modes.

To explore these ideas further, consider the five-story shear frame (Fig. 12.8.1) with-
out damping subjected to harmonic forces p(t) = sb p(t), where p(t) = po sin(2π t/T ).
Further consider four different values of the forcing period T relative to the fundamen-
tal natural period of the system: T1/T = 0.75, 2.75, 3.50, and 4.30. For each of these
forcing periods the Rdn values for the five natural periods of the system (defined in Sec-
tion 12.8) are identified in Fig. 12.11.4. These data permit the following observations for
each of the four cases:

1. T1/T = 0.75 (Fig. 12.11.4a): Rdn is largest for the first mode, and Rd1 is sig-
nificantly larger than other Rdn . The larger Rd1 combined with the larger modal
contribution factor V b1 for the first mode, compared to these factors V bn for other
modes (Table 12.11.1), will make the first-mode response largest. Observe that Rdn

for higher modes are close to 1, indicating that the response in these modes is essen-
tially static.

2. T1/T = 2.75 (Fig. 12.11.4b): For this case T2/T = 0.943, and therefore Rd2 =
8.89 is much larger than the other Rdn . Therefore, the second-mode response will
dominate all the modal responses, even the first-mode response, although V b1 =
1.353 is more than twice V b2 = −0.612. The second mode alone would provide a
reasonably accurate result.

3. T1/T = 3.5 (Fig. 12.11.4c): Rd2 and Rd3 are similar in magnitude, much larger than
Rd1, and significantly larger than Rd4 and Rd5. This suggests that the second- and
third-mode contributions to the response would be the larger ones. The second-mode
response would exceed the third-mode response because the magnitude of V b2 =
−0.612 is larger than V b3 = 0.431.

4. T1/T = 4.3 (Fig. 12.11.4d): For this case the third-mode period is closest to the
exciting period (T3/T = 0.935), and therefore Rd3 = 7.89 is much larger than the
other Rdn . Therefore, the third-mode response will dominate all the modal responses,
even the first-mode response, although V b1 = 1.353 exceeds V b3 = 0.431 by a factor
of over 3. The third mode alone would provide a reasonably accurate result.

It is not necessary to compute all the natural periods of a system having a large
number of DOFs in ascertaining which of the Rdn values are significant. Only the first
few natural periods need to be calculated and located on the plot showing the dynamic
response factor. Then the approximate locations of the higher natural periods become
readily apparent, thus providing sufficient information to estimate the range of Rdn values
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Figure 12.11.4 Dynamic response factors Rdn for five modes of undamped system and
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and to make a preliminary decision on the modes that may contribute significant response.
Precise values of Rdn can then be calculated for these modes to be included in modal
analysis.

In judging the contribution of a natural mode to the dynamic response of a struc-
ture, it is necessary to consider the combined effects of the modal contribution factor
rn and the dynamic response factor Rdn . The two factors have been discussed sepa-
rately in this and the preceding sections because rn depends on the spatial distribution
s of the applied forces, whereas Rdn depends on the time variation p(t) of the excita-
tion. However, they both enter into the modal response, Eq. (12.11.2). By retaining
only the first few modes with significant values of rn or Rdn , or both, the computa-
tional effort can be reduced. The resulting computational savings may not be significant
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in dynamic analysis of systems with a few dynamic DOFs, such as the five-story shear
frame considered here. However, substantial reduction in computation can be achieved for
practical, complex structures that may require hundreds or thousands of DOFs for their
idealization.

PART D: SPECIAL ANALYSIS PROCEDURES

12.12 STATIC CORRECTION METHOD

In Section 12.11 we have shown that the dynamic response factor Rdn for some of the
higher modes of a structure may be only slightly larger than unity. For the five-story shear
frame subjected to harmonic excitation with T1/T = 0.75, Rdn = 1.07, 1.03, 1.02, and
1.01 for the second, third, fourth, and fifth modes, respectively (Fig. 12.11.4a). Such is the
case when the higher-mode period Tn is much shorter than the period T of the harmonic
excitation or the duration td of an impulsive excitation (Fig. 12.11.3). The response in
such a higher mode could be determined by the easier static analysis instead of dynamic
analysis. This is the essence of the static correction method, developed next.

Suppose that we include all N modes in the analysis but divide them into two parts:
(1) the first Nd modes with natural periods Tn such that the dynamic effects are significant,
as indicated by Rdn being significantly different than 1; and (2) modes Nd + 1 to N with
natural periods Tn such that Rdn is close to 1. Then the modal contributions to the response
can be divided into two parts:

r(t) =
Nd∑

n=1

rn(t)+
N∑

n=Nd+1

rn(t) (12.12.1)

The nth-mode response rn(t) is given by Eq. (12.10.1), where Dn(t) is the dynamic re-
sponse of the nth-mode SDF system governed by Eq. (12.9.2). A quasi-static solution
of this equation gives Dn(t) for modes Nd + 1 to N ; dropping the velocity Ḋn(t) and
acceleration D̈n(t) leads to

ω2
n Dn(t) = p(t) (12.12.2)

Substituting Eqs. (12.10.1) and (12.12.2) in Eq. (12.12.1) gives

r(t) = r st
Nd∑

n=1

rn
[
ω2

n Dn(t)
]+ r st p(t)

N∑
n=Nd+1

rn (12.12.3)

Thus, Eq. (12.9.2) needs to be solved by dynamic analysis procedures (e.g., analytical
solution or numerical integration of the differential equation) only for the first Nd modes.
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However, Eq. (12.12.3) suggests that the modal contribution factors rn are still needed for
the higher modes Nd + 1 to N and, as seen earlier, the natural frequencies and modes of
the system are required to compute rn .

Therefore, we look for a way to circumvent this requirement by rewriting

N∑
n=Nd+1

rn =
N∑

n=1

rn −
Nd∑

n=1

rn = 1−
Nd∑

n=1

rn (12.12.4)

wherein we have utilized Eq. (12.10.3). Substituting Eq. (12.12.4) in (12.12.3) gives

r(t) = r st

[
Nd∑

n=1

rn
(
ω2

n Dn(t)
)+

(
1−

Nd∑
n=1

r̄n

)
p(t)

]
(12.12.5)

or

r(t) = r st

[
p(t)+

Nd∑
n=1

r̄n
(
ω2

n Dn(t)− p(t)
)]

(12.12.6)

When written in either of these forms, only the first Nd natural frequencies and modes are
needed in computing the dynamic response. In Eq. (12.12.5) the second term in brackets
is the quasi-static response solution for the higher modes, n = Nd + 1 to N , which may be
considered as the static correction to the dynamic response solution given by the first term.
This method is therefore known as the static correction method.

The static correction method is effective in analyses where many higher modes must
be included to represent satisfactorily the spatial distribution s of the applied forces, but
where the exciting force p(t) is such that the dynamic response factor for only a few
lower modes is significantly different than 1. In these situations the combined dynamic
response of these few modes together with the static correction term will give results
comparable to a classical modal analysis, including many more modes. If p(t) is de-
fined numerically, the static correction method requires substantially less computational
effort by avoiding the numerical time-stepping solution for the higher, statically respond-
ing modes. The computational savings can be substantial because the time step to be
used in numerical solution of the higher modal equations must be very short (Chapters 5
and 16).

Example 12.7

Compute the base shear response of the uniform five-story shear frame of Fig. 12.8.1 to p(t) =
sb p(t), where sT

b = 〈0 0 0 −1 2〉 and p(t) = po sinωt by two methods: (a) classical modal
analysis, and (b) static correction method; ω/ω1 = T1/T = 0.75 and the system is undamped.
Compute only the steady-state response.

Solution (a) Classical modal analysis. The nth-mode response is given by Eq. (12.10.1).
The steady-state solution of Eq. (12.9.2) with ζn = 0 and harmonic p(t) is

Dn(t) = po

ω2
n

Rdn sinωt Rdn = 1

1− (ω/ωn)2
(a)
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Note that this Rdn may be positive or negative, in contrast to the absolute value used in
Chapter 3 and in Fig. 12.11.4. Retaining the algebraic sign is useful when dealing with the
steady-state response of undamped systems to harmonic excitation. Substituting Eq. (a) in
Eq. (12.10.1) gives the response in the nth mode:

rn(t) = por strn Rdn sin ωt (b)

Combining the contributions of all modes gives the total response:

r(t) = por st

(
N∑

n=1

rn Rdn

)
sin ωt (c)

and its maximum value is

ro = por st
N∑

n=1

rn Rdn (d)

Equation (d) specialized for the base shear can be expressed as

Vbo

poV st
b

=
N∑

n=1

V bn Rdn (e)

For the system of Fig. 12.8.1, N = 5 and the static base shear due to forces sb (Fig. 12.8.3) is
V st

b = 1. Therefore, Eq. (e) becomes

Vbo

po
=

5∑
n=1

V bn Rdn (f)

Substituting for modal contribution factors V bn from Table 12.11.1 and calculating Rdn from
Eq. (a) leads to

Vbo

po
= V b1 Rd1 + V b2 Rd2 + V b3 Rd3 + V b4 Rd4 + V b5 Rd5

= (1.353) (2.29)+ (−0.612) (1.07)+ (0.431) (1.03)+ (−0.242) (1.02)

+ (0.070) (1.01)

= 2.71

(b) Static correction method. Specializing Eq. (12.12.6) for base shear:

Vb(t) = V st
b

[
p(t)+

Nd∑
n=1

V bn
(
ω2

n Dn(t)− p(t)
)]

(g)

Substituting for V st
b , po, and Dn(t) from Eq. (a) gives

Vb(t) = po sin ωt

[
1+

Nd∑
n=1

V bn(Rdn − 1)

]
(h)

The peak value Vbo of the base shear is given by

Vbo

po
= 1+

Nd∑
n=1

V bn(Rdn − 1) (i)
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Suppose that we consider the dynamic response only in the first mode. Then Nd = 1 and
Eq. (i) gives

Vbo

po
= 1+ V b1 (Rd1 − 1) = 1+ 1.353(2.29− 1) = 2.75

This result is close to the exact result of 2.71 obtained from dynamic response solutions for
all modes. This good agreement was anticipated in Section 12.11.2, where we noted that Rdn
for n > 1 were only slightly larger than 1.

Note that both p(t) and Dn(t) vary as sinωt in this special case of steady-state response
of undamped systems to harmonic excitation. In general, however, the time variation of Dn(t)
would differ from that of p(t).

12.13 MODE ACCELERATION SUPERPOSITION METHOD

Another method that can provide the same general effect as the static correction method,
called the mode acceleration superposition method, can be derived readily from the modal
equations of motion. The total response is the sum of the modal response contributions,
Eq. (12.10.1):

r(t) = r st
N∑

n=1

rn
[
ω2

n Dn(t)
]

(12.13.1)

where Dn(t) is governed by Eq. (12.9.2), which can be rewritten as

ω2
n Dn(t) = p(t)− D̈n(t)− 2ζn ωn Ḋn(t) (12.13.2)

Substituting Eq. (12.13.2) in Eq. (12.13.1) gives

r(t) = r st
N∑

n=1

rn
[

p(t)− D̈n(t)− 2ζnωn Ḋn(t)
]

which, by using Eq. (12.10.3), can be expressed as

r(t) = r st p(t)− r st
N∑

n=1

rn[D̈n(t)+ 2ζnωn Ḋn(t)] (12.13.3)

This can be interpreted as the quasi-static solution given by the first term on the right side,
modified by the second term to obtain the dynamic response of the system. If the response
in a higher mode, say the nth mode, is essentially static, the nth term in the summation
will be negligible. Thus, if the response in all modes higher than the first Nd modes is
essentially static, the summation can be truncated accordingly to obtain

r(t) = r st

{
p(t)−

Nd∑
n=1

rn [D̈n(t)+ 2ζnωn Ḋn(t)]

}
(12.13.4)

This method is often referred as the mode acceleration superposition method since
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Eq. (12.13.4) involves the superposition of modal accelerations D̈n (and velocities Ḋn)
rather than modal displacements Dn .

The mode acceleration superposition method is equivalent to the static correction
method, which becomes obvious by comparing Eqs. (12.13.4) and (12.12.6) in light of
Eq. (12.9.2). Thus, the two methods should provide identical results except for minor
differences arising from their numerical implementation. The choice between the two
methods is often dictated by ease of implementation in a computer code. In this regard the
static correction method is usually more convenient because it requires simple modification
of classical modal analysis (or the classical mode displacement superposition method). In
the classical procedure the first term in Eq. (12.12.5) is computed anyway for the specified
number Nd of modes. For these modes the modal contribution factors rn are available, so
the second term can be computed with little additional effort.

12.14 MODE ACCELERATION SUPERPOSITION METHOD:
ARBITRARY EXCITATION

Now that we understand the concepts underlying the static correction and mode acceler-
ation superposition methods, two equivalent methods, the latter method is presented for
arbitrary forces p(t), that is, forces not restricted to p(t) = sp(t), together with a com-
prehensive example. Wave forces on offshore drilling platforms are an example of such
excitation.

The displacement response of an N-DOF system is given by Eq. (12.5.2), repeated
here for convenience:

u(t) =
N∑

n=1

un(t) =
N∑

n=1

φ nqn (t) (12.14.1)

where the modal coordinate qn (t) is governed by Eq. (12.4.6):

q̈n + 2ζnωnq̇n + ω2
nqn = Pn (t)

Mn
(12.14.2)

where Pn (t) and Mn were defined in Eq. (12.3.4). In the mode acceleration superposition
method, the response due to the lower Nd modes is determined by dynamic analysis, that
is, solving Eq. (12.14.2), whereas the contributions of modes Nd+1 to N are determined by
static analysis. Dropping the velocity q̇n (t) and acceleration q̈n (t) terms in Eq. (12.14.2)
gives the quasi-static solution qn (t) = Pn (t)

/
Kn , where the nth-mode generalized stiff-

ness Kn = ω2
n Mn; see Eq. (10.4.7). Substituting this qn (t) in the terms associated with

n = Nd + 1 to N in Eq. (12.14.1) gives

u(t) =
Nd∑

n=1

φnqn(t) +
N∑

n=Nd+1

φn
Pn(t)

Kn
(12.14.3)

where an individual term in the second summation represents the contribution of the nth
mode to the static response. Rewriting the second summation as

N∑
n=Nd+1

φn
Pn(t)

Kn
=

N∑
n=1

φn
Pn(t)

Kn
−

Nd∑
n=1

φn
Pn(t)

Kn
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and noting that the first summation includes all modes and thus represents the (total) quasi-
static response of the structure to p(t), the preceding equation becomes

N∑
n=Nd+1

φn
Pn(t)

Kn
= k−1p(t)−

Nd∑
n=1

φn
Pn(t)

Kn
(12.14.4)

Substituting Eq. (12.14.4) in Eq. (12.14.3) gives

u(t) = k−1p(t)+
Nd∑

n=1

φn

[
qn (t)− Pn(t)

Kn

]
(12.14.5)

The analysis procedure embodied in Eq. (12.14.5), which is a generalized version of
Eq. (12.12.6), is known as the static correction method.

To express Eq. (12.14.5) in terms of modal velocity q̇n and acceleration q̈n , we divide
Eq. (12.14.2) by ω2

n and rewrite it as

qn (t)− Pn (t)

Kn
= −

[
2ζn

ωn
q̇n (t)+ 1

ω2
n

q̈n (t)

]
(12.14.6)

Substituting Eq. (12.14.6) in Eq. (12.14.5) gives

u(t) = k−1p(t)−
Nd∑

n=1

φn

[
2ζn

ωn
q̇n(t)+ 1

ω2
n

q̈n(t)

]
(12.14.7)

The analysis procedure embodied in Eq. (12.14.7), which is a generalized version of
Eq. (12.13.4), is known as the mode acceleration superposition method. The first term
in Eq. (12.14.7) represents the quasi-static solution, and the summation represents a cor-
rection applied to the quasi-static response to obtain the dynamic response.

It is obvious from the preceding derivation that the mode acceleration superposition
method is equivalent to the static correction method. For either method it is necessary
to decide Nd , the number of modes for which the response is to be determined by dy-
namic analysis. This decision is straightforward if the exciting forces are harmonic with
frequency ω. Referring to Fig. 3.2.6, it is clear that dynamic analysis is necessary for all
modes for which ω

/
ωn is such that the deformation response factor Rd differs significantly

from 1.0 or the phase angle φ differs significantly from zero. It is difficult to state similarly
simple criteria for nonharmonic excitations that vary arbitrarily in time.

12.14.1 EXAMPLE

The system considered is a uniform cantilever tower of length L, mass per unit length m,
flexural rigidity EI, and damping ratio of 5% in all natural vibration modes (Fig. 12.14.1a).
For purposes of dynamic analysis, the system is discretized with 10 lumped masses, as
shown in Fig. 12.14.1b, where mo = mL

/
10 and the DOFs are identified. Harmonic

forces applied at DOFs u9 and u10 are p9 (t) = −2p (t) and p10 (t) = p (t), where
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Figure 12.14.1 (a) Cantilever tower
(b) Lumped mass system.

p (t) = po sinωt with ω
/
ω1 = 1.5, where ω1 is the fundamental natural frequency of the

system†; no forces are applied at any of the other DOFs. Thus the forces are of the form
p(t) = s p(t), where their spatial distribution is defined by s =< 0 0 0 0 0 0 0 0 −
2 1 >. The modal expansion of s (Section 12.8) leads to the modal contributions sn , dis-
played in Fig. 12.14.2, where we observe that the contributions of modes 4 to 9 are larger
than those of modes 1 to 3, suggesting that these higher modes may contribute significantly
to the dynamic response.
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Figure 12.14.2 Modal expansion of force distribution s; forces sn , shown without arrow-
heads, are drawn to the same scale as s, but numerical values are not included.

†Although these forces belong to the restricted class p (t) = sp(t), we will utilize Eqs. (12.14.7), (12.5.2),
and (12.6.1) to implement dynamic analysis of the system for the restricted class, not the procedures of Sec-
tions 12.9 and 12.13.
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Figure 12.14.3 Response history determined by two approximate methods—classical
modal analysis and mode acceleration superposition—compared with exact response; (a) u10(t)
and (b) V8(t).

Approximate results for the dynamic response of the system obtained by two
methods—the mode acceleration superposition method [Eq. (12.14.7)] with Nd = 1 and
classical modal analysis, including the contributions of the first J = 1, 3, or 5 modes in
Eqs. (12.5.2) and (12.6.1)—are compared with the exact result, which can be obtained by
including contributions of all modes in classical modal analysis or choosing Nd = 10 in
Eq. (12.14.7); both approaches give identical results. The time variation of two response
quantities—displacement u10 (t) at the free end and shear force V8 (t) at the section just
above DOF u8—are presented in Fig. 12.14.3. In obtaining these results, the combined
steady-state and transient parts (see Section 3.2.1) of qn (t), starting from “at rest” ini-
tial conditions, were included. The height-wise distribution of the peak values of bending
moments and shears considering only the steady-state part of the response are presented in
Fig. 12.14.4. Spline functions were fitted to values of these internal forces determined at
the locations of the 10 DOFs to facilitate visualization of results.

These results permit the following observations: The mode acceleration method with
Nd = 1 provides essentially the exact results for displacements and forces. Such is the case
because values of Rd , defined by Eq. (3.2.11), for ω

/
ωn associated with modes 2, 3, and

4 are 1.061, 1.007, and 1.002, and the Rd values associated with higher modes are even
closer to 1.0, implying that the response contributions of modes 2 to 10 may be determined
by static analysis; that is, the response due only to the first mode need be determined
by dynamic analysis. In contrast, classical modal analysis including one mode provides
excellent results for displacement, but even when as many as five modes are included, the
moment and shears are inaccurate to an unacceptable degree; as many as nine modes had
to be included to obtain accurate results for shears. The fact that higher modes contribute
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Figure 12.14.4 Height-wise distributions of peak shears and moments due to harmonic
excitation with ω/ω1 = 1.5: (a) mode acceleration superposition; (b) classical modal
analysis.

more to shears than to moments, and more to moments than to displacements, is supported
by analysis (not presented here) similar to Section 12.11 of the modal contribution factors,
determined from Eq. (12.10.2).

The preceding analysis was repeated for exciting forces p(t) = s p(t), where s was
defined above and p(t) is a step force that jumps suddenly from zero to po and stays con-
stant (Fig. 4.3.1b). The height-wise distributions of the peak values of bending moments
and shears are presented in Fig. 12.14.5. For this excitation, the mode acceleration method
with Nd = 1 provides good results for moments and shears in the lower part of the tower,
but it is unable to reproduce the rapid variation of forces in the upper part of the tower.
As Nd is increased, the results improve, and Nd = 5 gives essentially the exact solution,
implying that dynamic analysis is necessary to determine the response contributions of the
first five modes. Such is the case because the value of Rd associated with all modes is 1.85†,
implying that the contributions of these modes cannot be determined by static analysis.

†Rd = uo

/
(ust)o, where uo is the peak value of u (t) defined by Eq. (4.3.5).
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Figure 12.14.5 Height-wise distributions of peak shears and moments due to step force
excitation: (a) mode acceleration superposition; (b) classical modal analysis.

The fact that peak values of forces determined by the mode acceleration method do
not change significantly as Nd is increased beyond 5 suggests that the static response in
modes 6 to 10, which we already included in the first term of Eq. (12.14.7), is adequate.
However, this suggestion is not supported by the fact that the Rd value associated with
modes 6 to 10 is 1.85, which indicates that dynamic analysis is necessary to determine the
response contributions of these modes also. Such analysis is indeed necessary to obtain
an accurate description of the complete response history; however, by coincidence, it had
very little effect on the peak response.

Turning now to classical modal analysis, as the number of modes included increases,
Figure 12.4.5 shows that the peak response approaches the exact result at a much slower
rate compared to the convergence achieved by the mode acceleration method as Nd in-
creases. Even with five modes included, the bending moment in the upper part of the tower
and shear forces over its entire height are inaccurate to an unacceptable degree.

The mode acceleration method is more accurate because it does not lose any details
of the height-wise distribution of applied forces; they are fully considered in the static
solution represented by the first term in Eq. (12.14.7), which considers the exact s vector. In
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Figure 12.14.6 (a) Partial force distributions
∑J

n=1 sn, J = 1, 3, and 5; (b) complete
force distribution s.

contrast, classical modal analysis does not retain the complete force distribution. Including
only the first J modes in classical modal analysis is equivalent to determining the response
to p(t) = p(t)

∑J
n=1 sn , that is, considering only the force distribution

∑J
n=1 sn . This

partial force distribution is shown for J = 1, 3, 5, and 10 in Fig. 12.14.6, where it is
clear that the partial force distribution for J = 5 is very different than the complete force
distribution s. Thus, it is not surprising that classical modal analysis including the first five
modes is unable to produce accurate results for responses (Fig. 12.14.5).
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P R O B L E M S

Part A

12.1 Figure P12.1 shows a shear frame (i.e., rigid beams) and its floor masses and story stiffnesses.
This structure is subjected to harmonic horizontal force p(t) = po sinωt at the top floor.
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(a) Derive equations for the steady-state displacements of the structure by two methods:
(i) direct solution of coupled equations, and (ii) modal analysis.
(b) Show that both methods give equivalent results.
(c) Plot on the same graph the two displacement amplitudes u1o and u2o as functions of
the excitation frequency. Use appropriate normalizations of the displacement and frequency
scales. Neglect damping.

m

m/2

k

k

Rigid beams

Figure P12.1

12.2 For the system and excitation of Problem 12.1, derive equations for story shears (consider-
ing steady-state response only) by two methods: (a) directly from displacements (without
introducing equivalent static forces), and (b) using equivalent static forces. Show that the
two methods give equivalent results.

Part B

12.3 Consider the system of Fig. P12.1 with modal damping ratios ζn subjected to the same exci-
tation. Derive equations for the steady-state displacement amplitudes of the system.

12.4 The undamped system of Fig. P12.1 is subjected to an impulsive force at the first-floor mass:
p1(t) = poδ(t). Derive equations for the lateral floor displacements as functions of time.

12.5 The undamped system of Fig. P12.1 is subjected to a suddenly applied force at the first-floor
mass: p1(t) = po, t ≥ 0. Derive equations for (a) the lateral floor displacements as functions
of time, and (b) the story drift (or deformation) in the second story as a function of time.

12.6 The undamped system of Fig. P12.1 is subjected to a rectangular pulse force at the first
floor. The pulse has an amplitude po and duration td = T1/2, where T1 is the fundamental
vibration period of the system. Derive equations for the floor displacements as functions of
time.

12.7 Figure P12.7 shows a shear frame (i.e., rigid beams) and its floor masses and story stiff-
nesses. This structure is subjected to harmonic force p(t) = po sinωt at the top floor.
(a) Determine the steady-state displacements as functions of ω by two methods: (i) direct
solution of coupled equations, and (ii) modal analysis.
(b) Show that both methods give the same results.
(c) Plot on the same graph the three displacement amplitudes as a function of the excita-
tion frequency over the frequency range 0 to 5ω1. Use appropriate normalizations of the
displacement and frequency scales.
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12.8 For the system and excitation of Problem 12.7 determine the story shears (considering
steady-state response only) by two methods: (a) directly from displacements (without in-
troducing equivalent static forces), and (b) using equivalent static forces. Show that the two
methods give identical results.

12.9 An eccentric mass shaker is mounted on the roof of the system of Fig. P12.7. The shaker has
two counterrotating masses, each 10 kg, at an eccentricity of 30 cm with respect to the verti-
cal axis of rotation. Determine the steady-state amplitudes of displacement and acceleration
at the roof as a function of excitation frequency. Plot the frequency response curves over the
frequency range 0 to 15 Hz. Assume that the modal damping ratios ζn are 5%.

12.10 The undamped system of Fig. P12.7 is subjected to an impulsive force at the second-floor
mass: p2(t) = poδ(t), where po = 89 kN. Derive equations for the lateral floor displace-
ments as functions of time.

12.11 The undamped system of Fig. P12.7 is subjected to a suddenly applied force at the first-floor
mass: p1(t) = po, t ≥ 0, where po = 900 kN. Derive equations for (a) the lateral floor
displacements as functions of time, and (b) the story drift (or deformation) in the second
story as a function of time.

12.12 The undamped system of Fig. P12.7 is subjected to a rectangular pulse force at the third
floor. The pulse has an amplitude po = 900 kN and duration td = T1/2, where T1 is the
fundamental vibration period of the system. Derive equations for the floor displacements as
functions of time.

12.13 Figure P12.13 shows a structural steel beam with E = 200,000 MPa, I = 4000 cm4, L =
400 cm, and mL = 121,500 kg. Determine the displacement response of the system to an
impulsive force p1(t) = poδ(t) at the left mass, where po = 45 kN and δ(t) is the Dirac
delta function. Plot as functions of time the displacements uj due to each vibration mode
separately and combined.

mL/3 mL/3EI

L/3 L/3 L/3
Figure P12.13
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12.14 Determine the displacement response of the system of Problem 12.13 to a suddenly applied
force of 450 kN applied at the left mass. Plot as functions of time the displacements uj due
to each vibration mode separately and combined.

12.15 Determine the displacement response of the system of Problem 12.13 to force p(t), which is
shown in Fig. P12.15 and applied at the left mass. Plot as functions of time the displacements
uj (t) due to each vibration mode separately and combined.

t, s

p, kN

0.15

450

Figure P12.15

12.16 Determine the displacement response of the system of Problem 12.13 to force p(t), which
is shown in Fig. P12.16 and applied at the right mass. Plot as functions of time the displace-
ments uj (t) due to each vibration mode separately and combined.

t, s

p, kN

0.30

450

Figure P12.16

12.17 Repeat part (c) of Example 12.6 without using equivalent static forces. In other words, de-
termine the shears and bending moments directly from the displacements and rotations.

12.18 For the system and excitation of Problem 12.14, determine the shears and bending mo-
ments at sections a, b, c, d , e, and f (Fig. P12.18) at t = 0.1 s by using equivalent static
forces. Draw the shear force and bending moment diagrams due to each mode separately and
combined.

L/3 L/3 L/3

EI
mL/3 mL/3

a b c d e f

Figure P12.18

12.19 The system of Problem 12.13 is subjected to a harmonic force at the left mass: p(t) =
po sinωt , where po = 450 kN and ω = 25 rad/s. Neglecting damping, determine the forced
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(or steady-state) response of the system. In particular, determine (a) the displacements and
accelerations of the two masses as functions of time, and (b) the amplitudes of displacements
and accelerations.

12.20 For the system and excitation of Problem 12.19, determine the amplitude of the forced
(or steady-state) bending moment at the location of each mass by using equivalent static
forces.

12.21 Solve Problem 12.19 assuming modal damping ratios of 10% for the system.

Part C

∗12.22 Figure P12.22 shows a massless simply supported beam with three lumped masses and the
following properties: L = 400 cm, m = 30,000 kg, E = 200,000 MPa, and I = 4000 cm4.
We are interested in studying the dynamic response of the beam to two sets of applied forces:
p(t) = sp(t), sT

a = 〈 1 0 0 〉, and sT
b = 〈 2 0 −1 〉.

(a) Determine the modal expansion of the vectors sa and sb that define the spatial distribution
of forces. Show these modal expansions graphically and comment on the relative contribu-
tions of the various modes to sa and sb, and how these contributions differ between sa and sb.
(b) For the bending moment M1 at the location of the u1 DOF, determine the modal static
responses Mst

1n for both sa and sb. Show that Mst
1 =

∑
Mst

1n .
(c) Calculate and tabulate the modal contribution factors, their cumulative values for the var-
ious numbers of modes included (J = 1, 2, or 3), and the error eJ in the static response.
Comment on how the relative values of modal contribution factors and the error eJ are in-
fluenced by the spatial distribution of forces.
(d) Determine the peak values (M1n)o of modal responses M1n(t) due to p(t) = sp(t),
where s = sa or sb and p(t) is the half-cycle sine pulse:

p(t) =
{

po sin(π t/td ) t ≤ td
0 t ≥ td

The duration of the pulse td is T1, the fundamental period of the system. Figure 12.11.3
gives the shock spectrum for a half-cycle sine pulse with numerical ordinates Rd = 1.73,
1.14, and 1.06 for T1/td = 1, T2/td = 0.252, and T3/td = 0.119, respectively. It should
be convenient to organize your computations in a table with the following column headings:
mode n, Tn/td , Rdn , M̄1n , and (M1n)o/po Mst

1 .
(e) Comment on how the peak modal responses determined in part (d) depend on the modal
static responses Mst

1n , modal contribution factors M̄1n , dynamic response factors Rdn , and
the force distributions sa and sb.
(f) Can you determine the peak value of the total (considering all modes) response from the
peak modal responses? Justify your answer.

∗Denotes that a computer is necessary to solve this problem.
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Figure P12.22

∗12.23 The structure of Fig. P9.13 has the following properties: L = 250 cm, m = 30,000 kg,
E = 200,000 MPa, and I = 6000 cm4. We are interested in studying the dynamic re-
sponse of the structure to three sets of applied forces: p(t) = sp(t), sa = 〈 1 −1 1 〉T ,
sb = 〈 1 1 −1 〉T , sc = 〈 1 2 2 〉T .
(a) Determine the modal expansion of the vectors sa , sb, and sc that define the spatial dis-
tribution of forces. Show these modal expansions graphically and comment on the relative
contributions of the various modes to sa , sb, and sc, and how these contributions differ among
sa , sb, and sc.
(b) For the bending moment M1 at the base b and the bending moment M2 to the right-hand
side of point a, determine the modal static responses Mst

1n and Mst
2n for sa , sb, and sc. Show

that Mst
1 =

∑
Mst

1n and Mst
2 =

∑
Mst

2n .
(c) Calculate and tabulate the modal contribution factors, their cumulative values for various
numbers of modes included (J = 1, 2, or 3), and the error eJ in the static response. Com-
ment on how the relative values of modal contribution factors and error eJ are influenced by
the spatial distribution of forces.
(d) Determine the peak values (M1n)o and (M2n)o of modal responses M1n and M2n due to
p(t) = sp(t), where s = sa , sb, or sc, and p(t) is a rectangular pulse:

p(t) =
{

p0 t ≤ td
0 t > td

The duration of the pulse td = 0.2T1, where T1 is the fundamental period of the system.
Figure 4.7.3b gives the shock spectrum for a rectangular pulse with numerical ordinates
Rd = 0.691, 2.0, and 2.0 for T1/td = 5.0, T2/td = 1.63, and T3/td = 1.51, respectively.
It should be efficient to organize your computations in a table with the following column
headings for M1: mode n, Tn/td , Rdn , M1n , and (M1n)o/p0 Mst

1 , and with similar column
headings for M2.
(e) Comment on how the peak modal responses determined in part (d) depend on the modal
contribution factors M1n and M2n and on dynamic response factor Rdn .
(f) Can you determine the peak value of the total (considering all modes) response from the
peak modal responses? Justify your answer.

Part D

12.24 The undamped system of Fig. P12.22 with its properties defined in Problem 12.22 is sub-
jected to dynamic forces p(t) = sb p(t), where sT

b = 〈 2 0 −1 〉 and p(t) is the half-cycle

∗Denotes that a computer is necessary to solve this problem.
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sine pulse defined in part (d) of Problem 12.22 with the pulse duration td the same as T1,
the fundamental vibration period of the system. Determine the bending moment M(t) at the
location of the u1 DOF as a function of time by two methods: (a) classical modal analy-
sis, and (b) the static correction method with dynamic response determined only in the first
mode. For part (a) plot the individual modal contributions to M(t) and the total response.
On a separate plot compare this total response with the results of part (b). Comment on the
accuracy of the static correction method.
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Earthquake Analysis
of Linear Systems

PREVIEW

In this chapter procedures for earthquake analysis of structures, idealized as lumped-mass
systems, are developed. The presentation is organized in two parts. Part A is concerned
with the calculation of structural response as a function of time when the system is sub-
jected to a given ground acceleration üg(t). This response history analysis (RHA) proce-
dure is first presented for an arbitrary structural configuration and subsequently specialized
for multistory buildings with a symmetric plan, and for multistory buildings with an un-
symmetric plan. A brief discussion of the torsional response of symmetric-plan buildings
is also included. Part A is devoted to a single component of ground motion, typically one
of the horizontal components. Combining the structural responses determined from such
independent analyses for each excitation component gives the response of linear systems
to multiple-component excitation. Also developed is a procedure to analyze the response
of a structure subjected to different prescribed motions at its various supports.

Part B is concerned with procedures to compute the peak response of a structure dur-
ing an earthquake directly from the earthquake response (or design) spectrum without the
need for response history analysis of the structure. Known as response spectrum analysis
(RSA), this procedure is not an exact predictor of peak response, but it provides an estimate
that is sufficiently accurate for structural design applications. The procedure is first pre-
sented for structures subjected to individual translational components of ground motion.
Subsequently, rules to combine the three individual peaks to estimate the peak response
to multicomponent excitation are presented. Also included in this chapter are response-
spectrum-based equations to determine an envelope that bounds the joint response tra-
jectory of all simultaneously acting forces that control the seismic design of a structural
element.

513
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PART A: RESPONSE HISTORY ANALYSIS

13.1 MODAL ANALYSIS

In this section we develop the modal analysis procedure to determine the response of a
structure to earthquake-induced ground motion üg(t), identical at all support points of the
structure.

13.1.1 Equations of Motion

The differential equations (9.4.8) governing the response of an MDF system to earthquake-
induced ground motion are repeated:

mü+ cu̇+ ku = peff(t) (13.1.1)
where

peff(t) = −mιüg(t) (13.1.2)

The mass and stiffness matrices, m and k, and the influence vector ι are determined by
the methods of Chapter 9. The damping matrix c would not be needed in modal analysis
of earthquake response; instead, modal damping ratios suffice and their numerical values
can be estimated as discussed in Chapter 11. The modal analysis procedure developed in
Chapter 12 to solve Eq. (12.4.1) is applicable to the solution of Eq. (13.1.1).

13.1.2 Modal Expansion of Displacements and Forces

The displacement u of an N -DOF system can be expressed, as in Eq. (12.3.2), as the
superposition of the modal contributions:

u(t) =
N∑

n=1

φnqn(t) (13.1.3)

The spatial distribution of the effective earthquake forces peff(t) is defined by s =
mι. This force distribution can be expanded as a summation of modal inertia force distri-
butions sn (Section 12.8):

mι =
N∑

n=1

sn =
N∑

n=1

�nmφn (13.1.4)

where

�n = Ln

Mn
Ln = φT

n mι Mn = φT
n mφn (13.1.5)

Equation (13.1.5) for the coefficient �n can be derived by premultiplying both sides
of Eq. (13.1.4) by φT

r and using the orthogonality property of modes, or by specializing
Eq. (12.8.3) for s = mι. The contribution of the nth mode to mι is

sn = �nmφn (13.1.6)

which is independent of how the modes are normalized.
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13.1.3 Modal Equations

Equation (12.4.6) is specialized for earthquake excitation by replacing p(t) in Eq. (12.3.4)
by peff(t) to obtain

q̈n + 2ζnωnq̇n + ω2
nqn = −�nüg(t) (13.1.7)

The solution qn(t) can readily be obtained by comparing Eq. (13.1.7) to the equation of
motion for the nth-mode SDF system, an SDF system with vibration properties—natural
frequency ωn and damping ratio ζn—of the nth mode of the MDF system. Equation (6.2.1)
with ζ = ζn , which governs the motion of this SDF system subjected to ground accelera-
tion üg(t), is repeated here with u replaced by Dn to emphasize its connection to the nth
mode:

D̈n + 2ζnωn Ḋn + ω2
n Dn = −üg(t) (13.1.8)

Comparing Eq. (13.1.8) to (13.1.7) gives the relation between qn and Dn:

qn(t) = �n Dn(t) (13.1.9)

Thus qn(t) is readily available once Eq. (13.1.8) has been solved for Dn(t), utilizing nu-
merical time-stepping methods for SDF systems (Chapter 5).

The factor �n [defined in Eq. (13.1.5a)] that multiplies üg(t) in Eq. (13.1.7) is the
same as the coefficient in the modal expansion (Section 10.7) of the influence vector:

ι =
N∑

n=1

�nφn

It is usually referred to as a modal participation factor, implying that it is a measure of the
degree to which the nth mode participates in the response. This terminology is misleading,
however, because �n is not independent of how the mode is normalized, nor a measure
of the modal contribution to a response quantity. Both these drawbacks are overcome by
modal contribution factors that were introduced in Section 12.10 and will be utilized later
(Chapter 18) to investigate earthquake response of buildings.

13.1.4 Modal Responses

The contribution of the nth mode to the nodal displacements u(t) is

un(t) = φnqn(t) = �nφn Dn(t) (13.1.10)

Two static analysis procedures described in Section 9.10 are available to determine the
forces in various structural elements—beams, columns, walls, etc.—from the displace-
ments un(t). The second of these procedures, using equivalent static forces, is preferred in
earthquake analysis because it facilitates comparison of dynamic analysis procedures with
the earthquake design forces specified in building codes (Chapter 21). The equivalent static
forces associated with the nth-mode response are fn(t) = kun(t), where un(t) is given
by Eq. (13.1.10). Putting these equations together and using Eqs. (10.2.4) and (13.1.6)
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leads to

fn(t) = sn An(t) (13.1.11)

where, similar to Eq. (6.4.3),

An(t) = ω2
n Dn(t) (13.1.12)

The equivalent static forces fn(t) are the product of two quantities: (1) the nth-mode contri-
bution sn to the spatial distribution mι of peff(t), and (2) the pseudo-acceleration response
of the nth-mode SDF system to üg(t).

The nth-mode contribution rn(t) to any response quantity r(t) that can be expressed
as a linear combination of the structural displacements u(t) is determined by static anal-
ysis of the structure subjected to external forces fn(t). If r st

n denotes the modal static
response, the static value (indicated by superscript “st”) of r due to external forces† sn ,
then

rn(t) = r st
n An(t) (13.1.13)

Observe that r st
n may be positive or negative and is independent of how the mode is normal-

ized. Equation (13.1.13) also applies to the displacement response, although its derivation
had been motivated by the desire to compute forces from the displacements. The static
displacements due to forces sn satisfy kust

n = sn . Substituting Eq. (13.1.6) for sn and using
Eq. (10.2.4) gives

ust
n = k−1(�nmφn) = �n

ω2
n

φn

Substituting this in Eq. (13.1.13) gives

un(t) = �n

ω2
n

φn An(t) (13.1.14)

which is equivalent to Eq. (13.1.10) because of Eq. (13.1.12).

13.1.5 Total Response

Combining the response contributions of all the modes gives the total response of the struc-
ture to the ground motion. Thus the nodal displacements are

u(t) =
N∑

n=1

un(t) =
N∑

n=1

�nφn Dn(t) (13.1.15)

wherein Eq. (13.1.10) has been substituted for un(t). Using Eq. (13.1.13) gives a general
result valid for any response quantity:

r(t) =
N∑

n=1

rn(t) =
N∑

n=1

r st
n An(t) (13.1.16)

†Although we loosely refer to sn as forces, they have units of mass. Thus, r st
n does not have the same units

as r , but Eq. (13.1.13) gives the correct units for rn .
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The response contributions of some of the higher modes may, under appropriate
circumstances, be determined by the simpler static analysis, instead of dynamic analysis.
As shown in Fig. 6.8.4, for SDF systems with very short periods the pseudo-acceleration
A(t) � −üg(t). For the design spectrum of Fig. 6.9.3, A = ügo for Tn ≤ 1

33 s. If this
period range includes the natural periods of modes Nd + 1 to N , then Eq. (13.1.16) can be
expressed as

r(t) =
Nd∑

n=1

r st
n An(t)− üg(t)

(
r st −

Nd∑
n=1

r st
n

)
(13.1.17)

where r st is the static value of r due to external forces s (Section 12.10) and r st =∑N
n=1 r st

n
because s =∑

sn [Eq. (13.1.4)]. This solution is in two parts: the first term is the dynamic
response considering the first Nd modes, and the second is the response of the higher modes
determined by static analysis. Equation (13.1.17) is the static correction method that can
also be derived following Section 12.12 or rewritten in the form of the mode acceleration
method (Section 12.13). These methods are usually not useful in seismic analysis of struc-
tures because earthquake ground motions typically contain a wide band of frequencies that
includes structural frequencies and higher-mode components in s = mι are small.

13.1.6 Interpretation of Modal Analysis

In the first phase of this dynamic analysis procedure, the vibration properties—natural
frequencies and modes—of the structure are computed and the force distribution vector
mι is expanded into its modal components sn . The rest of the analysis procedure is shown
schematically in Fig. 13.1.1 to emphasize the underlying concepts. The contribution of the
nth mode to the dynamic response is obtained by multiplying the results of two analyses:
(1) static analysis of the structure with applied forces sn , and (2) dynamic analysis of
the nth-mode SDF system excited by üg(t). Thus modal analysis requires static analysis
of the structure for N sets of forces: sn, n = 1, 2, . . . , N ; and dynamic analysis of N
different SDF systems. Combining the modal responses gives the earthquake response of
the structure.

Example 13.1

Determine the response of the inverted L-shaped frame of Fig. E9.6a to horizontal ground
motion.

Solution Assuming the two elements to be axially rigid, the DOFs are u1 and u2
(Fig. E9.6a). The equations of motion are given by Eqs. (13.1.1) and (13.1.2), where the influ-
ence vector ι = 〈1 0〉T (Fig. 9.4.4) and the mass and stiffness matrices (from Example 9.6)
are

m =
[

3m
m

]
k = 6E I

7L3

[
8 −3
−3 2

]
(a)

The effective earthquake forces are

peff(t) = −mιüg(t) = −
[

3m
m

]{
1
0

}
üg(t) = −

{
3m
0

}
üg(t) (b)

The force in the vertical DOF is zero because the ground motion is horizontal.
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r2(t) = r2

st A2(t)

Forces
sN

rN
st

AN(t)

ug(t)¨

ωN, ζN
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r(t) = Σ rn(t)
n = 1

N
Total response

Figure 13.1.1 Conceptual explanation of modal analysis.
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The natural frequencies and modes of the system are (from Example 10.3)

ω1 = 0.6987

√
E I

mL3
ω2 = 1.874

√
E I

mL3
(c)

φ1 =
{

1
2.097

}
φ2 =

{
1
−1.431

}
(d)

Substituting for m and ι in Eq. (13.1.5) gives the first-mode quantities:

L1 = φT
1 mι = 〈1 2.097〉

[
3m

m

]{
1
0

}
= 3m

M1 = φT
1 mφ1 = 〈1 2.097〉

[
3m

m

]{
1
2.097

}
= 7.397m

�1 = L1

M1
= 3m

7.397m
= 0.406

Similar calculations for the second mode give L2 = 3m, M2 = 5.048m, and �2 = 0.594.
Substituting �n , m, and φn in Eq. (13.1.6) gives

s1 = �1mφ1 = 0.406
[

3m
m

]{
1
2.097

}
= m

{
1.218
0.851

}
(e)

s2 = �2mφ2 = 0.594
[

3m
m

]{
1
−1.431

}
= m

{
1.782
−0.851

}
(f)

Then Eq. (13.1.4) specializes to

m
{

3
0

}
= m

{
1.218
0.851

}
+ m

{
1.782
−0.851

}
(g)

This modal expansion of the spatial distribution of effective forces is shown in Fig. E13.1.
Observe that the forces along the vertical DOF in the two modes cancel each other because
the effective earthquake force in this DOF is zero.

Substituting for �n and φn in Eq. (13.1.10) gives the first-mode displacements

u1(t) =
{

u1(t)
u2(t)

}
1
= �1φ1 D1(t) = 0.406

{
1
2.097

}
D1(t) =

{
0.406
0.851

}
D1(t) (h)

= +

3m

0

EI

EI

•
•

L

•• L

m2m
1.218m

0.851m

Mst
b1 = 2.069mL

1.782m

0.851m

Mst
b2 = 0.931mL

Figure E13.1
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and the second-mode displacements

u2(t) =
{

u1(t)
u2(t)

}
2
= �2φ2 D2(t) = 0.594

{
1
−1.431

}
D2(t) =

{
0.594
−0.851

}
D2(t) (i)

Combining Eqs. (h) and (i) gives the total displacements:

u1(t) = 0.406D1(t)+ 0.594D2(t) u2(t) = 0.851D1(t)− 0.851D2(t) (j)

The earthquake-induced bending moment Mb at the base of the column due to the nth
mode [from Eq. (13.1.13)] is

Mbn(t) = Mst
bn An(t) (k)

Static analyses of the frame for the forces s1 and s2 give Mst
b1 and Mst

b2 as shown in
Fig. E13.1. Substituting for Mst

bn and combining modal contributions gives the total bending
moment:

Mb(t) =
2∑

n=1

Mbn(t) = 2.069mL A1(t)+ 0.931mL A2(t) (l)

The three response quantities considered have been, and other responses can be, ex-
pressed in terms of Dn(t) and An(t). These responses of the nth-mode SDF system to
given ground acceleration üg(t) can be determined by numerical time-stepping methods
(Chapter 5).

13.1.7 Analysis of Response to Base Rotation

The modal analysis procedure is applicable after slight modification when the excita-
tion is base rotation. As shown in Section 9.4.3, the motion of a structure due to
rotational acceleration θ̈g(t) of the base (Fig. 9.4.6a) is governed by Eq. (13.1.1), with

peff(t) = −mιθ̈g(t) (13.1.18)

where ι is the vector of static displacements in all the DOFs due to unit base rotation,
θg = 1. For the system of Fig. 9.4.6a, this influence vector is ι = 〈h1 h2 x3〉T . With ι
determined, the structural response due to base rotation is calculated by the procedures of
Sections 13.1.1 to 13.1.5 with üg(t) replaced by θ̈g(t).

13.2 MULTISTORY BUILDINGS WITH SYMMETRIC PLAN

In this section the modal analysis of Section 13.1 is specialized for multistory buildings
with rigid floor diaphragms and plans having two orthogonal axes of symmetry subjected
to horizontal ground motion along one of those axes. The equations of motion for this
system, Eq. (9.4.4), are repeated:

mü+ cu̇+ ku = −m1üg(t) (13.2.1)
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1

2

j

N
Floor

uN

uj

u1 Figure 13.2.1 Dynamic degrees of
freedom of a multistory frame: lateral
displacements relative to the ground.

where u is the vector of lateral floor displacements relative to the ground (Fig. 13.2.1); m
is a diagonal matrix with elements mj j = mj , the lumped mass at the j th floor level; k is
the lateral stiffness matrix of the building defined in Section 9.4.2; and each element of 1
is unity. The modal analysis procedure developed in Section 13.1 is applicable to the mul-
tistory building problem because its governing equations are the same as Eq. (13.1.1) with
the influence vector ι = 1. For convenience, we present the analysis procedure with ref-
erence to a single frame (Fig. 13.2.1), although it applies to a building with several frames
(see Section 9.4.2).

13.2.1 Modal Expansion of Effective Earthquake Forces

Substituting ι = 1 in Eqs. (13.1.4) and (13.1.5) gives the modal expansion of the spatial
distribution of effective earthquake forces:

m1 =
N∑

n=1

sn =
N∑

n=1

�nmφn (13.2.2)

where

�n = Lh
n

Mn
Lh

n =
N∑

j=1

mjφjn Mn =
N∑

j=1

mjφ
2
jn (13.2.3)

In Eq. (13.2.2) the contribution of the nth mode to m1 is sn , a vector of lateral forces sjn at
the various floor levels:

sn = �nmφn sjn = �nmjφjn (13.2.4)

Example 13.2

A two-story shear frame has the mass and story stiffnesses properties shown in Fig. E13.2a.
Determine the modal expansion of the effective earthquake force distribution associated with
horizontal ground acceleration üg(t).

Solution The stiffness and mass matrices (from Example 9.1) are

k = k
[

3 −1
−1 1

]
m = m

[
2 0
0 1

]
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(a)

u1

u2

2k

k
2m

m

m 1

2m

m

=

Mode 1: s1

(b)

4
3

m

4
3

m

+

Mode 2: s2

2
3

m

1
3

m

Figure E13.2 (a) Two-story shear frame; (b) modal expansion of m1.

where k = 24E Ic/h3, and the natural frequencies and modes (from Example 10.4) are

ω1 =
√

k

2m
ω2 =

√
2k

m

φ1 =
{ 1

2
1

}
φ2 =

{−1
1

}
The modal properties Mn , Lh

n , and �n are computed from Eq. (13.2.3). For the first mode:

M1 = 2m
(

1
2

)2+m(1)2 = 3m/2; Lh
1 = 2m

(
1
2

)+m(1) = 2m; �1 = Lh
1/M1 = 4

3 . Similarly,

for the second mode: M2 = 3m, Lh
2 = −m, and �2 = − 1

3 . Substituting for �n , m, and φn in
Eq. (13.2.4) gives

s1 = 4

3
m

[
2

1

]{ 1
2
1

}
= 4

3
m

{
1
1

}
s2 = −1

3
m

[
2

1

]{−1
1

}
= −1

3
m

{−2
1

}
The modal expansion of m1 is displayed in Fig. E13.2b.

13.2.2 Modal Responses

The differential equation governing the nth modal coordinate is Eq. (13.1.7) with �n de-
fined by Eq. (13.2.3). Using this �n , Eq. (13.1.10) gives the contribution un(t) of the nth
mode to the lateral displacements u(t). In particular, the lateral displacement of the j th
floor of the building is

ujn(t) = �nφjn Dn(t) (13.2.5)

The drift, or deformation, in story j is given by the difference of displacements of the
floors above and below:

�jn(t) = ujn(t)− uj−1,n(t) = �n(φjn − φj−1,n)Dn(t) (13.2.6)

The equivalent static forces fn(t) for the nth mode [from Eq. (13.1.11)] are

fn(t) = sn An(t) f jn(t) = sjn An(t) (13.2.7)
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i

Figure 13.2.2 Computation of modal static responses of story forces from force vector
sn : (a) base shear and base overturning moment; (b) i th story shear and i th floor overturn-
ing moment.

where f jn is the lateral force at the j th floor level. Then the response rn(t) due to the nth
mode is given by Eq. (13.1.13), repeated here for convenience:

rn(t) = r st
n An(t) (13.2.8)

The modal static response r st
n is determined by static analysis of the building due to external

forces sn (Fig. 13.2.2). In applying these forces to the structure, the direction of forces is
controlled by the algebraic sign of φjn . Hence these forces for the fundamental mode will
all act in the same direction, as shown in Fig. 13.2.2a, but for the second and higher modes
they will change direction as one moves up the structure.

The modal static responses are presented in Table 13.2.1 for six response quantities:
the shear Vi in the i th story, the overturning moment Mi at the i th floor, the base shear
Vb, the base overturning moment Mb, floor displacements uj , and story drifts �j . The
first four equations come from static analysis of the problem in Fig. 13.2.2, which also
provides modal static responses for internal forces—bending moments, shears, etc.—in
structural elements: beams, columns, walls, etc. The results for uj and �j are obtained by
comparing Eqs. (13.2.5) and (13.2.6) to Eq. (13.2.8). Parts of the equations for V st

bn and
M st

bn are obtained by substituting Eq. (13.2.4) for sjn , Eq. (13.2.3) for Lh
n , and defining M∗n

and h∗n:

M∗n = �n Lh
n =

(Lh
n)

2

Mn
h∗n =

Lθn
Lh

n

(13.2.9a)
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TABLE 13.2.1 MODAL STATIC RESPONSES

Response, r Modal Static Response, r st
n

Vi V st
in =

∑N
j=i sjn

Mi Mst
in =

∑N
j=i (hj − hi )sjn

Vb V st
bn =

∑N
j=1 sjn = �n Lh

n ≡ M∗n

Mb Mst
bn =

∑N
j=1 hj sjn = �n Lθn ≡ h∗n M∗n

uj ust
jn = (�n/ω

2
n)φjn

�j �st
jn = (�n/ω

2
n)(φjn − φj−1,n)

where

Lθn =
N∑

j=1

hj mjφjn (13.2.9b)

and hj is the height of the j th floor above the base. Observe that M∗n and h∗n are inde-
pendent of how the mode is normalized, unlike Mn , Lh

n , and �n . Physically meaningful
interpretations of M∗n and h∗n are presented in Section 13.2.5.

13.2.3 Total Response

Combining the response contributions of all the modes gives the earthquake response of
the multistory building:

r(t) =
N∑

n=1

rn(t) =
N∑

n=1

r st
n An(t) (13.2.10)

wherein Eq. (13.2.8) has been substituted for rn(t), the nth-mode response.
The modal analysis procedure can also provide floor accelerations, although these

are not necessary to compute earthquake-induced forces in the structure. The floor accel-
erations can be computed from

üt
j (t) = üg(t)+

N∑
n=1

�nφjn D̈n(t) (13.2.11)

using the values of D̈n available at each time step from the numerical time-stepping proce-
dure used to solve Eq. (13.1.8) for Dn(t).

13.2.4 Summary

The response of an N -story building with plan symmetric about two orthogonal axes to
earthquake ground motion along an axis of symmetry can be computed as a function of
time by the procedure just developed, which is summarized next in step-by-step form:
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1. Define the ground acceleration üg(t) numerically at every time step �t .

2. Define the structural properties.
a. Determine the mass matrix m and lateral stiffness matrix k (Section 9.4).
b. Estimate the modal damping ratios ζn (Chapter 11).

3. Determine the natural frequencies ωn (natural periods Tn = 2π/ωn) and natural
modes φn of vibration (Chapter 10).

4. Determine the modal components sn [Eq. (13.2.4)] of the effective earthquake force
distribution.

5. Compute the response contribution of the nth mode by the following steps, which
are repeated for all modes, n = 1, 2, . . . , N :
a. Perform static analysis of the building subjected to lateral forces sn to determine

r st
n , the modal static response for each desired response quantity r (Table 13.2.1).

b. Determine the pseudo-acceleration response An(t) of the nth-mode SDF system
to üg(t), using numerical time-stepping methods (Chapter 5).

c. Determine rn(t) from Eq. (13.2.8).

6. Combine the modal contributions rn(t) to determine the total response using
Eq. (13.2.10).

As will be shown later, usually only the lower few modes contribute significantly to the
response. Therefore, steps 3, 4, and 5 need to be implemented only for these modes, and
the modal summation of Eq. (13.2.10) truncated accordingly.

Example 13.3

Derive equations for (a) the floor displacements and (b) the story shears for the shear frame of
Example 13.2 subjected to ground motion üg(t).

Solution Steps 1 to 4 of the procedure summary have already been implemented in Exam-
ple 13.2.

(a) Floor displacements. Substituting �n and φjn from Example 13.2 in Eq. (13.2.5)
gives the floor displacements due to the each mode:

{
u1(t)
u2(t)

}
1
= 4

3

{ 1
2
1

}
D1(t)

{
u1(t)
u2(t)

}
2
= −1

3

{−1
1

}
D2(t) (a)

Combining the contributions of the two modes gives the floor displacements:

u1(t) = u11(t)+ u12(t) = 2
3 D1(t)+ 1

3 D2(t) (b)

u2(t) = u21(t)+ u22(t) = 4
3 D1(t)− 1

3 D2(t) (c)

(b) Story shears. Static analysis of the frame for external floor forces sn gives V st
in ,

i = 1 and 2, shown in Fig. E13.3. Substituting these results in Eq. (13.2.8) gives

V11(t) = 8
3 m A1(t) V21(t) = 4

3 m A1(t) (d)

V12(t) = 1
3 m A2(t) V22(t) = − 1

3 m A2(t) (e)
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2m

m
s21 = 4m/3

s11 = 4m/3 Vst
21 = 4m/3

Vst
11 = 8m/3

s22 = –m/3

s12 = 2m/3 Vst
22 = –m/3

Vst
12 = m/3

Figure E13.3

Combining the contributions of two modes gives the story shears

V1(t) = V11(t)+ V12(t) = 8
3 m A1(t)+ 1

3 m A2(t) (f)

V2(t) = V21(t)+ V22(t) = 4
3 m A1(t)− 1

3 m A2(t) (g)

The floor displacements and story shears have been expressed in terms of Dn(t) and
An(t). These responses of the nth-mode SDF system to prescribed üg(t) can be determined
by numerical time-stepping methods (Chapter 5).

Example 13.4

Derive equations for (a) the floor displacements and (b) the element forces for the two-story
frame of Fig. E13.4a due to horizontal ground motion üg(t).

Solution Equation (9.3.4) with pt (t) = −mt t 1üg(t) governs the displacement vector ut =
〈u1 u2〉; where mt t and kt t , determined in Example 9.9, are

mt t = m
[

2
1

]
k̂t t = E I

h3

[
54.88 −17.51
−17.51 11.61

]
(a)

where h = 3 m. The natural frequencies and modes of the system, determined in Exam-
ple 10.5, are

ω1 = 2.198

√
E I

mh3
ω2 = 5.850

√
E I

mh3
(b)

φ1 =
{

0.3871
1

}
φ2 =

{−1.292
1

}
(c)

Thus steps 1 to 3 of Section 13.2.4 have already been implemented.
(a) Floor displacements and joint rotations. The floor displacements are given by

Eq. (13.2.5), where �n are computed from Eq. (13.2.3): M1 = 2m(0.3871)2 + m(1)2 =
1.300m, Lh

1 = 2m(0.3871) + m(1) = 1.774m, and �1 = 1.774m/1.300m = 1.365. Simi-
larly, M2 = 4.337m, Lh

2 = −1.583m, and �2 = −0.365. Substituting these in Eq. (13.2.5)
with n = 1 gives the floor displacements due to the first mode:

u1(t) =
{

u1(t)
u2(t)

}
1
= 1.365

{
0.3871
1

}
D1(t) =

{
0.5284
1.365

}
D1(t) (d)
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2m

m
u2

u1u3

u5

u4

u6

2EI

EI

2EI

EI

2EI

EI

h 
=

 3
m

h 
=

 3
m

L = 6 m

(a)

ua = 0 ub = 0

θa = u3 θb = u4

(b)

Figure E13.4

The joint rotations associated with these floor displacements are determined from Eq. (d) of
Example 9.9 by substituting u1 from Eq. (d) for ut :

u01(t) =

⎧⎪⎨
⎪⎩

u3(t)
u4(t)
u5(t)
u6(t)

⎫⎪⎬
⎪⎭

1

= 1

h

⎡
⎢⎣
−0.4426 −0.2459
−0.4426 −0.2459

0.9836 −0.7869
0.9836 −0.7869

⎤
⎥⎦{

0.5284
1.365

}
D1(t)

= 1

h

⎧⎪⎨
⎪⎩
−0.5696
−0.5696
−0.5544
−0.5544

⎫⎪⎬
⎪⎭ D1(t) (e)

Similarly, the floor displacements u2(t) and joint rotations u02(t) due to the second mode are
determined:

u2(t) =
{

u1(t)
u2(t)

}
2
=

{
0.4716
−0.3651

}
D2(t)

u02(t) =

⎧⎪⎨
⎪⎩

u3(t)
u4(t)
u5(t)
u6(t)

⎫⎪⎬
⎪⎭

2

= 1

h

⎧⎪⎨
⎪⎩
−0.1189
−0.1189

0.7511
0.7511

⎫⎪⎬
⎪⎭ D2(t)

(f)

Combining the contributions of the two modes gives the floor displacements and joint
rotations:

u(t) = u1(t)+ u2(t) u0(t) = u01(t)+ u02(t) (g)

(b) Element forces. Instead of implementing step 5 of the procedure (Section 13.2.4),
we will illustrate the computation of element forces from the floor displacements and joint
rotations by using the beam stiffness coefficients (Appendix 1). For example, the bending
moment at the left end of the first-floor beam (Fig. E13.4b) is

Ma = 4E I

L
θa + 2E I

L
θb + 6E I

L2
ua − 6E I

L2
ub (h)
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The vertical displacements ua and ub are zero because the columns are assumed to be axially
rigid; joint rotations θa = u3 and θb = u4, where u3 and u4 are known from Eqs. (e), (f), and
(g); thus

θa(t) = −0.5696

h
D1(t)− 0.1189

h
D2(t) θb(t) = θa(t) (i)

Substituting for ua , ub, θa , and θb in Eq. (h), replacing E I by 2E I , and using Dn(t) =
An(t)/ω2

n gives

Ma(t) = mh[−0.7077A1(t)− 0.0209A2(t)] Mb(t) = Ma(t) (j)

Equations for forces in all beams and columns can be obtained similarly.
Comparing the two terms in Eq. (j) for Ma(t) with Eq. (13.2.8) indicates that Mst

a1 =−0.7077mh and Mst
a2 = −0.0209mh. These modal static responses could have been obtained

by static analysis of the structure due to sn determined from Eq. (13.2.4).
The various response quantities have been expressed in terms of Dn(t) and An(t); these

responses of the nth-mode SDF system to given üg(t) can be determined by numerical time-
stepping methods (Chapter 5).

13.2.5 Effective Modal Mass and Modal Height

In this section physically motivated interpretations of M∗n and h∗n , introduced in
Eq. (13.2.9a), are presented. The base shear due to the nth mode (Fig. 13.2.3a) is obtained
by specializing Eq. (13.2.8) for Vb:

Vbn(t) = V st
bn An(t) (13.2.12a)

which after substituting for V st
bn from Table 13.2.1 becomes

Vbn(t) = M∗n An(t) (13.2.12b)

In contrast to Eq. (13.2.12b), the base shear in a one-story system (Fig. 6.2.1a) with lumped
mass m is given by Eq. (6.7.3). Defining the natural frequency of this system as ωn and its
damping ratio as ζn—the same as the vibration properties of the nth mode of the multistory
building—Eq. (6.7.3) becomes

Vb(t) = m An(t) (13.2.13)

Comparing Eqs. (13.2.12b) and (13.2.13) indicates that if the mass of this SDF system
were M∗n (Fig. 13.2.3b), its base shear would be the same as Vbn , the nth-mode base shear
in a multistory system with its mass distributed among the various floor levels. Thus M∗n
is called the base shear effective modal mass or, for brevity, effective modal mass.

Equation (13.2.13) implies that the total mass m of a single-mass system is effec-
tive in producing the base shear. This is so because the mass and hence the equivalent
static force are concentrated at one location. In contrast, only the portion M∗n of the mass
of a multistory building is effective in producing the base shear due to the nth mode be-
cause the building mass is distributed among the various floor levels (Fig. 13.2.3a) and the
equivalent static forces [Eq. (13.1.11)] vary over the height as mjφjn [Eq. (13.2.4)]. This
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mj

•
•

hj

fjn(t)

Vbn (t)

Mbn (t)

(a)

M*
n

•
•

h*
n

M*
nAn(t)

Vbn (t)

Mbn (t)

(b)

Figure 13.2.3 (a) Equivalent static forces and base shear in the nth mode; (b) one-story
system with effective modal mass and effective modal height.

portion depends on the distribution of the mass of the building over its height and on the
shape of the mode, as indicated by Eqs. (13.2.9a) and (13.2.3). As intuition might suggest,
the sum of the effective modal masses M∗n over all the modes is equal to the total mass of
the building (see Derivation 13.1):

N∑
n=1

M∗n =
N∑

j=1

mj (13.2.14)

Now we compare the base overturning moment equations for multistory and one-
story systems. The base overturning moment in a multistory building due to its nth mode
is obtained by specializing Eq. (13.2.8) for Mb:

Mbn(t) = M st
bn An(t) (13.2.15a)

which after substituting for M st
bn from Table 13.2.1 becomes

Mbn(t) = h∗n Vbn(t) (13.2.15b)

In contrast, the base overturning moment in a one-story system with mass m lumped at
height h above the base is given by Eq. (6.7.3), repeated here for convenience:

Mb(t) = hVb(t) (13.2.16)

Comparing Eqs. (13.2.15b) and (13.2.16) indicates that if the mass of this SDF system were
M∗n and it were lumped at height h∗n (Fig. 13.2.3b), its base overturning moment would be
the same as Mbn , the nth-mode base overturning moment, in a multistory building with
its mass distributed among the various floor levels. Thus h∗n is called the base-moment
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effective modal height or, for brevity, effective modal height. It may also be interpreted as
the height of the resultant of the forces sn (Fig. 13.2.2a) or of the forces f jn(t) (Fig. 13.2.3a).

Equation (13.2.16) implies that the total height h of a single mass system is effective
in producing the base overturning moment. This is so because the mass of the structure and
hence the equivalent static force is concentrated at height h above the base. In contrast, the
effective modal height h∗n is less than the total height of the building because the building
mass and hence the equivalent static forces are distributed among the various floor levels;
h∗n depends on the distribution of the mass over the height of the building and on the shape
of the mode [Eqs. (13.2.9) and (13.2.3)]. The sum of the first moments about the base of
the effective modal masses M∗n located at effective heights h∗n is equal to the first moment
of the floor masses about the base (see Derivation 13.2):

N∑
n=1

h∗n M∗n =
N∑

j=1

hj mj (13.2.17)

For some of the modes higher than the fundamental mode, the effective modal height
may be negative. A negative value of h∗n implies that the modal static base shear V st

bn and
the modal static base overturning moment M st

bn for the nth mode have opposite algebraic
signs; the M st

b1 and V st
b1 for the first mode are both positive, by definition.

Derivation 13.1

Premultiplying both sides of Eq. (13.2.2) by 1T gives

1T m1 =
N∑

n=1

�n(1T mφn)

Noting that m is a diagonal matrix with mj j = mj , this can be rewritten as

N∑
j=1

mj =
N∑

n=1

�n Lh
n

This provides a proof for Eq. (13.2.14) because the nth term on the right side is M∗n
(Table 13.2.1).

Derivation 13.2

A modal expansion of the force vector mh where h = 〈h1 h2 · · · hN 〉T is obtained by
substituting s = mh in Eqs. (12.8.2) and (12.8.3):

mh =
N∑

n=1

Lθn
Mn

mφn

Premultiplying both sides by 1T gives

1T mh =
N∑

n=1

Lθn
Mn

1T mφn
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Noting that m is a diagonal matrix with mj j = mj , this can be rewritten as

N∑
j=1

mj hj =
N∑

n=1

Lθn
Mn

Lh
n =

N∑
n=1

h∗n M∗n

wherein Eq. (13.2.9) has been used. This provides a proof for Eq. (13.2.17).

Example 13.5

Determine the effective modal masses and effective modal heights for the two-story shear
frame of Example 13.2. The height of each story is h.

Solution In Example 13.2 the m, k, ωn , and φn for this system were presented, and Lh
n

and Mn for each of the two modes computed. These are listed next, together with the new
computations for M∗n and h∗n . For the first mode: Lh

1 = 2m, M1 = 3m/2, M∗1 = (Lh
1)

2/M1 =
8
3 m, Lθ1 = h(2m) 1

2+2h(m)1 = 3hm, and h∗1 = Lθ1/Lh
1 = 3hm/2m = 1.5h. Similarly, for the

second mode: Lh
2 = −m, M2 = 3m, M∗2 = (Lh

2)
2/M2 = 1

3 m, Lθ2 = h(2m)(−1)+2h(m)1 =
0, and h∗2 = Lθ2/Lh

2 = 0.
Observe that M∗1 +M∗2 = 3m, the total mass of the frame, confirming that Eq. (13.2.14)

is satisfied; also note that the effective height for the second mode is zero, implying that the
base overturning moment Mb2(t) due to that mode will be zero at all t . This is an illustration
of a more general result developed in Example 13.6.

Example 13.6

Show that the base overturning moment in a multistory building due to the second and higher
modes is zero if the first mode shape is linear (i.e., the floor displacements are proportional to
floor heights above the base).

Solution Equation (13.2.15) gives the nth-mode contribution to the base overturning mo-
ment. A linear first mode implies that φj1 = hj/hN , where hj is the height of the j th floor
above the base and hN is the total height of the building. Substituting hj = hN φj1 in (13.2.9b)
gives

Lθn =
N∑

j=1

hj mj φjn = hNφ
T
1 mφn

and this is zero for all n �= 1 because of the orthogonality property of modes. Therefore, for
all n �= 1, h∗n = 0 from Eq. (13.2.9a) and Mbn(t) = 0 from Eq. (13.2.15).

13.2.6 Example: Five-Story Shear Frame

In this section the earthquake analysis procedure summarized in Section 13.2.4 is imple-
mented for the five-story shear frame of Fig. 12.8.1, subjected to the El Centro ground
motion shown in Fig. 6.1.4. The results presented are accompanied by interpretive
comments that should assist us in developing an understanding of the response behavior of
multistory buildings.

System properties. The lumped mass mj = m = 45 Mg(= 0.45 kN-sec2/cm)
at each floor, the lateral stiffness of each story is kj = k = 54.82 kN/cm, and the height of
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each story is 4 m. The damping ratio for all natural modes is ζn = 5%. The mass matrix
m, stiffness matrix k, natural frequencies, and natural modes of this system were presented
in Section 12.8. For the given k and m, the natural periods are Tn = 2.0, 0.6852, 0.4346,
0.3383, and 0.2967 s. (These natural periods, which are much longer than for typical
five-story buildings, were chosen to accentuate the contributions of the second through
fifth modes to the structural response.) Thus steps 1, 2, and 3 of the analysis procedure
(Section 13.2.4) have already been completed.

Modal expansion of m1. To implement step 4 of the analysis procedure (Sec-
tion 13.2.4), the modal properties Mn , Lh

n , and Lθn are computed from Eqs. (13.2.3) and
(13.2.9b) using the known modesφn (Table 13.2.2). The�n are computed from Eq. (13.2.3)

TABLE 13.2.2 MODAL PROPERTIES

Mode Mn Lh
n Lθn/h

1 1.000 1.407 4.942
2 1.000 −0.443 0.533
3 1.000 0.233 0.178
4 1.000 0.130 −0.077
5 1.000 −0.059 −0.031

and substituted in Eq. (13.2.4), together with values for mj and φjn , to obtain the sn vectors
shown in Fig. 13.2.4. Observe that the direction of forces sn is controlled by the algebraic
sign of φjn (Fig. 12.8.2). Hence, these forces for the fundamental mode act in the same
direction, but for the second and higher modes they change direction as one moves up the
structure. The contribution of the fundamental mode to the force distribution s = m1 of
the effective earthquake forces is the largest, and the modal contributions to these forces
decrease progressively for higher modes.

=

m

m

m

m

m

m1

+

0.356m

0.684m

0.956m

1.150m

1.252m

s1

+

0.301m

0.394m

0.215m

–0.112m

–0.362m

s2

+

0.208m

0.059m

–0.191m

–0.113m

0.159m

s3

+

0.106m

–0.088m

–0.033m

0.116m

–0.063m

s4

0.029m

–0.049m

0.053m

–0.040m

0.015m

s5

Figure 13.2.4 Modal expansion of m1.

Modal static responses. Table 13.2.3 gives the results for four response
quantities—base shear Vb, fifth-story shear V5, base overturning moment Mbn , and roof
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TABLE 13.2.3 MODAL STATIC RESPONSES

Mode V st
bn/m V st

5n/m Mst
bn/mh ust

5n

1 4.398 1.252 15.45 0.127
2 0.436 −0.362 −0.525 −0.004
3 0.121 0.159 0.092 0.0008
4 0.038 −0.063 −0.022 −0.0002
5 0.008 0.015 0.004 0.00003

displacement u5—obtained using the equations in Table 13.2.1 and the known sjn , φ5n ,
and ω2

n (step 5a of Section 13.2.4). Observe that the modal static responses are largest
for the first mode and decrease progressively for higher modes. The effective modal
masses M∗n = V st

bn and effective modal heights h∗n = M st
bn/V st

bn are shown schemati-
cally in Fig. 13.2.5; note that h∗n are plotted without their algebraic signs. Observe that∑

M∗n = 5m, confirming that Eq. (13.2.14) is satisfied. Also note that
∑

h∗n M∗n = 15mh;
this is the same as

∑
hj mj = 15mh, confirming that Eq. (13.2.17) is satisfied.

•
•

5@
h 

=
 5

h

m

m

m

m

m

ug(t)¨

=
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51
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Figure 13.2.5 Effective modal masses and effective modal heights.

Earthquake excitation. The ground acceleration üg(t) is defined by its numer-
ical values (in units of g, where g = 980.665 cm/sec2) at time instants equally spaced at
every �t . This time step �t = 0.01 s is chosen to be small enough to define üg(t) accu-
rately and to determine accurately the response of SDF systems with natural periods Tn ,
the shortest of which is 0.2967 s.

Response of SDF systems. The deformation response Dn(t) of the nth-mode
SDF system with natural period Tn and damping ratio ζn to the ground motion is deter-
mined (step 5b of Section 13.2.4). The time-stepping linear acceleration method (Chap-
ter 5) was implemented to obtain discrete values of Dn at every �t . For convenience,
however, we continue to denote these discrete values as Dn(t). At each time instant
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Figure 13.2.6 Displacement Dn(t) and pseudo-acceleration An(t) responses of modal SDF
systems.

the pseudo-acceleration is calculated from An(t) = ω2
n Dn(t). These computations are

implemented for the SDF systems corresponding to each of the five modes of the struc-
ture, and the results are presented in Fig. 13.2.6.

Modal responses. Step 5c of Section 13.2.4 is implemented to determine the
contribution of the nth mode to selected response quantities: Vb, V5, Mbn , and u5. The
modal static responses (Table 13.2.3) are multiplied by An (Fig. 13.2.6) at each time step
to obtain the results presented in Figs. 13.2.7 and 13.2.8.

These results give us a first impression of the relative values of the response con-
tributions of the various modes. The modal static responses (Table 13.2.3) had suggested
that the response will be largest in the fundamental mode and will tend to decrease in
the higher modes. Such is the case in this example for roof displacement, base shear,
and base overturning moment but not for the fifth-story shear. How the relative modal
responses depend on the response quantity and on the building properties is discussed in
Chapter 18.

Total responses. The total responses, determined by combining the modal con-
tributions rn(t) (step 6 of Section 13.2.4) according to Eq. (13.2.10), are shown in
Figs. 13.2.7 and 13.2.8. The results presented indicate that it is not necessary to include
the contributions of all the modes in computing the response of a multistory building; the
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Figure 13.2.7 Base shear and fifth-story shear: modal contributions, Vbn(t) and V5n(t), and total
responses, Vb(t) and V5(t).

lower few modes may suffice and the modal summations can be truncated accordingly. In
this particular example, the contribution of the fourth and fifth modes could be neglected;
the results would still be accurate enough for use in structural design. How many modes
should be included depends on the earthquake ground motion and building properties. This
issue is addressed in Chapter 18.

Before leaving this example, we make three additional observations that will be es-
pecially useful in Part B of this chapter. First, as seen in Chapter 6, the peak values
of Dn(t) and An(t), noted in Fig. 13.2.6, can be determined directly from the response
spectrum for the ground motion. This fact will enable us to determine the peak value of
the nth-mode contribution to any response quantity directly from the response spectrum.
Second, the contribution of the nth mode to every response quantity attains its peak value
at the same time as An(t) does. Third, the peak value of the total response occurs at a
time instant different from when the individual modal peaks are attained. Furthermore,
the peak values of the total responses for the four response quantities occur at different
time instants because the relative values of the modal contributions vary with the response
quantity.
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Figure 13.2.8 Roof displacement and base overturning moment: modal contributions, u5n(t) and
Mbn(t), and total responses, u5(t) and Mb(t).

13.2.7 Example: Four-Story Frame with an Appendage

This section is concerned with the earthquake analysis and response of a four-story build-
ing with a light appendage—a penthouse, a small housing for mechanical equipment, an
advertising billboard, or the like. This example is presented because it brings out certain
special response features representative of a system with two natural frequencies that are
close.

System properties. The lumped masses at the first four floors are mj = m, the
appendage mass m5 = 0.01m, and m = 45 Mg (= 0.45 kN-sec2/cm). The lateral stiffness
of each of the first four stories is kj = k, the appendage stiffness k5 = 0.0012k, and
k = 39.431 kN/cm. The height of each story and the appendage is 4 m. The damping
ratio for all natural modes is ζn = 5%. The response of this system to the El Centro
ground motion is determined. The analysis procedure and its implementation are identical
to Section 13.2.6; therefore, only a summary of the results is presented.
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Figure 13.2.9 Natural periods and modes of vibration of building with appendage.

TABLE 13.2.4 MODAL STATIC RESPONSES

Mode

1 2 3 4 5

V st
bn/m 1.838 1.747 0.333 0.078 0.015

V st
5n/m5 9.942 −8.982 0.045 −0.006 0.001

Summary of results. The natural periods Tn and modes φn of this system are
presented in Fig. 13.2.9. Observe that T1 and T2 are close and the corresponding modes
show large deformations in the appendage. Table 13.2.4 gives the modal static responses
for the base shear Vb and appendage shear V5. Observe that V st

bn for the first two modes
are similar in magnitude and of the same algebraic sign; V st

5n for the first two modes are
also of similar magnitude but of opposite signs. The responses Dn(t) and An(t) of the
SDF systems corresponding to the five modes of the system are shown in Fig. 13.2.10.
Note that Dn(t)—also An(t)—for the first two modes are essentially in phase because the
two natural periods are close; the peak values are similar because of similar periods and
identical damping in the two modes.

The modal contributions to the base shear and to the appendage shear together with
the total response are presented in Fig. 13.2.11. Observe that the response contributions
of the first two modes are similar in magnitude because the modal static responses are about
the same and the An(t) are similar. In the case of base shear, the two modal static responses
are of the same algebraic sign, implying that the two modal contributions are essentially
in phase [because so are A1(t) and A2(t)], and hence the combined base shear is much
larger than the individual modal responses. In contrast, the modal static responses for the
appendage shear are of opposite algebraic sign, indicating that the two modal contributions
are essentially out of phase, and hence the combined appendage shear is much smaller than
the individual modal responses. However, it is very large, being almost equal to its own
weight.

As a result, significant damage to appendages at the top of essentially undamaged
structures has been observed during earthquakes. Two examples are shown in Figures
13.2.12 and 13.2.13.
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Figure 13.2.12 The Hill Building in Anchorage, Alaska, after the Prince William Sound
earthquake, March 27, 1964, Magnitude 9.2. Except for the damage to the penthouse
wall (close-up), the building was essentially undamaged. (From the Steinbrugge Collec-
tion, National Information Service for Earthquake Engineering, University of California,
Berkeley.)

Figure 13.2.13 The 332.5 m-high Tokyo Tower performed well during the Tohoku, Japan,
earthquake, March 11, 2011, Magnitude 9.0, except that the top part bent permanently.
Shown is the tower before and after, with a second focus on the bend near the top. (Cour-
tesy of C. D. James and C. Bodnar-Anderson, National Information Service for Earthquake
Engineering, University of California, Berkeley.)
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13.3 MULTISTORY BUILDINGS WITH UNSYMMETRIC PLAN

In this section the modal analysis of Section 13.1 is specialized for multistory buildings
with their plans symmetric about the x-axis but unsymmetric about the y-axis subjected
to ground motion ügy(t) in the y-direction. Equation (9.6.8b) governs the motion of the
2N DOFs of the system. If the floor diaphragms have the same radius of gyration r (i.e.,
IO j = r2mj ), Eq. (9.6.8b) specializes to[

m 0
0 r2m

]{
üy

üθ

}
+

[
kyy kyθ

kθ y kθθ

]{
uy

uθ

}
= −

[
m 0
0 r2m

]{
1
0

}
ügy(t) (13.3.1)

The general analysis procedure developed in Section 13.1 is applicable to unsymmetric–
plan buildings because Eq. (13.3.1) is of the same form as Eq. (13.1.1).

13.3.1 Modal Expansion of Effective Earthquake Forces

The effective earthquake forces peff(t) are defined by the right side of Eq. (13.3.1):

peff(t) = −
{

m1
0

}
ügy(t) ≡ −sügy(t) (13.3.2)

The spatial distribution s of these effective earthquake forces can be expanded as a sum-
mation of modal inertia force distributions sn (Section 12.8):{

m1
0

}
=

2N∑
n=1

sn =
2N∑
n=1

�n

{
mφyn

r2mφθn

}
(13.3.3)

In this equation φyn includes the translations and φθn the rotations of the N floors about a
vertical axis in the nth mode (i.e., φT

n = 〈φT
yn φT

θn〉):

�n = Lh
n

Mn
(13.3.4)

where

Lh
n =

〈
φT

yn φT
θn

〉 { m1
0

}
= φT

ynm1 =
N∑

j=1

mjφj yn (13.3.5)

and

Mn =
〈
φT

yn φT
θn

〉 [ m
r2m

]{
φyn

φθn

}
or

Mn = φT
ynmφyn + r2φT

θnmφθn =
N∑

j=1

mjφ
2
j yn + r2

N∑
j=1

mjφ
2
jθn (13.3.6)

where j denotes the floor number and mj the floor mass. Equation (13.3.5) differs
from Eq. (13.2.3b) for symmetric-plan systems because φyn is not necessarily the same
as φn . Equations (13.3.4) to (13.3.6) for �n can be derived by premultiplying both
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sides of Eq. (13.3.3) by φT
r and using the orthogonality property of modes. In Eq.

(13.3.3) the nth-mode contribution to the spatial distribution of effective earthquake
forces is

sn =
{

syn

sθn

}
= �n

{
mφyn

r2mφθn

}
(13.3.7)

The j th element of these subvectors gives the lateral force sjyn and torque sjθn at the j th
floor level:

sjyn = �nmjφj yn sjθn = �nr2mjφjθn (13.3.8)

Premultiplying each submatrix equation in Eq. (13.3.3) by 1T , two interesting results
can be derived:

2N∑
n=1

M∗n =
N∑

j=1

mj

2N∑
n=1

I ∗On = 0 (13.3.9)

where

M∗n =
(Lh

n)
2

Mn
I ∗On = r2�n1T mφθn (13.3.10)

Although this equation for M∗n for unsymmetric-plan systems appears to be the same as
Eq. (13.2.9a) for symmetric-plan systems, the two may not be identical because the mode
shapes φyn and φn in the two cases are not necessarily the same. We shall see later that M∗n
is the base shear effective modal mass for the nth mode and also the modal static response
for base shear. As for symmetric-plan buildings, Eq. (13.3.9a) implies that the sum of the
effective modal masses over all modes is equal to the total mass of the building. As we
shall see later, I ∗On is the modal static response for base torque; their sum over all modes is
zero according to Eq. (13.3.9b).

Example 13.7

Determine the modal expansion for the distribution of the effective earthquake forces for the
system of Example 10.6 subjected to ground motion in the y-direction. Also compute the
modal static responses for base shear and base torque, and verify Eq. (13.3.9).

Solution The DOFs are the lateral displacement uy and rotation uθ of the roof. With refer-
ence to these DOFs, the natural frequencies and modes were determined in Example 10.6:

ω1 = 4.496 ω2 = 5.072 rad/s

φ1 =
{−0.1030

0.0243

}
φ2 =

{−0.1011
−0.0247

}
Specializing Eqs. (13.3.6), (13.3.5), and (13.3.4) to a one-story system with roof mass m and
radius of gyration r yields

Mn = m(φ2
yn + r2φ2

θn) Lh
n = mφyn �n = Lh

n

Mn
(a)

For this system, m = 48 Mg and r2 = (b2 + d2)/12 = (122 + 82)/12 = 17.33 m2 (see
Example 10.6). In Eq. (a) with n = 1, substituting known values of m, r,φy1, and φθ1, we
obtain M1 = 48[(−0.1030)2 + 17.33(0.0243)2] = 1.0, Lh

1 = 48(−0.1030) = −4.946, and
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�1 = −4.946. Similarly, in Eq. (a) with n = 2, substituting for m, r,φy2, and φθ2, we obtain
M2 = 1.0, Lh

2 = −4.852, and �2 = −4.852.
The modal expansion of the effective earthquake force distribution is obtained from

Eq. (13.3.3) by specializing it to a one-story system:

{
m
0

}
=

2∑
n=1

�n

{
mφyn

r2mφθn

}
(b)

Substituting numerical values for �n,φyn,φθn , and r gives

m
{

1
0

}
= m

{
0.510
−2.081

}
+ m

{
0.490
2.081

}
(c)

This modal expansion is shown on the structural plan in Fig. E13.7.

m
0

s

=
0.510m

2.081m

s1

+
0.490m

2.081m

s2

Figure E13.7 Modal expansion of effective force vector shown on plan view of the
building.

Static analysis of the structure subjected to forces sn (Fig. E13.7) gives the modal static re-
sponses for base shear and base torque: V st

b1 = 0.510 m and V st
b2 = 0.490 m; T st

b1 = −2.081 m
and T st

b2 = 2.081 m.
Specializing Eq. (13.3.10) to a one-story system gives

M∗n =
(Lh

n)
2

Mn
I ∗On = �nr2mφθn (d)

Substituting numerical values for �n , Lh
n , Mn , r , m, and φθn gives

M∗1 = 0.510 m I ∗O1 = −2.081 m M∗2 = 0.490 m I ∗O2 = 2.081 m

Observe that these data show that M∗1 + M∗2 = m and I ∗O1 + I ∗O2 = 0, which provides
a numerical confirmation of Eq. (13.3.9) for this one-story (N = 1) system. Note that, as
expected, V st

bn = M∗n and T st
bn = I ∗On.

13.3.2 Modal Responses

Displacements. The differential equation governing the nth modal coordinate is
Eq. (13.1.7), with üg(t) replaced by ügy(t) and �n defined by Eqs. (13.3.4) to (13.3.6). Us-
ing this �n , Eq. (13.1.10) gives the contribution un(t) of the nth mode to the displacement
u(t). The lateral displacement uyn and torsional displacements uθn are

uyn(t) = �nφyn Dn(t) uθn(t) = �nφθn Dn(t) (13.3.11)

In particular, the lateral and torsional displacements of the j th floor are

ujyn(t) = �nφj yn Dn(t) ujθn(t) = �nφjθn Dn(t) (13.3.12)
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Building forces. The equivalent static forces fn(t) associated with displacements
un(t) include lateral forces fyn(t) and torques fθn(t). These forces are given by a general-
ization of Eq. (13.1.11): {

fyn(t)
fθn(t)

}
=

{
syn

sθn

}
An(t) (13.3.13)

The lateral force and torque at the j th floor level are

f j yn(t) = sjyn An(t) f jθn(t) = sjθn An(t) (13.3.14)

Then the response r due to the nth mode is given by Eq. (13.1.13), repeated here for
convenience:

rn(t) = r st
n An(t) (13.3.15)

The modal static response r st
n is determined by static analysis of the building due to external

forces syn and sθn . In applying these forces to the structure, the direction of forces is
controlled by the algebraic sign of φj yn and φjθn . In particular for the fundamental mode,
the lateral forces all act in the same direction, and the torques all act in the same direction
(Fig. 13.3.1). However, for the second and higher modes, the lateral forces or torques, or
both, will change direction as one moves up the structure.

The modal static responses are presented in Table 13.3.1 for eight response quanti-
ties: the shear Vi and torque Ti in the i th story, the overturning moment Mi at the i th floor,
the base shear Vb, the base torque Tb, and the base overturning moment Mb, floor transla-
tions ujy , and floor rotations ujθ . The equations for forces are determined by static analysis
of the building subjected to lateral forces syn and torques sθn (Fig. 13.3.1); and the results
for ujy and ujθ are obtained by writing Eqs. (13.3.12) in a form similar to Eq. (13.3.15).

s1yn

s1θn

sjyn

sjθn

x

y

sNyn

sNθn

1

j

N

•
•

hj

Figure 13.3.1 External forces sjyn and sjθn

for nth mode.
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TABLE 13.3.1 MODAL STATIC RESPONSES

Response, r Modal Static Response, r st
n

Vi V st
in =

∑N
j=i sj yn

Mi Mst
in =

∑N
j=i (hj − hi )sjyn

Ti T st
in =

∑N
j=i sjθn

Vb V st
bn =

∑N
j=1 sjyn = �n Lh

n = M∗n

Mb Mst
bn =

∑N
j=1 hj sjyn = �n Lθn = h∗n M∗n

Tb T st
bn =

∑N
j=1 sjθn = I ∗On

ujy ust
j yn = (�n/ω

2
n)φj yn

ujθ ust
jθn = (�n/ω

2
n)φjθn

Parts of the equations for V st
bn , M st

bn , and T st
bn are obtained by substituting Eq. (13.3.8) for

sjyn and sjθn , Eq. (13.3.5) for Lh
n , Eq. (13.3.10) for M∗n and I ∗On , and Eq. (13.2.9a) for h∗n

with φjn replaced by φj yn in Eq. (13.2.9b).
Specializing Eq. (13.3.15) for Vb, Mb, and Tb and substituting for V st

bn , M st
bn , and T st

bn
from Table 13.3.1 gives

Vbn(t) = M∗n An(t) Tbn(t) = I ∗On An(t) Mbn(t) = h∗n M∗n An(t) (13.3.16)

For reasons mentioned in Section 13.2.5, M∗n is called the effective modal mass and h∗n the
effective modal height.

Frame forces. In addition to the overall story forces for the building, it is desired
to determine the element forces—bending moments, shears, etc.—in structural elements—
beams, columns, walls, etc.—of each frame of the building. For this purpose, the lateral
displacements uin of the i th frame associated with displacements un in the floor DOFs of
the building are determined from Eq. (9.5.21). Substituting Eq. (9.5.22) for axi and ayi ,
uT

n =
〈
uT

yn uT
θn

〉
, and Eq. (13.3.11) for uyn and uθn leads to

uin(t) = �n(−yiφθn)Dn(t) uin(t) = �n(φyn + xiφθn)Dn(t) (13.3.17)

The first equation is for frames oriented in the x-direction and the second for frames in the
y-direction. At each time instant, the internal forces in elements of frame i can be deter-
mined from these displacements and joint rotations (see Example 13.4) using the element
stiffness properties (Appendix 1).

Alternatively, equivalent static forces fin can be defined for the i th frame with lateral
stiffness matrix kxi if the frame is oriented in the x-direction or kyi for a frame along the
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fNin N

fjin j

f1in 1 Figure 13.3.2 Equivalent static forces for
the i th frame associated with response of the
building in its nth natural mode.

y-direction. Thus

fin(t) = kxi uin(t) = (�n/ω
2
n)kxi (−yiφθn)An(t) (13.3.18a)

fin(t) = kyi uin(t) = (�n/ω
2
n)kyi (φyn + xiφθn)An(t) (13.3.18b)

where Eqs. (13.3.17) and (13.1.12) are used to obtain the second part of these equations.
At each instant of time the element forces are determined by static analysis of the i th frame
subjected to the lateral forces fin(t) shown in Fig. 13.3.2.

13.3.3 Total Response

Combining the response contributions of all the modes gives the total response of the
unsymmetric-plan building to earthquake excitation:

r(t) =
2N∑
n=1

rn(t) =
2N∑
n=1

r st
n An(t) (13.3.19)

wherein Eq. (13.3.15) has been substituted for rn(t), the nth-mode response.

13.3.4 Summary

The response history of an N -story building with plan unsymmetric about the y-axis to
earthquake ground motion in the y-direction can be computed by the procedure just devel-
oped, which is summarized next in step-by-step form:

1. Define the ground acceleration ügy(t) numerically at every time step �t .

2. Define the structural properties.
a. Determine the mass and stiffness matrices from Eqs. (13.3.1) and (9.5.26).
b. Estimate the modal damping ratios ζn (Chapter 11).

3. Determine the natural frequencies ωn (natural periods Tn = 2π/ωn) and natural
modes of vibration (Chapter 10).

4. Determine the modal components sT
n = 〈sT

yn sT
θn〉—defined by Eqs. (13.3.7) and

(13.3.8)—of the effective force distribution.
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5. Compute the response contribution of the nth mode by the following steps, which
are repeated for all modes, n = 1, 2, . . . , 2N :
a. Perform static analysis of the building subjected to lateral forces syn and torques

sθn to determine r st
n , the modal static response for each desired response quantity

r (Table 13.3.1).
b. Determine the deformation response Dn(t) and pseudo-acceleration response

An(t) of the nth-mode SDF system to ügy(t), using numerical time-stepping
methods (Chapter 5).

c. Determine rn(t) from Eq. (13.3.15). This equation may also be used to determine
the element forces in the i th frame provided that the modal static responses are
derived for these response quantities. Alternatively, these internal forces can
be determined by static analysis of the frame subjected to the lateral forces of
Eq. (13.3.18).

6. Combine the modal contributions rn(t) to determine the total response using
Eq. (13.3.19).

Only the modes with significant response contributions need to be included in modal
analysis. The system considered has coupled lateral-torsional motion in 2N modes or N
pairs of modes. For many buildings both modes in a pair have similar natural frequencies
and responses of similar magnitude (see Example 13.8). Usually, only the lower few pairs
of modes contribute significantly to the response. Therefore, steps 3, 4, and 5 need to
be implemented only for these modal pairs, and the modal summation in step 6 truncated
accordingly.

Extension to arbitrary-plan buildings. The procedure just summarized is for
earthquake analysis of multistory buildings with plan unsymmetric about one axis, say the
y-axis, but symmetric about the other axis, the x-axis, subjected to ground motion in the
y-direction. This procedure can be extended to multistory buildings with arbitrary plan
that has no axis of symmetry. In this case the system with 3N dynamic degrees of freedom
is governed by Eq. (9.6.7) and will respond in coupled x-lateral, y-lateral, and torsional
motions when excited by ground motion in the x- or y-directions.

Example 13.8

Determine the response of the system of Examples 13.7 and 10.6 with modal damping ratios
ζn = 5% to the El Centro ground motion acting along the y-axis. The response quantities of
interest are floor displacements, base shear, and base torque in the building, and base shear in
frames A and B.

Solution Steps 1 to 4 of the analysis procedure (Section 13.3.4) have already been imple-
mented in Examples 10.6 and 13.7.

Step 5a: The modal static responses for base shear and base torque are (from Example
13.7): V st

b1 = 0.510 m and V st
b2 = 0.490 m; T st

b1 = −2.081 m and T st
b2 = 2.081 m. The modal

static responses for the lateral displacement uy and rotation uθ of the roof are obtained by
specializing the equations in Table 13.3.1 for this one-story system:

ust
yn =

�n

ω2
n
φyn ust

θn =
�n

ω2
n
φθn (a)
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Figure E13.8a Displacement Dn(t) and pseudo-acceleration An(t) responses of modal SDF
systems.

Substituting numerical values for �n , φyn , and φθn (from Example 13.7) for the first mode
in Eq. (a) gives ust

y1 = 0.510/ω2
1 and ust

θ1 = −0.120/ω2
1. Similarly, for the second mode,

ust
y2 = 0.490/ω2

2 and ust
θ2 = 0.120/ω2

2. Observe that the modal static responses ust
yn and V st

bn

for the two modes are similar in magnitude and of the same algebraic sign; ust
θn and T st

bn for
the two modes are also of similar (identical for a one-story system) magnitude but of opposite
signs.

Step 5b: Response analysis of the first-mode SDF system (T1 = 2π/ω1 = 2π/4.496 =
1.397 s and ζ1 = 5%) and the second-mode SDF system (T2 = 2π/ω2 = 2π/5.072 = 1.239 s
and ζ2 = 5%) to the El Centro ground motion gives the Dn(t) and An(t) shown in Fig. E13.8a.
Observe that Dn(t)—also An(t)—for the two modes are similar and roughly in phase because
their natural periods are similar.

Step 5c: Substituting V st
bn and T st

bn from step 5a in Eq. (13.3.15) gives the contributions
of the nth mode to the base shear and base torque:

Vb1(t) = 0.510m A1(t) Tb1(t) = −2.081m A1(t) (b)

Vb2(t) = 0.490m A2(t) Tb2(t) = 2.081m A2(t) (c)

Figure E13.8b shows Vbn(t) and Tbn(t) computed from Eqs. (b) and (c) using m = 48 Mg and
the An(t) in Fig. E13.8a.

Substituting ust
yn and ust

θn from step 5a in Eq. (13.3.15) gives the contributions of the
nth mode to roof displacements:

uy1(t) = 0.510D1(t) uθ1(t) = −0.120D1(t) (d)

uy2(t) = 0.490D2(t) uθ2(t) = 0.120D2(t) (e)

where Dn(t) is in units of meters. Figure E13.8c shows uyn(t) and (b/2)uθn(t) computed
from Eqs. (d) and (e) using the Dn(t) in Fig. E13.8a.

The lateral force for frame A is given by Eq. (13.3.18b) specialized for a one-story
frame:

f An(t) = kA
[
uyn(t)+ xAuθn(t)

]
(f)

Substituting for kA = 1100 kN/m, xA = 0.5 m, uyn(t) and uθn(t) from Eqs. (d) and (e) gives

f A1(t) = 494.6D1(t) kN f A2(t) = 605.4D2(t) kN

where Dn(t) are in meters. The base shear in a one-story frame is equal to the lateral force;
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(b/2)uθn (t), and total responses, uy(t) and (b/2)uθ (t).

thus the base shear due to the two modes is

VbA1(t) = 494.6D1(t) VbA2(t) = 605.4D2(t) (g)

These base shears are computed using the known Dn(t) from Fig. E13.8a and are shown in
Fig. E13.8d. Note that the base shears for frame A alone and the building are identical because
the system has only frame A in the y-direction and this frame carries the entire force.

The lateral force for frame B is given by Eq. (13.3.18a) specialized for a one-story
frame:

fBn(t) = kB [−yBuθn(t)] (h)

Substituting for kB = 590 kN/m, yB = 4 m, uθn(t) from Eqs. (d) and (e) gives

fB1(t) = 283.4D1(t) fB2(t) = −283.4D2(t)
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Figure E13.8d Base shears in frames A and B: modal contributions, VbAn and VbBn , and total
responses, VbA and VbB .

where Dn(t) are in meters. The base shear due to the two modes is

VbB1(t) = 283.4D1(t) VbB2(t) = −283.4D2(t)

These base shears in frame B are computed using the known Dn(t) from Fig. E13.8a and are
shown in Fig. E13.8d.

Figure E13.8b–d show that the two modes contribute similarly to the response of this
one-story system. This is typical of unsymmetric-plan systems where pairs of modes in a
structure with one axis of symmetry (or triplets of modes if the system has no axis of symme-
try) may have similar response contributions.

Step 6: Combining the modal contributions gives the total response for this two-DOF
system:

r(t) = r1(t)+ r2(t)

The combined values of lateral displacement, rotation, base shear, and base torque for the
building, and base shear for frames A and B are shown in Fig. E13.8b–d. Observe that the
combined response attains its peak value at a time instant that is generally different from when
the modal peaks are attained.

Interpretive Comments. Observe that the modal contributions to lateral displacement
(and to base shear) are similar in magnitude because the modal static responses are about the
same and the Dn(t) and An(t) are similar for the two modes (Fig. E13.8a). The modal con-
tributions are roughly in phase because Dn(t)—also An(t)—for the two modes are roughly
in phase and the two modal static responses are of the same algebraic sign. The peak of the
total response is therefore much larger than the peaks of the modal responses. In contrast, the
modal contributions to roof rotation (and to base torque), although similar in magnitude, are
out of phase and the two modal static responses are of opposite algebraic sign. Therefore, the
peak of the total response is slightly smaller than or about the same as the peaks of the modal
responses.

Consider another one-story unsymmetric-plan system similar to the one analyzed in
Example 13.8 (Fig. 9.5.1) but with a smaller e, say e = 0.1 m instead of 0.5 m. The two
natural periods will now be much closer than for the structure analyzed in Example 13.8, and
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the Dn(t)—also An(t)—for the two modes will be essentially in phase. For such a system,
the modal contributions to lateral displacement (and to base shear) will be essentially in phase
because the modal static responses are of the same sign; the two modal peaks will be almost
directly additive, and the peak of the total response will be much larger than the peaks of the
modal responses. On the other hand, the modal contributions to roof rotation (and to base
torque) will have essentially opposite phase because the modal static responses are of the
opposite sign; the two modal peaks will tend to cancel each other, and the peak of the total
response will then be much smaller than the peaks of the modal responses.

Example 13.9

Identify the effects of plan asymmetry on the earthquake response of the one-story system of
Example 13.8 by comparing its response with that of the symmetric-plan one-story system
defined in Section 9.5.3.

Solution The response of the symmetric-plan system to ground motion in the y-direction is
governed by the second of the three differential equations (9.5.20). Dividing this equation by
m and introducing damping gives the familiar equation for an SDF system:

ü y + 2ζyωy u̇ y + ω2
yuy = −ügy(t) (a)

where ωy =
√

ky/m. As mentioned in Section 9.5.3, the y-component of ground motion will
only produce lateral response in the y-direction without any torsion about a vertical axis or
displacements in the x-direction. The lateral displacement in the y-direction is

uy(t) = D(t, ωy, ζy) (b)

and the associated base shear in frame A is

VbA = m A(t, ωy, ζy) (c)
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where D(t, ωy, ζ ) and A(t, ωy, ζ ) denote the deformation and pseudo-acceleration responses,
respectively, of an SDF system with natural frequency ωy and damping ratio ζ to ground
acceleration ügy(t). Frames B and C would experience no forces.

For the symmetric-plan system associated with Example 13.8, ωy = 4.787 (see Exam-
ple 10.7) and the damping ratio is the same, ζ = 5%. The response of this SDF system is
computed from Eqs. (a) to (c) and shown in Fig. E13.9, where it is also compared with the
response of the unsymmetric-plan system (Example 13.8). It is clear that plan asymmetry has
the effect of (1) modifying the lateral displacement and base shear in frame A, and (2) causing
torsion in the system and forces in frames B and C that do not exist if the building plan is
symmetric. In this particular case, the base shear in frame A is slightly increased because
of plan asymmetry, but such is not always the case, depending on the natural period of the
structure, ground motion characteristics, and the location of the frame in the building plan.

13.4 TORSIONAL RESPONSE OF SYMMETRIC-PLAN BUILDINGS

In this section the torsional response of multistory buildings with their plans nominally
symmetric about two orthogonal axis is discussed briefly. Such structures may undergo
“accidental” torsional motions for mainly two reasons: the building is usually not perfectly
symmetric, and the spatial variations in ground motion may cause rotation (about the ver-
tical axis) of the building’s base, which will induce torsional motion of the building even
if its plan is perfectly symmetric.

Consider first the analysis of torsional response of a building with a perfectly sym-
metric plan due to rotation of its base. For a given rotational excitation ügθ (t), the gov-
erning equations (9.6.9c) can be solved by the modal analysis procedure, considering only
the purely torsional vibration modes of the building. This procedure could be developed
along the lines of Section 13.3. It is not presented, however, for two reasons: (1) it is
straightforward; and (2) in structural engineering practice, buildings are not analyzed for
rotational excitation. Therefore, in this brief section we present the results of such analysis
and compare them with building torsion recorded during an earthquake.

Consider the building shown in Fig. 13.4.1, located in Pomona, California. This
reinforced-concrete frame building has two stories, a partial basement, and a light pent-
house structure. For all practical and code design purposes, the building has a nominally
symmetric floor plan, as indicated by its framing plan in Fig. 13.4.2. The lateral force-
resisting system in the building consists of peripheral columns interconnected by longitu-
dinal and transverse beams, but the L-shaped exterior corner columns as well as the interior
columns in the building are not designed especially for earthquake resistance. The floor
decking system is formed by a 15-cm-thick concrete slab. The building also includes walls
in the stairwell system—concrete walls in the basement and masonry walls in upper stories.
Foundations of columns and interior walls are supported on piles.

The accelerograph channels located as shown in Fig. 13.4.3 recorded the motion of
the building during the Upland (February 28, 1990) earthquake, including three channels
of horizontal motion at each of three levels: roof, second floor, and basement. The peak
accelerations of the basement were 0.12g and 0.13g in the x- and y-directions, respectively.
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Figure 13.4.1 First Federal Savings building, a two-story reinforced-concrete building
(with a partial basement) in Pomona, California. (Courtesy of California Strong Motion
Instrumentation Program.)

These motions were amplified to 0.24g in the x-direction and 0.22g in the y-direction at
the roof. The building experienced no structural damage during this earthquake.

Some of the recorded motions are shown in Fig. 13.4.4. These include the
x-translational accelerations at two locations at the basement of the building and at two
locations at the roof level. By superimposing the motions at two locations on the roof in
Fig. 13.4.5 it is clear that this building experienced some torsion; otherwise, these two
motions would have been identical. Assuming the base to be rigid, its rotational accelera-
tion is computed as the difference between the two x-translational records at the basement
of the building divided by the distance between the two locations. This rotational base
acceleration is multiplied by b/2, where the building-plan dimension b = 33.45 m, and
plotted in Fig. 13.4.6. The peak value of (b/2)ügθ (t) is 0.029g, compared with the peak
acceleration of 0.12g in the x-direction.

The torsional response of the building to the rotational motion of the basement,
Fig. 13.4.6, is determined by modal solution of Eq. (9.6.9c) with modal damping ratios
of 5%. These damping ratios were estimated from the recorded motions at the roof and
basement using some of the procedures mentioned in Chapter 11, Part A. The response
history of the shear force in a selected column of the building is presented in Fig. 13.4.7.
This is only a part of the element force due to the actual torsional motion of the building
during the earthquake, as will be demonstrated next.

Approximate values of the element forces due to recorded torsion can be determined
at each instant of time by static analysis of the building subjected to floor inertia torques
IO j üt

jθ (t) at all floors ( j = 1, 2, . . . , N ), where IO j is the moment of inertia of the j th
floor mass about the vertical axis through O , the center of mass (CM) of the floor, and
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üt
jθ is the torsional acceleration of the j th floor diaphragm. By using these inertia forces

as equivalent static forces, we have included the damping forces, and this is a source of
approximation (see the last paragraph of Section 1.8.2). The results of these static analyses
for the shear force in the same column are also presented in Fig. 13.4.7.

This figure shows that the peak force due to rotational basement motion is about 45%
of the peak force due to the actual torsional motion of the building. The remaining 55% of
the force arises, in part, because this building is not perfectly symmetric due to several fac-
tors, the most obvious of them being the stairwell system shown in Fig. 13.4.2, and because
the basement, which is under one-half of the floor plan, is not symmetrically located.

Torsional motion of buildings with nominally symmetric plan, such as the building of
Fig. 13.4.1, is usually called accidental torsion. Such motion contributes a small fraction
of the total earthquake forces in the structure. For the building and earthquake considered,
accidental torsion contributed about 4% of the total force (results not presented here), but
larger contributions have been identified in the earthquake response of other buildings.
The structural response associated with accidental torsion is not amenable to calculation
in structural design for two reasons: (1) the rotational base motion is not defined, and
(2) it is not practical to identify and analyze the effect of each source of asymmetry in
a building with nominally symmetric plan. Therefore, building codes include a simple
design provision to account for accidental torsion in symmetric and unsymmetric build-
ings; in the latter case it is considered in addition to torsion arising from plan asymmetry
(Section 13.3). Research has demonstrated deficiencies in this code provision.

13.5 RESPONSE ANALYSIS FOR MULTIPLE SUPPORT EXCITATION

In this section the modal analysis procedure of Section 13.1 is extended to MDF systems
excited by prescribed motions ügl(t) at the various supports (l = 1, 2, . . . , Ng) of the
structure. In Section 9.7 the governing equations were shown to be the same as Eq. (13.1.1),
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with the effective earthquake forces

peff(t) = −
Ng∑

l=1

mιl ügl(t) (13.5.1)

instead of Eq. (13.1.2). The modal Eq. (13.1.7) now becomes

q̈n + 2ζnωnq̇n + ω2
nqn = −

Ng∑
l=1

�nl ügl(t) (13.5.2)

where

�nl = Lnl

Mn
Lnl = φT

n mιl Mn = φT
n mφn (13.5.3)

The solution of Eq. (13.5.2) can be written as a generalization of Eq. (13.1.9):

qn(t) =
Ng∑

l=1

�nl Dnl(t) (13.5.4)

where Dnl(t) is the deformation response of the nth-mode SDF system to support acceler-
ation ügl(t).

The displacement response of the structure, Eq. (9.7.2), contains two parts:

1. The dynamic displacements are obtained by combining Eqs. (13.1.3) and (13.5.4):

u(t) =
Ng∑

l=1

N∑
n=1

�nlφn Dnl(t) (13.5.5)

2. The quasi-static displacements us are given by Eq. (9.7.11).

Combining the two parts gives the total displacements in the structural DOFs:

ut (t) =
Ng∑

l=1

ιlugl(t)+
Ng∑

l=1

N∑
n=1

�nlφn Dnl(t) (13.5.6)

The forces in structural elements can be obtained from the structural displacements
ut (t) and prescribed support displacements ug(t) without additional dynamic analyses by
using either of the two procedures mentioned in Section 9.10. In the first method, the
element forces are calculated from the known nodal displacements using the element stiff-
ness properties. This method is usually preferred in computer implementation of force
calculations for multiple support excitation. It is instructive, however, to generalize the
second method based on equivalent static forces. The rest of this section is devoted to this
development.

The equivalent static forces in the structural DOF are given by the last term on the
left side of Eq. (9.7.1):

fS = kut + kgug (13.5.7)

Substituting Eq. (9.7.2) for ut and using Eq. (9.7.7) gives

fS(t) = ku(t) (13.5.8)
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These forces depend only on the dynamic displacements, Eq. (13.5.5). Therefore,

fS(t) =
Ng∑

l=1

N∑
n=1

�nlkφn Dnl(t) (13.5.9)

which can be written in terms of the mass matrix by utilizing Eq. (10.2.4):

fS(t) =
Ng∑

l=1

N∑
n=1

�nlmφn Anl(t) (13.5.10)

where

Anl(t) = ω2
n Dnl(t) (13.5.11)

is the pseudo-acceleration response of the nth-mode SDF system to support acceleration
ügl(t).

The equivalent static forces along the support DOF are also given by the last term on
the left side of Eq. (9.7.1):

fSg = kT
g ut + kggug (13.5.12)

Substituting Eq. (9.7.2) for ut and using Eq. (9.7.3) for the quasi-static support forces ps
g(t)

gives

fSg(t) = kT
g u(t)+ ps

g(t) (13.5.13)

Observe that the support forces fSg depend on the displacements in the structural DOFs
as well as on support displacements, and can no longer be obtained by statics from the
force vector fS . This is different from Section 13.1, where for a structure excited at its only
support, or excited by identical motion at all supports, the base shear could be determined
from fS . By utilizing Eqs. (9.7.11) and (13.5.5), the support forces can be expressed as

fSg(t) =
Ng∑

l=1

(
kT

g ιl + kl
gg

)
ugl(t)+

Ng∑
l=1

N∑
n=1

�nlkT
gφn Dnl(t) (13.5.14)

where k l
gg is the lth column of kgg .

The element forces at each time instant are evaluated by static analysis of the struc-
ture subjected to the forces fS(t) and fSg(t), given by Eqs. (13.5.10) and (13.5.14), re-
spectively. Although this procedure was presented to show that the equivalent static force
concept can be generalized to structures excited by multiple support excitation, as men-
tioned earlier, in computer analysis it is usually preferable to evaluate the element forces
directly from the nodal displacements using the element stiffness properties.

Example 13.10

In the two-span continuous bridge of Example 9.10, support A undergoes vertical motion
ug(t), support B describes the same motion as A, but it does so t ′ seconds later, and support
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C undergoes the same motion 2t ′ after support A. Determine the following responses as a
function of time: displacement of the two masses; bending moments at the midpoint of each
span; and bending moment at the center support. Express all results in terms of Dn(t) and
An(t), the displacement and pseudo-acceleration responses of the nth-mode SDF system to
üg(t). Compare the preceding results with the response of the bridge if all supports undergo
identical motion ug(t).

Solution
1. Evaluate the natural frequencies and modes. The eigenvalue problem to be solved is

kφ = ω2mφ

where Eqs. (c) and (e) of Example 9.10 give

k = E I

L3

[
78.86 30.86
30.86 78.86

]
m = m

[
1

1

]
(a)

Solution of the eigenvalue problem gives

ω1 = 6.928

√
E I

mL3
ω2 = 10.47

√
E I

mL3
(b)

φ1 =
{−1

1

}
φ2 =

{
1
1

}
(c)

2. Determine �nl = Lnl/Mn.

Lnl = φT
n mιl l = 1, 2, 3, n = 1, 2

Substituting for φn and m from Eqs. (c) and (a), respectively, and for ιl from Eq. (g) of
Example 9.10 gives

L = [Lnl ] =
[−0.5000m 0 0.5000m

0.3125m 1.375m 0.3125m

] ← mode 1
← mode 2

↑ ↑ ↑
üg1 üg2 üg3

(d)

Mn = φT
n mφn n = 1, 2

Substituting for φn and m gives Mn = 2m, n = 1, 2. Then �nl = Lnl/Mn gives

Γ = [�nl ] =
[−0.25000 0 0.25000

0.15625 0.6875 0.15625

] ← mode 1
← mode 2

↑ ↑ ↑
üg1 üg2 üg3

(e)

3. Determine the response of the nth-mode SDF system to ügl(t). Given üg1(t) = üg(t),
üg2(t) = üg(t − t ′), üg3(t) = üg(t − 2t ′). Then

Dn1(t) = Dn(t) Dn2(t) = Dn(t − t ′) Dn3(t) = Dn(t − 2t ′) (f)

An1(t) = An(t) An2(t) = An(t − t ′) An3(t) = An(t − 2t ′) (g)

4. Determine the displacement response. In Eq. (13.5.6) with N = 2 and Ng = 3,
substituting for �nl , φn , and Dnl from Eqs. (e), (c), and (f), respectively, and for ιl from
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Eq. (g) of Example 9.10 gives{
ut

1(t)
ut

2(t)

}
=

{
0.40625
−0.09375

}
ug(t)+

{
0.6875
0.6875

}
ug(t − t ′)+

{−0.09375
0.40625

}
ug(t − 2t ′)

− 0.25
{−1

1

}
D1(t)+ 0

{−1
1

}
D1(t − t ′)+ 0.25

{−1
1

}
D1(t − 2t ′)

+ 0.15625
{

1
1

}
D2(t)+ 0.6875

{
1
1

}
D2(t − t ′)+ 0.15625

{
1
1

}
D2(t − 2t ′) (h)

5. Compute the equivalent static forces. In Eq. (13.5.10) with N = 2 and Ng = 3,
substituting for m, φn , �nl , and Anl(t) from Eqs. (a), (c), (e), and (g), respectively, gives

fS(t) = − 0.25
{−1

1

}
m A1(t)+ 0

{−1
1

}
m A1(t − t ′)+ 0.25

{−1
1

}
m A1(t − 2t ′)

+ 0.15625
{

1
1

}
m A2(t)+ 0.6875

{
1
1

}
m A2(t − t ′)+ 0.15625

{
1
1

}
m A2(t − 2t ′) (i)

6. Compute the equivalent static support forces. In Eq. (13.5.12) substituting for kg

and kgg from Eq. (d) of Example 9.10 and ut (t) from Eq. (h) gives

fSg(t) =
{−0.125

0
0.125

}
m A1(t)+

{
0
0
0

}
m A1(t − t ′)+

{
0.125
0
−0.125

}
m A1(t − 2t ′)

+
{−0.0488
−0.2148
−0.0488

}
m A2(t)+

{−0.2149
−0.9454
−0.2149

}
m A2(t − t ′)+

{−0.0488
−0.2148
−0.0488

}
m A2(t − 2t ′)

+
{

1.5
−3.0

1.5

}
E I

L3
ug(t)+

{−3
6
−3

}
E I

L3
ug(t − t ′)+

{
1.5
−3

1.5

}
ug(t − 2t ′) ( j)

where Eq. (b) was used to express E I/L3 in terms of ωn and Eq. (13.5.11) to express Dnl
in terms of Anl . The equivalent static forces given by Eqs. (i) and (j) are shown in Fig.
E13.10. Observe that at each time instant, these forces defined by Eqs. (i) and ( j) are in
equilibrium.

L/2 L/2 L/2 L/2

A
B

C
ED

fSg1
fSg3fSg2fS1

fS2

Figure E13.10

7. Compute the bending moments. The bending moments MD , ME , and MB at the
locations of the left mass, right mass, and support B, respectively, are obtained by static
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analysis of the system subjected to the forces shown in Fig. E13.10:

MD = mL

(
− 0.0625A1(t)+ 0A1(t − t ′)+ 0.0625A1(t − 2t ′)

)

+ mL

(
− 0.0244A2(t)− 0.1074A2(t − t ′)− 0.0244A2(t − 2t ′)

)

+ E I

L2

(
0.75ug(t)− 1.50ug(t − t ′)+ 0.75ug(t − 2t ′)

)
(k)

ME = mL

(
0.0625A1(t)+ 0A1(t − t ′)− 0.0625A1(t − 2t ′)

)

+ mL

(
− 0.0244A2(t)− 0.1074A2(t − t ′)− 0.0244A2(t − 2t ′)

)

+ E I

L2

(
0.75ug(t)− 1.50ug(t − t ′)+ 0.75ug(t − 2t ′)

)
(l)

MB = mL

(
0.0293A2(t)+ 0.1289A2(t − t ′)+ 0.0293A2(t − 2t ′)

)

+ E I

L2

(
1.5ug(t)− 3.0ug(t − t ′)+ 1.5ug(t − 2t ′)

)
(m)

Observe that the first mode does not contribute to MB because B is a point of inflection
for this mode.

8. Identical support motions. If all the supports undergo identical motion ug(t), the
motion of the structure is given by Eq. (13.1.15), where �n is defined by Eq. (13.1.5) with
ι = 1. For this system

�1 = 0 �2 = 1

When we substitute these data, Eq. (13.1.15) gives

u(t) = �2φ2 D2(t) =
{

1
1

}
D2(t) (n)

Observe that the first mode, which is antisymmetric, is not excited by the symmetric excitation,
and all the response is due to the second mode.

The equivalent static forces are given by Eq. (13.1.11):

fS(t) = �2mφ2 A2(t) = m
{

1
1

}
A2(t) (o)

The support forces can be obtained by static analysis of the bridge subjected to the external
forces of Eq. (o). Alternatively, the support forces are given by Eq. (j), specialized by substi-
tuting A2(t) = A2(t − t ′) = A2(t − 2t ′) and ug(t) = ug(t − t ′) = ug(t − 2t ′). Either method
gives

fSg(t) =
{−0.3125
−1.3750
−0.3125

}
m A2(t) (p)

Determined by static analysis of the structure due to the forces of Eq. (o), the bending
moments are

MD = −0.15625mL A2(t) ME = −0.15625mL A2(t) MB = 0.1875mL A2(t) (q)
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9. Comparison. If the support motions are identical, the quasi-static forces ps
g(t) in

Eq. (13.5.13) are zero, there is no quasi-static component in the bending moments, and all
support forces and internal forces can be computed directly (by statics) from the equivalent
static forces in the structural DOFs. In contrast, if the support motions are different, the
calculation of forces is more involved. In particular, the quasi-static forces associated with
the different displacements of the supports must be included, and support forces cannot be
obtained from only the equivalent static forces in the structural DOF.

13.6 STRUCTURAL IDEALIZATION AND EARTHQUAKE RESPONSE

With the development of earthquake analysis procedures presented in this chapter and the
availability of modern computers, it is now possible to determine the linearly elastic re-
sponse of an idealization (mathematical model) of any structure to prescribed ground mo-
tion. How well the computed response agrees with the actual response of a structure during
an earthquake depends primarily on the quality of the structural idealization.

To illustrate this concept, we return to the natural periods and damping ratios for the
Millikan Library building. Presented in Chapter 11 were these data from low-amplitude
forced vibration tests, and from the Lytle Creek and San Fernando earthquakes, which
caused roof accelerations of approximately 0.05g and 0.31g, respectively. These results
demonstrated that with increasing levels of motion the natural periods lengthen and the
damping ratios increase. The loss of stiffness indicated by this period change is be-
lieved to be primarily the result of cracking and other types of degradation of the non-
structural elements during the higher-level earthquake responses, especially from the San
Fernando earthquake. A nonlinear structural idealization having stiffness and damping
properties varying with deformation level would be necessary to reproduce this period
change and to describe the behavior of a structure through the complete range of deforma-
tion amplitudes.

However, if the structure experiences no structural damage, good estimates of the
response during the earthquake can usually be computed from an equivalent linear model
with viscous damping. If the computed natural periods and modes and the estimated damp-
ing ratios represent the properties of the structure during the earthquake, the modal analysis
procedure (Sections 13.1 to 13.3) will accurately predict “linear” response. This has been
demonstrated by numerous analyses of recorded motions of structures during earthquakes;
one such example is the response of the Millikan Library building during the San Fernando
earthquake (Figs. 11.1.3 and 11.1.4). Using the natural periods and damping ratios of this
building determined from these recorded motions and system identification procedures (Ta-
ble 11.1.1), the displacement response of this building to the basement motion calculated
by modal analysis was shown to agree almost perfectly with the displacements (relative to
the ground) shown in Fig. 11.1.5, which were determined from the accelerations recorded
at the roof and at the basement.

The usual situation, however, is different in the sense that the natural periods and
modes are computed from an idealization of the structure. It is the quality of this ide-
alization that determines the accuracy of response. Therefore, only those structural and
nonstructural elements that contribute to the mass and stiffness of the structure at the
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amplitudes of motion expected during the earthquake should be included in the structural
idealization; and their stiffness properties should be determined using realistic assump-
tions. Similarly, as discussed in Chapter 11, selection of damping values for analysis of a
structure should be based on available data from recorded earthquake responses of similar
structures.

PART B: RESPONSE SPECTRUM ANALYSIS

13.7 PEAK RESPONSE FROM EARTHQUAKE RESPONSE
SPECTRUM

The response history analysis (RHA) procedure presented in Part A provides structural
response r(t) as a function of time, but structural design is usually based on the peak values
of forces and deformations over the duration of the earthquake-induced response. Can the
peak response be determined directly from the response spectrum for the ground motion
without carrying out a response history analysis? For SDF systems the answer to this
question is yes (Chapter 6). However, for MDF systems the answer is a qualified yes. The
peak response of MDF systems can be calculated from the response spectrum, but the result
is not exact—in the sense that it is not identical to the RHA result; the estimate obtained
is accurate enough for structural design applications, however. In Part B we present such
response spectrum analysis (RSA) procedures for structures excited by a single component
of ground motion; thus simultaneous action of the other two components is excluded and
multiple support excitation is not considered. However, these more general cases have been
solved by researchers, and the interested reader should consult the published literature.

13.7.1 Peak Modal Responses

The peak value rno of the nth-mode contribution rn(t) to response r(t) can be obtained
from the earthquake response spectrum or design spectrum. This becomes evident from
Eq. (13.1.13) by recalling that the peak value of An(t) is available from the pseudo-
acceleration spectrum as its ordinate A(Tn, ζn), denoted as An , for brevity. Therefore,

rno = r st
n An (13.7.1)

The algebraic sign of rno is the same as that of r st
n because An is positive by definition.

Although it has an algebraic sign, rno
† will be referred to as the peak modal response

because it corresponds to the peak value of An(t). This algebraic sign must be retained
because it can be important, as will be seen in Section 13.7.2. All response quantities rn(t)
associated with a particular mode, say the nth mode, reach their peak values at the same

†The notation rno should not be confused with the use of a subscript o in Chapter 6 to denote the maximum
(over time) of the absolute value of the response quantity, which is positive by definition.
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time instant as An(t) reaches its peak (see Figs. 13.2.6 to 13.2.8, 13.2.10, 13.2.11, and
E13.8a–d).

13.7.2 Modal Combination Rules

How do we combine the peak modal responses rno (n = 1, 2, . . . , N ) to determine the
peak value ro ≡ maxt |r(t)| of the total response? It will not be possible to determine
the exact value of ro from rno because, in general, the modal responses rn(t) attain their
peaks at different time instants and the combined response r(t) attains its peak at yet a
different instant. This phenomenon can be observed in Fig. 13.2.7b, where results for the
shear in the top story of a five-story frame are presented. The individual modal responses
V5n(t), n = 1, 2, . . . , 5, are shown together with the total response V5(t).

Approximations must be introduced in combining the peak modal responses rno

determined from the earthquake response spectrum because no information is available
when these peak modal values occur. The assumption that all modal peaks occur at the
same time and their algebraic sign is ignored provides an upper bound to the peak value of
the total response:

ro ≤
N∑

n=1

|rno| (13.7.2)

This upper-bound value is usually too conservative, as we shall see in example computa-
tions to be presented later. Therefore, this absolute sum (ABSSUM) modal combination
rule is not popular in structural design applications.

The square-root-of-sum-of-squares (SRSS) rule for modal combination, developed
in E. Rosenblueth’s Ph.D. thesis (1951), is

ro �
(

N∑
n=1

r2
no

)1/2

(13.7.3)

The peak response in each mode is squared, the squared modal peaks are summed, and
the square root of the sum provides an estimate of the peak total response. As will be
seen later, this modal combination rule provides excellent response estimates for structures
with well-separated natural frequencies. This limitation has not always been recognized
in applying this rule to practical problems, and at times it has been misapplied to systems
with closely spaced natural frequencies, such as piping systems in nuclear power plants
and multistory buildings with unsymmetric plan.

The complete quadratic combination (CQC) rule for modal combination is applica-
ble to a wider class of structures as it overcomes the limitations of the SRSS rule. Accord-
ing to the CQC rule,

ro �
(

N∑
i=1

N∑
n=1

ρinriorno

)1/2

(13.7.4)

Each of the N 2 terms on the right side of this equation is the product of the peak responses
in the i th and nth modes and the correlation coefficient ρin for these two modes; ρin varies
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between 0 and 1 and ρin = 1 for i = n. Thus Eq. (13.7.4) can be rewritten as

ro �
( N∑

n=1

r2
no +

N∑
i=1

N∑
n=1︸ ︷︷ ︸

i �=n

ρinriorno

)1/2

(13.7.5)

to show that the first summation on the right side is identical to the SRSS combination rule
of Eq. (13.7.3); each term in this summation is obviously positive. The double summation
includes all the cross (i �= n) terms; each of these terms may be positive or negative. A
cross term is negative when the modal static responses r st

i and r st
n assume opposite signs—

for the algebraic sign of rno is the same as that of r st
n because An is positive by definition.

Thus the estimate for ro obtained by the CQC rule may be larger or smaller than the esti-
mate provided by the SRSS rule. [It can be shown that the double summation inside the
parentheses of Eq. (13.7.4) is always positive.]

Starting in the late 1960s and continuing through the 1970s and early 1980s, several
formulations for the peak response to earthquake excitation were published. Some of these
are identical or similar to Eq. (13.7.4) but differ in the mathematical expressions given for
the correlation coefficient. Here we include two: one due to E. Rosenblueth and J. Elorduy
for historical reasons because it was apparently the earliest (1969) result; and a second
(1981) due to A. Der Kiureghian because it is now widely used.

The 1971 textbook Fundamentals of Earthquake Engineering by N. M. Newmark
and E. Rosenblueth gives the Rosenblueth–Elorduy equations for the correlation coeffi-
cient:

ρin = 1

1+ ε2
in

(13.7.6)

where

εin =
ωi

√
1− ζ 2

i − ωn

√
1− ζ 2

n

ζ ′iωi + ζ ′nωn
ζ ′n = ζn + 2

ωns
(13.7.7)

and s is the duration of the strong phase of the earthquake excitation. Equations (13.7.6)
and (13.7.7) show that ρin = ρni ; 0 ≤ ρin ≤ 1; and ρin = 1 for i = n or for two modes
with equal frequencies and equal damping ratios. It is instructive to specialize Eq. (13.7.6)
for systems with the same damping ratio in all modes subjected to earthquake excitation
with duration s long enough to replace Eq. (13.7.7b) by ζ ′n = ζn . We substitute ζi = ζn = ζ
in Eq. (13.7.7a), introduce βin = ωi/ωn , and insert Eq. (13.7.7a) in Eq. (13.7.6) to obtain

ρin = ζ 2(1+ βin)
2

(1− βin)2 + 4ζ 2βin
(13.7.8)

The equation for the correlation coefficient due to Der Kiureghian is

ρin = 8
√
ζiζn(βinζi + ζn)β

3/2
in

(1− β2
in)

2 + 4ζiζnβin(1+ β2
in)+ 4(ζ 2

i + ζ 2
n )β

2
in

(13.7.9)

This equation also implies that ρin = ρni , ρin = 1 for i = n or for two modes with equal
frequencies and equal damping ratios. For equal modal damping ζi = ζn = ζ , this equation
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simplifies to

ρin = 8ζ 2(1+ βin)β
3/2
in

(1− β2
in)

2 + 4ζ 2βin(1+ βin)2
(13.7.10)

Figure 13.7.1 shows Eqs. (13.7.8) and (13.7.10) for the correlation coefficient ρin plotted
as a function of βin = ωi/ωn for four damping values: ζ = 0.02, 0.05, 0.10, and 0.20.
Observe that the two expressions give essentially identical values for ρin , especially in the
neighborhood of βin = 1, where ρin is the most significant.

This figure also provides an understanding of the correlation coefficient. Observe
that this coefficient diminishes rapidly as the two natural frequencies ωi and ωn move far-
ther apart. This is especially the case at small damping values that are typical of structures.
In other words, it is only in a narrow range of βin around βin = 1 that ρin has significant
values; and this range depends on damping. For example, ρin > 0.1 for systems with
5% damping over the frequency ratio range 1/1.35 ≤ βin ≤ 1.35. If the damping is 2%,
this range is reduced to 1/1.13 ≤ βin ≤ 1.13. For structures with well-separated natural
frequencies the coefficients ρin vanish; as a result all cross (i �= n) terms in the CQC rule,
Eq. (13.7.5), can be neglected and it reduces to the SRSS rule, Eq. (13.7.3). It is now clear
that the SRSS rule applies to structures with well-separated natural frequencies of those
modes that contribute significantly to the response.
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Figure 13.7.1 Variation of correlation coefficient ρin with modal frequency ratio, βin =ωi/ωn ,
as given by two different equations for four damping values; abcissa scale is logarithmic.
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The SRSS and CQC rules for combination of peak modal responses have been
presented without the underlying derivations based on random vibration theory, a sub-
ject beyond the scope of this book. It is important, however, to recognize the impli-
cations of the assumptions behind the derivations. These assumptions indicate that the
modal combination rules would be most accurate for earthquake excitations that contain
a wide band of frequencies with long phases of strong shaking, which are several times
longer than the fundamental periods of the structures, which are not too lightly damped
(ζn > 0.005). In particular, these modal combination rules will become less accurate for
short-duration impulsive ground motions and are not recommended for ground motions
that contain many cycles of essentially harmonic excitation.

Considering that the SRSS and CQC modal combination rules are based on random
vibration theory, ro should be interpreted as the mean of the peak values of response to an
ensemble of earthquake excitations. Thus the modal combination rules are intended for
use when the excitation is characterized by a smooth response (or design) spectrum, based
on the response spectra for many earthquake excitations. The smooth spectrum may be
the mean or median of the individual response spectra or it may be a more conservative
spectrum, such as the mean-plus-one-standard-deviation spectrum (Section 6.9). The CQC
or SRSS modal combination rule (as appropriate depending on the closeness of natural fre-
quencies) when used in conjunction with, say, the mean spectrum provides an estimate of
the peak response that is reasonably close to the mean of the peak values of response to
individual excitations.

This estimate of the peak response generally, but not always, errs on the uncon-
servative side. The magnitude of the error depends on the vibration properties—periods
and modes—of the structure and spectrum shape. Over a range of buildings analyzed, re-
searchers have observed errors up to 25%, especially in estimating local response quantities
such as story drifts in the upper stories. The error may be larger or smaller if modal combi-
nation rules are used to estimate the peak response to a single ground motion characterized
by a jagged response spectrum.

13.7.3 Interpretation of Response Spectrum Analysis

The response spectrum analysis (RSA) described in the preceding section is a procedure
for dynamic analysis of a structure subjected to earthquake excitation, but it reduces to a se-
ries of static analyses. For each mode considered, static analysis of the structure subjected
to forces sn provides the modal static response r st

n , which is multiplied by the spectral
ordinate An to obtain the peak modal response rno [Eq. (13.7.1)]. Thus the RSA proce-
dure avoids the dynamic analysis of SDF systems necessary for response history analysis
(Fig. 13.1.1). However, the RSA is still a dynamic analysis procedure, because it uses the
vibration properties—natural frequencies, natural modes, and modal damping ratios—of
the structure and the dynamic characteristics of the ground motion through its response
(or design) spectrum. It is just that the user does not have to carry out any response his-
tory calculations; somebody has already done these in developing the earthquake response
spectrum or the earthquake excitation has been characterized by a smooth design spectrum.
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13.8 MULTISTORY BUILDINGS WITH SYMMETRIC PLAN

13.8.1 Response Spectrum Analysis Procedure

In this section the RSA procedure of Section 13.7 is specialized for multistory buildings
with their plans having two axes of symmetry subjected to horizontal ground motion along
one of these axes. The peak value† of the nth-mode contribution rn(t) to a response quantity
is given by Eq. (13.7.1). The modal static response r st

n is calculated by static analysis of the
building subjected to lateral forces sn of Eq. (13.2.4). Equations for r st

n for several response
quantities are available in Table 13.2.1. Substituting these formulas for floor displacement
uj , story drift �j , base shear Vb, and base overturning moment Mb in Eq. (13.7.1) gives

ujn = �nφjn Dn �jn = �n(φjn − φj−1,n)Dn (13.8.1a)

Vbn = M∗n An Mbn = h∗n M∗n An (13.8.1b)

where Dn ≡ D(Tn, ζn), the deformation spectrum ordinate corresponding to natural period
Tn and damping ratio ζn; Dn = An/ω

2
n .

Equations (13.8.1) for the peak modal responses are equivalent to static analysis of
the building subjected to the equivalent static forces associated with the nth-mode peak
response:

fn = sn An fjn = �nmjφjn An (13.8.2)

where fn is the vector of forces f jn at the various floor levels, j = 1, 2, . . . , N (Fig. 13.8.1);
sn is defined by Eq. (13.2.4). The force vector fn is the peak value of fn(t), obtained by

ujnfjn

Floor

N

j

2

1
Figure 13.8.1 Peak values of lateral
displacements and equivalent static lateral
forces associated with the nth mode.

†From now on, the subscript o is dropped from ro for brevity [i.e., r will denote the peak value of r(t)].
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replacing An(t) in Eq. (13.2.7) by the spectral ordinate An . Because only one static anal-
ysis is required for each mode, it is more direct to do so for the forces fn instead of sn

and then multiplying the latter results by An . In contrast, the use of the modal static re-
sponse r st

n was emphasized in RHA because it highlighted the fact that the static analysis
for forces sn was needed only once even though the response was computed at many time
instants.

Thus the peak value rn of the nth-mode contribution to a response quantity r is de-
termined by static analysis of the building due to lateral forces fn; the direction of forces
f jn is controlled by the algebraic sign of φjn . Hence these forces for the fundamental
mode will act in the same direction (Fig. 13.8.1), but for the second and higher modes they
will change direction as one moves up the building. Observe that this static analysis is
not necessary to determine floor displacements or story drifts; Eq. (13.8.1a) provides the
more convenient alternative. The peak value of the total response is estimated using the
modal combination rules of Eq. (13.7.3) or (13.7.4), as appropriate, including all modes
that contribute significantly to the response.

Summary. The procedure to compute the peak response of an N -story building
with plan symmetric about two orthogonal axes to earthquake ground motion along an axis
of symmetry, characterized by a response spectrum or design spectrum, is summarized in
step-by-step form:

1. Define the structural properties.
a. Determine the mass matrix m and lateral stiffness matrix k (Section 9.4).
b. Estimate the modal damping ratios ζn (Chapter 11).

2. Determine the natural frequencies ωn (natural periods Tn = 2π/ωn) and natural
modes φn of vibration (Chapter 10).

3. Compute the peak response in the nth mode by the following steps to be repeated for
all modes, n = 1, 2, . . . , N :
a. Corresponding to natural period Tn and damping ratio ζn , read Dn and An , the

deformation and pseudo-acceleration, from the earthquake response spectrum or
the design spectrum.

b. Compute the floor displacements and story drifts from Eq. (13.8.1a).
c. Compute the equivalent static lateral forces fn from Eq. (13.8.2).
d. Compute the story forces—shear and overturning moment—and element

forces—bending moments and shears—by static analysis of the structure sub-
jected to lateral forces fn .

4. Determine an estimate for the peak value r of any response quantity by combining
the peak modal values rn according to the SRSS rule, Eq. (13.7.3), if the natural
frequencies are well separated. The CQC rule, Eq. (13.7.4), should be used if the
natural frequencies are closely spaced.

Usually, only the lower modes contribute significantly to the response. Therefore, steps 2
and 3 need to be implemented for only these modes and the modal combinations of
Eqs. (13.7.3) and (13.7.4) truncated accordingly.
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Example 13.11

The peak response of the two-story frame of Example 13.4, shown in Fig. E13.11a, to ground
motion characterized by the design spectrum of Fig. 6.9.5 scaled to 0.5g peak ground ac-
celeration is to be determined. This reinforced-concrete frame has the following properties:
m = 90,000 kg, E = 20,000 MPa, I = 40,000 cm4, h = 3 m, L = 6 m. Determine the lateral
displacements of the frame and bending moments at both ends of each beam and column.

u2

u1

u3

u5

u4

u6

2EI

EI

2EI

EI

2EI

EI

•
•

•
•

h 
=

 3
 m

h 
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 3
 m

•• L = 6 m

2m

m
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1
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θa θb
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L
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(

)

(

)

(

)
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)
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520 kN-m

1069 kN-m

558 kN-m

511 kN-m

1271 kN-m

(d)

( )

)

(

(

)

)

(

(

)

)

(

236 kN-m

419 kN-m

494 kN-m

75 kN-m

543 kN-m

(e)

Figure E13.11

Solution Steps 1 and 2 of the summary have already been implemented and the results are
available in Examples 10.5 and 13.4. Substituting for E , I , and h in Eq. (b) of Example 13.4
gives ωn and Tn = 2π/ωn :

ω1 = 3.987 ω2 = 10.61 rad/s

T1 = 1.576 T2 = 0.5920 s

Step 3a: Corresponding to these periods, the spectral ordinates are D1 = 35.19 cm and
D2 = 11.79 cm.
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1. Determine the floor displacements.
Step 3b: Using Eq. (13.8.1a) with numerical values for �n and φjn from Example 13.4

and Dn from step 3(a) gives the peak displacements un due to the two modes:

u1 =
{

u1
u2

}
1
= 1.365

{
0.3871
1

}
35.19 =

{
18.59
48.03

}
cm

u2 =
{

u1
u2

}
2
= −0.365

{−1.292
1

}
11.79 =

{
5.562
−4.306

}
cm

Step 4: Using the SRSS rule for modal combination, estimates for the peak values of
the floor displacements are

u1 �
√
(18.59)2 + (5.562)2 = 19.41 cm

u2 �
√
(48.03)2 + (−4.306)2 = 48.23 cm

2. Determine the element forces. Instead of implementing steps 3c and 3d as described
in the summary, here we illustrate the computation of element forces from the floor displace-
ments and joint rotations. The elements and nodes are numbered as shown in Fig. E13.11b.

First mode. Joint rotations are obtained from Eq. (d) of Example 9.9 with ut replaced
by u1:

u01 =

⎧⎪⎨
⎪⎩

u3
u4
u5
u6

⎫⎪⎬
⎪⎭

1

= 1

300

⎡
⎢⎣
−0.4426 −0.2459
−0.4426 −0.2459

0.9836 −0.7869
0.9836 −0.7869

⎤
⎥⎦[

18.59
48.03

]
=

⎡
⎢⎣
−6.681
−6.681
−6.503
−6.503

⎤
⎥⎦× 10−2

From u1 and u01 all element forces can be calculated. For example, the bending moment at
the left end of the first floor beam (Fig. E13.11c) is

Ma = 4E I

L
θa + 2E I

L
θb + 6E I

L2
ua − 6E I

L2
ub

Substituting E = 20,000 MPa, I = 80,000 cm4, L = 6 m, θa = u3, θb = u4, ua = ub = 0
gives Ma = −1069 kN-m. Bending moments in all elements can be calculated similarly. The
results are summarized in Table E13.11 and in Fig. E13.11d.

TABLE E13.11 PEAK BENDING MOMENTS (KN-M)

Element Node Mode 1 Mode 2 SRSS

Beam 1 3 −1069 −75 1072
4 −1069 −75 1072

Beam 2 5 −520 236 571
6 −520 236 571

Column 3 3 558 494 745
1 1271 543 1382

Column 5 5 520 −236 571
3 511 −419 660
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Second mode. Joint rotations u02 are obtained from Eq. (d) of Example 9.9 with ut

replaced by u2. Computations for the element forces parallel those shown for the first mode,
but using u2 and u02, leading to the results in Table E13.11 and in Fig. E13.11e.

Step 4: The peak value of each element force is estimated by combining its peak modal
values by the SRSS rule. The results are shown in Table E13.11. Note that the algebraic signs
of the bending moments are lost in the total values; therefore, it is not meaningful to draw the
bending moment diagram, and the total moments do not satisfy equilibrium at joints.

13.8.2 Example: Five-Story Shear Frame

In this section the RSA procedure is implemented for the five-story shear frame of Fig.
12.8.1. The complete history of this structure’s response to the El Centro ground motion
was determined in Section 13.2.6. We now estimate its peak response directly from the
response spectrum for this excitation (i.e., without computing its response history).

Presented in Sections 12.8 and 13.2.6 were the mass and stiffness matrices and the
natural vibration periods and modes of this structure. From these data, the modal properties
Mn and Lh

n were computed (Table 13.2.2). The damping ratios are estimated as ζn = 5%.

Response spectrum ordinates. The response spectrum for the El Centro
ground motion for 5% damping gives the values of Dn and An noted in Fig. 13.8.2 corre-
sponding to the natural periods Tn . These are the precise values for the spectral ordinates,
the peak values of Dn(t) and An(t) in Fig. 13.2.6, thus eliminating any errors in reading
spectral ordinates. Such errors are inherent in practical implementation of the RSA pro-
cedure with a jagged response spectrum, but are eliminated if a smooth design spectrum,
such as Fig. 6.9.5, is used.

Peak modal responses. The floor displacements are determined from
Eq. (13.8.1a) using known values of φjn (Section 12.8), Lh

n (Table 13.2.2), �n = Lh
n (be-

cause Mn = 1), and Dn (Fig. 13.8.2). For example, the floor displacements due to the first
mode are computed as follows:

u1 = �1φ1 D1 = 1.407

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0.253
0.486
0.679
0.818
0.890

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

13.649 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4.863
9.331
13.04
15.70
17.08

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

cm

These displacements are shown in Fig. 13.8.3a. The equivalent static forces for the nth
mode are computed from Eq. (13.8.2a) using known values of sn (Fig.13.2.4) where
m = 45 Mg (= 0.45 kN-sec2/cm), and An (Fig. 13.8.2). For example, the forces asso-
ciated with the first mode are computed as follows:

f1 = s1 A1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0.356 m
0.684 m
0.956 m
1.150 m
1.252 m

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

0.1374g =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

21.596
41.442
57.931
69.727
75.874

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

kN
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Figure 13.8.2 Earthquake response spectrum with natural vibration periods Tn of example structure
shown together with spectral values Dn and An .

These forces are also shown in Fig. 13.8.3a. Alternatively, fn can be computed by multi-
plying known values of sn (Fig. 13.2.4) by An (Fig. 13.8.2). Repeating these computations
for modes n = 2, 3, 4, and 5 leads to the remaining results of Fig. 13.8.3. Observe that the
equivalent static forces for the first mode all act in the same direction, but for the second
and higher modes they change direction as one moves up the building; the direction of
forces is controlled by the algebraic sign of φjn (Fig. 12.8.2).

For each mode the peak value of any story force or element force is computed by
static analysis of the structure subjected to the equivalent static lateral forces fn . Ta-
ble 13.8.1 summarizes these peak values for the base shear Vb, top-story shear V5, and
base overturning moment Mb. The earlier data for roof displacement u5 are also included.
These peak modal values are exact because the errors in reading spectral ordinates had
been eliminated in this example. This is apparent by comparing the data in Table 13.8.1
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21.596  4.863

41.442  9.331

57.931 13.044

69.727 15.700

75.874 17.084

(a) Mode 1
u1 (cm)f1 (kN)

Vb1 = 266.57 kN

Mb1 = 3746.2 kN-m

74.656  1.973

97.779  2.584

53.407  1.411

27.831  0.735

89.858  2.375

(b) Mode 2
u2 (cm)f2 (kN)

Vb2 = 108.15 kN

Mb2 = 520.70 kN-m

74.659  0.794

21.250  0.226

68.611  0.730

40.779  0.434

57.004  0.606

(c) Mode 3
u3 (cm)f3 (kN)

Vb3 = 43.524 kN

Mb3 = 132.93 kN-m

36.731  0.237

30.517  0.197

11.376  0.073

39.969  0.258

21.831  0.141

(d) Mode 4
u4 (cm)f4 (kN)

Vb4 = 12.975 kN

Mb4 = 30.848 kN-m

9.656  0.048

16.246  0.080

17.678  0.088

13.497  0.067

 5.032  0.025

(e) Mode 5
u5 (cm)f5 (kN)

Vb5 = 2.622 kN

Mb5 = 5.465 kN-m

Figure 13.8.3 Peak values of displacements and equivalent static lateral forces due to the five natural
vibration modes.

and the peak modal values from response history analysis in Figs. 13.2.7 and 13.2.8. The
two sets of data agree except possibly for their algebraic signs because the peak values Dn

and An are positive by definition.
Alternatively, Eq. (13.7.1) could have been used for computing the peak modal

response. For example, the modal static responses V st
bn and M st

bn are available from

TABLE 13.8.1 PEAK MODAL RESPONSES

Vb V5 Mb u5
Mode (kN) (kN) (kN-m) (cm)

1 266.571 75.874 3746.2 17.084
2 108.154 −89.858 −520.70 −2.375
3 43.524 57.004 132.93 0.606
4 12.975 −21.831 − 30.848 −0.141
5 2.622 5.032 5.465 0.025
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Table 13.2.3 and An from Fig. 13.8.2. For example, the first-mode calculations are

Vb1 = V st
b1 A1 = [4.398(0.45 kN-sec2/cm)]0.1374g = 266.571 kN

Mb1 = M st
b1 A1 = [(15.45)(0.45 kN-sec2/cm)(4 m)]0.1374g = 3746.2 kN-m

As expected, these are the same as the data in Table 13.8.1.

Modal combination. The peak value r of the total response r(t) is estimated by
combining the peak modal responses according to the ABSSUM, SRSS, and CQC rules of
Eqs. (13.7.2) to (13.7.4). Their use is illustrated for one response quantity, the base shear.

The ABSSUM rule of Eq. (13.7.2) is specialized for the base shear:

Vb ≤
5∑

n=1

|Vbn| (13.8.3)

Substituting for the known values of Vbn from Table 13.8.1 gives

Vb ≤ 266.571+ 108.154+ 43.524+ 12.975+ 2.622 or Vb ≤ 433.846 kN

As expected, the ABSSUM estimate of 433.846 kN is much larger than the exact value of
323.062 kN (Fig. 13.2.7).

The SRSS rule of Eq. (13.7.3) is specialized for the base shear:

Vb �
(

5∑
n=1

V 2
bn

)1/2

(13.8.4)

Substituting for the known values of Vbn from Table 13.8.1 gives

Vb �
√
(266.571)2 + (108.154)2 + (43.524)2 + (12.975)2 + (2.622)2 = 291.251 kN

Observe that the contributions of modes higher than the second are small.
The CQC rule of Eq. (13.7.4) is specialized for the base shear:

Vb �
(

5∑
i=1

5∑
n=1

ρin Vbi Vbn

)1/2

(13.8.5)

Needed in this equation are the correlation coefficients ρin , which depend on the frequency
ratios βin = ωi/ωn , computed from the known natural frequencies (Section 13.2.6) and
repeated in Table 13.8.2 for convenience.

TABLE 13.8.2 NATURAL FREQUENCY RATIOS βin

Mode, i n = 1 n = 2 n = 3 n = 4 n = 5 ωi (rad/s)

1 1.000 0.343 0.217 0.169 0.148 3.1415
2 2.919 1.000 0.634 0.494 0.433 9.1701
3 4.601 1.576 1.000 0.778 0.683 14.4558
4 5.911 2.025 1.285 1.000 0.877 18.5704
5 6.742 2.310 1.465 1.141 1.000 21.1804
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TABLE 13.8.3 CORRELATION COEFFICIENTS ρin

Mode, i n = 1 n = 2 n = 3 n = 4 n = 5

1 1.000 0.007 0.003 0.002 0.001
2 0.007 1.000 0.044 0.018 0.012
3 0.003 0.044 1.000 0.136 0.062
4 0.002 0.018 0.136 1.000 0.365
5 0.001 0.012 0.062 0.365 1.000

TABLE 13.8.4 INDIVIDUAL TERMS IN CQC RULE: BASE
SHEAR Vb

Mode, i n = 1 n = 2 n = 3 n = 4 n = 5

1 71060.175 197.691 31.413 5.950 0.957
2 197.691 11697.299 207.828 24.963 3.460
3 31.413 207.828 1894.318 76.691 7.107
4 5.950 24.963 76.691 168.359 12.426
5 0.957 3.460 7.107 12.426 6.875

For each βin value in Table 13.8.2, ρin is determined from Eq. (13.7.10) for ζ =
0.05 and presented in Table 13.8.3. Observe that the cross-correlation coefficients ρin

(i �= n) are small because the natural frequencies of the five-story shear frame are well
separated.

The 25 terms in the double summation of Eq. (13.8.5), computed using the known
values of ρin (Table 13.8.3) and Vbn (Table 13.8.1), are given in Table 13.8.4. Adding these
25 terms and taking the square root gives Vb � 293.196 kN. It is clear that only the i = n
terms are significant and the cross-terms (i �= n) are small because the cross-correlation
coefficients are small. Note that the contributions of modes higher than the second mode
could be neglected, thus reducing the computational effort.

Comparison of RSA and RHA results. The RSA estimates of peak response
obtained from the ABSSUM, SRSS, and CQC rules are summarized in Table 13.8.5 to-
gether with the RHA results from Figs. 13.2.7 to 13.2.8. In the preceding section, com-
putational details for estimating the peak base shear by RSA were presented; similarly,
results for V5, Mb, and u5 were obtained. These data permit several observations. First, the
ABSSUM rule can be excessively conservative and should therefore not be used. Second,
the SRSS and CQC rules give essentially the same estimates of peak response because the
cross-correlation coefficients are small for this structure with well-separated natural fre-
quencies. Third, the peak responses estimated by SRSS or CQC rules are smaller than the
RHA values; this is not a general trend, however, and larger values can also be estimated
when using a jagged response spectrum for a single excitation. Fourth, the error in SRSS
(or CQC) estimates of peak response, expressed as a percentage of the RHA value, vary
with the response quantity. It is about 15% for the top-story shear V5, 10% for the base
shear Vb, and less than 1% for the base overturning moment Mb and top-floor displacement
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TABLE 13.8.5 RSA AND RHA VALUES OF
PEAK RESPONSE

Vb V5 Mb u5

(kN) (kN) (kN-m) (cm)

ABSSUM 433.846 249.598 4436.2 20.231
SRSS 291.251 132.600 3784.7 17.260
CQC 293.196 129.352 3780.6 17.241
RHA 323.062 155.308 3811.8 17.383

u5. The error is largest for V5 because the responses due to the higher modes are most
significant (compared to other response quantities considered) relative to the first mode
(Table 13.8.1). Similarly, the error is smallest for Mb because the higher-mode responses
are a very small fraction of the first-mode response (Table 13.8.1).

Now consider a typical application of the RSA procedure in which the peak response
is estimated for excitations characterized by a smooth design spectrum, say the mean (or
median) spectrum derived from individual spectra for many ground motions (Section 6.9).
Modal combination rules are more dependable when used in conjunction with such a
smooth spectrum, because the variability of above-noted errors from excitation to exci-
tation is “averaged” out.

Avoid a pitfall. Observe that the peak value r of each response quantity was de-
termined by combining the peak values rn of the modal contributions to the same response
quantity. This is the correct way of estimating the peak value of a response quantity.

On the other hand, it is wrong to compute the combined peak value of one response
quantity from the combined peak values of other response quantities. For example, it is de-
sired to determine�5, the drift in the fifth story of the building just analyzed. It is incorrect
to determine its peak value from �5 = u5 − u4, where u5 and u4 have been determined by
combining their modal peaks u5n and u4n , respectively. The correct procedure to determine
�5 is by combining the peak modal values, �5n = u5n − u4n .

Similarly, it is erroneous to compute the combined peak value of an internal force
from the combined peak values of other forces. In particular, it is incorrect to determine the
story shears or story overturning moments from the combined peak values of the equivalent
static forces. The SRSS combination of the peak values of the equivalent static forces f jn

 114.265

 113.688

 106.573

 95.284

 132.600 kN

Vb = 562.409 kN
Figure 13.8.4 Wrong procedure for
computing internal forces.
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for each mode of the five-story shear building (Fig. 13.8.3) is shown in Fig. 13.8.4. Static
analysis of the structure with these external forces gives the base shear Vb = 562.409 kN,
which is almost twice the correct SRSS value presented in Table 13.8.5. This erroneous
value is much larger because the algebraic signs of f jn (Fig. 13.8.3) are lost in the SRSS
combination and the forces shown in Fig. 13.8.4 are all in the same direction.

13.8.3 Example: Four-Story Frame with an Appendage

This section is concerned with the four-story frame with a light appendage of Section 13.2.7,
where its response history due to El Centro ground motion was presented. In this section
the peak responses of the same structure are estimated by the RSA procedure directly from
the response spectrum for the ground motion. The analysis procedure and the details of
its implementation are identical to those described in Section 13.8.2. Therefore, only a
summary of the results is presented.

Table 13.8.6 shows the natural periods Tn and the associated spectral ordinates for
5% damping together with the peak modal responses for two response quantities: base

TABLE 13.8.6 SPECTRAL VALUES AND PEAK
MODAL RESPONSES

Tn Dn Vb V5
Mode (s) (cm) An/g (kN) (kN)

1 2.000 13.648 0.1374 111.382 6.027
2 1.873 13.545 0.1554 119.800 −6.161
3 0.671 6.687 0.5978 87.851 0.120
4 0.438 3.902 0.8185 28.249 −0.023
5 0.357 2.347 0.7408 4.811 0.003

shear Vb and appendage shear V5. The ratios βin of natural frequencies are given in
Table 13.8.7. The correlation coefficients computed by Eq. (13.7.10) for each βin value
are listed in Table 13.8.8.

TABLE 13.8.7 NATURAL FREQUENCY RATIOS βin

Mode, i n = 1 n = 2 n = 3 n = 4 n = 5 ωi (rad/s)

1 1.000 0.936 0.336 0.219 0.179 3.142
2 1.068 1.000 0.359 0.234 0.191 3.355
3 2.974 2.785 1.000 0.653 0.532 9.344
4 4.556 4.266 1.532 1.000 0.815 14.314
5 5.589 5.233 1.879 1.227 1.000 17.558
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TABLE 13.8.8 CORRELATION COEFFICIENTS ρin

Mode, i n = 1 n = 2 n = 3 n = 4 n = 5

1 1.000 0.698 0.007 0.003 0.002
2 0.698 1.000 0.008 0.003 0.002
3 0.007 0.008 1.000 0.050 0.023
4 0.003 0.003 0.050 1.000 0.192
5 0.002 0.002 0.023 0.192 1.000

The 25 terms in the double summation of Eq. (13.8.5) for Vb are presented in
Table 13.8.9; similar data for V5 appear in Table 13.8.10. The cross (i �= n) terms in
Table 13.8.9 are all positive because the modal static responses V st

bn for base shear are all
positive. Some of the cross terms in Table 13.8.10 are negative because all the modal static
responses V st

5n for the appendage shear do not have the same algebraic sign; a cross term
is negative when V st

5i and V st
5n assume opposite signs. Finally, estimates for the peak val-

ues of the two response quantities obtained by ABSSUM, SRSS, and CQC procedures are
presented in Table 13.8.11.

These results bring out several response features of systems with two modes having
close natural frequencies and contributing significantly to the response (e.g., the first two
modes of the four-story building with an appendage). The cross-correlation coefficient for
these two modes is 0.698 (Table 13.8.8), which is significant relative to its largest possible
value of unity. As a result, the 1–2 cross terms for V5 and Vb are comparable in magni-
tude to the individual modal (1–1 or 2–2) terms (Tables 13.8.9 and 13.8.10). Therefore,

TABLE 13.8.9 INDIVIDUAL TERMS IN CQC RULE:
BASE SHEAR Vb

Mode, i n = 1 n = 2 n = 3 n = 4 n = 5

1 12405.895 9322.208 64.019 8.646 1.014
2 9322.208 14351.975 80.010 10.530 1.227
3 64.019 80.010 7717.799 124.659 9.556
4 8.646 10.530 124.659 797.988 26.065
5 1.014 1.227 9.556 26.065 23.147

TABLE 13.8.10 INDIVIDUAL TERMS IN CQC RULE:
APPENDAGE SHEAR V5

Mode, i n = 1 n = 2 n = 3 n = 4 n = 5

1 36.320 −25.941 0.005 0.000 0.000
2 −25.941 37.961 −0.006 0.000 0.000
3 0.005 −0.006 0.014 0.000 0.000
4 0.000 0.000 0.000 0.001 0.000
5 0.000 0.000 0.000 0.000 0.000
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TABLE 13.8.11 RSA AND
RHA VALUES OF PEAK
RESPONSE

Vb V5
(kN) (kN)

ABSSUM 352.092 12.334
SRSS 187.874 8.620
CQC 233.651 4.734
RHA 248.790 4.390

the SRSS and CQC modal combination rules provide very different estimates of peak re-
sponses (Table 13.8.11). The CQC rule gives a base shear that is larger than its value from
the SRSS rule because all the cross (i �= n) terms are positive (Table 13.8.9). For the
appendage shear, however, the significant cross-term associated with the first two modes is
negative (Table 13.8.10). Therefore, the CQC rule gives an appendage shear that is smaller
than that obtained from the SRSS rule. Table 13.8.11 shows that only the CQC modal
combination rule provides estimates of peak response that are close to the RHA results of
Fig. 13.2.11. The errors in the SRSS estimates are unacceptably large; and they are even
larger in the ABSSUM results.

An examination of the RHA results reveals the reasons for these large errors in the
SRSS combination rule. Observe that the SDF system responses An(t) for the first two
modes are highly correlated, as they are essentially in phase because the two natural pe-
riods are close (Fig. 13.2.10); the peak values of the two An(t) are similar because their
natural periods are close and their damping ratios are identical. As a result and because
the modal static responses are similar for the first two modes (Table 13.2.4), the response
contributions of the first two modes are similar in magnitude (Fig. 13.2.11). These modal
contributions to the base shear are almost directly additive because they are essentially in
phase (Fig. 13.2.11a). This feature of the response is not represented by the SRSS rule,
whereas it is recognized in the CQC rule by the significant cross term (between modes 1
and 2) with positive value (Table 13.8.9). In contrast, the two modal contributions to the
appendage shear tend to cancel each other because they have essentially opposite phase
(Fig. 13.2.11b). This feature of the response is again not represented by the SRSS rule,
whereas it is recognized in the CQC rule by the significant cross term (between modes
1 and 2) with negative value (Table 13.8.10). It is clear from this discussion that the
SRSS modal combination rule should not be used for systems with closely spaced natural
frequencies.

13.9 MULTISTORY BUILDINGS WITH UNSYMMETRIC PLAN

In this section the RSA procedure of Section 13.7 is specialized for multistory buildings
with their plans symmetric about the x-axis but unsymmetric about the y-axis subjected to
ground motion in the y-direction. The peak value of the nth-mode contribution rn(t) to a
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response quantity is given by Eq. (13.7.1). The modal static response r st
n is calculated by

static analysis of the building subjected to lateral forces syn and torques sθn of Eq. (13.3.7).
Equations for the modal static response r st

n for several response quantities are available in
Table 13.3.1. Substituting these formulas for floor translation ujy , floor rotation ujθ , base
shear Vb, base overturning moment Mb, and base torque Tb in Eq. (13.7.1) gives

ujyn = �nφj yn Dn ujθn = �nφjθn Dn (13.9.1a)

Vbn = M∗n An Mbn = h∗n M∗n An Tbn = I ∗On An (13.9.1b)

Equations (13.9.1) for the peak modal responses are equivalent to static analysis of
the building subjected to the equivalent static forces associated with the nth-mode peak
response; the lateral forces fyn and torques fθn are{

fyn

fθn

}
=

{
syn

sθn

}
An (13.9.2)

The lateral force and torque at the j th floor level (Fig. 13.9.1) are

f j yn = �nmjφj yn An fjθn = �nr2mjφjθn An (13.9.3)

For reasons mentioned in Section 13.8, it is more direct to do the static analysis for the
forces fyn and fθn instead of syn and sθn and then multiplying the latter results by An .

For any response quantity, therefore, the peak value of the nth-mode response is de-
termined by static analysis of the building subjected to lateral forces fyn and torques fθn; the
direction of forces f j yn and f jθn is controlled by the algebraic signs of φj yn and φjθn . Ob-
serve that this static analysis is not necessary to determine floor displacements or rotations;
Eq. (13.9.1a) provides the more convenient alternative. Although such a three-dimensional
static analysis of an unsymmetric-plan building provides the element forces in all frames

f1yn

f1θn

fjyn

fjθn

x

y

fNyn

fNθn

1

j

N

Figure 13.9.1 Peak values of equivalent
static forces: lateral forces and torques.
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of the building, it may be useful to recognize that the element forces in an individual (i th)
frame can also be determined by planar analysis of the frame subjected to lateral forces:

fin = (�n/ω
2
n)kxi (−yiφθn)An fin = (�n/ω

2
n)kyi (φyn + xiφθn)An (13.9.4)

The first of these equations applies to frames in the x-direction and the second to frames
in the y-direction. They are obtained from Eq. (13.3.18) with An(t) replaced by the corre-
sponding spectral value An .

Once these peak modal responses have been determined for all the modes that con-
tribute significantly to the total response, they can be combined using the CQC rule,
Eq. (13.7.4), with N replaced by 2N—the number of DOFs for the unsymmetric-plan
building—in both summations, to obtain an estimate of the peak total response. The SRSS
rule for modal combination should not be used because many unsymmetric-plan buildings
have pairs (or triplets) of closely spaced natural frequencies.

Summary. The procedure to compute the peak response of an N -story building
with its plan symmetric about the x-axis but unsymmetric about the y-axis subjected to the
y-component of ground motion, characterized by a response spectrum or design spectrum,
is summarized in step-by-step form:

1. Define the structural properties.
a. Determine the mass and stiffness matrices from Eqs. (13.3.1) and (9.5.26).
b. Estimate the modal damping ratios ζn (Chapter 11).

2. Determine the natural frequencies ωn (natural periods Tn = 2π/ωn) and natural
modes φn of vibration (Chapter 10).

3. Compute the peak response in the nth mode by the following steps, to be repeated
for all modes, n = 1, 2, . . . , 2N :
a. Corresponding to the natural period Tn and damping ratio ζn , read Dn and An , the

deformation and pseudo-acceleration, from the earthquake response spectrum or
the design spectrum.

b. Compute the lateral displacements and rotations of the floors from Eq. (13.9.1a).
c. Compute the equivalent static forces: lateral forces fyn and torques fθn from

Eq. (13.9.2) or (13.9.3).
d. Compute the story forces—shear, torque, and overturning moment—and element

forces—bending moments and shears—by three-dimensional static analysis of
the structure subjected to external forces fyn and fθn . Alternatively, the element
forces in the i th frame can be calculated by planar static analysis of this frame
subjected to the lateral forces of Eq. (13.9.4).

4. Determine an estimate for the peak value r of any response quantity by combining the
peak modal values rn . The CQC rule for modal combination should be used because
unsymmetric-plan buildings usually have pairs of closely spaced frequencies.

Usually, only the lower pairs of modes contribute significantly to the response. There-
fore, steps 2 and 3 need to be implemented for only these modes and the double summa-
tions in the CQC rule truncated accordingly.



582 Earthquake Analysis of Linear Systems Chap. 13

Example 13.12

Determine the peak values of the response of the one-story unsymmetric-plan system of Ex-
amples 13.7 and 10.6 with modal damping ratios ζn = 5% to the El Centro ground motion in
the y-direction, directly from the response spectrum for this ground motion.

Solution Steps 1 and 2 of the procedure summary just presented have already been imple-
mented in Example 10.6.

Step 3a: Corresponding to the known Tn and ζn = 5%, Fig. 6.6.4 gives the ordinates
Dn and An . For T1 = 1.397 s: D1 = 8.865 cm and A1/g = 0.1827. For T2 = 1.239 s: D2 =
9.406 cm and A2/g = 0.2467. (Obviously, numbers cannot be read to four significant figures
from the response spectrum; they were obtained from the numerical data used in plotting
Fig. 6.6.4; see also Fig. E13.8a.)

Step 3b: The peak values of roof displacement and rotation are obtained by specializing
Eq. (13.9.1a) for the one-story system:

uyn = �nφyn Dn uθn = �nφθn Dn (a)

Substituting numerical values for �n , φyn , and φθn (from Example 13.7) in Eq. (a) with n = 1
gives the first-mode peak responses:

uy1 = (−4.946)(−0.1030)(8.865) = 4.518 cm

b

2
uθ1 =

(
12

2

)
(−4.946)(0.0243)(8.865) = −6.386 cm

(b)

where (b/2)uθ1 represents the lateral displacement at the edge of the plan due to floor rotation.
Similarly, the second-mode peak responses are

uy2 = (−4.852)(−0.1011)(9.406) = 4.612 cm

b

2
uθ2 =

(
12

2

)
(−4.852)(−0.0247)(9.406) = 6.776 cm

(c)

Step 3c: The peak values of fyn and fθn , the lateral force and torque, are obtained by
specializing Eq. (13.9.3) for this one-story frame:

fyn = �nmφyn An fθn = �nr2mφθn An (d)

By statics, the base shear and base torque are

Vbn = fyn Tbn = fθn (e)

Alternatively, Eq. (13.7.1) can be used for computing the peak modal response. For example,
the modal static responses V st

bn and Mst
bn are available from Example 13.8. Substituting V st

b1 =
0.510m, T st

b1 = −2.081m, m = 48 Mg and A1 = 0.1827g in Eq. (13.7.1) gives

Vb1 = [0.510(48 Mg)](0.1827g) = 43.841 kN

Tb1 = [−2.081(48 Mg)](0.1827g) = −179.039 kN-m
(f)

Substituting V st
b2 = 0.490m, T st

b2 = 2.081m, and A2 = 0.2467g in Eq. (13.7.1) gives

Vb2 = [0.490(48 Mg)](0.2467g) = 56.946 kN

Tb2 = [2.081(48 Mg)](0.2467g) = 241.703 kN-m
(g)
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Step 3d: The peak lateral force for frame A is given by Eq. (13.9.4b) specialized for a
one-story frame:

f An = kA�n(φyn + xAφθn)Dn (h)

Substituting kA = 1100 kN/m, xa = 0.5 m, and numerical values for �n , φyn , φθn , and Dn

gives

f A1 = 1100(−4.946)[−0.1030+ 0.5(0.0243)](0.08865) = 43.841 kN

f A2 = 1100(−4.852)[−0.1011+ 0.5(−0.0247)](0.09406) = 56.946 kN

The base shear in a one-story frame is equal to the lateral force; thus

VbA1 = 43.841 kN VbA2 = 56.946 kN (i)

The lateral force for frame B is given by Eq. (13.9.4a) specialized for a one-story frame:

fBn = kB�n(−yBφθn)Dn ( j)

Substituting kB = 590 kN/m, yB = 4 m, and numerical values for �n , φθn , and Dn gives

fB1 = 590(−4.946)[−4(0.0243)](0.08865) = 25.120 kN

fB2 = 590(−4.852)[−4(−0.0247)](0.09406) = −26.654 kN

The corresponding base shears are

VbB1 = 25.120 kN VbB2 = −26.654 kN (k)

The results for peak modal responses are presented in Table E13.12a.

TABLE E13.12a PEAK MODAL RESPONSES

uy b/2uθ Vb Tb VbA VbB
Mode (cm) (cm) (kN) (kN-m) (kN) (kN)

1 4.518 −6.386 43.841 −179.039 43.841 25.120
2 4.612 6.776 56.946 241.703 56.946 −26.654

Step 4: For this system with two modes, the ABSSUM, SRSS, and CQC rules, Eqs.
(13.7.2) to (13.7.4), specialize to

r ≤ |r1| + |r2| r � (r2
1 + r2

2 )
1/2 r � (r2

1 + r2
2 + 2ρ12r1r2)

1/2 (l)

For this system, β12 = ω1/ω2 = 4.496/5.072 = 0.887. For this value of β12 and ζ = 0.05,
Eq. (13.7.10) gives ρ12 = 0.407. The results from Eq. (l) are summarized in Table E13.12b,
wherein the peak values of total responses determined by RHA are also included. These
were computed using the results of Example 13.8, where Dn(t) and An(t) were computed by
dynamic analysis of the nth-mode SDF system.

As expected, the ABSSUM estimate is always larger than the RHA value. The SRSS
estimate is better for uθ , Tb, and VbB , but the CQC estimate is the best because it accounts
for the cross-correlation term in the modal combination, which is significant in this example
because the natural frequencies are close, a situation common for unsymmetric-plan systems.
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TABLE E13.12b RSA AND RHA VALUES OF PEAK RESPONSE

uy (b/2)uθ Vb Tb VbA VbB
(cm) (cm) (kN) (kN-m) (kN) (kN)

ABSSUM 9.13 13.16 100.79 420.7 100.79 51.77
SRSS 6.456 9.31 71.87 300.8 71.87 36.63
CQC 7.658 7.174 84.84 235.0 84.84 28.22
RHA 8.918 5.654 98.51 180.6 98.51 22.24

Example 13.13

Figure E13.13a–c shows a two-story building consisting of rigid diaphragms supported by
three frames, A, B, and C . The lumped masses at the first and second floor levels are 60 and
30 Mg, respectively. The lateral stiffness matrices of these frames in kN/m, each idealized as
a shear frame, are

ky A = ky =
[

3000 −1000
−1000 1000

]
kx B = kxC = kx =

[
1800 −600
−600 600

]
The design spectrum for ζn = 5% is given by Fig. 6.9.5 scaled to 0.5g peak ground accelera-
tion. Determine the peak value of the base shear in frame A.

x

y

•
•

6 m

• •
0.5 m• •

10 m

(a) Plan

Frame C

Frame B

Frame A
ujy

ujθ

u1A

u2A

(b) Frame A

u1B and u1C

u2B and u2C

(c) Frames B and C

Figure E13.13a–c
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Solution This system has four DOFs: uyj and uθ j (Fig. E13.13a); j = 1 and 2. The stiffness
matrix of Eqs. (9.5.25) and (9.5.26) is specialized for this system with three frames:

k =
[

ky eky

eky e2ky + (d2/2)kx

]
Substituting for kx , ky , e = 0.5 m, d = 6 m, gives

k =

⎡
⎢⎣

3000 −1000 1500 −500
1000 −500 500
(sym) 33,150 −11,050

11,050

⎤
⎥⎦ ,

The floor masses are m1 = 60 Mg and m2 = 30 Mg, and the floor moments of inertia are
IO j = mj (b2+ d2)/12 = mj (102+ 62)/12 = 136mj/12. Substituting these data in the mass
matrix of Eq. (9.5.27) gives

m =

⎡
⎢⎣

60
30

680
340

⎤
⎥⎦

The eigenvalue problem is solved to determine the natural periods Tn and modes φn

shown in Fig. E13.13d. Observe that each mode includes lateral and torsional motion. In the
first mode the two floors displace in the same lateral direction and the two floors rotate in
the same direction. In the second mode the two floors rotate in the same direction, which is

Floor

2

Floor

1

0.10089

0.03260

T1 = 1.681 s

Mode 1

0.05045
0.01630

0.10974 0.02997

T2 = 1.444

Mode 2

0.05487 0.01498

0.07134
0.02305

T3 = 0.840

Mode 3

0.07134
0.02305

0.07660 0.02119

T4 = 0.722

Mode 4

0.07760 0.02119

Figure E13.13d
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opposite to the first mode. In the third and fourth modes the lateral displacements at the two
floors are in opposite directions; the same is true for the rotations of the two floors.

The �n are computed from Eqs. (13.3.4) to (13.3.6): �1 = 6.054, �2 = 6.584, �3 =
−2.140, and �4 = 2.328.

For Tn = 1.681, 1.444, 0.840, and 0.722 s, the design spectrum gives A1/g = 0.535,
A2/g = 0.623, A3/g = 1.071, and A4/g = 1.247.

The peak values of the equivalent static lateral forces for frame A are [from
Eq. (13.9.4b)]

fAn = (�n/ω
2
n)ky(φyn + eφθn)An

Substituting for �1, ω1(= 3.738), ky , A1, φy1, and φθ1 gives the lateral forces associated
with the first mode:{

f A1
f A2

}
1
= 6.054

(3.738)2
(0.535× 9.80665)

[
3000 −1000
−1000 1000

]({
0.05045
0.10089

}

+ 0.5
{−0.01630
−0.03260

})
=

{
96.2
96.2

}
Static analysis of the frame subjected to these lateral forces (Fig. E13.13e) gives the internal
forces. In particular, the base shear is VbA1 = f11 + f21 = 192.4 kN. Similar computations
lead to the peak base shear due to the second, third, and fourth modes: VbA2 = 265.1, VbA3 =
48.1, and VbA4 = 66.3 kN.

96.2 kN

96.2 kN

Frame A Figure E13.13e

The peak value r of the total response r(t) will be estimated by combining the peak
modal responses according to the CQC rule, Eq. (13.7.4). For this purpose it is necessary to
determine the frequency ratios βin = ωi/ωn ; these are given in Table E13.13a. For each of
the βin values the correlation coefficient ρin is computed from Eq. (13.7.10) with ζ = 0.05
and presented in Table E13.3b.

TABLE E13.13a NATURAL FREQUENCY RATIOS βin

Mode, i n = 1 n = 2 n = 3 n = 4 ωi (rad/s)

1 1.000 0.859 0.500 0.429 3.738
2 1.164 1.000 0.582 0.500 4.352
3 2.000 1.718 1.000 0.859 7.476
4 2.329 2.000 1.164 1.000 8.705

Substituting the peak modal values VbAn and the correlation coefficients ρin in the CQC
rule, we obtain the 16 terms in the double summation of Eq. (13.7.4) (Table E13.13c). Adding
the 16 terms and taking the square root gives VbA = 385.6 kN. Table E13.13c shows that the
terms with significant values are the i = n terms, and the cross terms between modes 1 and 2
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TABLE E13.13b CORRELATION COEFFICIENTS ρin

Mode, i n = 1 n = 2 n = 3 n = 4

1 1.000 0.301 0.018 0.012
2 0.301 1.000 0.031 0.018
3 0.018 0.031 1.000 0.301
4 0.012 0.018 0.301 1.000

TABLE E13.13c INDIVIDUAL TERMS IN CQC RULE: BASE
SHEAR VbA IN FRAME A

Mode, i n = 1 n = 2 n = 3 n = 4

1 37028.144 15328.535 171.130 152.230
2 15328.535 70254.487 396.783 324.689
3 171.130 396.783 2314.259 958.033
4 152.230 324.689 958.033 4390.905

and between modes 3 and 4. The cross terms between modes 1 and 3, 1 and 4, 2 and 3, or 2 and
4 are small because those frequencies are well separated. The square root of the sum of the four
i = n terms in Table E13.3c gives the SRSS estimate: VbA = 337.6 kN. This is less accurate.

13.10 A RESPONSE-SPECTRUM-BASED ENVELOPE
FOR SIMULTANEOUS RESPONSES

The seismic design of a structural element may be controlled by the simultaneous action
of two or more responses. For example, a column in a three-dimensional frame must be
designed to resist an axial force and bending moments about two axes that act concur-
rently and vary in time. We limit this section to two response quantities: ra(t) and rb(t);
for a column ra(t) represents the bending moment M(t) about a cross-sectional axis and
rb(t) represents the axial force P(t). The values of ra and rb at a time instant t are de-
noted by one point in the two-dimensional response space (Fig. 13.10.1a), and the response

r
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b
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(t)

(a)

r
a

r
b

Capacity
curve

Response
trajectory

(b)

r
a

r
b

α

rα(t)

(c)

Figure 13.10.1
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trajectory—i.e., combinations of ra and rb throughout the earthquake—shows how this pair
of response quantities evolves in time. A structural element will be considered as designed
adequately if the response trajectory stays within the safe region of the response space,
defined by the relevant capacity curve for the element (Fig. 13.10.1b); e.g., the capacity
curve for a column is commonly known as the P-M interaction diagram.

How can such a comparison between seismic demands and structural element capac-
ity be achieved within the context of the RSA procedure presented in Section 13.7? The
RSA procedure provides an estimate of the peak value of each response quantity, but these
peaks generally do not occur at the same instant. Recognizing this fact, we present a set
of response-spectrum-based equations to determine an envelope that bounds the response
trajectory. This bounding envelope can then be compared to the capacity curve for the
element to determine whether or not it is adequately designed.

The peak values of ra(t) and rb(t) estimated by the RSA procedure are identified as
rao and rbo in Fig. 13.10.2a. They can be interpreted as estimates of the peak values of
the projections of the response trajectory on the ra and rb axes, respectively. Using these
response-spectrum-based estimates of peak values, rao and rbo, a rectangular “envelope”
that “bounds” the response trajectory is shown in Fig. 13.10.2a†; visually this envelope
seems overly conservative. It is indeed conservative because it requires that the structural
element should be designed for all four combinations of the peak responses: ±rao and
±rbo, implying that the peaks occur at the same instant; both algebraic signs are considered
because the sign is lost in the RSA procedure, which always gives a positive value. Our
goal is to construct a tighter bounding envelope.

For this purpose, consider an arbitrary direction in the response space that is rotated
α radians counterclockwise from the ra axis (Fig. 13.10.1c). The projection of the response

r
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r
b

r
ao

−r
ao

r
bo

−r
bo

(a)

α
r
a

r
b

r
αo

(b)

r
a

r
b

(c)

Figure 13.10.2

†The quotation marks are included to emphasize the fact that this envelope may not strictly bound the
response trajectory because, as mentioned in Section 13.7, an RSA estimate of peak response may provide an
underestimate relative to the exact value from RHA.
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trajectory along this direction is given by†

rα(t) = ra(t) cosα + rb(t) sinα (13.10.1)

The peak value rαo of rα (t) can be estimated by the RSA procedure, wherein the required
modal static responses r st

αn can be determined from r st
an and r st

bnfollowing Eq. (13.10.1):

r st
αn = r st

an cosα + r st
bn sinα (13.10.2)

As shown in Fig. 13.10.2b, the response trajectory is bounded in the direction α by rαo,
just like it was bounded by rao and rbo in directions α = 0◦ and 90◦, respectively.

We can repeat the preceding calculation to determine rαo for several directions α
and plot the resulting bounds (Fig. 13.10.2c), thus gradually tightening the envelope. The
resulting envelope can be shown to be an ellipse (Fig. 13.10.3a) with its coordinates de-
fined by{

ra

rb

}
=

{ (
r2

ao cosα + rabo sinα
)/

rαo(
r2

bo sinα + rabo cosα
)/

rαo

}
0 ≤ α < 2π radians (13.10.3)

where the cross term rabo remains to be defined. In passing, we note that this cross term
determines the orientation of the principal axes of the ellipse relative to the ra and rb axes
of the response space. The coordinates given by Eq. (13.10.3) of a point on the elliptical
envelope do not necessarily lie in direction α away from the origin of the response space;
in fact, the direction is tan−1(rb/ra). Recall that α defines the direction along which the
response trajectory is projected. It can be shown that the elliptical envelope is inscribed
within the conservative rectangular envelope.

Independent of the modal combination rule used to estimate peak responses, the
preceding presentation is now specialized for the CQC and SRSS rules. Based on the CQC

†In general, rα does not represent any physical response quantity; however, in some cases it does. For
example, if ra and rb denote the bending moments in a column about two orthogonal axes a and b of its cross
section, then rα represents the bending moment about a cross-sectional axis rotated α radians counterclockwise
from the a-axis.
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modal combination rule, rao, rbo, and rabo are given by

rao �
(

N∑
i=1

N∑
n=1

ρinraiorano

)1/2

rbo �
(

N∑
i=1

N∑
n=1

ρinrbiorbno

)1/2

rabo �
N∑

i=1

N∑
n=1

ρinraiorbno

(13.10.4)
where the first two are familiar equations (see Section 13.7) for peak values of responses
ra (t) and rb (t), and the cross term defined by Eq. (13.10.4c) is similar in appearance to
Eqs. (13.10.4a) and (13.10.4b), but it involves both responses; recall that ρin = 1 for i = n
(Section 13.7).

If the natural vibration frequencies of the structure are well separated, ρin � 0 for
i �= n, and Eq. (13.10.4) simplifies to

rao �
(

N∑
n=1

r2
ano

)1/2

rbo �
(

N∑
n=1

r2
bno

)1/2

rabo �
N∑

n=1

ranorbno (13.10.5)

Equations (13.10.5a) and (13.10.5b) are the familiar equations (see Section 13.7) for peak
values of responses ra(t) and rb(t) based on the SRSS modal combination rule, and Eq.
(13.10.5c) is a special case of Eq. (13.10.4c).

Based on the RSA procedure, Eq. (13.10.3) combined with Eq. (13.10.4) or (13.10.5),
as appropriate, defines the elliptical bounding envelope. Instead of the complete response
trajectory (Fig. 13.10.1b), this envelope can be compared to the capacity curve of the
structural element to determine whether or not it is adequately designed (Fig. 13.10.3b).
In particular, an element is considered to be adequately designed if the elliptical enve-
lope, which envelopes all combinations of the responses occurring during an earthquake,
is within the safe region of the response space defined by the capacity surface of the
element. It is often observed that the critical response combination, denoted by the de-
sign point, does not include the peak value of either of the two responses, as shown in
Fig. 13.10.3b.

Researchers have developed a general theory leading to a bounding envelope for a
set of more than two response quantities, e.g., axial force and bending moments about
cross-sectional axes x and y acting on a structural element. In this case, the bounding enve-
lope, which is an ellipse in the two-dimensional response space, generalizes to an ellipsoid
in the three-dimensional response space. Researchers have also developed strategies for
comparing three-dimensional response envelopes and capacity surfaces to judge whether
or not a structural element is adequately designed.

Contribution of static forces. In the preceding presentation of the elliptical
envelope, only time-varying responses to earthquake excitation were considered. However,
initial static (dead and live) loads acting on the structure cause time-invariant components
ras and rbs . For linearly elastic systems, the initial static and time-varying components of
the response can be added to yield the total response that varies in time around the starting
point<ras, rbs> in the ra−rb response space (Fig. 13.10.4). The size and orientation of the
elliptical envelope is unaffected by the static components, and the center of the envelope
is translated from the origin of the response space to <ras, rbs>, as shown in Fig.13.10.4.
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The coordinates of this translated envelope are{
ra

rb

}
=

{ (
r2

ao cosα + rabo sinα
)/

rαo(
r2

bo sinα + rabo cosα
)/

rαo

}
+

{
ras

rbs

}
0 ≤ α < 2π radians (13.10.6)

It is clear from Fig. 13.10.4 that the critical design point, which is the point on the
response envelope that governs the design of a structural element, based on the rectangu-
lar envelope lies outside the capacity curve, indicating that the structural element does not
satisfy the design requirements. However, the elliptical envelope is encompassed by the
capacity surface of the element, indicating that the element is adequately designed. Con-
struction of an appropriate envelope is obviously important to arrive at the correct decision.

Example 13.14

Consider the inverted L-shaped frame of Fig. E13.1a subjected to the El Centro ground
motion. Determine the response trajectory and bounding envelopes for two simultaneously
acting forces at the base of the column: bending moment Mb and axial force Pb. Given
m = 25,000 kg, EI = 32.3× 107 kN-cm2, L = 14 m, and assume that ζn = 5%.

Solution Substituting the given values of m, EI, and L in Eq. (c) of Example 13.1 gives
natural vibration frequencies ω1 = 3.139 and ω2 = 8.420 rad/s; the corresponding natural
vibration periods are T1 = 2.0 and T2 = 0.746 s.

Response History Analysis. Response analysis of the first-mode SDF system (T1 = 2 s
and ζ1 = 5%) and the second-mode SDF system (T2 = 0.746 s and ζ2 = 5%) to the El Centro
ground motion gives the Dn(t) and An(t) shown in Fig. E13.14a.
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The modal static responses Mst
bn and Pst

n are as follows: Mst
b1 = 2.067mL and Mst

b2 =
0.934mL (from Example 13.1); Pst

b1 = 0.850m and Pst
b2 = −0.850m (from Fig. E13.1).

Substituting these in Eq. (13.1.16) gives the response history:

Mb(t) = 2.067mLA1(t)+ 0.934mLA2(t)

P(t) = 0.850mA1(t)− 0.850mA2(t)
(a)

The base moment and axial force, computed from Eq. (a) using the known An(t) from
Fig. E13.14a, are shown in Fig. E13.14b. Presented are contributions of each mode separately
and the combined, total responses. The peak values are Mbo = 552 kN-m and Po = 119.6 kN,
as noted.

Plotting Mb(t) and Pb(t) together in the response space (Fig. E13.14c) provides the
response trajectory. Observe that the peak values of the projections of the response trajectory
on the Mb and P axes are equal to Mbo and Pbo determined above (Fig. E13.14c).

Response Spectrum Analysis. The response spectrum for the El Centro ground motion
(Fig. 6.6.4) for 5% damping gives A1 = 0.1376g and A2 = 0.4515g, corresponding to T1 and
T2, respectively. These are the precise values for spectral ordinates, same as the peak values
of An(t) noted in Fig. E13.14a.
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The peak modal responses are given by

Mbno = Mst
bn An Pbno = Pst

n An (b)

Substituting for An , the modal static responses, m, and L leads to the peak modal values for
the bending moment at the base of the column:

Mb1o = 2.067mL(0.1376g) = 278.6 kN-m

Mb2o = 0.934mL(0.4514g) = 412.9 kN-m

and for the axial force in the column:

Pb1o = 0.850m(0.1376g) = 28.66 kN

Pb2o = −0.850m(0.4514g) = −94.08 kN

Because the natural frequencies of this system are well separated, we can combine the peak
modal response by the SRSS rule:

Mbo =
√
(278.6)2 + (412.9)2 = 498.1 kN-m

Pbo =
√
(28.66)2 + (−94.08)2 = 98.3 kN

These estimates of the peak responses are shown in the ra−rb response space in Fig. E13.14d.
Because these estimates of the peak responses are smaller than the exact peak values from
RHA (Fig. E13.14b), they do not strictly bound the response trajectory (Fig. E13.14d).

The modal static responses for rα are computed from Eq. (13.10.2):

r st
αn = Mst

bn cosα + Pbnst sinα

For α = 30◦, these modal static responses are

r st
α1 = 2.067mL cos 30◦ + 0.850m sin 30◦

= (1.790L+ 0.425)m
r st
α2 = 0.934mL cos 30◦ − 0.850m sin 30◦

= (0.8089L− 0.4250)m
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Substituting these r st
αn and the An values in rαno = r st

αn An gives the peak modal responses

rα1o = (1.790L+ 0.4250)m(0.1376g) = 255.6

rα2o = (0.8089L− 0.4250)m(0.4515g) = 310.5

Combining these peak modal responses gives

rαo =
√
(255.6)2 + (310.5)2 = 402.2

Note that rα does not represent a physical quantity, hence units are not shown.
Bounding Envelope The bounding envelope is given by Eq. (13.10.3) where rao, rbo,

and rαo have already been determined and rabo is given by Eq. (13.10.5c):

rabo =
N∑

n=1
ranorbno = (278.6)(28.66)+ (412.9)(−94.08)

= −30,860

With rao, rbo, rαo, and rabo known, calculating the coordinates of the bounding envelope is
illustrated for α = 30◦:

ra = [(498.1)2 cos 30◦ + (−30, 860) sin 30◦]/402.2 = 495.9

rb = [(98.3)2 sin 30◦ + (−30, 860) cos 30◦]/402.2 = −54.42

These are the coordinates of one point on the bounding envelope (Fig. E13.14e). The ellip-
tical envelope is bounded in the direction α by rαo = 402.2. This bound will be tangential
to the envelope at the point (495.9, −54.42). However, this assertion cannot be verified in
Fig. E13.14e because the scales along ra and rb axes are not the same, causing distortion of
angles. Repeating such calculations for a large number of α values leads to the bounding
ellipse (Fig. E13.14e).
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13.11 PEAK RESPONSE TO MULTICOMPONENT GROUND MOTION

Ground motion at a location is defined by six components: translation along orthogonal
axes, x, y, and z “end” rotations about these axes; the x- and y-axes are horizontal and the
z-axis is vertical. We will restrict consideration to three translational components because
these are the only components recorded during earthquakes. Let us temporarily assume
that x, y, and z axes coincide with the axes defining the structure. The dynamic response
of the structure within its linearly elastic range of behavior to one component of ground
motion can be determined by the RHA procedure (Chapter 13, Part A), and the combined
response to three components acting simultaneously is obtained by superposition.

How can the combined response be determined within the context of the RSA pro-
cedure presented in Section 13.7? The RSA procedure provides an estimate of the peak
values of the responses to individual components of excitation. Recognizing that these
peaks generally do not occur simultaneously, we present a rule to combine the three in-
dividual peaks to estimate the peak response to multicomponent ground motion. For this
purpose, it is necessary first to introduce the concept of principal axes of ground motion,
which in turn requires new terminology and definitions.

13.11.1 Earthquake Excitation

Consider three orthogonal components—x, y, and z—of recorded ground acceleration
ax (t),† ay(t), and az(t) and define the 3× 3 covariance matrix μ by its elements:

μij = 1

td

∫ td

0
ai (t)aj (t) dt i, j = x, y, z (13.11.1)

where td is the duration of ground motion. The diagonal terms of this matrix represent
the mean square intensities of the three components, and the off-diagonal terms represent
cross correlations between pairs of components. In general, μi j for i �= j is nonzero and
the components are said to be correlated.

Researchers have developed three concepts: First, ground motion can be transformed
to a new orthogonal set of axes 1, 2, and 3 such that ground accelerations a1(t), a2(t), and
a3(t) along these axes are uncorrelated; i.e., μi j = 0, i �= j , where i, j = 1, 2, 3; the
corresponding covariance matrix is obviously a diagonal matrix. Second, these axes are
defined as the principal axes of ground motion. Ordering the components starting from the
largest mean square intensity to the lowest mean square intensity, i.e., μ11 > μ22 > μ33,
a1(t) is called the major principal component, a2(t) the intermediate principal component,
and a3(t) the minor principal component. Third, the major principal axis is horizontal and

†In this section ground acceleration is denoted by a(t) instead of üg(t), to simplify notation.
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directed roughly toward the epicenter of the earthquake; the intermediate principal axis is
also horizontal but orthogonal to the first; and the minor principal axis is roughly vertical.
This simple model is reasonable for ground motions recorded not too close to the causative
fault.

The excitation is defined in terms of design spectra associated with the principal com-
ponents of ground motion. The pseudo-acceleration spectra are denoted as A(Tn) for the
major principal component, γ A(Tn) for the intermediate principal component, and A3(Tn)

for the minor principal component. Note that the design spectra in the two horizontal di-
rections have the same shape but differ by the factor γ , where 0 ≤ γ ≤ 1, whereas the
design spectrum A3(Tn) for vertical ground motion has a different shape, assumptions that
are consistent with response spectra for recorded motions.

13.11.2 Structural Response-Incident Angle Relation

Figure 13.11.1 presents a schematic plan for a structure with two sets of axes: one (axes 1
and 2) defining the principal directions of ground motion, and the other (x- and y-axes)
defining the structure; the third axis for the structure (z-axis) and the minor principal
axis (axis 3) for the ground motion are both vertical. The relative orientation of the
two coordinate systems is defined by the angle θ between the two sets of horizontal
axes. Defined as the seismic incident angle, θ in the counterclockwise direction is taken
to be positive. Components of ground motion along the structural axes are naturally
correlated.

Consider a response quantity r (t) that can be expressed as a linear combination of
structural displacements. The CQC3 rule has been developed to estimate the peak value
ro of the combined response due to simultaneous application of the principal components
of ground motion. This rule gives the peak response as a function of the seismic incident
angle, presented without derivation:

r(θ) � { [
r2

x + (γ ry)
2
]

cos2 θ + [
(γ rx )

2 + r2
y

]
sin2 θ + 2(1− γ 2)rxy sin θ cos θ + r2

z

}1/2

(13.11.2)

x

y

1

2

θ

Figure 13.11.1 Relative orientation of two
coordinate systems; structural axes x, y, and
z; and principal axes 1, 2, and 3 of ground
motion (vertical axes z and 3 not shown).
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where the subscript “o” that denotes the peak value has been dropped, and rx is the peak
response to a single component of ground motion, defined by the spectrum A (Tn) of the
major principal component, applied along the structural axis x; ry is the peak response
to a single component of ground motion, defined by the spectrum A (Tn), applied along
the structural axis y; rz equals the peak response to vertical ground motion defined by the
spectrum Az(Tn). Note that ry is not the actual response to the intermediate principal com-
ponent of ground motion, which was defined by the spectrum γ A(Tn); ry equals the actual
response divided by γ . If the intensities of the two horizontal components of ground mo-
tion are equal, i.e., γ = 1, it can readily be seen from Eq. (13.11.2) that the peak response
is independent of the seismic incident angle θ . However, recorded ground motions do not
support the hypothesis of γ = 1.

The peak response rk to an individual component of ground motion is given by the
CQC rule [see Eq. (13.7.4)]:

rk �
(

N∑
i=1

N∑
n=1

ρinrikrnk

)1/2

k = x, y, z (13.11.3)

where rnk is the peak response due to the nth natural mode of vibration and ρin is the
modal correlation coefficient for modes i and n; note that the first subscript in rnk denotes
the mode number and the second refers to the direction of application of ground motion.
Rewriting Eq. (13.7.1),

rnk = r st
nk Ank (13.11.4)

where r st
nk is the nth modal static response and Ank is the ordinate of the pseudo-acceleration

spectrum at the nth-mode period and damping ratio both associated with the k-direction of
application of ground motion. The term rxy in Eq. (13.11.2) is a cross term between modal
responses contributing to rx and ry that arises from correlation between the ground motion
components along the structural axes:

rxy =
N∑

i=1

N∑
n=1

ρinri xrny (13.11.5)

Note that rxy involves the same terms that enter in Eq. (13.11.3) for peak responses rx and
ry , but it involves modal responses to both components of ground motion.

If the natural vibration frequencies of modes contributing significantly to the re-
sponse are well separated, the modal correlation coefficients ρin � 0 for i �= n, and rk may
be determined by the simpler SRSS modal combination rule [Eq. (13.7.3)]:

rk �
(

N∑
n=1

r2
nk

)1/2

(13.11.6)
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Similarly, Eq. (13.11.5) simplifies to

rxy �
N∑

n=1

rnxrny (13.11.7)

where we have used the property that ρin = 1 for i = n.

13.11.3 Critical Response

The critical response rcr is defined as the largest of the responses r(θ) for all possible
seismic incident angles θ . It is of interest because in practical situations the location of the
earthquake epicenter is not known; hence θ is unknown. Differentiating Eq. (13.11.2) with
respect to θ and setting the derivative equal to zero gives the critical incident angle:

θcr = 1

2
tan−1

(
2rxy

r2
x − r2

y

)
(13.11.8)

This equation leads to two values of θ between 0 and π rad, corresponding to the maximum
and minimum values of r (θ): rmax and rmin; the two values of θ are separated by π/2 rad.
Observe that θcr is independent of the intensity ratio γ between the horizontal components
of ground motion and is not influenced by the vertical component of ground motion.

Numerical values for rmax and rmin can be determined by substituting the two numer-
ical values of θcr obtained from Eq. (13.11.8) into Eq. (13.11.2). It is possible, however, to
derive explicit equations for rmax and rmin, and the one for maximum response is

rcr ≡ rmax �

⎡
⎢⎣(1+ γ 2)

(
r2

x + r2
y

2

)
+ (1− γ 2)

√√√√(
r2

x − r2
y

2

)2

+ r2
xy + r2

z

⎤
⎥⎦

1/2

(13.11.9)
Thus the CQC3 estimate of the critical response has been expressed in terms of the peak
responses rx and ry to the major principal component of ground motion, characterized by
the design spectrum A(Tn), applied along the x- and y-axes of the structure, respectively;
the peak response rz to the vertical component of ground motion, characterized by the
design spectrum Az(Tn); and the cross term rxy that arises from correlation between the
ground motion components along the structural axes.

13.11.4 Other Multicomponent Combination Rules

If the principal axes of ground motion coincide with the structural axes, the response is
given by Eq. (13.11.2) with θ = 0 if the major principal axis is oriented in the x-direction
and with θ = π/2 rad if the major principal axis is oriented in the y-direction:

r (0) = [
r2

x + (γ ry)
2 + r2

z

]1/2
r (π/2) = [

(γ rx )
2 + r2

y + r2
z

]1/2
(13.11.10)

According to these equations, the peak total response is given by the square-root-of-the-
sum-of-squares of the peak responses to individual components of ground motion. Although
the design spectrum for the y-component is less intense than that for the x-component by
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the factor γ < 1, ry can be larger than rx , depending on the relative values of the modal
static responses associated with the two components; see Eq. (13.11.4). Therefore, the
SRSS rule is defined as

rcr � max[r (0) , r (π/2)] (13.11.11)

If the two horizontal components of ground motion are equal in intensity, i.e., γ = 1,
the CQC3 rule [Eq. (13.11.2)] reduces to the SRSS rule:

rcr �
(
r2

x + r2
y + r2

z

)1/2
(13.11.12)

Note that Eq. (13.11.12) is the same as Eq. (13.11.11), specialized for γ = 1. Some
building codes define the same design spectrum for both horizontal components of ground
motion and specify the SRSS rule to determine the peak response to multicomponent ex-
citation.

A percent rule to determine the peak response to multicomponent excitation also ap-
pears in some building codes. This rule is also based on the assumption that the principal
axes of ground motion coincide with the structural axes and that both horizontal compo-
nents of ground motion have the same intensity. According to this rule, rcr is estimated as
the sum of the response due to excitation in one direction and some fraction, α percent,
of the responses due to excitations in the other two directions. Structural design is based
on the combination that yields the largest estimate of the total response. Thus, three cases
must be considered:

rcr � max[rx + αry + αrz, αrx + ry + αrz, αrx + αry + rz] (13.11.13)

Some design codes specify α = 30%, whereas α = 40% in other codes.

13.11.5 Example: Three-Dimensional System

The analysis procedures presented in the preceding sections are implemented for a sim-
ple three-dimensional system subjected to two horizontal components of ground motion,
applied simultaneously. Peak values of selected response quantities are estimated by the
various multicomponent combination rules. The results presented are accompanied by in-
terpretive comments that should assist us in developing an understanding of these rules.

System and excitation. The three-dimensional pipe of Fig. E13.11.2 is made
of 88.9 mm diameter standard steel pipe. Its properties are I = 1.33 × 106 mm4, J =
2.66× 106 mm4, E = 200,000 MPa, G = 80,000 ksi, m = 350 kg, and L = 1.0 m. This
system is subjected to horizontal ground motion defined by its two principal components,
characterized by A(Tn) and γ A(Tn), 0 ≤ γ ≤ 1, respectively, where A(Tn) is the design
spectrum of Fig. 6.9.5 (ζ = 5%) scaled to 0.20g peak ground acceleration.

Response to individual components. Response quantities selected are the
bending moments about the x- and y-axes and torque at the clamped end a of the pipe.
The peak responses due to a single component of ground motion characterized by the
design spectrum A (Tn) applied first along the x-axis and subsequently along the y-axis are
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determined by the RSA procedure of Section 13.7. These calculations are not presented
in detail (they are left to the reader as Problems 13.59 and 13.60), but the salient results
needed to determine the response to multicomponent excitation are summarized next.

The modal correlation coefficients ρin are needed in Eq. (13.11.3) to estimate the
peak response to individual components of ground motion. For this purpose it is neces-
sary to compute the frequency ratios βin = ωi/ωn from the natural frequencies ωn =
13.33, 13.76, and 40.88 rad/s. The corresponding values of ρin , computed from
Eq. (13.7.10) with ζ = 0.05, are presented in Table 13.11.1.

TABLE 13.11.1 MODAL CORRELATION
COEFFICIENTS ρin

Mode, i n = 1 n = 2 n = 3

1 1 0.909 0.006
2 0.909 1 0.007
3 0.006 0.007 1

The peak modal responses for Mx , My , and Tz , given by the individual terms in
Eq. (13.11.3), together with the CQC estimate [Eq. (13.11.3)] of the peak value of the
combined response are presented in Table 13.11.2.

TABLE 13.11.2 PEAK MODAL RESPONSES AND CQC ESTIMATE (KN-M.)

Excitation x-direction y-direction

Mode Mx My Tz Mx My Tz

1 −0.144 −1.689 1.833 0.091 1.070 −1.162
2 −0.498 0.267 0.231 0.926 −0.497 −0.429
3 0.642 −0.437 −0.204 0.842 −0.574 −0.268

CQC 0.898 1.517 2.054 1.319 0.867 1.587

Cross term rxy . Subsequent calculations are illustrated for Mx , i.e., r ≡ Mx .
Table 13.11.2 gives rx = 0.898 kN-m and ry = 1.319 kN-m. To determine the cross
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term defined by Eq. (13.11.5), the nine terms in the double summation, computed using
the known values of ρin , rix , and rny , are presented in Table 13.11.3.

TABLE 13.11.3 INDIVIDUAL TERMS IN
EQ. (13.11.5)

Mode, i n = 1 n = 2 n = 3

1 −0.013 −0.121 −0.001
2 −0.041 −0.461 −0.003
3 0.000 0.004 0.540

Adding the nine terms gives rxy = −0.096.

Response-incident angle relation. Now that rx , ry , and rxy are known, they
are substituted in Eq. (13.11.2) to obtain the response as a function of incident angle; e.g.,
for θ = π/4 and γ = 0.67, r (π/4) = 1.338. Such calculations are repeated for many
values of θ to obtain Mx as a function of θ for four values of γ . Similar calculations are
implemented to obtain My and Tz as functions of θ .

The bending moments Mx and My , and torque Tz , estimated by the CQC3 rule, are
presented in Fig. 13.11.3 for all possible orientations θ of the principal axes of ground
motion, relative to the structural axes. These results for four values of γ permit the fol-
lowing observations: (1) the CQC3 estimate of peak response varies moderately with θ ,
increasingly so for the smaller values of γ ; and (2) for the limiting case of γ = 1, the
CQC3 estimate is independent of θ , a numerical confirmation of the earlier observation
from Eq. (13.11.2).
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Figure 13.11.3 Peak responses Mx ,My , and Tz for all orientations of principal axes of
ground motion.

Critical response. Substituting rx = 0.898, ry = 1.319, rxy = −0.096, and
γ = 0.67 in Eq. (13.11.9) leads to rcr = 1.451 kN-m. This is the critical value of Mx

(Fig. 13.11.3); i.e., the largest value of Mx over all possible seismic incident angles, θ ; the
critical incident angle θcr = 95.8◦ is calculated from Eq. (13.11.8).
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Comparison of CQC3 and SRSS rules. Estimates of the critical values of
Mx , My , and Tz obtained from CQC3 and SRSS rules are presented in Table 13.11.4 for
four values of γ . The CQC3 estimate is obtained, as illustrated earlier for Mx for γ = 0.67.
The SRSS estimate is obtained using Eqs. (13.11.10) and (13.11.11), as is illustrated next
for response Mx , i.e., r ≡ Mx . Substituting rx = 0.898, ry = 1.319, and γ = 0.67 in
Eq. (13.11.10) gives r (0) = 1.260 and r(π/2) = 1.450; according to Eq. (13.11.11),
rcr = max (1.260, 1.450) = 1.450 kN-m.

TABLE 13.11.4 SRSS AND CQC3 ESTIMATES OF CRITICAL
RESPONSE

Mx (kN-m) My(kN-m) Tz(kN-m)

Intensity Ratio γ SRSS CQC3 SRSS CQC3 SRSS CQC3

0.5 1.39 1.40 1.58 1.64 2.20 2.58
0.67 1.45 1.45 1.62 1.67 2.31 2.58
0.85 1.52 1.52 1.69 1.71 2.46 2.59

1 1.60 1.60 1.75 1.75 2.60 2.60

Observe that the SRSS estimate is smaller than the CQC3 estimate for all response quan-
tities and for all values of γ < 1; for the limit case of γ = 1, the two estimates are
identical.

Comments on SRSS and percent rules in building codes. We first illus-
trate estimation of the critical value of response Mx according to the SRSS and percent
rules specified in building codes, which are based on the assumption that γ = 1. Sub-
stituting rx = 0.898 and ry = 1.319 (and dropping the rz term) in Eq. (13.11.12) gives
the SRSS estimate rcr = 1.595 kN-m. According to the percent rules, the critical value of
response is estimated from Eq. (13.11.13). Substituting rx = 0.898 and ry = 1.319,
the 30% rule gives rcr = max(1.294, 1.588) = 1.588 kN-m, and the 40% rule gives
rcr = max(1.426, 1.678) = 1.678 kN-m.

The critical values of Mx , My , and Tz estimated by the SRSS and percent rules in
building codes are presented in Table 13.11.5, together with the CQC3 estimate (from
Table 13.11.4); the latter varies with γ . Comparing these estimates permits the following

TABLE 13.11.5 BUILDING CODE AND CQC3 ESTIMATES OF CRITICAL RESPONSE

Mx (kN-m) My(kN-m) Tz(kN-m)

40% 30% 40% 30% 40% 30%
γ CQC3 SRSS Rule Rule CQC3 SRSS Rule Rule CQC3 SRSS Rule Rule

0.5 1.40 1.64 2.58
0.67 1.45 1.67 2.58
0.85 1.52 1.71 2.59

1 1.60 1.60 1.68 1.59 1.75 1.75 1.86 1.78 2.60 2.60 2.69 2.53
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observations: For all three response quantities the SRSS estimate (with γ = 1) of the
critical value of response exceeds the CQC3 estimate for all values of γ , except γ = 1
when the two are identical. This overestimation increases as γ decreases. The preceding
comments also apply to the estimate of critical response determined by the 40% rule, which
is even more conservative than the SRSS rule. In contrast, the 30% rule may or may not be
conservative, depending on the response quantity of interest and on γ .

13.11.6 A Response-Spectrum-Based Envelope for
Simultaneous Responses

In Section 13.10 we presented a response-spectrum-based envelope for two or more re-
sponses of a structure excited by one component of ground motion. Researchers have
developed such an elliptical envelope for multicomponent excitation when the principal
directions of ground motion are known. For the case where the principal directions of
ground motion are not known in advance, researchers have developed a supreme envelope
that represents the union of the elliptical envelopes for all orientations of the principal axes.
Comparing this supreme envelope for a structural element against its capacity surface to
determine whether or not the element is adequately designed is even more challenging than
was alluded to in Section 13.10, and strategies have been developed for this purpose.
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P R O B L E M S

Part A: Sections 13.1–13.4

13.1 For the two-story shear frame of Fig. P13.1 (also of Problems 9.5 and 10.6) excited by
horizontal ground motion üg(t), determine (a) the modal expansion of effective earthquake
forces, (b) the floor displacement response in terms of Dn(t), (c) the story shear response in
terms of An(t), and (d) the first-floor and base overturning moments in terms of An(t).
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Figure P13.1

∗13.2 The response of the two-story shear frame of Fig. P13.1 (also of Problems 9.5 and 10.6) to El
Centro ground motion is to be computed as a function of time. The properties of the frame
are h = 4 m, m = 45,000 kg, I = 30,000 cm4, E = 200,000 MPa, and ζn = 5%. The
ground acceleration data are available in Appendix 6 at every �t = 0.02 s.
(a) Determine the SDF system responses Dn(t) and An(t) using a numerical time-stepping
method of your choice with an appropriate �t ; plot Dn(t) and An(t).
(b) For each natural mode calculate as a function of time the following response quantities:
(i) the displacements at each floor, (ii) the story shears, and (iii) the floor and base overturn-
ing moments.

*Denotes that a computer is necessary to solve this problem.
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(c) At each instant of time, combine the modal contributions to each of the response quanti-
ties to obtain the total response; determine the peak value of the total responses. For selected
response quantities plot as a function of time the modal responses and total response.

13.3 Determine the effective modal masses and effective modal heights for the two-story shear
frame of Fig. P13.1 (also of Problems 9.5 and 10.6); the height of each story is h. Display
this information on the SDF systems for the modes. Verify that Eqs. (13.2.14) and (13.2.17)
are satisfied.

∗13.4 Figure P13.4 shows a two-story frame (the same as that in Problems 9.6 and 10.10) with flex-
ural rigidity E I for beams and columns. Determine the dynamic response of this structure
to horizontal ground motion üg(t). Express (a) the floor displacements and joint rotations in
terms of Dn(t), and (b) the bending moments in a first-story column and in the second-floor
beam in terms of An(t).
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13.5–
13.6

For the three-story shear frames of Figs. P13.5 and P13.6 (also of Problems 9.7 and 9.8
and 10.11 and 10.12) excited by horizontal ground motion üg(t), determine (a) the modal
expansion of effective earthquake forces, (b) the floor displacement response in terms of
Dn(t), (c) the story shear response in terms of An(t), and (d) the base overturning moment
in terms of An(t).
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∗13.7–

13.8
The response of the three-story shear frames of Figs. P13.5 and P13.6 (also of Problems 9.7
and 9.8 and 10.11 and 10.12) to El Centro ground motion is to be computed as a function
of time. The properties of the frame are h = 4 m, m = 45,000 kg, I = 58,000 cm4,
E = 200,000 MPa, and ζn = 5%. The ground acceleration data are available in Appendix 6
at every �t = 0.02 s.

*Denotes that a computer is necessary to solve this problem.
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(a) Determine the SDF system responses Dn(t) and An(t) using a numerical time-stepping
method of your choice with an appropriate �t ; plot Dn(t) and An(t).
(b) For each natural mode, calculate as a function of time the following response quantities:
(i) the roof displacement, (ii) the story shears, and (iii) the base overturning moment.
(c) At each instant of time combine the modal contributions to each of the response quantities
to obtain the total response; determine the peak value of the total responses. For selected
response quantities, plot as a function of time the modal responses and total response.

13.9–
13.10

Determine the effective modal masses and effective modal heights for the three-story shear
frames of Figs. P13.5 and P13.6; the height of each story is h. Display this information on
the SDF systems for the modes. Verify that Eqs. (13.2.14) and (13.2.17) are satisfied.

∗13.11–
13.14

Figures P13.11 to 13.14 show three-story frames (the same as those in Problems 9.9 to 9.12
and 10.19 to 10.22) together with flexural rigidity for beams and columns. Determine the
dynamic
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response of this three-story frame to horizontal ground motion üg(t). Express (a) the floor
displacements and joint rotations in terms of Dn(t), and (b) the bending moments in a first-
story column and in the second-floor beam in terms of An(t).
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*Denotes that a computer is necessary to solve this problem.
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13.15 For the inverted L-shaped frame of Fig. E9.6a excited by vertical ground motion üg(t), deter-
mine (a) the modal expansion of effective earthquake forces, (b) the displacement response
in terms of Dn(t), and (c) the bending moment at the base of the column in terms of An(t).

13.16 Solve Problem 13.15 for the ground motion shown in Fig. P13.16.
∗13.17 For the umbrella structure of Fig. P13.17 (also of Problems 9.13 and 10.23) excited by hor-

izontal ground motion üg(t), determine (a) the modal expansion of effective earthquake
forces, (b) the displacement response in terms of Dn(t), and (c) the bending moments at the
base of the column and at location a of the beam in terms of An(t).
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∗13.18 Solve Problem 13.17 for vertical ground motion.
∗13.19 Solve Problem 13.17 for ground motion in the direction b–d.
∗13.20 Solve Problem 13.17 for ground motion in the direction b–c.
∗13.21 Solve Problem 13.17 for rocking ground motion in the plane of the structure.
∗13.22 A cantilever tower is shown in Fig. P13.22 with three lumped masses and its flexural stiff-

ness properties; m = 85,000 kg, E I/L3 = 100 kN/cm, and E I ′/L3 = 0.01 kN/cm. Note
that the top mass and its supporting element are an appendage to the main tower. Damping
is defined by modal damping ratios, with ζn = 5% for all modes.
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*Denotes that a computer is necessary to solve this problem.
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(a) Determine the natural vibration periods and modes; sketch the modes.
(b) Expand the effective earthquake forces into their modal components and show this ex-
pansion graphically.
(c) Compute the modal static responses for three quantities: (i) the displacement of the ap-
pendage mass, (ii) the shear force at the base of the appendage, and (iii) the shear force at
the base of the tower.
(d) What can you predict about the relative values of modal contributions to each of the
response quantity from the results of parts (a) and (c)?

∗13.23 The response of the tower with appendage of Fig. P13.22 to El Centro ground motion is to
be computed as a function of time. The ground acceleration is available in Appendix 6 at
every �t = 0.02 s. The damping of the structure is defined by the modal damping ratios
ζn = 5% for all modes.
(a) Determine the SDF system responses Dn(t) and An(t) using a numerical time-stepping
method of your choice with an appropriate �t .
(b) For each vibration mode calculate and plot as a function of time the following response
quantities: (i) the displacement of the appendage mass, (ii) the shear force in the appendage,
and (iii) the shear force at the base of the tower. Determine the peak value of each modal
response.
(c) Calculate and plot as a function of time the total values of the three response quantities
determined in part (b); determine the peak values of the total responses.
(d) Compute the seismic coefficients (defined as the shear force normalized by the weight)
for the appendage and the tower. Why is the seismic coefficient for the appendage much
larger than for the tower?

13.24 The one-story, unsymmetric-plan system of Fig. P13.24 (the same as that defined in Prob-
lem 9.14 for which the natural vibration frequencies and modes were to be determined in
Problem 10.24) is excited by ground motion ügy(t) in the y-direction. Formulate the equa-
tions of motion for this 3DOF system and:
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Figure P13.24

*Denotes that a computer is necessary to solve this problem.
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(a) Expand the effective earthquake forces in terms of their modal components and show this
expansion graphically.
(b) Verify that Eq. (13.3.9), generalized from a 2N-DOF system to a 3N-DOF system, is
satisfied.
(c) Determine the displacement uy and rotation uθ of the slab in terms of Dn(t).
(d) Determine the base shear and base torque in terms of An(t).

13.25 The one-story, unsymmetric-plan system of Fig. P13.24 (the same as that defined in Prob-
lem 9.14 for which the natural vibration frequencies and modes were to be determined in
Problem 10.24) is excited by ground motion üg(t) along the diagonal d–b. Formulate the
equations of motion for this 3DF system and:
(a) Expand the effective earthquake forces in terms of their modal components and show this
expansion graphically.
(b) Verify that Eq. (13.3.9), generalized from a 2N-DOF system to a 3N-DOF system, is
satisfied.
(c) Determine the displacement uy and rotation uθ of the slab in terms of Dn(t).
(d) Determine the x and y components of the base shear and base torque in terms of An(t).

∗13.26 The response history of the system of Problem 13.24 (the same as that in Problem 9.14 for
which the natural vibration frequencies and modes were to be determined in Problem 10.24)
to El Centro ground motion along the y-direction is to be determined. In addition to the
system properties given in Fig. P13.24, ζn = 5% for all natural vibration modes. The ground
acceleration is available in Appendix 6 at every �t = 0.02 s.
(a) Determine the SDF system responses Dn(t) and An(t) using a numerical time-stepping
method of your choice with an appropriate �t ; plot Dn(t) and An(t).
(b) For each vibration mode, calculate and plot as a function of time the following response
quantities: uy , b/2uθ , base shear Vb, and base torque Tb.
(c) Calculate and plot as a function of time the total responses; determine the peak values of
the total responses.

13.27 For the system of Fig. P13.27 (also of Problems 9.18 and 10.28), which is subjected to
ground motion in the x-direction: (a) expand the effective earthquake forces in terms of their
modal components and show this expansion graphically; (b) determine the displacements ux ,
uy , and uz of the mass in terms of Dn(t); and (c) determine the bending moments about the
x- and y-axes and the torque at the clamped end a in terms of An(t).
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*Denotes that a computer is necessary to solve this problem.
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13.28 Solve Problem 13.27 for ground motion in the y-direction.

13.29 Solve Problem 13.27 for ground motion in the z-direction.

13.30 Solve Problem 13.27 for ground motion in the direction a–d.

Part A: Section 13.5

13.31 The system of Fig. P13.31 (and of Problem 9.19) is subjected to support motions ug1(t) and
ug2(t). Determine the motion of the two masses as a function of time for two excitations:
(a) ug1(t) = −ug2(t) = ug(t), and (b) ug2(t) = ug1(t) = ug(t); express all results in terms
of Dn(t), the deformation response of the nth-mode SDF system to üg(t). Comment on how
the response to the two excitations differs and why.

ug1 ug2

m
k

m
k k

Figure P13.31

13.32 The undamped system of Fig. P13.32 (and of Problem 9.20), with L = 16 m, m = 35,000 kg,
and E I = 15 × 109 kN-cm2, is subjected to support motions ug1(t) and ug2(t). Deter-
mine the steady-state motion of the lumped mass and the steady-state value of the bend-
ing moment at the midspan due to two harmonic excitations: (i) ug1(t) = ugo sinωt,
ug2(t) = 0; and (ii) ug1(t) = ug2(t) = ugo sinωt . The excitation frequency ω is 0.8ωn ,
where ωn is the natural vibration frequency of the system. Express your results in terms of
ugo. Comment on (a) the relative contributions of the quasi-static and dynamic components
in each response quantity due to each excitation case, and (b) how the responses to the two
excitations differ and why.

ug1 ug2u
mEI

• •• •
16 m 16 m

Figure P13.32

∗13.33 The equations governing the motion of the system in Fig. P9.21 due to support motions were
formulated in Problem 9.21.
(a) Support a undergoes motion ug(t) in the x-direction and support b undergoes the same
motion, but t ′ seconds later. Determine the following responses as a function of time: (i) the
displacements u1 and u2 of the valves, and (ii) the bending moments at a, b, c, d, and e.
Express the displacements in terms of ug(t) and Dn(t), and forces in terms of ug(t) and
An(t), where Dn(t) and An(t) are the deformation and pseudo-acceleration responses of the
nth-mode SDF system to üg(t).

*Denotes that a computer is necessary to solve this problem.
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(b) Compare the preceding results with the response of the system if both supports undergo
identical motion ug(t). Comment on how the responses in the two cases differ and why.

∗13.34 The equations governing the motion of the system in Fig. P9.22 due to spatially varying
ground motion in the x-direction were formulated in Problem 9.22.
(a) Support a undergoes motion ug(t) in the x-direction and support b undergoes the same
motion, but t ′ seconds later. Determine the following responses as a function of time: (i) the
displacements u1 and u2, and (ii) the bending moments at a, b, c, d, and e. Express the
displacements in terms of ug(t) and Dn(t), and forces in terms of ug(t) and An(t), where
Dn(t) and An(t) are the deformation and pseudo-acceleration response of the nth-mode SDF
system to üg(t).
(b) Compare the preceding results with the response of the system if both supports undergo
identical motion ug(t). Comment on how the responses in the two cases differ and why.

∗13.35 For the system defined in Problem 9.23, the equations governing its motion due to spatially
varying ground motion in the x-direction were formulated in Problem 9.23.
(a) The supports of columns a and b undergo motion ug(t) in the x-direction and the supports
of columns c and d undergo the same motion, but t ′ seconds later. Determine the following
responses as a function of time: (i) the displacements ux , uy , and uθ of the roof slab, and
(ii) the shear in each column. Express the displacements in terms of ug(t) and Dn(t), and
forces in terms of ug(t) and An(t), where Dn(t) and An(t) are the deformation and pseudo-
acceleration response of the nth-mode SDF system to üg(t).
(b) Compare the preceding results with the response of the structure if all column supports
undergo identical motion ug(t). Comment on how the responses in the two cases differ and
why.

∗13.36 For the system of Fig. P13.24 the natural vibration frequencies and modes were determined
in Problem 10.24, and the equations governing its motion due to spatially varying ground
motion in the x-direction were formulated in Problem 9.24.
(a) The supports of columns a and b undergo motion ug(t) in the x-direction and the sup-
ports of columns c and d undergo the same motion, but t ′ seconds later. Determine the
following responses as a function of time: (i) the displacements ux , uy , and uθ of the roof
slab, and (ii) the shear in each column. Express the displacements in terms of ug(t) and
Dn(t), and forces in terms of ug(t) and An(t), where Dn(t) and An(t) are the deformation
and pseudo-acceleration response of the nth-mode SDF system to üg(t).
(b) Compare the preceding results with the response of the structure if all column sup-
ports undergo identical motion ug(t). Comment on how the responses in the two cases
differ and why.

∗13.37 Implement numerically the solution to Problem 13.36 for El Centro ground motion with
t ′ = 0.1 s. In addition to the system properties given in Fig. P13.24, ζn = 5% for all modes.
The ground acceleration is available in Appendix 6 at every �t = 0.02 s. Plot (i) Dn(t),
and (ii) the modal contributions and the total response for each response quantity. Determine
the peak values of the total response. Comment on the influence of spatial variations in the
excitation.

∗13.38 (a) In the intake tower of Problem 9.25, the base of the tower undergoes horizontal motion
ug(t), and the right end of the bridge undergoes the same motion as the base, but it does so t ′
seconds later. Determine the following responses as a function of time: (i) the displacement
at the top of the tower, (ii) the shear and bending moment at the tower base, and (iii) the

*Denotes that a computer is necessary to solve this problem.
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axial force in the bridge. Express the displacements in terms of Dn(t) and forces in terms of
An(t), where Dn(t) and An(t) are the deformation and pseudo-acceleration responses of the
nth-mode SDF system to üg(t).
(b) Compare the preceding results with the response of the tower if both supports undergo
identical motion ug(t). Comment on how the responses in the two cases differ and why.

Part B

∗13.39 Figure P13.4 shows a two-story frame (the same as that in Problems 9.6 and 10.10) with
m = 45,000 kg, I = 30,000 cm4 for beams and columns, and E = 200,000 MPa. Deter-
mine the response of this frame to ground motion characterized by the design spectrum of
Fig. 6.9.5 (for 5% damping) scaled to 1

3 g peak ground acceleration. Compute (a) the floor
displacements, and (b) the bending moments in a first-story column and in the second-floor
beam.

13.40 The two-story shear frame of Fig. P13.1 (also of Problems 9.5 and 10.6) has the following
properties: h = 4 m, m = 45,000 kg, I = 30,000 cm4 for columns, E = 200,000 MPa, and
ζn = 5%. The peak response of this structure to El Centro ground motion is to be estimated
by response spectrum analysis (RSA) and compared with the results of Problem 13.2 from
response history analysis (RHA). For the purposes of this comparison the RSA is to be im-
plemented as follows.
(a) Determine the spectral ordinates Dn and An for the nth-mode SDF system as the peak
values of Dn(t) and An(t), respectively, determined in part (a) of Problem 13.2. [We are do-
ing so to avoid errors inherent in reading Dn and An from the response spectrum. However,
in the standard application of RSA, Dn(t) or An(t) would not be available and Dn or An

will be read from the response or design spectrum.]
(b) For each mode calculate the peak values of the following response quantities: (i) the floor
displacements, (ii) the story shears, and (iii) the floor and base overturning moments.
(c) Combine the peak modal responses using an appropriate modal combination rule to ob-
tain the peak value of the total response for each response quantity in part (b).
(d) Comment on the accuracy of the modal combination rule by comparing the RSA results
from part (c) with the RHA results of Problem 13.2.

∗13.41–
13.44

Figures P13.11 to P13.14 show three-story frames (the same as those in Problems 9.9 to
9.12 and 10.19 to 10.22) with m = 45,000 kg, I = 58,000 cm4, E = 200,000 MPa, and
h = 4 m. Determine the response of this frame to ground motion characterized by the design
spectrum of Fig. 6.9.5 (for 5% damping) scaled to 1

3 g peak ground acceleration. Compute
(a) the floor displacements, and (b) the bending moments in a first-story column and in the
second-floor beam.

13.45–
13.46

The three-story shear frames of Figs. P13.5 and P13.6 (also of Problems 9.7 and 9.8 and
10.11 and 10.12) have the following properties: h = 4 m, m = 45,000 kg, I = 58,000 cm4,
E = 200,000 MPa, and ζn = 5%. The peak response of this structure to El Centro ground
motion is to be estimated by RSA and compared with the results of Problems 13.7 and 13.8
from RHA. For the purposes of this comparison the RSA is to be implemented as follows.
(a) Determine the spectral ordinates Dn and An for the nth-mode SDF system as the peak
values of Dn(t) and An(t), respectively, determined in part (a) of Problems 13.7 and 13.8.
[We are doing so to avoid errors inherent in reading Dn and An from the response spectrum.

*Denotes that a computer is necessary to solve this problem.
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However, in the standard application of RSA, Dn(t) or An(t) would not be available, and
Dn or An will be read from the response or design spectrum.]
(b) For each mode calculate the peak values of the following response quantities: (i) the floor
displacements, (ii) the story shears, and (iii) the floor and base overturning moments.
(c) Combine the peak modal responses using an appropriate modal combination rule to ob-
tain the peak value of the total response for each response quantity in part (b).
(d) Comment on the accuracy of the modal combination rule by comparing the RSA results
from part (c) with the RHA results of Problems 13.7 and 13.8.

13.47 Determine the response (displacements and base moment) of the inverted L-shaped frame of
Fig. E9.6a to horizontal ground motion characterized by the design spectrum of Fig. 6.9.5
scaled to 0.20g peak ground acceleration, given that L = 3 m, m= 680 kg, E = 200,000 MPa,
and I = 1171.6 cm4; the given value of I is for a 150-cm standard steel pipe.

13.48 Solve Problem 13.47 for vertical ground motion.

13.49 Solve Problem 13.47 for the ground motion shown in Fig. P13.16.

13.50 The umbrella structure of Fig. P13.17 (also of Problems 9.13 and 10.23) is made of 150-mm.
nominal diameter standard steel pipe. Its properties are: I = 1171.6 cm4, E = 200,000 MPa,
mass = 28.23 kg/m, m = 680 kg, and L = 3 m. Determine the peak response of this struc-
ture to horizontal ground motion characterized by the design spectrum of Fig. 6.9.5 (for 5%
damping) scaled to 0.20g peak ground acceleration. Compute (a) displacements u1, u2, and
u3, and (b) the bending moments at the base of the column and at location a of the beam.
Comment on the differences between the results from the SRSS and CQC modal combina-
tion rules.

13.51 Solve Problem 13.50 if the excitation is vertical ground motion characterized by the design
spectrum of Fig. 6.9.5 (for 5% damping) scaled to 0.20g peak ground acceleration.

13.52 Solve Problem 13.50 if the excitation is ground motion in the direction b–d, character-
ized by the design spectrum of Fig. 6.9.5 (for 5% damping) scaled to 0.20g peak ground
acceleration.

13.53 Solve Problem 13.50 if the excitation is ground motion in the direction b–c, characterized by
the design spectrum of Fig. 6.9.5 (for 5% damping) scaled to 0.20g peak ground acceleration.

13.54 The peak earthquake response of the tower with the appendage of Fig. P13.22 is to be de-
termined. The ground motion is characterized by the design spectrum of Fig. 6.9.5 (for 5%
damping), scaled to 1

3 g peak ground acceleration.
(a) Using the SRSS and CQC modal combination rules, calculate the peak values of the fol-
lowing response quantities: (i) the displacement of the appendage mass, (ii) the shear force
at the base of the appendage, and (iii) the shear force at the base of the tower.
(b) Comment on the differences between the results from the two modal combination rules
and the reasons for these differences. Which of the two methods is accurate?

13.55 The peak response of the tower with the appendage of Fig. P13.22 to El Centro ground
motion is to be estimated by RSA and compared with the results of Problem 13.23 from
RHA. For the purposes of this comparison the RSA is to be implemented as follows.
(a) Determine the spectral ordinates Dn and An for the nth-mode SDF system as the peak
values of Dn(t) and An(t), respectively, determined in part (a) of Problem 13.23. [We
are doing so to avoid errors inherent in reading Dn and An from the response spectrum.
However, in the standard application of RSA, Dn(t) or An(t) would not be available and Dn

or An will be read from the response or design spectrum.]
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(b) For each mode calculate the peak values of the following response quantities: (i) the
displacement of the appendage mass, (ii) the shear force in the appendage, and (iii) the shear
force at the base of the tower.
(c) Using the CQC method, combine the modal peak to determine the peak value of each of
the response quantities of part (b). Which of the modal correlation terms must be retained
and which could be dropped from CQC calculations, and why?
(d) Repeat part (c) using the SRSS method.
(e) Comment on the accuracy of the CQC and SRSS modal combination rules by comparing
the RSA results from parts (c) and (d) with the RHA results by solving Problem 13.23.

13.56 The peak response of the one-story, unsymmetric-plan system of Fig. P13.24 with ζn = 5%
is to be estimated by RSA and compared with the results of Problem 13.26 from RHA. For
purposes of this comparison the RSA is implemented as follows.
(a) Determine the spectral ordinates Dn and An for the nth-mode SDF system as the peak
values of Dn(t) and An(t), respectively, determined in part (a) of Problem 13.26. [We are
doing so to avoid errors inherent in reading Dn or An from the response spectrum. However,
in the standard application of RSA, Dn(t) or An(t) would not be available, and Dn or An

will be read from the response or design spectrum.]
(b) For each mode calculate the peak values of the following response quantities: uy , (b/2)uθ ,
the base shear Vb, and the base torque Tb.
(c) Using the SRSS and CQC modal combination rules, compute the peak value for each
response quantity.
(d) Comment on the accuracy of the SRSS and CQC methods by comparing the RSA results
from part (c) with the RHA results of Problem 13.26.

13.57 Determine the peak response of the one-story, unsymmetric-plan system of Fig. P13.24 to
ground motion along the y-direction. The excitation is characterized by the design spectrum
of Fig. 6.9.5 (for 5% damping), scaled to 0.5g peak ground acceleration:
(a) Using the SRSS and CQC modal combination rules, calculate the peak values of the
following response quantities: ux , uy , b/2uθ , the base shears in the x- and y-directions
and the base torque, and the bending moments about the x- and y-axes at the base of each
column.
(b) Comment on the differences between the results from the two modal combination rules
and the reasons for these differences. Which of the two methods is accurate?

13.58 Determine the peak response of the one-story, unsymmetric-plan system of Fig. P13.24 to
ground motion along the diagonal d–b. The excitation is characterized by the design spec-
trum of Fig. 6.9.5 (for 5% damping), scaled to 0.5g peak ground acceleration.
(a) Using the SRSS and CQC modal combination rules, calculate the peak values of the
following response quantities: (i) ux , (ii) uy , (iii) b/2uθ , (iv) the base shears in the x- and
y-directions and the base torque, and (v) the bending moments about the x- and y-axes at
the base of each column.
(b) Comment on the differences between the results from the two modal combination rules
and the reasons for these differences. Which of the two methods is accurate?

13.59 The three-dimensional pipe of Fig. P13.27 is made of 75-mm-nominal-diameter standard
steel pipe. Its properties are I = 125.6 cm4, J = 251.2 cm4, E = 200,000 MPa, G =
80,000 MPa, m = 450 kg and L = 1 m. Determine the peak response of the system
to ground motion in the x-direction characterized by the design spectrum of Fig. 6.9.5 (ζ =
5%) scaled to 0.20g peak ground acceleration. Using the SRSS and CQC modal combination
rules, calculate the peak values of (a) the displacements ux , uy , and uz of the mass, and
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(b) the bending moments about the x- and y-axes and the torque at a. Comment on the
differences between the results from the two modal combination rules.

13.60 Solve Problem 13.59 for ground motion in the y-direction.

13.61 Solve Problem 13.59 for ground motion in the z-direction.

13.62 Solve Problem 13.59 for ground motion in the direction a–d.

13.63 For the structure and ground motion defined in Problem 13.59, estimate the peak bending
moment at a about an axis oriented at an angle α = 30o counterclockwise from the x-axis.
Comment on the differences between the SRSS and CQC estimates.

13.64 Solve Problem 13.63 for ground motion in the y-direction.

13.65 Solve Problem 13.63 for ground motion in the z-direction.

13.66 Solve Problem 13.63 for ground motion in the direction a–d.

13.67 (a) For the structure defined in Problem 13.59 and ground motion in the x-direction, estimate
the peak bending moment at a about an axis oriented at an arbitrary angle α counterclock-
wise from the x-axis.
(b) Compute the maximum value of the peak bending moment in the pipe at a and the cor-
responding value of α. Comment on the differences between the SRSS and CQC estimates.

13.68 Solve Problem 13.67 for ground motion in the y-direction.

13.69 Solve Problem 13.67 for ground motion in the z-direction.

13.70 Solve Problem 13.67 for ground motion in the direction a–d.
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14

Analysis of Nonclassically Damped
Linear Systems

PREVIEW

Now that we have developed the modal analysis procedure for structural systems with
classical damping subjected to earthquake excitation, we are ready to deal with the more
challenging analysis of nonclassically damped systems that arise in several practical situ-
ations mentioned in Section 11.5. In Part A of this chapter, we revisit classically damped
systems and recast the analysis procedure developed in Chapters 10 and 13 for free vibra-
tion analysis and earthquake analysis of underdamped systems (ζn < 1 in all modes) in a
form that facilitates its extension to the more general case. Part B, which occupies most of
this chapter, is devoted to RHA of nonclassically damped systems subjected to earthquake
excitation. Presented first is the theory for free vibration analysis that is specialized to
obtain the response to unit impulse excitation. The convolution integral approach is then
used to develop the procedure for analysis of response to arbitrary ground motion.

PROBLEM STATEMENT

The response of an MDF system to ground acceleration üg(t) is governed by Eqs. (13.1.1)
and (13.1.2), repeated here for convenience:

mü+ cu̇+ ku = −mιüg(t) (14.1)

617
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Limiting our interest to “restrained systems”†—i.e., systems that do not permit any rigid
body modes of natural vibration‡—the mass matrix m, the stiffness matrix k, and the
damping matrix c of the system are real-valued and symmetric; furthermore, m and k are
positive definite, whereas c is semipositive definite. Our objective is to develop a procedure
for analyzing the response of the system without imposing any further restriction on the
form of the damping matrix; in particular, for analyzing the response of nonclassically
damped systems, defined in Section 10.9.

PART A: CLASSICALLY DAMPED SYSTEMS:
REFORMULATION

14.1 NATURAL VIBRATION FREQUENCIES AND MODES

Free vibration of classically damped systems (defined in Section 10.9) is governed by
Eq. (10.10.4), repeated here for convenience:

q̈n + 2ζnωnq̇n + ω2
nqn = 0 (14.1.1)

where ωn is the undamped natural circular frequency and ζn is the damping ratio for the
nth mode of vibration. The solution of this differential equation has the form

qn(t) = eλn t (14.1.2)

Substituting Eq. (14.1.2) in Eq. (14.1.1) and proceeding as in Derivation 2.2 (Chapter 2)
leads to the characteristic equation, which can be solved to determine its two eigenvalues,
which are a complex-conjugate pair:

λn, λ̄n = −ζnωn ± iωnD (14.1.3)

where i = √−1 is the unit imaginary quantity; ζn , ωn , and ωnD are real positive scalars;

ωnD = ωn

√
1− ζ 2

n (14.1.4)

is the damped natural frequency (first introduced in Section 10.10), and the overbar denotes
a complex conjugate, i.e., λ̄n is the complex conjugate of λn .

Note that the natural frequency ωn of the associated undamped system and the damp-
ing ratio ζn are related to the eigenvalue λn as follows:

ωn = |λn| ζn = −Re(λn)

|λn| (14.1.5)

†Such systems are sometimes referred to as passive systems.
‡In contrast, airplanes in flight have rigid-body modes.
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where | · | denotes the modulus, and Re(·) represents the real part, of the complex-valued
quantity enclosed in (·); similarly, Im(·) will represent the imaginary part of the complex-
valued quantity. Associated with the two eigenvalues λn and λ̄n is a real-valued eigenvector
φn . Although a computed eigenvector may be complex valued, its real and imaginary
subvectors are proportional; hence, it can be normalized as a real-valued vector.

14.2 FREE VIBRATION

Derived in Chapter 10, the solution for free vibration of classical damped systems due to
initial displacements and velocities is given by Eq. (10.10.7). In this section we derive
this result using an alternative approach that will permit its generalization to nonclassically
damped systems.

Following Eq. (g) in Derivation 2.2 (Chapter 2), the general solution of Eq. (14.1.1)
is

qn(t) = Bneλn t + B̄neλ̄n t

and substituting it in Eq. (10.2.1) gives the contribution of the nth mode to the displacement
response of the system:

un(t) = Bnφneλn t + B̄nφneλ̄n t (14.2.1)

in which Bn is a complex-valued constant and B̄n is its complex conjugate; φn is the nth
natural mode of vibration. Since the second term on the right side of Eq. (14.2.1) is the
complex conjugate of the first, the two imaginary parts cancel each other, resulting in

un(t) = 2Re(Bnφneλn t ) (14.2.2)

Observe that the modal solution given by Eq. (14.2.1) or Eq. (14.2.2) is associated with
the pair of eigenvalues λn and λ̄n , and their common eigenvector φ n .

The response of the system to arbitrary initial excitation is given by the superposition
of the modal solutions [Eqs. (14.2.1) or (14.2.2)]:

u(t) =
N∑

n=1

Bnφneλn t + B̄nφneλ̄n t = 2
N∑

n=1

Re
(
Bnφ neλn t

)
(14.2.3)

where the complex-valued constants Bn are determined from the given initial displace-
ments u(0) and initial velocities u̇(0) by invoking the orthogonality properties of modes
(Appendix 14.1):

Bn = 1

2

[
qn(0)− i

q̇n(0)+ ζnωnqn(0)

ωnD

]
(14.2.4)

where

qn(0) = φ
T
n mu(0)

Mn
q̇n(0) = φ

T
n mu̇(0)

Mn
Mn = φT

n mφn (14.2.5)
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which are identical to Eq. (10.8.5). Substituting Eq. (14.2.4) in Eq. (14.2.2), substituting
Eq. (14.1.3) for λn , and finally, using Euler’s relations, eix = cos x + i sin x and e−i x =
cos x − i sin x , leads to the contribution of the nth vibration mode to the free vibration
response:

un(t) = φ ne−ζnωn t

[
qn(0) cosωnDt + q̇n(0)+ ζnωnqn(0)

ωnD
sinωnDt

]
(14.2.6)

Superposition of the modal responses un(t), n = 1, 2, . . . , N , leads to Eq. (10.10.7) for
the total response.

In preparation for the analysis of nonclassically damped systems, we express
Eq. (14.2.2) in an alternative form. For this purpose, we first evaluate the product

2Bnφ n = βn + iγn (14.2.7)

in which βn and γn are real-valued vectors, then substitute Eq. (14.2.7) into Eq. (14.2.2)
and Eq. (14.1.3) for λn , and finally, use Euler’s relations to obtain

un(t) = e−ζnωn t [βn cosωnDt − γn sinωnDt] (14.2.8)

Since Eqs. (14.2.8) and Eq. (14.2.6) are equivalent,

βn = qn(0)φ n γn = − q̇n(0)+ ζnωnqn(0)

ωnD
φ n (14.2.9)

Superposing the modal responses defined by Eq. (14.2.8) gives an alternative expression
for the total response:

u(t) =
N∑

n=1

e−ζnωn t [βn cosωnDt − γn sinωnDt] (14.2.10)

14.3 UNIT IMPULSE RESPONSE

A unit impulse ground acceleration, üg(t) = δ(t − τ), imparts to an SDF system the ini-
tial velocity u̇(τ ) = −1 and initial displacement u(τ ) = 0. The resulting free vibration
response was described by Eq. (4.1.7), which is repeated here for convenience after spe-
cializing it for τ = 0:

h(t) = − 1

ωD
e−ζωn t sinωDt (14.3.1)

Extending the preceding concepts to MDF systems, a unit impulse ground acceler-
ation, üg(t) = δ(t), imparts to the system the initial velocities u̇(0) = −ι, but no initial
displacements, i.e., u(0) = 0; the influence vector ι was first defined in Section 9.4. Sub-
stituting these initial displacement and velocity vectors in Eq. (14.2.5) gives the initial
conditions for the modal coordinates: qn(0) = 0 and q̇n(0) = −�n [see Eq. (13.1.5) for
the definition of �n]; then Eq. (14.2.4) specializes to

Bg
n =

i

2

�n

ωnD
(14.3.2)
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which is substituted in the general solution for free vibration, Eq. (14.2.2), to obtain the
unit impulse response; note that superscript “g” has been added in Bg

n to emphasize that
these constants are associated with ground acceleration. To express such a result in a form
similar to Eq. (14.2.10), we first express the product 2Bg

nφn as in Eq. (14.2.7):

2Bg
nφ n = βg

n + iγg
n (14.3.3)

where

βg
n = 0 γg

n =
�n

ωnD
φn (14.3.4)

are real-valued vectors that are independent of how the modes are normalized.
Thus the response is given by Eq. (14.2.10) with an obvious change of notation:

h(t) =
N∑

n=1

e−ζnωn t
[
βg

n cosωnDt − γg
n sinωnDt

]
(14.3.5)

where h(t) denotes the vector of unit impulse response functions for displacements u(t) of
the system.

Recognizing that βg
n and γg

n are given by Eq. (14.3.4), the preceding result can be
expressed as

h(t) =
N∑

n=1

�nhn(t)φn (14.3.6)

in which

hn(t) = − 1

ωnD
e−ζnωn t sinωnDt (14.3.7)

is the unit impulse response function for deformation of the nth-mode SDF system, an
SDF system with vibration properties—natural frequency ωn and ζn—of the nth mode of
the MDF system. This becomes apparent by comparing Eqs. (14.3.7) and (14.3.1).

14.4 EARTHQUAKE RESPONSE

Extending the convolution integral concept for SDF systems (Sections 4.2 and 6.12), the
response of an MDF system to arbitrary ground acceleration may be expressed as

u(t) =
∫ t

0
üg(τ )h(t − τ) dτ (14.4.1)

in which h(t) is substituted from Eq. (14.3.6) to obtain

u(t) =
N∑

n=1

�n Dn(t)φn (14.4.2)

where

Dn(t) =
∫ t

0
üg(τ )hn(t − τ) dτ (14.4.3)
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represents the deformation response of the nth-mode SDF system to ground acceleration
üg(t), introduced in Section 13.1.3. This becomes apparent by substituting Eq. (14.3.7) for
hn(t) and comparing the resulting equation with Eq. (6.12.1). Note that Eq. (14.4.2) is
identical to Eq. (13.1.15).

PART B: NONCLASSICALLY DAMPED SYSTEMS

Now that we have reformulated the analysis of classically damped systems, we return to
the original problem of analyzing the response of nonclassically damped systems, defined
in Section 10.9.

14.5 NATURAL VIBRATION FREQUENCIES AND MODES

Free vibration of an MDF system is governed by Eq. (10.9.1), which is repeated for con-
venience:

mü+ cu̇+ ku = 0 (14.5.1)

This equation admits a solution of the form

u(t) = ψ eλt (14.5.2)

Substituting this form of u(t) in Eq. (14.5.1) leads to the quadratic eigenvalue problem
(also known as the complex eigenvalue problem):

(λ2m+ λc+ k)ψ = 0 (14.5.3)

Although Eq. (14.5.3) can be solved directly for an eigenvalue λ and the associated eigen-
vectorψ, these may be determined more conveniently by first reducing the N second-order
differential equations (14.1) to a system of 2N first-order differential equations
(Appendix 14.2). The corresponding eigenvalue problem of order 2N [Eq. (A14.2.8)]
can be solved by well-established procedures and computer algorithms. The 2N roots
of λ are either real valued or they occur in complex-conjugate pairs (Appendix A14.2).
Response analysis of systems with all complex-valued roots is developed in Sections 14.5
to 14.9; whereas systems with some real-valued roots are deferred until Section 14.10.

Provided the amount of damping is not very high—i.e., small enough to ensure os-
cillatory free vibration in all modes—the eigenvalues occur in complex-conjugate pairs
with negative or zero real parts, just as in the case of classically damped systems [see
Eq. (14.1.3)]. For an N-DOF system, there are N pairs of eigenvalues, and to each such
pair corresponds a complex-conjugate pair of eigenvectors.

A complex-conjugate pair of eigenvalues, denoted by λn and λ̄n , may be expressed
in the same form as Eq. (14.1.3) for classically damped systems:

λn, λ̄n = −ζnωn ± iωnD (14.5.4)
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where

ωnD = ωn

√
1− ζ 2

n (14.5.5)

Note that ωn and ζn are related to the eigenvalues as follows:

ωn = |λn| ζn = −Re(λn)

|λn| (14.5.6)

The associated pair of complex-valued eigenvectors is separated into its real and imaginary
parts:

ψn, ψ̄n = φn ± iχn (14.5.7)

in which φn and χn are real-valued vectors of N elements each. The values of ωn are
numbered in ascending order and the values of λn and ψn are numbered in the order cor-
responding to ωn .

Considering that Eqs. (14.5.4) and (14.5.5) for nonclassically damped systems are
identical to the corresponding Eqs. (14.1.4) and (14.1.5) for classically damped systems,
ωn will be referred to as the nth pseudo-undamped natural circular frequency of the system,
ωnD as the corresponding frequency with damping, and ζn as the modal damping ratio. The
prefix “pseudo” has been included to denote that for nonclassically damped systems, ωn

is a function of the amount of system damping and, hence, differs from the corresponding
frequency of the associated undamped system; where confusion may arise, the latter fre-
quency will be denoted by ωo

n . Becauseψn for nonclassically damped systems is akin toφn

for classically damped systems, ψn will be referred to as the nth natural mode of vibration.
Studies on the effect of light damping on the natural frequencies of MDF systems

have demonstrated that (1) the natural frequency of the highest mode of a damped system
is always less than or equal to the corresponding undamped frequency, no matter whether
damping is classical or nonclassical; and (2) the damped natural frequency of the lowest
mode may be higher than the corresponding undamped frequency, depending on the form
of the damping matrix and on separation of ω1 and ω2.

For the special case of classically damped systems, as noted in Section 14.1, the
eigenvalues also occur in complex-conjugate pairs; the modulus ωn of each pair of eigen-
values is equal to the natural frequency of the associated undamped system ωo

n; and the
damped natural frequencies ωnD are always lower than the corresponding undamped fre-
quencies ωo

n . However, the eigenvectors are real valued and equal to those of the associated
undamped system, i.e., χn = 0, ψn = ψ̄n = φn .

14.6 ORTHOGONALITY OF MODES

A pair of eigenvectors corresponding to distinct eigenvalues satisfies the following orthog-
onality conditions (see Appendix 14.3 for proof):

(λn + λr )ψ
T
n mψr +ψT

n cψr = 0 (14.6.1)

ψT
n kψr − λnλrψ

T
n mψr = 0 (14.6.2)
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These orthogonality relations are also valid for a complex-conjugate pair of eigenvectors
because their eigenvalues are distinct.

For classically damped systems, it can be shown that Eqs. (14.6.1) and (14.6.2)
reduce to the familiar orthogonality relations of Eq. (10.4.1) (see Appendix 14.3).

Example 14.1

Determine the natural vibration frequencies and modes and modal damping ratios for the two-
story shear frame of Fig. E10.12.1a with c = √km/200, a classically damped system. Use the
theory for nonclassically damped systems, developed in Section 14.5, to solve the problem.

Solution The mass and stiffness matrices of the system, determined in Example 9.1, are

m =
[

2m
m

]
c =

[
6c −2c
−2c 2c

]
k =

[
3k −k
−k k

]
(a)

The damping matrix satisfies Eq. (10.9.3), implying that the system is classically damped. The
eigenvalue problem to be solved is defined by Eq. (A14.2.8), repeated here for convenience:

λaκ+ bκ = 0 (b)

where the matrices a and b, defined in Eq. (A14.2.5), for this system are

a =
[

0 m
m c

]
=

⎡
⎢⎣

0 0 2m 0
0 0 0 m

2m 0 6c −2c
0 m −2c 2c

⎤
⎥⎦ (c)

b =
[−m 0

0 k

]
=

⎡
⎢⎣
−2m 0 0 0

0 −m 0 0
0 0 3k −k
0 0 −k k

⎤
⎥⎦ (d)

The eigenvalue problem can be solved numerically using an appropriate algorithm, e.g., the
Matlab function eig(b,−a), resulting in the eigenvalues

λ1, λ1 =
√

k

m
(−0.0354± 0.7062i) (e.1)

λ2, λ2 =
√

k

m
(−0.1414± 1.4071i) (e.2)

From these eigenvalues, ωn and ζn can be determined using Eq. (14.5.6):

ω1 = |λ1| = 0.7071

√
k

m
ω2 = |λ2| = 1.4142

√
k

m
(f)

ζ1 = −Re(λ1)

|λ1| = 0.05 ζ2 = −Re(λ2)

|λ2| = 0.10 (g)

Observe that ωn in Eq. (f) are the same as the natural frequencies of the associated undamped
system, determined by solving the real eigenvalue problem in Example 10.4, and ζn in Eq. (g)
are identical to the values determined using Eq. (10.10.3).
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From the eigenvalues of Eq. (e), the damped frequencies are determined from their
definition in Eq. (14.5.5):

ω1D = Im(λ1) = 0.7062

√
k

m
ω2D = Im(λ2) = 1.4071

√
k

m
(h)

Note that the damped frequencies ωnD [Eq. (h)] are lower than the undamped frequen-
cies ωn[Eq. (f)]. Solution of the eigenvalue problem [Eq. (b)] also provides the eigenvectors:

ψ1 =
{ 1

2
1

}
ψ2 =

{−1
1

}
(i)

Note that the eigenvectors are real valued, as expected for a classically damped system, and
identical to the natural modes of the associated undamped system determined in Example 10.4.

Example 14.2

Determine the natural frequencies and modes of vibration, and the modal damping ratios for
the system shown in Fig. E14.2a, a two-story frame idealized as a shear building with a damper
only in the first story with c = √km. Show that the eigenvectors satisfy the orthogonality
properties.

2m

m

2k 

k 

c
h 

h 

 u
1

 u
2

(a)

Re(ψ1)

0.4949

1.0

Im(ψ1)

−0.1224

Re(ψ2)

−0.8699

1. 0

Im(ψ2)

−0.4531

(b)

Figure E14.2 (a) Nonclassically damped system; (b) real and imaginary parts of eigenvectors ψ1

and ψ2.

Solution The mass, damping, and stiffness matrices of the system are

m =
[

2m
m

]
c =

[
c

0

]
k =

[
3k −k
−k k

]
(a)

The damping matrix does not satisfy Eq. (10.9.3), implying that the system is nonclassically
damped. The eigenvalue problem to be solved is defined by Eq. (A14.2.8), repeated here for
convenience:

λaκ+ bκ = 0 (b)
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where the matrices a and b, defined in Eq. (A14.2.5), for this system are

a =
[

0 m
m c

]
=

⎡
⎢⎣

0 0 2m 0
0 0 0 m

2m 0 c 0
0 m 0 0

⎤
⎥⎦ (c)

b =
[−m 0

0 k

]
=

⎡
⎢⎣
−2m 0 0 0

0 −m 0 0
0 0 3k −k
0 0 −k k

⎤
⎥⎦ (d)

The eigenvalue problem can be solved numerically using an appropriate algorithm, e.g., the
Matlab function eig (b,−a), resulting in the eigenvalues

λ1, λ1 =
√

k

m
(−0.0855± 0.7159i) (e.1)

λ2, λ2 =
√

k

m
(−0.1645± 1.3773i) (e.2)

From these eigenvalues, ωn and ζn can be determined using Eq. (14.5.6):

ω1 = |λ1| = 0.7209

√
k

m
ω2 = |λ2| = 1.3871

√
k

m
(f)

ζ1 = −Re(λ1)

|λ1| = 0.1186 ζ2 = −Re(λ2)

|λ2| = 0.1186 (g)

Observe that the pseudo-undamped frequencies ωn in Eq. (f) are slightly different than the
frequencies of the associated undamped system ωo

n given by Eq. (f) in Example 14.1.
From the eigenvalues of Eq. (e), the corresponding frequencies ωnD of the damped

system are determined from their definition in Eq. (14.5.5):

ω1D = Im (λ1) = 0.7159

√
k

m
ω2D = Im(λ2) = 1.3773

√
k

m
(h)

Note that the damped natural frequency ω1D of the lowest (or first) mode is higher than the
undamped frequency ωo

1; however, the damped frequency ω2D of the highest (or second) mode
is lower than the undamped frequency ωo

2.
Solution of the eigenvalue problem [Eq. (b)] also provides the 4 × 1 eigenvectors, but

only the third and fourth components [see Eq. (A14.2.7)] are relevant and shown below:

ψ1 =
{

0.4949− 0.1224i
1

}
ψ2 =

{−0.8699− 0.4531i
1

}
(i)

Note that the eigenvectors are now complex valued, as expected for a nonclassically damped
system. Their real and imaginary parts are plotted in Fig. E14.2b.
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To verify that the eigenvectors ψn are orthogonal, we compute the individual terms in
the left side of Eqs. (14.6.1) and (14.6.2):

ψT
1 mψ2 =

{
0.4949− 0.1224i

1

}T [ 2m
m

] {−0.8699− 0.4531i
1

}
= m (0.0281− 0.2355i)

ψT
1 kψ2 =

{
0.4949− 0.1224i

1

}T [ 3k −k
−k k

]{−0.8699− 0.4531i
1

}
= k (−0.0828+ 0.2223i)

ψT
1 cψ2 =

{
0.4949− 0.1224i

1

}T [ c
0

] {−0.8699− 0.4531i
1

}
=
√

km (−0.4859− 0.1178i)

Substituting individual terms in the left side of Eqs. (14.6.1) and (14.6.2) gives

(λ1 + λ2)ψ
T
1 mψ2 +ψT

1 cψ2 =
√

km (−0.2500+ 2.0931i) (0.0281− 0.2355i)

+√km (−0.4859− 0.1178i) = 0

ψT
1 kψ2 − λ1λ2ψ

T
1 mψ2 = k (−0.0828+ 0.2223i)

+ k(0.9719+ 0.2355i) (0.0281− 0.2355i) = 0

This verifies that the eigenvectors computed for the system are orthogonal.

14.7 FREE VIBRATION

The modal solution associated with the complex-conjugate pair of eigenvalues λn and λ̄n

and their eigenvectors ψn and ψ̄n (derived in Appendix A14.4) is given by

un(t) = Bnψneλn t + B̄nψ̄neλ̄n t (14.7.1)

which may be viewed as a generalization of Eq. (14.2.1) for nonclassically damped sys-
tems. Since the second term on the right-hand side of Eq. (14.7.1) is the complex conjugate
of the first, the two imaginary parts cancel each other, resulting in

un(t) = 2Re
(
Bnψneλn t

)
(14.7.2)

The response of the system to arbitrary initial excitation is given by the superposition of
the modal solutions [Eq. (14.7.2)]:

u(t) = 2
N∑

n=1

Re
(
Bnψneλn t

)
(14.7.3)

By invoking the orthogonality properties of modes [Eqs. (14.6.1) and (14.6.2)], the complex-
valued constants are determined (see Appendix 14.4):

Bn = λnψ
T
n mu(0)+ψT

n cu(0)+ψT
n mu̇(0)

2λnψT
n mψn +ψT

n cψn
(14.7.4)

Following the derivation of the alternative form of the free vibration solution for
classically damped systems (Section 14.2), we first evaluate the product:

2Bnψn = βn + iγn (14.7.5)
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in which βn and γn are real-valued vectors, then substitute Eq. (14.7.5) into Eq. (14.7.2),
and finally relate the exponential functions to trigonometric functions, leading to

un(t) = e−ζnωn t [βn cosωnDt − γn sinωnDt] (14.7.6)

which is identical to Eq. (14.2.8) for classically damped systems, but the vectors βn and
γn will no longer be defined by Eq. (14.2.9). Superposition of the modal solutions, as
expressed in Eq. (14.7.6), provides an alternative form for the free vibration response:

u(t) =
N∑

n=1

e−ζnωn t [βn cosωnDt − γn sinωnDt] (14.7.7)

For classically damped systems, Eq. (14.7.4) reduces to Eq. (14.2.4), βn and γn

are given by Eqs. (14.2.9) (see Appendix 14.4), and Eq. (14.7.7) becomes equivalent to
Eq. (14.2.10).

Example 14.3

Determine the free vibration response of the two-story shear frame of Fig. E10.12.1a with
c = √km/200, a classically damped system, due to initial displacements u(0) = 〈− 1

2 2 〉T .
Use the theory for nonclassically damped systems, developed in Section 14.7, to solve the
problem.

Solution The initial displacement and velocity vectors are

u(0) =
{− 1

2
2

}
u̇(0) =

{
0
0

}
(a)

Substituting them in Eq. (14.7.4) together with m, c, λn , and ψn determined in Example 14.1
gives

B1 =
λ1ψ

T
1 mu(0)+ψT

1 cu(0)+ψT
1 mu̇(0)

2λ1ψ
T
1 mψ1 +ψT

1 cψ1
= 0.5000− 0.0250i (b.1)

B2 =
λ2ψ

T
2 mu(0)+ψT

2 cu(0)+ψT
2 mu̇(0)

2λ2ψ
T
2 mψ2 +ψT

2 cψ2
= 0.5000− 0.0503i (b.2)

Using the Bn in Eq. (b) andψn from Example 14.1, βn and γn are determined from Eq. (14.7.5)
as follows:

β1 = Re(2B1ψ1) =
{

0.5000
1.0000

}
β2 = Re(2B2ψ2) =

{−1.0000
1.0000

}
(c.1)

γ1 = Im(2B1ψ1) =
{−0.0250
−0.0501

}
γ2 = Im(2B2ψ2) =

{
0.1005
−0.1005

}
(c.2)

Substituting the βn and γn from Eq. (c) into Eq. (14.7.7) gives the free-vibration response:

u(t) = e−0.05ω1t
[{

0.5000
1.0000

}
cosω1Dt +

{
0.0250
0.0501

}
sinω1Dt

]
+ e−0.1ω2t

[{−1.0000
1.0000

}
cosω2Dt +

{−0.1005
0.1005

}
sinω2Dt

]
(d)

Observe that this solution is identical to the result obtained by the classical method in Exam-
ple 10.13.
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Example 14.4

Determine the free vibration response of the two-story shear frame of Fig. E14.2a with
c = √km due to initial displacements u(0) = 〈− 1

2 2 〉T .

Solution The initial displacement and velocity vectors are

u(0) =
{− 1

2
2

}
u̇(0) =

{
0
0

}
(a)

Substituting them in Eq. (14.7.4) together with m, c, λn , and ψn determined in Example 14.2
gives

B1 =
λ1ψ

T
1 mu(0)+ψT

1 cu(0)+ψT
1 mu̇(0)

2λ1ψ
T
1 mψ1 +ψT

1 cψ1
= 0.5101+ 0.3137i (b.1)

B2 =
λ2ψ

T
2 mu(0)+ψT

2 cu(0)+ψT
2 mu̇(0)

2λ2ψ
T
2 mψ2 + ψT

2 cψ2
= 0.4899− 0.2532i (b.2)

Using the Bn in Eq. (b) andψn from Example 14.2, βn and γn are determined from Eq. (14.7.5)
as follows:

β1 = Re (2B1ψ1) =
{

0.5817
1.0203

}
β2 = Re(2B2ψ2) =

{−1.0817
0.9797

}
(c.1)

γ1 = Im(2B1ψ1) =
{

0.1856
0.6274

}
γ2 = Im (2B2ψ2) =

{−0.0034
−0.5065

}
(c.2)

Substituting the βn and γn from Eq. (c) into Eq. (14.7.7) gives the free-vibration response:

u(t) = e−0.1186ω1t
[{

0.5817
1.0203

}
cosω1Dt −

{
0.1856
0.6274

}
sinω1Dt

]
+ e−0.1186ω2t

[{−1.0817
0.9797

}
cosω2Dt +

{
0.0034
0.5065

}
sinω2Dt

]
(d)

Example 14.5

Determine the free vibration responses of the two-story shear frame of Fig. E14.2a with
c = √km due to two sets of initial displacements: (1) u(0) = φ 1 and (2) u(0) = φ2, where

φn is the nth natural vibration mode of the associated undamped system; φ1 =
〈

1
2 1

〉T
and

φ2 = 〈−1 1〉T .

Solution Part 1 Substituting the first u(0) in Eq. (14.7.4) together with m, c, λn , and ψn

determined in Example 14.2 gives

B1 =
λ1ψ

T
1 mu(0)+ψT

1 cu(0)+ψT
1 mu̇(0)

2λ1ψ
T
1 mψ1 +ψT

1 cψ1
= 0.5103− 0.0200i (a.1)

B2 =
λ2ψ

T
2 mu(0)+ψT

2 cu(0)+ψT
2 mu̇(0)

2λ2ψ
T
2 mψ2 +ψT

2 cψ2
= −0.0103− 0.0200i (a.2)

Using the Bn in Eq. (a) andψn from Example 14.2, βn and γn are determined from Eq. (14.7.5)
as follows:

β1 = Re(2B1ψ1) =
{

0.5002
1.0207

}
β2 = Re(2B2ψ2) =

{−0.0002
−0.0207

}
(b.1)

γ1 = Im(2B1ψ1) =
{−0.1448
−0.0401

}
γ2 = Im(2B2ψ2) =

{
0.0442
−0.0401

}
(b.2)
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Substituting the βn and γn from Eq. (b) into Eq. (14.7.7) gives the free-vibration response:

u(t) = e−0.1186ω1t
[{

0.5002
1.0207

}
cosω1Dt +

{
0.1448
0.0401

}
sinω1Dt

]
+ e−0.1186ω2t

[{−0.0002
−0.0207

}
cosω2Dt −

{
0.0442
−0.0401

}
sinω2Dt

]
(c)

Part 2 Proceeding as in Part 1, the free vibration response due to the second u(0) can
be determined:

u(t) = e−0.1186ω1t
[{

0.0815
−0.0004

}
cosω1Dt −

{
0.3304
0.6675

}
sinω1Dt

]
+ e−0.1186ω2t

[{−1.0815
1.0004

}
cosω2Dt +

{
0.0476
0.4664

}
sinω2Dt

]
(d)

Observations The displacements u(t) are expressed as a linear combination of φn ,
the natural vibration modes of the associated undamped system:

u(t) =
2∑

n=1

φnqn(t) (e)

where the modal coordinates are given by

qn(t) = φ
T
n mu(t)

φT
n mφn

(f)

which is a generalization of Eq. (10.7.2). Substituting the known φn and Eq. (c) for u(t) in
Eq. (f) leads to

q1(t) = e−0.1186ω1t (1.0139 cosω1Dt + 0.1232 sinω1Dt)
+ e−0.1186ω2t (0.0068 cosω2Dt − 0.0832 sinω2Dt) (g)

q2(t) = e−0.1186ω1t (−0.0139 cosω1Dt − 0.0028 sinω1Dt)
+ e−0.1186ω2t (−0.0068 cosω2Dt + 0.0428 sinω2Dt) (h)

These are the qn(t) associated with Eq. (c), the free vibration response due to the first set of
initial displacements.

Similarly, substituting the known φ n and Eq. (d) for u(t), Eq. (f) leads to

q1(t) = e−0.1186ω1t (0.0541 cosω1Dt − 0.6652 sinω1Dt)
+ e−0.1186ω2t (−0.0545 cosω2Dt − 0.0023 sinω2Dt) (j)

q2(t) = e−0.1186ω1t (−0.0541 cosω1Dt + 0.3427 sinω1Dt)
+ e−0.1186ω2t (1.0545 cosω2Dt + 0.1237 sinω2Dt) (k)

These are the qn(t) associated with Eq. (d), the free vibration response to the second set of
initial displacements.

These results, presented in Figs. E14.5.1 and E14.5.2, are for a system disturbed from
its equilibrium position by imposing initial displacements that are proportional to a natural
vibration mode φn of the associated undamped system. The solutions for qn(t) are presented
in part (c) of these figures; the floor displacements in part (d); and the deflected shapes at se-
lected time instants—a, b, c, d, and e—in part (b). These results permit three observations that
contrast with what we observed earlier for undamped systems (Figs. 10.1.2 and 10.1.3) and for
classically damped systems (Figs. E10.12.1 and E10.12.2): First, q2(t) �= 0 in Fig. E14.5.1c
and q1(t) �= 0 in Fig. E14.5.2c. Second, the initial deflected shape is not maintained in free
vibration; see Figs. E14.5.1b and E14.5.2b. Third, all floors (or DOFs) of the system do not
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vibrate in the same phase; they do not pass through zero, maximum, or minimum positions at
the same instant of time; see Fig. E14.5.2d.
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Figure E14.5.1 Free vibration of a nonclassically damped system due to initial displacement in the
first natural mode of the undamped system: (a) two-story frame; (b) deflected shapes at time instants
a, b, c, d, and e; (c) modal coordinates qn(t); (d) displacement history.
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Figure E14.5.2 Free vibration of a nonclassically damped system due to initial displacement in
the second natural mode of the undamped system: (a) two-story frame; (b) deflected shapes at time
instants a, b, c, d, and e; (c) modal coordinates qn(t); (d) displacement history.
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14.8 UNIT IMPULSE RESPONSE

As first mentioned in Section 14.3, a unit impulse ground acceleration üg(t) = δ(t) imparts
to an MDF system the initial velocities u̇(0) = −ι, but no initial displacements, i.e.,
u(0) = 0. Substituting these initial conditions into Eq. (14.7.4) provides the complex-
valued constant

Bg
n =

−ψT
n mι

2λnψT
n mψn +ψT

n cψn
(14.8.1)

As before, the superscript “g” has been added in Bg
n to emphasize that these constants are

associated with ground acceleration. Substituting Eq. (14.8.1) in the general solution for
free vibration, Eq. (14.7.3) leads to the unit impulse response.

To express this result in a form similar to Eq. (14.7.6), we first express the product
2Bg

nψn as in Eq. (14.7.5):

2Bg
nψn = βg

n + iγg
n (14.8.2)

Thus, the response is given by Eq. (14.7.7) with an obvious change of notation:

h(t) ≡ u(t) =
N∑

n=1

e−ζnωn t
[
βg

n cosωnDt − γg
n sinωnDt

]
(14.8.3)

where h(t) denotes the vector of unit impulse response functions for displacements of the
system. Note that Eqs. (14.8.2) and (14.8.3) have the same form as Eqs. (14.3.3) and
(14.3.5) for classically damped systems, but the vectors βg

n and γg
n are no longer given by

Eq. (14.3.4).
We prefer to express Eq. (14.8.3) in terms of the unit impulse response function hn(t)

for deformation of the nth-mode SDF system, just as we did in Eq. (14.3.6) for classically
damped systems. Recall that

hn(t) = − 1

ωnD
e−ζnωn t sinωnDt (14.8.4)

and its first derivative is given by

ḣn(t) = −e−ζnωn t cosωnDt − ζnωnhn(t) (14.8.5)

which can be rewritten as

−e−ζnωn t cosωnDt = ḣn(t)+ ζnωnhn(t) (14.8.6)

The trigonometric functions multiplying the vectors βg
n and γg

n in Eq. (14.8.3) are now re-
placed by the corresponding expressions obtained from Eqs. (14.8.4) and (14.8.6) in terms
of hn(t) and ḣn(t) to obtain the vector of unit impulse response functions for displacements
u(t) of the system:

h(t) = −
N∑

n=1

[
αg

nωnhn(t)+ βg
n ḣn(t)

]
(14.8.7)
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in which

αg
n = ζnβ

g
n −

√
1− ζ 2

n γ
g
n (14.8.8)

where βg
n and γg

n are known from Eqs. (14.8.2) and (14.8.1).
For classically damped systems, Eq. (14.8.7) specializes to Eq. (14.3.6). This can

be verified by substituting Eq. (14.3.4) in Eq. (14.8.8) to obtain αg
n = −(�n/ωn)φn and

substituting it together with βg
n = 0 in Eq. (14.8.7).

Properties of αg
n and βg

n . The vectors αg
n and βg

n that appear in Eq. (14.8.3) satisfy
the following relations:

N∑
n=1

βg
n = 0

N∑
n=1

ωn
[
αg

n − 2ζnβ
g
n

] = −ι (14.8.9)

These equations can be derived by recalling that Eq. (14.8.3) must satisfy the initial con-
ditions associated with unit impulse ground acceleration: u(0) = 0 and u̇(0) = −ι.
Specializing Eq. (14.8.3) for t = 0 and imposing the first initial condition leads to Eq.
(14.8.9a). Similarly, differentiating Eq. (14.8.3) to obtain an equation for u̇(t), special-
izing it for t = 0, and imposing the second initial condition leads to Eq. (14.8.9b); see
Appendix A14.5.

For classically damped systems, βg
n = 0 for all modes [Eq. (14.3.4a)], implying

that Eq. (14.8.9a) is satisfied. Furthermore, for such systems αg
n = − (�n/ωn)φ n , and

Eq. (14.8.9b) reduces to

N∑
n=1

�nφ n = ι (14.8.10)

This is the modal expansion of the influence vector ι, which first appeared in Section 13.1.3.

Example 14.6

Determine the response of the two-story shear frame of Fig. E10.12.1a with c = √km/200,
a classically damped system, due to unit impulse ground acceleration, üg(t) = δ(t). Use the
theory for nonclassically damped systems developed in Section 14.8 to solve the problem.

Solution Bg
n are determined by substituting m, c, andψn from Example 14.1 in Eq. (14.8.1):

Bg
1 =

−ψT
1 mι

2λ1ψ
T
1 mψ1 +ψT

1 cψ1
= 0.9440

√
m

k
i (a.1)

Bg
2 =

−ψT
2 mι

2λ2ψ
T
2 mψ2 +ψT

2 cψ2
= −0.1184

√
m

k
i (a.2)

Using the Bg
n in Eq. (a) and ψn , βg

n and γg
n are determined from Eq. (14.8.2) as follows:

β
g
1 = Re(2Bg

1ψ1) =
{

0
0

}
β

g
2 = Re(2Bg

2ψ2) =
{

0
0

}
(b.1)

γ
g
1 = Im(2Bg

1ψ1) =
{

0.9440
1.8880

}√m

k
γ

g
2 = Im(2Bg

2ψ2) =
{

0.2369
−0.2369

}√m

k
(b.2)
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Substituting the βg
n and γg

n from Eq. (b) into Eq. (14.8.3) gives the desired response:

u(t) =
√

m

k

[
e−ζ1ω1t

{−0.9440
−1.8880

}
sinω1Dt + e−ζ2ω2t

{−0.2369
0.2369

}
sinω2Dt

]
(c)

These solutions for uj (t) are plotted in Fig. E14.6.
The response can also be expressed in terms of the unit impulse response functions

hn(t). For this purpose Eq. (14.8.8) is used to obtain

α
g
1 =

{−0.9428
−1.8856

}√m

k
α

g
2 =

{−0.2357
0.2357

}√m

k
(d)

which are substituted in Eq. (14.8.7) to obtain

u(t) =
{

0.6667
1.3333

}
h1(t)+

{
0.3333
−0.3333

}
h2(t) (e)

where hn(t) is given by Eq. (14.8.4).
The vectors αg

n and βg
n satisfy Eq. (14.8.9):

β
g
1 + β

g
2 =

{
0
0

}
(f)

N∑
n=1

ωn
[
α

g
n − 2ζnβ

g
n
] = ω1

√
m

k

{−0.9428
−1.8856

}
+ ω2

√
m

k

{−0.2357
0.2357

}
= −

{
1
1

}
(g)

which can be verified by substituting for ω1and ω2 from Eq. (f) of Example 14.2.

u
1
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Figure E14.6 Unit impulse response functions for a classically damped system.

Example 14.7

Determine the response of the two-story shear frame of Fig. E14.2a with c = √km due to
unit impulse ground acceleration, üg(t) = δ(t).
Solution Bg

n are determined by substituting m, c, andψn from Example 14.2 in Eq. (14.8.1):

Bg
1 =

−ψT
1 mι

2λ1ψ
T
1 mψ1 +ψT

1 cψ1
=
√

m

k
(−0.0383+ 0.9835i) (a.1)

Bg
2 =

−ψT
2 mι

2λ2ψ
T
2 mψ2 +ψT

2 cψ2
=
√

m

k
(0.0383− 0.1504i) (a.2)
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Using the Bg
n in Eq. (a) and ψn , βg

n and γg
n are determined from Eq. (14.8.2) as follows:

β
g
1 = Re

(
2Bg

1ψ1
) = { 0.2029

−0.0766

}√m

k
β

g
2 = Re

(
2Bg

2ψ2
) = {−0.2029

0.0766

}√m

k
(b.1)

γ
g
1 = Im

(
2Bg

1ψ1
) = { 0.9828

1.9671

}√m

k
γ

g
2 = Im

(
2Bg

2ψ2
) = { 0.2269

−0.3007

}√m

k
(b.2)

Substituting the βg
n and γg

n from Eq. (b) into Eq. (14.8.3) gives the total response of the
system:

u(t) = e−ζ1ω1t
[{

0.2029
−0.0766

}
cosω1Dt +

{−0.9828
−1.9671

}
sinω1Dt

]√m

k

+ e−ζ2ω2t
[{−0.2029

0.0766

}
cosω2Dt +

{−0.2269
0.3007

}
sinω2Dt

]√m

k
(c)

These solutions for uj (t) are plotted in Fig. E14.7.
The response can also be expressed in terms of the unit impulse response functions

hn(t). For this purpose Eq. (14.8.8) is used to obtain

α
g
1 =

{−0.9518
−1.9623

}√m

k
α

g
2 =

{−0.2493
0.3077

}√m

k
(d)

which are substituted together with βg
n from Eq. (b.1) in Eq. (14.8.8) to obtain

u(t) =
{

0.6862
1.4147

}
h1(t)+

{−0.2029
0.0766

}√m

k
ḣ1(t)+

{
0.3459
−0.4268

}
h2(t)+

{
0.2029
−0.0766

}√m

k
ḣ2(t) (e)

where hn(t) and ḣn(t) are given by Eq. (14.8.4) and (14.8.5), respectively.
The vectors αg

n and βg
n satisfy Eq. (14.8.9):

β
g
1 + β

g
2 =

√
m

k

[{
0.2029
−0.0766

}
+
{−0.2029

0.0766

}]
=
{

0
0

}
(f)

N∑
n=1

ωn
[
α

g
n − 2ζnβ

g
n
] =ω1

√
m

k

[{−0.9518
−1.9623

}
− 2ζ1

{
0.2029
−0.0766

}]

+ ω2

√
m

k

[{−0.2493
0.3077

}
− 2ζ2

{−0.2029
0.0766

}]
=
{−1
−1

}
(g)

which can be verified by substituting for ω1and ω2 from Eq. (f) of Example 14.2.

u
1
(t)

u
2
(t)

−2

−1

0

1

2

0 1 2 3
t / T1 

u j
k/

m

Figure E14.7 Unit impulse response functions for a nonclassically damped system.
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14.9 EARTHQUAKE RESPONSE

The displacements (relative to the ground) of the system at time t due to arbitrary ground
acceleration üg(t) are given by the convolution integral introduced in Eq. (14.4.1):

u(t) =
∫ t

0
üg(τ )h(t − τ) dτ (14.9.1)

in which h(t) is substituted from Eq. (14.8.7) to obtain

u(t) = −
N∑

n=1

[
αg

nωn Dn(t)+ βg
n Ḋn(t)

]
(14.9.2)

where

Dn(t) =
∫ t

0
üg (τ ) hn (t − τ) dτ (14.9.3)

and

Ḋn(t) =
∫ t

0
üg (τ ) ḣn (t − τ) dτ (14.9.4)

The unit impulse response functions hn(t) and ḣn(t) for the nth-mode SDF system
were presented in Eqs. (14.8.4) and (14.8.5), respectively.

In Eqs. (14.9.2) and (14.9.3), Dn(t) represents the deformation response of the nth-
mode SDF system, an SDF system with vibration properties—natural frequency ωn and
damping ratio ζn—of the nth mode of the MDF system, to ground acceleration üg(t);
Dn(t) was introduced in Section 13.1.3 and also appeared in the response of classically
damped systems (Section 14.4). The quantity Ḋn(t) represents the corresponding relative
velocity response of the nth-mode SDF system, introduced in Section 6.12. These SDF
system responses, Dn(t) and Ḋn(t), are usually computed by one of the numerical methods
presented in Chapter 5, not by numerical evaluation of the convolution integrals in Eqs.
(14.9.3) and (14.9.4) because the latter approach is numerically inefficient.

The response of a nonclassically damped MDF system has been expressed as a linear
combination of N pairs of terms; the nth pair represents the nth-modal solution, associated
with the nth pair of eigenvalues λn and λ̄n and their associated eigenvectors ψn and ψ̄n .
The first part in the nth such pair represents a motion in the deflected shape αg

n with its
temporal variation defined by Dn(t), whereas the second part represents a motion in the
deflected shape βg

n with its temporal variation defined by Ḋn(t). The deflected shapes
α

g
n and βg

n are obviously functions of the natural modes of vibration of the system, as
is apparent from Eqs. (14.8.2) and (14.8.8); these are independent of üg(t) and satisfy
Eq. (14.8.9).

How does the response of nonclassically damped systems differ from that of clas-
sically damped systems? Both Dn(t) and Ḋn(t) appear in Eq. (14.9.2), which defines
the earthquake response of nonclassically damped systems; however, only Dn(t) enters
into Eq. (14.4.2), the corresponding result for classically damped systems. For classically
damped systems, the deflected shape φn associated with the contribution of the nth mode



Sec. 14.9 Earthquake Response 637

of vibration remains invariant over time [Eq. (14.4.2)], but it varies with time in the case
of nonclassically damped systems [Eq. (14.9.2)].

Once the displacements u(t) have been computed, internal forces in the structure
can be determined as described earlier for classically damped systems. Forces in viscous
dampers (that may be part of a supplemental damping system) can be determined from
the damper properties and u̇(t). Differentiating Eq. (14.9.2) gives a formal equation for
these velocities that involve Ḋn(t) and D̈n(t). Both of these quantities are computed in the
process of numerically evaluating Dn(t) using one of the numerical methods presented in
Chapter 5.

Example 14.8

Derive equations for the floor displacements of the shear frame of Fig. E10.12.1a with
c = √km/200, a classically damped system, subjected to ground acceleration üg(t). Use
the theory for nonclassically damped systems developed in Section 14.9 to solve the problem.

Solution Substituting theαg
n and βg

n determined in Example 14.6 into Eq. (14.9.2) provides
the equations for the floor displacements:

u(t) =
{

2/3
4/3

}
D1(t)+

{
1/3
−1/3

}
D2(t)

Note that this result is identical to that obtained in Example 13.3 by classical methods.

Example 14.9

Derive equations for the floor displacements of the shear frame of Example 14.7 subjected to
ground acceleration üg(t).

Solution Substituting theαg
n and βg

n determined in Example 14.7 into Eq. (14.9.2) provides
the equation for the floor displacements:

u(t) =
{

0.6862
1.4147

}
D1(t)+

{−0.2029
0.0766

}√m

k
Ḋ1(t)+

{
0.3459
−0.4268

}
D2(t)+

{
0.2029
−0.0766

}√m

k
Ḋ2(t)

(a)
where Dn(t) and Ḋn(t) represent the deformation and relative velocity response of the nth-
mode SDF system; see Eqs. (14.9.3) and (14.9.4).

Example 14.10

Determine the displacement response of the two-story shear frame of Fig. E14.2a with
c = √km, m = 0.2591 kN-s2/cm, and k = 2π2m, due to the El Centro ground motion.

Solution The equation describing the displacement response of this system, derived in
Example 14.9, contains Dn(t) and Ḋn(t), the deformation and relative velocity responses
of the nth-mode SDF system [Eqs. (14.9.3) and (14.9.4)]. The natural frequencies ωn and
damping ratios ζn of the two modal SDF systems are given in terms of m and k by by Eqs. (f)
and (g) of Example 14.2.

Substituting m = 0.2591 kN-s2/cm and k = 5.1138 kN/cm gives

ω1 = 3.203 rad/s ω2 = 6.163 rad/s (a)

T1 = 1.962 s T2 = 1.020 s (b)

ζ1 = 0.1186 ζ2 = 0.1186 (c)
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Figure E14.10a Deformation Dn(t) and relative velocity Ḋn(t) responses of modal SDF systems.
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Figure E14.10b Floor displacements: modal contributions, u1n(t) and u2n(t), and total responses
u1(t) and u2(t).

Numerical values of Dn(t) and Ḋn(t) for the nth-mode SDF system with natural period Tn

and damping ratio ζn to the El Centro ground motion are determined by the linear acceleration
method (Chapter 5) to obtain discrete values of Dn and Ḋn at every �t . These computations
were implemented for the two modal SDF systems with properties given by Eqs. (b) and (c),
and the results are plotted in Fig. E14.10a.

Substituting these numerical values of Dn(t) and Ḋn(t) into Eq. (a) of Example 14.9
provides numerical values of the floor displacements; the individual modal contributions are
combined to obtain the total response shown in Fig. E14.10b.

14.10 SYSTEMS WITH REAL-VALUED EIGENVALUES

The preceding development led to the complete solution for the earthquake analysis of non-
classically damped systems for which all eigenvalues λn and the associated eigenvectors
are complex valued; the modal damping ratios ζn for such modes are less than unity. In
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general, a damped system—classical or nonclassical—may have an even number of real-
valued, negative eigenvalues, each associated with a real-valued eigenvector; the modal
damping ratios ζn for such modes are greater than unity. Extension of the preceding anal-
ysis to determine the earthquake response of such overdamped modes is presented next;
although these modal responses are expected to be small, this extension is included for
completeness.

14.10.1 Free Vibration†

Consider a pair of real-valued eigenvalues λn and λr , such that |λr | > |λn|, and the as-
sociated real eigenvectors ψn and ψr , determined by solving the eigenvalue problem of
Eq. (A14.2.8). We express this pair of eigenvalues in a form motivated by the eigenvalues
of an overdamped SDF system (Appendix14.6) as

λn = −ζnωn + ωnD λr = −ζnωn − ωnD (14.10.1)

in which‡

ωnD = ωn

√
ζ 2

n − 1 (14.10.2)

and ωn and ζn are real-valued, positive quantities that can be determined from the known
eigenvalues λn and λr as follows.

Multiplying Eqs. (14.10.1a) and (14.10.1b) and making use of Eq. (14.10.2) leads to

ωn =
√
λnλr (14.10.3)

Adding Eqs. (14.10.1a) and (14.10.1b) leads to

ζn = −λn + λr

2ωn
= − λn + λr

2
√
λnλr

(14.10.4)

Finally, subtracting Eq. (14.10.1b) from (14.10.1a) gives

ωnD = λn − λr

2
(14.10.5)

The motion represented by a linear combination of two real-valued eigenvectors ψn

and ψr is given by

un(t) = Bnψneλn t + Brψr eλr t (14.10.6)

†This terminology is used for consistency with Section 14.7, although the system returns to its equilibrium
position without oscillating (Section 2.2.1).

‡Note that the notation ωnD here represents a different quantity compared to Eq. (14.5.5).
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in which Bn and Br in this case are real-valued constants [in contrast to Eq. (14.7.1),
where these constants were complex valued] that can be determined from Eq. (14.7.4).
Substituting Eq. (14.10.1) and expressing exponential functions in terms of hyperbolic
functions, Eq. (14.10.6) may be rewritten as (see Appendix 14.7)

un(t) = e−ζnωn t [βn coshωnDt − γn sinhωnDt] (14.10.7)

where

βn = Brψr + Bnψn (14.10.8)

γn = Brψr − Bnψn (14.10.9)

Note the similarity between modal solutions associated with a pair of real-valued eigenval-
ues [Eq. (14.10.7)] and with a complex-conjugate pair of complex-valued eigenvalues [Eq.
(14.7.6)], with the only difference being that hyperbolic functions appear in the former
case, in contrast to trigonometric functions in the latter case.

Example 14.11

Determine the free vibration characteristics of the system shown in Fig. E14.11a, a two-story
frame idealized as a shear building with a damper in the second story with c = 2

√
km. Show

that the eigenvectors satisfy the orthogonality properties.

2m

m

2k 

k 
c

h 

h 

 u
1

 u
2

(a)

Re(ψ1)

0.7923

1.0

Im(ψ1)

0.2787

ψ2

−0.1717

1. 0

ψ3

−0.4129

1. 0

(b)

Figure E14.11 (a) Nonclassically damped system; (b) real and imaginary parts of eigenvector ψ1;
and real-valued eigenvectors ψ2 and ψ3.

Solution The mass, damping, and stiffness matrices of the system are

m =
[

2m
m

]
c =

[
c −c
−c c

]
k =

[
3k −k
−k k

]
(a)

The eigenvalue problem to be solved is defined by Eq. (A14.2.8), repeated here for
convenience:

λaκ+ bκ = 0 (b)

where the matrices a and b, defined in Eq. (A14.2.5), for this system are

a =
[

0 m
m c

]
=

⎡
⎢⎣

0 0 2m 0
0 0 0 m

2m 0 c −c
0 m −c c

⎤
⎥⎦ (c)
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b =
[−m 0

0 k

]
=

⎡
⎢⎣
−2m 0 0 0

0 −m 0 0
0 0 3k −k
0 0 −k k

⎤
⎥⎦ (d)

The eigenvalue problem can be solved numerically using an appropriate algorithm, e.g., the
Matlab function eig(b,−a), resulting in the eigenvalues

λ1, λ1 =
√

k

m
(−0.0501± 0.7955i) (e.1)

λ2 = −0.7232

√
k

m
λ3 = −2.1766

√
k

m
(e.2)

Note that two of the eigenvalues of the system are a complex-conjugate pair, whereas two are
real and negative valued, with |λ3| > |λ2|

From the eigenvalues λ1 and λ̄1, ω1 and ζ1 can be determined using Eq. (14.5.6):

ω1 = |λ1| = 0.7971

√
k

m
ζ1 = −Re(λ1)

|λ1| = 0.0629 (f)

Substituting eigenvalues λ2 and λ3 in Eqs. (14.10.3) and (14.10.4) gives

ω2 =
√
λ2λ3 = 1.2546

√
k

m
ζ2 = −λ2 + λ3

2ω2
= 1.1556 (g)

From the eigenvalue λ1 of Eq. (e.1), the corresponding frequency ω1D of the damped system
is determined from its definition in Eq. (14.5.5):

ω1D = Im(λ1) = 0.7955

√
k

m
(h)

However, ω2D should be determined from Eq. (14.10.5):

ω2D = λ2 − λ3

2
= 0.7267

√
k

m
(i)

Solution of the eigenvalue problem [Eq. (b)] also provides the 4 × 1 eigenvectors, but
only the third and fourth components [see Eq. (A14.2.7)] are relevant and shown below:

ψ1 =
{

0.7923+ 0.2787i
1

}
ψ2 =

{−0.1717
1

}
ψ3 =

{−0.4129
1

}
(j)

Note that ψ1 is complex valued, but ψ2 and ψ3 are real valued (Fig. E14.11b).
To verify that the eigenvectors ψ1 and ψ2 are orthogonal, we compute the individual

terms in the left side of Eqs. (14.6.1) and (14.6.2):

ψT
1 mψ2 =

{
0.7923+ 0.2787i

1

}T [ 2m
m

] {−0.1717
1

}
= m (0.7279− 0.0957i)

ψT
1 kψ2 =

{
0.7923+ 0.2787i

1

}T [ 3k −k
−k k

] {−0.1717
1

}
= k (−0.0287− 0.4222i)

ψT
1 cψ2 =

{
0.7923+ 0.2787i

1

}T [ c −c
−c c

] {−0.1717
1

}
=
√

km (0.4868− 0.6531i)
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Substituting these individual terms in the left side of Eqs. (14.6.1) and (14.6.2) gives

(λ1 + λ2) ψ
T
1 mψ2 +ψT

1 cψ2 =
√

km (−0.7733+ 0.7955i) (0.7279− 0.0957i)

+√km (0.4868− 0.6531i) = 0

ψT
1 kψ2 − λ1λ2ψ

T
1 mψ2 = k (−0.0287− 0.4222i)

− k(0.0362− 0.5753i) (0.7279− 0.0957i) = 0

This verifies that the eigenvectors ψ1 and ψ2 computed for the system are orthogonal; similar
calculations show that other pairs of eigenvectors are also orthogonal.

In passing, we rewrite Eqs. (h) and (i) to facilitate an interesting observation:

ω1D = 0.9743

√
2k

3m
ω2D = 0.8900

√
2k

3m
(k)

If the second story were rigid, the system of Fig. E14.11a would reduce to an SDF system
with natural vibration frequency =

√
2k/3m. Note that the frequencies of the damped system

[Eq. (k)] are close to this reference frequency because the damper coefficient is so large that
the damper provides much resistance to deformation in the second story.

Example 14.12

Determine the free vibration response of the two-story shear frame of Fig. E14.11a with
c = 2

√
km due to initial displacements u(0) = 〈− 1

2 2 〉T .

Solution The initial displacement and velocity vectors are

u(0) =
{− 1

2
2

}
u̇(0) =

{
0
0

}
(a)

Substituting them in Eq. (14.7.3) together with m, c, λn , andψn determined in Example 14.11
gives

B1 =
λ1ψ

T
1 mu(0)+ψT

1 cu(0)+ψT
1 mu̇(0)

2λ1ψ
T
1 mψ1 +ψT

1 cψ1
= −0.2747− 0.2440i (b.1)

B2 =
λ2ψ

T
2 mu(0)+ψT

2 cu(0)+ψT
2 mu̇(0)

2λ2ψ
T
2 mψ2 +ψT

2 cψ2
= 3.5317 (b.2)

B3 =
λ3ψ

T
3 mu(0)+ψT

3 cu(0)+ψT
3 mu̇(0)

2λ3ψ
T
3 mψ3 +ψT

3 cψ3
= −0.9824 (b.3)

Using the Bn in Eq. (b) and ψn from Example 14.11, β1 and γ1 are determined from
Eq. (14.7.5), and β2 and γ2 from Eqs. (14.10.8) and (14.10.9) as follows:

β1 = Re(2B1ψ1) =
{−0.2992
−0.5493

}
γ1 = Im(2B1ψ1) =

{−0.5397
−0.4880

}
(c.1)

β2 = B2ψ2 + B3ψ3 =
{−0.2008

2.5493

}
γ2 = B2ψ2 − B3ψ3 =

{−1.0120
4.5142

}
(c.2)
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The free-vibration response is given by

u(t) = u1(t)+ u2(t) (d)

where u1(t) is determined by substituting β1 and γ1 from Eq. (c.1) into the n = 1 term on the
right side of Eq. (14.7.6):

u1(t) = e−0.0629ω1t
[{−0.2992
−0.5493

}
cosω1Dt −

{−0.5397
−0.4880

}
sinω1Dt

]
(e)

and u2(t) is determined by substituting β2 and γ2 from Eq. (c.2) into Eq. (14.10.7):

u2(t) = e−1.1556ω2t
[{−0.2008

2.5493

}
coshω2Dt −

{−1.0120
4.5142

}
sinhω2Dt

]
(f)

Substituting Eqs. (e) and (f) into Eq. (d) gives the total response u(t).

14.10.2 Unit Impulse Response

Recall that unit impulse ground acceleration üg(t) = δ(t) imparts to the system the initial
velocities u̇(0) = −ι but no initial displacements, i.e., u(0) = 0 (Section 14.3). For these
initial conditions, the constants Bg

n are given by Eq. (14.8.1) and Eq. (14.10.7) can be
expressed in a form analogous to the nth-mode term in Eq. (14.8.3):

un(t) = e−ζnωn t
[
βg

n coshωnDt − γg
n sinhωnDt

]
(14.10.10)

where

βg
n = Bg

r ψr + Bg
nψn (14.10.11)

γg
n = Bg

r ψr − Bg
nψn (14.10.12)

As in Section 14.8, we prefer to express Eq. (14.10.10) in terms of the unit impulse
response function hn(t) for deformation of an overdamped SDF system with undamped
natural frequency ωn defined by Eq. (14.10.3) and damping ratio ζn by Eq. (14.10.4),
respectively (see Appendix 14.6):

hn(t) = − 1

ωnD
e−ζnωn t sinhωnDt (14.10.13)

and its first derivative

ḣn(t) = −e−ζnωn t coshωnD − ζnωnhn(t) (14.10.14)

which can be rewritten as

−e−ζnωn t coshωnD = ḣn(t)+ ζnωnhn(t) (14.10.15)

The hyperbolic functions multiplying the vectors βg
n and γg

n in Eq. (14.10.10) are now
replaced by the corresponding expressions obtained from Eqs. (14.10.13) and (14.10.15),
in terms of hn(t) and ḣn(t) to obtain the vector of unit impulse response for displacements
un(t):

hn(t) = −
[
αg

nωnhn(t)+ βg
n ḣn(t)

]
(14.10.16)
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where

αg
n = ζnβ

g
n −

√
ζ 2

n − 1 γg
n (14.10.17)

The vectors βg
n and γg

n are given by Eqs. (14.10.11) and (14.10.12), wherein Bg
n are defined

by Eq. (14.8.1). Observe that the form of Eq. (14.10.16) is identical to Eq. (14.8.7), but
Eq. (14.10.17) is a modified version of Eq. (14.8.8).

Example 14.13

Determine the response of the two-story shear frame of Fig. E14.11a with c = 2
√

km due to
unit impulse ground acceleration, üg(t) = δ(t).
Solution Bg

n are determined by substituting m, c, and ψn from Example 14.11 in Eq.
(14.8.1):

Bg
1 =

−ψT
1 mι

2λ1ψ
T
1 mψ1 +ψT

1 cψ1
=
√

m

k
(0.2232+ 0.7311i) (a.1)

Bg
2 =

−ψT
2 mι

2λ2ψ
T
2 mψ2 +ψT

2 cψ2
= −0.5408

√
m

k
(a.2)

Bg
3 =

−ψT
3 mι

2λ3ψ
T
3 mψ3 +ψT

3 cψ3
= 0.0945

√
m

k
(a.3)

Using the Bg
n in Eq. (a) and ψn in Eq. ( j) of Example 14.11, βg

1 and γg
1 are determined from

Eq. (14.8.2), and βg
2 and γg

2 from Eqs. (14.10.11) and (14.10.12) as follows:

β
g
1 = Re

(
2Bg

1ψ1
) = {−0.0539

0.4463

}√m

k
γ

g
1 = Im

(
2Bg

1ψ1
) = { 1.2828

1.4621

}√m

k
(b.1)

β
g
2 = Bg

2ψ2 + Bg
3ψ3 =

{
0.0539
−0.4463

}√m

k
γ

g
2 = Bg

2ψ2 − Bg
3ψ3 =

{−0.1319
0.6353

}√m

k
(b.2)

The response of the system is given by

u(t) = u1(t)+ u2(t) (c)

where u1(t) is determined by substituting βg
1 and γg

1 from Eq. (b.1) into the n = 1 term on
the right side of Eq. (14.8.3):

u1(t) = e−ζ1 ω1t
[{−0.0539

0.4463

}
cosω1Dt −

{
1.2828
1.4621

}
sinω1Dt

]√m

k
(d)

and u2(t) is determined by substituting βg
2 and γg

2 from Eq. (b.2) into Eq. (14.10.10):

u2(t) = e−ζ2 ω2t
[{

0.0539
−0.4463

}
coshω2Dt −

{−0.1319
0.6353

}
sinhω2Dt

]√m

k
(e)

Substituting Eqs. (d) and (e) into Eq. (c) gives the total response u(t). The individual terms
[Eqs. (d) and (e)] and the total response are plotted in Fig. E14.13; note that u2(t) is plotted
at a scale different from that for u1(t).
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Figure E14.13 Floor displacements of a nonclassically damped system due to unit impulse ground
acceleration: modal contributions u1n(t) and u2n(t), and total responses u1(t) and u2(t).

The response can also be expressed in terms of the unit impulse response functions
hn(t). For this purpose, Eqs. (14.8.8) and (14.10.17) give

α
g
1 = ζ1β

g
1 −

√
1− ζ 2

1 γ
g
1 =

{−1.2836
−1.4312

}√m

k
(f.1)

α
g
2 = ζ2β

g
2 −

√
ζ 2

2 − 1 γg
2 =

{
0.1386
−0.8838

}√m

k
(f.2)

The response of the system can be determined from

u(t) = u1(t)+ u2(t) (g)

The first term u1(t) is determined by substituting αg
1 from Eq. (f.1) and βg

1 from Eq. (b.1)
into the n = 1 term on the right side of Eq. (14.8.7):

u1(t) =
{

1.0231
1.1407

}
h1(t)+

{
0.0539
−0.4463

}√m

k
ḣ1(t) (h)

where h1(t) and ḣ1(t) are given by Eqs. (14.8.4) and (14.8.5), respectively. The second term
u2(t) in Eq. (g) is determined by substituting αg

2 from Eq. (f.2) and βg
2 from Eq. (b.2) into

Eq. (14.10.16):

u2(t) =
{−0.1739

1.1088

}
h2(t)+

{−0.0539
0.4463

}√m

k
ḣ2(t) (i)

where h2(t) and ḣ2(t) are given by Eqs. (14.10.13) and (14.10.14), respectively.
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The vectors βg
n and γg

n satisfy Eq. (14.8.9):

β
g
1 + β

g
2 =

√
m

k

[{−0.0539
0.4463

}
+
{

0.0539
−0.4463

}]
=
{

0
0

}
(j)

N∑
n=1

ωn
[
α

g
n − 2ζnβ

g
n
] = ω1

√
m

k

[{−1.2836
−1.4312

}
− 2ζ1

{−0.0539
0.4463

}]

+ ω2

√
m

k

[{
0.1386
−0.8838

}
− 2ζ2

{
0.0539
−0.4463

}]
=
{−1
−1

}
(k)

Equation (k) can be verified by substituting for ω1 and ω2 from Example 14.11.

14.10.3 Earthquake Response

For a system subjected to arbitrary ground acceleration üg(t) the response associated
with a linear combination of two real-valued eigenvectors ψn and ψr , and the associated
real-valued eigenvalues λn and λr is still described by the nth term in the summation of
Eq. (14.9.2). This becomes apparent if h(t) in Eq. (14.9.1) is replaced by hn(t) defined
in Eq. (14.10.16). Given by Eqs. (14.9.3) and (14.9.4), Dn(t) and Ḋn(t) represent the
deformation and relative velocity response of an overdamped SDF system with undamped
natural frequency ωn defined by Eq. (14.10.3) and damping ratio by Eq. (14.10.4), and
the vectors αg

n and βg
n are given by Eqs. (14.10.17) and (14.10.11), respectively. Note that

the SDF system responses Dn(t) and Ḋn(t) are usually computed by one of the numerical
methods presented in Chapter 5, not by evaluating the convolution integrals of Eqs. (14.9.3)
and (14.9.4).

Example 14.14

Derive equations for the floor displacements of the shear frame of Fig. E14.11a with
c = 2

√
km subjected to ground acceleration üg(t).

Solution Substituting the αg
n and βg

n determined in Example 14.13 into Eq. (14.9.2) pro-
vides equations for the floor displacements:

u(t) =
{

1.0231
1.1407

}
D1(t)+

{
0.0539
−0.4463

}√m

k
Ḋ1(t)+

{−0.1739
1.1088

}
D2(t)+

{−0.0539
0.4463

}√m

k
Ḋ2(t)

where Dn(t) and Ḋn(t) represent the deformation and relative velocity response of the nth-
mode SDF system; see Eqs. (14.9.3) and (14.9.4). Recall that in these equations, h1(t) and
ḣ1(t) are given by Eq. (14.8.4) and (14.8.5), respectively, whereas h2(t) and ḣ2(t) are given
by Eq. (14.10.13) and (14.10.14), respectively.

14.11 RESPONSE SPECTRUM ANALYSIS

In Part B of Chapter 13, we presented the RSA procedure for classically damped systems
to estimate their peak response directly from the earthquake response (or design) spectrum.
Researchers have developed RSA procedures also for nonclassically damped systems. The
rationale for not including them here is as follows: These procedures require two response
spectra: (1) pseudo-acceleration (or pseudo-velocity or deformation) response spectrum,
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which was needed for RSA procedures presented in Chapter 13; and (2) relative veloc-
ity response spectrum. Because the latter is not readily available or specified as part of
structural design criteria, it has often been approximated by the pseudo-velocity response
spectrum. As mentioned in Section 6.12, this approximation is valid only over a limited
range of vibration periods and damping ratios.

14.12 SUMMARY

The preceding analysis of the earthquake response of an N-DOF nonclassically damped
system with known mass, stiffness, and damping matrices m, k, and c to ground accelera-
tion üg(t) is summarized as a sequence of steps:

1. Compute the eigenvalues λn and the associated eigenvectorsψn by solving the eigen-
value problem [Eq. (A14.2.8)].

2. Determine the damped and pseudo-undamped natural frequencies ωnD and ωn , and
the modal damping ratios ζn , from Eqs. (14.5.5) and (14.5.6) for a complex-conjugate
pair of eigenvalues, λn and λ̄n , or from Eqs. (14.10.3) through (14.10.5) for a pair of
real-valued eigenvalues, λn and λr .

3. Determine the complex-valued constants Bg
n [Eq. (14.8.1)].

4. Determine βg
n ,γ

g
n , and αg

n as follows: For a complex-conjugate pair of eigenvalues
λn and λ̄n , compute the complex-valued product 2Bg

nψn , then determine βg
n and γg

n

from Eq. (14.8.2) and αg
n from Eq. (14.8.8). For a pair of real eigenvalues λn

and λr , compute βg
n ,γ

g
n , and αg

n from Eqs. (14.10.11), (14.10.12), and (14.10.17),
respectively.

5. Compute the deformation response Dn(t) and relative velocity response Ḋn(t) of
the nth-mode SDF system with ωn and ζn determined in step 2 to prescribed ground
acceleration üg(t) by one of the numerical time-stepping methods (Chapter 5).

6. Compute the displacements u(t) from Eq. (14.9.2) using the αg
n and βg

n appropriate
for each term in the summation; see step 4.

The analysis of nonclassically damped systems differs from that of classically damped
systems (Section 13.2.4) in two principal ways:

1. The eigenvalue problem to be solved [Eq. (A14.2.8)] is now of order 2N.

2. In addition to the deformation Dn(t) of the nth-mode SDF system, its relative ve-
locity Ḋn(t) is now required. However, in a step-by-step numerical evaluation of the
response of an SDF system (Chapter 5), Ḋn(t) is normally computed in the process
of obtaining Dn(t).
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APPENDIX 14: DERIVATIONS

A14.1 Complex-Valued Constants: Free Vibration
of Classically Damped Systems

The displacements given by Eq. (14.2.3) are repeated herein for convenience:

u(t) =
N∑

r=1

(
Brφ r eλr t + B̄rφr eλ̄r t

)
= 2

N∑
r=1

Re
(

Brφr eλr t
)

(A14.1.1)

These displacements can be differentiated to obtain the velocity response:

u̇(t) =
N∑

r=1

(
λr Brφr eλr t + λ̄r B̄rφr eλ̄r t

)
(A14.1.2)

Setting t = 0 in Eqs. (A14.1.1) and (A14.1.2) gives

u(0) =
N∑

r=1

(
Br + B̄r

)
φr u̇(0) =

N∑
r=1

(
λr Br + λ̄r B̄r

)
φr (A14.1.3)

With the initial displacements u(0) and initial velocities u̇(0) known, each of these two equations
represents N algebraic equations in the 2N unknowns Re(Br ) and Im(Br ). Premultiplying both
sides of Eqs. (A14.1.3a) and (A14.1.3b) by φT

n m and utilizing the orthogonality property of modes
[Eq. (10.4.1)] gives

φT
n mu(0) = (Bn + B̄n

)
φT

n mφn φT
n mu̇(0) = (λn Bn + λ̄n B̄n

)
φT

n mφn (A14.1.4)

which may be written as

Bn + B̄n = qn(0) λn Bn + λ̄n B̄n = q̇n(0) (A14.1.5)

where Eq. (10.8.5), which defines the initial displacement qn(0) and initial velocity q̇n(0) of the
modal coordinate qn(t), has been utilized. The two equations (A14.1.5) are solved to determine the
real and imaginary parts of Bn :

Re(Bn) = qn(0)

2
Im(Bn) = − q̇n(0)+ ζnωnqn(0)

2ωnD
(A14.1.6)

leading to Eq. (14.2.4) for the complex-valued constant Bn .
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A14.2 First-Order Equations of Motion
and Eigenvalue Problem

Equation (14.1) is written in augmented form:

mu̇−mu̇ = 0 (A14.2.1)

mü+ cu̇+ ku = −mιüg(t) (A14.2.2)

The preceding two sets of equations can be combined to obtain a state-space formulation of the
equations of motion:

a ˙̂u+ bû = e(t) (A14.2.3)

in which û and e(t) are vectors of 2N elements defined as

û =
{

u̇
u

}
e(t) =

{
0

−mιüg(t)

}
(A14.2.4)

and a and b are square matrices of order 2N given by

a =
[

0 m
m c

]
b =

[−m 0
0 k

]
(A14.2.5)

Thus, the system of N second-order differential equations [Eq. (14.1)] has been reduced to a system
of 2N first-order differential equations (A14.2.3).

The solution of the homogeneous form of Eq. (A14.2.3) is of the form

û(t) = κeλt (A14.2.6)

where λ is an eigenvalue and κ is the associated eigenvector of 2N elements. The lower N elements of
κ represent the desired modal displacementsψ and the upper N elements represent the corresponding
modal velocities λψ; i.e.,

κ =
{
λψ
ψ

}
(A14.2.7)

Substituting Eq. (A14.2.6) into the homogeneous form of Eq. (A14.2.3), i.e., the equation governing
free vibration of nonclassically damped systems, leads to the eigenvalue problem:

λaκ+ bκ = 0 (A14.2.8)

The 2N roots of λ are either real valued and negative or they occur in complex-conjugate pairs
with negative (or zero) real parts; the latter fact can be demonstrated as follows: If λn and κn are an
eigenvalue–eigenvector pair, they satisfy

(λna+ b)κn = 0 (A14.2.9)

Taking the conjugate of both sides and noting that a and b are real valued, i.e., ā = a and b̄ = b,
gives (

λ̄na+ b
)
κ̄n = 0 (A14.2.10)

which implies that λ̄n and κ̄n also satisfy Eq. (A14.2.8), and hence represent an eigenvalue–eigenvector
pair.

†Other versions of state-space analysis, which are mathematically equivalent to the ones presented here, are
popular in mathematics, physics, electrical engineering, and control.
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A14.3 Orthogonality of Modes

Since a and b in Eq. (A14.2.3) are real-valued symmetric matrices, the eigenvectors κn and κr

corresponding to any pair of distinct eigenvalues λn and λr can be shown to satisfy the orthogonality
relations

κT
n aκr = 0 κT

n bκr = 0 (A14.3.1)

These relations are also valid for a complex-conjugate pair κn and κ̄n since the associated eigenval-
ues λn and λ̄n are different. Substituting Eqs. (A14.2.5) and (A14.2.7) into Eq. (A14.3.1) leads to the
orthogonality relations expressed by Eqs. (14.6.1) and (14.6.2).

Special Case. For a classically damped system ψn = ψ̄n = φn , ωn = ωo
n ,

λn = −ζnω
o
n + iωo

n

√
1− ζ 2 (A14.3.2)

and the eigenvalue problem is

kφn =
(
ωo

n

)2
mφn (A14.3.3)

Specializing Eq. (14.5.3) for the nth eigenvalue and eigenvector pair, and replacing ψn by φn gives

λ2
nmφn + λncφn + kφn = 0 (A14.3.4)

Substituting Eq. (A14.3.3) for the last term on the left side of Eq. (A14.3.4), combining it with the
first term, and making use of Eq. (A14.3.2) leads to the relation

cφr = 2ζrω
o
r mφr (A14.3.5)

where the subscript n has been replaced by r. Premultiplying both sides of Eq. (A14.3.5) by φT
n and

recognizing that ψn = φn , we obtain

ψT
n cψr = φT

n cφr = 2ζrω
o
rφ

T
n mφr (A14.3.6)

On making use of Eq. (A14.3.6), the first orthogonality condition given by Eq. (14.6.1) reduces to

φT
n mφr = 0 (A14.3.7)

Furthermore, substituting Eq. (A14.3.7) into Eq. (14.6.2) leads to the second orthogonality condition:

φT
n kφr = 0 (A14.3.8)

Equations (A14.3.7) and (A14.3.8) are the familiar orthogonality relationships for classically damped
systems, introduced in Section 10.4.

A14.4 Complex-Valued Constants: Free Vibration
of Nonclassically Damped Systems

The vector û can be expanded in terms of the 2N eigenvectors

û(t) =
2N∑
n=1

κnq̂n(t) = κq̂(t) (A14.4.1)†

†ˆ appears in q̂n and q̂ to distinguish them from the modal coordinates for classically damped systems,
introduced in Section 10.7.
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where κ = [κ1 κ2 · · · κ2N ], q̂n are scalar multipliers, and q̂ =< q̂1 q̂2 · · · q̂2N >T . The q̂n

are to be determined for prescribed initial conditions. Substituting Eq. (A14.4.1) in the homogeneous
form of Eq. (A14.2.3) gives

aκ ˆ̇q+ bκq̂ = 0

Premultiplying each term by κT gives

(κT aκ) ˆ̇q+ (κT bκ)q̂ = 0

Because of the orthogonality relations of Eq. (14.3.1), the two coefficient matrices are diagonal
matrices, resulting in a set of 2N uncoupled equations governing q̂n(t):

Ann ˆ̇qn + Bnnq̂n = 0 (A14.4.2)

where

Ann = κT
n aκn Bnn = κT

n bκn (A14.4.3)

Premultiplying Eq. (A14.2.9) by κT
n gives Bnn = −λn Ann , which is substituted in Eq. (A14.4.2) to

obtain

ˆ̇qn − λnq̂n = 0 (A14.4.4)

which is the equation governing q̂n(t) associated with the eigenvector κn (and eigenvalue λn). A
companion equation exists for the complex-conjugate eigenvector κ̄n . It can be demonstrated that

Ānn = κ̄T
n aκ̄n B̄nn = κ̄T

n bκ̄n (A14.4.5)

and B̄nn = −λ̄n Ānn . From these relationships it can be shown that the companion equation is

ˆ̇qn − λ̄nq̂n = 0 (A14.4.6)

The general solutions of Eqs. (A14.4.4) and (A14.4.6) are

q̂n(t) = Bneλn t q̂n(t) = B̄neλ̄n t (A14.4.7)

respectively, where the constants Bn and B̄n are to be determined from the prescribed initial displace-
ments and velocities that initiate free vibration. Thus the response associated with the eigenvector
pair κn and κ̄n is given by the two corresponding terms in the summation of Eq. (A14.4.1):

ûn(t) = Bnκneλn t + B̄nκ̄neλ̄n t (A14.4.8)

where the lower N equations are the same as Eq. (14.7.1), which becomes apparent after substituting
Eqs. (A14.2.4a) and (A14.2.7). Combining such response contributions for the N pairs of eigenvec-
tors gives the complete solution of the homogeneous form of Eq. (A14.2.3):

û(t) =
N∑

r=1

Brκr eλr t +
N∑

r=1

B̄r κ̄r eλ̄r t (A14.4.9)

The complex-valued constants Bn are to be determined from the initial conditions

û(0) =
{

u̇ (0)
u(0)

}
(A14.4.10)
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where u(0) and u̇(0) are the vectors of initial displacements and velocities, respectively. Specializing
Eq. (A14.4.9) for t = 0 gives

û(0) =
N∑

r=1

Brκr +
N∑

r=1

B̄r κ̄r (A14.4.11)

Premultiplying both sides of Eq. (A14.4.11) by κT
n a gives

κT
n aû(0) =

N∑
r=1

Brκ
T
n aκr +

N∑
r=1

B̄rκ
T
n aκ̄r (A14.4.12)

Because of the orthogonality condition of Eq. (A14.3.1a), all terms in both summations vanish except
the r = n term in the first summation; thus

κT
n aû(0) = (κT

n aκn
)

Bn

The matrix products on both sides of this equation are scalars. Therefore,

Bn = κ
T
n aû(0)

κT
n aκn

(A14.4.13)

which, on substituting Eqs. (A14.2.5), (A14.2.7), and (A14.4.10), reduces to Eq. (14.7.4).

Special case: Classically damped systems. For classically damped systems, ψn =
φn, ωn = ωo

n , λn is given by Eq. (A14.3.2), Eq. (A14.3.5) is premultiplied by φT
r , and the subscript

r is replaced by n to obtain

φT
n cφn = 2ζnω

o
nφ

T
n mφn (A14.4.14)

and the following generalized version of Eq. (A14.3.6) is valid:

φT
n c u(0) = 2ζnω

o
nφ

T
n m u(0) (A14.4.15)

On making use of these results and of Eqs. (A14.3.2) and (A14.3.6), Eq. (14.7.4) reduces to
Eq. (14.2.4).

A14.5 Derivation of Eq. (14.8.9)

Differentiating Eq. (14.8.3) gives the velocity vector u̇(t) that is specialized for t = 0 to obtain

u̇(0) =
N∑

n=1

−ωn

[
ζnβ

g
n +

√
1− ζ 2

n γ
g
n

]
(A14.5.1)

Expressing the second term on the right side in terms of αg
n and βg

n by using Eq. (14.8.8) yields

u̇(0) =
N∑

n=1

ωn
[
αn − 2ζnβ

g
n
]

(A14.5.2)

Imposing the initial condition u̇(0) = −ι in this equation leads to Eq. (14.8.9b).
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A14.6 Overdamped SDF System

The characteristic equation in Derivation 2.2 (Chapter 2) is rewritten for damping ratio ζ > 1 as

λ1,2 = −ζωn ± ωD (A14.6.1)

where

ωD = ωn

√
ζ 2 − 1 (A14.6.2)

The solution of Eq. (2.2.1b) is

u(t) = a1eλ1t + a2eλ2t (A14.6.3)

which after substituting Eq. (A14.6.1) becomes

u(t) = e−ζωn t
(
a1eωDt + a2e−ωDt

)
(A14.6.4)

The constants of integration a1 and a2 are determined by imposing the requirement that u(t) must
satisfy the given initial displacement and initial velocity at t = 0.

A unit impulse ground acceleration üg(t) = δ(t) applied at t = 0 imparts to the system the ini-
tial velocity u̇(0) = −1 and initial displacement u(0) = 0. For these initial conditions, the constants
are

a1 = − 1

2ωD
a2 = 1

2ωD
(A14.6.5)

Substituting Eq. (A14.6.5) in Eq. (A14.6.4) leads to the resulting free vibration response:

u(t) = − 1

2ωD
e−ζωn t

(
eωDt − e−ωDt

)
(A14.6.6)

The exponential functions within the parentheses are related to hyperbolic functions as follows:

eωDt = coshωDt + sinhωDt e−ωDt = coshωDt − sinhωDt (A14.6.7)

Substituting these relations into Eq. (A14.6.6) leads to

h(t) = − 1

ωD
e−ζωn t sinhωDt (A14.6.8)

where h(t) denotes the unit impulse response of an overdamped SDF system.

Interpreting ωn as given by Eq. (14.10.3) and changing the notation from ωD to ωnD
[Eq. (14.10.2)], and from ζ to ζn [Eq. (14.10.4)], Eq. (A14.6.8) can be rewritten as Eq. (14.10.13).

A14.7 Derivation of Eq. (14.10.7)

Substituting Eq. (14.10.1) into Eq. (14.10.6) leads to

un(t) = e−ζnωn t
(

BnψneωnDt + Brψr e−ωnDt
)

(A14.7.1)

The exponential functions within the parentheses are related to hyperbolic functions as follows:

eωnDt = coshωnDt + sinhωnDt e−ωnDt = coshωnDt − sinhωnDt (A14.7.2)
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Substituting these relations into Eq. (A14.7.1) and collecting the terms containing coshωnDt and
those where sinhωnDt appears gives

un(t) = e−ζnωn t [(Brψr + Bnψn) coshωnDt − (Brψr − Bnψn) sinhωnDt] (A14.7.3)

With βn and γn defined by Eqs. (14.10.8) and (14.10.9), Eq. (A14.7.3) is equivalent to Eq. (14.10.7).

P R O B L E M S

14.1 Determine the natural frequencies, natural modes, and modal damping ratios for the two-
story shear frame of Figure P9.5 with damping. The Rayleigh damping matrix provides a
damping ratio of 5% in both modes. Use the theory for nonclassically damped systems,
developed in Section 14.5, to solve this problem for a classically damped system. Verify that
the eigenvectors are orthogonal. Verify that the results match the solution of Problem 10.6
by classical modal analysis.

14.2 Determine the natural frequencies, natural modes, and modal damping ratios for the two-
story frame of Figure P9.5, with a damper only in the first story with damping coefficient
c1 = 0.4

√
km, where k = 24E I

/
h3 is the story stiffness; express frequencies in terms of m

and k. Show that the natural modes satisfy the orthogonality properties.

14.3 Determine the free vibration response of the two-story shear frame of Problem 14.1, a clas-
sically damped system, due to initial displacements of Figure P10.8a. Use the theory for
nonclassically damped systems developed in Section 14.7, to solve the problem. Verify that
the results match the solution of Problem 10.9 by classical modal analysis.

14.4 Determine the free vibration response of the two-story shear frame of Problem 14.2 due to
initial displacements of Fig. P10.8a.

14.5 Determine the response of the two-story shear frame of the system of Problem 14.1, a classi-
cally damped system, due to unit impulse ground acceleration, üg (t) = δ (t). Use the theory
for nonclassically damped systems developed in Section 14.8, to solve the problem. Com-
pare the result with the solution given by Eqs. (14.3.6) and (14.3.7) for classically damped
systems.

14.6 Determine the free vibration response of the two-story shear frame of Problem 14.2 due to
unit impulse ground acceleration, üg (t) = δ (t). Verify that Eq. (14.8.9) is satisfied.

14.7 For the two-story shear frame of Problem 14.1, a classically damped system, excited by hor-
izontal ground motion üg (t), determine the floor displacement response in terms of Dn (t).
Use the theory for nonclassically damped systems developed in Section 14.9 to solve the
problem. Compare the result with that determined in Problem 13.1.

14.8 For the two-story shear frame of Problem 14.2 excited by horizontal ground motion üg (t),
determine the floor displacement response in terms of Dn (t) and Ḋn (t).

14.9 Determine the natural frequencies, natural modes, and modal damping ratios for the two-
story frame of Fig. P9.5, with dampers c1 = 0.6

√
km in the first story and c2 = 1.2

√
km in

the second story, where k = 24E I
/

h3 is the story stiffness; express frequencies in terms of
m and k. Show that the natural modes satisfy the orthogonality properties.

14.10 Determine the free vibration response of the two-story shear frame of Problem 14.9 due to
initial displacements of Fig. P10.8a.
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14.11 Determine the free vibration response of the two-story shear frame of Problem 14.9 due to
unit impulse ground acceleration, üg (t) = δ (t). Verify that Eq. (14.8.9) is satisfied.

14.12 For the two-story shear frame of Problem 14.9 excited by horizontal ground motion üg (t),
determine the floor displacement response in terms of Dn (t) and Ḋn (t)

14.13 Consider a one-story building with mass m, lateral stiffness k, and damping coefficient c
(Fig. 20.2.1a). On a fixed base, this SDF system has the natural frequency ω f , natural period
Tf = 0.4 s, and damping ratio ζ f = 2%; the subscript f is chosen instead of n to emphasize
that these are properties of the structure on a fixed base. As shown in Fig. 20.1.1b. this one-
story building is mounted on a base slab of mass mb = 2m

/
3, which in turn is supported on

a base isolation system with lateral stiffness kb and linear viscous damping cb. The isolation
system is characterized by two parameters:

Tb = 2π ÷
√

kb

m + mb
ζb = cb

2 (m + mb) ωb

which are given: Tb = 2.0 s, ζb = 10%.
Determine the response of this nonclassically damped system to the El Centro ground motion
by three methods:

1. Solving the coupled equations of motion.

2. Using the theory developed in Sections 14.5 to 14.9. Verify that these results agree with
those from Method 1.

3. Modal analysis of the system approximated as classically damped by neglecting the off-
diagonal terms in C, the damping matrix in modal coordinates [see Eq. (10.9.5)].
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15

Reduction of Degrees of Freedom

PREVIEW

Although our objective in this book is the analysis of structures for dynamic excitation,
we recognize that in practice a dynamic analysis is usually preceded by static analysis
for dead and live loads. The structural idealization for the static analysis is dictated by the
complexity of the structure, and several hundred to a few thousand DOFs may be necessary
for accurate evaluation of the internal element forces and stresses in a complex structure.

The same refined idealization may be used for dynamic analysis of the structure,
but this may be unnecessarily refined and drastically fewer DOFs could suffice. Such is
the case because the dynamic response of many structures can be represented well by the
first few natural vibration modes, and these modes can be determined accurately from a
structural idealization with drastically fewer DOFs than required for static analysis. Thus
we are interested in reducing the number of DOFs as much as reasonably possible before
proceeding with computation of natural frequencies and modes, which is perhaps the most
demanding phase of dynamic analysis.

Presented in this chapter are two approaches to reducing the number of DOFs: mass
lumping in selected DOFs and the Rayleigh–Ritz method. Before presenting these proce-
dures we mention how kinematic constraints based on structural properties can be used to
reduce the number of DOFs in the structural idealization for static analysis; this idealiza-
tion is the starting point for dynamic analysis.

657
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15.1 KINEMATIC CONSTRAINTS

The configuration and properties of a structure may suggest kinematic constraints that
express the displacements of many DOFs in terms of a smaller set of displacements. For
example, the floor diaphragms (or slabs) of a multistory building, although flexible in the
vertical direction, are usually very stiff in their own plane and can be assumed as rigid
without introducing significant error. With this assumption the horizontal displacements of
all the joints at one floor level are related to the three rigid-body DOFs of the diaphragm in
its own plane: the two horizontal components of displacement and rotation about a vertical
axis.

As a result of this kinematic constraint, the number of DOFs that would be consid-
ered in a static analysis can be reduced almost by half. Consider, for example, the 20-story
building shown in Fig. 15.1.1, consisting of eight frames in the y-direction and four in the
x-direction. With 640 joints and six DOFs (three translations and three rotations) per joint,
the system has 3840 DOFs. Assuming the floor diaphragms to be rigid in their own planes,
the system has only 1980 DOFs. These include the vertical displacement and two rotations
(in xz and yz planes) of each joint and three rigid-body DOFs per floor.

x

yz

Figure 15.1.1 Twenty-story building.

Another kinematic constraint sometimes assumed in building analysis is that the
columns are axially rigid. This assumption should be used with discretion because it may
be reasonable only in special circumstances: for example, buildings that are not slender.
If justifiable, the assumption leads to further reduction in the number of DOFs; for static
analysis of the multistory building of Fig. 15.1.1 this number reduces to 1340.

Once the structural idealization has been established for static analysis after con-
sidering kinematic constraints appropriate to the structure, the number of DOFs can be
reduced for dynamic analysis by the procedures presented next.
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15.2 MASS LUMPING IN SELECTED DOFs

As mentioned in Section 9.2.4, the mass is distributed throughout an actual structure, but
it can be idealized as lumped at the nodes of the discretized structure with the mass in
rotational DOFs usually set to zero. Procedures were then described to determine the
lumped masses. The DOFs in the structural idealization established for static analysis are
subdivided into two parts: ut , which have mass, and the remaining u0, which have zero
mass and no external dynamic force, but are necessary for accurate representation of the
stiffness properties of the structure. The DOFs u0 are related to ut by Eq. (9.3.3) and, as
indicated by Eq. (9.3.4), the equations of motion can be formulated in terms of only ut , the
dynamic DOFs. This is the static condensation method developed in Section 9.3 by which
the number of DOFs is reduced to only the dynamic DOFs.

The static condensation method is especially effective in earthquake analysis of
multistory buildings subjected to horizontal ground motion because of three special fea-
tures of this class of structures and excitations. First, the floor diaphragms (or floor slabs)
are usually assumed to be rigid in their own plane. Second, the effective earthquake forces
[Eq. (9.4.9)] associated with rotations and vertical displacements of the joints are zero.
Third, the inertial effects associated with these same DOFs are usually not significant in
the lower vibration modes that contribute dominantly to structural response. Assigning
zero mass to these DOFs leaves only the three rigid-body DOFs of each floor diaphragm
for dynamic analysis. For the 20-story building of Fig. 15.1.1, this method reduces the
number of degrees of freedom from 1980 to 60.

The reduction in actual computational effort may be much less significant, however,
than the reduction in the number of DOFs. This is because the efficiency of computation
permitted by the narrow banding of the stiffness matrix k in Eq. (9.2.12) is in part lost in
using the fully populated condensed stiffness matrix k̂t t in Eq. (9.3.4).

The relationship between u0 and ut , Eq. (9.3.3), although exact only if the u0 DOFs
have zero mass, can also be used if this condition is not satisfied. In such cases Eq. (9.3.3)
provides a basis to select displacement shapes for use in the Rayleigh–Ritz method
described in the next section.

15.3 RAYLEIGH–RITZ METHOD

A most general technique for reducing the number of DOFs and finding approximations to
the lower natural frequencies and modes is the Rayleigh–Ritz method. It is an extension
of Rayleigh’s method suggested by W. Ritz in 1909. Originally developed for systems
with distributed mass and elasticity (see Chapter 17), the method is presented next for
discretized systems.

15.3.1 Reduced Equations of Motion

The equations of motion for a system with N DOFs subjected to forces p(t) = sp(t) are

mü+ cu̇+ ku = sp(t) (15.3.1)
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In Rayleigh’s method we expressed the structural displacements as u(t) = z(t)ψ, where
ψ was an assumed shape vector; this reduced the system to one with a single degree of
freedom and led to an approximate value for the fundamental natural frequency. In the
Rayleigh–Ritz method, the displacements are expressed as a linear combination of several
shape vectors ψj :

u(t) =
J∑

j=1

zj (t)ψj = Ψz(t) (15.3.2)

where zj (t) are called the generalized coordinates, and the Ritz vectors ψj — j = 1, 2, . . . ,
J—must be linearly independent vectors satisfying the geometric boundary conditions.
They are selected appropriate for the system to be analyzed, as discussed in Section 15.4.
The vectors ψj make up the columns of the N × J matrix Ψ in Eq. (15.3.2) and z is the
vector of the J generalized coordinates.

Substituting the Ritz transformation of Eq. (15.3.2) in Eq. (15.3.1) gives

mΨz̈+ cΨż+ kΨz = sp(t)

Each term is premultiplied by ΨT to obtain

m̃z̈+ c̃ż+ k̃z = L̃p(t) (15.3.3)

where

m̃ = ΨT mΨ c̃ = ΨT cΨ k̃ = ΨT kΨ L̃ = ΨT s (15.3.4)

Equation (15.3.3) is a system of J differential equations in the J generalized coordinates
z(t).

We now make two observations: (1) Equation (15.3.3) in generalized coordinates is
similar to Eq. (12.4.4) in modal coordinates. (2) Equation (15.3.4) defining m̃, c̃, and k̃ is
of the same form as Eqs. (12.3.4) and (12.4.3) for M, C, and K. Obtained by transforming
Eq. (15.3.1), both sets of equations differ, however, in an important sense that the Ritz
vectors are used for transformation in one case, whereas the natural vibration modes in the
other. Because the Ritz vectors are generally different from the natural modes, m̃ and k̃ are
not diagonal matrices, whereas M and K are diagonal; see Eq. (12.3.6).

In summary, the Ritz transformation of Eq. (15.3.2) has made it possible to reduce
the original set of N equations (15.3.1) in the nodal displacements u to a smaller set of J
equations (15.3.3) in the generalized coordinates z.

15.3.2 “Best” Approximation

The reduced system of equations we have just derived represents a powerful procedure
because they are rooted in Rayleigh’s principle (Section 10.12). The approximations to
the natural modes of the system determined by solving the eigenvalue problem associ-
ated with Eq. (15.3.3) represent the “best” solution among all possible solutions that are
linear combinations of the selected Ritz vectors. In this section we use Rayleigh’s prin-
ciple to demonstrate that this solution is “best” in the sense that the associated natural
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frequencies of the system are closest to the true frequencies among all approximate values
possible with the selected Ritz vectors.

For this purpose, we first determine Rayleigh’s quotient, Eq. (10.12.1), for a vector
φ̃ defined as a linear combination of the Ritz vectors, to be consistent with Eq. (15.3.2):

φ̃ = Ψχ (15.3.5)

Substituting Eq. (15.3.5) in Eq. (10.12.1) gives

λ(χ) =
χT k̃χ

χT m̃z
≡ k̃(χ)

m̃(χ)
(15.3.6)

where k̃(χ) and m̃(χ) are scalar quantities; and k̃ and m̃ are the J × J matrices defined by
Eq. (15.3.4) with their typical elements given by

k̃i j = ψT
i kψj m̃i j = ψT

i mψj (15.3.7)

and λ has been replaced by λ(χ) to emphasize its dependence on χ. Eq. (15.3.6) can be
rewritten as

λ(χ) =
∑J

i=1

∑J
j=1
χ iχ j k̃i j∑J

i=1

∑J
j=1
χ iχ j m̃i j

(15.3.8)

Rayleigh’s quotient cannot be determined from Eq. (15.3.8) because the generalized coor-
dinates χn are unknown. However, from Section 10.12 it is known that

ω2
1 ≤ λ(χ) ≤ ω2

N (15.3.9)

where ω1 and ωN are the smallest and largest natural vibration frequencies.
To proceed further we invoke Rayleigh’s stationary condition, the property that

Rayleigh’s quotient is stationary in the neighborhood of the true modes (or true values of
χ); see Section 10.12 for detail. Because χ i are the only variables, the necessary condition
for λ(χ) to be stationary is

∂λ

∂χ i
= 0 i = 1, 2, . . . , J (15.3.10)

For the λ given by Eq. (15.3.8),

∂λ

∂χ i
= 2m̃

∑J
j=1
χ j k̃i j − 2k̃

∑J
j=1
χ j m̃i j

m̃2

This condition can be rewritten by substituting λ = k̃/m̃ from Eq. (15.3.8):
J∑

j=1

(k̃i j − λm̃i j )χ j = 0 i = 1, 2, . . . , J

Writing these J equations in matrix form gives the reduced eigenvalue problem

k̃χ = λm̃χ (15.3.11)

where k̃ and m̃ are the J × J matrices defined by Eqs. (15.3.4) and (15.3.7), and χ is the
vector of generalized coordinates that remain to be determined. Observe that Eq. (15.3.11),
derived using Rayleigh’s stationary condition, is also the eigenvalue problem associated
with Eq. (15.3.3). This proves the assertion at the beginning of this section.
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15.3.3 Approximate Frequencies and Modes

The solution to Eq. (15.3.11) by methods of Chapter 10 yields J eigenvalues ρn—n = 1,
2, . . . , J—and the corresponding eigenvectors

χn = 〈χ1n, χ2n, . . . , χ Jn〉T (15.3.12)

The eigenvalues provide

ω̃n =
√
λn n = 1, 2, . . . , J (15.3.13)

which are approximations to the natural frequencies ωn . The eigenvectors χn substituted
in Eq. (15.3.5) provide the vectors

φ̃n = Ψχn n = 1, 2, . . . , J (15.3.14)

which are approximations to the natural modes φn . The accuracy of these approximate
results is generally better for the lower modes than for higher modes. Therefore, more Ritz
vectors should be included than the number of modes desired.

In light of the properties of Rayleigh’s quotient (Section 10.12), the approximate
frequencies are never lower than the fundamental frequency and never higher than the
highest frequency, that is,

ω̃1 ≥ ω1 ω̃J ≤ ωN (15.3.15)

Furthermore, an approximate frequency approaches the exact value as the number J of
Ritz vectors is increased.

15.3.4 Orthogonality of Approximate Modes

In this section we demonstrate that the vectors φ̃n satisfy the orthogonality conditions

φ̃T
n kφ̃r = 0 φ̃T

n mφ̃r = 0 n �= r (15.3.16)

This result is by no means obvious because the vectors φ̃n are only approximations of the
natural modes φn , which are known to satisfy Eq. (10.4.1).

The eigenvectors χn of Eq. (15.3.11) obviously satisfy the orthogonality conditions:

χT
n k̃χr = 0 χT

n m̃χr = 0 n �= r (15.3.17)

Using this property and Eq. (15.3.14), the first orthogonality condition in Eq. (15.3.16) can
be proven as follows:

φ̃T
n kφ̃r = χT

n ΨT kΨχr = χT
n k̃χr = 0 n �= r

The second orthogonality condition in Eq. (15.3.16) can be demonstrated similarly.
If the eigenvectors χn were made to be mass orthonormal (Section 10.6), then

χT
n m̃χn = 1 χT

n k̃χn = ω̃2
n (15.3.18)

This implies, as can easily be demonstrated, that the approximate modes φ̃n are also mass
orthonormal:

φ̃T
n mφ̃n = 1 φ̃T

n kφ̃n = ω̃2
n (15.3.19)
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Because the approximate modes φ̃n satisfy the orthogonality conditions of Eq. (15.3.16),
they can be used in classical modal solution of Eq. (15.3.1). Therefore, in the rest of
this chapter we do not distinguish between the approximate values (ω̃n , φ̃n) and the exact
values (ωn , φn).

15.4 SELECTION OF RITZ VECTORS

The success of the Rayleigh–Ritz method depends on how well linear combinations of
Ritz vectors can approximate the natural modes of vibration. Therefore, it is important
that the Ritz vectors be selected judiciously. In this section we present two very different
approaches; the first is based on physical insight into shapes of natural modes, and the
second is a formal computational procedure.

15.4.1 Physical Insight into Natural Mode Shapes

If we can visualize the shapes of the first few natural vibration modes of a structure, the
Ritz vectors can be selected as approximations to these modes. In particular, the nth Ritz
vectorψn is selected to approximate the nth natural modeφn of the structure. For example,
based on what we have learned by solving several examples in Chapters 10 and 12, we can
visualize the first two natural modes in planar vibration of a multistory frame. Thus the two
Ritz vectors shown in Fig. 15.4.1 could be used in the Rayleigh–Ritz method to determine
approximations to the first two natural frequencies and modes of this structure.

This approach may not be possible for complex systems because it may be difficult
to visualize their mode shapes if we have never determined the natural modes of similar
structures. Such visualization can be especially difficult if the natural mode includes two-
or three-dimensional motions. A general procedure to select Ritz vectors that does not
depend on physical visualization of the natural modes is therefore developed in the next
section. This systematic procedure is suitable for implementation on a computer.
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Figure 15.4.1 Ritz vectors for a five-story frame.
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Example 15.1

By the Rayleigh–Ritz method, determine the first two natural frequencies and modes of a
uniform five-story shear frame with story stiffnesses k and lumped floor masses m. Use the
two Ritz vectors shown in Fig. 15.4.1.

Solution
1. Formulate the stiffness and mass matrices.

k = k

⎡
⎢⎢⎣

2 −1 0 0 0
−1 2 −1 0 0

0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 1

⎤
⎥⎥⎦ m = m

⎡
⎢⎢⎣

1
1

1
1

1

⎤
⎥⎥⎦

2. Compute k̃ and m̃.

Ψ = [ψ1 ψ2] =

⎡
⎢⎢⎣

0.2 −0.5
0.4 −1.0
0.6 −0.5
0.8 0
1.0 1.0

⎤
⎥⎥⎦

k̃ = ΨT kΨ = k
[

0.2 0.2
0.2 2.0

]
m̃ = ΨT mΨ = m

[
2.2 0.2
0.2 2.5

]
3. Solve the reduced eigenvalue problem, Eq. (15.3.11). Substituting m̃ and k̃,

Eq. (15.3.11) gives[
0.2 0.2
0.2 2.0

] [χ1
χ2

]
=
(
ρ

m

k

)[
2.2 0.2
0.2 2.5

] [χ1
χ2

]
(a)

The eigenvalue problem of Eq. (a) is solved to obtain

ρ1 = 0.08238(k/m) ρ2 = 0.8004(k/m)

χ1 =
{

1.329
−0.1360

}
χ2 =

{
0.03170
1.240

}
4. Determine the approximate frequencies and modes.

ω̃n = √ρn φ̃n = Ψχn

The results are presented in Table E15.1.

TABLE E15.1 COMPARISON OF APPROXIMATE AND EXACT
RESULTS

Approximate Exact

ω̃1 = 0.2870
√

k/m ω1 = 0.2846
√

k/m

ω̃2 = 0.8947
√

k/m ω2 = 0.8308
√

k/m

Φ̃ =

⎡
⎢⎢⎣

0.3338 −0.6135
0.6676 −1.227
0.8654 −0.6008
1.063 0.02536
1.193 1.271

⎤
⎥⎥⎦ Φ =

⎡
⎢⎢⎣

0.3338 −0.8954
0.6405 −1.173
0.8954 −0.6411
1.078 0.3338
1.173 1.078

⎤
⎥⎥⎦
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5. Compare with the exact results. The approximate values of the natural frequencies
and modes are compared in Table E15.1 with their exact values obtained in Section 12.8. The
errors in the approximate frequencies and modes are less than 1% in the first frequency, 8%
in the second frequency, and 4% in the first mode. However, the second mode is so much in
error that it may be useless.

15.4.2 Force-Dependent Ritz Vectors

It is desired to determine Ritz vectors appropriate for analysis of a structure subjected to
external dynamic forces:

p(t) = sp(t) (15.4.1)

The spatial distribution of forces defined by the vector s does not vary with time, and the
time dependence of all forces is given by the same scalar function p(t). Using the vector
s, a procedure is presented next to generate a sequence of mass-orthonormal Ritz vectors.

The first Ritz vector ψ1 is defined as the static displacements due to applied forces s.
It is determined by solving

ky1 = s (15.4.2)

The vector y1 is normalized to be mass orthonormal; thus

ψ1 = y1(
yT

1 my1
)1/2 (15.4.3)

The second Ritz vector ψ2 is determined from the vector y2 of static displacements
due to applied forces given by the inertia force distribution associated with the first Ritz
vector ψ1. The vector y2 is obtained by solving

ky2 = mψ1 (15.4.4)

The vector y2 will in general contain a component of the previous vector, ψ1. It can
therefore be expressed as

y2 = ψ̂2 + a12ψ1 (15.4.5)

where ψ̂2 is a “pure” vector, which is orthogonal to the previous vector, and a12ψ1 is
the component of the previous vector present in y2. The coefficient a12 is determined by
premultiplying both sides of Eq. (15.4.5) by ψT

1 m to obtain

ψT
1 my2 = ψT

1 mψ̂2 + a12
(
ψT

1 mψ1
)

Note that ψT
1 mψ̂2 = 0 by definition of ψ̂2, and ψT

1 mψ1 = 1 from Eq. (15.4.3). Thus

a12 = ψT
1 my2 (15.4.6)

The pure vector ψ̂2 is given by

ψ̂2 = y2 − a12ψ1 (15.4.7)
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where a12 is known from Eq. (15.4.6). Finally, the vector ψ̂2 is normalized so that it is
mass orthonormal to obtain the second Ritz vector:

ψ2 = ψ̂2(
ψ̂T

2 mψ̂2

)1/2 (15.4.8)

Generalizing this procedure, the nth Ritz vector ψn is determined from the vector
yn of the static displacements due to applied forces given by the inertia force distribution
associated with the (n − 1)th Ritz vector ψn−1. The vector yn is determined by solving

kyn = mψn−1 (15.4.9)

The vector yn will in general contain components of previous Ritz vectors ψj and can
therefore be expressed as

yn = ψ̂n +
n−1∑
j=1

ajnψj (15.4.10)

where ψ̂n is a “pure” vector, which is orthogonal to the previous vectors, and ajnψj are
the components of the previous vectors present in yn . The coefficient ain is determined by
premultiplying both sides of Eq. (15.4.10) by ψT

i m:

ψT
i myn = ψT

i mψ̂n +
n−1∑
j=1

ajn
(
ψT

i mψj
)

Observe that ψT
i mψ̂n = 0 by definition of ψ̂n , ψT

i mψj = 0 for i �= j and ψT
i mψi = 1

because all previous vectors are mass orthonormal. Thus

ain = ψT
i myn i = 1, 2, . . . , n − 1 (15.4.11)

The pure vector ψ̂n is given by

ψ̂n = yn −
n−1∑
i=1

ainψi (15.4.12)

where ain are known from Eq. (15.4.11). Finally, the vector ψ̂n is normalized so that it is
mass orthonormal to obtain the nth Ritz vector:

ψn = ψ̂n(
ψ̂T

n mψ̂n

)1/2 (15.4.13)

The sequence of vectors ψ1, ψ2, . . . , ψJ are mutually mass-orthonormal and hence they
satisfy the linear independence requirement of the Rayleigh–Ritz method.

While the Gram–Schmidt orthogonalization procedure of Eqs. (15.4.11) and
(15.4.12) should theoretically mass-orthogonalize the new vector with respect to all
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previous vectors, the actual computer implementation may be fraught with loss-of-
orthogonality problems due to numerical round-off errors. To overcome these difficul-
ties the Gram–Schmidt procedure is modified as follows. After computation of each ain

from Eq. (15.4.11), an improved vector ψ̂n is calculated from Eq. (15.4.12), which is used
instead of yn in Eq. (15.4.11) to calculate the next ain . Including this modification, the
procedure to generate the force-dependent Ritz vectors is summarized in Table 15.4.1 as it
might be implemented on the computer.

TABLE 15.4.1 GENERATION OF FORCE-DEPENDENT RITZ VECTORS

1. Determine the first vector, ψ1.

a. Determine y1 by solving: ky1 = s.
b. Normalize y1: ψ1 = y1 ÷ (yT

1 my1)
1/2.

2. Determine additional vectors, ψn , n = 2, 3, . . . , J .

a. Determine yn by solving: kyn = mψn−1.
b. Orthogonalize yn with respect to previous ψ1, ψ2, . . . , ψn−1 by repeating

the following steps for i = 1, 2, . . . , n − 1:

• ain = ψT
i myn .

• ψ̂n = yn − ainψi .

• yn = ψ̂n .

c. Normalize ψ̂n : ψn = ψ̂n ÷ (ψ̂T
n mψ̂n)

1/2.

The procedure to generate these vectors is reminiscent of the vector sequence x1,

k−1mx1, (k−1m)2x1, . . . generated in the inverse iteration procedure (Section 10.13). When
obtained without making the vectors orthogonal, this vector sequence converges to the low-
est natural mode. With Gram–Schmidt orthogonalization, as in Table 15.4.1, this sequence
provides the force-dependent Ritz vectors.

Example 15.2

The vibration properties of the uniform five-story shear frame of Example 15.1 with
m = 45,000 kg = 0.45 kN-s2/cm and k = 55 kN/cm are to be determined by the Rayleigh–
Ritz method using Ritz vectors determined from a force distribution s=〈m m m m m 〉T .
Using two force-dependent vectors, determine the first two natural frequencies and modes of
vibration.

Solution
1. The stiffness and mass matrices, k and m, are given in Example 15.1 with k =

55 kN/cm and m = 45,000 kg = 0.45 kN-s2/cm.

2. Determine the first Ritz vector, ψ1.

• Solve ky1 = m1 to obtain y1 = 〈 0.0409 0.0736 0.0982 0.1145 0.1227 〉T .

• Divide y1 by (yT
1 my1)

1/2 = 0.1422 to obtain the normalized vector:

ψ1 = 〈 0.2877 0.5179 0.6906 0.8057 0.8632 〉T
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3. Determine the second Ritz vector ψ2.

• Solve ky2 = mψ1 to obtain y2 = 〈0.02590 0.04944 0.06874 0.08240 0.08946〉T .

• Orthogonalize y2 with respect to ψ1:

a12 = ψT
1 my2 = 0.1009

ψ̂2 = y2 − 0.1009ψ1

= 10−2〈−0.3126 −0.2802 −0.09108 0.1135 0.2393〉T

• Divide ψ̂2 by (ψ̂T
2 mψ̂2)

1/2 = 0.3385× 10−2 to get the normalized vector:

ψ2 = 〈−0.9235 −0.8277 −0.2691 0.3352 0.7068〉T

4. Compute k̃ and m̃.

Ψ = [ψ1 ψ2]

k̃ = ΨT kΨ =
[

10.02 −3.096
−3.096 92.25

]
m̃ = ΨT mΨ =

[
1.0

1.0

]
5. Solve the reduced eigenvalue problem, Eq. (14.3.11).

ω̃1 = 3.147 ω̃2 = 9.611

z1 =
{

0.9993
0.03757

}
z2 =

{−0.03757
0.9993

}
6. Determine the natural modes. Substituting Ψn and zn in Eq. (14.3.14) gives

φ̃1 = 〈0.2528 0.4865 0.6800 0.8177 0.8892〉T

φ̃2 = 〈−0.9336 −0.8466 −0.2948 0.3047 0.6739〉T

7. Compare with the exact results. Table E14.1 gives the exact modes and frequencies;
the latter, after substituting for k and m, are:

ω1 = 3.147 ω2 = 9.185 rad/s

The approximate frequencies ω̃n and modes from this example, using force-dependent Ritz
vectors, are better than those determined in Example 15.1 from assumed vectors.

15.5 DYNAMIC ANALYSIS USING RITZ VECTORS

Now that we have developed procedures to generate Ritz vectors, we return to the solution
of Eq. (15.3.3), the reduced system of equations. With J Ritz vectors included, these J
equations are coupled because in general the matrices m̃, c̃, and k̃ in Eq. (15.3.3) are not
diagonal. However, if the force-dependent Ritz vectors of Section 15.4.2 are used, m̃ = I,
the identity matrix. The set of J coupled equations can be solved for the unknowns zj (t)—
j = 1, 2, . . . , J—by numerical time-stepping methods (Chapter 16). Then at each time
instant, the nodal displacement vector u is determined from Eq. (15.3.2) and the element
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forces by the methods of Section 9.10. This method is quite general in the sense that
it applies to classically damped systems as well as nonclassically damped systems. For
systems with Rayleigh damping, an alternative procedure is presented at the end of this
section.

The number of force-dependent Ritz vectors included in the dynamic analysis should
be sufficient to represent accurately the vector s that defines the spatial distribution of
forces. Because these Ritz vectors are mass-orthonormal, following Eqs. (12.8.2) to
(12.8.4), the vector s can be expanded as follows:

s =
N∑

n=1

�̃nmψn where �̃n = ψT
n s (15.5.1)

The J Ritz vectors included in dynamic analysis provide an approximation to s, and an
error vector can be defined as

eJ = s−
J∑

n=1

�̃nmψn (15.5.2)

Considering that a logical norm for the vector s is its length (sT s)1/2, an error norm eJ is
defined as

eJ = sT eJ

sT s
(15.5.3)

This error eJ will be zero when all N Ritz vectors are included (J = N ) because of
Eq. (15.5.1), and eJ will equal unity when no Ritz vectors are included (J = 0). Thus,
enough Ritz vectors should be included so that eJ is sufficiently small.

To illustrate these concepts, the error is computed for the five-story uniform shear
frame of Example 15.1. The results presented in Fig. 15.5.1 are for three different force dis-
tributions: sa = 〈0 0 0 0 1〉T , sb = 〈0 0 0 − 2 1〉T , and sc = 〈1 1 1 1 1〉T .
For a given force distribution, the error decreases as more Ritz vectors are included, and is
zero when all five Ritz vectors are included. For a fixed number of Ritz vectors, the error
is smallest for the force distribution sc, largest for sb, and has an intermediate value for sa .

Figure 15.5.1 also provides a comparison of the error eJ if J Ritz vectors are included
in the analysis versus the error eJ if J natural vibration modes of the system are considered.
The latter was calculated from formulas similar to Eqs. (15.5.2) and (15.5.3), with the Ritz
vectors ψn replaced by the natural modes φn . The error is smaller when Ritz vectors
are used because they are derived from the force distribution. While this result would
indicate that Ritz vectors are preferable to natural modes, the latter lead to uncoupled
modal equations, which have advantages: Solving uncoupled modal equations, each of
the same form as the governing equation for an SDF system, is easier than dealing with
the coupled equations in Ritz coordinates. Also, the modal equations permit estimation
of the peak value of the earthquake response of a structure by response spectrum analysis
(Chapter 13, Part B).

Do we need a static correction term (see Section 12.12) to supplement the response
obtained by dynamic analysis using a truncated set of Ritz vectors? This is not necessary
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Figure 15.5.1 Variation of error eJ with the number J of Ritz vectors and of natural
modes for three distributions of lateral forces.

because the static correction effect is contained in the first Ritz vector because it is obtained
from the static displacements due to the applied forces.

For dynamic analysis of systems with Rayleigh damping, classical modal analysis
(Section 12.9) of Eq. (15.3.1) may be preferable over solution of the coupled equations
(15.3.3) in Ritz coordinates, especially if the natural frequencies and modes of the system
are desired. The Rayleigh–Ritz concept is still useful, however, because these vibration
properties are obtained by solving Eq. (15.3.11), a smaller eigenvalue problem of order J ,
instead of the original eigenvalue problem of size N [Eq. (10.2.4)]. Because the resulting
approximate modes φ̃n are orthogonal with respect to the mass and stiffness matrices m and
k (Section 15.3.4), they can be used just like the exact modes in classical modal analysis
of the system.
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P R O B L E M S

15.1 By the Rayleigh–Ritz method, determine the first two natural vibration frequencies and modes
of the system in Fig. 15.4.1 using the following two Ritz vectors:

ψ1 = 〈 0.3 0.6 0.8 0.9 1 〉T

ψ2 = 〈−1 −1 −0.5 0.5 1 〉T

Compare these results with those obtained in Example 15.1 and the exact values presented
in Section 12.8 and comment on how the selected Ritz vectors influence the accuracy of the
results.

∗15.2 Resolve Example 15.2 using Ritz vectors determined from the force distribution s =
〈 0 0 0 0 1 〉T . Comment on the accuracy of the results and how the force distribution
used in generating Ritz vectors influences the accuracy.

15.3 By the Rayleigh–Ritz method, determine the first two natural vibration frequencies and modes
of the five-story shear frame in Fig. P15.3 using the following two Ritz vectors:

ψ1 = 〈 0.2 0.4 0.6 0.8 1 〉T

ψ2 = 〈−0.5 −1 −0.5 0 1 〉T

22,500 kg

45,000

45,000

45,000

45,000

kj, kN/cm

350

525

525

700

700

Figure P15.3

*Denotes that a computer is necessary to solve this problem.
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∗15.4 For the five-story shear frame in Fig. P15.3, determine the first two natural vibration frequen-
cies and modes using two force-dependent Ritz vectors determined from the force distribution
s = 〈 1 1 1 1 0.5 〉T . Comment on the relative accuracy of the results of Problems 15.3
and 15.4.

∗15.5 Solve Problem 15.4 using the force distribution s = 〈 0 0 0 0 1 〉T . Comment on the
relative accuracy of the solutions of Problems 15.4 and 15.5.

∗15.6 Solve Problem 15.4 using the force distribution s = 〈 0 0 0 −2 1 〉T . Comment on the
relative accuracy of the solutions of Problems 15.4, 15.5, and 15.6.

∗15.7 Compute the error eJ where J is the number of Ritz vectors included in dynamic analysis of
the five-story shear frame in Fig. P15.3 subjected to dynamic forces with three different force
distributions:

sa = 〈 0 0 0 0 1 〉T

sb = 〈 0 0 0 −2 1 〉T

sc = 〈 1 1 1 1 0.5 〉T

Plot eJ against J and comment on how, for a given s, this error depends on J , and how, for a
given J , this error depends on s.

∗15.8 (a) Compute the error eJ where J is the number of natural vibration modes of the system
included in dynamic analysis of the five-story shear frame in Fig. P15.3 subjected to dynamic
forces with three different force distributions:

sa = 〈 0 0 0 0 1 〉T

sb = 〈 0 0 0 −2 1 〉T

sc = 〈 1 1 1 1 0.5 〉T

(b) Plot eJ against J and comment on how, for a given s, this error depends on J , and how,
for a given J , this error depends on s.
(c) Compare the error eJ if J Ritz vectors are included in the analysis (Problem 15.7) versus
the error eJ if J natural vibration modes of the system are included. Discuss the pros and cons
of using the two sets of vectors in response history analysis and response spectrum analysis
of earthquake response.

∗15.9 (a) Determine the steady-state response of the five-story shear frame in Fig. P15.3 to ground
motion üg(t) = 0.2g sin 15t using two force-dependent Ritz vectors determined from the
force distribution s = 〈 1 1 1 1 0.5 〉T . Neglect damping.
(b) Compare these results with those from modal analysis, including (i) the first two natural
vibration modes, and (ii) all five modes.

*Denotes that a computer is necessary to solve this problem.
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Numerical Evaluation of
Dynamic Response

PREVIEW

So far, we have been concerned primarily with modal analysis of MDF systems with clas-
sical damping responding within their linearly elastic range; see Fig. 9.11.1. The un-
coupled modal equations could be solved in closed form if the excitation were a simple
function (Chapter 12), but the numerical methods of Chapter 5 were necessary for com-
plex excitations such as earthquake ground motion (Chapter 13). Uncoupling of modal
equations is not possible if the system has nonclassical damping or it responds into the
nonlinear range. For such systems, coupled equations of motion in nodal, modal, or Ritz
coordinates—Eqs. (9.8.2), (12.4.4), or (15.3.3), respectively—need to be solved by nu-
merical methods. A vast body of literature, including major chapters of several books,
exists about these methods. This chapter includes only a few methods, however, that build
upon the procedures presented in Chapter 5 for SDF systems. It provides the basic con-
cepts underlying these methods and the computational algorithms needed to implement the
methods.

16.1 TIME-STEPPING METHODS

The objective is to solve numerically the system of differential equations governing the
response of MDF systems:

mü+ cu̇+ fS(u) = p(t) or −mιüg(t) (16.1.1)

673
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with the initial conditions

u = u(0) and u̇ = u̇(0) (16.1.2)

at t = 0. The solution will provide the displacement vector u(t) as a function of
time.

As in Chapter 5, the time scale is divided into a series of time steps, usually of
constant duration �t . The excitation is given at discrete time instants ti = i �t ; at ti ,
denoted as time i , the excitation vector is pi ≡ p(ti ). The response will be determined at
the same time instants and is denoted by ui ≡ u(ti ), u̇i ≡ u̇(ti ), and üi ≡ ü(ti ).

Starting with the known response of the system at time i that satisfies Eq. (16.1.1) at
time i ,

müi + cu̇i + (fS)i = pi (16.1.3)

time-stepping methods enable us to step ahead to determine the response ui+1, u̇i+1, and
üi+1 of the system at time i + 1 that satisfies Eq. (16.1.1) at time i + 1:

müi+1 + cu̇i+1 + (fS)i+1 = pi+1 (16.1.4)

When applied successively with i = 0, 1, 2, 3, . . . , the time-stepping procedure gives
the desired response at all time instants i = 1, 2, 3, . . . . The known initial condi-
tions at time i = 0, Eq. (16.1.2), provide the information necessary to start the
procedure.

The numerical procedure requires three matrix equations to determine the three un-
known vectors ui+1, u̇i+1, and üi+1. Two of these equations are derived from either finite
difference equations for the velocity and acceleration vectors or from an assumption on
how the acceleration varies during a time step. The third is Eq. (16.1.1) at a selected time
instant. If it is the current time i , the method of integration is said to be an explicit method.
If the time i + 1 at the end of the time step is used, the method is known as an implicit
method; see Chapter 5.

As mentioned in Chapter 5, for a numerical procedure to be useful, it should (1) con-
verge to the exact solution as �t decreases, (2) be stable in the presence of numeri-
cal round-off errors, and (3) be accurate (i.e., the computational errors should be within
an acceptable limit). The stability criteria were shown not to be restrictive in the re-
sponse analysis of SDF systems because �t must be considerably smaller than the sta-
bility limit to ensure adequate accuracy in the numerical results. Stability of the numerical
method is a critical consideration, however, in the analysis of MDF systems, as we shall
see in this chapter. In particular, conditionally stable procedures can be used effectively
for analysis of linear response of large MDF systems, but unconditionally stable proce-
dures are generally necessary for nonlinear response analysis of such systems. In the
following sections we present some of the numerical methods for each type of response
analysis.



Sec. 16.2 Linear Systems with Nonclassical Damping 675

16.2 LINEAR SYSTEMS WITH NONCLASSICAL DAMPING

The N differential equations (16.1.1) to be solved for the nodal displacements u, when
specialized for linear systems, are

mü+ cu̇+ ku = p(t) or mιüg(t) (16.2.1)

In this section, we present an alternative to the generalized modal analysis procedure
(Chapter 14) for solving Eq. (16.2.1). If the system has a few DOFs, it may be appro-
priate to solve these equations in their present form. For large systems, however, it is
usually advantageous to transform Eq. (16.2.1) to a smaller set of equations by expressing
the displacements in terms of the first few natural vibration modes φn of the undamped
system (Chapter 12) or an appropriate set of Ritz vectors (Chapter 15). In this section we
use the modal transformation; extension of the concepts to use Ritz vector transformation
is straightforward.

Thus, the nodal displacements of the system are approximated by a linear combina-
tion of the first J natural modes:

u(t) �
J∑

n=1

φnqn(t) = Φq(t) (16.2.2)

where J can be selected using the concepts and procedure developed in Section 12.11.
Using this transformation, as shown in Section 12.4, Eq. (16.2.1) becomes

Mq̈+ Cq̇+Kq = P(t) (16.2.3)

where

M = ΦT mΦ C = ΦT cΦ K = ΦT kΦ P(t) = ΦT p(t) (16.2.4)

with M and K being diagonal matrices. Equation (16.2.3) is a system of J equations in the
unknowns qn(t), and if J is much smaller than N , it may be advantageous to solve them nu-
merically instead of Eq. (16.2.1). The resulting computational savings can more than com-
pensate for the additional computational effort necessary to determine the first J modes.

The J equations (16.2.3) may be coupled or uncoupled depending on the form of
the damping matrix. They are uncoupled for systems with classical damping, and each
modal equation can be solved numerically by the methods of Chapter 5. For systems
with nonclassical damping, C is not a diagonal matrix and the equations are coupled. In
this section numerical methods are presented for solving such coupled equations for linear
systems. Although these methods are presented with reference to Eq. (16.2.3), they can be
extended to the reduced set of equations (15.3.3) using Ritz vectors.

Conditionally stable numerical methods can be used to solve Eq. (16.2.3); that is, we
need not insist on an unconditionally stable procedure (see Section 5.5.1). The time step
�t should be chosen so that�t/Tn is small enough to ensure an accurate solution for each
of the modes included, n = 1, 2, . . . , J ; Tn is the natural period of the nth mode of the
undamped system. The choice for �t would be dictated by the period of the J th mode
because it has the shortest period; thus �t/TJ should be small, say less than 0.1. This
choice implies that �t/Tn for all the lower modes is even smaller, ensuring an accurate
solution for all the modes included. The�t chosen to satisfy the accuracy requirement, say
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�t < 0.1TJ , would obviously satisfy the stability requirement. For example, �t = 0.1TJ

is much smaller than the stability limits of TJ/π and 0.551TJ for the central difference
method and the linear acceleration method, respectively (Sections 5.3 and 5.4).

Direct solution of Eq. (16.2.1)—without transforming to modal coordinates—may
be preferable for systems with few DOFs or for systems and excitations where most of
the modes contribute significantly to the response, because in these situations there is little
to be gained by modal transformation. The numerical methods presented next are readily
adaptable to such direct solution as long as the time step�t is chosen to satisfy the stability
requirement relative to the shortest natural period TN of the undamped system.

Two conditionally stable procedures are presented next for linear response analysis
of MDF systems. These are the central difference method and Newmark’s method.

16.2.1 Central Difference Method

Developed in Section 5.3 for SDF systems, the central difference method can readily be
extended to MDF systems. The scalar equations (5.3.1) that relate the response quantities
at time i + 1 to those at times i and i − 1, and the scalar equation (5.1.3) of equilibrium
at time i , all now become matrix equations. The other new feature arises from the need
to transform the initial conditions on nodal displacements, Eq. (16.1.2), to modal coordi-
nates, and to transform back the solution of Eq. (16.2.3) in modal coordinates to nodal
displacements. Putting all these ideas together in Table 5.3.1 leads to Table 16.2.1, where
the central difference method is presented as it might be implemented on the computer.

Two observations regarding the central difference method may be useful. First, the
algebraic equations to be solved in step 1.3 to determine q̈0 are uncoupled because M is a
diagonal matrix when modal coordinates or force-dependent Ritz vectors are used. Second,
step 2.3 is based on equilibrium at time i , and the stiffness matrix K does not enter into
the system of algebraic equations solved to determine qi+1 at time i + 1, implying that the
central difference method is an explicit method.

The central difference method can also be used for direct solution of the original
equations in nodal displacements, Eq. (16.2.1), without transforming them to modal coor-
dinates, by modifying Table 16.2.1 as follows: Delete steps 1.1, 1.2, 2.1, and 2.5. Replace
(1) q, q̇, and q̈ by u, u̇, and ü; (2) M, C, and K by m, c, and k; (3) P by p; and (4) K̂ and
P̂ by k̂ and p̂.

16.2.2 Newmark’s Method

Developed in Section 5.4 for SDF systems, Newmark’s method can readily be extended
to MDF systems. The scalar equations (5.4.9) that relate the response—displacement,
velocity, and acceleration—increments over the time step i to i + 1 to each other and
the response values at time i , and the scalar equation (5.4.12) of incremental equilibrium,
all now become matrix equations. Implementing this change in Table 5.4.2 together with
transformation of initial conditions to modal coordinates and of modal solutions to nodal
displacements, as in Section 16.2.1, leads to Table 16.2.2, where the time-stepping solution
using Newmark’s method is summarized as it might be implemented on the computer.
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TABLE 16.2.1 CENTRAL DIFFERENCE METHOD: LINEAR SYSTEMS

1.0 Initial calculations

1.1 (qn)0 = φT
n mu0

φT
n mφn

; (q̇n)0 = φT
n mu̇0

φT
n mφn

qT
0 = 〈(q1)0, . . . , (qJ )0〉 q̇T

0 = 〈(q̇1)0, . . . , (q̇J )0〉.

1.2 P0 = ΦT p0.

1.3 Solve: Mq̈0 = P0 − Cq̇0 −Kq0 ⇒ q̈0.

1.4 Select �t.

1.5 q−1 = q0 −�t q̇0 + (�t)2

2
q̈0.

1.6 K̂ = 1

(�t)2
M+ 1

2�t
C.

1.7 a = 1

(�t)2
M− 1

2�t
C ; b = K− 2

(�t)2
M.

2.0 Calculations for each time step i

2.1 Pi = ΦT pi .

2.2 P̂i = Pi − aqi−1 − bqi .

2.3 Solve: K̂qi+1 = P̂i ⇒ qi+1.

2.4 If required:

q̇i = 1

2�t
(qi+1 − qi−1) q̈i = 1

(�t)2
(qi+1 − 2qi + qi−1)

2.5 ui+1 = Φqi+1.

3.0 Repetition for the next time step. Replace i by i + 1 and repeat steps 2.1 to 2.5
for the next time step.

The two special cases of Newmark’s method that are commonly used are (1) γ = 1
2

and β = 1
4 , which gives the constant average acceleration method, and (2) γ = 1

2 and
β = 1

6 , corresponding to the linear acceleration method. The constant average acceleration
method is unconditionally stable, whereas the linear acceleration method is conditionally
stable for �t ≤ 0.551TJ . For a given time step that is much smaller than this stabil-
ity limit, the linear acceleration method is more accurate than the average acceleration
method. Therefore, it is especially useful for linear systems because the �t chosen to
obtain accurate response in the highest mode included would satisfy the stability require-
ments. Observe that step 2.3 is based on equilibrium at time i + 1, and the stiffness matrix
K enters into the system of algebraic equations solved to determine qi+1 at time i + 1,
implying that Newmark’s method is an implicit method.

Newmark’s method can also be used for direct solution of the original equations in
nodal displacements, Eq. (16.2.1), without transforming them to modal coordinates, by
modifying Table 16.2.2 appropriately, as indicated at the end of Section 16.2.1.



678 Numerical Evaluation of Dynamic Response Chap. 16

TABLE 16.2.2 NEWMARK’S METHOD: LINEAR SYSTEMS

Special cases
(1) Constant average acceleration method (γ = 1

2 , β = 1
4 )

(2) Linear acceleration method (γ = 1
2 , β = 1

6 )

1.0 Initial calculations

1.1 (qn)0 = φT
n m u0

φT
n m φn

; (q̇n)0 = φT
n m u̇0

φT
n m φn

qT
0 = 〈(q1)0, . . . , (qJ )0〉 q̇T

0 = 〈(q̇1)0, . . . , (q̇J )0〉.
1.2 P0 = ΦT p0.
1.3 Solve M q̈0 = P0 − C q̇0 −K q0 ⇒ q̈0.
1.4 Select �t .

1.5 a1 = 1

β(�t)2
M+ γ

β�t
C; a2 = 1

β�t
M+

(
γ

β
− 1

)
C; and

a3 =
(

1

2β
− 1

)
M+�t

(
γ

2β
− 1

)
C.

1.6 K̂ = K+ a1.

2.0 Calculations for each time step, i = 0, 1, 2, . . .
2.1 P̂i+1 = ΦT pi+1 + a1qi + a2 q̇i + a3 q̈i .
2.2 Solve K̂ qi+1 = P̂i+1 ⇒ qi+1.

2.3 q̇i+1 = γ

β�t
(qi+1 − qi )+

(
1− γ

β

)
q̇i +�t

(
1− γ

2β

)
q̈i .

2.4 q̈i+1 = 1

β(�t)2
(qi+1 − qi )− 1

β�t
q̇i −

(
1

2β
− 1

)
q̈i .

2.5 ui+1 = Φqi+1.

3.0 Repetition for the next time step. Replace i by i+1 and implement steps 2.1 to 2.5 for
the next time step.

Example 16.1

The five-story shear building of Fig. 12.8.1 (repeated for convenience as Fig. E.16.1a) is sub-
jected to a full sinusoidal cycle of ground acceleration üg(t) = ügo sin 2π t (Fig. E16.1b) with
td = 1 s; ügo = 193 cm/s2; m = 0.2591 kN-s2/cm; k = 100 kN/cm; and modal damping
ratios ζn = 5% for all modes. Solve the equations of motion after transforming them to the
first two modes by the linear acceleration method with �t = 0.1 s.

Solution First, we set up modal equations. The mass and stiffness matrices are available in
Section 12.8 and the effective earthquake forces in Eq. (13.1.2):

m = m

⎡
⎢⎢⎣

1
1

1
1

1

⎤
⎥⎥⎦ k = k

⎡
⎢⎢⎣

2 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 1

⎤
⎥⎥⎦ p(t) = −m

⎡
⎢⎢⎣

1
1
1
1
1

⎤
⎥⎥⎦ üg(t)

(a)
where the subscript “eff” in Eq. (13.1.2) has been dropped.
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Solving the eigenvalue problem gives the first two natural frequencies and modes:

� =
[

5.592
16.32

]
� =

⎡
⎢⎢⎣

0.334 −0.895
0.641 −1.173
0.895 −0.641
1.078 0.334
1.173 1.078

⎤
⎥⎥⎦ (b)

Substituting m, k, and Φ in Eq. (16.2.4) gives

M =
[

1
1

]
K =

[
31.27

266.4

]
P(t) =

[−1.067
0.336

]
üg(t) (c)
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The two equations (16.2.3) in modal coordinates are uncoupled for the classically damped
system, and C is a diagonal matrix with the nth diagonal element equal to the generalized
modal damping Cn = ζn(2Mnωn); see Eq. (10.9.11):

C =
[

0.559
1.632

]
(d)

For generality, this uncoupling property is not used in solving this example, however. The
procedure of Table 16.2.2 is implemented as follows:

1.0 Initial calculations
1.1 Since the system starts from rest, u0 = u̇0 = 0; therefore, q0 = q̇0 = 0.
1.2 p0 = 0; therefore, P0 = 0.
1.3 q̈0 = 0.
1.4 �t = 0.1 s.
1.5 Substituting M, C, �t , γ = 1

2 , and β = 1
6 in step 1.5 gives

a1 =
[

616.8
649.0

]
a2 =

[
61.12

63.27

]
a3 =

[
2.028

2.082

]
1.6 Substituting K and a3 in step 1.6 gives

K̂ =
[

648.0
915.4

]
2.0 Calculations for each time step, i. For the parameters of this example, computational

steps 2.1 through 2.5 are specialized and implemented for each time step i as follows:

2.1 P̂i+1 = ΦT pi+1 + a1 qi + a2q̇i + a3 q̈i .[
P̂1
P̂2

]
i+1
=
[−1.067

0.336

]
(üg)i+1 +

[
616.8 q1 + 61.12 q̇1 + 2.028 q̈1
649.0 q2 + 63.26 q̇2 + 2.028 q̈2

]
i

2.2 Solve
[

648.0
915.4

] [
q1
q2

]
i+1
=
[

P̂1
P̂2

]
i+1
⇒ qi+1.

The modal displacements qi for the first 20 time steps are shown in Table E16.1
and Fig. E16.1c.

2.3
[

q̇1
q̇2

]
i+1
= 30

([
q1
q2

]
i+1
−
[

q1
q2

]
i

)
− 2

[
q̇1
q̇2

]
i
− 0.05

[
q̈1
q̈2

]
i
.

2.4
[

q̈1
q̈2

]
i+1
= 600

([
q1
q2

]
i+1
−
[

q1
q2

]
i

)
− 60

[
q̇1
q̇2

]
i
− 2

[
q̈1
q̈2

]
i
.

2.5

⎡
⎢⎢⎣

u1
u2
u3
u4
u5

⎤
⎥⎥⎦

i+1

=

⎡
⎢⎢⎣

0.334 −0.895
0.641 −1.173
0.895 −0.641
1.078 0.334
1.173 1.078

⎤
⎥⎥⎦ [ q1

q2

]
i+1

.

These displacements are also presented in Table E16.1, and u5 is plotted in Fig.
E16.1d as a function of time.

Comparison with theoretical solution. The modal equations defined by Eqs. E16.1c–d
can also be solved analytically, extending the procedure of Section 4.8 to damped systems.
Considering the first two modes of the system, such theoretical results were derived. They
were computed at every 0.1 s and are presented as the dashed lines in Fig. E16.1c and d. The
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TABLE E16.1 NUMERICAL SOLUTION OF MODAL EQUATIONS BY THE LINEAR
ACCELERATION METHOD

Time q1 q2 u1 u2 u3 u4 u5

0.1000 0.1087 −0.0870 −0.0002 −0.0004 −0.0000 0.0010 0.0025
0.2000 0.7586 −0.5481 −0.0014 −0.0025 0.0002 0.0071 0.0164
0.3000 2.0442 −1.1482 −0.0026 −0.0038 0.0032 0.0193 0.0403
0.4000 3.9373 −1.4681 −0.0022 −0.0009 0.0120 0.0372 0.0689
0.5000 6.3968 −1.2843 0.0005 0.0080 0.0282 0.0605 0.0989
0.6000 9.3687 −0.7252 0.0051 0.0217 0.0505 0.0887 0.1312
0.7000 12.7883 −0.1814 0.0099 0.0366 0.0753 0.1211 0.1696
0.8000 16.5807 −0.0327 0.0136 0.0492 0.0993 0.1570 0.2175
0.9000 20.6632 −0.3831 0.0157 0.0584 0.1210 0.1957 0.2751
1.0000 24.9466 −0.9877 0.0170 0.0660 0.1419 0.2362 0.3383
1.1000 29.3373 −1.4242 0.0190 0.0753 0.1648 0.2777 0.4009
1.2000 33.7394 −1.3877 0.0228 0.0888 0.1915 0.3194 0.4581
1.3000 38.0567 −0.9036 0.0282 0.1058 0.2213 0.3603 0.5089
1.4000 42.1949 −0.3102 0.0338 0.1233 0.2509 0.3996 0.5561
1.5000 46.0636 −0.0220 0.0381 0.1373 0.2764 0.4363 0.6034
1.6000 49.5783 −0.2403 0.0402 0.1460 0.2957 0.4695 0.6520
1.7000 52.6623 −0.8126 0.0406 0.1502 0.3097 0.4987 0.6991
1.8000 55.2481 −1.3392 0.0408 0.1534 0.3211 0.5231 0.7392
1.9000 57.2793 −1.4521 0.0420 0.1585 0.3324 0.5423 0.7671
2.0000 58.7115 −1.0725 0.0446 0.1660 0.3440 0.5559 0.7814

dashed line in Fig. E16.1d also represents the theoretical solution including all five modes,
indicating that the response contributions of the third, fourth, and fifth modes are negligible.

The numerical results for q1 are accurate because the chosen time step �t = 0.1 s and
natural period T1 = 2π/1.481 = 4.24 s, implying a very small �t/T1 = 0.024. However,
the same �t implies that �t/T2 = 0.14, which is not small enough to provide good accuracy
for q2. The numerical solution for u5 is quite accurate, however, because the contribution of
the second mode is small.

16.3 NONLINEAR SYSTEMS

To numerically evaluate the dynamic response of systems responding beyond their linearly
elastic range, the N equations for an N -DOF system are usually solved in their original
form, Eq. (16.1.1), because classical modal analysis is not applicable to nonlinear systems
(Fig. 9.11.1). However, even the displacements of a nonlinear system can always be ex-
pressed as a combination of the natural modes of the undamped system vibrating within
the range of its linear behavior:

u(t) =
N∑

n=1

φnqn(t) (16.3.1)
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Direct solution of Eq. (16.1.1) is equivalent to including all the N modes in the
analysis, although only the first J terms in Eq. (16.3.1) may be sufficient to represent
accurately the structural response. It would seem that the choice of �t should be based
on the accuracy requirements for the J th mode, say �t = TJ/10, where TJ is the period
of the J th mode of undamped linear vibration. Direct solution of Eq. (16.1.1) with this
choice of �t will give u(t) such that the higher-mode (J + 1 to N ) terms in Eq. (16.3.1)
would be inaccurate, but this should not be of concern because we had concluded that
these higher-mode contributions to the response were negligible. Although this choice
of �t would seem to provide accurate results, it may not be sufficiently small to ensure
stability of the numerical procedure. Accuracy is required only for the first J modes, but
stability must be ensured for all modes because even if the response in the higher modes is
insignificant, it will “blow up” if the stability requirements are not satisfied relative to these
modes. This problem is illustrated in Fig. 16.3.1, where the response of the shear building
of Example 16.1 to one sinusoidal cycle of ground motion is presented as obtained by two
numerical methods. The dashed curve shows the results determined by solving the first
two modal equations by the linear acceleration method, as in Example 16.1 but now using
�t = 0.12 s. When the original equations (16.1.1) are solved by the same method using the
same time step, this direct solution (shown by the solid curve) “blows up” around t = 2 s.

Requiring stability for all modes imposes very severe restrictions on�t , as illustrated
by the following example. Consider a system in which the highest mode with significant
response contribution has a period TJ = 0.10 s, whereas the period of the highest mode of
the system is TN = 0.001 s. To ensure stability of the numerical procedure, �t should be
less than TN/π (i.e., �t < 0.00032 s) for the central difference method, and 0.551TN (i.e.
�t < 0.00055 s) for the linear acceleration method.

Presented in this section are one conditionally stable method: the central differ-
ence method, which is an explicit method (Section 16.3.1); and one unconditionally stable
method: the average acceleration method, which is an implicit method. For implicit meth-
ods, there is little difference between nonlinear static and nonlinear dynamic analysis. The
approach adopted here is first to present Newton–Raphson iteration for nonlinear static
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analysis (Section 16.3.2), then use Newmark’s equations (5.4.8 and 5.4.9)—adapted to
MDF systems—to extend it to nonlinear dynamic analysis (Section 16.3.3).

The constant average acceleration method has the drawback that it provides no nu-
merical damping (Fig. 5.5.2). This is a disadvantage because it is desirable to filter out the
response contributions of modes higher than the J significant modes because these higher
modes and their frequencies, which have been calculated from an idealization of the struc-
ture, are usually not accurate relative to the actual properties of the structure. One approach
for achieving this goal is to define the damping matrix consistent with increasing damping
ratio for modes higher than the J th mode (see Section 11.4). Researchers have also been
interested in formulating numerical time-stepping algorithms which, in some sense, have
optimal numerical damping.

16.3.1 Central Difference Method

The central difference method for nonlinear SDF systems (Section 5.6) can readily be
adapted for MDF systems. Each scalar equation in the procedure for SDF systems
(Eqs. 5.6.1 to 5.6.3) now becomes a matrix equation for MDF systems. Table 16.3.1 sum-
marizes the procedure as it might be implemented on the computer.

The resisting forces (fS)i required in step 2.1 can be evaluated explicitly, as they
depend only on the known state of the system at time i . Thus, (fS)i is easily calculated,
making the central difference method perhaps the simplest procedure for analysis of non-
linear MDF systems.

TABLE 16.3.1 CENTRAL DIFFERENCE METHOD: NONLINEAR SYSTEMS

1.0 Initial calculations
1.1 State determination for initial u = u0 : (fS)0.
1.2 Solve mü0 = p0 − cu̇0 − (fS)0 ⇒ ü0.
1.3 Select �t .

1.4 u−1 = u0 −�t u̇0 + (�t)2

2
ü0.

1.5 k̂ = 1

(�t)2
m+ 1

2�t
c.

1.6 a = 1

(�t)2
m− 1

2�t
c and b = − 2

(�t)2
m.

2.0 Calculations for each time step, i = 0, 1, 2, . . .
2.1 p̂i = pi − a ui−1 − b ui − (fS)i .
2.2 Solve k̂ui+1 = p̂i ⇒ ui+1.
2.3 State determination: (fS)i+1.
2.4 If required:

u̇i = 1

2�t
(ui+1 − ui−1) and üi = 1

(�t)2
(ui+1 − 2ui + ui−1)

3.0 Repetition for next time step. Replace i by i + 1 and repeat steps 2.1–2.4 for
the next time step.
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Explicit methods, typically the central difference method, are used in software such
as LS-DYNA, ABAQUS-Explicit, and OpenSees. Because the time step required is very
small, these methods are impractical for analysis of large systems using conventional com-
puters (one to four computer processors). However, explicit methods have the advantage
that they can be conveniently programmed for parallel computing using a large number of
computer processors. Most applications to large systems diagonalize the damping matrix
c so that k̂ is diagonal and the equations in step 2.2 can be solved efficiently. Researchers
have developed various approximate models for damping to achieve this goal.

16.3.2 Nonlinear Static Analysis

Nonlinear static analysis is used to investigate the force–deformation behavior of a struc-
ture for a specified distribution of forces, typically lateral forces. With certain assumption
of force distribution, nonlinear static analysis is called pushover analysis (see Chapters 19
and 22).

Dropping the inertia and damping terms in the equations of motion [Eq. (16.1.1)] gives
the system of nonlinear equations to be solved in a static problem:

fS(u) = p(t) (16.3.2)

Before examining multiple-force steps necessary in a pushover analysis, consider the so-
lution of the equilibrium equations for a single set of forces:

fS(u) = p (16.3.3)

The task is to determine the displacements u due to a set of given external forces p, where
the nonlinear force–deformation relation fS(u) is known for the system to be analyzed.

Suppose that after j cycles of iteration, u( j) is an estimate of the unknown displace-
ments and we are interested in developing an iterative procedure that provides an improved
estimate u( j+1). Expanding the resisting forces f ( j+1)

S (u) in Taylor series about the known
estimate u( j), and dropping the second- and higher-order terms, leads to the linearized
equation (see Section 5.7.1)

k( j)
T �u( j) = p− f ( j)

S = R( j) (16.3.4)

where

k( j)
T =

∂fS(u)
∂u

∣∣∣∣
u( j)

(16.3.5)

is the tangent stiffness matrix at u( j); (kT) i, j = the change in force at DOF i due to unit
change in displacement at DOF j at the current state of the system. Solving the linearized
system of equations (16.3.4) gives �u( j) and an improved estimate of displacements:

u( j+1) = u( j) +�u( j) (16.3.6)

This is the essence of the Newton–Raphson method for iterative solution of the nonlin-
ear equations (16.3.3). As shown in Section 5.7.1, this iterative method converges with
quadratic rate to the exact solution.
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The preceding description of the Newton–Raphson procedure for a single force step
can be generalized for multiple force steps. For this purpose, the forces are represented by
a reference spatial distribution pref and a variable scalar λi ; thus

pi = λi pref (16.3.7)

The nonlinear equilibrium equations for each force level are solved by Newton–Raphson
iteration starting with the initial estimate of the solution as the displacements at the previ-
ous force level. Table 16.3.2 summarizes such a procedure for nonlinear static analysis as
it might be implemented on the computer.

TABLE 16.3.2 NONLINEAR STATIC ANALYSIS

1.0 State determination for u = u†0 : (fS)0 and (kT )0.

2.0 Calculations for each force step, i = 0, 1, 2, . . .
2.1 Initialize j = 1, u( j)

i+1 = ui , (fS)
( j)
i+1 = (fS)i , and (kT )

( j)
i+1 = (kT )i .

2.2 pi+1 = λi+1pref.

3.0 For each iteration, j = 1, 2, 3, . . .
3.1 R( j)

i+1 = pi+1 − (fS)
( j)
i+1.

3.2 Check convergence; if the acceptance criteria are not met, implement steps 3.3
to 3.6; otherwise, skip these steps and go to step 4.0.

3.3 Solve (kT )
( j)
i+1�u( j) = R( j)

i+1 ⇒ �u( j).

3.4 u( j+1)
i+1 = u( j)

i+1 +�u( j).

3.5 State determination: (fS)
( j+1)
i+1 and (kT )

( j+1)
i+1 .

3.6 Replace j by j + 1 and repeat steps 3.1 to 3.5; denote final value as ui+1.

4.0 Repetition for next force step. Replace i by i + 1 and implement steps 2.0 and 3.0
for the next force step.

† u0 may be nonzero if initial gravity load effects are included in the analysis.

In step 3.2, the solution is checked and the iterative process is terminated when some
measure of the error in the solution falls below a specified tolerance. Typically, one or more
of the following convergence (or acceptance) criteria are enforced:

1. Residual force is less than a tolerance:∥∥R( j)
∥∥ ≤ εR (16.3.8a)

where ‖ · ‖ denotes the Euclidean norm of the vector. Conventional values for the
tolerance εR range from 10−3 to 10−8.

2. Change in displacement is less than a tolerance:∥∥�u( j)
∥∥ ≤ εu (16.3.8b)

Conventional values for the tolerance εu range from 10−3 to 10−8.

3. Incremental work done by the residual force acting through the change in displace-
ment is less than a tolerance:

1
2

∥∥[�u( j)]TR( j)
∥∥ ≤ εw (16.3.8c)
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Tolerance εw must be at or near the computer (machine) tolerance because the left
side is a product of small quantities.

Although the examples presented subsequently use the preceding criteria, for
large MDF systems it is better to use relative force or displacement measures:∥∥R( j)

∥∥
‖pref‖ ≤ ε

′
R

∥∥�u( j)
∥∥∥∥u( j)
∥∥ ≤ ε′u (16.3.9a)

where the recommended value for tolerances ε′R and ε′u is 10−3 to 10−6. For frames,
the displacement vector contains translations and rotations (and the force vectors
contains forces and moments) whose magnitudes may be vastly different. For such
situations, we recommend use of relative incremental work to check convergence.
The convergence criterion then is∥∥∥[�u( j)

]T
R( j)

∥∥∥∥∥∥[�u(1)
]T

R(1)
∥∥∥ ≤ ε

′
w (16.3.9b)

where the recommended value for ε′w is on the order of 10−16.

Example 16.2

The five-story shear building of Example 16.1 is subjected to monotonically increasing lateral
forces with the invariant distribution presented in Fig. E16.2a. The story shear–drift (Vj − δj )
relationship is identical for all stories; it is bilinear with initial stiffness k = 100 kN/cm, post
yield stiffness ratio α = 0.05, and yield shear Vjy = 125 kN (Fig. E16.2b). Conduct nonlinear
static analysis of the building for the pref shown and force factors:

λT = 〈 0 1.0 1.1 1.2 1.3 1.4 1.5 1.6 〉
Note that the base shear associated with pref is Vb = 125 kN, the yield value of base shear.
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Figure E16.2 a, b
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Solution The procedure of Table 16.3.2 is implemented as follows:

1.0 State determination for u0 = 0
Gravity load effects would not produce any lateral displacements; thus u0 = 0, (fS)0 =
0 and

(kT )0 = k

⎡
⎢⎢⎣

2 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 1

⎤
⎥⎥⎦

To demonstrate calculations of steps 2.0 and 3.0 in Table 16.3.1, they are implemented
for the force step from i = 1 to i = 2.

2.0 Calculations for i = 1
2.1 Initialize j = 1

u(1)i+1 = ui = 〈 1.250 2.417 3.417 4.167 4.583 〉T ; see Table E16.2.
State determination at i = 1(λ = 1.0) leads to
(fS)

(1)
i+1 = (fS)i = 〈 8.333 16.67 25.00 33.33 41.67 〉T

(kT )
(1)
i+1 = (kT )i = k

⎡
⎢⎢⎣

1.05 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 1

⎤
⎥⎥⎦

2.2 pi+1 = λi+1 pref, where pref is shown in Fig. E16.2a.
pi+1 = 〈 9.167 18.33 27.50 36.67 45.83 〉T .

3.0 First iteration, j = 1
3.1 R(1)i+1 = pi+1 − (fS)

(1)
i+1 = 〈 0.833 1.667 2.500 3.333 4.167 〉T.

3.2 Check convergence: Because
∥∥∥R(1)i+1

∥∥∥ = 6.180 exceeds εR = 10−3, chosen for

this example, implement steps 3.3 to 3.6.
3.3 Solve (kT )

(1)
i+1�u(1) = R(1)i+1 ⇒ �u(1) = 〈 2.500 2.617 2.717 2.792 2.833 〉T.

3.4 u(2)i+1 = u(1)i+1 +�u(1) = 〈 3.750 5.033 6.133 6.958 7.417 〉T.
3.5 State determination.

First determine story drifts:

δ
(2)
i+1 = 〈 3.750 1.283 1.100 0.825 0.458 〉T

Knowing story drift, the story stiffness and story shear force can be obtained from
the story shear–story drift relationship (Fig. E16.2b); e.g., the first story drift, δ1 =
3.750 cm is larger than the yield drift, δ1y = 1.25 cm; therefore, the story stiffness
is 0.05k and the shear force is 125 + 0.05 k (3.75 − 1.25) = 137.5 kN. Knowing
the stiffness of each story, the stiffness matrix can be obtained using the procedure
of Example 9.1b.

(kT )
(2)
i+1 = k

⎡
⎢⎢⎣

0.10 −0.05
−0.05 1.05 −1

−1 2 −1
−1 2 −1

−1 1

⎤
⎥⎥⎦
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The resisting force fS1 at the first floor is the difference between story shears in the
first and second stories; fS j at other stories are determined similarly to obtain

(fS)
(2)
i+1 =

⎡
⎢⎢⎣

137.50− 125.17
125.17− 110.00
110.00− 82.50
82.50− 45.83

45.83

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

12.33
15.17
27.50
36.67
45.83

⎤
⎥⎥⎦

3.0 Second iteration, j = 2
3.1 R(2)i+1 = pi+1 − (fS)

(2)
i+1 = 〈−3.167 3.167 0 0 0 〉T.

3.2 Check convergence: Because
∥∥∥R(2)i+1

∥∥∥ = 4.478 exceeds εR , implement steps 3.3

to 3.6.
3.3 Solve (kT )

(2)
i+1�u(2) = R(2)i+1 ⇒ �u(2) = 〈 0 0.633 0.633 0.633 0.633 〉T.

3.4 u(3)i+1 = u(2)i+1 +�u(2) = 〈 3.750 5.667 6.767 7.592 8.050 〉T.
3.5 State determination:

δ
(3)
i+1 = 〈 3.750 1.917 1.100 0.825 0.458 〉T

(fS)
(3)
i+1 =

⎡
⎢⎢⎣

9.167
18.33
27.50
36.67
45.83

⎤
⎥⎥⎦ (kT )

(3)
i+1 = k

⎡
⎢⎢⎣

0.10 −0.05
−0.05 1.05 −1

−1 2 −1
−1 2 −1

−1 1

⎤
⎥⎥⎦

3.0 Third iteration, j = 3
3.1 R(3)i+1 = pi+1 − (fS)

(3)
i+1 � 0.

3.2 Check convergence: Because
∥∥∥R(3)i+1

∥∥∥ = 0 is less than εR , iteration is terminated

and the final value is denoted as ui+1; see row 3 of Table E16.2.

4.0 Repetition for the next time step: Steps 2.0 and 3.0 are implemented for i = 0, 1, 2, 3, . . .
to obtain the floor displacements u1, u2, u3, u4, and u5 presented in Table E16.2 and
plotted in Fig. E16.2c. The base shear is plotted as a function of the roof displacement
u5 in Fig. E16.2d. Story shear–story drift relationships are presented in Figs. E16.2e–i
for the five stories of the building.

TABLE E16.2 RESULTS OF NONLINEAR STATIC ANALYSIS

i λi u1 u2 u3 u4 u5

0 0 0.0000 0.0000 0.0000 0.0000 0.0000
1 1.0 1.2500 2.4167 3.4167 4.1667 4.5833
2 1.1 3.7500 5.6667 6.7667 7.5917 8.0500
3 1.2 6.2500 10.5000 11.7000 12.6000 13.1000
4 1.3 8.7500 15.3333 17.5833 18.5583 19.1000
5 1.4 11.2500 20.1667 24.4167 25.4667 26.0500
6 1.5 13.7500 25.0000 31.2500 32.3750 33.0000
7 1.6 16.2500 29.8333 38.0833 39.2833 39.9500
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Example 16.3

The five-story shear building of Example 16.2 is subjected to a full sinusoidal cycle of ground
acceleration üg(t) = ügo sin 2π t (Fig. E16.1b) with td = 1 s and ügo = 193 cm/s2. Solve the
static equilibrium equations at every time step �t = 0.05 s.

Solution The static equilibrium equations are

fS(u) = −mιüg(t) = −mιügo sin 2π t (a)

The reference force distribution pref = −mιügo and the load factor is λi = sin 2π ti , where
ti = i�t . Thus, pref = −50 〈 1 1 1 1 1 〉T and λ = 〈0 0.309 0.588 0.809 0.951
1.0〉T . Computational step 1.0 is identical to Example 16.2. Computational steps 2.0 and 3.0
are implemented for i = 0, 1, 2, 3, . . . to obtain the displacements u1, u2, u3, u4, and u5
presented in Table E16.3 and plotted in Figure E16.3a at i = 0, 2, 4, . . . . The base shear
is plotted as a function of the roof displacement u5 in Fig. E16.3b. Story shear–story drift
relationships are presented in Fig. E16.3c–g for the five stories of the building.

The computations in step 3.5 must recognize that the force–deformation relation of
inelastic systems is path dependent; see Section 16.3.3.

TABLE E16.3 RESULTS OF NONLINEAR STATIC ANALYSIS

i ti λi u1 u2 u3 u4 u5

0 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1 0.05 0.3090 −0.7725 −1.3906 −1.8541 −2.1631 −2.3176
2 0.10 0.5878 −5.6393 −6.8148 −7.6965 −8.2843 −8.5782
3 0.15 0.8090 −16.7008 −25.3115 −26.5251 −27.3341 −27.7386
4 0.20 0.9511 −23.8028 −38.0951 −42.8768 −43.8278 −44.3034
5 0.25 1.0000 −26.2500 −42.5000 −48.7500 −49.7500 −50.2500
6 0.30 0.9511 −26.1276 −42.2798 −48.4563 −49.4074 −49.8829
7 0.35 0.8090 −25.7725 −41.6406 −47.6041 −48.4131 −48.8176
8 0.40 0.5878 −25.2195 −40.6450 −46.2767 −46.8645 −47.1584
9 0.45 0.3090 −24.5225 −39.3906 −44.6041 −44.9131 −45.0676

10 0.50 0.0000 −23.7500 −38.0000 −42.7500 −42.7500 −42.7500
11 0.55 −0.3090 −8.2992 −19.6885 −23.9749 −23.6659 −23.5114
12 0.60 −0.5878 5.6393 5.4007 1.5324 2.1201 2.4140
13 0.65 −0.8090 16.7008 25.3115 25.8320 26.6411 27.0456
14 0.70 −0.9511 23.8028 38.0951 42.8768 43.8278 44.3034
15 0.75 −1.0000 26.2500 42.5000 48.7500 49.7500 50.2500
16 0.80 −0.9511 26.1276 42.2798 48.4563 49.4074 49.8829
17 0.85 −0.8090 25.7725 41.6406 47.6041 48.4131 48.8176
18 0.90 −0.5878 25.2195 40.6450 46.2767 46.8645 47.1584
19 0.95 −0.3090 24.5225 39.3906 44.6041 44.9131 45.0676
20 1.00 0.0000 23.7500 38.0000 42.7500 42.7500 42.7500

16.3.3 Constant Average Acceleration Method

The constant average acceleration method with Newton–Raphson iteration has already
been presented for analysis of nonlinear SDF systems; it is the procedure summarized in
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Table 5.7.1, specialized for γ = 1
2 and β = 1

4 . This procedure carries over directly to
MDF systems with each scalar equation in the procedure for SDF systems now becoming
a matrix equation for MDF systems. Table 16.3.3 summarizes the procedure as it might be
implemented on the computer.

To avoid computation of a new tangent stiffness matrix for each iteration—which can
be computationally demanding for large MDF systems—the initial stiffness matrix at the
beginning of a time step may be used for all iterations within the time step. This modified
Newton–Raphson iteration results in slower convergence, i.e., it requires more iterations to
achieve convergence (see Figs. 5.7.1 and 5.7.2).

TABLE 16.3.3 CONSTANT AVERAGE ACCELERATION METHOD: NONLINEAR
SYSTEMS

1.0 Initial calculations
1.1 State determination: (fS)0 and (kT )0.
1.2 Solve mü0 = p0 − cu̇0 − (kT )0 u0 ⇒ ü0.
1.3 Select �t .

1.4 a1 = 4

(�t)2
m+ 2

�t
c and a2 = 4

�t
m+ c.

2.0 Calculations for each time instant, i = 0, 1, 2, . . .
2.1 Initialize j = 1, u( j)

i+1 = ui , (fS)
( j)
i+1 = (fS)i , and (kT )

( j)
i+1 = (kT )i .

2.2 p̂i+1 = pi+1 + a1ui + a2u̇i +m üi .

3.0 For each iteration, j = 1, 2, 3, . . .
3.1 R̂( j)

i+1 = p̂i+1 − (fS)
( j)
i+1 − a1u( j)

i+1.

3.2 Check convergence; if the acceptance criteria are not met, implement steps 3.3
to 3.7; otherwise, skip these steps and go to step 4.0.

3.3 (k̂T )
( j)
i+1 = (kT )

( j)
i+1 + a1.

3.4 Solve (k̂T )
( j)
i+1�u( j) = R̂( j)

i+1 ⇒ �u( j).

3.5 u( j+1)
i+1 = u( j)

i+1 +�u( j).

3.6 State determination: (fS)
( j+1)
i+1 and (kT )

( j+1)
i+1 .

3.7 Replace j by j+1 and repeat steps 3.1 to 3.6; denote final value as ui+1.

4.0 Calculations for velocity and acceleration vectors

4.1 u̇i+1 = 2

�t
(ui+1 − ui )− u̇i .

4.2 üi+1 = 4

(�t)2
(ui+1 − ui )− 4

�t
u̇i − üi .

5.0 Repetition for next time step. Replace i by i+1 and implement steps 2.0 to 4.0 for
the next time step.
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Path dependence. One of the important operations in the computations is state
determination (step 3.6). It must recognize that the force–deformation relation of inelastic
systems is path dependent, i.e., it depends on whether the deformation is increasing or
decreasing during the time step. This feature must be considered in calculating the tangent
stiffness matrix and the resisting forces associated with the displacements ui at each time i .
Such procedures are available in textbooks on static structural analysis and are not included
here [see, e.g., Filippou and Fenves (2004)].

Example 16.4

The five-story shear building of Example 16.2 is subjected to a full sinusoidal cycle of ground
acceleration üg(t) = ügo sin 2π t (Fig. E16.1b); ügo = 193 cm/s2. Solve the equations of
motion by the constant average acceleration method with Newton–Raphson iteration using a
time step of �t = 0.1 s; assume zero initial conditions and modal damping ratios ζn = 5%
for all modes.

Solution The 5 × 5 mass and initial stiffness matrices were defined in Example 16.1; the
damping matrix corresponding to given modal damping ratios ζn = 5% is determined by
superposing modal damping matrices (Section 11.4.3).

c =

⎡
⎢⎢⎣

69.01 −19.81 −3.395 −1.370 −0.873
65.70 −21.18 −4.268 −2.243

64.83 −22.05 −5.638
(sym) 63.46 −25.45

43.65

⎤
⎥⎥⎦× 10−2

1.0 Initial calculations
1.1 State determination for u0 = 0:

(fS)0 = 0

(kT )0 = k

⎡
⎢⎢⎣

2 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 1

⎤
⎥⎥⎦

1.2 Solve mü0 = p0 − cu̇0 − (kT )0 u0 ⇒ ü0 = 0.
1.3 �t = 0.1.
1.4 Matrices a1 and a2:

a1 = 4

(�t)2
m+ 2

�t
c = 400m+ 20c =

⎡
⎢⎢⎣

117.4 −3.962 −0.679 −0.274 −0.175
116.8 −4.236 −0.854 −0.449

116.6 −4.411 −1.128
(sym) 116.3 −5.090

112.4

⎤
⎥⎥⎦

a2 = 4

�t
m+ c = 40m+ c =

⎡
⎢⎢⎣

110.5 −1.981 −0.340 −0.137 −0.087
110.2 −2.118 −0.427 −0.224

110.1 −2.205 −0.564
(sym) 110.0 −2.545

108.0

⎤
⎥⎥⎦× 10−1
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2.0 Calculations for each time step, i
Computational steps 2.0 to 5.0 are implemented for i = 0, 1, 2, 3, . . . to obtain the dis-
placements u1, u2, u3, u4, and u5 presented in Table E16.4. The roof displacement u5
is plotted as a function of time in Fig. E16.4a, and the variation of floor displacements
over height at selected time instants i = 0, 2, 4, . . . are plotted in Fig. E16.4b.

TABLE E16.4 NUMERICAL SOLUTION BY CONSTANT AVERAGE
ACCELERATION METHOD

i ti u1 u2 u3 u4 u5

0 0.0 0.0000 0.0000 0.0000 0.0000 0.0000
1 0.1 −0.1708 −0.2359 −0.2613 −0.2712 −0.2746
2 0.2 −0.7701 −1.1762 −1.3750 −1.4663 −1.5015
3 0.3 −1.8807 −2.8973 −3.5514 −3.9154 −4.0737
4 0.4 −3.5344 −5.1266 −6.2603 −7.0473 −7.4383
5 0.5 −5.3831 −7.5152 −8.7127 −9.6905 −10.2388
6 0.6 −6.4439 −9.0716 −10.0489 −10.7549 −11.1525
7 0.7 −5.9863 −8.4266 −9.1988 −9.5634 −9.6810
8 0.8 −4.3618 −5.5450 −5.7476 −5.9381 −6.0052
9 0.9 −2.0815 −1.8558 −0.9983 −0.6832 −0.6541

10 1.0 0.7305 1.6946 3.3099 4.3848 4.9299
11 1.1 3.4782 5.0342 6.7247 7.8941 8.6981
12 1.2 5.5469 7.8168 9.2078 9.7899 10.0600
13 1.3 6.7492 9.1381 10.2318 10.4083 10.2899
14 1.4 6.6858 8.6380 9.6715 10.0370 10.2689
15 1.5 5.5610 7.2111 8.2729 8.9549 9.4278
16 1.6 4.8642 6.0410 6.8150 7.1914 7.3539
17 1.7 4.9813 5.5452 5.5219 5.1092 4.8836
18 1.8 4.7428 5.1217 4.5283 3.6914 3.2563
19 1.9 4.0458 4.3222 4.0478 3.4673 3.0939
20 2.0 3.7573 4.0322 4.1602 4.0642 4.0387
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P R O B L E M S

∗16.1 Solve the problem in Example 16.1 by the central difference method, implemented by a
computer program in a language of your choice using �t = 0.1 s.

∗16.2 Repeat Problem 16.1 using �t = 0.05 s. How does the time step affect the accuracy of the
solution?

∗16.3 Solve the problem in Example 16.1 by the constant average acceleration method, imple-
mented by a computer program in a language of your choice using �t = 0.1 s. Based on
these results and those from Problem 16.1, comment on the relative accuracy of the average
acceleration and central difference methods.

∗16.4 Repeat Problem 16.3 using �t = 0.05 s. How does the time step affect the accuracy of the
solution?

∗16.5 Solve the problem in Example 16.1 by the linear acceleration method, implemented by a
computer program in a language of your choice using �t = 0.1 s. Based on these results
and those from Problem 16.3, comment on the relative accuracy of the linear acceleration and
constant average acceleration methods. Note that this problem was solved as Example 16.1
and the results were presented in Table E16.1.

∗16.6 Repeat Problem 16.5 using �t = 0.05 s. How does the time step affect the accuracy of the
solution?

∗16.7 Solve the problem of Example 16.4 by the central difference method, implemented by a
computer program in a language of your choice using a time step of 0.05 s.

∗16.8 Solve the problem in Example 16.2, implemented by a computer program in a language of
your choice.

∗16.9 Solve Problem 16.8 with a uniform distribution of lateral forces.
∗16.10 Solve the problem in Example 16.3, implemented by a computer program in a language of

your choice.

*Denotes that a computer is necessary to solve this problem.
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∗16.11 Solve the problem in Example 16.4, implemented by a computer program in a language of
your choice.

∗16.12 Solve the problem in Example 16.4 using modified Newton–Raphson iteration. Compare the
number of iterations required for convergence using Newton–Raphson iteration (Problem
16.11) and modified Newton–Raphson iteration (Problem 16.12).

*Denotes that a computer is necessary to solve this problem.



17

Systems with Distributed Mass
and Elasticity

PREVIEW

So far in this book we have focused on discretized systems, typically with lumped masses;
such a system is an assemblage of rigid elements having mass (e.g., the floor diaphragms of
a multistory building) and massless elements that are flexible (e.g., the beams and columns
of a building). A major part of this book is devoted to lumped-mass discretized systems,
for two reasons. First, such systems can effectively idealize many classes of structures,
especially multistory buildings. Second, effective methods that are ideal for computer im-
plementation are available to solve the system of ordinary differential equations governing
the motion of such systems. However, a lumped-mass idealization, although applicable,
is not a natural approach for certain types of structures, such as a bridge (Fig. 2.1.2e),
a chimney (Fig. 2.1.2f), an arch dam (Fig. 1.10.2), or a nuclear containment structure
(Fig. 1.10.1).

In this chapter we formulate the structural dynamics problem for one-dimensional
systems with distributed mass, such as a beam or a tower, and solutions are presented
for simple systems (e.g., a uniform beam and a uniform tower). The solutions presented
for these simple cases provide insight into the dynamics of distributed-mass systems that
have an infinite number of DOFs and how they differ from lumped-mass systems with a
finite number of DOFs. The chapter ends with a discussion of why this infinite-DOF ap-
proach is not feasible for practical systems, pointing to the need for discretized methods for
distributed-mass systems. The results presented for the simple systems provide the exact
solution against which results from discretized methods can be compared (Chapter 18).

697
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17.1 EQUATION OF UNDAMPED MOTION: APPLIED FORCES

In this section we develop the equation governing the transverse vibration of a straight
beam without damping subjected to external force. Figure 17.1.1a shows such a beam
with flexural rigidity E I (x) and mass m(x) per unit length, both of which may vary with
position x . The external forces p(x, t), which may vary with position and time, cause
motion of the beam described by the transverse displacement u(x, t) (Fig. 17.1.1b). The
equation of motion to be developed will be valid for support conditions other than the
simple supports shown and for beams with intermediate supports.

x

••
L

m(x), EI(x)

p(x,t)

(a)

x

u

(b)

u(x,t)

(c)

M M + ∂M
∂x

dx
V

V + ∂V∂
∂x

dx

p dx

fI = m  dx ∂2u
∂t2

dx

Figure 17.1.1 System with distributed mass and elasticity: (a) beam and applied force;
(b) displacement; (c) forces on element.

The system has an infinite number of DOFs because its mass is distributed. There-
fore, we consider a differential element of the beam, isolated by two adjoining sections.
The forces on the element are shown in Fig. 17.1.1c, where an inertia force has been in-
cluded following D’Alembert’s principle (Section 1.5.2); V(x, t) is the transverse shear
force and M(x, t) is the bending moment. Equilibrium of forces in the y-direction gives

∂V
∂x
= p − m

∂2u

∂t2
(17.1.1)

Without the inertia force this equation is the familiar relation between the shear force in
a beam and external transverse force. The inertia force modifies the external force in
recognition of the dynamics of the problem. If the inertial moment associated with angular
acceleration of the element is neglected, rotational equilibrium of the element gives the
standard relation

V = ∂M
∂x

(17.1.2)

We now use Eqs. (17.1.1) and (17.1.2) to write the equation governing the trans-
verse displacement u(x, t). With shear deformation neglected, the moment–curvature
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relation is

M = E I
∂2u

∂x2
(17.1.3)

Substituting Eqs. (17.1.3) and (17.1.2) into Eq. (17.1.1) gives

m(x)
∂2u

∂t2
+ ∂2

∂x2

[
E I (x)

∂2u

∂x2

]
= p(x, t) (17.1.4)

This is the partial differential equation governing the motion u(x, t) of the beam subjected
to external dynamic forces p(x, t). To obtain a unique solution to this equation, we must
specify two boundary conditions at each end of the beam and the initial displacement
u(x, 0) and initial velocity u̇(x, 0).

17.2 EQUATION OF UNDAMPED MOTION: SUPPORT EXCITATION

Consider two simple cases: a cantilever beam subjected to horizontal base motion (Fig.
17.2.1a) or a beam with multiple supports subjected to identical motion in the vertical
direction (Fig. 17.2.1b). The total displacement of the beam is

ut (x, t) = ug(t)+ u(x, t) (17.2.1)

where the beam displacement u(x, t), measured relative to the support motion ug(t), results
from the deformations of the beam.

x

•
•

L

(a)

ug(t)

u(x,t)

x

(b)

ug(t)

u(x,t)

Figure 17.2.1 (a) Cantilever beam subjected to base excitation; (b) continuous beam
subjected to identical motion at all supports.

For these simple cases of a beam excited by support motion the derivation of the
equation of motion is only slightly different than that for applied forces. Recognizing that
the inertia forces are now related to the total accelerations and that external forces p(x, t)
do not exist, Eq. (17.1.1) becomes
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∂V
∂x
= −m

∂2ut

∂t2
= −m

∂2u

∂t2
− m

d2ug

dt2
(17.2.2)

wherein Eq. (17.2.1) has been used to obtain the second half of the equation. Substituting
Eqs. (17.1.3) and (17.1.2) into Eq. (17.2.2) gives

m(x)
∂2u

∂t2
+ ∂2

∂x2

[
E I (x)

∂2u

∂x2

]
= −m(x)üg(t) (17.2.3)

By comparing Eqs. (17.2.3) and (17.1.4), it is clear that the deformation response u(x, t)
of the beam to support acceleration üg(t) will be identical to the response of the system
with stationary supports due to external forces = −m(x)üg(t). The support excitation can
therefore be replaced by effective forces (Fig. 17.2.2):

peff(x, t) = −m(x)üg(t) (17.2.4)

x

(a)

üg(t)

Stationary base

peff(x,t)
= −m(x)üg(t)

= peff(x,t) = −m(x)üg(t)

(b)

Stationary supports

üg üg üg

m(x)

=x

Figure 17.2.2 Effective forces peff(x, t).

This formulation can be generalized to include the possibility of different motions of
the various supports of a structure. Such multiple support excitation may exist in several
practical situations (Section 9.7), but is not included in this chapter because it is usually
not possible to analyze such practical problems as infinite-DOF systems. They are usually
discretized by the finite element method (Chapter 18) and analyzed by extensions of the
procedures of Section 13.5.

17.3 NATURAL VIBRATION FREQUENCIES AND MODES

For the case of free vibration, Eqs. (17.1.4) and (17.2.3) become

m(x)
∂2u

∂t2
+ ∂2

∂x2

[
E I (x)

∂2u

∂x2

]
= 0 (17.3.1)
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We attempt a solution of the form

u(x, t) = φ(x)q(t) (17.3.2)

Then

∂2u

∂t2
= φ(x)q̈(t)

∂2u

∂x2
= φ′′(x)q(t) (17.3.3)

where overdots denote a time derivative and primes denote an x derivative; thus q̇(t) ≡
dq/dt , q̈(t) = d2q/dt2, and φ′′(x) = d2φ/dx2. Substituting Eq. (17.3.3) in Eq. (17.3.1)
leads to

m(x)φ(x)q̈(t)+ q(t)
[
E I (x)φ′′(x)

]′′ = 0

which, when divided by m(x)φ(x)q(t), becomes

−q̈(t)

q(t)
= [E I (x)φ′′(x)]′′

m(x)φ(x)
(17.3.4)

The expression on the left is a function of t only and the one on the right depends only on
x . For Eq. (17.3.4) to be valid for all values of x and t , the two expressions must therefore
be constant, say ω2. Thus the partial differential equation (17.3.1) becomes two ordinary
differential equations, one governing the time function q(t) and the other governing the
spatial function φ(x):

q̈ + ω2q = 0 (17.3.5)[
E I (x)φ′′(x)

]′′ − ω2m(x)φ(x) = 0 (17.3.6)

Equation (17.3.5) has the same form as the equation governing free vibration of an SDF
system with natural frequency ω. For any given stiffness and mass functions, E I (x) and
m(x), respectively, there is an infinite set of frequencies ω and associated modes φ(x)
that satisfy the eigenvalue problem defined by Eq. (17.3.6) and the support (boundary)
conditions for the beam.

For the special case of a uniform beam, E I (x) = E I and m(x) = m, and Eq. (17.3.6)
becomes

E IφIV(x)− ω2mφ(x) = 0 or φIV(x)− β4φ(x) = 0 (17.3.7)

where

β4 = ω2m

E I
(17.3.8)

The general solution of Eq. (17.3.7) is (see Derivation 17.1)

φ(x) = C1 sinβx + C2 cosβx + C3 sinhβx + C4 coshβx (17.3.9)

This solution contains four unknown constants, C1, C2, C3, and C4, and the eigenvalue pa-
rameter β. Application of the four boundary conditions for a single-span beam, two at each
end of the beam, will provide a solution for β and hence for the natural frequency ω [from
Eq. (17.3.8)] and for three constants in terms of the fourth, resulting in the natural mode of
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Eq. (17.3.9). This procedure is illustrated next by two examples: a simply supported beam
and a cantilever beam. Results are also available for other boundary conditions but are not
included in this book.

17.3.1 Uniform Simply Supported Beam

The natural frequencies and modes of vibration of a uniform beam simply supported at
both ends are determined next. At x = 0 and x = L , the displacement and bending
moment are zero. Thus, using Eqs. (17.3.2), (17.1.3), and (17.3.9) at x = 0 gives

u(0, t) = 0⇒ φ(0) = 0⇒ C2 + C4 = 0 (17.3.10a)

M(0, t) = 0⇒ E Iφ′′(0) = 0⇒ β2(−C2 + C4) = 0 (17.3.10b)

These two equations give C2 = C4 = 0 and the general solution reduces to

φ(x) = C1 sinβx + C3 sinhβx (17.3.11)

Then at x = L ,

u(L , t) = 0⇒ φ(L) = 0⇒ C1 sinβL + C3 sinhβL = 0 (17.3.12a)

M(L , t) = 0⇒ E Iφ′′(L) = 0⇒ β2(−C1 sinβL + C3 sinhβL) = 0 (17.3.12b)

Adding these two equations after dropping β2 from the second equation gives

C3 sinhβL = 0

Since sinhβL cannot be zero (otherwise, ω will be zero, a trivial solution implying no
vibration at all), so C3 must be zero. This leads to the frequency equation:

C1 sinβL = 0 (17.3.13)

This equation can be satisfied by selecting C1 = 0, which gives φ(x) = 0, a trivial solution.
Therefore, sinβL must be zero, from which

βL = nπ n = 1, 2, 3, . . . (17.3.14)

Equation (17.3.8) then gives the natural vibration frequencies:

ωn = n2π2

L2

√
E I

m
n = 1, 2, 3, . . . (17.3.15)

The natural vibration mode corresponding to ωn is obtained by substituting Eq. (17.3.14)
in Eq. (17.3.11) with C3 = 0 as determined earlier:

φn(x) = C1 sin
nπx

L
(17.3.16)
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x

φ

••
L

m, EI

φ1(x) = sin(πx/L)

ω1 = 
π2

L2

EI
m

φ2(x) = sin(2πx/L)

ω2 = 
4π2

L2

EI
m

φ3(x) = sin(3πx/L)

ω3 = 
9π2

L2

EI
m

•
•
•

Figure 17.3.1 Natural vibration modes and
frequencies of uniform simply supported
beams.

The value of C1 is arbitrary; C1 = 1 will make the maximum value of φn(x) equal to unity.
These natural modes are shown in Fig. 17.3.1.

For a simply supported uniform beam, we have determined an infinite series of
modes each with its vibration frequency. Equations (17.3.15) and (17.3.16) and Fig. 17.3.1
tell us that the first mode is a half sine wave and that its frequency ω1 = π2(E I/mL4)1/2.
The second mode is a complete sine wave with frequency ω2 = 4ω1; the third is one and a
half sine waves with frequency ω3 = 9w1; and so on.

17.3.2 Uniform Cantilever Beam

In this section the natural vibration frequencies and modes of a uniform cantilever beam
are determined. At the clamped end, x = 0, the displacement and slope are zero. Thus
Eq. (17.3.9) gives

u(0, t) = 0⇒ φ(0) = 0⇒ C2 + C4 = 0⇒ C4 = −C2 (17.3.17a)

u′(0, t) = 0⇒ φ′(0) = 0⇒ β(C1 + C3) = 0⇒ C3 = −C1 (17.3.17b)

At the free end, x = L , of the cantilever the bending moment and shear are both zero.
Thus, from Eq. (17.3.9) and after using Eq. (17.3.17), we obtain
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M(L , t) = 0⇒ E Iφ′′(L) = 0

⇒ C1(sinβL + sinhβL)+ C2(cosβL + coshβL) = 0 (17.3.18a)

V(L , t) = 0⇒ E Iφ′′′(L) = 0

⇒ C1(cosβL + coshβL)+ C2(− sinβL + sinhβL) = 0 (17.3.18b)

Rewriting Eqs. (17.3.18a) and (17.3.18b) in matrix form yields[
sinβL + sinhβL cosβL + coshβL
cosβL + coshβL − sinβL + sinhβL

] [
C1

C2

]
=
[

0
0

]
(17.3.19)

Equation (17.3.19) can be satisfied by selecting both C1 and C2 equal to zero, but this
would give a trivial solution of no vibration at all. For either or both of C1 and C2 to be
nonzero, the coefficient matrix in Eq. (17.3.19) must be singular (i.e., its determinant must
be zero). This leads to the frequency equation:

1+ cosβL coshβL = 0 (17.3.20)

No simple solution is available for βL , so Eq. (17.3.20) is solved numerically to obtain

βn L = 1.8751, 4.6941, 7.8548, and 10.996 (17.3.21)

for n = 1, 2, 3, and 4. For n > 4, βn L � (2n − 1)π/2. Equation (17.3.8) then gives the
first four natural frequencies:

ω1 = 3.516

L2

√
E I

m
ω2 = 22.03

L2

√
E I

m
ω3 = 61.70

L2

√
E I

m
ω4 = 120.9

L2

√
E I

m

(17.3.22)
Corresponding to each value of βn L , the natural vibration mode is

φn(x) = C1

[
coshβn x − cosβn x − coshβn L + cosβn L

sinhβn L + sinβn L
(sinhβn x − sinβn x)

]

(17.3.23)

m, EI

φ

x

•
•

L φ1(x)

ω1 = 
3.516

L2

EI
m

φ2(x)

ω2 = 
22.03

L2

EI
m

φ3(x)

ω3 = 
61.70

L2

EI
m

φ4(x)

•  •  •

ω4 = 
120.9

L2

EI
m

Figure 17.3.2 Natural vibration modes and frequencies of uniform cantilever beams.
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where C1 is an arbitrary constant. To arrive at Eq. (17.3.23), C2 is expressed in terms of C1

from Eq. (17.3.18a) and substituted in the general solution, Eq. (17.3.9), and Eq. (17.3.17)
is used. The first four natural vibration modes are shown in Fig. 17.3.2.

Derivation 17.1

The solution of the fourth-order ordinary differential equation (17.3.7) is of the form

φ(x) = Aeax (a)

where A is an arbitrary constant. Substituting for φ(x) and its fourth derivative in Eq. (a)
yields the characteristic equation

a4 − β4 = 0 or (a2 − β2)(a2 + β2) = 0 (b)

which gives a = ±β and a = ±iβ. Thus the general solution of Eq. (17.3.7) is

φ(x) = A1eiβx + A2e−iβx + A3eβx + A4e−βx (c)

Equation (c) can be rewritten as Eq. (17.3.9) because

e±βx = coshβx ± sinhβx e±iβx = cosβx ± i sinβx (d)

17.3.3 Shear Deformation and Rotational Inertia

In the preceding derivation of the equation of motion for the transverse vibration of a
beam, the inertial moment associated with rotation of the beam sections was ignored in
Eq. (17.1.2), and only the deflection associated with bending stress in the beam was in-
cluded in Eq. (17.1.3), thus ignoring the deflection due to shear stress in the beam. The
analysis of beam vibration, including both the effects of rotational inertia and shear defor-
mation, is called the Timoshenko beam theory.

The following equation governs such free vibration of a uniform beam with m(x) =
m and E I (x) = E I :

m
∂2u

∂t2
+ E I

∂4u

∂x4
− mr2

(
1+ E

κG

)
∂4u

∂x2∂t2
+ m2r2

κG A

∂4u

∂t4
= 0 (17.3.24)

where G is the modulus of rigidity, r = √I/A is the radius of gyration of the beam cross
section, A is the area of cross section, and κ is a constant that depends on the cross-sectional
shape and accounts for the nonuniform distribution of shear stress across the section. The
constant κ is derived for various cross-sectional shapes in textbooks on solid mechanics
(e.g., κ is 5

6 for rectangular cross section and 9
10 for circular cross section).

Consider a beam with both ends simply supported. Assuming a solution of the form
u(x, t) = C sin(nπx/L) sinω′nt , which satisfies the necessary end conditions, the fre-
quency equation is obtained. Denoting a natural frequency of the beam by ω′n if shear and
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rotational inertia effects are included, by ωn if these effects are neglected [Eq. (17.3.15)],
and defining �n = ω′n/ωn , this frequency equation can be written as

(1−�2
n)−�2

n

(nπr

L

)2
(

1+ E

κG

)
+�4

n

(nπr

L

)4 E

κG
= 0 (17.3.25)

If it is assumed that nr/L << 1, the (nπr/L)4 term may be dropped and Eq. (17.3.25)
reduces to

ω′n = ωn
1√

1+ (nπr/L)2(1+ E/κG)
(17.3.26)

which implies that ω′n < ωn . The correction due to rotational inertia is represented by
the term (nπr/L)2 in the denominator, whereas the shear deformation correction appears
as (nπr/L)2(E/κG). Thus the correction term for shear deformation is E/κG times
larger than the rotational inertia correction term. For steel beams of rectangular cross
section, E/κG is approximately 3.2. Values of �n = ω′n/ωn are plotted in Fig. 17.3.3
using the solution of Eq. (17.3.25), a quadratic equation in �2

n , for three values of E/κG;
these results are valid for all natural frequencies because n is included in the abscissa
scale. Similar results are presented in Fig. 17.3.4 for the first five natural frequencies
of a beam with E/κG = 3.2. Also included is the approximate value of the frequency
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Figure 17.3.3 Influence of shear deformation and rotational inertia on natural frequencies
of simply supported beams.
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Figure 17.3.4 Influence of shear deformation and rotational inertia on natural frequencies
of simply supported beams.

given by Eq. (17.3.26). When nr/L < 0.2 the error in the approximate equation is less
than 5%.

Shear deformation and rotational inertia have the effect of lowering the natural fre-
quencies, as shown in Figs. 17.3.3 and 17.3.4. For a fixed value of the slenderness ratio
L/r of the beam, the frequency reduction due to shear deformation and rotational inertia
increases with the E/κG value and with mode number. The latter observation implies that
while the corrections due to shear deformation and rotational inertia may be unimportant
for the fundamental natural frequency, they could be significant for the higher frequencies.
For a fixed value of E/κG and mode number, the frequency reduction increases with r/L ,
implying its significance for less slender or stubby beams. From the results presented one
can estimate whether these corrections need to be included in a particular problem. For
earthquake response analysis of many practical structures, these corrections are not signif-
icant, but it is important to realize that these corrections do exist. If significant, they can be
included in the finite element formulation for practical structures which are not amenable
to solution as infinite-DOF systems.

17.4 MODAL ORTHOGONALITY

In this section we derive the orthogonality properties of natural vibration modes of systems
with distributed mass and elasticity. For convenience, the derivation is restricted to single-
span beams with hinged, clamped, or free ends and without any lumped mass at the ends,
although the final result applies in general.
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The starting point for this derivation is Eq. (17.3.6), which governs the natural fre-
quencies and modes; for mode r ,[

E I (x)φ′′r (x)
]′′ = ω2

r m(x)φr (x) (17.4.1)

Multiplying both sides by φn(x) and integrating from 0 to L gives∫ L

0
φn(x)

[
E I (x)φ′′r (x)

]′′
dx = ω2

r

∫ L

0
m(x)φn(x)φr (x) dx (17.4.2)

The left side of this equation is integrated by parts; applying this procedure twice leads to∫ L

0
φn(x)

[
E I (x)φ′′r (x)

]′′
dx =

{
φn(x)[E I (x)φ′′r (x)]

′
}L

0

−
{
φ′n(x)[E I (x)φ′′r (x)]

}L

0

+
∫ L

0
E I (x)φ′′n(x)φ

′′
r (x) dx (17.4.3)

It is easy to see that the quantities enclosed in {· · ·} are zero at x = 0 and L if the ends of the
beam are free, simply supported, or clamped. This is true at a clamped end because φ = 0
and φ′ = 0, at a simply supported end because φ = 0 and the bending moment is zero (i.e.,
E Iφ′′ = 0), and at a free end because the bending moment is zero (i.e., E Iφ′′ = 0) and the
shear force is zero [i.e., (E Iφ′′)′ = 0]. With the quantities in {· · ·} set to zero, Eq. (17.4.3)
substituted in Eq. (17.4.2) gives∫ L

0
E I (x)φ′′n(x)φ

′′
r (x) dx = ω2

r

∫ L

0
m(x)φn(x)φr (x) dx (17.4.4)

Similarly, starting with Eq. (17.3.6) written for mode n, multiplying both sides by
φr (x), integrating from 0 to L , and using integration by parts twice leads to∫ L

0
E I (x)φ′′n(x)φ

′′
r (x) dx = ω2

n

∫ L

0
m(x)φn(x)φr (x) dx (17.4.5)

Subtracting Eq. (17.4.4) from Eq. (17.4.5) gives

(ω2
n − ω2

r )

∫ L

0
m(x)φn(x)φr (x) dx = 0

Therefore, if ωn �= ωr , ∫ L

0
m(x)φn(x)φr (x) dx = 0 (17.4.6a)

and this substituted in Eq. (17.4.2) leads to∫ L

0
φn(x)

[
E I (x)φ′′r (x)

]′′
dx = 0 (17.4.6b)

Equations (17.4.6a) and (17.4.6b) are the orthogonality relations for the natural vibration
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modes. If a system has repeated frequencies, modes φn(x) still exist such that any two
modes, n �= r , satisfy the orthogonality relations even if ωn = ωr .

17.5 MODAL ANALYSIS OF FORCED DYNAMIC RESPONSE

We now return to the partial differential equation (17.1.4), which is to be solved for a given
applied force p(x, t). Assuming that the associated eigenvalue problem of Eq. (17.3.6) has
been solved for the natural frequencies and modes, the displacement due to each mode is
given by Eq. (17.3.2) and the total displacement by

u(x, t) =
∞∑

r=1

φr (x)qr (t) (17.5.1)

Thus the response u(x, t) has been expressed as the superposition of the contributions of
the individual modes; the r th term in the series of Eq. (17.5.1) is the contribution of the r th
mode to the response.

We will see next that Eq. (17.1.4) can be transformed to an infinite set of ordinary
differential equations, each of which has one modal coordinate qn(t) as the unknown. Sub-
stituting Eq. (17.5.1) in Eq. (17.1.4) gives

∞∑
r=1

m(x)φr (x)q̈r (t)+
∞∑

r=1

[
E I (x)φ′′r (x)

]′′
qr (t) = p(x, t)

Now we multiply each term by φn(x), integrate it over the length of the beam, and inter-
change the order of integration and summation to get
∞∑

r=1

q̈r (t)
∫ L

0
m(x)φn(x)φr (x) dx +

∞∑
r=1

qr (t)
∫ L

0
φn(x)

[
E I (x)φ′′r (x)

]′′
dx

=
∫ L

0
p(x, t)φn(x) dx

By virtue of the orthogonality properties of modes given by Eq. (17.4.6), all terms in each
of the summations on the left side vanish except the one term for which r = n, leaving

q̈n(t)
∫ L

0
m(x) [φn(x)]

2 dx + qn(t)
∫ L

0
φn(x)

[
E I (x)φ′′n(x)

]′′
dx =

∫ L

0
p(x, t)φn(x) dx

This equation can be rewritten as

Mnq̈n(t)+ Knqn(t) = Pn(t) (17.5.2)

where

Mn =
∫ L

0
m(x) [φn(x)]

2 dx Kn =
∫ L

0
φn(x)

[
E I (x)φ′′n(x)

]′′
dx

Pn(t) =
∫ L

0
p(x, t)φn(x) dx (17.5.3)
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If each end of the beam is free, hinged, or clamped, Eq. (17.4.3) and subsequent discussion
gives an alternative equation for Kn:

Kn =
∫ L

0
E I (x)

[
φ′′n(x)

]2
dx (17.5.4)

The generalized mass Mn and generalized stiffness Kn for the nth mode are related:

Kn = ω2
n Mn (17.5.5)

This relation can be derived by writing Eq. (17.4.1) for the nth mode, multiplying both
sides by φn(x), integrating over 0 to L , and utilizing the definitions of Mn and Kn . The term
Pn(t) in Eq. (17.5.2) is called the generalized force for the nth mode. Equa-
tion (17.5.2) governs the nth modal coordinate qn(t), and the generalized properties Mn ,
Kn , and Pn(t) depend only on the nth mode φn(x).

Thus we have an infinite number of equations like Eq. (17.5.2), one for each mode.
The partial differential equation (17.1.4) in the unknown function u(x, t) has been trans-
formed to an infinite set of ordinary differential equations (17.5.2) in unknowns qn(t).
Recall that the same equations (12.3.3), N in number, were obtained for N -DOF systems.

For applied dynamic forces defined by p(x, t), the motion u(x, t) of the system can
be determined by solving the modal equations for qn(t). The equation for each mode is
independent of the equations for all other modes and can therefore be solved separately.
Furthermore, each modal equation is of the same form as the equation of motion for an SDF
system. Thus the results obtained in Chapters 3 and 4 for the response of SDF systems to
various dynamic forces—harmonic force, impulsive force, etc.—can be adapted to obtain
solutions qn(t) for the modal equations.

Once the qn(t) have been determined, the contribution of the nth mode to the dis-
placement u(x, t) is given by

un(x, t) = φn(x)qn(t) (17.5.6)

The total displacement is the combination of the contributions of all the modes:

u(x, t) =
∞∑

n=1

un(x, t) =
∞∑

n=1

φn(x)qn(t) (17.5.7)

The bending moment and shear force at any section along the length of the beam are
related to the displacements u(x) as follows:

M(x) = E I (x)u′′(x) V(x) = [E I (x)u′′(x)
]′

(17.5.8)

These static relationships apply at each instant of time with u(x) replaced by un(x, t),
which is given by Eq. (17.5.6). Thus the contribution of the nth mode to the internal forces
is given by

Mn(x, t) = E I (x)φ′′n(x)qn(t) Vn(x, t) = [E I (x)φ′′n(x)
]′

qn(t) (17.5.9)
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Combining the contributions of all modes gives the total internal forces:

M(x, t) =
∞∑

n=1

Mn(x, t) =
∞∑

n=1

E I (x)φ′′n(x)qn(t) (17.5.10a)

V(x, t) =
∞∑

n=1

Vn(x, t) =
∞∑

n=1

[
E I (x)φ′′n(x)

]′
qn(t) (17.5.10b)

Example 17.1

Derive mathematical expressions for the dynamic response—displacement and bending
moments—of a uniform simply supported beam to a step-function force po at distance ξ from
the left end (Fig. E17.1). Specialize the results for the force applied at midspan.

ξ

••
L

m, EI

po

(a)

0 t

po

p

(b)

Figure E17.1

Solution
1. Determine the natural vibration frequencies and modes.

ωn = n2π2

L2

√
E I

m
φn(x) = sin

nπx

L
(a)

2. Set up the modal equations. Substituting φn(x) in Eq. (17.5.3a) gives Mn , which is
substituted in Eq. (17.5.5) together with ω2

n to get Kn :

Mn = mL

2
Kn = n4π4 E I

2L3
(b)

Substituting p(x, t) = poδ(x − ξ), where δ(x − ξ) is the Dirac delta function centered at ξ ,
in Eq. (17.5.3c) gives

Pn(t) = poφn(ξ) (c)

Then the nth modal equation is

Mnq̈n(t)+ Knqn(t) = poφn(ξ) (d)
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3. Solve the modal equations. Equation (4.3.2) describes the response of an SDF system
to a step force. We will adapt this solution to Eq. (d) by changing the notation u(t) to qn(t)
and noting that (ust)o = poφn(ξ)/Kn . Thus

qn(t) = poφn(ξ)

Kn
(1− cosωnt) = 2po L3

π4 E I

φn(ξ)

n4
(1− cosωnt) (e)

Substituting Eq. (e) in Eq. (17.5.7) and noting that φn(x) is known from Eq. (a), we obtain the
displacement response u(x, t).

4. Specialize for ξ = L/2. Substituting ξ = L/2 in Eq. (e) and the latter in Eq. (17.5.7)
gives

u(x, t) = 2po L3

π4 E I

∞∑
n=1

φn(L/2)

n4
(1− cosωnt) sin

nπx

L
(f)

where

φn

(
L

2

)
=
{

0 n = 2, 4, 6, . . .
1 n = 1, 5, 9, . . .
−1 n = 3, 7, 11, . . .

(g)

from Eq. (a) and Fig. 17.3.1. Substituting Eq. (g) in Eq. (f) gives

u(x, t) = 2po L3

π4 E I

(
1− cosω1t

1
sin

πx

L
− 1− cosω3t

81
sin

3πx

L

+ 1− cosω5t

625
sin

5πx

L
− 1− cosω7t

2401
sin

7πx

L
+ · · ·

)
(h)

The displacement at midspan is

u

(
L

2
, t

)
= 2po L3

π4 E I

(
1− cosω1t

1
+ 1− cosω3t

81
+ 1− cosω5t

625
+ 1− cosω7t

2401
+ · · ·

)
(i)

The coefficients 1, 81, 625, 2401, and so on, in the denominator suggest that the first-mode
contribution is dominant and that the series converges rapidly.

The bending moments are obtained by substituting Eq. (h) in Eq. (17.5.9a):

M(x, t) = − 2po L

π2

(
1− cosω1t

1
sin

πx

L
− 1− cosω3t

9
sin

3πx

L

+ 1− cosω5t

25
sin

5πx

L
− 1− cosω7t

49
sin

7πx

L
+ · · ·

)
(j)

The bending moment at midspan is

M
(

L

2
, t

)
= −2po L

π2

(
1− cosω1t

1
+ 1− cosω3t

9
+ 1− cosω5t

25
+ 1− cosω7t

49
+ · · ·

)
(k)

This series with n2 in the denominator converges slowly compared to Eq. (i) with n4 in the
denominator. This difference implies that higher modes contribute more significantly to forces
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than to displacements, a result consistent with the conclusions of Chapters 12 and 13 for
discretized systems.

Example 17.2

A simply supported bridge with a single span of length L has a deck of uniform cross section
with mass m per unit length and flexural rigidity E I . A single wheel load po travels across
the bridge at uniform velocity of v, as shown in Fig. E17.2a. Neglecting damping, determine
an equation for the deflection at midspan as a function of time.

m, EI

••
L

x

po

v

(a)

n 
=

 3

n 
=

 2

n 
=

 1

t

Pn

L / v

po

–po

(b)

Time t, s

(c)

0 1 2 2.5
0

0.5

1

1.5

u(
L

/2
)÷

(p
0 /3

3,
82

3)

Location of load, m
0 15 30 45 60

1 Mode

10 Mode

Figure E17.2

The properties of a prestressed concrete box girder elevated freeway connector are
L = 60 m, m= 15,000 kg/m, I = 6 m4, and E = 25,000 MPa. If v= 90 km/h, determine
an equation for the deflection at midspan as a function of time. Also determine the maximum
value of deflection over time.

Solution We assume that the mass of the wheel load is small compared to the bridge mass,
and it can be neglected.

1. Determine the natural vibration frequencies and modes.

ωn = n2π2

L2

√
E I

m
φn(x) = sin

nπx

L
(a)

2. Determine the generalized mass and stiffness. Substituting φn(x) in Eq. (17.5.3a)
gives Mn , which is substituted in Eq. (17.5.5) together with ω2

n to get Kn :

Mn = mL

2
Kn = n4π4 E I

2L3
(b)
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3. Determine the generalized force. A load po traveling with a velocity v takes time
td = L/v to cross the bridge. At any time t the position is as shown in Fig. E17.2a. Thus the
moving load can be described mathematically as

p(x, t) =
{

poδ(x − vt) 0 ≤ t ≤ td
0 t ≥ td

(c)

where δ(x − vt) is the Dirac delta function centered at x = vt . Substituting Eq. (c) in
Eq. (17.5.3c) gives

Pn(t) =
{∫ L

0 poδ(x − vt)φn(x)dx 0 ≤ t ≤ td
0 t ≥ td

=
{

poφn(vt) 0 ≤ t ≤ td
0 t ≥ td

=
{

po sin(nπ t/td ) 0 ≤ t ≤ td
0 t ≥ td

(d)

This generalized force is shown in Fig. E17.2b; for the nth mode, it consists of n half-cycles
of the sine function.

4. Set up modal equations.

Mnq̈n(t)+ Knqn(t) = Pn(t) (e)

where Mn , Kn , and Pn(t) are given by Eqs. (b) and (d). Pn(t) represents n half-cycles of
a sine function. To solve these modal equations, we first determine the response of an SDF
system to such an excitation.

5. Response of SDF system to n half-cycles of p(t) = po sinωt . The equation of motion
is

mü + ku =
{

po sin(nπ t/td ) t ≤ td
0 t ≥ td

(f)

During t ≤ td , the force is the same as the harmonic force p(t) = po sinωt considered earlier
with frequency:

ω = nπ

td
= nπv

L
(g)

The response is given by Eq. (3.1.6b), which is repeated here for convenience, with (ust)o ≡
po/k:

u(t)

(ust)o
= 1

1− (ω/ωn)2

(
sinωt − ω

ωn
sinωnt

)
t ≤ td (h)

After the force ends (i.e., t ≥ td ) the system vibrates freely with its motion described by
Eq. (4.7.3). The displacement u(td ) and velocity u̇(td ) at the end of the excitation are
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determined from Eq. (h):

u(td )

(ust)o
= −ω/ωn

1− (ω/ωn)2
sinωntd (i1)

u̇(td )

(ust)o
= ω

1− (ω/ωn)2

[
(−1)n − cosωntd

]
(i2)

Substituting Eqs. (i) in Eq. (4.7.3) gives

u(t)

(ust)o
= ω/ωn

1− (ω/ωn)2

[
(−1)n sinωn(t − td )− sinωnt

]
t ≥ td (j)

6. Solve modal equations. The solution of Eq. (f) is given by Eqs. (h) and (j). We will
adapt this solution to the modal equations (e) by changing the notation u(t) to qn(t) and noting
that

td = L

v
(ust)o ≡ po

k
= Pno

Kn
= 2po

mLω2
n

where ωn and ω are given by Eqs. (a) and (g), respectively. The results are

qn(t) = 2po

mL

1

ω2
n − (nπv/L)2

(
sin

nπvt

L
− nπv

ωn L
sinωnt

)
t ≤ L/v (k)

qn(t) = 2po

mL

1

ω2
n − (nπv/L)2

nπv

ωn L

[
(−1)n sinωn(t − L/v)− sinωnt

]
t ≥ L/v (l)

This solution is valid provided that ωn �= nπv/L or Tn �= 2L/nv. Note that when specialized
for n = 1, Eqs. (k) and (l) reduce to Eqs. (g) and (h) of Example 8.4.

7. Determine the total response. The displacement response of the beam is given by
Eq. (17.5.7):

u(x, t) =
∞∑

n=1

φn(x)qn(t) (m)

where φn(x) is given by Eq. (a) and qn(t) by Eqs. (k) and (l).
8. Determine deflection at midspan. Substituting x = L/2 in Eq. (m) gives

u(L/2, t) =
∞∑

n=1

φn(L/2)qn(t) (n)

where

φn

(
L

2

)
=
{

0 n = 2, 4, 6, . . .
1 n = 1, 5, 9, . . .
−1 n = 3, 7, 11, . . .

(o)

Equation (o) indicates that the even-numbered modes, the antisymmetric modes, do not con-
tribute to the midspan deflection.
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9. Numerical results. For the given prestressed concrete structure and vehicle speed:

m = 15,000 kg/m = 15 kN-s2/m2

E I = (25,000× 106)(6) = 1.5× 1011 N-m2

ω1 = π2

602

√
1.5× 1011

15,000
= 8.670 rad/s

T1 = 0.72 s

ωn = n2ω1

v = 90 km/h = 25 m/s

πv

L
= 1.309 s(−1)

td = L

v
= 60

25
= 2.4 s

Because the duration of the excitation td = L/v is greater than Tn/2 for all n, the maximum
response occurs while the moving load is on the bridge span. This phase of the response is
given by Eqs. (k) and (n):

u(L/2, t) = 2po

(15)(60)

∞∑
n=1

φn(L/2)

(8.670n2)2 − (1.309n)2

(
sin 1.309nt − 1.309n

8.670n2
sin 8.670n2t

)

= po

33,823

∞∑
n=1

φn(L/2)

n4(1− 0.02280/n2)

(
sin 1.309nt − 0.1510

n
sin 8.670n2t

)
(p)

Equation (p) is valid for 0 ≤ t ≤ 2.4 s. The values of midspan deflection calculated
from Eq. (p) at many values of t are shown in Fig. E16.2c; the maximum deflection uo =
1.1878po/33,823 is attained when the moving load is at mid-span. This deflection is only
17% larger than the static deflection (= po L3/48E I ) due to a stationary load po at mid-span,
implying that the dynamic effects of a moving load are small.

Also shown is the result considering only the contribution of the first vibration mode
[i.e., the n = 1 term in Eq. (p)]. (Recall that this was the result obtained in Example 8.4.) It is
clear that the response contributions of higher modes are negligible.

17.6 EARTHQUAKE RESPONSE HISTORY ANALYSIS

As shown earlier, when the excitation is acceleration üg(t) of the supports, the equation of
motion for a beam is the same as for applied force p(x, t) except that this force is replaced
by peff(x, t) given by Eq. (17.2.4). Thus the modal analysis procedure of Section 17.5 can
readily be extended to the earthquake problem.

From Eq. (17.2.4) the effective earthquake forces are

peff(x, t) = −m(x)üg(t) (17.6.1)
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The spatial distribution of these forces is defined by m(x). This force distribution can
be expanded as a summation of inertia force distributions sn(x) associated with natural
vibration modes (see Section 12.8):

m(x) =
∞∑

r=1

sr (x) =
∞∑

r=1


r m(x)φr (x) (17.6.2)

Premultiplying both sides by φn(x), integrating over the length of the beam, and utilizing
modal orthogonality with respect to the mass distribution, Eq. (17.4.6a), leads to


n = Lh
n

Mn
where Lh

n =
∫ L

0
m(x)φn(x) dx (17.6.3)

The contribution of the nth mode to m(x) is

sn(x) = 
nm(x)φn(x) (17.6.4)

Observe that these modal expansion equations for a distributed-mass system are similar to
the corresponding equations (13.2.2) and (13.2.4) for lumped-mass systems.

For uniform cantilever towers with mass m per unit length the modal expansion
of Eq. (17.6.2) is as shown in Fig. 17.6.1. The functions sn(x) were evaluated from
Eq. (17.6.4) using Eqs. (17.6.3) and (17.5.3a) and the φn(x) given by Eqs. (17.3.23) and
(17.3.21).

= + + + + •  •  •

s(x) s1 2 3(x) s (x) s (x) s4(x)
0 0

1.566m

0

–0.868m

0

0.509m

0–m m –m m –m m –m m –m m

–0.364m

Figure 17.6.1 Modal expansion of effective earthquake forces for uniform towers.

Returning now to the modal analysis procedure of Section 17.5, p(x, t) in
Eq. (17.5.3c) is replaced by peff(x, t) given by Eq. (17.6.1), to obtain

Pn(t) = −Lh
nüg(t) (17.6.5)

Substituting Eq. (17.6.5) in Eq. (17.5.2), dividing by Mn , and using Eqs. (17.5.5) and
(17.6.2a) gives the modal equations of an undamped tower subjected to earthquake excita-
tion:

q̈n + ω2
nqn = −
nüg(t) (17.6.6)
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For classically damped systems, Eq. (17.6.6) becomes

q̈n + 2ζnωnq̇n + ω2
nqn = −
nüg(t) (17.6.7)

where ζn is the damping ratio for the nth mode. This is the same as Eq. (13.1.7) de-
rived earlier for N -DOF systems, except that Lh

n and Mn that enter into 
n are now given
by Eqs. (17.6.3) and (17.5.3), respectively. As shown in Section 13.1.3, the solution of
Eq. (17.6.7) is

qn(t) = 
n Dn(t) (17.6.8)

where Dn(t) is the deformation response of the nth-mode SDF system. This is an SDF
system with vibration properties—natural frequency ωn and damping ratio ζn—of the nth
mode of the distributed-mass system. Thus qn(t) is readily available once the SDF system
response has been determined by the methods of Chapter 6. The contribution of the nth
mode to the earthquake response of the tower can be expressed in terms of Dn(t). Substi-
tuting Eq. (17.6.8) in Eqs. (17.5.6) and (17.5.9) gives the displacements, bending moments,
and shear forces due to the nth mode:

un(x, t) = 
nφn(x)Dn(t) (17.6.9)

Mn(x, t) = 
n E I (x)φ′′n(x)Dn(t) Vn(x, t) = 
n
[
E I (x)φ′′n(x)

]′
Dn(t) (17.6.10)

Alternatively, as in Chapter 13 for an N -DOF system, the internal forces can be deter-
mined from the equivalent static forces associated with displacements un(x, t) computed
from dynamic analysis. To derive an equation for these forces, we introduce a familiar
equation from elementary beam theory relating deflections u(x) to applied forces f (x).
For a uniform beam

E I uIV(x) = f (x) (17.6.11)

where E I is the flexural rigidity and uIV = d4u/dx4. The more general version of this
equation applicable to nonuniform beams with flexural rigidity E I (x) is[

E I (x)u′′(x)
]′′ = f (x) (17.6.12)

Replacing u(x) by the time-varying displacements un(x, t) from Eq. (17.6.9) gives

fn(x, t) = 
n
[
E I (x)φ′′n(x)

]′′
Dn(t) (17.6.13)

which, by using Eq. (17.4.1) rewritten for the nth mode, becomes

fn(x, t) = sn(x)An(t) (17.6.14)

where sn(x) is given by Eq. (17.6.4), and An(t), the pseudo-acceleration response of the
nth-mode SDF system, is given by Eq. (13.1.12), which is repeated:

An(t) = ω2
n Dn(t) (17.6.15)

Observe the similarity between Eqs. (17.6.14) and (13.2.7) for a lumped-mass system. At
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any time instant the contribution rn(t) of the nth mode to any response quantity r(t)—
deflection, shear force, or bending moment at any location of the beam—is determined by
static analysis of the beam subjected to external forces fn(x, t), and can be expressed as

rn(t) = r st
n An(t) (17.6.16)

The modal static response r st
n is determined by static analysis of the tower due to external

forces sn(ξ) (Fig. 17.6.2). As shown in Fig. 17.6.1, these forces due to the fundamental
mode all act in the same direction, but for the second and higher modes they will change
direction as one moves up the tower.

ξ

•
•

L

x

sn(ξ) = Γnm(ξ)φn(ξ)

Figure 17.6.2 Static problem to be solved
to determine modal static responses.

The modal static responses are presented in Table 17.6.1 for five response quantities:
the shear V(x) at location x , the bending moment M(x) at location x , the base shear
Vb = V(0), the base moment Mb =M(0), and deflection u(x). The first four equations
come from static analysis of the system in Fig. 17.6.2. The result for u(x) is obtained by
comparing Eqs. (17.6.9) and (17.6.16) and using Eq. (17.6.15). Parts of the equations for
V st

bn and Mst
bn are obtained by substituting Eq. (17.6.4) for sn(ξ), using Eq. (17.6.3) for Lh

n ,
and defining

M∗n = 
n Lh
n h∗n =

Lθn
Lh

n

Lθn =
∫ L

0
xm(x)φn(x) dx (17.6.17)

TABLE 17.6.1 MODAL STATIC RESPONSES

Response, r Modal Static Response, r st
n

V(x) Vst
n (x) =

∫ L

x
sn(ξ) dξ

M(x) Mst
n (x) =

∫ L

x
(ξ − x)sn(ξ) dξ

Vb Vst
bn =

∫ L

0
sn(ξ) dξ = 
n Lh

n = M∗n

Mb Mst
bn =

∫ L

0
ξsn(ξ) dξ = 
n Lθn = h∗n M∗n

u(x) ust
n (x) = (
n/ω

2
n)φn(x)

Observe the similarity between the equations in Table 17.6.1 and those for a lumped-mass
system in Table 13.2.1. The approach symbolized by Eq. (17.6.16) to determine shear and
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moment is preferable over Eq. (17.6.10) because it avoids computation of the second and
third derivatives of the mode shapes; obviously, both methods will give identical results.

The base shear Vbn(t) and base moment Mbn(t) due to the nth mode are obtained
by specializing Eq. (17.6.16) for Vb and Mb and substituting for Vst

bn and Mst
bn from

Table 17.6.1:

Vbn(t) = M∗n An(t) Mbn(t) = h∗nVbn(t) (17.6.18)

Because Eq. (17.6.18) is identical to Eqs. (13.2.12b) and (13.2.15b) for lumped-mass sys-
tems, following Section 13.2.5, M∗n and h∗n may be interpreted as the effective modal mass
and effective modal height for the nth mode. Observe that Eq. (17.6.17a and b) is iden-
tical to Eq. (13.2.9a) for lumped-mass systems; the definitions of Mn , Lh

n , and Lθn differ,
however, between distributed-mass and lumped-mass systems.

The sum of the effective modal masses over all modes is equal to the total mass of
the tower:

∞∑
n=1

M∗n =
∫ L

0
m(x) dx (17.6.19)

and the sum of the first moments about the base of the effective modal masses M∗n located
at heights h∗n is equal to the first moment of the distributed mass about the base:

∞∑
n=1

h∗n M∗n =
∫ L

0
xm(x) dx (17.6.20)

These relations can be proven in the same manner as the analogous equations (13.2.14)
and (13.2.17) for a lumped-mass system. In particular, Eq. (17.6.19) can be proven by
integrating Eq. (17.6.2) over the height of the tower and using Eq. (17.6.3b). Similarly,
Eq. (17.6.20) can be derived from the modal expansion of forces xm(x).

The effective modal masses M∗n and effective modal heights h∗n for a uniform can-
tilever tower are shown in Fig. 17.6.3; note that h∗n are plotted without their algebraic signs.
M∗n and h∗n were determined from Eq. (17.6.17) using the known modes (Fig. 17.3.2). Ob-
serve that the sum of M∗n for the first four modes gives 90% of the total mass of the tower.

m(x) = m

•
•

L

ug(t)¨

=

Mode 1

0.
72

6L

0.613mL

2

0.
20

9L

0.188mL

3

0.
12

7L 0.065mL

4

0.
09

0L 0.033mL
• • •

ug(t)¨

Figure 17.6.3 Effective modal masses and effective modal heights.
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Combining the response contributions of all the modes the earthquake response of
the system:

r(t) =
∞∑

n=1

rn(t) =
∞∑

n=1

r st
n An(t) (17.6.21)

where Eq. (17.6.16) has been used for rn(t). This nth-mode contribution to the response
can be determined from the modal static response (Table 17.6.1) and An(t), the pseudo-
acceleration response of the nth-mode SDF system, just as for N -DOF systems (Fig. 13.1.1).

17.7 EARTHQUAKE RESPONSE SPECTRUM ANALYSIS

The peak response of a distributed-mass system, such as a cantilever tower, can be es-
timated from the earthquake response (or design) spectrum by procedures analogous to
those developed in Chapter 13, Part B for lumped-mass systems.

The exact peak value of the nth-mode response rn(t) is

rno = r st
n An (17.7.1)

where An ≡ A(Tn, ζn) is the ordinate of the pseudo-acceleration spectrum corresponding
to natural period Tn and damping ratio ζn . Alternatively, rno may be viewed as the result of
static analysis of the tower subjected to external forces

fno(x) = sn(x)An (17.7.2)

which are the peak values of the equivalent static forces fn(x, t) defined in Eq. (17.6.14).
The peak value ro of the total response r(t) can be estimated by combining the modal

peaks rno according to one of the modal combination rules presented in Section 13.7.2.
Because the natural frequencies of transverse vibration of a beam are well separated, the
SRSS combination rule is satisfactory. Thus

ro �
( ∞∑

n=1

r2
no

)1/2

(17.7.3)

Example 17.3

A reinforced-concrete chimney, 200 m high, has a uniform hollow circular cross section with
outside diameter 16 m and wall thickness 1 m (Fig. E17.3a). For purposes of earthquake
analysis, the chimney is assumed clamped at the base and its mass and flexural stiffness are
computed from the gross area of the concrete (neglecting the reinforcing steel). The elastic
modulus for concrete Ec = 25,000 MPa, and its unit mass is 2400 kg/m3. Modal damping
ratios are estimated as 5%. Determine the displacements, shear forces, and bending moments
due to an earthquake characterized by the design spectrum of Fig. 6.9.5 scaled to a peak ground
acceleration of 0.25g. Neglect shear deformations and rotational inertia.
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Figure E17.3a, b

Solution
1. Determine the chimney properties.

m = π(82 − 72)(2400) = 113,097 kg/m = 113.10 kN-s2/m2

E I = (25,000× 106)
π

4

[
84 − 74

] = 3.328× 1013 N-m2 = 3.328× 1010 kN-m2

2. Determine the natural vibration periods and modes. Equation (16.3.22) gives the nat-
ural frequencies of vibration, and the corresponding periods, in seconds, are T1 = 4.167, T2 =
0.6649, T3 = 0.2375, T4 = 0.1212, and so on. The natural modes, given by Eq. (16.3.23)
with βn L defined by Eq. (16.3.21), were evaluated numerically for many values of x and are
shown in Fig. 16.3.2, normalized to unit value at the top.

3. Compute the modal properties. With the mode shapes known, the properties Mn ,
Lh

n , Lθn , M∗n , and h∗n were obtained by numerically evaluating their respective integrals, and
are presented in Table E16.3.

4. Read the design spectrum ordinates. The design spectrum of Fig. 6.9.5 scaled to a
peak acceleration of 0.25g is shown in Fig. E16.3b, wherein the pseudo-acceleration ordinates
corresponding to the first four periods are noted: An/g = 0.106, 0.676, 0.677, and 0.663.

5. Compute the displacements. The peak displacements uno(x) due to the nth mode are
given by Eq. (16.7.1), where the modal static response r st

n becomes ust
n (x) given in

Table 16.6.1. Substituting known values of 
n , φn(x), ω2
n , and An leads to uno(x), n = 1,

2, 3, and 4, shown in Fig. E16.3c. At each location x these peak modal displacements are
combined according to the SRSS rule, Eq. (16.7.3), to obtain an estimate of the total displace-
ments uo(x), which are also shown. Observe that the total displacements are due primarily to
the first mode.



u1o u2o u3o u4o Total uo

(c) Lateral displacements, cm

0 70–70 0 70–70 0 70–70 0 70–70 0 70–70

71.7 –6.44 0.483 –0.088 72.0

f1o f2o f3o f4o

(d) Equivalent static forces, kN/m

–800 8000 –800 8000 –800 8000 –800 8000

184.3 –650.7 382.4 –267.5

V1o V2o V3o V4o Total Vo

(e) Shears, 103 kN

0 30–30 0 30–30 0 30–30 0 30–30 0 30–30

M1o M2o M3o M4o Total Mo

(f) Bending moments, 106 kN-m

–3 0 3 –3 0 3 –3 0 3 –3 0 3 –3 0 3

Figure E17.3c–f
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TABLE E17.3 MODAL PROPERTIES

Mode Mn/mL Lh
n/mL 
n Lθn/mL2

1 0.2500 0.3915 1.5660 0.2844
2 0.2500 −0.2170 −0.8679 −0.0454
3 0.2500 0.1272 0.5089 0.0162
4 0.2498 −0.0909 −0.3637 −0.0082

6. Determine the modal expansion of m(x), Eq. (17.6.2). With φn(x) known from
Fig. 17.3.2 and 
n from Table E17.3, the functions sn(x) are determined from Eq. (17.6.4).
Actually, these were presented in Fig. 17.6.1.

7. Compute the equivalent static forces for the nth mode. These forces fno(x) are
determined from Eq. (17.7.2) using the sn(x) of Fig. 17.6.1 and the An values of Fig. E17.3b.
The results for the first four modes are shown in Fig. E17.3d.

8. Compute the shears and bending moments. For each mode the peak values of shears
and bending moments at location x are computed by static analysis of the chimney subjected to
forces fno(x). The resulting shears and bending moments due to the first four modes are shown
in Fig. E17.3e and f. At each section x , these modal responses are combined by the SRSS
rule [Eq. (17.7.3)] to obtain an estimate of the total forces, which are also shown. Observe
that the first two modes contribute significantly to the total response, with the second-mode
contribution more significant for the shears than for moments.

9. Compare with Rayleigh’s method. It is of interest to compare the results above
considering response in four modes with the approximate solution using Rayleigh’s method
(Example 8.3). The approximate analysis predicts the displacements reasonably well but not
the bending moments or shears. There are two reasons for the larger errors in forces: (a) The
approximate results differ from the exact response due to the first mode because the assumed
shape function in Rayleigh’s method is an approximation to this mode; this discrepancy in-
troduces larger errors in forces than in displacements. (b) The second and higher modes,
whose response contributions to forces are more significant than they are for displacements,
are neglected in Rayleigh’s method.

17.8 DIFFICULTY IN ANALYZING PRACTICAL SYSTEMS

It is evident that the dynamic response of systems with distributed mass and elasticity can
be determined by the modal analysis procedure once the natural vibration frequencies and
modes of the system have been determined. Both examples solved in Section 17.3 involved
uniform beams, and we found the natural frequencies and modes analytically, although the
frequency equation for the cantilever had to be solved numerically. This classical approach
is rarely feasible if the flexural rigidity E I or mass m vary along the length of the beam,
several intermediate supports are involved, or the system is an assemblage of several mem-
bers with distributed mass. In this section we identify some of the difficulties in obtaining
analytical solutions for the above-mentioned systems.

Consider a single-span beam with mass m(x) and flexural stiffness E I (x). To de-
termine the natural frequencies and modes, we need to solve Eq. (17.3.6), which can be
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rewritten as

E I (x)φIV(x)+ 2E I ′(x)φ′′′(x)+ E I ′′(x)φ′′(x)− ω2m(x)φ(x) = 0 (17.8.1)

Because the coefficients E I (x), E I ′(x), E I ′′(x), and m(x) of this fourth-order differential
equation vary with x , an analytical solution is rarely feasible for ω2 and φ(x). Therefore,
it is not practical to use the classical approach for practical problems in which E I (x) and
m(x) may be complicated functions.

In finding the natural frequencies and modes of a beam on multiple supports, the
uniform segment between each pair of supports is considered as a separate beam with its
origin at the left end of the segment. Equation (17.3.9) applies to each segment, there is
one such equation for each segment, and the necessary boundary conditions are:

1. At each end of the beam the usual boundary conditions are applicable, depending on
the type of support.

2. At each intermediate support the deflection is zero, and since the beam is continuous,
the slope and the moment just to the left and to the right of the support are the same.

This process quickly becomes unmanageable because of the four constants in Eq. (17.3.9),
which must be evaluated in each segment. An analytical solution is rarely feasible for
ω2 and φ(x), especially if the span lengths vary and m(x) and E I (x) vary within each
segment, as would often be the case for a multispan bridge.

Consider the two-member frame shown in Fig. 17.8.1. Each member is axially rigid
and has uniform properties—flexural rigidity and mass—as indicated; however,
they may differ from one member to the other. Each member is considered as a separate
beam with its origin at one end. Equation (17.3.9) applies to each uniform member, there
is one such equation for each member, and the necessary end and joint conditions are:

1. At the supports of the frame the usual boundary conditions are applicable, depending
on the type of support, resulting in four equations for the frame of Fig. 17.8.1:

φ(1)(L1) = 0 φ′(1)(L1) = 0 φ(2)(0) = 0 φ′(2)(0) = 0

φ(1)(x1)

x1

••
L1

φ
(2

)(
x 2

) x2

•
•

L2 EI2, m2

EI1, m1

Figure 17.8.1
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2. At the joint the end displacements of the joining members should be compatible; this
condition for axially rigid members gives

φ(1)(0) = 0 φ(2)(L2) = 0

3. At the joint the end slopes of the joining members should be compatible; thus

φ′(1)(0) = φ′(2)(L2)

4. At the joint the bending moments should be in equilibrium; thus

E I1φ
′′
(1)(0)+ E I2φ

′′
(2)(L2) = 0

A simple two-member frame requires setting up these eight conditions and the evaluation
of eight constants. The process becomes unmanageable for a frame with many members.

It should now be evident that the classical procedure to determine the natural frequen-
cies and modes of a distributed-mass system with infinite number of DOF, is not feasible
for practical structures. Such problems can be analyzed by discretizing them as systems
with a finite number of DOFs, as discussed in the next chapter.
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P R O B L E M S

17.1 Find the first three natural vibration frequencies and modes of a uniform beam clamped at
both ends. Sketch the modes. Comment on how these frequencies compare with those of a
simply supported beam.

17.2 Find the first three natural vibration frequencies and modes of a uniform beam clamped at
one end and simply supported at the other. Sketch the modes.

17.3 Find the first five natural vibration frequencies and modes of a uniform beam free at both
ends. Sketch the modes. Comment on how these frequencies compare with those for a beam
clamped at both ends. (Hint: The first two modes are rigid-body modes.)
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17.4 A weight W is suspended from the midspan of a simply supported beam as shown in
Fig. P17.4. If the wire by which the weight is suspended suddenly snaps, describe the
subsequent vibration of the beam. Specialize the general result to obtain the deflection at
mid-span. Neglect damping.

m, EI

••
L

W

Wire

Figure P17.4

17.5 Derive mathematical expressions for the displacement response of a simply supported uni-
form beam to the force distribution shown in Fig. P17.5; the time variation of the force is a
step function. Express the displacements u(x, t) in terms of the natural vibration modes of
the beam. Identify the modes that do not contribute to the response. Specialize the general
result to obtain the deflection at midspan. Neglect damping.

m, EI

••
L

p(t)

Figure P17.5

17.6 Derive mathematical expressions for the displacement response of a simply supported uni-
form beam to the force distribution shown in Fig. P17.6; the time variation of the force is a
step function. Express the displacements u(x, t) in terms of the natural vibration modes of
the beam. Identify the modes that do not contribute to the response. Specialize the general
result to obtain the deflection at quarter span. Neglect damping.

m, EI

••
L

p(t)

p(t)

Figure P17.6

17.7 Solve Problem 8.25 considering all natural vibration modes of the bridge.

17.8 Solve Problem 8.26 considering all natural vibration modes of the bridge.

17.9 Prove that Eq. (17.6.19) is valid for a vertical cantilever beam.

17.10 Prove that Eq. (17.6.20) is valid for a vertical cantilever beam.
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17.11 A free-standing intake–outlet tower 60 m high has a uniform hollow circular cross section
with outside diameter 8 m and wall thickness 40 cm. Assume that the tower is clamped
at the base and that its mass and flexural stiffness are computed from the gross area of the
concrete (neglecting reinforcing steel). The elastic modulus for concrete is 25,000 MPa, and
its unit mass is 2400 kg/m3. Modal damping ratios are estimated as 5%. Determine the top
displacement, base shear, and base overturning moment due to an earthquake characterized
by the design spectrum of Fig. 6.9.5 scaled to the peak ground acceleration of 1

3 g. Neglect
shear deformations and rotational inertia.



18

Introduction to the
Finite Element Method

PREVIEW

The classical analysis of distributed-mass systems with infinite number of DOFs is not
feasible for practical structures, for reasons mentioned in Chapter 17. In this chapter,
two methods are presented for discretizing one-dimensional distributed-mass systems: the
Rayleigh–Ritz method and the finite element method. As a result, the governing partial
differential equation is replaced by a system of ordinary differential equations, as many
as the DOFs in the discretized system, which can be solved by the methods presented in
Chapters 10 to 16. The consistent mass matrix concept is introduced and the accuracy
and convergence of the approximate natural frequencies of a cantilever beam, determined
by the finite element method using consistent or lumped-mass matrices, is demonstrated.
The chapter ends with a short discussion on application of the finite element method to the
dynamic analysis of structural continua.

PART A: RAYLEIGH–RITZ METHOD

18.1 FORMULATION USING CONSERVATION OF ENERGY

Developed in Chapter 15 for lumped-mass systems, the Rayleigh–Ritz method is also
applicable to systems with distributed mass and elasticity. It was for the latter class of
systems that the method was originally developed by W. Ritz in 1909. The method, ap-
plicable to any one-, two-, or three-dimensional system with distributed mass and elas-
ticity, reduces the system with an infinite number of DOFs to one with a finite number of

729
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DOFs. In this section we present the Rayleigh–Ritz method for the transverse vibration of a
straight beam.

Consider such a beam with flexural rigidity E I (x) and mass m(x) per unit length,
both of which may vary arbitrarily with position x . The deflections u(x) of the system are
expressed as a linear combination of several trial functions ψj (x):

u(x) =
N∑

j=1

zjψj (x) = Ψ(x)z (18.1.1)

where zj are the generalized coordinates, which vary with time in a dynamic problem, z is
the N × 1 vector of generalized coordinates, and the 1× N matrix of trial functions is

Ψ(x) = [ψ1(x) ψ2(x) · · · ψN (x)]

Each trial functionψj (x)—also known as Ritz function or shape function—must be admis-
sible: that is, continuous and have a continuous first derivative, and satisfy the displacement
boundary conditions on the system. All the trial functions must be linearly independent and
are selected appropriate for the system to be analyzed.

The starting point for formulation of the Rayleigh–Ritz method is the Rayleigh’s
quotient [Eq. (8.5.11)] for a function φ̃(χ) defined consistent with Eq. (18.1.1):

φ̃(x) = Ψ(x)χ (18.1.2)

Replacing ψ(x) in Eq. (8.5.11) by φ̃(x) and substituting Eq. (18.1.2) leads to

ρ(χ) =
∑ N

i=1

∑ N
j=1
χ iχ j k̃i j∑ N

i=1

∑ N
j=1
χ iχ j m̃i j

(18.1.3)

where

k̃i j =
∫ L

0
E I (x)ψ ′′i (x)ψ

′′
j (x) dx m̃i j =

∫ L

0
m(x)ψi (x)ψj (x) dx (18.1.4)

Rayleigh’s quotient cannot be determined from Eq. (18.1.3) because the N generalized
coordinates zi are unknown. Our objective is to find the values that provide the “best”
approximate solution for the natural vibration frequencies and modes of the system.

For this purpose we invoke the property that Rayleigh’s quotient is stationary in the
neighborhood of the true modes (or true values of χ), which implies that ∂ρ/∂χ i = 0—
i = 1, 2, . . . , N . We do not need to go through the details of the derivation because the
ρ(χ) for distributed-mass systems, Eq. (18.1.3), is of the same form as that for discretized
systems, Eq. (15.3.8). Thus the stationary condition on Eq. (18.1.3) leads to the eigenvalue
problem of Eq. (15.3.11), which is repeated here for convenience:

k̃χ = ρm̃χ (18.1.5)

where k̃ and m̃ are square matrices of order N , the number of Ritz functions used to rep-
resent the deflections u(x) in Eq. (18.1.1), with their elements given by Eq. (18.1.4). The
original eigenvalue problem for distributed-mass systems, Eq. (17.3.6), has been reduced
to a matrix eigenvalue problem of order N by using Rayleigh’s stationary condition.
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The solution of Eq. (18.1.5), obtained by the methods of Chapter 10, yields N eigen-
values ρ1, ρ2, . . . , ρN and the corresponding eigenvectors

χn = 〈χ1n χ2n · · · χ Nn〉T n = 1, 2, . . . , N (18.1.6)

The eigenvalues provide

ω̃n = √ρn (18.1.7)

When arranged in increasing order of magnitude, ω̃n are upper bound approximations to
the true natural frequencies ωn of the system, that is,

ω̃n ≥ ωn n = 1, 2, . . . , N (18.1.8)

Furthermore, an approximate frequency approaches the exact value from above as the num-
ber N of Ritz functions is increased. The eigenvectors χn substituted in Eq. (18.1.2) pro-
vide the functions:

φ̃n(x) =
N∑

j=1

χ jnψj (x) = Ψ(x)χn n = 1, 2, . . . , N (18.1.9)

which are approximations to the true natural modes φn(x) of the system. The quality of
these approximate results is generally better for the lower modes than for higher modes.
Therefore, more Ritz functions should be included than the number of modes desired for
dynamic response analysis of the system. Although the natural modes φ̃n(x) are approx-
imate, they satisfy the orthogonality properties of Eq. (17.4.6)—as demonstrated for dis-
cretized systems (Section 15.3.4)—and can therefore be used in modal analysis of the
system as described in Sections 17.5 to 17.7.

Example 18.1

Find approximations for the first two natural frequencies and modes of lateral vibration of a
uniform cantilever beam of Fig. E18.1a by the Rayleigh–Ritz method using the shape func-
tions shown in Fig. E18.1b:

ψ1(x) = 1− cos
πx

2L
ψ2(x) = 1− cos

3πx

2L
(a)

x

L
m, EI

(a)

ψ1(x) ψ2(x)

(b)

1(x)
~

2(x)

(c)

φ

1(x)φ
~

2(x)φ

φ

Figure E18.1
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These functions are admissible because they are continuous, have a continuous first derivative,
and satisfy the two displacement boundary conditions at the clamped end. However, they do
not satisfy one of the force boundary conditions at the free end. Note that the two shape
functions satisfy the requirement of linear independence.

Solution
1. Set up k̃ and m̃. For the selected Ritz functions of Eq. (a), the stiffness coefficients

are computed from Eq. (18.1.4a):

k̃11 = 1

16

π4 E I

L4

∫ L

0

(
cos

πx

2L

)2
dx = 1

32

π4 E I

L3
(b1)

k̃12 = 9

16

π4 E I

L4

∫ L

0
cos

πx

2L
cos

3πx

2L
dx = 0 (b2)

k̃21 = k̃12 = 0 (b3)

k̃22 = 81

16

π4 E I

L4

∫ L

0

(
cos

3πx

2L

)2

dx = 81

32

π4 E I

L3
(b4)

Similarly, the mass coefficients are determined from Eq. (18.1.4b):

m̃11 = m

∫ L

0

(
1− cos

πx

2L

)2
dx = 0.2268mL (c1)

m̃12 = m

∫ L

0

(
1− cos

πx

2L

)(
1− cos

3πx

2L

)
dx = 0.5756mL (c2)

m̃21 = m̃12 = 0.5756mL (c3)

m̃22 = m

∫ L

0

(
1− cos

3πx

2L

)2

dx = 1.9244mL (c4)

Substituting Eqs. (b) and (c) in Eq. (18.1.5) gives[
1 0
0 81

]{χ1
χ2

}
= ρ

[
0.2268 0.5756
0.5756 1.9244

]{χ1
χ2

}
(d)

where

ρ = 32mL4

π4 E I
ρ (e)

2. Solve the reduced eigenvalue problem.

ρ1 = 4.0775 ρ2 = 188.87

χ1 =
[χ11
χ21

]
=
[

1
0.0321

]
χ2 =

[χ12
χ22

]
=
[

1
−0.3848

]
3. Determine the approximate frequencies from Eqs. (e) and (18.1.7).

ω̃1 = 3.523

L2

√
E I

m
ω̃2 = 23.978

L2

√
E I

m
(f)
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4. Determine the approximate modes from Eq. (18.1.9).

φ̃1(x) =
(

1− cos
πx

2L

)
+ 0.0321

(
1− cos

3πx

2L

)
= 1.0321− cos

πx

2L
− 0.0321 cos

3πx

2L
(g1)

φ̃2(x) =
(

1− cos
πx

2L

)
− 0.3848

(
1− cos

3πx

2L

)
= 0.6152− cos

πx

2L
+ 0.3848 cos

3πx

2L
(g2)

These approximate modes are plotted in Fig. E18.1c.
5. Compare with the exact solution. The exact values for natural frequencies and modes

of a cantilever beam were determined in Section 17.3.2. The exact frequencies are

ω1 = 3.516

L2

√
E I

m
ω2 = 22.03

L2

√
E I

m
(h)

Both approximate frequencies are higher than the corresponding exact values, and the error is
larger in the second frequency. The exact modes are also plotted in Fig. E18.1c. It is clear that
the approximate solution is excellent for the first mode but not as good for the second mode.

The approximate value for the fundamental frequency in Eq. (h) is lower and hence
better than the result obtained in Example 8.2 by Rayleigh’s method with ψ1(x) as the only
trial function.

18.2 FORMULATION USING VIRTUAL WORK

In this section the equation governing the transverse vibration of a straight beam due to
external forces will be formulated using the principle of virtual displacements. At each
time instant the system is in equilibrium under the action of the external forces p(x, t),
internal resisting bending moments M(x, t), and the fictitious inertia forces, which by
D’Alembert’s principle are

f I (x, t) = −m(x)ü(x, t) (18.2.1)

If the system in equilibrium is subjected to virtual displacements δu(x), the external virtual
work δWE is equal to the internal virtual work δWI :

δWI = δWE (18.2.2)

Based on the development of Section 8.3.2, these work quantities are

δWE = −
∫ L

0
m(x)ü(x, t)δu(x) dx +

∫ L

0
p(x, t)δu(x) dx (18.2.3a)

δWI =
∫ L

0
E I (x)u′′(x, t)δ[u′′(x)] dx (18.2.3b)

The displacements u(x, t) are given by Eq. (18.1.1) and δu(x) is any admissible virtual
displacement:

δu(x) = ψi (x) δzi i = 1, 2, . . . , N (18.2.4)
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Substituting Eqs. (18.1.1) and (18.2.4) in Eq. (18.2.3) leads to

δWE = −δzi

N∑
j=1

z̈ j m̃i j + δzi p̃i (t) (18.2.5a)

δWI = δzi

N∑
j=1

zj k̃i j (18.2.5b)

where

m̃i j =
∫ L

0
m(x)ψi (x)ψj (x) dx

k̃i j =
∫ L

0
E I (x)ψ ′′i (x)ψ

′′
j (x) dx

p̃i (t) =
∫ L

0
p(x, t)ψi (x) dx

(18.2.6)

Substituting Eq. (18.2.5) in Eq. (18.2.2) gives

δzi

⎛
⎝ N∑

j=1

z̈ j m̃i j +
N∑

j=1

zj k̃i j

⎞
⎠ = δzi p̃i (t) (18.2.7)

and δzi can be dropped from both sides because this equation is valid for any δzi .
Corresponding to the N independent virtual displacements of Eq. (18.2.4), there are

N equations like Eq. (18.2.7). Together they can be expressed in matrix notation:

m̃z̈+ k̃z = p̃(t) (18.2.8)

where z is the vector of N generalized coordinates, m̃ the generalized mass matrix with
its elements defined by Eq. (18.2.6a), k̃ the generalized stiffness matrix whose elements
are given by Eq. (18.2.6b), and p̃(t) the generalized applied force vector with its elements
defined by Eq. (18.2.6c). It is obvious from Eq. (18.2.6) that m̃ and k̃ are symmetric matri-
ces. A damping matrix can also be included in the virtual work formulation if the damping
mechanisms can be defined. The system of coupled differential equations (18.2.8) can be
solved for the unknowns zj (t) using the numerical procedures presented in Chapter 16.
Then at each time instant the displacement u(x) is determined from Eq. (18.1.1). This is
an alternative to the classical modal analysis of the system mentioned at the end of Sec-
tion 18.1.

The mass and stiffness matrices obtained using the principle of virtual displacements
are identical to those derived in Section 18.1 from the principle of energy conservation, the
concept underlying the original development of the Rayleigh–Ritz method. We will draw
upon the virtual work approach when we introduce the finite element method in Part B of
this chapter.
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18.3 DISADVANTAGES OF RAYLEIGH–RITZ METHOD

The Rayleigh–Ritz method leads to natural frequencies ω̃n and natural modes φ̃n(x) that
approximate the true values ωn and φn(x), respectively, best among the admissible class of
functions described by Eq. (18.1.1). However, the method is not practical for general appli-
cation and automated computer implementation to analyze complex structures for several
reasons: (1) It is difficult to select the Ritz trial functions because they should be suitable
for the particular system and its boundary conditions. (2) It is not clear how to select addi-
tional functions to improve the accuracy of an approximate solution obtained using fewer
functions. (3) It may be difficult to evaluate the integrals of Eq. (18.2.6) over the entire
structure, especially with higher-order trial functions. (4) It is computationally demanding
to work with the matrices m̃ and k̃ because they are full matrices. (5) It is difficult to in-
terpret the generalized coordinates, as they do not necessarily represent displacements at
physical locations on the structure. These difficulties are overcome by the finite element
method introduced next.

PART B: FINITE ELEMENT METHOD

The finite element method is one of the most important developments in applied mechanics.
Although the method is applicable to a wide range of problems, only an introduction is
included here with reference to systems that can be idealized as an assemblage of one-
dimensional structural finite elements. The presentation, although self-contained, is based
on the presumption that the reader is familiar with the finite element method for analysis
of static structural problems.

18.4 FINITE ELEMENT APPROXIMATION

In the finite element method the trial functions are selected in a special way to overcome
the aforementioned difficulties of the Rayleigh–Ritz method. To illustrate this concept,
consider the cantilever beam shown in Fig. 18.4.1, which is subdivided into a number of
segments, called finite elements. Their size is arbitrary; they may be all of the same size
or all different. The elements are interconnected only at nodes or nodal points. In this
simple case the nodal points are the ends of the element, and each node has two DOFs,
transverse displacement and rotation. In the finite element method nodal displacements
are selected as the generalized coordinates, and the equations of motion are formulated in
terms of these physically meaningful displacements.

The deflection of the beam is expressed in terms of the nodal displacements through
trial functions ψ̂i (x) shown in Fig. 18.4.1. Corresponding to each DOF, a trial function is
selected with the following properties: unit value at the DOF; zero value at all other DOFs;
continuous function with continuous first derivative. No trial functions are shown for the
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node at the clamped end because the displacement and slope are both zero. These trial
functions satisfy the requirements of admissibility because they are linearly independent,
continuous with continuous first derivative, and consistent with the geometric boundary
conditions. The deflection of the beam is expressed as

u(x) =
∑

i

ui ψ̂i (x) (18.4.1)

• • • • •

u1u2
u3u4

u5u6
uN−1uN

Finite element

Nodal point

u1 = 1

ψ1(x)^

ψ2(x)^
u2 = 1

ψ3(x)^

u3 = 1

ψ4(x)^
u4 = 1

•
•
•

ψN–1(x)^

uN–1 = 1

ψN(x)^
uN = 1

Figure 18.4.1
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where ui is the nodal displacement in the i th DOF and ψ̂i (x) is the associated trial func-
tion. Because these functions define the displacements between nodal points (in contrast
to global displacements of the structure in the Rayleigh–Ritz method), they are called
interpolation functions.

The finite element method offers several important advantages over the Rayleigh–
Ritz method. Stated in the same sequence as the disadvantages of the Rayleigh–Ritz
method mentioned at the end of Section 18.3, the advantages of the finite element method
are: (1) Simple interpolation functions can be chosen for each finite element. (2) Accu-
racy of the solution can be improved by increasing the number of finite elements in the
structural idealization. (3) Computation of the integrals of Eq. (18.2.6) is much easier be-
cause the interpolation functions are simple, and the same functions may be chosen for
each finite element. (4) The structural stiffness and mass matrices developed by the finite
element method are narrowly banded, a property that reduces the computational effort nec-
essary to solve the equations of motion. (5) The generalized displacements are physically
meaningful, as they give the nodal displacements directly.

18.5 ANALYSIS PROCEDURE

The formulation of the equations of motion for a structure by the finite element method
may be summarized as a sequence of the following steps:

1. Idealize the structure as an assemblage of finite elements interconnected only at
nodes (Fig. 18.5.1a); define the DOF u at these nodes (Fig. 18.5.1b).

2. For each finite element form the element stiffness matrix ke, the element mass matrix
me, and the element (applied) force vector pe(t) with reference to the DOF for the
element (Fig. 18.5.1c). For each element the force–displacement relation and the

Node
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4

3

2

Finite element

a

b c

d

)b()a(
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(c)

θ
b

5
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1

2

3

4

5

6

Figure 18.5.1 (a) Finite elements and nodes; (b) assemblage DOF u; (c) element DOF ue .
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inertia force–acceleration relation are

(fS)e = keue (fI )e = meüe (18.5.1)

In the finite element formulation these relations are obtained by assuming the dis-
placement field over the element, expressed in terms of nodal displacements.

3. Form the transformation matrix ae that relates the displacements ue and forces pe for
the element to the displacements u and forces p for the finite element assemblage:

ue = aeu p(t) = aT
e pe(t) (18.5.2)

where ae is a Boolean matrix consisting of zeros and ones. It simply locates the
elements of ke, me, and pe at the proper locations in the mass matrix, stiffness matrix,
and (applied) force vector for the finite element assemblage. Therefore, it is not
necessary to carry out the transformations: k̂e = aT

e keae, m̂e = aT
e meae, or p̂e(t) =

aT
e pe(t) to transform the element stiffness and mass matrices and applied force vector

to the nodal displacements for the assemblage.

4. Assemble the element matrices to determine the stiffness and mass matrices and the
applied force vector for the assemblage of finite elements:

k = ANe
e=1ke m = ANe

e=1me p(t) = ANe
e=1pe(t) (18.5.3)

The operator A denotes the direct assembly procedure for assembling according to
the matrix ae, the element stiffness matrix, element mass matrix, and the element
force vector—for each element e = 1 to Ne, where Ne is the number of elements—
into the assemblage stiffness matrix, assemblage mass matrix, and assemblage force
vector, respectively.

5. Formulate the equations of motion for the finite element assemblage:

mü+ cu̇+ ku = p(t) (18.5.4)

where the damping matrix c is established by the methods of Chapter 11.

The governing equations (18.5.4) for a finite element system are of the same form
as formulated in Chapter 9 for frame structures. It should be clear from the outline above
that the only difference between the displacement method for analysis of frame structures
and the finite element method is in the formulation of the element mass and stiffness matri-
ces. Therefore, Eq. (18.5.4) can be solved for u(t) by the methods developed in preceding
chapters. The classical modal analysis procedure of Chapters 12 and 13 is applicable if
the system has classical damping and the direct methods of Chapter 16 enable analysis of
nonclassically damped systems.

In the subsequent sections, which are restricted to assemblages of one-dimensional
finite elements, we define the interpolation functions and develop the element stiffness
matrix ke, the element mass matrix me, and the element (applied) force vector pe(t). As-
sembly of these element matrices to construct the corresponding matrices for the finite
element assemblage is illustrated by an example.
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18.6 ELEMENT DEGREES OF FREEDOM AND INTERPOLATION
FUNCTIONS

Consider a straight-beam element of length L , mass per unit length m(x), and flexural
rigidity E I (x). The two nodes by which the finite element can be assembled into a struc-
ture are located at its ends. If only planar displacements are considered, each node has two
DOFs: the transverse displacement and rotation (Fig. 18.6.1a). The displacement of the
beam element is related to its four DOFs:

u(x, t) =
4∑

i=1

ui (t)ψi (x) (18.6.1)

where the function ψi (x) defines the displacement of the element due to unit displacement
ui while constraining other DOFs to zero. Thus ψi (x) satisfies the following boundary
conditions:

i = 1 : ψ1(0) = 1, ψ ′1(0) = ψ1(L) = ψ ′1(L) = 0 (18.6.2a)

i = 2 : ψ ′2(0) = 1, ψ2(0) = ψ2(L) = ψ ′2(L) = 0 (18.6.2b)

i = 3 : ψ3(L) = 1, ψ3(0) = ψ ′3(0) = ψ ′3(L) = 0 (18.6.2c)

i = 4 : ψ ′4(L) = 1, ψ4(0) = ψ ′4(0) = ψ4(L) = 0 (18.6.2d)

x0

u1

u3

u2

u4

(a)

(b)

u1 = 1
ψ1(x)

u2 = 1

ψ2(x)

u3 = 1
ψ3(x)

u4 = 1

ψ4(x)
Figure 18.6.1 (a) Degrees of freedom for a
beam element; (b) interpolation functions.
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These interpolation functions could be any arbitrary shapes satisfying the boundary condi-
tions. One possibility is the exact deflected shapes of the beam element due to the imposed
boundary conditions, but these are difficult to determine if the flexural rigidity varies over
the length of the element. However, they can conveniently be obtained for a uniform beam,
as illustrated next.

Neglecting shear deformations, the equilibrium equation for a beam loaded only at
its ends is

E I
d4u

dx4
= 0 (18.6.3)

The general solution of Eq. (18.6.3) for a uniform beam is a cubic polynomial

u(x) = a1 + a2

( x

L

)
+ a3

( x

L

)2
+ a4

( x

L

)3
(18.6.4)

The constants ai can be determined for each of the four sets of boundary conditions,
Eq. (18.6.2), to obtain

ψ1(x) = 1− 3
( x

L

)2
+ 2

( x

L

)3
(18.6.5a)

ψ2(x) = L
( x

L

)
− 2L

( x

L

)2
+ L

( x

L

)3
(18.6.5b)

ψ3(x) = 3
( x

L

)2
− 2

( x

L

)3
(18.6.5c)

ψ4(x) = −L
( x

L

)2
+ L

( x

L

)3
(18.6.5d)

These interpolation functions, illustrated in Fig. 18.6.1b, can be used in formulating the
element matrices for nonuniform elements.

The foregoing approach is possible for a beam finite element—because the govern-
ing differential equation (18.6.3) could be solved for a uniform beam—but not for two-
or three-dimensional finite elements. Therefore, the finite element method is based on as-
sumed relationships between the displacements at interior points of the element and the
displacements at the nodes. Proceeding in this manner makes the problem tractable but
introduces approximations in the solution.

18.7 ELEMENT STIFFNESS MATRIX

Consider a beam element of length L with flexural rigidity E I (x). By definition, the
stiffness influence coefficient ki j of the beam element is the force in DOF i due to unit
displacement in DOF j . Using the principle of virtual displacement in a manner similar to
Section 18.2, we can derive a general equation for ki j :

ki j =
∫ L

0
E I (x)ψ ′′i (x)ψ

′′
j (x) dx (18.7.1)
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The symmetric form of this equation shows that the element stiffness matrix is symmetric;
ki j = kji . Observe that this result for an element has the same form as Eq. (18.2.6) for the
structure. Equation (18.7.1) is a general result in the sense that it is applicable to elements
with arbitrary variation of flexural rigidity E I (x), although the interpolation functions of
Eq. (18.6.5) are exact only for uniform elements. The associated errors can be reduced
to any desired degree by reducing the element size and increasing the number of finite
elements in the structural idealization.

For a uniform finite element with E I (x)= E I , the integral of Eq. (18.7.1) can
be evaluated analytically for i, j = 1, 2, 3 and 4, resulting in the element stiffness
matrix:

ke = E I

L3

⎡
⎢⎣

12 6L −12 6L
6L 4L2 −6L 2L2

−12 −6L 12 −6L
6L 2L2 −6L 4L2

⎤
⎥⎦ (18.7.2)

These stiffness coefficients are the exact values for a uniform beam, neglecting shear de-
formation, because the interpolation functions of Eq. (18.6.5) are the true deflection shapes
for this case. Observe that the stiffness matrix of Eq. (18.7.2) is equivalent to the force–
displacement relations for a uniform beam that are familiar from classical structural anal-
ysis (see Chapter 1, Appendix 1). For nonuniform elements, such as a haunched beam,
approximate values for the stiffness coefficients can be determined by numerically evalu-
ating Eq. (18.7.1).

The 4 × 4 element stiffness matrix ke of Eq. (18.7.2) in local element coordinates
(Fig. 18.6.1a) is transformed to the 6× 6 ke of Eq. (18.5.1) in global element coordinates
(Fig. 18.5.1c). Before carrying out this transformation, ke is expanded to a 6×6 matrix that
includes the stiffness coefficients associated with the axial DOF at each node. The trans-
formation matrix that depends on the orientation θ of the member (Fig. 18.5.1c) should be
familiar to the reader.

18.8 ELEMENT MASS MATRIX

As defined in Section 9.2.4, the mass influence coefficient mi j for a structure is the force
in the i th DOF due to unit acceleration in the j th DOF. Applying this definition to a beam
element with distributed mass m(x) and using the principle of virtual displacement along
the lines of Section 18.2, a general equation for mi j can be derived:

mi j =
∫ L

0
m(x)ψi (x)ψj (x) dx (18.8.1)

The symmetric form of this equation shows that the mass matrix is symmetric; mi j = mji .
Observe that the result for an element has the same form as Eq. (18.2.6) for the structure.

If we use the same interpolation functions in Eq. (18.8.1) as were used to derive
the element stiffness matrix, the result obtained is known as the consistent mass matrix.
The integrals of Eq. (18.8.1) are evaluated numerically or analytically depending on the
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function m(x). For an element with uniform mass [i.e., m(x) = m], the integrals can be
evaluated analytically to obtain the element (consistent) mass matrix:

me = mL

420

⎡
⎢⎣

156 22L 54 −13L
22L 4L2 13L − 3L2

54 13L 156 −22L
−13L − 3L2 −22L 4L2

⎤
⎥⎦ (18.8.2)

Observe that the consistent-mass matrix is not diagonal, whereas the lumped-mass approx-
imation leads to a diagonal matrix, as we shall see next.

The mass matrix of a finite element can be simplified by assuming that the distributed
mass of the element can be lumped as point masses along the translational DOF u1 and u3

at the ends (Fig. 18.6.1), with the two masses being determined by static analysis of the
beam under its own weight. For example, if the mass of a uniform element is m per unit
length, a point mass of mL/2 will be assigned to each end, leading to

me = mL

⎡
⎢⎣

1
2 0 0 0
0 0 0 0
0 0 1

2 0
0 0 0 0

⎤
⎥⎦ (18.8.3)

Observe that for a lumped-mass idealization of the finite element, the mass matrix is diago-
nal. The off-diagonal terms mi j of this matrix are zero because an acceleration of any point
mass produces an inertia force only in the same DOF. The diagonal terms mii associated
with the rotational degrees of freedom are zero because of the idealization that the mass is
lumped in points that have no rotational inertia.

The 4 × 4 element mass matrix me given by Eq. (18.8.2) or (18.8.3) in local ele-
ment coordinates (Fig. 18.6.1a) is transformed to the 6 × 6 me of Eq. (18.5.1) in global
element coordinates (Fig. 18.5.1c). The procedure and transformation matrix are the same
as described earlier for the stiffness matrix.

The dynamic analysis of a consistent-mass system requires considerably more com-
putational effort than does a lumped-mass idealization, for two reasons: (1) The lumped-
mass matrix is diagonal, whereas the consistent-mass matrix has off-diagonal terms; and
(2) the rotational DOF can be eliminated by static condensation (see Section 9.3) from the
equations of motion for a lumped-mass system, whereas all DOFs must be retained in a
consistent-mass system.

However, the consistent-mass formulation has two advantages. First, it leads to
greater accuracy in the results and rapid convergence to the exact results with an increas-
ing number of finite elements, as we shall see later by an example, but in practice the
improvement is often only slight because the inertia forces associated with node rota-
tions are generally not significant in many structural earthquake engineering problems.
Second, with a consistent-mass approach, the potential energy and kinetic energy quan-
tities are evaluated in a consistent manner, and therefore we know how the computed
values of the natural frequencies relate to the exact values (see Part A of this chapter).
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The second advantage seldom outweighs the additional computational effort required to
achieve a slight increase in accuracy, and therefore the lumped-mass idealization is widely
used.

18.9 ELEMENT (APPLIED) FORCE VECTOR

If the external forces pi (t), i = 1, 2, 3 and 4, are applied along the four DOFs at the two
nodes of the finite element, the element force vector can be written directly. On the other
hand, if the external forces include distributed force p(x, t) and concentrated forces p′j (t)
at locations xj , the nodal force in the i th DOF is

pi (t) =
∫ L

0
p(x, t)ψi (x) dx +

∑
j

p′j (t)ψi (xj ) (18.9.1)

This equation can be obtained by the principle of virtual displacements, following the
derivation of the similar equation (18.2.6c) for the complete structure. If we use the same
interpolation functions in Eq. (18.9.1) as were used to derive the element stiffness matrix,
the results obtained are called consistent nodal forces.

A simpler, less accurate approach is to use linear interpolation functions:

ψ1(x) = 1− x

L
ψ3(x) = x

L
(18.9.2)

Then Eq. (18.9.1) gives the nodal forces p1(t) and p3(t) in the translational DOF; the
forces p2(t) and p4(t) in the rotational DOF are zero unless external moments are applied
directly to the nodes.

The 4 × 1 element force vector pe given by Eq. (18.9.1) in local element coor-
dinates is transformed to the 6 × 1 pe of Eq. (18.5.2) in global element coordinates.
The transformation matrix is the transpose of the one described earlier for the stiffness
matrix.

Example 18.2

Determine the natural frequencies and modes of vibration of a uniform cantilever beam, ide-
alized as an assemblage of two finite elements (Fig. E18.2a) using the consistent mass matrix.
The flexural rigidity is E I and mass per unit length is m.

Solution
1. Identify the assemblage and element DOFs. The six DOFs for the finite element

assemblage are shown in Fig. E18.2b, and the two finite elements and their local DOFs in
Fig. E18.2c.

2. Form the element stiffness matrices. Replacing L in Eq. (18.7.2) by L/2, the length
of each finite element in Fig. E18.2a, gives the stiffness matrices k1 and k2 for the two finite
elements in their local DOFs. Since both local element DOFs and assemblage DOFs are de-
fined along the same set of Cartesian coordinates, no transformation of coordinates is required.
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Nodal point

Element (1) Element (2)

L/2 L/2

(a)

(b)

125
346

31
42

(c) 31
42

Figure E18.2

Therefore, k1 = k1 and k2 = k2; thus

(5) (6) (2) (4)

k1 = 8E I

L3

⎡
⎢⎣

12 3L −12 3L
3L L2 −3L L2/2
−12 −3L 12 −3L

3L L2/2 −3L L2

⎤
⎥⎦

(5)

(6)

(2)

(4)

(2) (4) (1) (3)

k2 = 8E I

L3

⎡
⎢⎣

12 3L −12 3L
3L L2 −3L L2/2
−12 −3L 12 −3L

3L L2/2 −3L L2

⎤
⎥⎦

(2)

(4)

(1)

(3)

The numbers in parentheses alongside rows and columns of ke refer to the assemblage DOFs
that correspond to the element DOFs. This information enables ke to be assembled.

3. Transform the element stiffness matrices to assemblage DOFs. This step is not
required for solving this problem but is included to assist in better understanding of the pro-
cedure. The element stiffness matrix with reference to the nodal displacements of the finite
element assemblage is given by

k̂e = aT
e keae (a)

The nodal displacements of elements (1) and (2) are related to the assemblage displacements
by

(u1)1 = u5 (u2)1 = u6 (u3)1 = u2 (u4)1 = u4

(u1)2 = u2 (u2)2 = u4, (u3)2 = u1 (u4)2 = u3
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These relationships for the two elements can be expressed as

u1 = a1u u2 = a2u (b)

where the transformation matrices are

a1 =

⎡
⎢⎣

0 0 0 0 1 0
0 0 0 0 0 1
0 1 0 0 0 0
0 0 0 1 0 0

⎤
⎥⎦ a2 =

⎡
⎢⎣

0 1 0 0 0 0
0 0 0 1 0 0
1 0 0 0 0 0
0 0 1 0 0 0

⎤
⎥⎦

Observe that ai j = 1 indicates that the element DOF i corresponds to (and becomes renum-
bered as) the assemblage DOF j . The same information is available through the numbers in
parentheses alongside rows and columns of k1 and k2. Thus the matrices a1 and a2 simply
locate the elements of k1 and k2 in the stiffness matrix for the assemblage. This implies that
it is not necessary to carry out the transformation of Eq. (a), because a1 and a2 consist of only
ones and zeros.

4. Assemble the element stiffness matrices. The stiffness matrix k for the finite element
system is determined by assembling k1 and k2 by locating the elements of k1 and k2 in k
according to a1 and a2, respectively.

k = A2
i=1ki

= 8E I

L3

⎡
⎢⎢⎢⎢⎢⎢⎣

12 −12 −3L −3L 0 0
−12 24 3L 0 −12 −3L
−3L 3L L2 L2/2 0 0
−3L 0 L2/2 2L2 3L L2/2

0 −12 0 3L 12 3L
0 −3L 0 L2/2 3L L2

⎤
⎥⎥⎥⎥⎥⎥⎦}

support DOFs︸ ︷︷ ︸
support DOFs

5. Form the element mass matrices. Replacing L in Eq. (18.8.2) by L/2 gives the
element mass matrices m1 and m2 in their local DOF; and as for the stiffness matrices, m1 =
m1 and m2 = m2. Thus

(5) (6) (2) (4)

m1 = mL

840

⎡
⎢⎣

156 11L 54 −6.5L
11L L2 6.5L −0.75L2

54 6.5L 156 −11L
−6.5L −0.75L2 −11L L2

⎤
⎥⎦

(5)

(6)

(2)

(4)

(2) (4) (1) (3)

m2 = mL

840

⎡
⎢⎣

156 11L 54 −6.5L
11L L2 6.5L −0.75L2

54 6.5L 156 −11L
−6.5L −0.75L2 −11L L2

⎤
⎥⎦

(2)

(4)

(1)

(3)
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6. Assemble the element mass matrices. The mass matrix for the finite element system is
determined by assembling m1 and m2 in a manner analogous to the stiffness matrix assembly:

m = A2
i=1mi

= mL

840

⎡
⎢⎢⎢⎢⎢⎢⎣

156 54 −11L 6.5L 0 0
54 312 −6.5L 0 54 6.5L

−11L −6.5L L2 −0.75L2 0 0
6.5L 0 −0.75L2 2L2 −6.5L −0.75L2

0 54 0 −6.5L 156 11L
0 6.5L 0 −0.75L2 11L L2

⎤
⎥⎥⎥⎥⎥⎥⎦}

support DOFs

︸ ︷︷ ︸
support DOFs

7. Formulate the equations of motion. Before writing the equation of motion, the
support conditions must be imposed. For the cantilever beam of Fig. E18.2a, u5 = u6 = 0.
Thus the fifth and sixth rows and columns are deleted from the matrices m and k to obtain

mü+ ku = 0 (c)

or

mL

840

⎡
⎢⎣

156 54 −11L 6.5L
312 −6.5L 0

(sym) L2 −0.75L2

2L2

⎤
⎥⎦
⎡
⎢⎣

ü1
ü2
ü3
ü4

⎤
⎥⎦

+ 8E I

L3

⎡
⎢⎣

12 −12 −3L −3L
24 3L 0

(sym) L2 0.5L2

2L2

⎤
⎥⎦
⎡
⎢⎣

u1
u2
u3
u4

⎤
⎥⎦ =

⎡
⎢⎣

0
0
0
0

⎤
⎥⎦

(d)

Note that the stiffness matrix in Eq. (d) is the same as the one obtained by classical methods
in Example 9.4.

8. Solve the eigenvalue problem. The natural frequencies are determined by solving
kφ = ω2mφ:

ω1 = 3.51772

√
E I

mL4
ω2 = 22.2215

√
E I

mL4
(e)

ω3 = 75.1571

√
E I

mL4
ω4 = 218.138

√
E I

mL4

Example 18.3

Repeat Example 18.2 using the lumped-mass approximation.

Solution The only change is in formulation of the mass matrix. Using the lumped-mass
matrix of Eq. (18.8.3) for each element and proceeding as in steps 5, 6, and 7 of Example 18.2
leads to

mü+ ku = 0 (a)
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where u and k are the same as in Eq. (d) of Example 18.2 but m is different:

m =

⎡
⎢⎣

mL/4 0 0 0
mL/2 0 0

(sym) 0 0
0

⎤
⎥⎦ (b)

Because the mass associated with the rotational DOFs u3 and u4 is zero, they can be eliminated
from the stiffness matrix by static condensation. The resulting 2× 2 stiffness matrix in terms
of the translational DOF was presented in Example 9.5. The eigenvalue problem was solved
in Example 10.2 to obtain the natural frequencies:

ω1 = 3.15623

√
E I

mL4
ω2 = 16.2580

√
E I

mL4
(c)

18.10 COMPARISON OF FINITE ELEMENT AND EXACT SOLUTIONS

In this section the approximate values for the natural frequencies of a uniform cantilever
beam determined by the finite element method are compared with the exact solutions pre-
sented in Chapter 17. The approximate results are obtained by discretizing the beam into
N finite elements of equal length and analyzing it by the finite element method. Such re-
sults for the coefficient αn in ωn = αn

√
E I/mL4 obtained for Ne = 1, 2, 3, 4, and 5 finite

elements and using the consistent-mass matrix are presented in Table 18.10.1. Example
18.2 provides the results for Ne = 2 and those for other Ne were obtained similarly.

Observe from these results that the accuracy of the natural frequencies deteriorates
for the higher modes of a particular Ne-element system, but the accuracy is improved by
increasing Ne and hence the number of DOFs. The accuracy is quite good for a number of

TABLE 18.10.1 NATURAL FREQUENCIES OF A UNIFORM CANTILEVER BEAM:
CONSISTENT-MASS FINITE ELEMENT AND EXACT SOLUTIONS

Number of Finite Elements, Ne

Mode 1 2 3 4 5 Exact

1 3.53273 3.51772 3.51637 3.51613 3.51606 3.51602
2 34.8069 22.2215 22.1069 22.0602 22.0455 22.0345
3 75.1571 62.4659 62.1749 61.9188 61.6972
4 218.138 140.671 122.657 122.320 120.902
5 264.743 228.137 203.020 199.860
6 527.796 366.390 337.273 298.556
7 580.849 493.264 416.991
8 953.051 715.341 555.165
9 1016.20 713.079

10 1494.88 890.732

Source: R. R. Craig, Jr. and A.J. Kurdila, Fundamentals of Structural Dynamics, 2nd ed., Wiley,
New York, 2006, Section 14.8.
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TABLE 18.10.2 NATURAL FREQUENCIES OF A UNIFORM CANTILEVER BEAM:
LUMPED-MASS FINITE ELEMENT AND EXACT SOLUTIONS

Number of Finite Elements, Ne

Mode 1 2 3 4 5 Exact

1 2.44949 3.15623 3.34568 3.41804 3.45266 3.51602
2 16.2580 18.8859 20.0904 20.7335 22.0345
3 47.0284 53.2017 55.9529 61.6972
4 92.7302 104.436 120.902
5 153.017 199.860

Source: R. R. Craig, Jr. and A.J. Kurdila, Fundamentals of Structural Dynamics, 2nd ed., Wiley, New
York, 2006, Section 14.8.

modes equal to the number of elements, but the frequencies of the higher modes are poor.
As expected from Rayleigh–Ritz or consistent finite element formulations, the frequencies
converge from above to the exact solution.

The natural frequencies obtained by a lumped-mass idealization of the finite element
system and using the condensed stiffness matrix with Ne = 1, 2, 3, 4, and 5 finite elements
are presented in Table 18.10.2. Example 18.3 provides the results for Ne = 2, and those
for other Ne were obtained similarly.

For the particular mass-lumping procedure employed (i.e., half the element mass is
distributed to each node), the lumped-mass approximation gives frequencies that converge
slowly from below. Observe that for a given number Ne of elements the consistent-mass
formulation provides a better result than does the lumped-mass approximation. However,
this improved accuracy comes at the expense of increased computational effort because the
size of the eigenvalue problem solved is doubled if consistent mass is used.

18.11 DYNAMIC ANALYSIS OF STRUCTURAL CONTINUA

The finite element method is one of the most important developments in structural analysis.
Any structural continuum with an infinite number of degrees of freedom can be idealized
as an assemblage of finite elements with a finite number of DOFs. Thus the partial differen-
tial equations governing the motion of the structural continuum are reduced to a system of
ordinary differential equations, as many as the DOFs in the finite element idealization. Be-
cause the equations of motion for a finite element idealization of a structure [Eq. (18.5.4)]
are of the same form as formulated in Chapter 9 for frame structures, they can be solved
by the methods developed in this book.

The formulation of the governing equations outlined in Section 18.5 is also applica-
ble to assemblages of two- or three-dimensional finite elements. Introductory comments
regarding such applications are included in this paragraph with reference to a body in the
state of plane stress (Fig. 18.11.1a) idealized as an assemblage of two-dimensional (quadri-
lateral in this case) elements (Fig. 18.11.1b), each with eight DOFs (Fig. 18.11.1c). The
number of elements chosen for the assemblage depends on the accuracy desired. With
properly formulated finite elements, the results converge to the exact solution with de-
creasing element size; accordingly, the larger the number of elements, the more accurate
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Figure 18.11.1 (a) Body in plane stress; (b) finite element idealization; (c) DOF ue .

will be the solution. Unlike assemblages of one-dimensional finite elements, compatibil-
ity at the nodes does not always ensure compatibility across the element boundaries. For
example, as external forces are applied to the finite element assemblage of Fig. 18.11.1b,
the boundaries of adjacent elements between the nodes would tend to open up or over-
lap. To avoid such discontinuities, interpolation functions over the element are assumed in
such a fashion that the common boundaries will deform together; such elements are called
compatible elements. With these additional considerations, the finite element method of
Section 18.5 is applicable to structural continua. Solution of Eq. (18.5.4) will give the
time variation of nodal displacements. At each time instant, the state of stress within each
finite element is determined from the nodal displacements using interpolation functions,
strain–displacement relations, and constitutive properties of the material. The finite el-
ement method differs from the displacement method for frame structures, as mentioned
earlier, primarily in the formulation of the element mass and stiffness matrices.

An explosive growth of research on the finite element method took place beginning
in the early 1960s, leading to the development of finite elements appropriate for idealizing
different types of structural continua and their application to practical problems. These de-
velopments and applications are documented in thousands of published papers and dozens
of textbooks and are too numerous to describe here. We mention just two applications.

Figure 18.11.2 shows the finite element idealization for the reactor building of a
nuclear power plant. The idealization includes shell and solid elements, both axially sym-
metric, and includes a portion of the foundation soil. In the dynamic analysis conducted to
satisfy U.S. Nuclear Regulatory Commission requirements for licensing the power plant,
the prescribed earthquake motion was applied at the lower boundary of the system shown.

Figure 18.11.3 shows Koyna Dam, a 103-m-high and 853-m-long concrete dam, in
India. The Koyna earthquake of December 11, 1967, with peak acceleration around 0.5g



Figure 18.11.2 Axisymmetric finite
element idealization of a nuclear reactor
building. (From A. K. Chopra, “Earthquake
Analysis of Complex Structures,” in Applied
Mechanics in Earthquake Engineering,
ASME, New York, 1974.)

Figure 18.11.3 Koyna Dam, a 103-m-high and 853-m-long concrete gravity dam near
Poona, India. This major dam was damaged by the Koyna earthquake of December 11,
1967, a Magnitude 6.5 event centered 4.8 km from the dam. [From A. K. Chopra, “Earth-
quake Response Analysis of Concrete Dams,” in Advanced Dam Engineering for Design,
Construction and Rehabilitation (ed. R. B. Jansen), Van Nostrand Reinhold, New York,
1988.]

750
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Figure 18.11.4 Addition of buttresses to Koyna Dam after the damage caused by the
Koyna earthquake of December 11, 1967. [From A. K. Chopra, “Earthquake Response
Analysis of Concrete Dams,” in Advanced Dam Engineering for Design, Construction and
Rehabilitation (ed. R. B. Jansen), Van Nostrand Reinhold, New York, 1988.]

in the transverse direction, caused significant cracking in the dam. Although the dam
survived the earthquake without any sudden release of water, the cracking appeared se-
rious enough that it was decided to strengthen the dam by providing concrete buttresses
on the downstream face of the nonoverflow monoliths; Fig. 18.11.4 shows the buttresses
under construction. The finite element method was used to explain why the dam was
damaged. Figure 18.11.5a shows the finite element idealization for the tallest monolith
of Koyna Dam, including 136 quadrilateral plane-stress elements interconnected at 162
nodes. From the equations of motion formulated by the finite element method, the nat-
ural periods and modes of vibration of this structure were determined; the first four are
shown in Fig. 18.11.5b. Assuming linear behavior, the governing equations were solved
to predict the dynamic response of the dam to the ground motion recorded at the dam site
(Fig. 6.1.3). The results of this computer analysis included the time variation of the dis-
placement of each node and of the stress in each finite element. The peak value of tensile
stress in each finite element over the duration of the earthquake was noted and the contours
of equal stress are shown in Fig. 18.11.5c. These results indicate larger tensile stresses in
upper parts of the dam, especially around the elevation where the slope of the downstream
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Figure 18.11.5 (a) Finite element idealization, (b) first four natural vibration modes and
periods, and (c) stresses in the dam due to the Koyna earthquake, computed by linear
analysis. [From A. K. Chopra, “Earthquake Response Analysis of Concrete Dams,” in Ad-
vanced Dam Engineering for Design, Construction and Rehabilitation (ed. R. B. Jansen),
Van Nostrand Reinhold, New York, 1988.]

face changes. These stresses, which exceed 4 MPa on the upstream face and 6 MPa on the
downstream face, are approximately two to three times the tensile strength (2.41 MPa) of
the concrete used in the upper parts of the dam. Hence, based on the finite element analysis
results and concrete strength data, it was possible to identify the locations in the dam where
significant cracking of concrete can be expected. These are consistent with the locations
where the dam was damaged by the Koyna earthquake.
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P R O B L E M S

Part A

18.1 A chimney of height L has been idealized as a cantilever beam with mass per unit length
varying linearly from m at the base to m/2 at the top, and with second moment of cross-
sectional area varying linearly from I at the base to I/2 at the top. Estimate the first two
natural frequencies and modes of lateral vibration of the chimney using the shape functions
ψ1(x) = 1 − cos(πx/2L) and ψ2(x) = 1 − cos(3πx/2L), where x is measured from the
base.

18.2 A simply supported beam of length L has constant flexural rigidity E I and a mass distribution

m(x) =
{

2mo(x/L) 0 ≤ x ≤ L/2
2mo(1− x/L) L/2 ≤ x ≤ L

Determine the first two natural frequencies and modes of symmetric vibration of this nonuni-
form beam by the Rayleigh–Ritz method using two modes of the uniform beam as the shape
functions.

Part B

∗18.3 Determine the natural vibration frequencies and modes of a simply supported uniform beam,
idealized as an assemblage of two finite elements (Fig. P18.3), using (a) the consistent-mass
matrix, and (b) the lumped-mass matrix. Compare these results with the exact solutions ob-
tained in Example 17.1.

*Denotes that a computer is necessary to solve this problem.
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m, EI

Element (1) Element (2)

• •
L/2 L/2

Nodal point

Figure P18.3

18.4 Determine the natural vibration frequencies and modes of a uniform beam clamped at both
ends, idealized as an assemblage of two finite elements (Fig. P18.4), using (a) the consistent-
mass matrix, and (b) the lumped-mass matrix. Compare these results with the exact solutions
obtained by solving Problem 17.1.]

m, EI

L/2 L/2
Figure P18.4

18.5 Determine the natural vibration frequencies and modes of a uniform beam clamped at one
end and simply supported at the other, idealized as an assemblage of two finite elements
(Fig. P18.5), using (a) the consistent-mass matrix, and (b) the lumped-mass matrix. Compare
these results with the exact solutions obtained by solving Problem 17.2.

m, EI

L/2 L/2
Figure P18.5

∗18.6 Figure P18.6 shows a one-story, one-bay frame with mass per unit length and second moment
of cross-sectional area given for each member. The frame, idealized as an assemblage of three
finite elements, has the three DOFs shown if axial deformations are neglected in all elements.
(a) Using influence coefficients, formulate the stiffness matrix and the consistent-mass matrix.
Express these matrices in terms of m, E I , and h.
(b) Determine the natural vibration frequencies and modes of the frame; express rotations in
terms of h. Sketch the modes showing translations and rotations of the nodes.

2h

h m, I m, I

2m, I/2
1

2 3

Figure P18.6

18.7 Repeat Problem 18.6 using the lumped-mass approximation. Comment on the effects of mass
lumping on the vibration properties.

18.8 Repeat part (a) of Problem 18.6 starting with the stiffness and mass matrices for each element
and using the direct assembly procedure of Section 18.5.

*Denotes that a computer is necessary to solve this problem.
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19

Earthquake Response of Linearly
Elastic Buildings

PREVIEW

Developed in Chapter 13 were two procedures—response history analysis (RHA) and re-
sponse spectrum analysis (RSA)—for calculating the earthquake response of any structure
described as a linearly elastic system with a finite number of degrees of freedom. Deter-
mined by RSA, the earthquake response of multistory buildings to excitations characterized
by a design spectrum is presented in this chapter for a wide range of the two key param-
eters: fundamental natural vibration period and beam-to-column stiffness ratio. Based on
these results, we develop an understanding of how these parameters affect the earthquake
response of buildings and how they affect the relative response contributions of the differ-
ent natural vibration modes. These results also enable us to identify the conditions under
which the first mode or the first two modes are sufficient to provide a useful approxima-
tion to the total response. The understanding we develop of the significance of the higher
modes in building response will be useful in Chapter 22, where we evaluate the equivalent
static force procedure in seismic building codes in light of the results of dynamic analyses.

19.1 SYSTEMS ANALYZED, DESIGN SPECTRUM, AND RESPONSE
QUANTITIES

19.1.1 Systems Analyzed

The systems analyzed are single-bay, five-story frames with constant story height = h and
bay width = 2h (Fig. 19.1.1). All the beams have the same flexural rigidity, E Ib, and the

757
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Figure 19.1.1 Properties of uniform
five-story frames.

column rigidity, E Ic, does not vary with height. The building is idealized as a lumped-
mass system with the same mass m at all the floor levels. The damping ratio for all five
natural vibration modes is assumed to be 5%.

Only two additional parameters are needed to define the system completely: the
fundamental natural vibration period T1 and the beam-to-column stiffness ratio ρ. The
latter parameter is based on the properties of the beams and columns in the story closest to
the midheight of the frame:

ρ =
∑

beams E Ib/Lb∑
columns E Ic/Lc

(19.1.1)

where Lb and Lc are the lengths of the beams and columns and the summations include all
the beams and columns in the midheight story. For the uniform, one-bay frame defined in
the preceding paragraph, Eq. (19.1.1) reduces to

ρ = Ib

4Ic
(19.1.2)

which was introduced in Section 1.3 for a one-story frame. This parameter is a measure of
the relative beam-to-column stiffness and indicates how much the system may be expected
to behave as a frame. For ρ = 0 the beams impose no restraint on joint rotations, and
the frame behaves as a flexural beam (Fig. 19.1.2a). For ρ = ∞ the beams restrain the
joint rotations completely, and the structure behaves as a shear beam with double-curvature
bending of the columns in each story (Fig. 19.1.2c). An intermediate value of ρ represents
a frame in which beams and columns undergo bending deformation with joint rotation
(Fig. 19.1.2b). As an example for the frame of Fig. 19.1.1, ρ = 1

8 represents Ib = Ic/2,
which implies a frame with columns stiffer than the beams, typical of earthquake-resistant
construction.

The parameter ρ controls several properties of the frame: the fundamental natural
period, the relative closeness or separation of the natural periods, and the shapes of the
natural modes. These vibration properties of the frame of Fig. 19.1.1 are calculated by
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(a) (b) (c)

Figure 19.1.2 Deflected shapes: (a) ρ = 0; (b) ρ = 1
8 ; (c) ρ = ∞.
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Figure 19.1.3 Fundamental natural vibration period of uniform five-story frames.

the procedures of Chapters 9 and 10. The variation of the fundamental period with ρ
is shown in Fig. 19.1.3, which indicates that for a fixed column stiffness E Ic and floor
mass m, the fundamental period is reduced by a factor of over 8 as ρ increases from 0
to ∞. The ratios of the natural periods are independent of T1 but depend strongly on
ρ, especially the higher-mode periods, as shown in Fig. 19.1.4. As a result, the natural
periods of a frame with small ρ are more separated from each other than if ρ is large.
The shapes of the natural modes depend significantly on ρ, as shown in Fig. 19.1.5. It is
clear from these results that the stiffness ratio ρ must have great importance in determining
the dynamic (and static) behavior of the frame. We demonstrate this in the sections that
follow.
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Figure 19.1.4 Natural vibration period ratios for uniform five-story frames. (After Roehl,
1971.)
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ρ = ∞

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

Figure 19.1.5 Natural vibration modes of uniform five-story frame for three values of ρ.

The fundamental period T1 will be varied over a range that is much wider than is
reasonable for five-story frames. However, this is appropriate for the objectives of this
chapter, where we are studying the influence of T1 on the response of buildings. The re-
sponse behavior is controlled by T1 primarily and affected only secondarily by the number
of stories. Hence the observations we glean from the results presented are not restricted to
five-story buildings.

19.1.2 Design Spectrum

The earthquake excitation is characterized by the design spectrum of Fig. 19.1.6 (identical
to Fig. 6.9.5), multiplied by 0.5, so that it applies to ground motions with a peak ground
acceleration ügo = 0.5g, velocity u̇go = 61 m/s, and displacement ugo = 45.5 cm. In the
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Figure 19.1.6 Design spectrum for ground motions with ügo = 1g, u̇go = 122 cm/s, and
ugo = 91 cm; ζ = 5%.

design spectrum shown (Fig. 19.1.6) for 5% damping, the acceleration-sensitive, velocity-
sensitive, and displacement-sensitive regions (defined in Chapter 6) are identified.

19.1.3 Response Quantities

The peak values of the responses of a frame described in Section 19.1.1 with specified
T1 and ρ to ground motion characterized by the design spectrum of Fig. 19.1.6 are deter-
mined by the RSA procedure. Such analyses were repeated for three values of ρ—0, 1

8 ,
and ∞—and many values of T1. Among the many response quantities, we will examine
four of them: top-floor displacement u5 relative to the ground, base shear Vb, base over-
turning moment Mb, and top-story shear V5. The first three will be normalized as follows:
(1) u5/ugo, where ugo is the peak ground displacement; (2) Vb/W ∗1 , where W ∗1 = M∗1 g
and M∗1 is the effective modal mass for the first mode; and (3) Mb/W ∗1 h∗1, where h∗1 is the
effective modal height for the first mode. The values of W ∗1 and h∗1 are computed using
Eq. (13.2.9) and the shape of the first mode (Fig. 19.1.5). Presented in Table 19.1.1 are
(1) W ∗1 /W , where W is the total weight of the frame, and (2) h∗1/5h, where 5h is the total
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TABLE 19.1.1 FUNDAMENTAL
MODE PROPERTIES

ρ = 0 ρ = 1
8 ρ = ∞

W ∗1 /W 0.679 0.796 0.880
h∗1/5h 0.794 0.742 0.703

height of the frame. It is clear that W ∗1 and h∗1 depend on the beam-to-column stiffness
ratio ρ.

19.2 INFLUENCE OF T1 AND ρ ON RESPONSE

Shown in Fig. 19.2.1 are three normalized responses of the frame plotted against its fun-
damental period T1 for three values of ρ. Over a wide range of T1 values, the top-floor
displacement varies very little with ρ (i.e., it is not sensitive to variations in the beam-
to-column stiffness ratio). For very-long-period systems the top-floor displacement ap-
proaches the ground displacement because the floor masses of such a system remain sta-
tionary while the ground beneath moves; such behavior of a one-story frame is shown in
Fig. 6.8.5.

The shear and overturning moment at the base of the frame are of special inter-
est because their design values are specified in building codes; they are also the forces
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Figure 19.2.1 Normalized values of top-floor displacement u5, base shear Vb , and base overturning
moment Mb in uniform five-story frames for three values of ρ.
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needed in the design of the foundation system. When these normalized forces are plot-
ted against T1, as in Fig. 19.2.1, the curves have the general appearance of the pseudo-
acceleration spectrum of Fig. 19.1.6. Thus the individual curves tend to the peak ground
acceleration, 0.5g, for short T1, and to zero for long T1, as does the pseudo-acceleration
spectrum.

The normalized base shear and base overturning moment vary significantly with ρ
for buildings with T1 in the velocity- or displacement-sensitive regions of the spectrum,
with the variation in Mb not as great as in Vb. However, these normalized responses do not
vary appreciably with ρ in the acceleration-sensitive region of the spectrum. Observe that
W ∗1 and h∗1 themselves vary with ρ, as shown in Table 19.1.1, and hence they influence the
values of the actual (in contrast to normalized) responses Vb and Mb and how they depend
on ρ.

The variation in the normalized responses with ρ is closely related to the signifi-
cance of the response contributions of the second and higher modes, which generally in-
crease with decreasing ρ (Section 19.5) and—for the design spectrum selected—generally
increase with increasing T1 (Section 19.4). To study individual modal responses, we use
the modal contribution factors introduced in Chapter 12, Part C.

19.3 MODAL CONTRIBUTION FACTORS

The peak value of the nth-mode contribution to a response quantity r is given by Eq. (13.7.1),
repeated here for convenience:

rn = r st
n An (19.3.1)

where An is the ordinate of the pseudo-acceleration response (or design) spectrum corre-
sponding to natural period Tn and damping ratio ζn of the nth mode; and r st

n is the modal
static response. As defined in Section 13.2.2, r st

n is the static value of response quantity r
due to external forces sn , given by Eq. (13.2.4). These modal static responses are presented
in Table 13.2.1 and repeated here for base shear Vb, top-story shear V5, base overturning
moment Mb, and top-floor displacement u5:

V st
bn = M∗n V st

5n = �nmφ5n M st
bn = h∗n M∗n ust

5n =
�n

ω2
n

φ5n (19.3.2)

Alternatively, Eq. (19.3.1) can be expressed as

rn = r str̄n An (19.3.3)

where

r st =
N∑

n=1

r st
n and r̄n = r st

n

r st
(19.3.4)

As demonstrated in Section 12.10, r st is also the static value of r due to external forces
s = m1. The modal contribution factors r̄n for a response quantity r are dimensionless,
are independent of how the modes are normalized, and add up to unity when summed over
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all modes:
N∑

n=1

r̄n = 1 (19.3.5)

We first study how the modal contribution factors depend on the beam-to-column
stiffness ratio ρ and on the response quantity. For the four response quantities mentioned
in Section 19.1.3, the modal contribution factors r̄n are calculated from Eqs. (19.3.2) and
(19.3.4) using the known system properties and computed natural frequencies and modes.
The results presented in Tables 19.3.1a and 19.3.1b for ρ = 0, 1

8 , and∞ are independent of
T1. Consistent with Eq. (19.3.5) for each response quantity and each ρ, the sum of modal
contribution factors over all modes is unity, although the convergence may or may not be
monotonic. For the class of structures considered, the convergence is monotonic for base
shear, but not for the other response quantities. The data of Tables 19.3.1a and 19.3.1b per-
mit three useful observations that have a bearing on relative values of the modal responses.

1. For a fixed value of ρ and each of the response quantities, the modal contribution
factor r̄1 for the first mode is larger than the factors r̄n for the higher modes, suggest-
ing that the fundamental mode should have the largest contribution to each of these
responses.

2. For a fixed value of ρ, the absolute values of r̄n for the second and higher modes
are larger for V5 than for Vb, and the values for Vb in turn are larger than those for
Mb and u5. This observation suggests that the second- and higher-mode response
contributions are expected to be more significant for base shear Vb than for the base
overturning moment Mb or top-floor displacement u5. Among the story shears the
higher-mode responses should be more significant for the fifth-story shear than for
the base shear.

3. As ρ decreases, the absolute values of the higher-mode contribution factors r̄n for
V5, Vb, and Mb, increase (but for minor exceptions), especially in the second mode.
This observation suggests that the higher-mode contributions to any of these forces
should become a larger fraction of the total response as ρ decreases and should be
largest for a flexural beam with ρ = 0.

TABLE 19.3.1a MODAL CONTRIBUTION FACTORS FOR Vb
AND V5

Base Shear Vb Top-Story Shear V5

Mode ρ = 0 ρ = 1
8 ρ = ∞ ρ = 0 ρ = 1

8 ρ = ∞
1 0.679 0.796 0.879 1.38 1.30 1.25
2 0.206 0.117 0.087 −0.528 −0.441 −0.362
3 0.070 0.051 0.024 0.204 0.211 0.159
4 0.033 0.026 0.007 −0.080 −0.089 −0.063
5 0.012 0.009 0.002 0.020 0.023 0.015
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TABLE 19.3.1b MODAL CONTRIBUTION FACTORS FOR Mb AND u5

Base Overturning Moment Mb Top-Floor Displacement u5

Mode ρ = 0 ρ = 1
8 ρ = ∞ ρ = 0 ρ = 1

8 ρ = ∞
1 0.898 0.985 1.030 1.009 1.027 1.030
2 0.078 −0.003 −0.035 −0.009 −0.030 −0.035
3 0.016 0.014 0.006 0.0005 0.003 0.006
4 0.006 0.003 −0.001 −0.00005 −0.0005 −0.001
5 0.002 0.001 0.0003 0.000005 0.00007 0.0003

19.4 INFLUENCE OF T1 ON HIGHER-MODE RESPONSE

In this section we use the preceding concepts and data to predict how the modal re-
sponse contributions depend on the fundamental natural period T1 of the structure. For
this purpose we examine the three factors that enter into Eq. (19.3.3) for the peak modal
response: (1) The static value r st of r is a common factor in all modal responses and
therefore does not influence the relative values of the modal responses. (2) As mentioned
in Section 19.3, for a fixed ρ the modal contribution factors r̄n are independent of T1.
(3) The pseudo-acceleration spectrum ordinate An is the only factor in Eq. (19.3.3) that
depends on the fundamental period T1 and period ratios Tn/T1, which, for a fixed ρ, do
not depend on T1 (see Section 19.1). Thus the variation in higher-mode response with
increasing T1 must be related to the shape of the design spectrum. This is illustrated for
the selected design spectrum in parts (a) and (b) of Fig. 19.4.1, wherein the natural pe-
riods Tn of two shear frames (ρ = ∞) with fundamental natural periods T1 = 0.5 and
3.0 s, respectively, are identified. For the building with T1 = 3 s, the An values for the
higher modes are larger than A1 for the fundamental mode, whereas for the building with
T1 = 0.5 s, the An (n ≥ 2) values are either equal to or smaller than A1. Thus the
higher-mode response, expressed as a percentage of the total response, should be larger
for the building with T1 = 3 s than for the T1 = 0.5 s building. In general, for the spec-
trum selected, as T1 increases within the velocity- and displacement-sensitive regions of
the spectrum, the higher-mode response will become an increasing percentage of the total
response.

This prediction is confirmed by the results of dynamic analysis. The peak values
of the responses of a frame with specified T1 and ρ are determined by considering (1) all
five modes, and (2) only the first mode. Such analyses were repeated for three values of
ρ—0, 1

8 , and∞—and many values of T1. The results for normalized base shear are plotted
in Fig. 19.4.2. The one-mode curves are independent of ρ and identical to the design
spectrum of Fig. 19.1.6 because Eqs. (19.3.1) and (19.3.2a) give

Vb1 = A1

g
W ∗1 or

Vb1

W ∗1
= A1

g
(19.4.1)
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Figure 19.4.1 Natural periods and spectral ordinates for three cases: (a) T1 = 0.5 s,
ρ = ∞; (b) T1 = 3 s, ρ = ∞; and (c) T1 = 3 s, ρ = 0.

The difference between the two results for the peak value is the higher-mode response
(i.e., the combined response due to all modes higher than the first mode). The higher-
mode response, expressed as a percentage of the total response, is presented in Fig. 19.4.3
for the four response quantities. The data for base shear are obtained from the results of
Fig. 19.4.2, and those for other response quantities are obtained similarly. The higher-
mode response of buildings is negligible for T1 in the acceleration-sensitive region of
the spectrum and increases with increasing T1 in the velocity- and displacement-sensitive
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Results were obtained by RSA, including one or five modes.

regions. Such results are useful in evaluating the lateral force provisions in building codes
(Chapter 22).

Based on modal contribution factors, we had predicted earlier how the significance
of the higher-mode response would depend on the response quantity (Section 19.3). This
prediction is confirmed by the results of dynamic analysis; Fig. 19.4.3 demonstrates:

1. The higher-mode response is more significant for forces (e.g., V5, Vb, and Mb) than
for displacements (e.g., u5). However, the higher-mode contributions to u5 and Mb

are identical for shear frames (Fig. 19.4.3c) because the modal contribution factors
are identical (Table 19.3.1b).

2. The higher-mode response is more significant for base shear than for base overturn-
ing moment.

3. The higher-mode response is more significant for top-story shear than for base shear.
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Figure 19.4.3 Higher-mode response in Vb , V5, Mb , and u5 for uniform five-story frames for three
values of ρ.

19.5 INFLUENCE OF ρ ON HIGHER-MODE RESPONSE

In this section we predict how the modal response contributions depend on the beam-
to-column stiffness ratio ρ. For this purpose we examine three factors that enter into
Eq. (19.3.3) for the peak modal response: (1) The static value r st is a common factor
in all modal responses and therefore does not influence the relative values of the modal re-
sponses. (2) As ρ decreases, the higher-mode contribution factors r̄n for the base shear and
top-story shear increase especially in the second mode (Table 19.3.1a). (3) The pseudo-
acceleration ordinates depend on T1 and on T1/Tn; the latter becomes larger as ρ de-
creases (Fig. 19.1.4) and the Tn values are spread out over a wider period range of the
design spectrum. This is illustrated in parts (b) and (c) of Fig. 19.4.1. Both frames
have the same fundamental period, T1 = 3 s, but they differ in ρ—one is a shear beam
(ρ = ∞), and the other a flexural beam (ρ = 0). As a result, the ratio A2 for the sec-
ond mode—generally the most significant of the higher modes—to A1 for the first mode
is larger for buildings with ρ = 0 than for the ρ = ∞ case. Thus, putting the sec-
ond and third observations together, both the modal contribution factor r̄n and the spectral
ordinate An for the second mode are larger for the ρ = 0 frame; therefore, the higher-
mode response is more significant in this case than for the frame with ρ = ∞. In gen-
eral, for the design spectrum selected and for T1 within the velocity- and displacement-
sensitive regions of the spectrum, the ratio An/A1 increases (or more precisely, does
not decrease) with decreasing ρ, and this trend should lead to increased higher-mode
response.

This prediction is confirmed by the results of dynamic analyses in Fig. 19.4.3, which
demonstrate that for each response quantity the higher-mode response is least significant
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for systems behaving like shear beams (ρ = ∞), becomes increasingly significant as ρ
decreases, and is largest for systems deforming like flexural beams (ρ = 0).

19.6 HEIGHTWISE VARIATION OF HIGHER-MODE RESPONSE

In this section we examine how the response contributions of modes higher than the first
mode to the story shears and floor overturning moments vary over building height. Com-
pared in Figs. 19.6.1 and 19.6.2 are these forces due to the first mode only and the total
forces considering all five modes. The higher mode response, given by the difference be-
tween the two sets of forces, is expressed as a percentage of the total force and presented
in Figs. 19.6.3 and 19.6.4. These results indicate, as before, that (1) for a fixed ρ, the
higher-mode response is more significant for longer-period buildings, and (2) for a fixed
T1, the higher-mode response is more significant for frames with smaller ρ.

The results presented in Figs. 19.6.3 and 19.6.4 provide information on how the
higher modes affect the forces in different stories of a building. For a particular building
with fixed values of T1 and ρ, the percentage contribution of the higher-mode response
tends to increase as one moves up the building, although the trend is not perfect in all cases.
This contribution is small in the overturning moment at the base but can be significant
in the upper stories, especially for frames with longer-period T1 and smaller ρ. While

T1 = 0.5

T1 = 3

T1 = 8 s

0

1

2

3

4

5

0 0.5 1

Fl
oo

r 
nu

m
be

r

(a) ρ = 0

5 Modes
1 Mode

T1 = 0.5

T1 = 3

T1 = 8 s

0 0.5 1

(b) ρ = 1/8

Normalized story shears  Vj / W1
*

T1 = 0.5

T1 = 3

T1 = 8 s

0 0.5 1 1.5
0

1

2

3

4

5

(c) ρ = ∞ 

Figure 19.6.1 Normalized story shears in uniform five-story frames for three values of ρ and three
values of T1. Results were obtained by RSA, including one or five modes.
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Figure 19.6.2 Normalized floor overturning moments in uniform five-story frames for three values
of ρ and three values of T1. Results were obtained by RSA, including one or five modes.
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Figure 19.6.4 Higher-mode response in floor overturning moments for uniform five-story frames.

the above-noted trend is essentially consistent for story overturning moments, it is not
always consistent for story shears because the higher-mode response tends to increase for
the forces in the stories near the bottom of the building in addition to the stories near the top
of the building. This lack of perfect consistency in the above-noted trend is an indication of
the complex dependence of the earthquake response of buildings on the system parameters
and on the earthquake excitation.

19.7 HOW MANY MODES TO INCLUDE

The response contributions of all the natural modes of vibration must be included if the
“exact” value of the structural response to earthquake excitation is desired, but the first
few modes can usually provide sufficiently accurate results. The number of modes to be
included depends on two factors, modal contribution factor r̄n and spectral ordinate An ,
that enter into the modal response equation (19.3.3).

Recall the important result that the sum of the modal contribution factors over all the
modes is unity, Eq. (19.3.5). If only the first J modes are included, the error in the static
response is

eJ = 1−
J∑

n=1

r̄n (19.7.1)

We first examine the error e2 in static response if two modes are included. Table 19.7.1
shows this error computed from Eq. (19.7.1) and numerical values for the modal
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TABLE 19.7.1 e2 = 1−∑2
n=1 r̄n

Response ρ = 0 ρ = 1
8 ρ = ∞

V5 0.144 0.144 0.110
Vb 0.115 0.086 0.033
Mb 0.024 0.018 0.005
u5 0.0004 0.003 0.005

contribution factors in Table 19.3.1. The error e2 is below 0.15 or 15% for the four response
quantities. For a fixed ρ the error varies with the response quantity. It is smaller in the base
overturning moment Mb relative to the base shear Vb, and in Vb compared to the top-
story shear V5. The error is much smaller for the top-floor displacement u5, and it is less
than 3% if the first mode alone is considered. For a particular response quantity the error
e2 varies with ρ, being smallest for ρ = ∞ (i.e., shear beams) and largest for ρ = 0
(i.e., flexural beams). The top-floor displacement displays trends opposite to the forces
in the sense that e2 increases with increasing ρ, but e2 is so small that higher modes are
of little consequence in displacements (Fig. 19.4.3). These data suggest that the first one
or two modes may provide a good approximation to the total response, with the accuracy
depending on the response quantity and on ρ.

We next examine how the spectral ordinates An influence the number of modes that
should be included in the analysis. For a fixed ρ and T1 in the velocity- or displacement-
sensitive regions of the spectrum, the ratio An/A1 is larger for frames with longer funda-
mental period T1 (Fig. 19.4.1a and b). Thus for the same desired accuracy, more modes
should be included in the analysis of buildings with longer T1 than the number of modes
necessary for shorter-period buildings. For a fixed T1 in the velocity-sensitive or
displacement-sensitive regions of the spectrum, the ratio An/A1 is larger for frames with
smaller ρ (Fig. 19.4.1b and c). Thus, for the same desired accuracy, more modes should
be included in the analysis of buildings with smaller ρ compared to the number of modes
necessary for buildings with larger ρ; in particular, more modes should be included in the
analysis of flexural frames (ρ = 0) than for shear frames (ρ = ∞).

These expectations regarding how T1 and ρ influence the number of modes that
should be included in earthquake response analysis are confirmed by the results of
Fig. 19.7.1, where, for each ρ value, five response curves for base shear are identified
by indicating the number of modes included in the analysis. It is clear that the first two
modes provide a reasonably accurate value for the base shear in frames with T1 in the
velocity-sensitive region of the spectrum, and one mode is sufficient in the acceleration-
sensitive region. This conclusion is also valid for shears in all the stories and overturning
moments at all floors. The first mode alone provides accurate results for u5 over the entire
range of T1, and for all ρ values, as indicated by Fig. 19.4.3.

In light of the preceding observations, it is instructive to examine the 90% rule for
participating mass specified in some building codes. Because the effective modal mass is
equal to the modal static response V st

bn for base shear (Section 13.2.5), the prior rule implies
that enough—say J—modes should be included so that eJ for base shear is less than 10%.
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Figure 19.7.1 Normalized base shear in uniform five-story frames for three values of ρ. Results
were determined by RSA considering one, two, three, four, or five modes.

However, as noted earlier, eJ varies with the response quantity, and therefore this error
may exceed 10% for other response quantities such as shears in upper stories and bending
moments and shears in some structural elements. Furthermore, even if the error eJ in the
static response is less than 10%, the error in the dynamic response may exceed 10% for
buildings with longer T1 and smaller ρ.
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20

Earthquake Analysis and
Response of Inelastic Buildings

PREVIEW

As mentioned in Chapter 7, most buildings are expected to deform beyond the limit of
linearly elastic behavior when subjected to strong ground shaking. Thus the earthquake
response of buildings deforming into their inelastic range is of central importance in earth-
quake engineering. This chapter covers selected aspects of this vast subject, organized into
two parts.

Rigorous nonlinear response history analysis (RHA) is discussed in Part A. Men-
tioned are the governing equations of motion and differences in methodologies for solving
these equations for inelastic MDF systems compared to elastic systems. Next, we demon-
strate that the inelastic response of buildings is strongly influenced by assumptions in ide-
alizing or modeling the structure, by second-order P–� effects of gravity loads acting on
the laterally deformed state of the structure, and by the detailed variation of ground motion
with time. These factors are much more influential on the response of structures deforming
into their inelastic range than for those remaining elastic. Then we demonstrate that the
story ductility demands and their heightwise variation depend on the relative yield strengths
of beams versus columns and on the relative yield strengths of various stories. Identified
next are the differences between the ductility demands imposed by earthquake excitation
on multistory buildings and on an SDF system, both designed for the same base shear, and
culminating in a quantitative discussion of the increase in strength necessary to limit the
story ductility demands in a multistory building below the SDF-system ductility factor.

Recognizing that at the present time, nonlinear RHA is an onerous task for several
reasons and an unreasonable requirement for every building—no matter how simple—
and of every structural engineering office—no matter how small—approximate analysis
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procedures are developed in Part B of the chapter. Utilizing the modal expansion of the
effective earthquake forces, two procedures for approximate analysis of inelastic buildings
are developed: uncoupled modal response history analysis (UMRHA) and modal pushover
analysis (MPA). Not intended for practical application, the UMRHA procedure is devel-
oped only to provide a rationale for the MPA procedure. In the latter procedure, the seismic
demands due to individual terms in the modal expansion of the effective earthquake forces
are determined by nonlinear static (or pushover) analyses using the modal inertia force
distributions, and the peak “modal” responses are combined by modal combination rules
to estimate the total response. The principal approximations in the MPA procedure are
identified and the accuracy of the procedure is evaluated by comparing the estimated de-
mands against results of nonlinear RHA for several buildings. Finally, MPA is simplified
for practical application to estimate seismic demands for evaluation of existing buildings.

PART A: NONLINEAR RESPONSE HISTORY ANALYSIS

20.1 EQUATIONS OF MOTION: FORMULATION AND SOLUTION

The resisting force term in the equations of motion for an elastic multistory building
[Eq. (13.2.1)] is modified to recognize the inelastic behavior of the building. The force–
deformation relation for each structural member undergoing cyclic deformations is now
nonlinear and hysteretic. The initial loading curve is nonlinear at larger amplitudes of de-
formation, and the unloading and reloading curves differ from the initial loading branch.
Experiments on structural components have provided force–deformation relations appro-
priate for various types of structural elements (beams, columns, walls, braces, etc.) using
a variety of structural materials (steel, reinforced concrete, masonry, wood, etc.) (see
Fig. 7.1.1).

For inelastic systems the nonlinear relationship between lateral forces fS at the N
floor levels and resulting lateral floor displacements u is path dependent, i.e., it depends on
whether deformation is increasing or decreasing during the time step:

fS = fS(u) (20.1.1)

With this generalization for inelastic systems, Eq. (13.2.1) becomes

mü+ cu̇+ fS(u) = −mιüg(t) (20.1.2)

where m, c, and ι are as defined in Section 13.2. This matrix equation represents N non-
linear differential equations for the N floor displacements uj (t), j = 1, 2, . . . , N . Given
the structural mass matrix m, damping matrix c, inelastic force–deformation relation fS(u),
and ground acceleration üg(t), nonlinear RHA requires numerical solution of Eq. (20.1.2)
to obtain the displacement response of the structure, and internal forces can be determined
from the displacements.

Formulation of the nonlinear differential equations, in particular the fS(u) term,
is computationally demanding. The structural stiffness matrix must be reformulated at
each time instant from the element tangent stiffness matrices corresponding to the present
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deformation and its path dependence—whether it is on the initial loading, unloading, or
reloading branches of the element force–deformation relation—and for a large structure
this process must be repeated for thousands of structural elements. In formulating these
equations, nonlinear geometry should be considered because structures subjected to in-
tense ground motions may undergo large displacements. In earthquake engineering, the
nonlinear equilibrium and compatibility relations are generally approximated by an ap-
proach referred to as P–� analysis. Detailed formulation of the governing equations is
beyond the scope of this book, and the reader is referred to other sources (e.g., Filippou
and Fenves, 2004).

Numerical solution of Eq. (20.1.2) is computationally demanding for large (number
of DOFS) inelastic systems because these coupled differential equations must be solved
simultaneously; for inelastic systems they cannot be uncoupled by transforming to modal
coordinates, as will be demonstrated later. Such numerical solutions must be repeated at
every time step �t , which must be very short, short enough to ensure that the numerical
procedure converges, remains stable, and gives accurate results. In Chapter 16 we devel-
oped selected numerical methods that are commonly used in earthquake engineering to
solve these nonlinear differential equations.

20.2 COMPUTING SEISMIC DEMANDS: FACTORS
TO BE CONSIDERED

Several factors should be recognized to obtain meaningful results for the inelastic response
of a structure. Three of these factors—P–� effects, structural modeling (or idealization)
assumptions, and ground motion characteristics—are discussed in this section based on
results presented for a perimeter frame of the SAC–Los Angeles 20-story steel moment-
resisting frame building.† The computed values of response quantities—floor displace-
ments, story drifts, and plastic hinge rotations—represent the demands imposed on the
structure by the design earthquake.

20.2.1 P–Δ Effects

The second-order effect of the downward gravity loads acting on the laterally deformed
state of a structure, known as P–� effects, can profoundly influence the earthquake

†SAC was a joint venture of three nonprofit organizations: Structural Engineers Association of Cali-
fornia (SEAOC), Applied Technology Council (ATC), and California Universities for Research in Earthquake
Engineering (CUREE). Prompted by unexpected damage to the steel frames of many buildings during the 1994
Northridge earthquake, SAC was organized to conduct an extensive program of applied research. SAC commis-
sioned three consulting firms to design 3-, 9-, and 20-story special moment-resisting frame buildings according
to local code requirements in three cities: Los Angeles (UBC, 1994), Seattle (UBC, 1994), and Boston (BOCA,
1993). Square in plan, these buildings have identical properties in both lateral directions. Descriptions of their
dimensions in plan and elevation, member sizes, and other properties are available in several publications (e.g.,
Gupta and Krawinkler, 1999). Perimeter frames of seven of these nine buildings are used as examples in this
chapter. Ground motions selected for these examples are the 20 ground motion records assembled in the SAC
project to represent 2% probability of exceedance in 50 years (a return period of 2475 years).
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response of buildings in their inelastic range. With or without these effects, Fig. 20.2.1
shows plots of the base shear Vb (normalized by the total weight W ) against roof dis-
placement (normalized by building height)—commonly known as a pushover curve—
determined by nonlinear static analysis of the frame subjected to lateral forces with spec-
ified heightwise distribution that are gradually increased to push the building to large dis-
placements. P–� effects reduce the initial elastic stiffness of a structure slightly and will
therefore have little influence on the earthquake response of a structure if it remained elas-
tic during the design ground motion. However, P–� effects have a profound influence on
the postyield response, which now displays a short constant-strength plateau at a reduced
yield strength, followed by a rapid decrease in lateral force resistance represented by the
negative stiffness and culminating in zero lateral resistance at a roof displacement equal
to 4% of the building height; in contrast, the postyield stiffness remains positive if P–�
effects are ignored.

These profound differences in the postyield static behavior of a building suggest that
P–� effects should also be important in the building’s response to earthquake excitation.
This expectation is confirmed in Fig. 20.2.2, where the response history of interstory drift
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or relative deformation (normalized by story height) in the second story of the building due
to one of the SAC ground motions—the LA30 Tabas record—is presented for two cases:
P–� effects included or excluded. When these effects are included, after the first episode
of major yielding the story drift grows in one direction without any reversal toward the
opposite lateral direction, resulting in dynamic instability. In contrast, analysis excluding
these effects predicts oscillatory response that remains bounded. Clearly, it is essential to
include P–� effects in predicting the earthquake response of buildings deforming signifi-
cantly into their inelastic range.

20.2.2 Modeling Assumptions

The earthquake response of a building can be influenced significantly by the assumptions
in modeling (or idealizing) the structure for computer analysis. To demonstrate this possi-
bility, three different planar idealizations of the frame selected are considered: (1) model
M1, a basic centerline model in which the panel zone size, strength, and flexibility are not
represented; (2) model M2, a model that explicitly incorporates the strength and flexibility
properties of panel zones; and (3) model M2A, an enhanced version of model M2, which
includes the interior gravity columns, shear connections, and floor slabs.

The earthquake response of a building may be affected profoundly by the differences
in these analytical models, as demonstrated by the response history of second-story drift
due to the same ground motion (Fig. 20.2.3). The M1 model predicts that after the first
large inelastic excursion, the story drift will not reverse direction and will continue to grow
rapidly so that the building would become dynamically unstable within the first 20 s of
the excitation. This early instability does not occur in the M2 model, but the subsequent
(after 20 s) ground motion, although weaker, causes the drift to grow to near dynamic in-
stability of the frame. When other sources of stiffness and strength are considered (model
M2A), the response is radically different. After the first large inelastic excursion, the story
drift now recovers partially and oscillates about a shifted position, showing no signs of dy-
namic instability of the structure. It is evident that dynamic response is extremely sensitive
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to modeling assumptions once P–� effects become important and a story is deformed into
the range of negative postyield stiffness.

Consequently, the story drift demands for a building may be affected profoundly by
the modeling assumptions. This is evident in Fig. 20.2.4, where the peak values of story
drifts are presented for the same frame due to the same ground motion. No results are
shown for model M1 because it predicted collapse of the building. Model M2 predicts
story drifts approaching 15%, which are so large that the performance of the building
would not be acceptable. However, the most realistic model (M2A) predicts much smaller
story drifts, with the largest drift among all stories near 5%.

20.2.3 Response Variability with Ground Motion

The story drift demands are also sensitive to the time variation of ground acceleration,
hence they vary from one ground motion to the next. This is evident from the peak values
of story drifts in the M2 model of the same 20-story building due to 20 SAC ground mo-
tion records (Fig. 20.2.5). The story drift demands imposed by the 20 individual records
vary widely, implying that the response to any one excitation should not be the basis for
designing new buildings or evaluating existing buildings.

The seismic demands due to a large enough number of ground motions must be de-
termined and their record-to-record variability considered in selecting demand values to be
considered in the design and evaluation of structures. The median† and 84th percentile‡ val-
ues of the story drift demands for the M2 model of the structure are presented in Fig. 20.2.6
for three ensembles of 20 ground motions for Los Angeles representing different proba-
bilities of exceedance: 2% in 50 years (a return period of 2475 years), 10% in 50 years
(a return period of 475 years), and 50% in 50 years (a return period of 72 years). As the
intensity of the ground motion ensemble increases, both the median and 84th percentile

†Median refers to the exponent of the mean of the natural log values of the data set.
‡The 84th percentile is the median multiplied by the exponent of the dispersion, where dispersion is deter-

mined as the standard deviation of the natural log values of the data set.
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Figure 20.2.5 Story drift demands for the
SAC–Los Angeles 20-story building due to
20 SAC ground motions. (Data provided by
Akshay Gupta.)
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Figure 20.2.6 Median and 84th percentile
values of the story drift demands for the
SAC–Los Angeles 20-story building for
three ensembles of ground motions. (From
Gupta and Krawinkler, 2000a.)

values of story drift demands become larger, as expected; more important, dispersion of
the demand increases. The excitation-to-excitation variability in response is larger for the
most intense ensemble of ground motions because they cause story drifts large enough for
P–� effects to be important.

20.3 STORY DRIFT DEMANDS

20.3.1 Influence of Plastic Hinge Mechanism

The height-wise variation in ductility demands on multistory buildings depends, in part,
on the relative yield strengths of the beams and columns and the relative yield strengths
of various stories. To demonstrate this important concept, we present the ductility de-
mands for the three types of structures shown in Fig. 20.3.1. Designated as the beam-hinge
model, the first structural type is a frame with strong columns and weak beams in which a
complete mechanism forms with plastic hinges in all beams as lateral forces with a code-
specified distribution are increased (Fig. 20.3.1a). Designated as the column-hinge model,
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(a) (b) (c)

Figure 20.3.1 (a) Beam-hinge, (b) column-hinge, and (c) weak-story models. (From
Krawinkler and Nassar, 1991.)

the second structural type is a system with weak columns and strong beams in which all
columns develop plastic hinges as lateral forces with a code-specified distribution are in-
creased (Fig. 20.3.1b). Designated as the weak-story model, the third structural type devel-
ops a story mechanism only in the first story under code-specified lateral force distribution
(Fig. 20.3.1c); the yield strengths of the second and higher stories are increased consider-
ably relative to the column-hinge model to ensure that they remain elastic. Thus the first
story is no weaker than in the column-hinge model; it is weak only relative to the second
and higher stories, implying a large discontinuity of strength across the first floor.

The mean values (over an ensemble of 15 ground motions) of the story ductility fac-
tor will be presented for the aforementioned models of three 20-story building frames with
base-shear yield strength determined from the corresponding SDF system. In the linearly
elastic range, the natural period and damping ratio of the corresponding SDF system are the
same as the fundamental mode properties T1 and ζ1 of the multistory frame. The weight of
the corresponding SDF system is the same as the total weight W of the multistory frame.
The base-shear yield strength for this SDF system corresponding to a selected ductility
factor μ is given by Eq. (7.12.1) with appropriate change in notation:

Vby = Ay

g
W (20.3.1)

where Ay is the pseudo-acceleration corresponding to the μ selected (in this example
μ = 8) and known T1 and ζ1. The pseudo-acceleration is determined from the mean in-
elastic response spectrum of an ensemble of 15 ground motions.

The story ductility demands differ considerably among the three structural types
(Fig. 20.3.2). These ductility factors may be unrealistically large, but this example is
chosen to illustrate trends. Observe that the story ductility demand for the structures con-
sidered is largest in the bottom story, which is generally—but not always—true. Among
the three structural types, the ductility demands in the lower stories are largest for the
weak-story model, smallest for the beam-hinge model, and in between for the column-
hinge model. It is also apparent that the structural type has a great influence on the
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Figure 20.3.2 Mean story ductility
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due to an ensemble of 15 ground motions,
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(Data from Nassar and Krawinkler, 1991.)

height-wise variation of story ductility demands. Although this variation is significant
in all three cases, it is smallest for the beam-hinge model and greatest for the weak-story
model; in the latter case, the upper stories remain essentially elastic. Thus all the energy
that was dissipated through yielding of the upper stories in the beam–hinge and column–
hinge models must be dissipated by the weak first story, resulting in the very large ductility
demand of about 50.

In actual buildings, if the first story is relatively weak, it is usually also relatively
flexible because stiffness and strength are often interrelated. The behavior of such a soft-
first-story building is similar to that of a weak-first-story building: The upper stories re-
main essentially elastic, with yielding confined to the first story, resulting in large ductility
demands in this story.

A well-known example of a building with a soft first story is the Olive View Hos-
pital building. This was a six-story reinforced-concrete building with its first story par-
tially underground. The lateral force-resisting system included large walls in the up-
per four stories that did not extend down to the lower two stories (Fig. 20.3.3). These
discontinuous shear walls created a large discontinuity in strength and stiffness at the
second-floor level. During the February 9, 1971, San Fernando earthquake, this struc-
ture behaved as suggested by the preceding results from dynamic analysis of a hypothet-
ical building. The upper four stories of this building escaped with minor damage, with
the damage decreasing toward the top. Most of the damage was concentrated in the par-
tially underground story and the first aboveground story, with permanent drift in the latter
story exceeding 75 cm (Fig. 20.3.4). This large drift imposed very severe deformation and
ductility demands on the first-story columns. As a result, the tied columns failed in a brittle
manner (Fig. 20.3.5); however, the ductile behavior of the spirally reinforced columns
prevented the collapse of the building (Fig. 20.3.6). This building, completed only a few
months prior to the earthquake, was damaged so severely that it had to be demolished.
There are many such examples of severe damage to buildings with a soft first story even
during recent earthquakes.

Although soft-first-story buildings are obviously not appropriate for earthquake-
prone regions, their response during past earthquakes suggests the possibility of
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Figure 20.3.3 Olive View Hospital building. The shear walls in the upper four stories
did not extend to the lower two stories. (From K. V. Steinbrugge Collection, courtesy of
the Earthquake Engineering Research Center, University of California at Berkeley.)

reducing the damage to a building by a base isolation system that acts like a soft first
story. This topic is discussed in Chapter 21.

20.3.2 Influence of Inelastic Behavior

The distribution of story drifts over the height of a multistory frame also depends on how
far the frame deforms into the inelastic range, as demonstrated in Fig. 20.3.7. Presented
are the median values of story drift demands due to an ensemble of ground motions for
beam-hinge models of five 9-story frames, designed for lateral force distribution specified
in the 2009 International Building Code, and base shear given by Eq. (20.3.1), where Ay is
chosen to correspond to the SDF-system ductility factor μ = 1, 1.5, 2, 4, and 6; included



Figure 20.3.4 Large deformations in the first aboveground story of the Olive View Hos-
pital building due to the San Fernando earthquake of February 9, 1971. (Courtesy of K. V.
Steinbrugge Collection, Earthquake Engineering Research Center, University of California
at Berkeley.)

Figure 20.3.5 Brittle failure of a tied
corner column of the Olive View Hospital
building. (From K. V. Steinbrugge
Collection, courtesy of the Earthquake
Engineering Research Center, University of
California at Berkeley.)
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Figure 20.3.6 Large permanent
deformation of a spirally reinforced column
of the Olive View Hospital building. (From
K. V. Steinbrugge Collection, courtesy of the
Earthquake Engineering Research Center,
University of California at Berkeley.)
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are story drifts for the frame assumed to be linearly elastic. The story drift demands and
their heightwise variation for inelastic systems differ from those of elastic systems and
depend significantly on the ductility factor, a measure of the degree of inelastic behavior.
The story drifts increase at the upper stories of the elastic frame, where the response con-
tributions from higher vibration modes are known to be significant (see Chapter 19). As
the ductility factor, μ, increases (i.e., the strength of the frame decreases, implying a larger
degree of inelastic action), the drifts in upper stories decrease, and the largest drift occurs
near the base of the structure. This trend can also be observed in Fig. 20.3.2.
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20.4 STRENGTH DEMANDS FOR SDF AND MDF SYSTEMS

What base-shear yield strength is required in a multistory building to keep the earthquake-
induced ductility demand in every story below a selected value? To address this question
we examine the story ductility demands for a building with its base-shear yield strength
determined from Eq. (20.3.1) for the corresponding SDF system. By defining the yield
base-shear of the multistory building as the same as that of the corresponding SDF system,
the ductility demands computed will permit direct comparison between the two systems
and with the SDF-system ductility factorμ selected to determine Ay in Eq. (20.3.1). Before
presenting the ductility demands for the multistory building, we note that the mean ductility
demand imposed by the ensemble of ground motions on the corresponding SDF system
will be identical to the μ selected (Chapter 7).

For multistory buildings, however, the ductility demands differ from the SDF-system
ductility factor μ selected, and vary over the height. Figure 20.3.2 shows the mean values
(over an ensemble of 15 ground motions) of story ductility factors for two 20-story building
frames (beam-hinge model and column-hinge model) with the base-shear strength defined
according to Eq. (20.3.1) forμ= 8. It is clear that story ductility demands differ fromμ= 8
and are not constant over height because of the more complex dynamics of MDF systems.

The first-story ductility demand (often, the largest among all stories) increases with
the fundamental period, T1 (or the number of stories) and may exceed the SDF-system
ductility factor. It is also affected by the plastic hinge mechanism, as distinguished by
column-hinge versus beam-hinge models. These trends are shown in Fig. 20.4.1, where
the mean ductility demand in the first story of buildings 2, 5, 10, 20, 30, and 40 stories
high is presented as a function of fundamental period T1 for μ = 2 and 8.

It is evident from the preceding results (Fig. 20.4.1) and related observations that
unlike SDF systems, the base-shear yield strength determined from Eq. (20.3.1) is not suf-
ficient to limit the story ductility demands in a multistory building below the SDF-system
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ductility factor μ. To achieve this design objective, the base-shear yield strength Vby for
SDF systems needs to be increased for MDF systems. The modification factor (Vby)MDF÷
(Vby)SDF, where (Vby)MDF and (Vby)SDF are the base-shear yield strengths of MDF and SDF
systems, respectively, varies between 1 and 2.5 for the examples considered, increases with
T1 (or number of stories) and theμ value, and is also influenced by the plastic hinge mecha-
nism, being larger for the column-hinge model than for the beam-hinge model (Fig. 20.4.2).

PART B: APPROXIMATE ANALYSIS PROCEDURES

20.5 MOTIVATION AND BASIC CONCEPT

At the present time, nonlinear RHA is an onerous task, for several reasons. First, an en-
semble of ground motions compatible with the seismic design spectrum for the site must
be selected. Second, despite increasing computing power, inelastic modeling remains
challenging and nonlinear RHA remains computationally demanding, especially for
unsymmetric-plan buildings—which require three-dimensional analysis to account for cou-
pling between lateral and torsional motions—subjected to two horizontal components of
ground motion. Third, such analyses must be repeated for several excitations because of the
wide variability in demand due to plausible ground motions, and the record-to-record vari-
ability of response must be considered (see Section 20.2.3). Fourth, the structural model
must be sophisticated enough to represent a building realistically, especially deterioration
in its strength at large displacements (see Sections 20.2.1 and 20.2.2). Fifth, structural
modeling and commercial computer programs analyzing the same structure should be ro-
bust enough to produce essentially identical response results. With additional research and
software development, most of the preceding issues should eventually be resolved, and
nonlinear RHA may then become common in structural engineering practice.
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However, it may be unreasonable to require this onerous procedure for every
building—no matter how simple—and of every structural engineering office—no matter
how small. Therefore, we are interested in developing simplified methods that are approx-
imate but are rooted in structural dynamics theory as an alternative to rigorous nonlinear
RHA. For this purpose, we will utilize the notion of effective earthquake forces and their
modal components introduced in Chapters 12 and 13.

The effective earthquake forces [Eq. (13.1.2)], repeated here for convenience, are

peff(t) = −mιüg(t) (20.5.1)

The spatial distribution of these forces over the structure is defined by the vector s = mι.
This force distribution can be expanded as a summation of modal inertia force distributions
sn (Section 13.1.2), repeated here for convenience:

mι =
N∑

n=1

sn =
N∑

n=1

�n mφn (20.5.2)

where

�n = Ln

Mn
Ln = φT

n mι Mn = φT
n mφn (20.5.3)

The effective earthquake forces can then be expressed as

peff(t) =
N∑

n=1

peff,n(t) =
N∑

n=1

−snüg(t) (20.5.4)

The contributions of the nth mode to peff(t) and s are

peff,n(t) = −snüg(t) sn = �n mφn (20.5.5)

The modal expansion of the force distribution s is illustrated for a perimeter frame of
the SAC–Los Angeles 9-story building. The first three periods and modes of the building
vibrating along an axis of plan symmetry are shown in Fig. 20.5.1, where we note that the
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Figure 20.5.2 Modal expansion of the distribution s = mι of effective earthquake forces.

floor displacements in the first (or fundamental) mode are all in the same direction, but they
reverse direction in higher modes as one moves up the building. The modal expansion of
the distribution s = mι of the effective earthquake forces is shown in Fig. 20.5.2. As noted
in Section 13.2, the direction of force sjn at the j th floor level is controlled by the algebraic
sign of φjn , the j th-floor displacement in mode φn . Hence, these forces for the first mode
all act in the same direction, but for the second and higher modes they change direction as
one moves up the building. The contribution of the first mode to the force distribution s is
largest, and the modal contributions decrease progressively for higher modes.

Utilizing the modal expansion of peff(t) and s, two procedures for approximate anal-
ysis of inelastic buildings will be described next: UMRHA and MPA. Not intended for
practical application, the UMRHA procedure is developed only to provide a rationale for
the MPA procedure. In the UMRHA procedure, the response history of the building to
peff,n(t), the nth-mode component of the excitation, is determined by nonlinear RHA of
an inelastic SDF system, and superposition of these “modal” responses gives the total re-
sponse. In the MPA procedure, the peak response to peff,n(t) is determined by a nonlinear
static, or pushover, analysis, and the peak modal responses are combined by modal combi-
nation rules to estimate the total response.

20.6 UNCOUPLED MODAL RESPONSE HISTORY ANALYSIS

20.6.1 Linearly Elastic Systems

In this section we demonstrate that the classical modal analysis procedure for linearly
elastic systems developed in Sections 12.4 to 12.6 and 13.1 is equivalent to finding the
response of the structure to peff,n(t) for each n and superposing the responses for all n.
The response of the system to peff,n(t) is entirely in the nth mode, with no contribution
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from other modes, which implies that the modes are uncoupled. Recall that this important
property of the modal expansion of Eq. (20.5.2) was proven analytically in Section 12.8.

The equations governing the response of the linearly elastic MDF system to peff,n(t),
defined by Eq. (20.5.5a), are

mü+ cu̇+ ku = −snüg(t) (20.6.1)

and the resulting floor displacements are given by

un(t) = φnqn(t) (20.6.2)

Substituting Eq. (20.6.2) in Eq. (20.6.1) and premultiplying the latter by φT
n leads to the

equation governing the modal coordinate qn:

q̈n + 2ζnωnq̇n + ω2
nqn = −�nüg(t) (20.6.3)

in which ωn is the natural frequency and ζn is the damping ratio, both for the nth mode,
and �n was defined by Eq. (20.5.3). As demonstrated in Section 13.1, the solution qn(t) of
Eq. (20.6.3) is given by

qn(t) = �n Dn(t) (20.6.4)

where Dn(t) is the deformation response of the nth-mode linearly elastic SDF system, an
SDF system with vibration properties—natural frequency ωn (natural period Tn = 2π/ωn)

and damping ratio ζn—of the nth mode of the MDF system, subjected to üg(t). It is
governed by

D̈n + 2ζnωn Ḋn + ω2
n Dn = −üg(t) (20.6.5)

Substituting Eq. (20.6.4) into Eq. (20.6.2) gives the lateral displacements of the
floors:

un(t) = �nφn Dn(t) (20.6.6)

and the story drift in the j th story is the difference between displacements of the j th and
( j − 1)th floors:

�jn(t) = �n(φjn − φj−1,n)Dn(t) (20.6.7)

Equations (20.6.6) and (20.6.7) represent the response of the MDF system to peff,n(t), and
superposing the responses for all n gives the response of the system due to total excitation
peff(t):

r(t) =
N∑

n=1

rn(t) (20.6.8)

This is the UMRHA procedure for exact analysis of linearly elastic systems, which
is identical to classical modal RHA. Equation (20.6.3) is the standard equation governing
the modal coordinate qn(t); it is identical to Eq. (13.1.7). Equations (20.6.6) and (20.6.7)
define the contribution of the nth mode to the response; they are identical to Eqs. (13.1.10)
and (13.2.6). Equation (20.6.8) combines the response contributions due to all n excitation
terms in the modal expansion of Eq. (20.5.4); it is identical to Eqs. (13.1.15) and (13.1.16).
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However, these standard equations have now been derived in an unconventional way. In
contrast to the classical derivation presented in Sections 12.4 and 13.1.3 to 13.1.5, we have
used the modal expansion of the spatial distribution of the effective earthquake forces.
This interpretation of modal analysis will provide a rational basis for the modal pushover
analysis procedure developed later for inelastic systems.

20.6.2 Inelastic Systems

Although modal analysis is not valid for an inelastic system, its dynamic response can
usefully be discussed in terms of the natural vibration modes of the corresponding linear
system. Each structural element of this linear system is defined to have the same stiffness as
its initial stiffness in the inelastic system; both systems have the same mass and damping.
Therefore, the natural vibration periods and modes of the corresponding linear system are
the same as the vibration properties of the inelastic system undergoing small oscillation,
which are referred to as “periods” and “modes” of the inelastic system.† Thus Eqs. (20.5.2)
to (20.5.5) are also valid for inelastic systems, where φn now represents the modes of the
corresponding linear system.

The equations governing the response of the inelastic MDF system to peff,n(t) defined
by Eq. (20.5.5a) are

mü+ cu̇+ fS(u) = −snüg(t) (20.6.9)

The solution of Eq. (20.6.9) will no longer be described by Eq. (20.6.2) because modes
other than the nth mode will also contribute to the system response, implying that the
vibration modes are now coupled; thus the floor displacements are given by the first part
of Eq. (20.6.10):

un(t) =
N∑

r=1

φr qr (t) � φnqn(t) (20.6.10)

However, because for linear systems qr (t) = 0 for all modes other than the nth mode, it is
reasonable to expect that qr (t)may be small for inelastic systems, implying that the elastic
modes are, at most, weakly coupled.

The above-mentioned expectation is confirmed numerically by the response of the
SAC–Los Angeles 9-story building to ground motion intense enough to cause significant
yielding of the structure. Its response to force vector peff,n(t) was determined by nonlinear
RHA, solving Eq. (20.6.9) by the numerical methods described in Chapter 16, and the
resulting floor displacements were decomposed into their modal components using the
procedure in Section 10.7, applied at each time instant.

Figure 20.6.1 shows that the roof displacement due to the force vector peff,n(t) is due
primarily to the nth mode but that other modes contribute to the response. The second,
third, and fourth modes start responding to excitation peff,1(t) the instant the structure

†The quotation marks are included to emphasize that the concept of natural vibration periods and modes is
strictly not valid for inelastic systems. Subsequently, however, the quotation marks are dropped, but are always
implied in the context of inelastic systems.
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Figure 20.6.1 Modal decomposition of roof displacement due to peff,n(t) = −sn üg(t), n = 1, 2, 3,
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first yields (Fig. 20.6.1a). Similarly, the first, third, and fourth modes start responding to
excitation peff,2(t) the instant the structure first yields (Fig. 20.6.1b).

Although the natural vibration modes are no longer uncoupled if the system responds
in the inelastic range, modal coupling is weak. In the structural response due to peff,1(t),
the contributions to roof displacement of the second, third, and fourth modes are only
6, 3, and 2%, respectively, of the first-mode response (Fig. 20.6.1a). In the structural
response to peff,2(t), the contributions to roof displacement of the first, third, and fourth
modes are 25, 13, and 2%, respectively, of the second-mode response (Fig. 20.6.1b). In the
structural response to peff,3(t), the contributions to the roof displacement of each of the first,
second, and fourth modes are less than 1% of the third-mode response (Fig. 20.6.1c). In the
structural response to peff,4(t), the contributions to roof displacement of each of the first,
second, and third modes are less than about 1% of the fourth-mode response (Fig. 20.6.1d).

This weak coupling of modes implies that the structural response due to excitation
peff,n(t) may be approximated by the second half of Eq. (20.6.10). Substituting this ap-
proximation into Eq. (20.6.9) and premultiplying by φT

n gives

q̈n + 2ζnωnq̇n + Fsn

Mn
= −�nüg(t) (20.6.11)
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whereFsn is a nonlinear hysteretic function of the nth modal coordinate qn:

Fsn = Fsn(qn) = φT
n fS(qn) (20.6.12)

If the smaller contributions of other modes had not been neglected, Fsn would depend on all
modal coordinates, and the set of equations defined by Eq. (20.6.11) for n = 1, 2, . . . , N
would be coupled because of yielding of the structure and hence offer no advantage over
Eq. (20.6.9).

What is a good way to express the solution of Eq. (20.6.11) for inelastic systems?
To answer this question, we note the similarity between Eq. (20.6.11) and its counterpart,
Eq. (20.6.3) for linearly elastic systems, and that the solution for the latter was related
by Eq. (20.6.4) to the response Dn(t) of the nth-mode elastic SDF system. Similarly, the
solution of the former can be expressed as Eq. (20.6.4), where Dn(t) is now governed by

D̈n + 2ζnωn Ḋn + Fsn

Ln
= −üg(t) (20.6.13)

Dn(t) may be interpreted as the deformation response of the nth-mode inelastic SDF sys-
tem, an SDF defined by (1) small-oscillation vibration properties—natural frequency ωn

(natural period Tn) and damping ratio ζn—of the nth mode of the MDF system; and (2)
the force–deformation (Fsn/Ln − Dn) relation. Introducing the nth-mode inelastic SDF
system permitted extension to inelastic systems of the well-established concepts for elastic
systems.

Solution of the nonlinear Eq. (20.6.13) provides Dn(t), which is substituted into
Eqs. (20.6.6) and (20.6.7) to obtain floor displacements and story drifts. They approximate
the response of the inelastic MDF system to peff,n(t), the nth-mode contribution to peff(t).
Superposition of responses to peff,n(t)—n = 1, 2, . . . , N—according to Eq. (20.6.8) pro-
vides the total response to peff(t). This is the UMRHA procedure for approximate analysis
of inelastic systems. When specialized for linearly elastic systems, as mentioned in Sec-
tion 20.6.1, it becomes identical to classical modal RHA, an exact analysis procedure.

The UMRHA procedure for inelastic systems is based on two approximations,
which can be identified by comparing the key equations in UMRHA for elastic and
inelastic structural systems. Equations (20.6.4), (20.6.6), and (20.6.7) apply to both sys-
tems; Eqs. (20.6.3) and (20.6.5) differ from Eqs. (20.6.11) and (20.6.13) only in the re-
sisting force; Eqs. (20.6.2) and (20.6.8) are exact for elastic systems but only approximate
for inelastic systems. Commenting first on Eq. (20.6.8), the superposition of responses
implied by this equation is strictly valid only for linearly elastic systems; however, it has
been shown to be approximately valid for inelastic systems, a result that we do not demon-
strate here because our intent in developing UMRHA is limited to justifying the modal
uncoupling approximation needed for MPA. As is evident from Eq. (20.6.10), the second
approximation comes from neglecting the coupling of modal coordinates, which permitted
computing the response of the inelastic MDF system to peff,n(t) from that of an SDF sys-
tem. Supported by the numerical results of Fig. 20.6.1, this approximation is reasonable
only because the excitation is peff,n(t), the nth-mode contribution to the total excitation
peff(t). It would not be valid for an excitation with lateral force distribution different from
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sn [e.g., the total excitation peff(t)], pointing out that the modal expansion of Eq. (20.5.4)
is a key concept underlying UMRHA.

To test the modal uncoupling approximation in UMRHA, the response of the SAC–
Los Angeles 9-story building to peff,n(t)=−snüg(t), where üg(t) is the same ground
motion as the one selected earlier (Fig. 20.6.1), was determined by two methods and
compared: (1) rigorous nonlinear RHA by solving the governing coupled equations
[Eq. (20.6.9)]; and (2) approximate UMRHA procedure. Such a comparison for roof-
displacement and top-story drift is presented in Figs. 20.6.2 and 20.6.3, respectively. The
errors in UMRHA results are larger in drift than in displacement, but the errors in either
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Figure 20.6.2 Comparison of approximate roof displacement from UMRHA and exact
result from nonlinear RHA due to peff,n(t) = −sn üg(t), n = 1, 2, 3, and 4, where üg(t) =
LA25 ground motion.
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Figure 20.6.3 Comparison of approximate top-story drift from UMRHA and exact result
from nonlinear RHA due to peff,n(t) = −sn üg(t), n = 1, 2, 3, and 4, where üg(t) = LA25
ground motion.

response quantity seem small enough to use the modal uncoupling approximation in de-
veloping approximate methods to estimate seismic demands for buildings.

The UMRHA procedure is based on the second half of Eq. (20.6.10), restricting the
floor displacements due to peff,n(t) to be proportional to the nth mode, which as stated
earlier is an approximation for inelastic systems. This approximation is avoided in the
MPA procedure, which is presented next, but a modal combination approximation must be
introduced, as will be seen later. To provide a proper context, MPA is first presented for
linearly elastic systems.
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20.7 MODAL PUSHOVER ANALYSIS

20.7.1 Linearly Elastic Systems

The response spectrum analysis (RSA) procedure (Sections 13.7 and 13.8), which is a dy-
namic analysis procedure, can be interpreted in two ways: as static analysis or as pushover
analysis. As demonstrated in Section 13.8.1, static analysis of the building subjected to
lateral forces

fn = sn An = �nmφn An (20.7.1)

will provide the same value of rn , the peak value of the nth-mode response rn(t), as in
Eq. (13.7.1), where An = A(Tn, ζn), the pseudo-acceleration spectrum ordinate corre-
sponding to the natural vibration period Tn and damping ratio ζn of the nth mode.

Alternatively, this peak modal response can be obtained by linear static analysis of
the structure subjected to monotonically increasing lateral forces with an invariant height-
wise distribution:

s∗n = mφn (20.7.2)

pushing the structure up to the roof displacement, urn (the subscript r denotes “roof”), the
peak value of the roof displacement due to the nth mode, which from Eq. (20.6.6) is

urn = �nφrn Dn (20.7.3)

where Dn ≡ D(Tn, ζn) is the ordinate of the deformation response spectrum corresponding
to the period Tn and damping ratio ζn of the nth mode. Figure 20.7.1 shows the lateral force
distribution s∗n for the first three modes of the SAC–Los Angeles 9-story building. But for
scaling factors, �n , these distributions are identical to those in Fig. 20.5.2.

The peak modal responses, rn , each determined by one pushover analysis, can be
combined according to the modal combination rules of Eq. (13.7.3) or (13.7.4), as
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modes of the SAC–Los Angeles 9-story
building. (From Goel and Chopra, 2004.)
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appropriate, to obtain an estimate of the peak value r of the total response. Equivalent
to the standard RSA procedure described in Sections 13.7 and 13.8, the MPA procedure
offers no advantage for linearly elastic systems, but this interpretation of RSA permits ex-
tension of MPA to approximate analysis of inelastic systems. Before doing so, note that rn

determined by pushover analysis can also be interpreted as the peak response of the linearly
elastic system to peff,n(t), the nth-mode component of the effective earthquake forces. This
interpretation is valid because, as demonstrated in Section 12.8, the system responds only
in its nth mode when subjected to this excitation.

20.7.2 Inelastic Systems

The peak response rn of the inelastic system to peff,n(t) is also determined by a pushover
analysis, which is now a nonlinear static analysis instead of a linear static analysis, of
the structure subjected to lateral forces distributed over the building height according to
s∗n [Eq. (20.7.2)] with the forces increased to push the structure up to roof displacement
urn . This value of the roof displacement is also determined from Eq. (20.7.3), but Dn

is now the peak deformation of the nth-mode inelastic SDF system (instead of the nth-
mode elastic SDF system), determined by solving Eq. (20.6.13) for Dn(t). At this roof
displacement, the results of nonlinear static analysis provide an estimate of the peak value
rn of the response quantity rn(t): floor displacements, story drifts, and other deformation
quantities.

Nonlinear static analysis using force distribution s∗n leads to the nth-mode pushover
curve, a plot of base shear Vbn versus roof displacement urn . From the nth-mode pushover
curve is obtained the force–deformation (Fsn/Ln − Dn) curve for the nth-mode inelastic
SDF system, which is required in Eq. (20.6.13). The forces and displacements in the two
sets of curves are related as follows (see Derivation 20.1):

Fsn

Ln
= Vbn

M∗n
Dn = urn

�nφrn
(20.7.4)

where M∗n = Ln�n is the effective modal mass (Section 13.2.5).
Figure 20.7.2 shows the nth-mode pushover curve and its bilinear idealization; at the

yield point the base shear is Vbny and the roof displacement is urny . The two are related
through (Derivation 20.2)

Fsny

Ln
= ω2

n Dny (20.7.5)

As it should be, the initial slope of the Fsn/Ln − Dn curve is equal to ω2
n , implying that

it matches the force–deformation relation for the linear system in Eq. (20.6.5). Knowing
Fsny/Ln and Dny from the pushover curve and Eq. (20.7.4), the initial elastic vibration
period Tn of the nth-mode inelastic SDF system is computed from

Tn = 2π

(
Ln Dny

Fsny

)1/2

(20.7.6)
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Figure 20.7.2 (a) An nth-mode pushover curve and its bilinear idealization; (b) force–
deformation relation for the nth-mode inelastic SDF system.

This value of Tn , which may differ from the period of the corresponding linear system de-
termined by solving the eigenvalue problem (Section 10.2), should be used in Eq. (20.6.13).

The response value rn determined by pushover analysis is an estimate of the peak
value of the response rn(t) of the inelastic structure to peff,n(t), but it is not identical to an-
other estimate determined by UMRHA. As mentioned earlier, rn determined by pushover
analysis of a linearly elastic system is the exact peak value of rn(t), the nth-mode contri-
bution to response r(t). Thus we refer to rn as the peak modal response even in the case of
inelastic systems. However, for inelastic systems the two—UMRHA and MPA—estimates
of the peak modal response are both approximate and different from each other; the only
exception is the roof displacement because it is deliberately matched in the two analyses.
The two estimates differ because the underlying analyses involve different assumptions.
UMRHA is based on the approximation contained in the second half of Eq. (20.6.10),
which is avoided in MPA because the floor displacements, story drifts, and other deforma-
tion quantities are determined by nonlinear static analysis using force distribution s∗n . As
a result, the floor displacements of the inelastic system are no longer proportional to the
nth-mode shape, in contrast to the second half of Eq. (20.6.10). In this sense, the MPA
procedure represents the nonlinear behavior of the structure better than UMRHA.

However, the MPA procedure contains a different source of approximation, which
does not exist in UMRHA. The peak modal responses rn , each determined by one nonlinear
static analysis, are combined by a modal combination rule, just as in RSA of linearly elastic
systems. This application of modal combination rules to inelastic systems lacks a rigorous
theoretical basis, but seems reasonable because the modes are only weakly coupled.

20.7.3 Summary

The seismic deformation demands—floor displacements, story drifts, and plastic hinge
rotations—for a symmetric-plan multistory building subjected to earthquake ground
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motion along an axis of symmetry can be estimated by the MPA procedure, which is sum-
marized next in step-by-step form:

1. Compute the natural frequencies, ωn , and modes, φn , for linearly elastic vibration of
the building (Fig. 20.5.1).

2. For the nth mode, develop the base shear–roof displacement, Vbn–urn , pushover
curve by nonlinear static analysis of the building using the lateral force distribution,
s∗n [Eq. (20.7.2) and Fig. 20.7.1]. Initial gravity (dead and live) loads are applied
before the lateral forces, causing roof lateral displacement urg .

3. Convert the Vbn–urn pushover curve to the force–deformation, Fsn/Ln–Dn , relation
for the nth-mode inelastic SDF system by utilizing Eq. (20.7.4).

4. Idealize the force–deformation relation for the nth-mode SDF system as a bilinear or
trilinear curve, as appropriate, or by more sophisticated idealizations. Starting with
this initial loading curve, define the unloading and reloading branches appropriate
for the structural system and material.

5. Compute the peak deformation Dn of the nth-mode inelastic SDF system defined
by the hysteretic force–deformation relation developed in step 4 and the damping
ratio ζn . Compute the initial elastic vibration period [Eq. (20.7.6)] and estimate the
damping ratio (Chapter 11). For this SDF system, Dn is determined by nonlinear
RHA [i.e., by solving Eq. (20.6.13)].

6. Calculate the peak roof displacement urn associated with the nth-mode inelastic SDF
system from Eq. (20.7.3).

7. From the pushover database (step 2), extract values of desired responses rn+g due
to the combined effects of gravity and lateral loads at roof displacement equal to
urn + urg .

8. Repeat steps 3 to 7 for as many modes as required for sufficient accuracy.

9. Compute the dynamic response due to the nth mode: rn = rn+g − rg , where rg is the
contribution of gravity loads alone.

10. Determine the total dynamic response rd by combining the peak modal responses
using an appropriate modal combination rule (Section 13.8).

11. Determine the total seismic demand by combining the initial response due to gravity
loads and the peak dynamic response:

r � max(rg ± rd) (20.7.7)

Plastic hinge rotations and member forces. The total floor displacements
and story drifts are estimated by combining values obtained from gravity load analysis and
modal pushover analyses (steps 10 and 11). This procedure may also be used to determine
other deformation quantities, such as plastic hinge rotations. Alternatively, an improved
estimate can be obtained by computing plastic hinge rotations from the total story drifts by
a published procedure (Gupta and Krawinkler, 1999).

As summarized above, the MPA procedure can also be used to estimate internal
forces in those structural members that remain within their linearly elastic range, but not
in those that deform into the inelastic range. In the latter case, the member forces are
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estimated from the total member deformations—determined by step 11 of the MPA pro-
cedure. Researchers have developed such procedures to compute member forces but these
are not included here.

Extension of MPA. Restricted in the preceding sections to symmetric-plan build-
ings, the MPA procedure has been extended to unsymmetric-plan buildings, which respond
in coupled lateral–torsional motions during earthquakes. This extension draws on the ear-
lier development of modal RHA and RSA procedures for linear analysis of unsymmetric-
plan buildings (Sections 13.3 and 13.9). The force distribution s∗n used in the pushover
analysis for each “mode” now includes two lateral forces and torque at each floor, and the
modal demands are combined by the CQC rule, instead of the SRSS rule, to obtain an
estimate of the total seismic demand.

Derivation 20.1

Equation (20.7.4b), which relates roof displacement urn of the MDF system in the modal
pushover curve to deformation Dn of the SDF system, is obvious from Eq. (20.7.3), whereas
Eq. (20.7.4a), relating forces in the two systems, may be derived as follows: At any stage
of the nonlinear static procedure, the lateral forces are given by Eq. (20.7.2) times a scale
factor, say, α: fSn = αmφn . Substituting this fSn into Eq. (20.6.12) and into the equation for
base shear, Vbn = 1T fSn , where 1 is a vector with all elements equal to unity, and utilizing
Eq. (20.5.3b and c) leads to

Fsn = αMn Vbn = αLn (a)

Thus
Fsn

Mn
= Vbn

Ln
(b)

Dividing both sides of Eq. (b) by �n , defined in Eq. (20.5.3a), gives Eq. (20.7.4a).

Derivation 20.2

Consider the lateral forces fSny = αymφn that cause base shear equal to its yield value Vbny .
Corresponding to these lateral forces, Eq. (20.6.12) gives

Fsny = αy Mn (a)

The resulting static displacements ust
ny satisfy

kust
ny = αymφn (b)

Solving these equations and using Eq. (10.2.4) gives

uny = k−1(αymφn) =
αy

ω2
n
φn (c)

Equating two expressions for the roof displacement, one from Eq. (20.7.3) and the other from
Eq. (c), gives

�nφrn Dny =
αy

ω2
n
φrn (d)

Equating two expressions for αy , one from Eq. (d) and the other from Eq. (a), and utilizing
Eq. (20.5.3a) leads to Eq. (20.7.5).
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20.8 EVALUATION OF MODAL PUSHOVER ANALYSIS

The dynamic response of each structural system to each of the 20 ground motions was
determined by two procedures: nonlinear RHA and MPA. The “exact” peak value of struc-
tural response or demand r , determined by nonlinear RHA, is denoted by rNL-RHA and the
approximate value from MPA by rMPA. The response of each building was also computed
under the assumption that the structure is strong enough to remain elastic. For elastic
systems, nonlinear RHA specializes to linear RHA and MPA reduces to RSA; thus, these
responses are denoted as rRHA and rRSA. Presented in this section are median values of
seismic responses or demands for the 9- and 20-story buildings. The RSA and MPA proce-
dures were implemented, including a variable number of modes: one, two, or three modes
for the 9-story buildings; one, three, or five modes for the 20-story buildings.

20.8.1 Modal Pushover Curves and Roof Displacements

Figures 20.8.1 to 20.8.3 show pushover curves for the first, second, and third modes, re-
spectively, and identify the modal roof displacements due to each of the 20 ground motions
and their median value; these roof displacements were determined by the MPA procedure
(see steps 5 and 6 in the MPA summary presented in Section 20.7.3). Excluded from the
first-mode plot are roof displacements due to those ground motions that caused collapse of
the SDF system: one, three, and six excitations in the case of the Seattle 9-story and Los
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Figure 20.8.1 First-mode pushover curves for six SAC buildings; the roof displacement due to each
of 20 ground motions is identified and the median value is also noted.
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Figure 20.8.2 Second-mode pushover curves for six SAC buildings; the roof displacement due to
each of 20 ground motions is identified and the median value is also noted.
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Figure 20.8.3 Third-mode pushover curves for six SAC buildings; the roof displacement due to each
of 20 ground motions is identified and the median value is also noted.
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Angeles 9- and 20-story buildings. Figures 20.8.1 to 20.8.3 permit the following observa-
tions: Boston buildings remain elastic for all modes during all ground motions, and their
median roof displacement is well below the yield displacement. Several ground motions
drive the Seattle 9-story building well beyond the elastic limit in the first two modes but
not in the third mode. The median displacement is well beyond the yield displacement for
the first mode but only slightly beyond for the second mode. Several ground motions drive
the Seattle 20-story building well beyond the yield displacement in the first three modes;
however, the median displacement exceeds the yield displacement significantly only for
the second mode. The very intense Los Angeles motions, which include several near-fault
ground motions, drive the Los Angeles buildings well beyond the yield displacement in the
first two modes; even the median displacement exceeds the yield displacement, although
more so in the first mode than in the second. The overall impression is that some exci-
tations deform the Seattle and Los Angeles buildings into the inelastic range in the first
three modes, but the median displacement in modes higher than the first is either close to
or exceeds the yield displacement only by a modest amount.

20.8.2 Higher-Mode Contributions in Seismic Demands

Figure 20.8.4 shows the median values of story drift demands, including a variable num-
ber of modes in MPA superimposed with the “exact” result from nonlinear RHA. The first
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Figure 20.8.4 Median story drifts for six SAC buildings determined by nonlinear RHA and MPA,
with a variable number of modes. (Adapted from Goel and Chopra, 2004.)
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mode alone is inadequate in estimating story drifts, but with a few modes included, story
drifts estimated by MPA are much better and resemble nonlinear RHA results; however,
significant discrepancies are noted for the Los Angeles buildings. We return to these dis-
crepancies later.

20.8.3 Accuracy of Modal Pushover Analysis

The MPA procedure for inelastic systems is based on two principal approximations: (1) ne-
glecting the weak coupling of modes in computing the peak modal response rn to peff,n(t);
and (2) combining the rn by modal combination rules, known to be approximate in estimat-
ing the peak value of the total response. Because the latter is the only source of approxima-
tion in the widely used RSA procedure for linearly elastic system (Sections 13.7 and 13.8),
the resulting error in the response of these systems serves as a baseline for evaluating the
additional approximation in MPA for inelastic systems.

Figures 20.8.5 and 20.8.6 compare the accuracy of RSA in estimating the response of
elastic systems with that of MPA in estimating the response of inelastic systems. For each
of the six SAC buildings, the results are organized in two parts: (a) story drift demands for
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Figure 20.8.5 Median story drifts for (a) linearly elastic systems determined by RSA and RHA
procedures, and (b) inelastic systems determined by MPA and nonlinear RHA procedures. Results are
for SAC 9-story buildings. (Adapted from Goel and Chopra, 2004.)
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for SAC 20-story buildings. (Adapted from Goel and Chopra, 2004.)

these buildings treated as elastic systems determined by RSA and RHA procedures, and (b)
demands for inelastic systems determined by MPA and nonlinear RHA. In implementing
the RSA and MPA procedures, three modes were included for 9-story buildings and five
modes for 20-story buildings.

Observe that the RSA procedure underestimates the median response of all six elastic
systems. This underestimation tends to increase from bottom to top of buildings, consis-
tent with the height-wise variation of the contribution of higher modes to the response
(Section 19.6). The height-wise largest underestimation ranges from 15% for the Los
Angeles 9-story building to 28% for the Boston 9-story building. By pervasive use of com-
mercial software based on the modal combination approximation, the profession tacitly
accepts this approximation, but perhaps has not recognized fully that it may lead to such
significant underestimation of response.

The additional errors introduced by neglecting modal coupling in the MPA proce-
dure, which are apparent by comparing parts (a) and (b) of Figs. 20.8.5 and 20.8.6, depend
on how far the building responds into the inelastic range. This can be judged from the
first-mode pushover curves and the peak values of roof displacement (Fig. 20.8.1). The
additional errors in MPA (compared to those in RSA) are small for both Boston build-
ings because they remain essentially elastic; however, these errors increase slightly for
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Seattle buildings because they are deformed moderately into the inelastic range; further-
more, they increase significantly for Los Angeles buildings, especially for the Los Angeles
9-story building, because they are deformed into the region of negative postyield stiffness
and concomitant deterioration of lateral capacity, leading to collapse of its first-mode SDF
system during several excitations.

20.9 SIMPLIFIED MODAL PUSHOVER ANALYSIS
FOR PRACTICAL APPLICATION

For evaluating existing buildings or proposed designs of new buildings, the MPA proce-
dure summarized in Section 20.7.3 can be simplified in two ways: The first simplification
comes in determining the peak deformation Dn of the nth-mode inelastic SDF system that
is needed in Eq. (20.7.3) to estimate the roof displacement urn , at which the nth-mode
response rn is determined by nonlinear static analysis of the structure (steps 7 to 9 in
Section 20.7.3). In the results presented in Section 20.8, Dn was determined as the peak
value of Dn(t) obtained by nonlinear RHA of the SDF system for a given üg(t). Al-
though implementation of such a numerical solution of Eq. (20.6.13) is straightforward
using methods presented in Chapter 5, such computation can be avoided in practical appli-
cations of MPA.

One convenient approach is to estimate Dn directly from the earthquake design spec-
trum (Section 6.9) that defines the seismic hazard for the site, using the method presented
in Section 7.12.2. Alternatively, Dn for an inelastic system can be estimated as the peak
deformation of the corresponding linear system, which is read off the design spectrum,
multiplied by the inelastic deformation ratio. Empirical equations for this ratio, defined
as the ratio of peak deformations of inelastic and corresponding linear SDF systems, have
been developed by several researchers.

The second simplification comes in computing the response contributions of modes
higher than the first. The results of Fig. 20.8.1 to 20.8.3 and their interpretation sug-
gested that consideration of inelastic behavior of the structure is essential in the first-mode
pushover analysis, but may not be as important for the higher-mode analyses. The errors
introduced in higher-mode demands by ignoring inelastic behavior of the structure are ex-
pected to be less significant in estimating the total demand, which contains important con-
tributions of the first mode that are computed without introducing such an approximation.

Treating the building as linearly elastic in estimating the higher-mode contributions
to seismic demands, a modified MPA procedure has been developed. It requires less com-
putational effort because pushover analysis is required only for the first mode. Such a
modified MPA is an attractive alternative for practical application because it leads to a
larger estimate of seismic demand—although not necessarily more accurate estimate—
than MPA, thus reducing the unconservatism of MPA results (relative to nonlinear RHA)
in some cases and increasing their conservatism in others. Although this increase in de-
mand is modest and acceptable for systems with moderate damping, at least 5%, it is
unacceptably large for lightly damped systems.
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21

Earthquake Dynamics of
Base-Isolated Buildings

PREVIEW

The concept of protecting a building from the damaging effects of an earthquake by intro-
ducing some type of support that isolates it from the shaking ground is an attractive one,
and many mechanisms to achieve this result have been proposed. Although the early pro-
posals go back 100 years, it is only in recent years that base isolation has become a practical
strategy for earthquake-resistant design. In this chapter we study the dynamic behavior of
buildings supported on base isolation systems with the limited objective of understanding
why and under what conditions isolation is effective in reducing the earthquake-induced
forces in a structure. Base isolation is currently an active and expanding subject, however,
and a large body of literature exists on various aspects of base isolation: testing and me-
chanics of hardware in isolation systems, nonlinear dynamic analysis, shaking table tests,
design projects, field installation, and field performance.

21.1 ISOLATION SYSTEMS

Despite wide variation in detail, base isolation techniques follow two basic approaches
with certain common features. In the first approach the isolation system introduces a layer
of low lateral stiffness between the structure and the foundation. With this isolation layer
the structure has a natural period that is much longer than its fixed-base natural period.
As shown by the elastic design spectrum of Fig. 21.1.1, this lengthening of period can
reduce the pseudo-acceleration and hence the earthquake-induced forces in the structure,

809
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Figure 21.1.1 Elastic design spectrum.

but the deformation is increased; this deformation is concentrated in the isolation system,
however, accompanied by only small deformations in the structure. This type of isolation
system is effective even if the system is linear and undamped. Damping is beneficial,
however, in further reducing the forces in the structure and the deformation in the isolation
system.

The most common system of this type uses short, cylindrical bearings with one or
more holes and alternating layers of steel plates and hard rubber (Fig. 21.1.2). Interposed
between the base of the structure and the foundation, these laminated bearings are strong
and stiff under vertical loads, yet very flexible under lateral forces (Fig. 21.1.3). Because
the natural damping of the rubber is low, additional damping is usually provided by some
form of mechanical damper. These have included lead plugs inserted into the holes, hy-
draulic dampers, steel bars, or steel coils. Metallic dampers provide energy dissipation
through yielding, thus introducing nonlinearity in the system.

The second most common type of isolation system uses sliding elements between
the foundation and the base of the structure. The shear force transmitted to the struc-
ture across the isolation interface is limited by keeping the coefficient of friction as low
as practical. However, the friction must be sufficiently high to sustain strong winds and
small earthquakes without sliding, a requirement that reduces the isolation effect. In
this type of isolation system, the sliding displacements are controlled by high-tension
springs or laminated rubber bearings, or by making the sliding surface curved; these
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Figure 21.1.2 Section of a laminated rubber bearing. (Courtesy of I. D. Aiken.)

Figure 21.1.3 Deformed laminated rubber bearing. (Courtesy of I. D. Aiken.)

mechanisms provide a restoring force, otherwise unavailable in this type of system, to
return the structure to its equilibrium position. The friction pendulum system (FPS) is
a sliding isolation system wherein the weight of the structure is supported on spheri-
cal sliding surfaces that slide relative to each other when the ground motion exceeds
a threshold level (Fig. 21.1.4). The restoring action is caused by raising the building
slightly when sliding occurs on the spherical surface. The dynamics of structures on
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(a) (b)

Figure 21.1.4 (a) Friction pendulum sliding bearing; (b) internal components. (Courtesy of Earth-
quake Protection Systems.)

slider type of isolation systems is complicated because the slip process is intrinsically
nonlinear.

To avoid this complication, this introductory presentation is limited to understanding
the dynamic behavior of structures using the isolation system with laminated rubber bear-
ings. Such isolated buildings are amenable to approximate analysis by the familiar modal
analysis procedure (Chapter 13).

21.2 BASE-ISOLATED ONE-STORY BUILDINGS

In this section we identify why base isolation is effective in reducing the earthquake-
induced forces in buildings. For this purpose we consider a one-story building with an
isolation system between the base of the building and the ground. Most isolation systems
are nonlinear in their force–deformation relationships, but it is not necessary to consider
these nonlinear effects in this introductory treatment of the subject. A linear analysis of
the system would serve our purpose of gaining insight into the dynamics of base-isolated
buildings. Nonlinearity in the force–deformation relation should be considered for final
design, however.

21.2.1 System Considered and Parameters

The one-story building to be isolated is shown idealized in Fig. 21.2.1a together with its
properties: lumped mass m, lateral stiffness k, and damping coefficient c. This is the
familiar SDF system with natural frequency ωn , natural period Tn , and damping ratio ζ .
Here we use the subscript f instead of n to emphasize that these are properties of the
structure on a fixed base (i.e., without any isolation system); thus

ω f =
√

k

m
Tf = 2π

ω f
ζ f = c

2mω f
(21.2.1)
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Figure 21.2.1 (a) Fixed-base structure; (b) isolated structure.

As shown in Fig. 21.2.1b, this one-story building is mounted on a base slab of mass
mb that in turn is supported on a base isolation system with lateral stiffness kb and linear
viscous damping cb. Two parameters, Tb and ζb, are introduced to characterize the isolation
system:

Tb = 2π

ωb
where ωb =

√
kb

m + mb
(21.2.2a)

ζb = cb

2(m + mb)ωb
(21.2.2b)

We may interpret Tb as the natural vibration period, and ζb as the damping ratio, of the
isolation system (with the building assumed to be rigid). For base isolation to be effective
in reducing the forces in the building, Tb must be much longer than Tf , as we shall see later.
The one-story building on a base isolation system (Fig. 21.2.1b) is a two-DOF system with
mass, stiffness, and damping matrices denoted by m, k, and c, respectively. The disparity
between the high damping in rubber bearings and the low damping of the building means
that damping in the combined system is nonclassical.

21.2.2 Analysis Procedure

The response history of nonclassically damped systems can be determind by the extended
modal analysis procedure (Chapter 14) or by numerical solution of the coupled equations
of motion (Chapter 16). However, these approaches are not convenient for our objective to
understand the dynamics of base-isolated buildings. Although, strictly speaking, classical
modal analysis is not applicable to nonclassically damped systems, it can provide approx-
imate results that suffice for our limited objective. This is the approach adopted here to
determine the peak response of base-isolated structures to ground motion characterized by
a design spectrum.

The two-DOF system that defines the one-story building on an isolation system is
analyzed by the methods presented earlier in this book. With m, k, and c appropriately
defined, Eq. (9.4.4) gives the equations of motion for the system; the natural vibration pe-
riods and modes of the system are determined following Example 10.4, and the earthquake
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response of the system is estimated by response spectrum analysis following Section 13.8.
The results of this analysis are presented next for an example system.

21.2.3 Effects of Base Isolation

To understand the dynamics of base isolation, let us consider a specific system: mb =
2m/3, Tf = 0.4 s, Tb = 2.0 s, ζ f = 2%, and ζb = 10%. The base shear Vb in the
building and the base displacement ub are to be estimated using the elastic design spectrum
of Fig. 21.1.1, shown for damping ratios 2, 5, and 10%. For 5% damping this design
spectrum is the same as in Fig. 6.9.5 scaled to peak ground acceleration of 0.5g. The other
two spectra were constructed similarly using appropriate amplification factors from Table
6.9.1; these were shown earlier in Figs 6.9.9 and 6.9.10.

Observe that we have chosen damping in the structure as 2% of critical damping,
lower than the 5% typically assumed in earthquake analysis and design of structures. As
mentioned in Chapter 11, the higher damping value accounts for the additional energy
dissipation through nonstructural damage expected in conventional structures at the larger
motion during earthquakes. The aim of base isolation is to reduce the forces imparted to
the structure to such a level that no damage to the structure or nonstructural elements occur
and thus a lower value of damping is appropriate.

Vibration properties. The natural vibration periods Tn and modes φn of the
one-story building on an isolation system are shown in Fig. 21.2.2. In the first mode the
isolator undergoes deformation but the structure behaves as essentially rigid; this mode is
therefore called the isolation mode. The natural period of this mode, T1 = 2.024 s, indi-
cates that the isolation system period, Tb = 2.0 s, is changed only slightly by flexibility of
the structure. The second mode involves deformation of the structure as well as in the isola-
tion system, and the structural deformation is larger. Therefore, this is called the structural
mode, although as we shall see later, this mode contributes little to the earthquake-induced
forces in the structure. The natural period of this mode, T2 = 0.25 s, is significantly shorter
than the fixed-base period, Tf = 0.4 s, of the structure. The natural periods of the com-
bined system are more separate than the isolation system period Tb and fixed-base period
Tf of the structure.

)b()a(

m

(2/3)m

Tf = 0.4 s
ζf = 2%

Tb = 2 s
ζb = 10% T1 = 2.024 s

1.000

1.041

T2 = 0.250 s

1.000

0.641

Figure 21.2.2 (a) One-story building on isolation system; (b) natural vibration modes
and periods.
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Modal static responses. Introduced in Section 13.2.1, the modal expansion of
the effective earthquake force distribution, s = m1, for the system of Fig. 21.2.2a is shown
in Fig. 21.2.3. These striking results indicate that the first-mode forces s1 are essentially
the same as the total forces s, and the second-mode forces s2 are very small. Static analysis
of the system for forces sn gives the modal static responses r st

n for response quantity r(t);
see Table 13.2.1. In particular, for the base shear Vb(t) in the structure and displacement
ub(t) at the base, which is also the deformation of the isolation system, the modal static
responses in the two modes are (see Fig. 21.2.3)

V st
b1 = 1.015m V st

b2 = −0.015m (21.2.3a)

ω2
1ust

b1 = 0.976 ω2
2ust

b2 = 0.024 (21.2.3b)

It is clear that the modal static responses for the second mode are negligible compared to
the first mode. The second mode is therefore expected to contribute little to the earthquake
response of the structure.

0.651m

1.015m

+

Vb1
st  = 1.015m

0.016m

0.015m

Vb2
st  = −0.015m

(2/3)m

m

=

Figure 21.2.3 Modal expansion of effective earthquake forces and modal static responses
for base shear.

Modal damping ratios. The modal damping ratios are determined by Eq. (10.9.11),
repeated here for convenience:

ζn = Cn

2Mnωn
(21.2.4a)

where

Mn = φT
n mφn and Cn = φT

n cφn (21.2.4b)

For the system chosen, these equations give

ζ1 = 9.65% ζ2 = 5.06% (21.2.5)

Observe that the 9.65% damping in the first mode, the isolation mode, is very similar to
the isolation-system damping, ζb = 10%; damping in the structure has little influence on
modal damping in the isolation mode because the structure behaves as a rigid body for this
mode. In contrast, high damping of the isolation system has increased the damping in the
structural mode from 2% to 5.06%. Note that the coupling terms C21 = C12 = φT

1 cφ2 are
nonzero, thus estimating the modal equations are coupled (see Sections 10.9 and 12.4). It
is this coupling we are neglecting in using classical modal analysis for peak response of
this nonclassically damped system.
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Peak modal and total responses. The peak value of the nth-mode contribu-
tion rn(t) to response r(t) is given by Eq. (13.7.1), repeated here for convenience:

rn = r st
n An

where An ≡ A(Tn, ζn) is the ordinate of the pseudo-acceleration response (or design)
spectrum at period Tn for damping ratio ζn . Specializing this equation for the two response
quantities of interest, base shear Vb in the structure and isolator deformation ub, gives

Vbn = V st
bn An ubn = (ω2

nust
bn)Dn (21.2.6)

where Dn = An/ω
2
n is the deformation spectrum ordinate. These calculations are sum-

marized in Table 21.2.1 using the An values noted in Fig. 21.2.4; these were obtained for
the actual damping values, Eq. (21.2.5), by using Table 6.9.2 instead of interpolating be-
tween the spectrum curves for 2, 5, and 10% damping. Observe that the response due
to the second mode, the structural mode, is negligible—although the pseudo-acceleration
is large—because the modal static response is small. Obtained by combining modal re-
sponses by the SRSS combination rule, the deformation in the isolator is 35.690 cm, and
the base shear is 36.5% of the building weight excluding the base slab.

TABLE 21.2.1 CALCULATION OF BASE SHEAR AND ISOLATOR
DEFORMATION

Mode

Base Shear Isolator Deformation

An/g V st
bn/m Vbn/w Dn (cm) ω2

nust
bn ubn (cm)

1 0.359 1.015 0.365 36.574 0.976 35.690
2 1.347 −0.015 −0.021 2.091 0.024 0.051

SRSS 0.365 35.690

Reduction in base shear. The base shear is much larger if the structure is not
isolated. This fixed-base structure has a natural vibration period Tf = 0.4 s and damping
ratio ζ f = 2%. For these parameters the design spectrum of Fig. 21.2.4 gives A(Tf , ζ f ) =
1.830g. Thus the base shear in the fixed-base structure is

Vb = m A(Tf , ζ f ) = m(1.830g) or
Vb

w
= 1.830 (21.2.7)

that is, 183% of the weight w of the building excluding the base slab, about five times the
base shear in the isolated building.

The isolation system reduces the base shear primarily because the natural period of
the first mode, the isolation mode, providing most of the response, is much longer than
the fixed-base period of the structure, leading to a smaller spectral ordinate, as seen in
Fig. 21.2.4. This becomes clear by reexamining the terms entering into the base shear due
to the first mode:

Vb1 = V st
b1 A1 = (1.015m)(0.359g) (21.2.8)
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Figure 21.2.4 Design spectrum and spectral ordinates for fixed-base and isolated buildings.

Comparing Eq. (21.2.8) with (21.2.7a), it is apparent that because of the isolation system,
the pseudo-acceleration is reduced from 1.830g to 0.359g, whereas the effective modal
mass is essentially the same as the mass of the fixed-base building.

Why is base isolation effective? Base isolation lengthens the fundamental vi-
bration period of the structure, and thus reduces the pseudo-acceleration for this mode (for
the design spectrum considered) and hence the earthquake-induced forces in the structure.
The second mode that produces deformation in the structure is essentially not excited by
the ground motion, although its pseudo-acceleration is large. This can be explained as fol-
lows: The first vibration mode of the base-isolated structure involves deformation only in
the isolation system, the structure above being essentially rigid. Thus the first-mode com-
ponent s1 of the effective earthquake force distribution s = m1 is essentially the same as s,
and the second-mode component s2 is very small, causing very small modal static response
in the second mode.

The primary reason for effectiveness of base isolation in reducing earthquake-induced
forces in a building is the above-mentioned lengthening of the first-mode period. The
damping in the isolation system and associated energy dissipation is only a secondary fac-
tor in reducing structural response.
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21.2.4 Rigid-Structure Approximation

The base shear in the building and the deformation of the isolation system can be estimated
by a simpler analysis treating the building as rigid. With this assumption the combined
system has only one DOF. For this SDF system with natural period Tb and damping ratio ζb,
the design spectrum gives the pseudo-acceleration A(Tb, ζb) and deformation D(Tb, ζb).
Thus the isolator deformation is

ub = D(Tb, ζb) (21.2.9)

and the base shear in the structure is

Vb = m A(Tb, ζb) (21.2.10)

The approximate results of Eqs. (21.2.9) and (21.2.10) are accurate for base-isolated
systems if the period Tb of the isolation system (assuming rigid structure) is much longer
than the fixed-base period Tf of the structure. This is illustrated using the system of
Fig. 21.2.2: For Tb = 2 s and ζb = 10%, the design spectrum gives A(Tb, ζb) = 0.359g
and D(Tb, ζb) = 35.674 cm, and Eq. (21.2.10) gives

Vb = m(0.359g) or
Vb

w
= 0.359 (21.2.11)

Comparing Eq. (21.2.11) with Eq. (21.2.8), it is clear why this approximate analysis as-
suming a rigid structure gives almost “exact” results. Because the vibration properties with
the rigid-structure assumption, Tb = 2 s and ζb = 10%, are very close to the first-mode val-
ues, T1 = 2.024 s and ζ1 = 9.65%, the spectral accelerations A(Tb, ζb) and A(T1, ζ1) are
identical to three digits. Furthermore, the effective masses that enter into Eqs. (21.2.8) and
(21.2.11) are essentially identical. Similarly, the isolator deformation from Eq. (21.2.9),

ub = 35.674 cm (21.2.12)

is essentially identical to the first-mode response in Table 21.2.1.
Because of its accuracy, the rigid-structure approximation provides an expedient

means to estimate the effectiveness of a base isolation system and to estimate the isola-
tor deformation. First, the ratio A(Tb, ζb)/A(Tf , ζ f ) of two spectral ordinates gives the
base shear in the isolated system as a fraction of the base shear in the fixed-base structure.
Second, the deformation spectrum ordinate D(Tb, ζb) is the isolator deformation.

21.3 EFFECTIVENESS OF BASE ISOLATION

It is clear that the effectiveness of base isolation in reducing structural forces is closely tied
to the lengthening of the natural period of the structure, and for this purpose the period
ratio Tb/Tf should be as large as practical. In the example of the preceding section, the
natural period of the fixed-base structure located the structure at the peak of the selected
design spectrum. With base isolation, the natural period (of the isolation mode contributing
almost all of the response) was shifted to the velocity-sensitive region of the spectrum with
much smaller pseudo-acceleration. As a result, the base shear is reduced from 183% of the
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structural weight (excluding the base slab) to 36.5%. Whether the forces in the structure
are reduced because of this period shift depends on the natural period of the fixed-base
structure and on the shape of the earthquake design spectrum, among other factors. We
illustrate these concepts next.

First, consider the same one-story building and base isolation system as in the pre-
ceding section to be located in Mexico City at the site where ground motions recorded
during the 1985 earthquake produced the response spectrum shown in Fig. 21.3.1. Noted
on this spectrum are the pseudo-acceleration values A(Tf , ζ f ) = 0.25g corresponding to
Tf = 0.4 s and ζ f = 2% for the fixed-base structure and A(Tb, ζb) = 0.63g associated
with Tb = 2.0 s and ζb = 10% for the isolated structure (with the building assumed to be
rigid). The ratio A(Tb, ζb)/A(Tf , ζ f ) = 0.63g/0.25g = 2.52 implies that the base shear in
the isolated structure is approximately 2.52 times the base shear in the fixed-base structure.
In this case base isolation is not helpful; in fact, it is harmful.
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Figure 21.3.1 Response spectrum for ground motion recorded on September 19, 1985,
at SCT site in Mexico City and spectral ordinates for fixed-base and isolated buildings.

Next, consider a structure with a relatively long fixed-base period and the ground
motion characterized by the original design spectrum (Fig. 21.1.1). In this case we shall
see that base isolation is only slightly beneficial—much less than when the fixed-base
period was relatively short. To illustrate these results, consider a structure with a fixed-base
period of 2 s with other parameters for the structure and isolation system as before. Thus
the system parameters are Tf = 2 s, ζ f = 2%, mb = 2

3 m, Tb = 2 s, and ζb = 10%.
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)b()a(

m

(2/3)m

Tf  = 2 s
ζf  = 2%

Tb = 2 s
ζb = 10% T1 = 2.664 s

1.000

2.291

T2 = 0.949 s

1.000

0.291

Figure 21.3.2 (a) One-story building on isolation system; (b) natural vibration modes
and periods.
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Figure 21.3.3 Modal expansion of effective earthquake forces and modal static responses
for base shear.

Analysis of this system with Tb = Tf by the procedures used for the example of Section
21.2 gives the natural vibration periods and modes (Fig. 21.3.2), the modal expansion of
the effective earthquake force distribution: s = m1 (Fig. 21.3.3), and the modal damping
ratios: 4.50% and 12.64%. In contrast to the previous system with Tb >> Tf : (1) the
structure does not behave as rigidly in the first mode, and this natural period is significantly
affected by the flexibility of the structure; (2) the second-mode contribution to the effective
earthquake forces is no longer negligible; and (3) the first-mode damping of 4.5% is no
longer close to the isolation system damping of 10%.

A summary of the calculations to obtain the base shear and isolator deformation is
presented in Table 21.3.1, with the spectral values identified in Fig. 21.3.4. In contrast

TABLE 21.3.1 CALCULATION OF BASE SHEAR AND ISOLATOR
DEFORMATION

Mode

Base Shear Isolator Deformation

An/g V st
bn/m Vbn/w Dn (cm) ω2

nust
bn ubn (cm)

1 0.348 1.145 0.399 61.346 0.500 30.673
2 0.692 −0.145 −0.101 15.491 0.500 7.745

SRSS 0.411 31.636
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Figure 21.3.4 Design spectrum and spectral ordinates for fixed-base and isolated buildings.

to the previous system with Tb >> Tf , the response of the second mode is significant,
although it does not contribute much when it is combined—using the SRSS rule—with the
first-mode response. We find the isolator deformation to be 31.636 cm, and the base shear
is 41.1% of the structural weight, excluding that of the base slab.

The fixed-base structure has a natural period Tf = 2 s and damping ratio ζ f = 2%,
and the corresponding spectral ordinate is A(Tf , ζ f ) = 0.569g (Fig. 21.3.4). Thus if the
structure were not isolated, the base shear is

Vb = m A(Tf , ζ f ) or
Vb

w
= 0.569 (21.3.1)

(i.e., 56.9% of the building weight). It is clear that some benefit is obtained by base isola-
tion, although it is much less than if the vibration period of the structure had been shorter,
as in the original example. It is for this reason that base isolation is rarely used for struc-
tures with natural periods well into the velocity-sensitive region of the spectrum.

In passing we also note that the approximate analysis based on the assumption of
a rigid structure is not accurate for a structure with a relatively long natural period. The
approximate analysis gives a base shear coefficient of 35.9%, Eq. (21.2.11), compared to
41.1% from the complete analysis. The isolator deformation from the approximate analysis
is 35.674 cm, Eq. (21.2.12), compared to 31.636 cm from the complete analysis.
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21.4 BASE-ISOLATED MULTISTORY BUILDINGS

In the preceding sections we were able to identify the underlying reasons for the effec-
tiveness of a base isolation system by studying the dynamics of a one-story building. In
this section we investigate how the dynamics of a multistory building is modified by base
isolation. As before, we assume the system to be linear. We will see that the key concepts
underlying base isolation, identified by the dynamics of one-story systems, carry over to
multistory systems.

21.4.1 System Considered and Parameters

The N -story building to be isolated is shown idealized in Fig. 21.4.1a. On a fixed base, this
system is defined by mass matrix m f , damping matrix c f , and stiffness matrix k f , which
can be constructed by the methods developed in Chapters 9 and 11; the subscript f denotes
“fixed base.” If the mass of the structure is idealized as lumped at the floor levels, as
shown in Fig. 21.4.1a, m f is a diagonal matrix with diagonal element mj j = mj , the mass
lumped at the j th floor. The total mass of the building, M = ∑mj . The natural periods
and modes of vibration of the fixed-base system are denoted by Tn f and φn f , respectively,
where n = 1, 2, . . . , N . Damping in the structure is assumed to be of classical form and
defined by modal damping ratios ζn f , n = 1, 2, . . . , N .

1

j

N
mN

mj

m1

(a)

Isolation
system

(b)

mN

mj

m1

mb

Figure 21.4.1 (a) Fixed-base N -story
building; (b) isolated N -story building.

As shown in Fig. 21.4.1b, this N -story building is mounted on a base slab of mass
mb, supported in turn on a base isolation system with lateral stiffness kb and linear viscous
damping cb. As in Section 21.2, two parameters, Tb and ζb, are introduced to characterize
the isolation system:

Tb = 2π

ωb
where ωb =

√
kb

M + mb
(21.4.1a)

ζb = cb

2(M + mb)ωb
(21.4.1b)
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As before, we may interpret Tb as the natural vibration period and ζb the damping ratio
of the isolation system (with the building assumed to be rigid). For base isolation to be
effective in reducing the earthquake-induced forces in the building, Tb must be much longer
than T1 f , the fundamental period of the fixed-base building.

The N -story building on a base isolation system is an (N + 1)-DOF system with
nonclassical damping because damping in the isolation system is typically much more
than in the building. The mass, stiffness, and damping matrices of order N + 1 for the
combined system are denoted by m, k, and c, respectively.

21.4.2 Analysis Procedure

With ground motion characterized by a design spectrum, the RSA procedure of Chapter
13, Part B, will be used to analyze two systems: (1) a building on a fixed base, and (2) the
same structure supported on an isolation system. In applying the RSA procedure to the
isolated structure we are ignoring the coupling of modal equations due to nonclassical
damping, typical of structures on isolation systems. The modal damping ratios of the iso-
lated structure are given by Eq. (21.2.4). We focus on two response quantities: base shear
in the building and the base displacement (or isolator deformation). The peak responses
due to the nth mode of vibration are determined using Eq. (21.2.6), and these peak modal
responses are combined by the SRSS rule. The results of such analyses are presented next
for an example system.

21.4.3 Effects of Base Isolation

To understand how base isolation affects the dynamics of buildings, we consider a specific
system. The fixed-base structure is a five-story shear frame (i.e., beam-to-column stiffness
ratio ρ = ∞) with mass and stiffness properties uniform over its height: lumped mass
m = 45, 000 kg at each floor, and stiffnesses k for each story; k is chosen so that the
fundamental natural vibration period T1 f = 0.4 s. The classical damping matrix c f =
a1k f , with a1 chosen to obtain 2% damping in the fundamental mode. The base slab mass
mb = m and the stiffness and damping of the isolation system are such that Tb = 2.0
s and ζb = 10% [Eq. (21.4.1)]. In this section we examine the vibration properties—
natural periods and natural modes—modal damping ratios, and the earthquake response
of two systems: (1) this five-story building on a fixed base, and (2) the same five-story
building supported on the isolation system described above. The earthquake excitation is
characterized by the design spectrum of Fig. 21.1.1.

Vibration properties. The natural vibration periods and modes of both systems
are presented in Fig. 21.4.2 and Table 21.4.1. The fixed-base structure has the familiar
mode shapes and ratios of natural periods. In the first mode of the isolated building, the
isolator undergoes deformation but the building behaves as essentially rigid; this mode
is therefore called the isolation mode. The natural period of this mode, T1 = 2.030 s,
indicates that the isolation-system period, Tb = 2.0 s, is changed only slightly by the
flexibility of the structure. The other modes involve deformation in the structure as well as
in the isolation system. We refer to these modes as structural modes, although as we shall
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Figure 21.4.2 Natural vibration modes: (a) fixed-base building; (b) isolated building.

TABLE 21.4.1 NATURAL PERIODS AND MODAL DAMPING
RATIOS

Fixed-Base Building Isolated Building

Mode Tn f (s) ζn f (%) Mode Tn (s) ζn (%)

1 2.030 9.58
1 0.400 2.00 2 0.217 5.64
2 0.137 5.84 3 0.114 7.87
3 0.087 9.20 4 0.080 10.3
4 0.068 11.8 5 0.066 12.3
5 0.059 13.5 6 0.059 13.6

see later, these modes contribute little to the earthquake-induced forces in the structure. It
is clear that the isolation system has a large effect on the natural period of the first structural
mode but a decreasing effect on the higher-mode periods. In these higher modes the motion
of the base mass decreases relative to the structural motions, and the base mass is acting
essentially as a fixed base.

Modal damping ratios. The modal damping ratios for both systems are pre-
sented in Table 21.4.1. The modal damping ratios for the fixed-base structure decrease
linearly with natural period (i.e., increase linearly with natural frequency) because the
damping is stiffness proportional (Section 11.4.1). The damping of 9.58% in the first mode
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of the isolated building, the isolation mode, is very similar to the isolation-system damping,
ζb = 10%; damping in the structure has little influence on modal damping because the
structure remains essentially rigid in this mode. The high damping of the isolation system
has increased the damping in the first structural mode from 2.0% to 5.64%, but to a smaller
degree in the higher modes.

Modal static responses. We now compare the modal static response in the nat-
ural modes of both systems, the fixed-base and isolated buildings. The modal components
sn of the effective earthquake force distribution, s = m1, are shown in Fig. 13.2.4 for the
fixed-base structure and in Fig. 21.4.3 for the base-isolated structure.† In the latter case,
forces in the first mode, the isolation mode, are essentially the same as the total forces,
and the forces associated with all the structural modes are very small. Static analysis of
both systems for their respective modal forces gives the modal static shears V st

bn at the
base of the structure and modal static base displacements or isolator deformations ust

bn; see
Table 13.2.1. The results are given in Tables 21.4.2 and 21.4.3. It is clear that V st

bn has
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Figure 21.4.3 Modal components of effective earthquake forces for a five-story building on isolation
system.

TABLE 21.4.2 CALCULATION OF BASE SHEAR IN FIXED-BASE AND
ISOLATED BUILDINGS

Fixed-Base Building Isolated Building

Mode An/g V st
bn/m Vb/W Mode An/g V st

bn/m Vb/W

1 0.359 5.028 0.361
1 1.830 4.398 1.609 2 1.291 −0.021 −0.005
2 1.272 0.436 0.111 3 1.058 −0.005 −0.001
3 0.859 0.121 0.021 4 0.792 −0.002 −0.000
4 0.700 0.038 0.005 5 0.682 −0.0005 −0.000
5 0.638 0.008 0.001 6 0.635 −0.0001 −0.000

SRSS 1.613 SRSS 0.361

†Figure 13.2.4 is valid for this uniform five-story shear frame because its vibration modes are the same
as those of the system considered in Section 13.2.6, although the story stiffness (and natural vibration periods) of
the two systems are different.
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TABLE 21.4.3 CALCULATION OF
ISOLATOR DEFORMATION

Mode Dn ω2
nust

bn ubn (cm)

1 36.778 0.971 35.697
2 1.517 0.022 0.034
3 0.339 0.005 0.002
4 0.127 0.002 0.000
5 0.073 0.001 0.000
6 0.055 0.0001 0.000

SRSS 35.697

significant values in the first two modes of the fixed-base structure. However, for the
isolated building, V st

bn is small in all the structural modes, and the response in these modes
is expected to be negligible. The isolation mode provides the dominant value V st

b1 and
therefore will provide most of the response.

Peak modal and total responses. The peak value of the earthquake response
due to each natural mode of both systems is determined from Eq. (21.2.6), where the
spectral ordinates An/g are shown in Figs. 21.4.4 and 21.4.5 and Dn = An/ω

2
n . These peak
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Figure 21.4.5 Design spectrum and spectral ordinates for five-story building on isolation
system.

modal responses are presented in Tables 21.4.2 and 21.4.3 together with their combined
value determined by the SRSS rule. Observe that as predicted from the modal static re-
sponses, the dynamic response of the isolated building due to all its structural modes is
negligible although their pseudo-accelerations are large. The isolation mode alone pro-
duces essentially the entire response: isolation system deformation of 35,697 cm and base
shear equal to 36.1% of W , the 2206-kN weight of the building excluding that of the base
slab. The response in the first two modes of the fixed-base building is significant; however,
the second mode contributes little to the SRSS-combined value of 161.3% of W .

Reduction in base shear. To understand the underlying reasons for this drastic
reduction in base shear, we examine the peak modal responses in both fixed-base and
isolated systems. Each peak modal response is the product of two parts: the modal static
response V st

bn and the pseudo-acceleration An . Each part is examined for the first mode
of the base-isolated building and of the fixed-base building; this is the mode that provides
most of the response in each case. Observe that V st

b1 = 5.028m for the isolated building,
which is slightly larger than V st

b1 = 4.398m for the fixed-base building. However, A1 =
0.359g for the isolated building (Fig. 21.4.5) is only one-fifth of A1 = 1.830g for the fixed-
base building (Fig. 21.4.4); as a result, the first-mode base-shear coefficient of 36.1% in
the base-isolated building is much smaller than 160.9% for the fixed-base building.
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Why is base isolation effective? The isolation system reduces the base shear
primarily because the natural vibration period of the isolation mode, providing most of
the response, is much longer than the fundamental period of the fixed-base structure, lead-
ing to a much smaller spectral ordinate. This is typical of design spectra on firm ground
and fixed-base structures with fundamental period in the flat portion of the acceleration-
sensitive region of the spectrum. The higher modes are essentially not excited by the
ground motion—although their pseudo-accelerations are large—because their modal static
responses are very small.

The primary reason for effectiveness of base isolation in reducing earthquake-induced
forces in a building is the above-mentioned lengthening of the first mode period. The
damping in the isolation system and associated energy dissipation is only a secondary fac-
tor in reducing structural response.

21.4.4 Rigid-Structure Approximation

The base shear in the isolated building and the deformation of the isolation system can
be estimated by a simpler analysis, treating the building as rigid. The natural period of
the resulting SDF system is Tb and its damping ratio is ζb [Eq. (21.4.1)]; the associated
design spectrum ordinates are A(Tb, ζb) for the pseudo-acceleration and D(Tb, ζb) for the
deformation. Thus the base shear in the structure and the isolator deformation are

Vb = M A(Tb, ζb) ub = D(Tb, ζb) (21.4.2)

This approximate procedure will provide excellent results if the isolation-system pe-
riod Tb is much longer than the fundamental period T1 f of the fixed-base structure. This is
illustrated using the system of Fig. 21.4.1b, analyzed earlier. For this system, Tb = 2.0 s
and ζb = 10% and the spectral values are A(Tb, ζb) = 0.359g and D(Tb, ζb) = 35.674 cm,
as noted in Section 21.2.4. Substituting these values in Eq. (21.4.2) gives

Vb = 0.359W ub = 35.674 cm (21.4.3)

which are essentially identical to the responses due to the isolation mode (and to the total
response) presented in Tables 21.4.2 and 21.4.3.

21.5 APPLICATIONS OF BASE ISOLATION

Base isolation provides an alternative to the conventional, fixed-base design of structures
and may be cost-effective for some new buildings in locations where very strong ground
shaking is likely. It is an attractive alternative for buildings that must remain functional
after a major earthquake (e.g., hospitals, emergency communications centers, computer
processing centers). Several new buildings have been isolated using rubber (or elastomeric)
bearings or FPS isolators; these examples are described in references at the end of this
chapter.
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Figure 21.5.1 San Francisco City Hall. (Courtesy of S. Nasseh.)

Both types of isolation systems have also been used for retrofit of existing build-
ings that are brittle and weak: for example, unreinforced masonry buildings or reinforced-
concrete buildings of early design, not including the type of detailing of the reinforce-
ment necessary for ductile performance. Conventional seismic strengthening designs re-
quire adding new structural members, such as shear walls, frames, and bracing. Base
isolation minimizes the need for such strengthening measures by reducing the earthquake
forces imparted to the building. It is therefore an attractive retrofit approach for buildings
of historical or architectural merit whose appearance and character must be preserved.
Many examples of retrofitting existing buildings are described in end-of-chapter refer-
ences. However, it is difficult and expensive to construct a new foundation system for
the isolators, to modify the base of the building so that it can be supported on isolators, and
to shore up the building during construction of the isolation and foundation systems.

A good example of a retrofit application of laminated-rubber-bearing-isolation sys-
tems is the San Francisco City Hall in San Francisco, California. Constructed in 1915
to replace the previous structure that was destroyed in the 1906 San Francisco earthquake,
this building is an outstanding example of classical architecture and is listed in the National
Register of Historic Places (Fig. 21.5.1). The five-story building with its dome rising 91 m
above the ground floor is 94 m by 124 m in plan, occupying two city blocks. The structural
system is a steel frame and concrete slabs with unreinforced brick masonry integral with
the granite cladding, hollow clay tile infill walls, and limestone or marble panels lining
many of the interior spaces.
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Substantial damage sustained from the 1989 Loma Prieta earthquake, centered about
97 km away, necessitated repairs and strengthening. The fixed-base fundamental period of
vibration of the building is approximately 0.9 s, implying that large ductility demands can
be imposed on the structure by strong shaking expected at the building site from an earth-
quake centered on a nearby segment of the San Andreas fault. To improve the earthquake
resistance of this structure, base isolation was adopted especially because it preserved the
historic fabric of this building. In addition, the superstructure was strengthened by new
shear walls in the interior of the building. This retrofit project was completed in 1998.

The isolation system consisted of 530 isolators, each a laminated rubber bearing
with lead plugs, located at the base of each column and at the base of the shear walls
(Fig. 21.5.2). The 53 cm-high bearings varied from 79 to 91 cm in diameter. The columns
are supported on one or more isolators under a cruciform-shaped steel structure; multiple
isolators were provided for the heavily loaded columns. Installation of the isolators proved
to be very complicated and required shoring up the columns, cutting the columns, and
transferring the column loads to temporary supports. The plane of isolation is just above
the existing foundation.

)b()a(

Figure 21.5.2 San Francisco City Hall: laminated rubber bearings at the base of (a) columns and
(b) shear walls. [(a) Courtesy of J. M. Kelly; (b) Robert Canfield photo, courtesy of S. Nasseh.]

The isolated building is estimated to move 46 to 66 cm at an isolation period of 2.5 s
for a design earthquake with peak ground acceleration of 0.4g. To permit this motion, a
moat was constructed around the building to provide a minimum seismic gap of 71 cm.
Flexible joints were provided for utilities—plumbing, electrical, and telephone lines—
crossing this moat space to accommodate movement across the isolation system.

A good example of new construction using base isolation is the new (completed
in 2000) International Terminal at the San Francisco Airport (Figs. 21.5.3 and 21.5.4),
which was designed to remain operational after a Magnitude 8 earthquake on the San
Andreas Fault approximately 5 km away. To achieve this performance goal it was
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Figure 21.5.4 International Terminal at
San Francisco Airport. (T. Hursley, photo,
courtesy of Skidmore, Owings, & Merrill
LLP.)

Figure 21.5.5 International Terminal at
San Francisco Airport: FPS bearing at base
of column. (P. Lee, photo, courtesy of
Skidmore, Owings, & Merrill LLP.)
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decided to isolate the superstructure, which consists of steel concentric and eccentric
braced frames with fully welded moment connections.

The isolation system consists of 267 isolators, one at the base of each column
(Fig. 21.5.5). Each isolator is a friction pendulum sliding bearing. The cast steel bear-
ing consists of a stainless steel spherical surface and articulated slider, which allows a
lateral displacement up to 50.8 cm and provides an isolation period of 3 s.

Base isolation had the effect of reducing the earthquake force demands on the super-
structure to 30% of the demands for a fixed-base structure. With this force reduction it was
feasible to design the superstructure to remain essentially elastic and hence undamaged
under the selected design earthquake with peak ground acceleration of 0.6g.
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22

Structural Dynamics
in Building Codes

PREVIEW

Most seismic building codes permit the use of a static equivalent lateral force (ELF) proce-
dure for many regular structures with relatively short periods. For other structures, dynamic
analysis procedures are required. According to the ELF procedure, structures are designed
to resist specified static lateral forces related to the properties of the structure and the seis-
micity of the region. Based on an estimate of the fundamental natural vibration period of
the structure, formulas are specified for the base shear and the distribution of lateral forces
over the height of the building. Static analysis of the building for these forces provides
the design forces, including shears and overturning moments for the various stories, with
some codes permitting reductions in the statically computed overturning moments. These
seismic design provisions in four building codes—International Building Code (United
States),† National Building Code of Canada, Mexico Federal District Code, and Eurocode
8—are presented in Part A of this chapter together with their relationship to the theory of
structural dynamics developed in Chapters 6, 7, 8, and 13. The code provisions presented
are not complete; those provisions that we are unprepared to evaluate based on this book
have been excluded or only mentioned: effects of local soil conditions, torsional moments
about a vertical axis, combination of earthquake forces due to the simultaneous action of
ground motion components, and the requirements for detailing structures to ensure ductile
behavior, among others. In Part B of the chapter the code provisions are evaluated in light
of the results of the dynamic analysis of buildings, discussed in Chapters 19 and 20.

†In the 2009 IBC, most of the technical requirements are adopted by reference to the ASCE 7-05 document.
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836 Structural Dynamics in Building Codes Chap. 22

Most codes permit both response spectrum analysis (RSA) and response history anal-
ysis (RHA) procedures for dynamic analysis of structures. The code versions of these
procedures are not presented because they are essentially equivalent to those that were
developed in Chapter 13.

PART A: BUILDING CODES AND
STRUCTURAL DYNAMICS†

22.1 INTERNATIONAL BUILDING CODE (UNITED STATES), 2009

22.1.1 Base Shear

The 2009 edition of the International Building Code (IBC) specifies the base shear as

Vb = Cs W (22.1.1)

where W is the total dead load and applicable portions of other loads, and the seismic
coefficient,

Cs = Ce

R
(22.1.2)

This coefficient corresponding to R = 1 is called the elastic seismic coefficient:

Ce = I C (22.1.3)

where the importance factor I = 1.0, 1.25, or 1.5; I = 1 for most structures; I = 1.25
for structures that have a “substantial public hazard due to occupancy or use”; and I = 1.5
for “essential facilities” that are required in post-earthquake recovery and for facilities
containing hazardous substances.

The period-dependent coefficient C depends on the location of the structure and the
site class. The variation of C with site classes A, B, C, D, E, and F defined in the code
accounts for local soil effects on earthquake ground motion, a topic not covered in the
book. C is related to ordinates of the pseudo-acceleration design spectrum: A(Tn,short),

the pseudo-acceleration at short periods; and A(Tn = 1.0 s), the pseudo-acceleration at a
1.0-s period. Maps of the United States show these two A-values for ground motion due to
the maximum considered earthquake (MCE). These A-values are multiplied by 2

3 to obtain
A-values for the design basis earthquake (DBE).

Consider a location representative of coastal California regions not in the near field
of known active faults. For site class B the maps provide A(Tn,short) ÷ g = 1.5 and
A(Tn = 1.0 s) ÷ g = 0.6, which are multiplied by 2

3 to obtain 1.0 and 0.4, respectively.

†The notation employed in building codes is not used in presenting the code equations. Instead, equations
from all four codes are presented in a common (to the extent possible) notation, consistent with preceding
chapters. Supplementary equations are included to facilitate interpretation of code equations.
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The numerical coefficient C is then given as

C =
{ 1.0 T1 ≤ 0.4

0.4/T1 0.4 ≤ T1 ≤ TL

0.4TL/T 2
1 T1 ≥ TL

(22.1.4)

where T1 is the fundamental natural vibration period of the structure in seconds, and
TL = 12 or 8 s in coastal regions of northern California and southern California, respec-
tively. For highly seismic areas, the value of C obtained from Eq. (22.1.4) for longer-period
buildings is not permitted to be below a specified minimum value; it is 0.3 for the example
location noted above.

The code permits computation of the fundamental natural vibration period by proce-
dures presented in Chapters 8 and 10. Alternatively, the code gives empirical formulas for
T1 that depend on building material (steel, reinforced concrete, etc.), building type (frame,
shear wall, etc.), and overall dimensions.

Figure 22.1.1 shows the elastic seismic coefficient for the foregoing example location
and site class, and I = 1 is valid for most structures. The code also specifies (for use
in dynamic analysis) the elastic pseudo-acceleration design spectrum that is the basis for
defining C ; shown in Fig. 22.1.1, this spectrum for the example location considered is

A/g =
{ 0.4+ 7.5Tn 0 ≤ Tn ≤ 0.08

1.0 0.08 < Tn ≤ 0.4
0.4/Tn Tn > 0.4

(22.1.5)

where Tn is the natural vibration period (in seconds) of an SDF system.
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Figure 22.1.1 IBC (2006): elastic coefficient Ce and pseudo-acceleration A/g for a
location in California coastal regions not in the near field of known active faults.
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The response modification factor R in Eq. (22.1.2) depends on several factors, in-
cluding the ductility capacity and inelastic performance of structural materials and systems
during past earthquakes. Specified values of R vary between 1.5 (for certain bearing wall
systems) and 8 (for moment-resisting frames with special detailing for ductile behavior).
It is important to note that R is not equal to the ductility capacity required.

22.1.2 Lateral Forces

The distribution of lateral forces over the height of the building is determined from the base
shear in accordance with the formula for the lateral (or horizontal) force at the j th floor
(Fig. 22.1.2):

Fj = Vb

wj hk
j∑N

i=1 wi hk
i

(22.1.6)

where wi is the weight at the i th floor at height hi above the base and k is a coefficient
related to the vibration period T1 as follows:

k =
{ 1 T1 ≤ 0.5
(T1 + 1.5)/2 0.5 ≤ T1 ≤ 2.5
2 T1 ≥ 2.5

(22.1.7)

22.1.3 Story Forces

The design values of story shears and story overturning moments are determined by static
analysis of the structure subjected to these lateral forces; the effects of gravity and other
loads should be included.

Vb

FN

Fj

F2

F1

•
•

hj

1

2

j

N
wN

wj

w2

w1

Figure 22.1.2 IBC lateral forces.
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22.2 NATIONAL BUILDING CODE OF CANADA, 2010

22.2.1 Base Shear

The base shear formula in the 2010 edition of the National Building Code of Canada
(NBCC) may also be expressed as Eq. (22.1.1), where the seismic coefficient is

Cs = Ce

Rd RO
(22.2.1)

In this equation, RO is the overstrength-related force modification factor that accounts for
the reserve (or unaccounted for) strength in a code-designed structure. It varies from 1.0
for unreinforced masonry structures to 1.7 for ductile coupled-wall concrete structures.

The elastic seismic coefficient

Ce = I A1 Mv (22.2.2)

is the product of three factors:

1. The importance factor I varies between 0.8 and 1.5; it is 1.0 for “normal” buildings
and 1.5 for buildings in the “post-disaster category.”

2. The second factor is the pseudo-acceleration design spectrum value A1 at the funda-
mental vibration period T1 of the building. Tables are provided for the peak ground
acceleration and the pseudo-acceleration spectral values (for 5% damping) for site
class C (very dense soil and soft rock) for several period values. Two factors are spec-
ified to obtain spectral values for other site classes: one for the acceleration-sensitive
region and the other for the velocity-sensitive region of the spectrum,

3. The factor Mv accounts for higher-mode contributions to the base shear. The follow-
ing values of Mv are applicable for western Canada. For moment-resisting frames,
braced frames, and coupled walls, Mv = 1.0 for all values of T1. For walls and wall-
frame systems, Mv is 1.0 for T1 ≤ 1.0 s, 1.2 for T1 = 2.0 s, and 1.6 for T1 ≥ 4 s.
For other systems, Mv = 1 for T1 ≤ 1.0 s and 1.2 for T1 ≥ 2.0 s. For intermediate
values of T1, the product A1 Mv is obtained by interpolation.

For all structures other than walls, coupled walls, and wall-frame systems, the factor Ce is
constant for T1 > 2.0 s and equal to its value at T1 = 2.0 s. For walls, coupled walls, and
wall-frame systems, Ce at T1 = 4.0 s is half its value at T1 = 2.0 s, and is constant at the
latter value for periods longer than 4.0 s.

Although the design base shear is, in general, obtained from the seismic coeffi-
cient defined in Eq. (22.2.1), the code limits the value of Ce to two-thirds of A(0.2 s) if
Ra ≥ 1.5 and if the site does not belong to site class F (liquefiable soils, and sensitive,
organic, and highly plastic clays).

In addition to empirical formulas for estimating the fundamental period, the NBCC
gives the formula

T1 = 2π

[ ∑N
i=1 wi u2

i

g
∑N

i=1 wi ui

]1/2

(22.2.3)
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Figure 22.2.1 NBCC (2010): pseudo-acceleration A/g and elastic (Rd RO = 1) seismic
coefficient Ce for I = 1 and two values of Mv : 1.0 and 1.2; valid for all structures other
than walls, coupled walls, and wall-frame systems.

where ui are the floor displacements due to static application of a set of lateral forces wi at
floor levels in an N -story building.

Consider a location in Vancouver, B.C. The peak ground acceleration ügo/g specified
for site class C is 0.48; and the pseudo-acceleration spectral values A/g = 0.83, 0.97,
0.96, 0.84, 0.74, 0.66, 0.34, 0.18, and 0.09 at T1 = 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 1.0, 2.0,
and 4.0 s, respectively. Figure 22.2.1 shows this design spectrum and Ce for the two values
Mv = 1.0 and 1.2, and for buildings in the normal importance category (I = 1); Ce and
A/g are identical up to a period of 2 s for Mv = 1.0.

The force modification factor Rd in Eq. (22.2.1) is based on the ductility capacity
of the structural system and materials. Specified values of Rd range from 1.0 for brittle
structures such as unreinforced masonry to 5.0 for ductile moment-resisting steel frames.

22.2.2 Lateral Forces

The distribution of lateral forces over the height of the building is to be determined from
the base shear in accordance with the formula for the lateral (or horizontal) force at the
j th floor:

Fj = (Vb − Ft )
wj h j∑N

i=1 wi hi

(22.2.4)
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Figure 22.2.2 NBCC lateral forces.

with the exception that the force at the top floor (or roof) computed from Eq. (22.2.4) is
increased by an additional force, the top force:

Ft =
{ 0 T1 ≤ 0.7

0.07T1Vb 0.7 < T1 < 3.6
0.25Vb T1 ≥ 3.6

(22.2.5)

where hj is the height of the j th floor above the base. These lateral forces are shown in
Fig. 22.2.2.

22.2.3 Story Forces

The design values of story shears are determined by static analysis of the structure sub-
jected to these lateral forces. Similarly determined overturning moments are multiplied by
reduction factors J and Ji at the base of the structure and at the i th floor level, respectively.
The following values of J are applicable for western Canada: for all structures J = 1 for
T1 ≤ 0.5 s; for moment-resisting frames J = 0.9 for T1 ≥ 2.0 s; for coupled walls J = 0.9
for T1 = 2.0 s and J = 0.8 for T1 ≥ 4.0 s; for braced frames J = 0.8 for T1 ≥ 2.0 s;
for walls and wall-frame systems J = 0.6 for T1 = 2.0 s and J = 0.5 for T1 ≥ 4.0 s.
Values of J at intermediate periods are determined by interpolation. The reduction factor
Ji = 1.0 over the top 40% of the building height, and varies linearly from this value to the
J value at the base.

22.3 MEXICO FEDERAL DISTRICT CODE, 2004

22.3.1 Base Shear

The base shear formula in the 2004 edition of the Mexico Federal District Code (MFDC)
may also be expressed as Eq. (22.1.1) with the seismic coefficient

Cs = Ce

Q′
(22.3.1)
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The elastic seismic coefficient

Ce =
{

A/g T1 ≤ Tc

A/g{1+ 0.5r [1− (Tc/T1)
r ]} T1 > Tc

(22.3.2)

where the pseudo-acceleration design spectrum A/g is given by

A

g
=
{ ao + (Am − ao)Tn/Tb Tn < Tb

Am Tb ≤ Tn ≤ Tc

Am(Tc/Tn)
r Tn > Tc

(22.3.3)

and T1 is the fundamental period; Tb and Tc denote the periods at the beginning and end
of the constant pseudo-acceleration region of the design spectrum (Fig. 22.3.1). The coef-
ficients ao, Am , and r and period values Tb and Tc are given in Table 22.3.1 for the seven
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Figure 22.3.1 MFDC (2004): elastic (Q′ = 1) seismic coefficient Ce for zone I, and
pseudo-acceleration A/g.

TABLE 22.3.1 PSEUDO-ACCELERATION DESIGN SPECTRUM
PARAMETERS

Zone ao Am Tb (s) Tc (s) r

I: Hard ground 0.04 0.16 0.20 1.35 1

II: Transition 0.08 0.32 0.35 1.35 4
3

IIIa: Soft soil a 0.10 0.40 0.53 1.80 2
IIIb: Soft soil b 0.11 0.45 0.85 3.00 2
IIIc: Soft soil c 0.10 0.40 1.25 4.20 2
IIId: Soft soil c 0.10 0.30 0.85 4.20 2
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zones of the Mexico Federal District, depending primarily on the local soil conditions.
Figure 22.3.1 shows A/g and Ce for zone I.

For the fundamental natural vibration period, the MFDC provides the formula

T1 = 2π

[ ∑N
i=1wi u2

i

g
∑N

i=1 Fi ui

]1/2

(22.3.4)

where ui are the floor displacements due to static application of the set of lateral forces Fi

defined by Eq. (22.3.6).
The elastic seismic coefficient is divided by the seismic reduction factor:

Q′ =
{

1+ (T1/Tb)(Q − 1) T1 < Tb

Q T1 ≥ Tb
(22.3.5)

where the seismic behavior factor Q varies between 1 and 4, depending on several factors,
including the structural material, structural system, and level of detailing.

22.3.2 Lateral Forces

The formula for the lateral force Fj at the j th floor depends on whether T1 ≤ Tc or T1 > Tc:

Fj = Vb
wj h j∑N

i=1 wi hi

T1 ≤ Tc (22.3.6a)

and

Fj = V (1)
b

wj h j∑N
i=1 wi hi

+ V (2)
b

wj h2
j∑N

i=1 wi h2
i

T1 > Tc (22.3.6b)

where the base shear Vb has been separated into two parts, V (1)
b and V (2)

b :

V (1)
b =

W (A/g)

Q′

{
1− r

[
1−

(
Tc

T1

)r]}
(22.3.7a)

V (2)
b =

W (A/g)

Q′

{
1.5r

[
1−

(
Tc

T1

)r]}
(22.3.7b)

22.3.3 Story Forces

The design values of story shears are determined by static analysis of the structure sub-
jected to the lateral forces defined by the foregoing equations. Similarly determined over-
turning moments are multiplied by a reduction factor that varies linearly from 1.0 at the
top of the building to 0.8 at its base to obtain the design values. There is an additional
requirement, however, that the reduced moments not be less than the product of the story
shear at that elevation and the distance to the center of gravity of the portion of the building
above the elevation being considered.
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22.4 EUROCODE 8, 2004

22.4.1 Base Shear

The base shear formula in Eurocode 8 (EC) may also be expressed as Eq. (22.1.1) with the
seismic coefficient

Cs = Ce

(OS) q ′
(22.4.1)

where OS = 1.5 is the overstrength factor, intended to account for the difference between
the design and actual values of the structural strength. Applicable to selected structural
systems is an additional overstrength factor that is included in q ′ and is intended to account
for the difference between resistance values at first yield and at formation of a plastic
mechanism.

The elastic seismic coefficient

Ce = A

g
(22.4.2)

except that for buildings taller than two stories and fundamental vibration period T1 < 2Tc,
the seismic coefficient is multiplied by 0.85. The pseudo-acceleration design spectrum A,
normalized by the design peak ground acceleration ügo, is given by

A

ügo
=

⎧⎪⎨
⎪⎩

1+ 1.5Tn/Tb 0 ≤ Tn ≤ Tb

2.5 Tb ≤ Tn ≤ Tc

2.5(Tc/Tn) Tc ≤ Tn ≤ Td

2.5TcTd/T 2
n Tn ≥ Td

(22.4.3)

where Tn is the natural vibration period of an SDF system; Tb, Tc, and Td denote the pe-
riods at the beginning of the constant-pseudo-acceleration, constant-pseudo-velocity, and
constant-deformation regions of the design spectrum, respectively (Fig. 22.4.1). Implicit
in Eq. (22.4.3) are importance factor = 1 and damping ratio = 5%. Equation (22.4.3) is
valid for all five ground types: A (rock), B (very stiff soils), C (medium-stiff soils), D (soft
soils), and E (thin stratum of medium-stiff or soft soils over rock). However, the parameter
values in Eq. (22.4.3) vary with ground type, as shown in Table 22.4.1. Included for each
ground type are values for periods Tb, Tc, and Td , and a value for S, a multiplier for the
ügo value specified for rock to obtain the ügo value for another ground type. Figure 22.4.1
shows A/ügo and Ce/ügo for soil classification C. In addition to empirical formulas for
estimating the fundamental period, the EC allows use of Eq. (22.3.4) for calculating T1.

The elastic seismic coefficient is divided by a seismic reduction factor, which as
implied by the other equations in the code is close to

q ′ =
{

1+ (T1/Tb) (qy − 1) T1 < Tb

qy T1 ≥ Tb
(22.4.4)

where qy = q/1.5, q being the seismic behavior factor, which varies between 1.5 and 8
depending on several factors, including the structural material and structural system. Al-
though not included explicitly in the Eurocode, this decomposition of q into 1.5 and qy

facilitates this presentation and its interpretation later.
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Figure 22.4.1 Eurocode 8 (2004): elastic [(OS)q ′ = 1] seismic coefficient Ce and pseudo-
acceleration, both normalized by ügo for soil classification C.

TABLE 22.4.1 PSEUDO-ACCELERATION DESIGN
SPECTRUM PARAMETERS

Spectrum Type 1
Ground
Type S Tb (s) Tc (s) Td (s)

A 1.00 0.15 0.4 2.0
B 1.20 0.15 0.5 2.0
C 1.15 0.20 0.6 2.0
D 1.35 0.20 0.8 2.0
E 1.40 0.15 0.5 2.0

22.4.2 Lateral Forces

The formula for the lateral force Fj at the j th floor is

Fj = Vb
wjφj1∑N

i=1 wiφi1

(22.4.5)

where φj1 is the displacement of the j th floor in the fundamental mode of vibration. The
code permits linear approximation of this mode, in which case Eq. (22.4.5) becomes

Fj = Vb
wj h j∑N

i=1 wi hi

(22.4.6)
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22.4.3 Story Forces

The design values of story shears, story overturning moments, and element forces are de-
termined by static analysis of the building subjected to these lateral forces; the overturning
moments computed are not multiplied by a reduction factor.

22.5 STRUCTURAL DYNAMICS IN BUILDING CODES

Most of the seismic provisions contained in building codes are either derived from or re-
lated to the theory of structural dynamics. In this section we discuss this interrelationship
for several aspects of the code provisions.

22.5.1 Fundamental Vibration Period

The period formula in MFDC and EC, Eq. (22.3.4), is identical to the result obtained from
Rayleigh’s method using the shape function given by the static deflections ui due to a set of
lateral forces Fi at the floor levels. This becomes apparent by comparing Eq. (22.3.4) with
Eq. (8.6.4b). The period formula in the NBCC, Eq. (22.2.3), has the same basis except
that the lateral forces used to determine the static deflections are assumed equal to the
lumped weights at the floor levels. This becomes apparent by comparing Eq. (22.2.3) with
Eq. (8.6.4c).

22.5.2 Elastic Seismic Coefficient

The elastic seismic coefficient Ce is related to the pseudo-acceleration spectrum for linearly
elastic systems. In a linear SDF (one-story) system of weight w, the peak base shear is (see
Section 6.6.3)

Vb = A

g
w (22.5.1)

and Ce = A/g. For buildings the four codes—IBC, NBCC, MFDC, and EC—give the
design base shear as

Vb = 1

R
CeW Vb = 1

Rd RO
CeW Vb = 1

Q′
CeW Vb = 1

(OS)q ′
CeW (22.5.2)

respectively. By taking R = Rd RO = Q′ = (OS)q ′ = 1, it is clear that Ce in building
codes corresponds to A/g, the pseudo-acceleration for linearly elastic systems normalized
with respect to gravitational acceleration. The two, Ce and A/g, as specified in codes, are
not necessarily identical, however, as seen in Figs. 22.1.1, 22.2.1, 22.3.1, and 22.4.1. The
ratio Ce ÷ A/g is plotted as a function of period in Fig. 22.5.1, where we note that for
NBCC and MFDC it exceeds unity for most periods and increases with T1. However, for
the IBC and EC, this ratio is equal to unity for all periods (except very short periods in the
case of IBC).

The seismic coefficient Ce is specified larger than A/g to account for the more com-
plex dynamics of multistory buildings responding in several natural modes of vibration
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Figure 22.5.1 Ratio of elastic seismic coefficient Ce and pseudo-acceleration A/g for
four building codes; NBCC plots are valid for all structures other than walls, coupled
walls, and wall-frame systems.

and to recognize uncertainties in a calculated value of the fundamental vibration period. In
Section 13.8 we demonstrated that the peak value of the base shear due to the nth mode is

Vbn = An

g
W ∗n (22.5.3)

where W ∗n is the effective weight and An/g is the normalized pseudo-acceleration, both
for the nth mode. The peak value of the base shear considering several modes is generally
estimated by the SRSS formula, Eq. (13.7.3). For the present purpose, however, we use the
upper bound result of Eq. (13.7.2), specialized for the base shear:

Vb ≤
N∑

n=1

|Vbn| =
N∑

n=1

An

g
W ∗n (22.5.4)

If all the An values were equal toA1, which they are not, Eq. (22.5.4) reduces to

Vb ≤ A1

g

N∑
n=1

W ∗n =
A1

g
W (22.5.5)

where the second half of this equation is obtained after using Eq. (13.2.14). Thus for an
MDF system, Ce and A1/g have similar but by no means identical meaning. In Part B
we discuss these conceptual differences between Ce and A1/g further, as well as their
numerical differences, shown in Fig. 22.5.1.

It is of interest to compare the pseudo-acceleration design spectrum specified in the
four codes with two levels—50th and 84.1th percentile—of the design spectra for firm
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Figure 22.5.2 Comparison of pseudo-acceleration design spectrum in building codes
with the design spectra developed in Chapter 6; the latter are 84.1th and 50th percentile
spectra for 5% damping.

ground sites developed by the procedures of Fig. 6.9.3 (see also Figs. 6.9.4 and 6.9.5). All
five of these spectra are presented in Fig. 22.5.2, where the pseudo-acceleration is nor-
malized relative to its value at zero period; such normalizing with respect to peak ground
acceleration is widely used but is not the best option. This normalization removes any
differences in the peak ground accelerations implied in the five spectra and provides a
comparison of the spectral shapes. The code spectra are generally quite different from the
design spectrum of Fig. 6.9.5 because the two are developed by different methods. A code
spectrum is “semi-custom-developed” for a site in the sense that it is based on probabilis-
tic seismic hazard analysis considering all seismic sources relevant to the site. In contrast,
Fig. 6.9.5 is a “generic” spectrum based on the statistics of several ground motions recorded
in the western United States.

22.5.3 Design Force Reduction

Most codes specify the design base shear to be smaller than the elastic base shear (deter-
mined using the elastic seismic coefficient Ce). For the four codes described earlier, the
reduction factors are R, Rd , Q′, and q ′ in Eq. (22.5.2). In this section we examine how
the reduction in design force specified in codes relates to the results obtained in Chapter 7
from dynamic response analysis of yielding SDF systems.

The reduction factors R, Rd , Q′, and q ′ specified in the four codes are compared
with the yield-strength reduction factor Ry of elastoplastic systems. The code reduction
factors are plotted in Fig. 22.5.3 as a function of the fundamental vibration period T1 for
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Figure 22.5.3 Comparison of yield-strength reduction factors—R, Rd , Q′, and q ′—in
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R = Rd = Q = qy = 4. They are independent of T1 in IBC and NBCC, but their period
dependence in MFDC and EC is defined by Eqs. (22.3.5) and (22.4.4), respectively. Deter-
mined from dynamic analysis of SDF systems, the reduction factor Ry for yield strength
of elastoplastic systems corresponding to a ductility factor of 4 (Fig. 7.11.2) is also shown.
It is clear from this comparison that the MFDC and EC seismic reduction factors vary with
vibration period in a manner consistent with structural dynamics theory. However, the
period independence of factor R in the IBC and Rd in the NBCC contradicts dynamic
response results for structures with fundamental period in the acceleration-sensitive re-
gion of the design spectrum. The resulting discrepancy in the design spectra is seen in
Fig. 22.5.4 for two values of the ductility factor μ. The inelastic design spectra shown
are from Fig. 7.11.6 scaled by 0.4 so that they correspond to peak ground acceleration
ügo = 0.4g. The elastic design spectrum reduced by the period-independent factor μ is
lower in the acceleration-sensitive period region, as shown in Fig. 22.5.4. Thus, by ig-
noring the period dependence of the yield-strength reduction factor, the code may give
excessively small design forces for structures in this period region.

This may imply that the code provisions are unconservative in certain situations, but
we will not get into this issue because of several practical considerations, which are beyond
the scope of this book. One of these is worth mentioning, however. The actual strength of a
building exceeds its design strength, especially for short-period systems. Overstrength can
come from a variety of sources. Examples are the difference between the design strength
and the theoretical strength of structural elements because of the difference between al-
lowable and yield stresses, the effects of gravity loads on element strengths, element
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overstrength due to discrete choices of member sizes, element overstrength due to stiff-
ness (drift) requirements, increase in the structural strength due to redistribution of ele-
ment forces in the inelastic range, and the contributions of all structural and nonstructural
elements that in the design process are not considered as part of the lateral force-resisting
system. This overstrength of a building is recognized explicitly in some building codes
(e.g., NBCC and EC).

22.5.4 Lateral Force Distribution

Structural dynamics gives the base shear and equivalent static lateral force at floor level j
for mode n of a multistory building (Section 13.8.1):

Vbn = M∗n An fjn = �nmjφjn An

Using the definitions for M∗n and �n , Eqs. (13.2.9a) and (13.2.3), f jn can be expressed in
terms of Vbn:

f jn = Vbn
wjφjn∑N
i=1wiφin

(22.5.6)

We now compare this force distribution from structural dynamics with code spec-
ifications. The IBC with k = 1 [Eq. (22.1.6)], the NBCC with the top force Ft = 0
[Eq. (22.2.4)] and the EC [Eq. (22.4.6)] all give

Fj = Vb
wj h j∑N

i=1 wi hi

(22.5.7)
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This force distribution agrees with Eq. (22.5.6) if φjn is proportional to hj , that is, if the
mode shape is linear. The linear shape is a reasonable approximation to the fundamental
mode of many buildings; as shown in Fig. 19.1.5, it is in between the fundamental mode
shapes for the two extreme values, 0 and∞, of the beam-to-column stiffness ratio ρ.

In the IBC the heightwise distribution of lateral forces is given by Eq. (22.1.6), based
on the assumption that the lateral displacements are proportional to hj for T1 ≤ 0.5 s,
to h2

j for T1 ≥ 2.5 s, and to an intermediate power of hj for intermediate values of T1.
These force distributions are intended to recognize the changing fundamental mode and
increasing higher-mode contributions to structural response with increasing T1.

Assignment of the additional force Ft at the top of the building—in addition to the
forces from Eq. (22.2.4)—is intended by the NBCC to consider approximately and sim-
plistically the influence of the higher vibration modes on the force distribution. The force
Ft increases the shear force in the upper stories relative to the base shear. This is con-
sistent with the predictions of structural dynamics that the higher modes affect the forces
in the upper stories more than in lower stories (Section 19.6). Equation (22.2.5) gives Ft

values that range from zero for short-period buildings to 0.25Vb for long-period buildings,
for which structural dynamics theory demonstrates that higher-mode responses are more
significant (Section 19.4).

In the MFDC, if T1 ≤ Tc, the height-wise distribution of lateral forces is also given
by Eq. (22.5.7), which considers only the response in the fundamental vibration mode,
assumed to have a linear shape. For T1 ≥ Tc, the MFDC specifies Eq. (22.3.6b), based on
specifying floor displacements proportional to hj at T1 = Tc, to h2

j at T1 much longer than
Tc, and intermediate between the linear and parabolic shapes at intermediate values of T1.
This variation in deflected shape and hence force distribution is intended to recognize the
changing shape of the fundamental vibration mode and increasing higher-mode responses
with increasing fundamental period.

Equations (22.4.5) and (22.4.6) both appear in the EC, implying that the distribution
of lateral forces is based entirely on the fundamental mode of vibration without considering
the increasing higher-mode contributions to response with longer T1.

22.5.5 Overturning Moments

Some building codes, including NBCC and MFDC, allow reduction of overturning mo-
ments relative to the values computed from lateral forces Fj by statics, because the response
contributions of higher modes are more significant for story shears than for overturning
moments (Chapter 19). In particular, if the first mode were linear, the higher modes would
provide no contribution to the overturning moment at the base (Example 13.6), although
they would affect overturning moments at higher levels and story shears at all levels. Thus
the overturning moments computed from the code forces, supposedly calibrated against
dynamic response results to provide the correct story shears, would exceed the values pre-
dicted by dynamic analysis and could therefore be reduced. The reduction factor at the
building base is 0.8 in the MFDC, independent of T1 or building height. In the NBCC
the reduction factor at the building base ranges from 1.0 for buildings with T1 ≤ 0.5 s to
0.7, 0.8, or 1.0 for buildings with T1 ≥ 2 s in western Canada, depending on the structural
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system. The IBC and EC permit no reduction of overturning moments relative to their
values computed from lateral forces by statics.

PART B: EVALUATION OF BUILDING CODES

In Part B we evaluate how well the seismic forces specified in building codes agree with
the results of dynamic analysis presented in Chapters 19 and 20.

22.6 BASE SHEAR

The response contributions of the higher vibration modes in the dynamic response of build-
ings (Chapter 19) plays a central role in evaluating the code forces. For this reason we first
recall that the combined responses of the second and higher modes depend mainly on
two parameters: fundamental period T1 and beam-to-column stiffness ratio ρ. With ref-
erence to Fig. 19.4.2, we had concluded that the base shear for buildings with T1 within
the acceleration-sensitive region of the spectrum is essentially all due to the first mode.
However, for buildings with T1 in the velocity- or displacement-sensitive regions of the
spectrum, the higher-mode responses can be significant, increasing with increasing T1 and
with decreasing ρ, for reasons discussed in Chapter 19.

For buildings with T1 in the acceleration-sensitive region of the spectrum, these re-
sults and Eq. (22.5.3) indicate that the code formula, Eq. (22.1.1), would accurately predict
the base shear for elastic buildings if the seismic coefficient Ce were defined as A1/g and
the total weight W were replaced by the first-mode effective weight W ∗1 . If W is used
instead of W ∗1 , as in building codes, the base shear is overestimated. This becomes obvi-
ous by renormalizing the base shear data of Fig. 19.4.2 with respect to the total weight, as
shown in Fig. 22.6.1; recall that W ∗1 = 0.679W , 0.796W , and 0.880W for ρ = 0, 1

8 , and
∞, respectively (Table 19.1.1). Therefore, the overestimation varies with ρ, being least for
shear buildings (ρ = ∞), largest for flexural buildings (ρ = 0), and in between for frame
buildings with intermediate values of ρ.

For buildings with T1 in the velocity- or displacement-sensitive spectral regions,
however, the increase in base shear by using the total weight of the building may not be suf-
ficient to compensate for the higher-mode response. This is clear from Fig. 22.6.1, where
we observe that Vb/W exceeds A1/g for longer T1 and smaller ρ, conditions that produce
increasingly significant higher-mode response. For this range of parameters, therefore, the
seismic coefficient Ce should be larger than A1/g.

The dynamic response (RSA) results of Fig. 19.4.2 provide insight into how the
A/g spectrum should be modified to obtain the seismic coefficient Ce. For this purpose,
curves of the form αT−β1 are fitted to the base shear versus period curve from dynamic
analysis, as shown in Fig. 22.6.2. The parameters α and β for each of the velocity- and
displacement-sensitive regions of the spectrum are evaluated by a least-squared error fit to
the Vb–T1 curve. The curve-fitting procedure minimizes the error, defined as the integral



Sec. 22.6 Base Shear 853

0.02 0.1 1 10
0.01

0.1

1

2

T
1
 or T

n
, s

V
b /W

Design spectrum, A/g

RSA, 5 modes

ρ = 0

ρ = 0

ρ = 1/8

ρ = ∞ 

ρ = ∞

Figure 22.6.1 Base shear Vb (normalized by total weight W ) in buildings with ρ = 0, 1
8 ,

or∞, computed for the design spectrum shown.

over the period range considered of the squares of the differences between the logarithm
of the ordinates of the “exact” and fitted curves. This curve-fitting procedure is designed
to satisfy the following constraints. First, the ordinate of the fitted curve at T1 = Tc is
equal to the ordinate of the flat portion of the A/g spectrum. Second, the curves fitted to
the velocity- and displacement-sensitive regions of the spectrum have the same ordinates at
T1 = Td . Third, the exponent β for the displacement-sensitive region should not be smaller
than its value in the velocity-sensitive region. The resulting functions αT−β1 are shown in
Fig. 22.6.2 together with theVb–T1 curves from dynamic analyses.

This comparison suggests that to estimate Vb without dynamic analysis (RSA), the
code seismic coefficient Ce should be defined by decreasing the coefficient β in αT−β1
and thus raising the pseudo-acceleration design spectrum to account for the higher-mode
response. For this purpose, building codes should define Ce in terms of the design spectrum
A/g, which in turn should be specified explicitly. Once this format is adopted, Ce can be
defined by raising the design spectrum in its velocity- and displacement-sensitive regions,
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based on dynamic response results of the type presented here. The degree to which the
spectrum should be raised depends on the beam-to-column stiffness ratio ρ; the spectrum
needs to be raised very little for shear buildings (ρ = ∞) but to an increasing degree
with increasing frame action (i.e., decreasing ρ). The spectral modifications presented also
depend on the heightwise distribution of mass and stiffness, parameters that have not been
varied here.

Having utilized dynamic response results to determine how the design spectrum A/g
should be modified for higher-mode response, we now compare these results with build-
ing code provisions. For this purpose we return to Fig. 22.5.1, where the Ce ÷ A/g in
four codes was presented as a function of T1. These results are compared in Fig. 22.6.3
with Vb/W ∗1 ÷ A/g, the ratio of two values of base shear, the first including responses
due to all modes and the other considering only the first mode (Fig. 22.6.2). It is clear
that two of the four codes considered recognize the dependence of higher-mode response
on the fundamental period T1, and the NBCC also recognizes the influence of the stiff-
ness ratio ρ. The NBCC appears to overcompensate for the higher-mode response over
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a wide range of T1 and ρ—not because of the Mv factor but because Ce is constant
for T1 > 2 s—whereas MFDC seems to be reasonable except for buildings with very
small ρ. Unfortunately, the IBC and EC ignore the higher-mode response and specify
Ce = A/g.

The IBC and EC deal with the higher-mode contribution to base shear in a different
way. Recognizing the results of Fig. 22.6.1, EC and IBC do not permit use of the ELF
analysis procedure for buildings with T1 exceeding 2.0 s and 3.5 Tc, respectively, where
Tc is the period separating the acceleration- and velocity-sensitive regions of the spectrum;
Tc = 0.66 s for the design spectrum of Fig. 6.9.5. For certain buildings, Eq. (22.4.2)
is multiplied by 0.85 in EC to avoid overestimation of the base shear by using the total
weight W in Eq. (22.1.1); see Fig. 22.6.1 and the related discussion.

Inelastic response behavior in multistory buildings and its differences relative to SDF
systems are factors that should be considered in specifying the seismic coefficient in build-
ing codes. This important concept is illustrated by returning to Fig. 20.3.2 from nonlinear
dynamic analysis, showing the ratio of base shear yield strengths in multistory buildings
and SDF systems necessary to limit the ductility demand to the same allowable value,
μ = 2 or 8. Superimposed on these results in Fig. 22.6.4 is the ratio Ce ÷ A/g for four
building codes from Fig. 22.5.1; these code ratios also apply to yielding systems irrespec-
tive of the allowable reduction factors R, Rd , Q′, or q ′. In contrast, dynamic response
results indicate that the strength increase required to account for MDF effects depends
significantly on the ductility factor and on the plastic hinge mechanism.
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from nonlinear dynamic analysis of beam- and column-hinge models of frames for two
values of the SDF-system ductility factor. (Dynamic analysis data from Nassar and
Krawinkler, 1991.)

22.7 STORY SHEARS AND EQUIVALENT STATIC FORCES

Having compared the code-specified base shear with the predictions of dynamic analysis,
we now evaluate the height-wise distribution of story shears and lateral forces. As men-
tioned in Sections 22.1 to 22.4, the codes specify lateral forces in terms of the base shear,
and static analysis of the structure for these forces provides the story shears. The story
shears and lateral forces determined from four codes are divided by the base shear Vb and
presented in Figs. 22.7.1 and 22.7.2; included in each case are two values of T1 = 0.5
and 3 s, chosen to be representative of the acceleration and velocity-sensitive spectral re-
gions. Note in Fig. 22.7.2 that the numerical values of the equivalent static forces that
are concentrated at the floor levels have been joined by straight lines between floors for
easier visualization. Also included in Fig. 22.7.1 are the story shears of Fig. 19.6.1 from
dynamic analysis (RSA), including response contributions of all modes; these have been
normalized by the corresponding base shear. Similarly, Fig. 22.7.2 includes the equivalent
static forces computed from the story shears of Fig. 19.6.1 as the differences between the
shears in consecutive stories (equal to the discontinuity in shears at the floor levels).

Figures 22.7.1 and 22.7.2 permit the following observations: For buildings with T1

in the acceleration-sensitive region of the spectrum, the heightwise distributions of lateral
forces and story shears specified by the four codes are essentially identical to each other
and fall between the dynamic response curves for ρ = 0 and∞. With increasing T1, the
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code distributions for lateral forces and story shears differ increasingly among the codes,
and all four codes differ increasingly from the dynamic response. These differences are
especially significant for the smaller values of ρ because higher-mode response increases
with increasing T1 and decreasing ρ (Sections 19.4 and 19.5). It is clear that the code
formulas do not closely follow the dynamic response results or recognize the effects of the
important building parameters on dynamic response. These discrepancies are accentuated
when we consider the influence of the height-wise distribution of stiffness and strength on
inelastic response of buildings.

22.8 OVERTURNING MOMENTS

The overturning moments in the two buildings, T1 = 0.5 and 3 s, determined in ac-
cordance with three of the four building codes† (Sections 22.1 to 22.4) are presented in
Fig. 22.8.1 together with the dynamic response (RSA) results, including responses due to
all modes (Fig. 19.6.2); in each case, overturning moments at all elevations are normalized
by the corresponding base overturning moment. For buildings with T1 in the acceleration-
sensitive region of the spectrum and even extending well into the velocity-sensitive region,
the heightwise distributions of overturning moments specified by the three codes are close
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Figure 22.8.1 Comparison of floor overturning moment distributions in three building
codes and from RSA for three values of ρ. Note that IBC, NBCC, and EC do not permit
the use of a static ELF procedure for buildings with T1 exceeding 3.5Tc and 2.0 s, respec-
tively. NBCC plot values for all structures other than walls, coupled walls, and wall-frame
systems.

†The format of Figs. 22.8.1 and 22.8.3 does not lend itself to plots for NBCC.
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to each other and to the dynamic response. The discrepancy in code values relative to
the dynamic response increases with increasing T1, especially for buildings with smaller
values of ρ, as the higher-mode response becomes increasingly significant (Sections 19.4
and 19.5). However, this discrepancy in overturning moments is much smaller than was
noted in Section 22.7 for story shears, because the higher-mode response contributions to
the overturning moments are less significant (Chapter 19).

We next compare the overturning moments computed by two methods, both based
on dynamic analysis: (1) RSA considering all modes (Fig. 22.8.1), and (2) static analy-
sis of the building subjected to the lateral forces of Fig. 22.7.2 determined, as described
in Section 22.7, from RSA predictions of story shears. The latter method will provide
the same story shears as the first method because the lateral forces were determined by
statics from the story shears predicted by RSA, but not the correct overturning moments.
This fact is demonstrated by presenting the ratio of overturning moments computed by
the two methods. Akin to the reduction factor J specified in some building codes, this
ratio is presented in Fig. 22.8.2 for the base overturning moment as a function of T1 for
three values of ρ; and in Fig. 22.8.3 for overturning moments at all floors of the build-
ing for two values of T1. This reduction factor never exceeds unity, implying that the
approximate value of the overturning moment obtained from the lateral forces (second
method) always exceeds the “exact” value obtained from RSA (first method). The two
values are identical if the response contribution of only the fundamental vibration mode
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and wall-frame systems.
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is considered. Thus the reduction factor accounts for the fact that higher vibration modes
contribute more to shears than to overturning moments; it decreases (implying greater
reduction) with increasing T1 and decreasing ρ.

Because the lateral forces specified in building codes are intended to provide the
dynamically computed story shears, the preceding observations indicate that the overturn-
ing moments will be overestimated if they were also computed from the lateral forces by
statics. Thus some building codes specify reduction factors by which statically computed
overturning moments should be multiplied. These reduction factors, defined earlier for
building codes, are also included in Figs. 22.8.2 and 22.8.3. The reduction factor specified
in MFDC is independent of T1, except for the slight variation arising from an equilibrium
requirement. As a result, the reduction is excessive in the acceleration-sensitive region of
the spectrum, but not enough in parts of the velocity- and displacement-sensitive regions,
depending on ρ. However, the NBCC specifies a reduction factor that varies with T1 in a
manner similar to the dynamic response up to about T1 = 2 s; it does not recognize the
dependence on ρ, however, which becomes significant at longer T1. The IBC and EC do
not permit any reduction in overturning moments, a provision that is not supported by the
results of elastic dynamic analysis. The NBCC and MFDC specify no reduction in the
top story and increasing reduction as one moves down to lower levels of the building. Al-
though consistent in this regard with the results of dynamic analysis (Fig. 22.8.3), the code
specifications do not fully recognize the dependence of the reduction factor on the building
parameters T1 and ρ.
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22.9 CONCLUDING REMARKS

We have demonstrated that some of the concepts developed in this book about earthquake
analysis, response, and design of structures are reflected in building codes, but they are not
always stated explicitly or applied in accordance with structural dynamics results. Building
codes should adopt a different approach, explicitly stating the underlying basis for each
provision so that it can be improved as we develop a better understanding of structural
dynamics and earthquake performance of structures. The seismic design approaches must
also consider, much more realistically than has been done in the past, the demands imposed
by earthquakes on structures and the structural capacity to meet these demands.

Building codes represent a consensus of the structural engineering profession on
the seismic design of ordinary buildings where special earthquake considerations are not
cost-effective. There can be major design deficiencies if the building code is applied to
structures whose dynamic properties differ significantly from those of ordinary buildings.
This is suggested by the collapse or irreparable damage of some buildings during major
earthquakes. Similarly, building codes should not be applied to special structures, for they
require special consideration: because of cost, potential hazard, or the need to maintain
function. For critical projects such as high-rise buildings, dams, nuclear power plants,
offshore oil-drilling platforms, long-span bridges, major industrial facilities, and so on,
special earthquake considerations are necessary.
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Structural Dynamics in Building
Evaluation Guidelines

PREVIEW

A major challenge for performance-based seismic engineering is to develop simple, yet
sufficiently accurate methods for evaluating existing buildings to meet selected perfor-
mance objectives. As reflected in guidelines and standards for evaluating existing build-
ings, such as the FEMA-273 (1997), its successors FEMA 356 (2000) and ASCE 41-06
(2007)—henceforth abbreviated as ASCE 41— and ATC-40 (1996) documents, the pro-
fession has shifted away from the traditional elastic analysis of structures subjected to seis-
mic forces reduced to recognize indirectly inelastic response, as in current building codes
(Chapter 22); instead, inelastic behavior of structures is considered explicitly in estimating
seismic demands at low performance levels, such as life safety and collapse prevention. In
this chapter, selected aspects of the aforementioned guidelines for computing seismic de-
mands are discussed in light of structural dynamics theory presented in Chapters 6, 7, 13,
and 20. For estimating seismic demands at the operational performance level, these guide-
line documents include linear dynamic analysis procedures that are generally consistent
with those described in Chapter 13 and therefore not discussed here.

Currently, building evaluation guidelines permit use of two nonlinear analysis meth-
ods to estimate seismic demands at low performance levels: the nonlinear static procedure
(NSP) and the nonlinear dynamic procedure (NDP). According to the NSP, seismic de-
mands are computed by nonlinear static analysis of a structure subjected to monotonically
increasing lateral forces (known as pushover analysis) with a specified, usually invariant
heightwise distribution until a predetermined target displacement is reached; supplemen-
tary elastic analyses with relaxed acceptance criteria are required for structures with sig-
nificant higher-mode responses, but the NSP is still permitted in ASCE 41. The target
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displacement is estimated from the deformation of an inelastic SDF system derived from
the pushover curve. In light of structural dynamics theory, issues related to NDP are men-
tioned in Section 23.1, issues related to estimating target displacement are examined in Sec-
tions 23.2 and 23.3, and issues related to pushover analysis are discussed in Section 23.4.

23.1 NONLINEAR DYNAMIC PROCEDURE: CURRENT PRACTICE

The nonlinear dynamic procedure (NDP) is essentially equivalent to nonlinear response
history analysis (RHA), presented in Chapter 20. Therefore, we will not comment on
the NDP except to point out the need to improve current guidelines for its implementa-
tion. The ASCE 41 specifications for the NDP, which are essentially the same as those
in the International Building Code and ASCE7-05, state that the seismic demand may be
estimated as (1) the maximum of demands due to three scaled ground motion records, or
(2) the mean value of demands due to seven scaled records; a procedure for selecting and
scaling ground motion records is also specified.

We demonstrate that these estimates can vary significantly. For this purpose, re-
sults are presented for a 9-story steel building, symmetric in plan, located in Aliso Viejo,
California, subjected to an ensemble of 28 two-component ground motions recorded from
earthquakes with moment magnitude varying from 6.5 to 7.6 at distances ranging from 7
to 28 km. The accuracy of the ASCE 7-05 procedure for scaling records (which is very
similar to the ASCE 41-06 procedure) was evaluated as follows: The maximum value of
the story drifts due to a set of three scaled records and the average of these demands due
to a set of seven scaled records, both, were compared against the benchmark value defined
as the median (or geometric mean) value of the story drifts due to 28 unscaled records.

The results, shown in Fig. 23.1.1, demonstrate a significant variation in the first-
story drift (presented as percent of story height) estimated by three implementations (each
selecting different sets of excitations from among the 28 records) of both versions of the
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Figure 23.1.1 First-story drift, x-component: (a) maximum of demands due to three
excitations; (b) average of demands due to seven excitations. The excitations were selected
randomly three times from an ensemble of 28 records. Also shown is the benchmark value.
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ASCE 7-05 procedure. Compared to the benchmark value, the estimate obtained as the
maximum of drifts due to three scaled records errs by −23 to 101%, and the estimate ob-
tained as the average of drifts due to seven scaled records errs by −4 to 21%. Such errors
and variability obviously imply that different engineers following the same criteria could
arrive at contradictory conclusions about seismic safety and rehabilitation requirements
for an existing building. This observation points to the need for better criteria to select and
scale ground motions, a topic of much ongoing research activity since 2005.

23.2 SDF-SYSTEM ESTIMATE OF ROOF DISPLACEMENT

How well can the roof displacement ur of a multistory building be determined from the
deformation of an SDF system, which is the concept underlying current NSP? To address
this question, we compare the values of roof displacement determined by two methods: the
“exact” value (ur )MDF, determined by nonlinear RHA of the multistory building treated as
an MDF system (Section 20.1); and the SDF-system estimate: (ur )SDF = �1φr1 D1 [see
Eq. (20.7.3)], where �1 was defined in Eq. (20.5.3a), φr1 is the value at the roof in the
first mode φ1, and D1 is the peak deformation of the inelastic SDF system with its force–
deformation relation determined from the pushover curve, a plot of base shear versus roof
displacement, obtained by nonlinear static analysis of the building using the first-mode
force distribution: s∗1 = mφ1 [see Eq. (20.7.2)]; D1 is determined by nonlinear RHA of
the SDF system. Note that this procedure is equivalent to UMRHA (Section 20.6.2) con-
sidering only the first mode of vibration, and the resulting (ur )SDF will be identical to ur1

for the first mode from step 6 in the MPA summary (Section 20.7.3). The response of seven
of the SAC buildings to each of 20 SAC ground motions is computed and the displacement
ratio is determined:

(
u∗r
)

SDF = (ur )SDF ÷ (ur )MDF. The difference between the median of
this displacement ratio and unity indicates the bias in the SDF-system estimate of median
roof displacement.

The SDF system estimates the median roof displacement of multistory buildings to
a useful degree of accuracy. Figures 23.2.1 and 23.2.2 show histograms of the 20 values
of the displacement ratio, together with its range of values and the median value for each
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of seven SAC buildings. Examining first the results for the three Los Angeles buildings,
the SDF system estimates the median roof displacement accurately—within 3% of the
“exact” value—for the 3-story building, but overestimates it by 19% for the 9- and 20-story
buildings. The median roof displacement of taller buildings is not always overestimated
by the SDF system; for example, it is underestimated by 14 and 18% for the Boston 9- and
20-story buildings, respectively, and by 5% for the Seattle 9- and 20-story buildings. The
bias in the SDF-system estimate of median roof displacement depends on the vibration
properties of the building and how far it is deformed into the inelastic range. For short-
period buildings (e.g., the Los Angeles 3-story building), the bias is small because their
response is dominated by the first mode. This bias is larger for long-period buildings (e.g.,
the SAC 9- and 20-story buildings) because they respond significantly in higher modes
of vibration. Correction factors should be developed to eliminate the larger bias in taller
buildings, thus improving the estimate of their roof displacement.

The SDF system may not estimate the roof displacement of multistory buildings due
to individual excitations to a useful degree of accuracy. For the 3-story building, this SDF-
system estimate varies (among 20 ground motions) from 78 to 139% of the exact value,
perhaps a surprisingly large discrepancy for a first-mode-dominated structure. The SDF-
system estimate can be alarmingly small (as low as 31 to 82% of the exact value among
the six taller buildings) or unexpectedly large (as large as 145 to 215% of the exact value
among the six taller buildings). The errors are actually worse than indicated by Fig. 23.2.2
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because it does not include those cases where nonlinear RHA predicted collapse of the
first-mode SDF system but not of the building as a whole.†

This large discrepancy arises because for individual ground motions the SDF system
may significantly underestimate or overestimate the yielding-induced permanent drift in
the response of the building. To demonstrate this assertion, the response history of the first-
mode contribution determined by UMRHA (Section 20.6), and the “exact” response from
nonlinear RHA of the MDF system are presented for the Los Angeles 9-story building due
to three of the 20 ground motions in Fig. 23.2.3. The first-mode contribution was verified
to be the dominant response for each of the three excitations. In the first case, the peak
response occurs at the end of the first large inelastic excursion before the yielding-induced
permanent drift away from the zero-displacement position takes place, and the SDF-system
estimate is highly accurate (Fig. 23.2.3a). In the second case, the permanent drift in the
first-mode response is much smaller than in the exact response of the MDF system, and
the SDF-system method underestimates the roof displacement by 37% (Fig. 23.2.3b). In
the third case, the permanent drift in the first-mode response away from the initial position
is much larger than in the exact response of the MDF system, and the SDF-system method
overestimates the roof displacement by 65% (Fig. 23.2.3c).
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Figure 23.2.3 Response histories of roof displacement of the Los Angeles 9-story build-
ing due to three ground motions determined by two methods, first-mode contribution de-
termined by UMRHA and exact response from nonlinear RHA: (a) record 39; (b) record
22; (c) record 21. Peak values are noted.

†Data for excitations that caused collapse of the SDF system are excluded, reducing the number of data
to 19 for the Seattle 9-story building, 17 for the Los Angeles 9-story building, and 14 for the Los Angeles 20-
story building; the median values for these buildings are computed by the counting method. The data values
corresponding to 20 ground motions were sorted in ascending order, and the median was estimated as the average
of the tenth and eleventh values, starting from the lowest value.
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23.3 ESTIMATING DEFORMATION OF INELASTIC SDF SYSTEMS

As mentioned earlier, seismic demands for buildings are estimated in current engineering
practice by pushover analysis up to a target displacement of the roof, determined from the
deformation D of an inelastic SDF system. Methods to determine D are described in the
ATC-40 guidelines and ASCE 41-06 standard.

23.3.1 ATC-40 Method

The approach adopted in ATC-40 was to estimate the earthquake response of inelastic SDF
systems by approximate analytical methods in which the nonlinear system is replaced by
an “equivalent” linear system. The natural period of vibration of the equivalent linear
system is longer, and its damping ratio larger, than the corresponding properties of the
inelastic system vibrating within its linearly elastic range. Developed in the early 1960s,
equivalent linear systems were of much interest to researchers at that time, when analysis of
inelastic systems and understanding of their earthquake response was in its infancy. Since
then, the earthquake analysis and response of inelastic SDF systems has developed into a
mature subject, which we studied in depth in Chapter 7. However, these procedures were
not selected in ATC-40. Instead, the deformation of an inelastic SDF system is estimated
by the capacity-spectrum method, an iterative method requiring analysis of a sequence of
equivalent linear systems with successively updated values of period and damping ratio;
the method is typically implemented graphically.

Unfortunately, the ATC-40 iterative procedure does not always converge; when it
does converge, it does not lead to the exact deformation. Because convergence tradition-
ally implies accuracy, the user could be left with the impression that the deformation cal-
culated is accurate, but the ATC-40 estimate errs considerably. This is demonstrated in
Fig. 23.3.1a, where the deformation estimated by the ATC-40 method is compared with
the value determined from inelastic design spectrum theory and the well-established equa-
tion [Eq. (7.12.3)] using the Ry–μ–Tn equation from Section 7.11.1. Both the approximate
and theoretical results were determined for systems covering a wide range of period val-
ues and ductility factors subjected to ground motions characterized by the elastic design
spectrum of Fig. 6.9.5. The discrepancy in the approximate result presented in Fig. 23.3.1b
shows that the ATC-40 method underestimates the deformation by 40 to 50% over a wide
range of periods.

The two flaws in the ATC-40 capacity spectrum method—lack of convergence in
some cases and large errors in many cases—appear to have been rectified in ASCE 41.
It derives the optimal vibration period and damping ratio parameters for the equivalent
linear system by minimizing the differences between its response and that of the actual
inelastic system. Such an equivalent linear method would obviously give close to the
correct deformation. However, the benefit in making the equivalent linearization detour
is questionable when the deformation of an inelastic system can be determined readily
using the inelastic design spectrum (Section 7.12.2) or by using available equations for the
inelastic deformation ratio, a topic addressed in Section 23.3.3.
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Figure 23.3.1 Deformation of SDF system computed by the ATC-40 method and from an inelastic
design spectrum: (a) comparison of deformations; (b) discrepancy in the ATC-40 method. (Adapted
from Chopra and Goel, 2000.)

23.3.2 ASCE 41-06 Method

The deformation of an inelastic SDF system is estimated by

D = C1C2

(
Tn

2π

)2

A (23.3.1)

Multiplying the deformation of the corresponding linear system [given by Eq. (6.7.1)] are
two coefficients, C1 and C2. The coefficient C1 represents the inelastic deformation ratio,
um/uo [see Eq. (7.2.4), Fig. 7.4.4b, and Section 23.3.3], for inelastic systems with stable,
bilinear hysteresis loops (i.e., without pinching, cyclic stiffness degradation, or strength
deterioration of the hysteresis loop). The coefficient C2 accounts for the increase in defor-
mation of the inelastic system due to these features not considered in C1.

Equations and numerical values for these coefficients specified in ASCE 41 are based
on research results and on judgment. However, some of the numerical values are not
supported by research results; for example, C1 is limited to values much smaller than the
inelastic deformation ratio determined from dynamic response analyses for systems in the
acceleration-sensitive region of the spectrum (Figs. 7.11.8 and 23.3.2 to 23.3.5); however,
the value of C1 = 1.0 at longer periods is theoretically correct (Section 7.11.3).
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23.3.3 Improved Methods

Since the early 1990s there has been increasing emphasis on estimating structural defor-
mations and on displacement-based design, which has been advocated as a more relevant
and rational approach than traditional strength-based seismic design of structures. This
has led to renewed interest in the relationship between peak deformations um and uo of
inelastic and corresponding linear SDF systems, respectively, a problem we studied first in
Chapter 7, resulting in many research publications.

If expressed as a function of the initial elastic vibration period Tn and ductility factor
μ, the inelastic deformation ratio can be used to determine the inelastic deformation of
a new or rehabilitated structure where global ductility capacity can be estimated because
deformation of the corresponding linear system is readily known from the elastic design
spectrum [Eq. (6.7.1)]. If expressed as a function of Tn and yield-strength reduction factor
Ry , the inelastic deformation ratio can be used to determine the deformation of an exist-
ing structure with known lateral strength. The inelastic deformation ratio will be denoted
by Cμ = um/uo or CR = um/uo, where the subscripts μ and R represent systems with
known ductility capacity μ or known yield strength defined by the reduction factor Ry ,
respectively; the peak deformations um and uo are determined by numerical solution of
Eqs. (7.3.2) and (6.2.1), respectively. Based on a comprehensive set of results, some of the
observations in this section are similar to, and others are important refinements of, those
based on limited data of response to a single ground motion in Chapter 7.

Figures 23.3.2a and b present the median values of Cμ and CR , respectively, as a
function of Tn for elastoplastic systems subjected to the LMSR† ensemble of 20 ground
motions; the spectral regions are noted in the plots. In the acceleration-sensitive region,
Cμ and CR � 1 at Tn = Tc for smaller μ and Ry , but they exceed unity increasingly for
shorter periods and larger μ or Ry , indicating greater inelastic action. For these short-
period systems, Cμ and CR are very sensitive to yield strength, increasing as the yield
strength is reduced. For very short-period systems (Tn < Ta), even if their strength is only
slightly smaller than the minimum strength required for the structure to remain elastic (e.g.,
Ry = 1.5), CR is much larger than unity. At Tn = 0, for elastoplastic systems Cμ = μ

(see Section 7.11.3) and CR = ∞, values that are a special case of those derived by
researchers for bilinear systems. In the velocity-sensitive region, Cμ and CR � 1 and are
essentially independent of ductility factor or yield strength. In the displacement-sensitive
region, Cμ and CR < 1 for systems in the period range Td to Tf , where these ratios
decrease as the ductility factor is increased or the strength is reduced; however, for systems
with periods longer than Tf , Cμ and CR � 1 are essentially independent of ductility factor
and strength, and both Cμ and CR = 1 for very long-period systems for reasons mentioned
in Section 7.4.2. Such results are the basis for the widely used equal-deformation rule (i.e.,
um = uo), which is reasonable for systems in the velocity- and displacement-sensitive
regions of the spectrum but not in the acceleration-sensitive region.

†Mentioned herein are seven ensembles of far-fault ground motions, each with 20 records; these ground
motions and their parameters are listed in Chopra and Chintanapakdee (2004). The first group of ensembles,
denoted by LMSR, LMLR, SMSR, and SMLR, represents four combinations of large (M = 6.6 to 6.9) or small
(M = 5.8 to 6.5) magnitude and short (R = 13 to 30 km) or long (R = 30 to 60 km) distance.
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What is the influence of earthquake magnitude and distance on the inelastic deforma-
tion ratio? To answer this question, the median Cμ is plotted against Tn in Fig. 23.3.3a for
the LMSR, LMLR, SMSR, and SMLR ground motion ensembles. These results indicate
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that the inelastic deformation ratio is essentially independent of earthquake magnitude and
distance; however, it would be different for near-fault ground motions, as will be shown
later.

What is the influence of soil conditions at the recording sites on the inelastic de-
formation ratio? To answer this question, the median Cμ is presented in Fig. 23.3.3b for
three ensembles of ground motions recorded on NEHRP site classes B, C, and D,† all of
which are firm soil sites. The median Cμ versus Tn curves for the three site classes are
very similar to each other and to the LMSR result. Thus the inelastic deformation ratio is
essentially independent of local soil conditions as long as they are firm soil sites, but it may
be affected by soft soil conditions, such as in parts of Mexico City and around the margins
of San Francisco Bay.

The median inelastic deformation ratios Cμ (and CR) for near-fault ground mo-
tions described in Section 6.8 are significantly different from those for far-fault motions‡

(Figs. 23.3.4a and 23.3.5a). This systematic difference between the values of Cμ (and CR)
for near-fault and far-fault ground motions, especially in the acceleration-sensitive spectral
region, is due primarily to the differences between the spectral shapes and values of Tc

for the two types of excitations (Section 6.8); recall that Tc is the period separating the
acceleration- and velocity-sensitive spectral regions (Fig. 6.8.3). This assertion is demon-
strated by plotting the ensemble median of the individual ground motion data for Cμ (and
CR) as a function of the normalized vibration period Tn/Tc (Figs. 23.3.4b and 23.3.5b).
Now the inelastic deformation ratio plots for far-fault ground motions, and both—fault
normal and fault parallel—components of near-fault ground motions have become very
similar in all spectral regions.

Simplified equations for inelastic deformation ratios Cμ and CR provide the most
direct estimation of the deformation of an inelastic SDF system because deformation of the
corresponding linear system is readily known from the elastic design spectrum [Eq. (6.7.1)].
Such an equation for Cμ could be used to determine deformation of a new or rehabilitated
structure where the global displacement ductility capacity can be estimated. Similarly, an
equation for CR could be used to determine the deformation of an existing structure with
known lateral strength. Based on the data presented in this section, which is a part of a
much larger data set, two equations have been developed for Cμ and CR as functions of
Tn/Tc, and μ or Ry , respectively. Because these equations are developed as a function of
the normalized vibration period Tn/Tc, instead of the vibration period Tn , the same equation
is valid for near-fault ground motions recorded on soil or rock, as well as far-fault ground
motions associated with a wide range of earthquake magnitudes and distances recorded on
NEHRP site classes B, C, and D (Chopra and Chintanapakdee, 2004).

†The second group of three ensembles are categorized by NEHRP site classes B, C, or D. These ground
motions were recorded during earthquakes with magnitudes ranging from 6.0 to 7.4 at distances ranging from
11 to 118 km.

‡The two ensembles of near-fault (NF) ground motions, denoted by NF–FN and NF–FP, are the two hor-
izontal components—fault normal (FN) and fault parallel (FP)—of 15 ground motions, recorded during earth-
quakes of magnitudes ranging from 6.2 to 6.9 at distances ranging from 0 to 9 km. These ground motions and
their parameters are listed in Chopra and Chintanapakdee (2004).
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These equations were developed for bilinear hysteretic systems with nonnegative
postyield stiffness that unload and reload during repeated cycles of vibration without any
deterioration of stiffness or strength. Similar equations for other hysteretic systems can be
developed.

23.4 NONLINEAR STATIC PROCEDURES

23.4.1 ASCE 41 and FEMA 356 Procedure

The nonlinear static procedure in ASCE 41 and FEMA 356 requires development of a
pushover curve, a plot of base shear versus roof displacement, by nonlinear static analy-
sis of the structure subjected first to gravity loads, followed by monotonically increasing
lateral forces with a specified invariant heightwise distribution. At least two force dis-
tributions must be considered according to FEMA 356. The first is to be selected from
among the following: first-mode distribution, equivalent lateral force (ELF) distribution,
and SRSS distribution. The second distribution is either the “uniform” distribution or an
adaptive distribution; several options are mentioned for the latter, which varies with change
in deflected shape of the structure as it yields. The other four force distributions mentioned
above are defined as follows:

1. First-mode distribution: s∗j = mjφj1, where mj is the mass and φj1 is the mode shape
value at the jth floor.

2. Equivalent lateral force (ELF) distribution: s∗j = mj hk
j , where hj and k are as defined

in Section 22.1.

3. RSA distribution: s∗ is defined by the lateral forces back-calculated from (as the dif-
ference of) the story shears determined by response spectrum analysis of the struc-
ture, assumed to be linearly elastic (Section 13.8).

4. Uniform distribution: s∗j = mj .

Each of these force distributions pushes the building in the same direction over the height
of the building, as demonstrated in Fig. 23.4.1 for the SAC–Los Angeles 9-story building.
Subsequently, in ASCE 41 only the first mode force distribution has been retained.

If the higher modes of vibration contribute significantly, as defined in FEMA 356
and ASCE 41, to the elastic response of the structure, the NSP must be supplemented
by the linear dynamic analysis procedure (LDP), and seismic demands computed by the
two procedures are evaluated against their respective acceptance criteria. The SAC 9- and
20-story buildings fall into this category.

The potential and limitations of the FEMA 356 and ASCE 41 force distributions are
demonstrated in Figs. 23.4.2 to 23.4.4, where the resulting estimates of the median story
drift and plastic hinge rotation demands imposed on seven of the SAC buildings by the
ensemble of 20 SAC ground motions are compared with the “exact” median value deter-
mined by nonlinear RHA. The target displacement for FEMA 356 and ASCE 41 analysis
was not determined using Eq. (23.3.1) but was calculated accurately to ensure a meaningful
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Figure 23.4.1 FEMA 356 force
distributions for the Los Angeles 9-story
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(d) uniform. ASCE 41 specifies only the
first-mode force distribution.

0 1 2 3 4 5

(a)

Story drift Δ
NL−RHA

 or Δ
FEMA

, %

Fl
oo

r

G

1

2

3
Nonlinear RHA
FEMA
First mode
ELF
RSA
Uniform

0 0.02 0.04 0.06

(b)

Beam plastic rotation, rad

Figure 23.4.2 Median seismic demands for the Los Angeles 3-story building determined
by nonlinear RHA and four FEMA 356 force distributions, which include the ASCE 41
force distribution: first mode, ELF, RSA, and uniform: (a) story drift; (b) plastic rotations.

comparison of the two sets of results. The FEMA 356 and ASCE 41 lateral force distribu-
tions provide an acceptable estimate of story drifts for the 3-story building (Fig. 23.4.2a).
However, consistent with earlier results (Figs. 19.4.3 and 19.7.1) for elastic buildings, the
first-mode force distribution grossly underestimates the story drifts, especially in the upper
stories of the 9- and 20-story buildings, showing that higher-mode contributions are espe-
cially significant in the seismic demands for upper stories (Fig. 23.4.3). Although the ELF
and RSA force distributions are intended to account for higher-mode responses, they do
not provide satisfactory estimates of seismic demands for buildings that remain essentially
elastic (Boston buildings), for buildings that are deformed moderately into the inelastic
range (Seattle buildings), or for buildings that are deformed far into the inelastic range
(Los Angeles buildings). The “uniform” force distribution seems unnecessary because it
grossly underestimates drifts in upper stories and grossly overestimates them in lower sto-
ries (Fig. 23.4.3). Because FEMA 356 requires that seismic demands be estimated as the
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Figure 23.4.3 Median story drifts for 9- and 20-story buildings determined by nonlinear RHA and
four FEMA 356 force distributions, which include the ASCE 41 force distribution: first mode, ELF,
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excluded because they remained essentially elastic.
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larger of the results from at least two lateral force distributions, it is useful to examine
the upper bound of results from the four force distributions considered. This upper bound
also significantly underestimates drifts in upper stories of taller buildings but overestimates
them in lower stories (Fig. 23.4.3).

The potential and limitation of the FEMA 356 and ASCE 41 lateral force distribu-
tions in estimating plastic hinge rotations are also described by the preceding observations
from results for story drifts. These lateral force distributions provide an acceptable es-
timate of plastic hinge rotations for the 3-story building (Fig. 23.4.2b), but either fail to
identify or significantly underestimate plastic hinge rotations in beams at the upper floors
of 9- and 20-story buildings (Fig. 23.4.4). Many discussions of pushover analysis and its
potential and limitations are available in the literature.

23.4.2 Improved Nonlinear Static Procedures

It is clear from the preceding discussion that the seismic demand estimated by NSP using
the first-mode force distribution in ASCE 41 (or others in FEMA 356) should be improved.
One approach to reducing the discrepancy in this approximate procedure relative to nonlin-
ear RHA is to include the contributions of higher modes of vibration to seismic demands.
Recall that when higher-mode responses were included in the RSA procedure, improved
results were obtained for linearly elastic systems (Fig. 19.7.1). Although modal analysis
theory is strictly not valid for inelastic systems, earlier we demonstrated that the natural
vibration modes of the corresponding linear system are coupled only weakly in the re-
sponse of inelastic systems (Fig. 20.6.1), a property that permitted development of the
MPA procedure for inelastic systems (Section 20.8).

The MPA procedure estimates seismic demands much better than do FEMA 356 or
ASCE 41 force distributions for the SAC 9- and 20-story buildings (Figs. 23.4.5 to 23.4.8).
For each building, the results are organized into two parts. In the upper part, the FEMA
356 (and ASCE 41) estimates of median (over 20 SAC ground motions) seismic demands
are compared with the “exact” median value determined by nonlinear RHA, all taken from
Fig. 23.4.3. In the lower part, the MPA estimate (including all significant modes) of median
seismic demands is compared with the exact value, both taken from Fig. 20.8.4. It is ob-
vious by comparing the two parts of the figure for each building that MPA provides much
superior results for the entire range of buildings: from Boston buildings that remain essen-
tially elastic, to Seattle buildings that are deformed moderately into the inelastic range, to
Los Angeles buildings that are deformed far into the inelastic range. The MPA provides
much-improved estimates of story drifts in the upper stories, where higher-mode effects are
especially significant (Figs. 23.4.5 and 23.4.6). In contrast to the FEMA 356 and ASCE 41
force distributions, MPA is able to identify plastic hinging in upper stories and to provide
good estimates of plastic hinge rotations throughout the height of the building (Figs. 23.4.7
and 23.4.8).
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Based on structural dynamics theory, MPA achieves superior estimates of seismic
demands while retaining the conceptual simplicity and computational attractiveness of
nonlinear static procedures now standard in structural engineering practice (e.g., ASCE 41
procedure). Because higher-mode pushover analyses are similar to the first-mode pushover
analyses included in ASCE 41, MPA is conceptually no more difficult than standard proce-
dures. Because pushover analyses for the first few (two or three) modal force distributions
are typically sufficient in MPA, it entails computational effort that is only slightly more
than that required in the ASCE 41 procedure, which requires pushover analyses for one
force distribution.

Although MPA is sufficiently accurate to be useful in seismic evaluation of many
buildings for many ground motions—and is much more accurate than FEMA 356
or ASCE 41 procedures—it may not be highly accurate for buildings subjected to very
intense ground motions that deform the structure far into the region of negative postyield
stiffness, with significant deterioration of structural strength: for example, the SAC–Los
Angeles 9- and 20-story buildings subjected to the very intense (2% probability of ex-
ceedance in 50 years or return period of 2475 years) SAC ensemble of ground motions,
which included several near-fault ground motions. For such cases, nonlinear static or
pushover procedures should be abandoned in favor of nonlinear RHA.

23.5 CONCLUDING REMARKS

The profession has come a long way in estimating seismic demands for buildings by aban-
doning traditional building code-based elastic analysis of the structure for reduced forces,
and instead, developing procedures that explicitly consider inelastic behavior of the struc-
ture. However, these more recent methods, now standard in structural engineering practice
to evaluate existing buildings, do not estimate seismic demands accurately, as was demon-
strated in this chapter.

Seismic demands computed by nonlinear analysis procedures may depend signifi-
cantly on assumptions in preparing an inelastic model of the building, as demonstrated in
Chapter 20, and on software used in implementing the computation. Such variability im-
plies that requirements for inelastic modeling valid at large structural deformations should
be established and robust computer programs should be developed. With these develop-
ments, nonlinear analysis procedures would provide more realistic and reliable estimates
of seismic demands.

A rigorous approach would require nonlinear RHA of a realistic three-dimensional
idealization of the building subjected to an ensemble of multicomponent ground motions
compatible with the site-specific earthquake design spectrum. However, such a require-
ment may be unreasonable for every building—no matter how simple—and of every struc-
tural engineering office—no matter how small. Therefore, nonlinear static (or pushover)
analysis procedures may continue to be used in structural engineering practice; they are at-
tractive because they are simpler and can work directly with the seismic design spectrum.
Such approximate methods must be rooted in structural dynamics theory and their under-
lying assumptions and range of applicability identified. Nonlinear RHA may be employed
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for final evaluation of those combinations of buildings and ground motions where an
approximate procedure begins to lose its accuracy.

Inelastic modeling of buildings, nonlinear response analysis procedures, and com-
mercial software should be robust enough for structural engineers to predict with confi-
dence the damage to a building during future seismic events. This requires a shift away
from current building design codes and evaluation guidelines to methods capable of
realistic prediction of structural performance—because in the words of Nathan M.
Newmark and Emilio Rosenblueth, “earthquake effects on structures systematically bring
out the mistakes made in analysis, design, and construction, even the minutest mistakes.”

F U R T H E R R E A D I N G

American Society of Civil Engineers, “Pre-Standard and Commentary for the Seismic Rehabilitation
of Buildings,” FEMA 356, Federal Emergency Management Agency, Washington, D.C., 2000.

American Society of Civil Engineers, “Minimum Design Loads for Building and Other Structures,”
ASCE Standard 7-02, ASCE, Reston, Va., 2002.

American Society of Civil Engineers, “Seismic Rehabilitation of Existing Buildings,” ASCE Stan-
dard ASCE/SEI 41-06, ASCE, Reston, VA, 2007.

Applied Technology Council, “Seismic Evaluation and Retrofit of Concrete Buildings,” Report ATC-
40, ATC, Redwood City, Calif., 1996.

Applied Technology Council, “Improvement of Inelastic Seismic Analysis Procedures,” Report FEMA-
440, Federal Emergency Management Agency, Washington, D.C., 2005.

Building Seismic Safety Council, “NEHRP Guidelines for the Seismic Rehabilitation of Buildings,”
FEMA-273, Federal Emergency Management Agency, Washington, D.C., 1997.

Chopra, A. K., and Chintanapakdee, C., “Inelastic Deformation Ratios for Design and Evaluation of
Structures: Single-Degree-of-Freedom Bilinear Systems,” Journal of Structural Engineering, ASCE,
130, 2004, pp. 1309–1319.

Chopra, A. K., and Goel, R. K., “Evaluation of NSP to Estimate Seismic Deformation: SDF Sys-
tems,” Journal of Structural Engineering, ASCE, 26, 2000, pp. 482–490.

Chopra, A. K., Goel, R. K., and Chintanapakdee, C., “Statistics of Single-Degree-of-Freedom Esti-
mate of Displacement for Pushover Analysis of Buildings,” Journal of Structural Engineering, ASCE,
119, 2003, pp. 459–469.

Fajfar, P., “Structural Analysis in Earthquake Engineering: A Breakthrough of Simplified Nonlinear
Methods,” Paper 843, Proceedings of the Twelfth European Conference on Earthquake Engineering,
London, 2002.

Fajfar, P., and Krawinkler, H. (eds.), Seismic Design Methodologies for the Next Generation of Codes,
A.A. Balkema, Publishers, Lisse, The Netherlands, 1997.

Fajfar, P., and Krawinkler, H. (eds.), Performance-Based Seismic Design Concepts and Implementa-
tion: Proceedings of an International Workshop, Pacific Earthquake Engineering Research Center,
University of California, Richmond, Calif., 2004.

Goel, R. K., and Chopra, A. K., “Evaluation of Modal and FEMA Pushover Analyses: SAC Build-
ings,” Earthquake Spectra, 20, 2004, pp. 225–254.

Krawinkler, H., and Miranda, E., “Performance-Based Earthquake Engineering,” Chapter 9 in Earth-
quake Engineering (ed. Y. Bozorgnia and V. V. Bertero), CRC Press, Boca Raton, Fla., 2004.



         This page is intentionally left blank.



A

Frequency-Domain Method of
Response Analysis

PREVIEW

Presented in this appendix is the frequency-domain method for analysis of response of lin-
ear systems to excitations varying arbitrarily with time—an alternative to the time-domain
method symbolized by Duhamel’s integral (Section 4.2). We start by defining the complex
frequency-response function, which is shown to contain the steady-state responses to si-
nusoidal and cosine forces derived in Section 3.2 by classical methods. This function in
conjunction with the complex form of the Fourier series provides an alternative approach—
relative to Section 3.13—to determine the response to periodic excitation. When the ex-
citation is not periodic, it is represented by the Fourier integral that involves the Fourier
transform of the excitation. The product of this transform and the complex frequency
response function gives the direct Fourier transform of the response; the inverse Fourier
transform then gives the response as a function of time. This is known as the frequency-
domain method for analysis of dynamic response.

The direct and inverse Fourier transforms must be evaluated numerically for practi-
cal problems involving excitations varying arbitrarily with time. This numerical approach
leads to the discrete Fourier transform (DFT) method, which is the subject of the rest
of the appendix. After defining the direct and inverse discrete Fourier transforms, a
general method is developed for numerical evaluation of response, a method that became
a practical reality only with the publication of the Cooley–Tukey algorithm for the fast
Fourier transform in 1965. The errors in the DFT solution—which represents the steady-
state response to a periodic extension of the arbitrary excitation—are then examined with
the objective of understanding the requirements for the solution to be accurate. Finally, an
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improved DFT solution is developed to determine the “exact” response from the steady-
state response by the superposition of a corrective solution.

A.1 COMPLEX FREQUENCY-RESPONSE FUNCTION

A.1.1 SDF System with Viscous Damping

Consider a viscously damped SDF system subjected to external force p(t). The equation
of motion for the system is

mü + cu̇ + ku = p(t) (A.1.1)

The particular solution of this differential equation for harmonic force was presented in
Eqs. (3.2.3), (3.2.4), and (3.2.26). Known as the steady-state response, this solution is
repeated here for convenience. The displacement (or deformation) u(t) due to external
force p(t) = po sinωt is

u(t) = po

k

[
1− (ω/ωn)

2
]

sinωt − [2ζ (ω/ωn)] cosωt[
1− (ω/ωn)2

]2 + [2ζ (ω/ωn)]
2

(A.1.2)

and that due to p(t) = po cosωt is

u(t) = po

k

[
1− (ω/ωn)

2
]

cosωt + [2ζ (ω/ωn)] sinωt[
1− (ω/ωn)2

]2 + [2ζ (ω/ωn)]
2

(A.1.3)

Now consider the external force:

p(t) = 1eiωt or p(t) = 1(cosωt + i sinωt) (A.1.4)

where i = √−1. Equation (A.1.4) is a compact representation of sinusoidal and cosine
forces, together. The steady-state response of the system will be harmonic motion at the
forcing frequency, ω, which can be expressed as

u(t) = Hu(ω)e
iωt (A.1.5)

where Hu(ω) remains to be determined. To do so, we differentiate Eq. (A.1.5) to obtain

u̇(t) = iωHu(ω)e
iωt ü(t) = −ω2 Hu(ω)e

iωt (A.1.6)

and substitute Eqs. (A.1.5) and (A.1.6) in Eq. (A.1.1):

Hu(ω)e
iωt (−ω2m + iωc + k) = eiωt

Canceling the eiωt term from both sides of this equation gives

Hu(ω) = 1

−ω2m + iωc + k

which can be expressed as

Hu(ω) = 1

k

1[
1− (ω/ωn)2

]+ i [2ζ (ω/ωn)]
(A.1.7)
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where ωn =
√

k/m and ζ = c/2mωn . Recall from Chapter 2 that ωn is the natural
frequency of vibration and ζ the damping ratio of the system.

Equation (A.1.7) contains the steady-state responses to both harmonic forces p(t) =
po sinωt and p(t) = po cosωt defined by Eqs. (A.1.2) and (A.1.3). To demonstrate this
fact, Eq. (A.1.7) is substituted in Eq. (A.1.5), which is then manipulated to obtain (see
Derivation A.1)

u(t) = uc(t)+ ius(t) (A.1.8)

where

uc(t) = 1

k

[
1− (ω/ωn)

2
]

cosωt + [2ζ (ω/ωn)] sinωt[
1− (ω/ωn)2

]2 + [2ζ (ω/ωn)]
2

(A.1.9)

us(t) = 1

k

[
1− (ω/ωn)

2
]

sinωt − [2ζ (ω/ωn)] cosωt[
1− (ω/ωn)2

]2 + [2ζ (ω/ωn)]
2

(A.1.10)

Observe that Eqs. (A.1.9) and (A.1.10) are identical to Eqs. (A.1.3) and (A.1.2), respec-
tively, specialized for po = 1. This implies that (1) the real part of Eq. (A.1.5) is the
response to p(t) = 1 cosωt , the real part of the force p(t) = 1eiωt ; and (2) the imagi-
nary part of Eq. (A.1.5) is the response to p(t) = 1 sinωt , the imaginary part of the force
p(t) = 1eiωt . This proves the assertion at the beginning of this paragraph.

Observe that Eqs. (A.1.5) and (A.1.7) are a more compact presentation of the re-
sponse to harmonic excitation, relative to Eqs. (A.1.2) and (A.1.3). Also note that the
derivation of Eq. (A.1.7) presented earlier is simpler than that for Eqs. (A.1.2) and (A.1.3),
presented in Section 3.2. However, complex algebra is necessary to derive the complex
frequency response function, whereas classical methods provided the particular solutions
[Eqs. (A.1.2) and (A.1.3)] of the differential equation (A.1.1).

The function Hu(ω) is known as the complex frequency-response function. It de-
scribes the steady-state response of the system to the force defined by Eq. (A.1.4a), a
harmonic force of unit amplitude (i.e., po = 1). Defined by Eq. (A.1.7), Hu(ω) is a
complex-valued function of the forcing frequency and system parameters k, ωn , and ζ .
The absolute value of this complex-valued function is

|Hu(ω)|
(ust)o

= 1√[
1− (ω/ωn)2

]2 + [2ζ (ω/ωn)]
2

(A.1.11)

where (ust)o ≡ po/k = 1/k. Equation (A.1.11) is equivalent to Eq. (3.2.11) for the
amplitude of the steady-state response of the system to harmonic excitation, which was
plotted in Fig. 3.2.6. The real and imaginary parts of Hu(ω), denoted by Re(·) and Im(·),
respectively, are related as follows:

−Im[Hu(ω)]

Re[Hu(ω)]
= 2ζ (ω/ωn)

1− (ω/ωn)2
(A.1.12)
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This equation is equivalent to Eq. (3.2.12) for the phase angle or phase lag of the response,
plotted in Fig. 3.2.6. Thus, it is clear that the complex frequency response function defines
the amplitude and phase angle of the response.

The subscript u in Hu(ω), defined by Eq. (A.1.7), denotes that this function describes
the deformation u; complex frequency-response functions can be similarly derived for
other response quantities—velocity u̇, acceleration ü, elastic resisting force fS = ku, etc.
Later, the subscript u will be dropped for convenience in notation.

Derivation A.1

Substituting Eq. (A.1.7) in Eq. (A.1.5) gives

u(t) = 1

k

1[
1− (ω/ωn)2

]+ i [2ζ (ω/ωn)]
eiωt (a)

Multiplying the numerator and denominator by
[
1− (ω/ωn)

2
] − i [2ζ (ω/ωn)], the complex

conjugate of the denominator, and using Eq. (A.1.4) gives

u(t) = 1

k

[
1− (ω/ωn)

2
]− i [2ζ (ω/ωn)][

1− (ω/ωn)2
]2 + [2ζ (ω/ωn)]2

(cosωt + i sinωt) (b)

Multiplying the two parts of the numerator and collecting real and imaginary terms separately
leads to Eqs. (A.1.8) to (A.1.10).

A.1.2 SDF System with Rate-Independent Damping

The equation governing harmonic motion (at frequency ω) of an SDF system with rate-
independent linear damping, first presented as Eq. (3.10.3), is

mü + ηk

ω
u̇ + ku = p(t) (A.1.13)

The steady-state response of the system to harmonic forcing function p(t) = 1eiωt is also
given by Eq. (A.1.5). Substituting Eqs. (A.1.5) and (A.1.6a) in Eq. (A.1.13) leads to

mü + k(1+ iη)u = p(t) (A.1.14)

The complex term k(1+ iη)u represents the elastic and damping forces together; k(1+ iη)
is often referred to as the complex stiffness of the system.

Substituting Eqs. (A.1.5) and (A.1.6b) in Eq. (A.1.14) gives

Hu(ω)e
iωt
[−ω2m + k(1+ iη)

] = eiωt

Canceling the eiωt term from both sides of this equation gives

Hu(ω) = 1

−ω2m + k(1+ iη)

which can be expressed as

Hu(ω) = 1

k

1[
1− (ω/ωn)2

]+ iη
(A.1.15)
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A.2 RESPONSE TO PERIODIC EXCITATION

In Chapter 3 a procedure was developed to determine the steady-state response of an SDF
system to a periodic force. The excitation was separated into its harmonic (sine and co-
sine) components using the Fourier series (Section 3.12). Then the response to each force
component was written by adapting Eqs. (A.1.2) and (A.1.3). Finally, these responses to
individual terms in the Fourier series were combined to determine the response of a linear
system to periodic excitation (Section 3.13). The complex frequency-response function
provides an alternative approach to determine the response to periodic excitation. To de-
velop this method we first develop an alternative form for the Fourier series.

A.2.1 Complex Fourier Series

An excitation p(t) that is periodic with period T0 can be separated into its harmonic com-
ponents using the complex Fourier series:

p(t) =
∞∑

j=−∞
Pj e

i( jω0t) (A.2.1)

where the fundamental or first harmonic in the excitation has the frequency

ω0 = 2π

T0
(A.2.2)

and ωj ≡ jω0 is the circular frequency of the j th harmonic. The Fourier coefficients Pj

can be expressed in terms of p(t) because the exponential functions are orthogonal (see
Derivation A.2):

Pj = 1

T0

∫ T0

0
p(t)e−i( jω0t) dt j = 0, ±1, ±2, . . . (A.2.3)

The complex-valued coefficient Pj defines the amplitude and phase of the j th harmonic.
Observe that the complex Fourier series, Eqs. (A.2.1) and (A.2.3), is compact compared to
the traditional form of the Fourier series, Eqs. (3.12.1) to (3.12.5). Also note that the time
function is denoted by a lowercase letter, and the Fourier coefficients for the function by
the same letter in uppercase.

Equation (A.2.3) indicates that

P− j = P j (A.2.4)

where the overbar denotes the complex conjugate, and

P0 = 1

T0

∫ T0

0
p(t) dt (A.2.5)

In other words, P0 is the average value of p(t).
Although the applied force p(t) is real valued, each term on the right side of

Eq. (A.2.1) is a product of a complex-valued coefficient and a complex-valued exponential
function. However, it can be shown that (1) the sum of each pair of j th and − j th terms
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is real valued because of Eq. (A.2.4); and (2) the j = 0 term simplifies to P0, which is
real valued [Eq. (A.2.5)]. Thus, the sum of all terms is real valued, as it should be for
real-valued p(t).

Alternatively, Eqs. (A.2.1) and (A.2.3) can be derived starting from the conventional
form of the Fourier series, as represented by Eqs. (3.12.1) to (3.12.5). This is achieved
by using De Moivre’s theorem, which relates the sine and cosine functions to exponential
functions with complex exponent:

sin x = 1

2i
(eix − e−i x ) cos x = 1

2
(eix + e−i x ) (A.2.6)

where x ≡ jω0t . Substituting Eq. (A.2.6) into the j th term of the sine series and the j th
term of the cosine series in Eq. (3.12.1), the sum of the two terms can be expressed as
Pj ei( jω0t)+ P− j e−i( jω0t). These are two terms in the series of Eq. (A.2.1), indicating that it
is equivalent to Eq. (3.12.1).

A.2.2 Steady-State Response

The response of a linear sytem to a periodic force can be determined by combining the
responses to individual excitation terms in the Fourier series of Eq. (A.2.1). To deter-
mine these individual responses, we recall that the response to p(t) = 1eiωt is given by
Eq. (A.1.5), where Hu(ω) is defined by Eq. (A.1.7). Therefore, the response uj (t) of the
system to an applied force equal to the j th term in the Fourier series—pj (t) = Pj ei( jω0t)—
is obtained by replacing ω by jω0 in Eqs. (A.1.5) and (A.1.7) and multiplying Eq. (A.1.5)
by Pj , leading to

uj (t) = Uj e
i( jω0t) (A.2.7)

where

Uj = H( jω0)Pj (A.2.8)

Adding such responses due to all excitation terms in Eq. (A.2.1) gives the total response:

u(t) =
∞∑

j=−∞
H( jω0)Pj e

i( jω0t) (A.2.9)

where the Fourier coefficients Pj are defined by Eq. (A.2.3) and the complex frequency-
response function by Eq. (A.1.7) or (A.1.15). Observe that Eq. (A.2.9) is a more com-
pact presentation of the response to periodic excitation compared to the traditional form,
Eq. (3.13.6).

The procedure symbolized by Eq. (A.2.9) is known as the frequency-domain method
for analysis of structural response to periodic excitation; it is shown schematically in
Fig. A.2.1. The excitation p(t) is transformed from the time domain to the frequency
domain, where it is described by the Fourier coefficients Pj [Eq. (A.2.3)]. The response to
the j th harmonic is defined by Eq. (A.2.8) in the frequency domain. Adding the responses
to all harmonic excitations gives response u(t) in the time domain [Eq. (A.2.9)].
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Time
Domain

p(t)

u(t)

Frequency
Domain

Pj (ω)

Uj (ω)

Eq. (A.2.3)

Eq. (A.2.8)

Eq. (A.2.9)

Figure A.2.1 Solution of response to periodic excitation by transformation to frequency
domain.

Derivation A.2

Multiplying both sides of Eq. (A.2.1) by e−i(nω0t) and integrating over a period, 0 to T0 gives∫ T0

0
p(t)e−i(nω0t) dt =

∞∑
j=−∞

Pj

∫ T0

0
e−i(nω0t)ei( jω0t) dt (a)

To evaluate Pj we note that∫ T0

0
e−i(nω0t)ei( jω0t) dt =

{
0 j �= n
T0 j = n

(b)

Thus all terms on the right side of Eq. (a) are equal to zero except the nth term, leading to

Pn = 1

T0

∫ T0

0
p(t)e−i(nω0t) dt (c)

which is identical to Eq. (A.2.3) except for a different index—n instead of j .

Example A.1

Solve Example 3.8 by the frequency-domain method.

Solution a. Determine Fourier coefficients.

Pj = 1

T0

∫ T0

0
p(t)e−i( jω0t)dt

= 1

T0

[
po

∫ T0/2

0
e−i( jω0t)dt + (−po)

∫ T0

T0/2
e−i( jω0t)dt

]

= −po

i jω0T0

[
e−i( jω0t)

∣∣T0/2

0
− e−i( jω0t)

∣∣T0

T0/2

]
(a)

To evaluate the exponential terms, we note that ω0T0 = 2π from Eq. (A.2.2). Therefore,

e−i( jω0T0/2) = e−i( jπ) =
{+1 j even
−1 j odd

(b)

e−i jω0T0 = e−i(2 jπ) = 1 (c)
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Using Eqs. (b) and (c), Eq. (a) becomes

Pj = i po

2π j

[
2e−i( jπ) − 1− e−i(2 jπ)

]
or

Pj =
{

0 j even

−2poi

jπ
j odd (d)

b. Determine response.

Uj = H( jω0)Pj (e)

where Pj is given by Eq. (d) and H( jω0) for an undamped system is given by Eq. (A.1.7),
specialized for ζ = 0 and ω = jω0:

H( jω0) = 1

k

1

1− β2
j

(f)

where βj = jω0/ωn . Substituting Eqs. (d) and (f) in Eq. (e) gives

Uj = −2poi

πk

1

j

1

1− β2
j

(g)

for odd values of j ; Uj = 0 for even values of j . Substituting Eq. (g) in Eq. (A.2.7) gives the
response in the time domain:

u(t) = (ust)o
2

π

∞∑
j=−∞
j odd

− i
1

j

1

1− β2
j

ei( jω0t) (h)

It is of interest to compare this solution with that obtained earlier by the classical Fourier
series. Specializing Eq. (f) of Example 3.8 for undamped systems gives

u(t) = (ust)o
4

π

∞∑
j=1,3,5

1

j

1

1− β2
j

sin jω0t (i)

We note that the complex-valued coefficients in Eq. (h) have an amplitude that is half of the
real-valued coefficients in Eq. (i). The contribution of the − j terms in the complex Fourier
series accounts for the difference.

A.3 RESPONSE TO ARBITRARY EXCITATION

A.3.1 Fourier Integral

In the preceding section we have seen that a periodic excitation can be represented by a
Fourier series as in Eqs. (3.12.1) and (A.2.1). When the excitation p(t) is not periodic, it
can be represented by the Fourier integral:

p(t) = 1

2π

∫ ∞
−∞

P(ω)eiωt dω (A.3.1)



Sec. A.4 Relationship Between Complex Frequency and Unit Impulse Responses 891

where

P(ω) =
∫ ∞
−∞

p(t)e−iωt dt (A.3.2)

Equation (A.3.2) represents the Fourier transform (also known as the direct Fourier trans-
form) of the time function p(t), and Eq. (A.3.1) is the inverse Fourier transform of the
frequency function P(ω). The two equations together are called a Fourier transform pair.
Note that the time function is denoted by a lowercase letter, and the Fourier transform of
the function by the same letter in uppercase.

In Eq. (A.3.1) p(t) has been expressed as the superposition of harmonic functions
[P(ω)/2π]eiωt , where the complex-valued coefficient P(ω) for a given p(t) is to be deter-
mined from Eq. (A.3.2). Included in the superposition is an infinite number of harmonic
functions with their frequencies varying continuously. In contrast, a periodic function was
represented as the superposition of an infinite number of harmonic functions with discrete
frequencies jω0, j = 0, ±1, ±2, . . . . Equations (A.3.1) and (A.3.2) can be derived
starting from the Fourier series equations (A.2.1) and (A.2.3) and letting the period T0

approach infinity.

A.3.2 Response to Arbitrary Excitation

The response of a linear system to excitation p(t) can be determined by combining the re-
sponses to individual harmonic excitation terms in the Fourier integral of Eq. (A.3.1). The
response of the system to the excitation P(ω)eiωt is given by H(ω)P(ω)eiωt . Superposing
the responses to all harmonic terms in Eq. (A.3.1) gives the total response:

u(t) = 1

2π

∫ ∞
−∞

U (ω)eiωt dω (A.3.3)

where

U (ω) = H(ω)P(ω) (A.3.4)

This is known as the frequency-domain method for analysis of structural response to arbi-
trary excitation. Equation (A.3.3) is the inverse Fourier transform of U (ω), the product of
the complex frequency-response function and the Fourier transform of the excitation.

From Eq. (A.3.2) it is clear that straightforward integration is adequate to determine
the direct Fourier transform. In contrast, contour integration in the complex plane is nec-
essary to evaluate the inverse Fourier transform of Eq. (A.3.3). This integration procedure
is not described here because rarely is it feasible analytically for structural dynamics prob-
lems arising in engineering practice.

A.4 RELATIONSHIP BETWEEN COMPLEX FREQUENCY RESPONSE
AND UNIT IMPULSE RESPONSE

We digress briefly to develop the relationship between the complex frequency-response
function H(ω), introduced in the preceding sections, and the unit impulse-response func-
tion h(t), defined in Chapter 4. H(ω) describes the system response in the frequency



892 Frequency-Domain Method of Response Analysis App. A

domain to unit harmonic excitation. h(t) describes the system response in the time domain
to a unit impulse excitation, p(t) = δ(t). For example, for a viscously damped SDF system
H(ω) is given by Eq. (A.1.7) and h(t) by Eq. (4.1.7), which is specialized for τ = 0 and
repeated here for convenience:

h(t) = 1

mωD
e−ζωn t sinωDt (A.4.1)

We will demonstrate that H(ω) and h(t) are a Fourier transform pair. For this pur-
pose we will use the frequency-domain analysis procedure (Section A.3) to determine the
response to a unit impulse excitation p(t) = δ(t). Substituting this p(t) in Eq. (A.3.2)
gives the Fourier transform of the unit impulse:

P(ω) =
∫ ∞
−∞

δ(t)e−iωt dt = 1 (A.4.2)

Substituting P(ω) = 1 in Eqs. (A.3.4) and (A.3.3) gives

h(t) = 1

2π

∫ ∞
−∞

H(ω)eiωt dω (A.4.3)

Comparing this result with the definitions of Fourier transform, Eq. (A.3.2), and inverse
Fourier transform, Eq. (A.3.1), it is clear that h(t) is the inverse Fourier transform of H(ω)
and that H(ω) is the Fourier transform of h(t):

H(ω) =
∫ ∞
−∞

h(t)e−iωt dt (A.4.4)

Observe that the choice of symbol h to represent the unit impulse response and H to denote
the complex frequency response conforms to our selected notations for a Fourier transform
pair.

A.5 DISCRETE FOURIER TRANSFORM METHODS

The frequency-domain analysis of the dynamic response of structures developed in Sec-
tion A.3 requires that the Fourier transform of p(t), Eq. (A.3.2), and the inverse Fourier
transform of U (ω), Eq. (A.3.3), both be determined. Analytical evaluation of these direct
and inverse Fourier transforms is not possible except for excitations described by simple
functions applied to simple structural systems. These integrals must be evaluated numeri-
cally for excitations varying arbitrarily with time, complex vibratory systems, or situations
where the complex frequency response (or unit impulse response) is described numerically.
Numerical evaluation requires truncating these integrals over infinite range to a finite range,
and becomes equivalent to approximating the arbitrarily time-varying excitation p(t) by a
periodic function. We develop these ideas next.
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A.5.1 Discretization of Excitation

The system is excited by a force p(t) of duration td , as shown in Fig. A.5.1. Our objective
is to determine the resulting displacement u(t) of the system, which is presumed to be ini-
tially at rest. Since the peak (or absolute maximum) response of the system may be attained
after the excitation has ended, the analysis should be carried out over a time duration T0

that is longer than td . If the peak occurs after the excitation has ended, it will be attained
in the first half-cycle of free vibration because the motion will decay in subsequent cycles
due to damping. Therefore, we should choose

T0 ≥ td + Tn

2
(A.5.1)

t

p

0 1 2 n

N
 –

 1

t
n
 = n Δt

t
d

T
0
 = N Δt

Figure A.5.1 Excitation p(t) and its
discretized version.

The forcing function p(t) over the time duration T0 is sampled at N equally spaced
time instants, numbered from 0 to N − 1 (Fig. A.5.1). The sampling interval is denoted by
	t ; thus

T0 = N 	t (A.5.2)

The forcing function p(t) is then defined by a set of discrete values pn ≡ p(tn) ≡ p(n	t),
shown as the series of dots in Fig. A.5.1.

The sampling interval 	t should be short enough compared both to the periods of
significant harmonics in the excitation and to the natural period Tn of the system. The first
requirement ensures accurate representation of the excitation and of the forced vibrational
component of the response, and the second requirement ensures accurate representation
of the free vibrational response component. The latter requirement also ensures accurate
representation of the response of lightly damped SDF systems to broad frequency-band
excitations such as most ground motions recorded during earthquakes; recall that the dom-
inant period of such response is Tn (Fig. 6.4.1).
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A.5.2 Fourier Series Representation of Excitation

Consider a periodic extension of the excitation p(t), with its period defined as T0

[Eq. (A.5.1)], shown schematically in Fig. A.5.2, and replace p(t) by the array pn de-
scribing the discretized forcing function. Starting with the complex Fourier series for the
function p(t) [Eq. (A.2.1)], the array pn can be expressed (see Derivation A.3) as a super-
position of N harmonic functions:

pn =
N−1∑
j=0

Pj e
i( jω0tn) =

N−1∑
j=0

Pj e
i(2πnj/N ) (A.5.3)

in which ω0 = 2π/T0, the frequency of the fundamental or first harmonic in the periodic
extension of p(t); ωj = jω0 is the circular frequency of the j th harmonic; and Pj is
a complex-valued coefficient that defines the amplitude and phase of the j th harmonic.
Starting with Eq. (A.2.3), which defines Pj for the function p(t), Pj associated with the
array pn can be expressed (see Derivation A.3) as

Pj = 1

T0

N−1∑
n=0

pne−i( jω0tn) 	t = 1

N

N−1∑
n=0

pne−i(2πnj/N ) (A.5.4)

Equations (A.5.3) and (A.5.4) define a discrete Fourier transform (DFT) pair; the ar-
ray Pj is the DFT of the excitation sequence pn , and the array pn is the inverse DFT
of the sequence Pj . These equations may be interpreted as numerical approximations of
Eqs. (A.2.1) and (A.2.3).

t

p

t
d

t
f

T
0

T
0

Figure A.5.2 Periodic extension of p(t).

The continuous and discrete Fourier transforms differ in an important way. Whereas
the continuous transform [Eq. (A.3.1)] is a true representation of the excitation function,
the discrete transform [Eq. (A.5.3)] represents only a periodic version of the function. The
implication of this distinction will be discussed later.

Observe that only positive frequencies are considered in Eqs. (A.5.3); therefore, we
call this a one-sided Fourier expansion. In contrast, the original Eq. (A.2.1) is a two-
sided Fourier expansion containing positive and negative frequencies. Just as the nega-
tive frequencies have no physical significance in the two-sided expansion, the frequencies
corresponding to N/2 < j ≤ N−1 have no physical significance; they are the counterparts
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of the negative frequencies. If the summation in Eq. (A.2.1) were truncated to go from
j = −N/2 to N/2, ω would extend from −ωN/2 to ωN/2. Thus, ωN/2 also defines the
frequency of the highest harmonic included in Eq. (A.5.3). Denoted also by ωmax, this
frequency is known as the Nyquist frequency or folding frequency and is given by

ωmax = N

2
ω0 = π

	t
(A.5.5)

where the frequency ω0 of the fundamental or first harmonic is defined in Eq. (A.2.2),
which, together with Eq. (A.5.2), gives the second half of Eq. (A.5.5). The shortest and
longest periods of the harmonics included in the Fourier expansion are determined from
Eqs. (A.5.5) and (A.2.2) to be 2	t and T0, respectively.

Recall that in the two-sided Fourier expansion Pj and P− j were complex conjugates
of each other [Eq. (A.2.4)]. Consequently, in the one-sided expansion the values of Pj on
either side of ωN/2 are complex conjugates of each other:

Pj = P N− j
N

2
< j ≤ N − 1 (A.5.6)

A.5.3 Complex Frequency-Response Function

This function H(ω) is computed from Eq. (A.1.7) or (A.1.15) for each ω = ωj , and this
value is denoted by Hj . A two-sided Fourier expansion includes both positive and nega-
tive frequencies ωj and −ωj [Eq. (A.2.1)] and H− j is the complex conjugate of Hj ; this
assertion can be easily proven starting from Eq. (A.1.7). In a one-sided Fourier expan-
sion only positive frequencies are included [Eq. (A.5.3)]; the frequencies corresponding to
N/2 < j ≤ N − 1 are the counterparts of the negative frequencies. Thus, the values of Hj

on either side of j = N/2 must be complex conjugates of each other. The Hj values may
be determined from Eq. (A.1.7) with the following interpretation of ωj :

ωj =
{

jω0 0 ≤ j ≤ N/2
−(N − j)ω0 N/2 < j ≤ N − 1

(A.5.7)

A.5.4 Computation of Response

In the DFT approach we first compute the response to each harmonic component of the
excitation in the frequency domain. As seen in Eq. (A.2.8), this requires computation of
the products

Uj = Hj Pj 0 ≤ j ≤ N − 1 (A.5.8)

Then, the response un ≡ u(tn) at discrete time instants tn ≡ n	t is computed from a
truncated version of Eq. (A.2.9):

un =
N−1∑
j=0

Uj e
i( jω0tn) =

N−1∑
j=0

Uj e
i(2πnj/N ) (A.5.9)
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Equation (A.5.9) corresponds to Eq. (A.5.3), indicating that the sequence un represents the
inverse DFT of the sequence Uj . This will be called the classical DFT solution.

A.5.5 Fast Fourier Transform

The DFT method to determine the dynamic response of a system requires computation of
the direct DFT of the sequence pn [Eq. (A.5.4)] and the inverse DFT of the sequence Uj

[Eq. (A.5.9)]. These computations became a practical reality only with the publication of
the Cooley–Tukey algorithm for the fast Fourier transform (FFT) in 1965. This is not a
new type of transform, but is a highly efficient and accurate algorithm for computing the
DFT and the inverse DFT. The original algorithm required that the number of points, N ,
be an integer power of 2, but it has been generalized to permit consideration of an arbitrary
value of N .

It is important to recognize that the computational effort required is drastically re-
duced by use of the FFT algorithm. A measure of the amount of computation involved
in Eq. (A.5.4) or (A.5.9) is the number of products of complex-valued quantities. It is
clear that there are N sums, each of which requires N complex products, or there are N 2

products required for computing all of the Pj ’s or all of the un’s. The number of com-
plex products for the original FFT algorithm is given by (N/2) log2 N . For example, if
N = 210 = 1024, the FFT algorithm requires 0.5% of the computational effort necessary
in standard computation.

A.5.6 Summary

The classical DFT procedure for response analysis of an SDF system [governed by
Eq. (A.1.1)] can be summarized as a sequence of steps:

1. Define a periodic extension of the excitation p(t) with its period defined as T0

[Eq. (A.5.1)] and discretize p(t) by an array pn ≡ p(tn) ≡ p(n	t), where n =
0, 1, 2, . . . , N − 1.

2. Compute Pj , the DFT of pn , according to Eq. (A.5.4); j = 0, 1, 2, . . . , N − 1.

3. Determine the frequency response function Hj ≡ H(ωj ), where H(ω) is defined by
Eq. (A.1.7) and ωj by Eq. (A.5.7).

4. Compute Uj as the product defined by Eq. (A.5.8).

5. Compute the inverse DFT of the array Uj from Eq. (A.5.9) to obtain the response
un ≡ u(tn) at discrete time instants tn ≡ n	t .

Derivation A.3

The periodic extension of p(t)with period T0 is represented by the Fourier series of Eq. (A.2.1),
with the Fourier coefficients defined by Eq. (A.2.3). Truncating the series to include only a
finite number of harmonic functions gives

p(t) =
M∑

j=−M

Pj e
i( jω0t) (a)
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The frequency of the highest harmonic included in Eq. (a) is Mω0.
The integral of Eq. (A.2.3) is evaluated numerically by the trapezoidal rule applied to

the values of the integrand at discrete time instants tn = n	t , where n = 0, 1, 2, . . . , N :

Pj = 	t

T0

[
1

2
p0e−i( jω0t0) +

N−1∑
n=1

pne−i( jω0tn) + 1

2
pN e−i( jω0tN )

]
(b)

where t0 = 0	t = 0, tn = n	t , and tN = N 	t . The first term reduces to p0/2 and the last
term to pN /2 because both exponentials can be shown to equal unity. Because the sequence
pn is periodic with period N , p0 = pN , and recognizing that T0 = N 	t , Eq. (b) can be
rewritten as

Pj = 1

N

N−1∑
n=0

pne−i( jω0tn) (c)

Now the exponential terms in Eqs. (a) and (c) are rewritten by recognizing that ω0 = 2π/T0,
T0 = N 	t , and tn = n	t ; thus

jω0tn = j
2π

N 	t
n	t = 2πnj

N
(d)

Recall that j is the frequency number of the harmonic and n is the time step number. Substi-
tuting Eq. (d) in Eqs. (a) and (c) gives

pn =
M∑

j=−M

Pj e
i(2πnj/N ) (e)

Pj = 1

N

N−1∑
n=0

pne−i(2πnj/N ) (f)

Suppose that we select the large positive integers M and N such that 2M+1 = N (i.e.,
the number of frequencies is equal to the number of time steps). Then the sequence Pj is also
periodic with period N and the summation in Eq. (e) over the range j = −M to j = M
can be rewritten as a summation over the range j = 0 to N − 1, which is presented without
proof:

pn =
N−1∑
j=0

Pj e
i(2πnj/N ) (g)

This completes the derivation of Eqs. (A.5.3) and (A.5.4).

A.6 POSSIBLE ERRORS IN CLASSICAL DFT SOLUTION

It should be clear that the classical DFT solution given by Eq. (A.5.9) does not generally
represent the desired response of the system to the excitation shown in Fig. A.5.1. Instead,
it represents the steady-state response of the system to a periodic extension of the excitation
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(Fig. A.5.2). In this section we examine the errors in the classical DFT solution, with the
objective of understanding the requirements for the solution to be accurate. The classical
DFT solution will become increasingly accurate as the duration t f of free vibration, shown
in Fig. A.5.2, becomes longer. This assertion should be obvious because longer t f implies
longer period T0 of the periodic extension of the excitation, which is better because an
arbitrary (nonperiodic) excitation can be interpreted as a periodic excitation with infinitely
long period. However, to identify the factors that influence the t f necessary for an accurate
solution, we present numerical results.

It is desired to determine the dynamic response of a viscously damped SDF system,
starting from at-rest conditions, to one full cycle of a sinusoidal force, p(t) = po sinωt ,
shown in Fig. A.6.1. As mentioned in Section A.5.1, the dynamic response of the sys-
tem should be determined over the time duration T0 = td + Tn/2 or longer—thus, the
shortest t f = Tn/2. However, DFT solutions with longer t f will also be presented to
demonstrate the sensitivity of these solutions to the choice of t f . With a selected t f , the

t

p

p
o

−p
o

t
d

Figure A.6.1

periodic extension of the excitation is sampled over one period at intervals 	t = td/40,
and the response is evaluated at the same intervals. Thus, the circular frequency of the
highest harmonic in the Fourier series representation of the forcing function [Eq. (A.5.3)]
will be ωmax = 40π/td [from Eq. (A.5.5)] and the associated period is td/20. All
DFTs in these solutions that will be presented were computed by the FFT routines in
MATLAB.

In Figs. A.6.2 and A.6.3 are shown the periodic extension of the excitation and the
displacement response of the system computed by the classical DFT method using two
different values of t f . The duration td of the force and the natural vibration period Tn of
the system are chosen such that td/Tn = 0.5; the damping ratio ζ of the system is 5%. The
time scale on the response history plots is normalized with respect to td , and the displace-
ment u(t) is normalized with respect to (ust)o ≡ po/k, the static displacement due to the
peak value of the applied force. The results demonstrate that the DFT solution depends
on the duration t f of free vibration. It is clear from Fig. A.6.2 that t f = 4.75Tn , which
implies T0 = 10.5td , does not provide a large enough number of cycles for free vibration
(during t > td ) of the system to damp out, leaving significant displacement and velocity
at the end of the period T0, thus violating the at-rest initial conditions. Therefore, the DFT
solution cannot be expected to be accurate. Figure A.6.3 demonstrates that t f = 9.75Tn ,
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(b) response determined by classical DFT method; td/Tn = 0.5; ζ = 5%.
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Figure A.6.4 Comparison of DFT solutions using different values of t f with the exact
response; td/Tn = 0.5; ζ = 5%.

which implies T0 = 20.5td , provides an adequate number of cycles for free vibration of the
system to damp out to small motion at the end of the period T0, thus essentially satisfying
the at-rest initial conditions. Therefore, the DFT solution is expected to be accurate.

These expectations are confirmed by the results presented in Fig. A.6.4, where the
DFT solutions using several different values of t f are compared with the exact solution.
The exact solution was obtained by solving the equation of motion by the methods devel-
oped in Section 4.8. Although the response was determined by the DFT method for the
period of the extended forcing function T0 = td + t f , only its initial part over the desired
duration td + Tn/2 is plotted. The results clearly show that unless t f is quite long, the DFT
solution may differ significantly from the exact solution. For the example considered with
td/Tn = 0.5 and ζ = 5%, the errors are noticeable in Fig. A.6.4 even for t f = 10Tn , but
become negligible for t f = 20Tn .

The duration t f of free vibration necessary to obtain an accurate DFT solution is
controlled by the number of cycles necessary for free vibration to decay to essentially zero
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Figure A.6.5 Comparison of DFT solutions using different values of t f with the exact
response; td/Tn = 0.5; ζ = 1%.

displacement and velocity. More cycles are necessary for the motion of lightly damped
systems to decay sufficiently (see Fig. 2.2.4). This implies that if t f is chosen as a fixed
multiple of Tn , the error in the DFT solution is expected to be larger for lightly damped
systems. The DFT and exact solutions for systems with ζ = 1% are plotted in Fig. A.6.5
for several different choices of t f . Comparison of Fig. A.6.5 with Fig. A.6.4 demonstrates
that for each t f /Tn value, the DFT solution is less accurate for systems with 1% damping
compared to systems with 5% damping. Thus, to keep the errors in the DFT solution below
some selected tolerance limit, longer t f would be necessary for systems with less damping.

A.7 IMPROVED DFT SOLUTION

We have demonstrated in Section A.6 that the DFT solution may err significantly unless
the duration t f of free vibration included in the periodic extension of the excitation is
sufficiently long. t f should be selected as a multiple of the natural vibration period Tn of
the system. This multiple depends on the damping ratio of the system and the accuracy
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desired in the DFT solution. Thus, the DFT computations have to be implemented for a
periodic extension of the excitation with period T0 longer than the duration td + Tn/2 over
which the response is desired; T0 must be much longer than td + Tn/2 for lightly damped
systems, especially systems with long period of vibration. Consider, for example, a system
with Tn = 10 sec and ζ = 5%, for which t f = 20Tn is necessary to achieve sufficient
accuracy in the classical DFT solution. If the duration of the excitation, td , is 30 s, the
response should be computed for T0 = td + 20Tn = 30 + 20(10) = 230 s, whereas
we really need the response only for td + Tn/2 = 35 s. Improved procedures have been
developed to avoid the additional, seemingly unnecessary computational effort required in
the classical DFT solution.

In the improved method the period of the periodic extension of the excitation is
equal to the duration over which the response of the system is actually desired (i.e., T0 =
td + Tn/2); the steady-state response ũ(t) over this period is computed by the classical DFT
method;† and the “exact” response u(t) is obtained from the steady-state response by the
superposition of a corrective solution υ(t):

u(t) = ũ(t)+ υ(t) (A.7.1)

Suppose that the response u(t) to a given forcing function p(t) is to be determined for
a system starting with u(0) = 0 and u̇(0) = 0. However, as shown in Fig. A.6.2, the
classical DFT solution does not satisfy those initial conditions. Since the excitation over
the period T0 for both the DFT and exact responses is the same, the difference in the two
solutions shown in Fig. A.6.4 must stem from differences in the initial states of the two
motions. Therefore, the corrective solution is simply the free vibrational solution, which
ensures that the initial displacement and velocity of the desired motion conforms to the
prescribed initial conditions. If the initial displacement and velocity associated with the
DFT solution are ũ(0) and ˙̃u(0), which are generally nonzero, the corrective solution is
the free vibrational response due to initial displacement −ũ(0) and initial velocity −˙̃u(0).
This corrective solution for systems with viscous damping is then given by Eq. (2.2.4) with
appropriate changes in notation:

υ(t) = e−ζωn t

[
−ũ(0) cosωDt +

(
−˙̃u(0)− ζωnũ(0)

ωD

)
sinωDt

]
(A.7.2)

where

ωD = ωn

√
1− ζ 2 (A.7.3)

This improved procedure is illustrated by applying it to determine the response of
an SDF system with ζ = 5% subjected to the one cycle of sinusoidal force of duration td
considered previously (Fig. A.6.1). The system is presumed to be initially at rest and its
natural period Tn = td/1.4. The response is evaluated for a duration T0 = td + Tn/2 =
1.4Tn + 0.5Tn = 1.9Tn . The sampling interval is chosen as before, 	t = td/40. Obtained
by the classical DFT procedure, the steady-state displacement ũ(t) is shown in Fig. A.7.1.

†From this point on, the classical DFT solution is denoted by ũ(t) to distinguish it from the “exact” solu-
tion u(t).
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Figure A.7.1 Steady-state response ũ(t), corrective solution υ(t), and “exact” response
u(t); td/Tn = 1.4 (i.e., T0 = 1.9Tn); and ζ = 5%. [Adapted from Veletsos and Ventura
(1985).]

The initial value of this displacement is ũ(0) = 2.486(ust)o, and the initial velocity† is
˙̃u(0) = −1.761ωn(ust)o. Substituting these values of ũ(0) and ˙̃u(0) in Eq. (A.7.2) gives
the corrective solution υ(t) shown in Fig. A.7.1. Determined by combining ũ(t) and υ(t)
according to Eq. (A.7.1), the desired “exact” response is also shown in Fig. A.7.1. It is
essentially identical to the analytical solution obtained by solving the differential equation
of motion by the methods of Section 4.8.

A.8 MULTI-DEGREE-OF-FREEDOM SYSTEMS

The improved DFT procedure can readily be extended to determine the response of MDF
systems for which the classical mode superposition method is applicable. As shown in
Chapters 12 and 13, the equations of motion for classically damped systems can be trans-
formed to a set of uncoupled equations in modal coordinates, as many equations as the
number of DOFs in the system. Each modal equation is of the same form as the equation
governing the motion of an SDF system. Therefore, each modal equation can be solved
by the classical DFT method and combined with the corrective solution described in Sec-
tion A.7 to determine the modal responses accurately. Thus, the frequency-domain method

†The initial velocity is given by

˙̃u = − 4π

T0

N/2∑
j=0

j Im(Uj ) (A.7.4)

in which Im(Uj ) denotes the imaginary part of Uj . Equation (A.7.4) is obtained by differentiating Eq. (A.5.9),
making use of the facts that jω 0 = 2πj/T0 and the values of Uj for j = N/2 + 1, N/2 + 2, . . . , N − 1 are
the complex conjugates of those for j = N/2− 1, N/2− 2, . . . , 1, respectively.
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can be used to determine modal responses (step 3a of Section 12.5), but the remaining steps
in the modal analysis procedure remain unchanged.

Researchers have also developed DFT procedures for analysis of nonclassically
damped systems with either constant or frequency-dependent parameters. The latter situa-
tion arises in dynamic analysis of structures, including effects of soil–structure interaction
or fluid–structure interaction.
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B

Notation

All symbols used in this book are defined where they first appear. For the reader’s conve-
nience, this appendix, arranged in four parts to follow the organization of the text, contains
the principal meanings of the commonly used notations. The reader is cautioned that some
symbols denote more than one quantity, but the meaning should be clear when read in
context.

Abbreviations

CM center of mass
CQC complete quadratic combination
DFT discrete Fourier transform
DOF degree of freedom
EC Eurocode 8
FFT fast Fourier transform
IBC International Building Code
MDF multi-degree-of-freedom
MFDC Mexico’s Federal District Code
MPA modal pushover analysis

NBCC National Building Code of Canada
NDP nonlinear dynamic procedure
NSP nonlinear static procedure
RHA response history analysis
RSA response spectrum analysis
SDF single-degree-of-freedom
SRSS square root of the sum of squares
UBC Uniform Building Code
UMRHA uncoupled modal response history

analysis

Accents

( ¯ ) modal contribution factor for ( )

( ˇ ) shifted value of ( )

( ˙ ) d

dt
( )

k̂ condensed k
( ˜ ) approximation to ( )

( ˜ ) generalized ( )
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Prefixes

δ, δ increment over extended time
step

δ (·) virtual (·)
�, Δ increment over time step

Subscripts

A acceleration
b base; beam; base-isolation

system
c column; complementary

solution
cr critical
d duration
D damping; damped;

displacement
e eccentric; element
eff effective
eq equivalent
f fixed-base system
F friction
g ground
i time step number; peak

number
i, j floor number; story number;

DOF; frame number

I inertia; input
K kinetic
m peak value for inelastic

systems; maximum
n natural; mode number
o peak value
p particular solution
sec secant
st static
S spring (elastic or inelastic);

strain
T tangent; transmitted
V velocity
x, y, θ directions or components
y yield
Y yielding

Superscripts

s quasi-static
st static

t total

PART I: CHAPTERS 1–8

Roman Symbols

a see Table 5.3.1
a1, a2 arbitrary constants
a1, a2, a3 see Table 5.4.2 or 5.7.1
aj Fourier cosine coefficients
ay fy/m
a0 Fourier coefficient
A integration constant;

arbitrary constant;
coefficient in Eq. (5.2.5);
pseudo-acceleration spectrum
ordinate

A′ coefficient in Eq. (5.2.5)
A(t) pseudo-acceleration
Ay ω2

nuy

b see Table 5.3.1;
complex-valued constant

bj Fourier sine coefficients
B integration constant; arbitrary

constant; coefficient in
Eq. (5.2.5)

B′ coefficient in Eq. (5.2.5)
B1, B2 arbitrary constants
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c damping coefficient
c̃ generalized damping
ccr critical damping coefficient
C arbitrary constant; coefficient

in Eq. (5.2.5)
C ′ coefficient in Eq. (5.2.5)
D arbitrary constant; coefficient

in Eq. (5.2.5); deformation
spectrum ordinate

D′ coefficient in Eq. (5.2.5)
Dy yield deformation spectrum

ordinate
e eccentricity of rotating mass
E modulus of elasticity
ED energy dissipated by

damping
EF energy dissipated by friction
EI input energy
EK kinetic energy
EK o maximum kinetic energy
ES strain energy
ESo maximum strain energy
EY energy dissipated by yielding
E I (x) flexural rigidity
f exciting or forcing frequency

(Hz)
fD damping force
f I inertia force
f I (x, t) distributed inertia forces
f I j inertia force in DOF j
f jo peak value of force at j th

floor
fn natural frequency

(undamped) (Hz)
fo(x) peak value of fS(x, t)
fS elastic or inelastic resisting

force; equivalent static force
( fs)

j fs after j cycles of iteration

( f̂s)i see Eq. (5.7.10)
( fS)i value of fS at time i

f̃S(u) defined by Eq. (7.3.3)
fSo, fo peak value of fS(t)
fT transmitted force
fy yield strength
f̄ y normalized yield strength
F friction force
g acceleration due to gravity

h height of one-story frame;
story height

h(t) unit impulse response
H(ω) complex frequency response
i time step number
I second moment of area
I magnitude of impulse
Ib I for a beam
Ic I for a column
IO moment of inertia about O
k stiffness or spring constant
k stiffness matrix

k̂ see Eq. (5.3.5) or (5.4.11)
k̃ generalized stiffness
ki (ki )T

k̂i defined in Eq. (5.7.6)
kj stiffness of j th story
kT tangent stiffness

k̂T defined in Eq. (5.7.8)

k( j)
T tangent stiffness at u( j)

L width of frame; length of
beam or tower

L̃ see Eqs. (8.3.12) and (8.4.12)
L̃θ defined in Eq. (8.4.18)
m(x) mass per unit length
m mass
m mass matrix
m̃ generalized mass
me eccentrically rotating mass
mj mass at j th DOF or j th floor
M(x, t) bending moments in a

distributed-mass system
Ma, Mb bending moments at nodes a

and b
Mb base overturning moment
Mbo peak value of Mb(t)
Mio peak value of i th-floor

overturning moment
Mo(x) peak value of M(x, t)
N normal force between sliding

surfaces; number of DOFs
p external force
P(ω) Fourier transform of p(t)
p̃(t) generalized external force
peff effective earthquake force
(peff)o peak value of peff(t)
pi value of p(t) at time i
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p̂i see Eq. (5.3.6), (5.4.12) or
(5.6.3)

po amplitude of p(t)
r(t) any response quantity
ro max

t
|r(t)|, the peak response

Ra acceleration response factor
Rd deformation (or displacement)

response factor
R( j) residual force at the end of

j th iteration cycle

R̂( j) see Eq. (5.7.15)
Rv velocity response factor
Ry yield reduction factor
t time
t ′ time variable
td duration of pulse force
ti time at i th peak in free

vibration; time at end of i th
time step

to time when u(t) is maximum
tr rise time
Ta, Tb, Tc, periods that define spectral

Td , Te, Tf regions
TD natural period (damped)
Tn natural period (undamped)
T0 period of periodic excitation
TR transmissibility
u displacement; deformation;

displacement relative to
ground

ut total displacement
u vector of displacements uj
û(iω) Fourier transform of u(t)
u(0) initial displacement
u̇(0) initial velocity
ua, ub displacements of nodes a and b
uc complementary solution
uF F/k
ug ground (or support)

displacement
üg ground (or support)

acceleration
ugo peak ground displacement
u̇go peak ground velocity
ügo peak ground acceleration
ugθ ground rotation about a

vertical axis
ui displacement at i th peak;

displacement at time i
u( j) u after j iterations

u( j)
i ui after j iterations

u̇i velocity at time i
üi acceleration at i th peak;

acceleration at time i
u j relative displacement of j th

floor
uc

j (t) response to p(t) =
p0 cos jω0t

us
j (t) response to p(t) =

p0 sin jω0t
ut

j total displacement of j th
floor

ujo peak or maximum value of
uj (t)

u̇ jo maximum value of u̇ j (t)
um max

t
|u(t)| for an inelastic

system
u−m |min

t
[u(t)]|

u+m max
t

[u(t)]

uo peak or maximum value of
u(t)

u̇o peak value of u̇(t)
uo(x) peak or maximum value of

u(x, t)
u̇o(x) maximum value of u̇o(x, t)
ut

o peak value of ut (t)
üt

o peak value of üt (t)
up particular solution; permanent

deformation
ust(t) static deformation due

to p(t)
(ust)o static deformation due to po

ux , uy x and y displacements
uy yield deformation
u0(t) response to p(t) = a0
uθ rotation about a vertical axis
v velocity
V pseudo-velocity spectrum

ordinate
V(x, t) shearing forces in a

distributed-mass system
Va, Vb shearing forces at nodes a

and b
Vb base shear
Vbo peak value of Vb(t)
Vbo peak value of Vb(t)
Vj shear in the j th story
Vjo peak value of Vj (t)
Vo(x) peak value of V(x, t)



Part II: Chapters 9–18 909

Vy ωnuy

w weight
x, y Cartesian coordinates

z generalized displacement
zo peak value of z(t)
1 vector of ones

Greek Symbols

αA, αD, αV spectral amplification factors
β parameter in Newmark’s

method
βj jω0/ωn

γ parameter in Newmark’s
method

λ constant in eλt


̃ L̃/m̃
δ logarithmic decrement
δ(·) Dirac delta function
δst mg/k
δu(x) virtual displacements
δu virtual displacement vector
δuj virtual displacement uj
δWE external virtual work
δWI internal virtual work
δz virtual displacement
δκ(x) virtual curvature
�j story drift in j th story
�t time step
�ti time step i
�u( j) change in u in iteration cycle
ε duration of an impulsive force
εR, εu, εw tolerance values in Eq. (5.7.8)
ζ damping ratio
ζ̄ numerical damping ratio

ζeq equivalent viscous damping
ratio

η rate-independent damping
coefficient

θ̈ rotational acceleration
θa, θb rotations at nodes a

and b
θg ground rotation about a

horizontal axis
κ(x) curvature
μ coefficient of friction;

ductility factor
ρ beam-to-column stiffness

ratio; coefficient in ±ρe−ζωn t

σ standard deviation
τ dummy time variable
φ phase angle
ψ(x) shape function
ψ shape vector
ψj j th element of ψ
ω exciting or forcing frequency

(rad/sec)
ωD natural frequency (damped)

(rad/sec)
ωn natural frequency

(undamped) (rad/sec)
ω0 2π/T0

PART II: CHAPTERS 9–18

Roman Symbols

ae element transformation
matrix

ain defined by Eq. (14.4.11)
al coefficients in Caughey series
ax , ay, az x , y, and z components of

ground acceleration
a1, a2, a3 principal components of

ground acceleration

a1, a2, a3 see Table 16.2.2 or 16.3.3
axi , ayi transformation matrices
a0, a1 Rayleigh damping

coefficients
A direct assembly operator
An pseudo-acceleration spectrum

ordinate A(Tn, ζn)
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An(t) pseudo-acceleration of
nth-mode SDF system

Anl(t) An(t) due to ügl(t)
Bn, B̄n complex-conjugate pair of

constants
Bg

n see Eq. (14.3.2)
c damping matrix
c̃ defined by Eq. (15.3.4)
ci j damping influence

coefficient
cj j th-story damping

coefficient
cn nth-mode damping matrix
C ΦT cΦ, diagonal matrix of Cn

Cn generalized damping for nth
mode

Cnr element of C
Dn(t) deformation of nth-mode

SDF system
Ḋn (t) relative velocity response,

nth-mode SDF system
Dnl(t) Dn(t) due to ügl(t)
Dno peak value of Dn(t)
eJ error in static response; error

norm of Eq. (15.5.3)
E modulus of elasticity
E I flexural rigidity

f̂ flexibility matrix
fD, fD(t) damping forces
fDj damping force in DOF j

f̂i j flexibility influence
coefficient

fI inertia forces
f I j inertia force in DOF j
fin peak value of fin(t)
fin(t) equivalent static forces:

frame i , mode n
fjn j th element of fn ; peak value

of f jn(t)
f jn(t) equivalent static force: DOF

j , mode n
fjyn j th element of fyn

fjθn j th element of fθn

fn nth natural frequency, Hz
fn(x, t) equivalent static forces,

mode n
fn peak value of fn(t)
fn(t) equivalent static forces,

mode n
fno(x) peak value of fn(x, t)

fS elastic resisting forces
fS(u) inelastic resisting forces
fS A lateral force on frame A
fSg, fSg(t) equivalent static forces in

support DOFs
fS j elastic or inelastic resisting

force in DOF j
fyn peak value of fyn(t)
fyn(t) equivalent static lateral

forces, mode n
fθn peak value of fθn(t)
fθn(t) equivalent static torques,

mode n
h height of one-story frame;

story height
hj height of j th floor
h∗n effective modal height,

mode n
h(t) unit impulse response

function
h(t) vector of unit impulse

response functions
hn(t) h(t) for deformation of

nth-mode SDF system
I second moment of area
I identity matrix
Ib I for beam
Ic I for column
IO diagonal matrix: Ij j = IO j

IO j moment of inertia of j th floor
about O

I ∗On defined by Eq. (13.3.10)
J number of Ritz vectors
k stiffness matrix

ǩ k− μm
k̃ defined by Eq. (15.3.4);

matrix of k̃i j in Eq. (18.1.4)
kA stiffness matrix of frame A in

global DOF
ke element stiffness matrix in

global element DOFs

k̂ see Table 16.3.1, Eq. (16.3.5)
k̄e element stiffness matrix in

local element coordinates
kl

gg lth column of kgg

ki stiffness matrix of frame i in
global DOF

k̂i see Tables 16.3.1 and 16.3.3
ki j stiffness influence coefficient
kj stiffness of j th story
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k̂t t condensed stiffness matrix

k̂T tangent stiffness matrix; see
Table 16.3.3

kxi , kyi lateral stiffness of frame i in
x and y directions

kxi , kyi lateral stiffness matrix of
frame i in x and y directions

ky lateral stiffness of frame A
kxy, kxθ ,kθ y, submatrices of k

kyθ , kθθ
K diagonal matrix of Kn

K̂ see Tables 16.2.1 and 16.2.2
Kn generalized stiffness, mode n
L length of beam; length of

finite element
Lh

n see Eq. (13.2.3) or (17.6.2)
Lθn see Eq. (13.2.9b) or (17.6.17)
Lnl defined by Eq. (13.5.3)
m mass of an SDF system
m mass matrix
m̃ defined by Eq. (15.3.4);

matrix of m̃i j in Eq. (18.1.4)
m(x) mass per unit length
me element mass matrix in global

element DOFs
m̄e element mass matrix in local

element coordinates
mi j mass influence coefficient
mj mass at j th DOF or j th floor
mt t mass matrix for ut DOF
M diagonal matrix of Mj
M(x, t) bending moment in a

distributed-mass system
Mb bending moment at the base
Mbn(t) Mb(t) due to mode n
Mbn(t) Mb(t) due to mode n
Mst

bn nth modal static response Mb
Mst

bn nth modal static response Mb
Mi i th-floor overturning moment
Mst

in nth modal static response Mi
Mn generalized mass, mode n
M∗n effective modal mass,

mode n
N number of DOFs
Nd number of modes responding

dynamically
Ne number of finite elements
Ng number of ground (or

support) displacements
O null matrix

p external force
p external forces
p̃ vector of p̃i in Eq. (18.2.6)
p(λ) polynomial in λ
pe element force vector in global

element DOFs
p̄e element force vector in local

element coordinates
peff effective earthquake force
peff effective earthquake force

vector
pg support forces
ps

g(t) quasi-static support forces
pj external force at j th DOF or

j th floor
po maximum value of p(t)
pt external forces in ut DOF
P(t) ΦT p(t)
P(t) vector of Pn(t)

P̂i defined in Table 16.2.1
Pn(t) generalized force, mode n
q modal coordinate vector
qi modal coordinates at time i
qn(t) nth modal coordinate
r radius of gyration
r(t) any response quantity
ra(t), rb(t) response quantities
rao, rbo peak values of ra(t), rb(t)
r st

an, r
st
bn nth modal static responses ra

and rb
rα projection of response

trajectory in direction α
rano, rbno peak values of ran(t), rbn(t)
rabo cross term between responses

ra and rb in Eq. (13.10.4)
ras , rbs responses ra, rb due to initial

static loads
rcr critical response; largest

value of r(θ)
rn peak value of rn(t)
r̄n nth modal contribution factor
rn(t) r(t) due to mode n
rno peak value of rn(t)
ro peak value of r(t)
r st static response to forces s
r st

n nth modal static response
rx , ry, rz peak response r due to x , y,

and z components of ground
motion
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rxy cross term between modal
response contributions to rx

and ry

Rdn dynamic response factor for
nth-mode SDF system

R( j) residual force vector after j th
iteration cycle

s, sa, sb spatial distributions of p(t)
sjn j th element of sn

sjyn j th element of syn

sjθn j th element of sθn

sn defined by Eq. (12.8.4) or
(13.1.6)

sn(x) defined by Eq. (17.6.4)
syn, sθn subvectors of sn

t time variable
td duration of pulse force
Tb base torque
Tbn peak value of Tbn(t)
T st

bn nth modal static response Tb
Tbn(t) Tb(t) due to mode n
Ti i th-story torque
Tin(t) Ti (t) due to mode n
T st

in nth modal static response Ti
Tn nth natural period

(undamped)
u displacement or deformation
u displacement vector
u( j) u after j cycles of iteration
u̇i velocities at time i
üi accelerations at time i
un(t) u(t) due to pair of modes

ψn, ψ̄n ; u(t) due to mode φn

us quasi-static displacements
ut total displacements
u A displacement at frame A
ux x-lateral displacements
uxn(t) ux (t) due to mode n
ue element displacements in

global element DOFs
ug ground (or support)

displacement
ug ground (or support)

displacement vector
üg ground (or support)

acceleration
ugl lth support displacement
ügx , ügy, ügθ x , y, and θ components of

ground acceleration
ui displacement in DOF i

ui lateral displacements of frame
i ; displacements at time i

uin ui due to mode n
uj peak value of uj (t)
uj (t) relative displacement at DOF

j or floor j
us

j quasi-static displacement at
DOF j

ut
j total displacement at DOF j

or floor j
u jn peak value of ujn(t)
ust

jn nth modal static response uj

ujn(t) uj (t) due to mode n
ujx , ujy displacements of CM of floor

j along x and y axes
ujyn peak value of ujyn(t)
ujθ rotation of floor j about CM
ujθn peak value of ujθn(t)
un peak value of un(t)
ust

n nth modal static response u
un(x, t) u(x, t) due to mode n
ust

n (x) nth modal static response
u(x)

ut dynamic DOF
ux , uy x and y displacements of CM
üt

x , üt
y, üt

θ
x , y, and θ components of
total acceleration

uy y-lateral displacements
uyn(t) uy(t) due to mode n
u0 DOF with zero mass
ū5n nth modal contribution factor

for u5
uθ rotation about CM
uθ floor rotations
uθn(t) uθ (t) due to mode n
V(x, t) transverse shear force in a

distributed-mass system
Vb peak value of Vb(t)
Vb base shear
Vb(t) base shear
V st

b Vb due to forces s
Vbn peak value of Vbn(t)
V̄bn nth modal contribution factor

for Vb
Vbn(t) Vb(t) due to mode n
Vbn(t) Vb(t) due to mode n
V st

bn nth modal static response Vb

Vst
bn nth modal static response Vb
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Vbo peak value of Vb(t)
Vi peak value of Vi (t)
Vi (t) i th-story shear
V st

in nth modal static response Vi
x, y Cartesian coordinates
xi , yi define location of frame i
xi iteration vector

yn eigenvector of A; defined by
Eq. (14.4.10)

z generalized coordinate vector
zj generalized coordinates
zn eigenvector
0 vector of zeros
1 vector of ones

Greek Symbols

α arbitrary direction in response
space; fraction used in
Eq. (13.11.13)

α
g
n defined in Eqs. (14.8.8) and

(14.10.17)
β parameter in Newmark’s method
βin ωi/ωn

βn see Eqs. (14.2.7), (14.7.5),
and (14.10.8)

β
g
n see Eqs. (14.3.4), (14.8.2),

and (14.10.10)
γ parameter in Newmark’s method;

ground motion intensity
factor

γn see Eqs. (14.2.7), (14.7.5),
and (14.10.9)

γ
g
n see Eqs. (14.3.4), (14.8.2),

and (14.10.12)

n see Eq. (12.8.3) or (13.2.3)

nl defined by Eq. (13.5.3)
δu(x) virtual displacement u(x)
δuj virtual displacement uj
δWE external virtual work
δWI internal virtual work
δ(·) Dirac delta function
�j peak value of �j (t)
�j (t) j th-story deformation or

drift
χ generalized coordinate vector

in Eq. (15.3.5)
χn imaginary-valued part of ψn

�t time step
�u( j) change in u, j th iteration

cycle
�jn(t) �j (t) due to mode n
�jn peak value of �jn(t)

εR, εu, εw tolerances in Eq. (16.3.8)
ε′R, ε

′
u, ε

′
w tolerances in Eq. (16.3.9)

εin defined by Eq. (13.7.7a)
ζn damping ratio for nth mode
ζ ′n defined by Eq. (13.7.7b)
θ incident angle
θcr critical incident angle
θg ground rotation about a

horizontal axis
ι influence vector; influence

matrix
ιl influence vector for ugl
κ shear stress constant
λ(χ) Rayleigh’s quotient
λ( j) estimate of eigenvalue
λ eigenvalue
λn, λ̄n complex conjugate pair of

eigenvalues
λ̌ λ− μ
λn nth eigenvalue
μ absorber mass ratio; shift of

eigenvalue spectrum
μi j element of μ defined in

Eq. (13.11.1)
μ covariance matrix
ρin cross-correlation coefficient

for modes i and n
φjn j th element of φn

φj yn, φjθn j th elements of φyn and φθn

φn(x) nth natural vibration mode

φ̃n(x) approximation to φn(x)

φ̃n approximation to φn

φn nth natural vibration mode;
real-valued part of ψn

φyn, φθn subvectors of φn

Φ modal matrix
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ψ complex-valued eigenvector;
see Eq. (14.5.3)

ψn nth (complex-valued)
eigenvector

Ψ 〈ψ1 ψ2 · · · ψJ 〉
Ψ(x) 〈ψ1(x) ψ2(x) · · · ψN (x)〉
ψi (x) trial, Ritz, or shape function;

finite element interpolation
function

ψ̂i (x) beam interpolation function

ψj shape vector or Ritz vector

ψ̂n defined by Eq. (14.4.12)
ω exciting or forcing frequency
ωn nth natural frequency

(undamped) (rad/sec)
ω′n ωn of a beam considering

rotational inertia and shear
effects

ω̃n approximation to ωn

Ω2 spectral matrix

PART III: CHAPTERS 19–23

Roman Symbols

A pseudo-acceleration spectrum ordinate
Am maximum A/g, MFDC
Ay A for yielding system
c damping coefficient of fixed-

base system
cb damping coefficient of isolation system
c f damping matrix of fixed-base

system
C period-dependent coefficient, IBC
Ce elastic seismic coefficient
Cs seismic coefficient
eJ error in static response

[Eq. (19.7.1)]
E Ib flexural rigidity of beams
E Ic flexural rigidity of columns
f jn lateral force: floor j , mode n
fy design yield strength
Fj code lateral force at floor j
FSn defined by Eq. (20.6.12)
Ft additional lateral force at the top

floor, NBCC
h story height
hj height of j th floor
I importance factor, IBC and

NBCC
J, Ji reduction factors for overturning

moments
k lateral stiffness of fixed-base

system
kb lateral stiffness of isolation system
k f stiffness matrix of fixed-base

system

kj stiffness of j th story
Lb length of beams
Lc length of columns
m lumped mass of fixed-based

system
mb mass of base slab
m f mass matrix of fixed-base system
Mv higher-mode factor, NBCC
OS overstrength factor, EC
q seismic behavior factor, EC
q ′ seismic reduction factor, EC
Q seismic behavior factor, MFDC
Q′ seismic reduction factor, MFDC
R response modification factor, IBC
r coefficient in Ce, MFDC
Rd force modification factor, NBCC
RO overstrength-related force

modification factor, NBCC
s∗n defined by Eq. (20.7.2)
Tb isolation period
Tb, Tc periods defining the constant-A

spectral region
Tf natural period of fixed-base

system
Tn natural period of SDF system; nth

natural period of MDF system
Tn f nth natural period of fixed-base

system
ub isolator deformation
ubn ub due to mode n
ust

bn nth modal static response ub
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ui i th-floor displacement due to
forces Fj ( j = 1, 2, . . . , N )

ujm max
t
|uj (t)| for an inelastic

system
urn roof displacement, nth mode
uy yield displacement
Vb base shear

V (1)
b , V (2)

b two parts of Vb, MFDC
Vby yield strength value of Vb

V̄by normalized value of Vby
Vj j th-story shear
Vjy j th-story yield strength
w weight of SDF system
wi weight at i th floor
W total weight of building; total

dead load and applicable
portion of other loads

Greek Symbols

α, β coefficients in least-
square-error fit of Vb–T1
curve

�j j th-story deformation or drift
�jm peak value of �j (t) for an

inelastic system
ζ damping ratio
ζb ζ of isolation system with

rigid building
ζ f ζ for fixed-base system
ζn f ζ for nth mode of fixed-base

system

μ ductility factor
φn nth natural vibration mode of

corresponding linear system
φn f nth mode of fixed-base

system
φrn roof element of φn

ω f natural frequency of
fixed-base system

ωn nth natural vibration
frequency of corresponding
linear system

APPENDIX A

Roman Symbols

c damping coefficient
h(t) unit impulse response
Hj H(ωj ); see Eq. (A.5.7)
H(ω) complex frequency response
Hu(ω) complex frequency response

for u(t)
k stiffness
m mass
M number of harmonics in

truncated series
N number of equally spaced

time instants
p external force
pn p(tn) ≡ p(n�t)
po amplitude of p(t)

P(ω) Fourier transform of p(t)
Pj Fourier coefficient (complex

valued) for p(t)
P̄j complex conjugate of Pj
td duration of excitation
t f duration of free vibration
Tn natural period (undamped)
T0 period of periodic extension

of p(t)
u displacement; deformation
u(t) “exact” response
ũ(t) steady-state response by DFT

method
(ust)o static deformaton due to po

Uj see Eq. (A.2.8) or (A.5.8)
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Greek Symbols

βj jω0/ωn

δ(·) Dirac delta function
�t sampling interval
ζ damping ratio
η rate-independent damping

coefficient
υ(t) corrective solution
ω excitation or forcing

frequency (rad/sec)

ωD natural frequency (damped)
(rad/sec)

ωj jω0
ωmax Nyquist frequency; folding

frequency; see Eq. (A.5.5)
ωn natural frequency

(undamped) (rad/sec)
ω0 2π/T0



C

Answers to Selected Problems

Chapter 1

1.1 ke = k1 + k2; mü + keu = p(t)

1.3 ke = (k1 + k2)k3

k1 + k2 + k3
; mü + keu = p(t)

1.5 θ̈ + 3

2

g

L
θ = 0; ωn =

√
3

2

g

L

1.8
m R2

2
θ̈ + πd4G

32L
θ = 0

1.10
w

g
ü + 3E I

L3
u = 0

1.12 ωn =
√

ke

m
; ke = k(48E I/L3)

k + 48E I/L3

1.15 mü +
(

120

11

E Ic

h3

)
u = p(t)

1.16 mü +
(

2
E Ic

h3

)
u = p(t)

1.17 müx +
(√

2
AE

h

)
ux = 0; müy +

(√
2

AE

h

)
uy = 0

917
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1.18
mh2

6
üθ + AEh√

2
uθ = 0

Chapter 2

2.1 m = 24 kg; k = 3790 N/m

2.2 u(t) = 5 cos(9.9t)

2.4 u(t) = 14.81· sin(53.71t) mm

2.5 u(t) = m2g

k
(1− cosωnt)+

√
2gh

ωn

m2

m1 + m2
sinωnt

2.7 E I = 4737 N.m2

2.11 j10% = 0.366/ζ

2.13 (a) Tn = 0.353 s; (b) ζ = 1.95%

2.14 (a) c = 36, 412 N-s/m, k = 254.9 kN/m

(b) ζ = 0.907

(c) ωD = 5.35 rad/s

2.15 k = 35.1 kN/m; c = 18.43 N-s/m

2.16 ωn = 22.14 rad/s; ζ = 0.165; ωD = 21.85 rad/s

2.17 TD = 0.235 s ζ = 0.236%

2.19 3.69 cm, 3.09 cm

2.20 1.28 cm; 8 cycles

Chapter 3

3.1 m = 2.571 kg; k = 1624 N/m

3.2 ζ = 0.05

3.3 ζ = 0.0576

3.5 uo = 0.106 mm; üo = 0.011 g

3.10 ζ = 9.67%

3.11 ζ = 1.14%

3.12 (b) δst = 6.83 mm

3.13 1948 N

3.15 2238 kN/m

3.17 Error = 0, 0.9, and 15% at f = 10, 20, and 30 Hz, respectively

3.19 f ≤ 20.25 Hz

3.21 f ≥ 2.575 Hz

3.25 7.812 mm
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3.26 (a) p(t) = po

2
+ 4po

π2

∞∑
j=1, 3, 5, ...

1

j2
cos jω0t

(b)
u(t)

(ust)o
= 1

2
+ 4

π2

∞∑
j=1, 3, 5, ...

1

j2(1− β2
j )

cos jω0t , where (ust)o = po/k,

βj = jω0/ωn , and βj �= 1

(c) Two terms are adequate.

Chapter 4

4.9 (a)
u(t)

(ust)o
= 1− e−ζωn t

(
cosωDt + ζ√

1− ζ 2
sinωDt

)

(b)
uo

(ust)o
= 1+ exp(−nζ/

√
1− ζ 2)

4.12 uo � 26.7 cm; u0 = 13.3 cm

4.17 uo = 2.347 cm; σ = 158.7 MPa

4.18 uo = 9.218 cm; σ = 311.7 MPa

4.23 uo = po

k

4

ωnt1
sinωnt1 sin

ωnt1
2

4.24
uo

(ust)o
= 4π

3

td
Tn

; error = 5.9%

4.26 (a) Vb = 75.4 kN, Mb = 1508 kN.m; (b) increase in mass has the effect of
reducing the dynamic response.

Chapter 5

5.2 Check numerical results against the theoretical solution in Tables E5.1a, b.

5.4 Check numerical results against the theoretical solution in Table E5.2.

5.8 Check numerical results against the theoretical solution in Table E5.3.

5.9 Check numerical results against the theoretical solution in Tables E5.1a, b; the
numerical results are large in error, but the solution is stable.

5.11 Check numerical results against the theoretical solution in Table E5.4.

Chapter 6

6.4 D = u̇go

2π
Tn exp

(
− ζ√

1− ζ 2
tan−1

√
1− ζ 2

ζ

)

V = 2π

Tn
D ; A =

(
2π

Tn

)2

D

6.10 uo = 4.07 cm; σ = 228.3 MPa
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6.11 (a) uo = 37.5 cm, Vbo = 263 kN

(b) uo = 26.5 cm, Vbo = 372 kN

(c) uo = 37.5 cm, Vbo = 525.6 kN

6.14 (a) uo = 2.721 cm, M = 66.44 kN-m; (b) uo = 10.89 cm, M = 132.9 kN-m

6.15 uo = 10.89 cm, M = 132.9 kN-m at top of column

6.16 (a) uo = 1.627 cm, M = 29.9 kN-m
(b) uo = 0.317 cm, pbrace = 17.97 kN

6.17 uo = 4.08 cm, Mshort = 88.6 kN-m, Mlong = 22.1 kN-m

6.18 uo = 14.92 cm; bending moments (kN-m) in columns: 925 at base and 397 at top;
bending moments (kN-m) in beam: 397 at both ends

6.19 uo = 34.8 cm, bending moments (kN-m) in columns: 0 at base and 566 at top;
bending moments (kN-m) in beam: 566 at both ends

6.20 uo = 2.95 cm; stresses at base of column: bending stress due to earthquake = 158.2
MPa, as elsewhere axial stress due to earthquake and gravity forces = 28.7 MPa;
total stress = 186.8 MPa

6.22 Corner displacements = 1.476 cm, 0.984 cm; base torque = 101 kN-m; bending
moments at top and base of each column: My = 5.903 kN-m, Mx = 5.903
kN-m

6.23 (b) A(Tn)/g = 0.5 for Tn ≤ 1
33 s; 12.27T 0.916

n for 1
33 < Tn ≤ 1

8 s; 1.83 for 1
8 <

Tn ≤ 0.613 s; 1.14T−1
n for 0.613 < Tn ≤ 3.91 s; 4.46T−2

n for 3.91 < Tn ≤ 10 s;
24.49T−2.74

n for 10 < Tn ≤ 33 s; and 1.84T−2
n for Tn > 33 s

Chapter 7

7.1 (a) Tn = 0.480 s, ζ = 2%
(b) no
(c) Tn = 0.480 s, ζ = 2%
(d) f̄ y = 0.315, Ry = 3.178

7.5 μ = 1.44, 3.11, and 7.36

7.6 Ay(Tn)/g = 0.5 for Tn ≤ 1
33 s; 1.68T 0.348

n for 1
33 < Tn ≤ 1

8 s; 0.818 for 1
8 < Tn

≤ 0.465 s; 0.380T−1
n for 0.465 < Tn ≤ 3.91 s; 1.487T−2

n for 3.91 < Tn ≤ 10 s;
8.16T−2.74

n for 10 < Tn ≤ 33 s; and 0.614T−2
n for Tn > 33 s

7.7
Tn = 0.02 s Tn = 0.2 s Tn = 2 s

μ fy/w um (mm) fy/w um (mm) fy/w um (mm)

1 0.50 0.050 1.355 13.46 0.448 447.1
2 0.50 0.099 0.782 15.55 0.224 447.1
4 0.50 0.199 0.512 20.35 0.112 447.1
8 0.50 0.397 0.350 27.81 0.056 447.1

7.8 um = 44.7 cm
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Chapter 8

8.2 (a) m̃θ̈ + c̃θ̇ + k̃θ = p̃(t), m̃ = 103mL2

64
, c̃ = c, k̃ = kL2

4
, p̃(t) = 9L

8
p(t)

(b) ωn
√

16k/103m, ζ = 8c/
√

103kmL4; (c) u(x, t) = 72x

103mLωD
e−ζωn t sinωDt

8.4 (a) m̃θ̈ + c̃θ̇ + k̃θ = p̃(t); m̃ = mL3

12
; c̃ = cL3

12
k̃ = kL3

12
; p̃(t) = L2

6
p(t)

8.5 z = vertical deflection of lower end of spring; m̃z̈ + c̃ż + k̃z = p̃(t); m̃ = m

3
;

c̃ = c

4
; k̃ = k

5
; p̃(t) = −2

5
p(t)

8.7 (a) Vo(L/2) = 8164 kN, Mo(L/2) = 4.57× 105 kN-m, Vbo = 9972 kN,
Mbo = 1.406× 106 kN-m; (b) uo(L) = 73.32 cm

8.9 (a) Vo(L/2) = 941 kN, Mo(L/2) = 5.269× 104 kN-m, Vbo = 1149 kN,
Mbo = 1.621× 105 kN-m

(b) uo(L) = 8.45 cm
8.10 u1o = 1.85 cm, u2o = 2.95 cm, u3o = 3.32 cm; V3o = 202 kN, V2o = 561 kN,

Vbo = 785 kN; M3o = 808 kN-m, M2o = 3053 kN-m, Mbo = 6195 kN-m

8.12 u1o = 1.107 cm, u2o = 2.215 cm, u3o = 3.322 cm; V3o = 236 kN, V2o = 551 kN,
Vbo = 708 kN; M3o = 944 kN-m, M2o = 3147 kN-m, Mbo = 5980 kN-m

8.15 Floor displacements: 3.53, 6.28, 8.89, 10.46, 11.25 (cm)
Story shears: 182, 521, 808, 1012, 1126 (kN)
Floor overturning moments: 728, 2810, 6044, 10090, 14590 (kN-m)

8.17 ωn = 0.726
√

E I/mL3

8.18 (b) ω1 =
√

2.536k/m,ψ1 = 〈 1 0.366 〉T ; ω2 =
√

9.464k/m,ψ2 = 〈 1 −1.366 〉T

8.19 ω2
n =

π4 E I/32L3

m
[
1+ (π2/16)(R/L)2

] if ψ(x) = 1− cos πx
2L

8.20 ωn = 1.657

L2

√
E I

m
8.21 ωn = 19.48 rad/s

8.24 ωn = 19.485 rad/s

8.25 u(L/2, t) = 2po

πm

1

ω2
n

[
1− ω2

n

ω2
n − (πv/L)2

cos
πv

L
t + (πv/L)2

ω2
n − (πv/L)2

cosωnt

]

t ≤ L/v

u(L/2, t) = 2po

πm

1

ω2
n

{
2−

[
1− ω2

n

ω2
n − (πv/L)2

]
cosωn(t − td)

+ (πv/L)2

ω2
n − (πv/L)2

cosωnt

}
t ≥ L/v
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Chapter 9

9.2
mL

3

[
1 0
0 1

]{
ü1

ü2

}
+ 162E I

5L3

[
8 −7
−7 8

]{
u1

u2

}
=
{

p1(t)
p2(t)

}

9.4 m = m

6

[
2 1
1 2

]
, k = E I

L3

[
28 −10
−10 4

]

9.6 m

[
1

0.5

]{
ü1

ü2

}
+ E I

h3

[
37.15 −15.12
−15.12 10.19

]{
u1

u2

}
=
{

p1(t)
p2(t)

}

9.9 m

[ 1
1

0.5

]{ ü1

ü2

ü3

}
+ E I

h3

[ 40.85 −23.26 5.11
−23.26 31.09 −14.25

5.11 −14.25 10.06

]{ u1

u2

u3

}
=
{ p1(t)

p2(t)
p3(t)

}

9.11 m

[ 1
1

0.5

]{ ü1

ü2

ü3

}
+ E I

h3

[ 33.36 −14.91 1.94
15.96 −5.49

(sym) 3.92

]{ u1

u2

u3

}
=
{ p1(t)

p2(t)
p3(t)

}

9.13 u = 〈 u1 u2 u3 〉, where u1 is the horizontal displacement of the masses and u2

and u3 are the vertical displacements of the right and left masses, respectively.

mü+ ku = peff(t)

m = m

[ 5
1

1

]
,k = 3E I

10L3

[ 28 6 −6
6 7 3
−6 3 7

]
;peff(t) = −mιüg(t)

ιT =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

〈1 0 0〉 for üg(t) = ügx (t)
〈0 1 1〉 for üg(t) = ügy(t)〈

1√
2

1√
2

1√
2

〉
for üg(t) = ügbd(t)〈

− 1√
2

1√
2

1√
2

〉
for üg(t) = ügbc(t)

〈−L L − L〉 for üg(t) = ügθ (t)

9.15 mü+ ku = peff(t)

m = m

[ 2/3 −1/6 1/2
−1/6 2/3 −1/2

1/2 −1/2 1

]
,k = k

[ 5 −2 2
−2 5 −2

2 −2 6

]
,peff(t) = −mιüg(t)

[mι]T =
{m〈1/2 1/2 0〉 for ground motion in the x direction

m〈1/2 − 1/2 1〉 for ground motion in the y direction
m〈1/√2 0 1/

√
2〉 for ground motion in the d–b direction

9.16 mü+ ku = peff(t)

m = m

[ 1 0 0
0 1 b/2
0 b/2 5b2/12

]
, k = k

[ 6 0 0
0 6 2b
0 2b 7b2/2

]
, peff(t) = −mιüg(t)

[mι]T =

⎧⎪⎨
⎪⎩

m〈 1 0 0 〉 for ground motion in the x direction
m〈 0 1 b/2 〉 for ground motion in the y direction
m〈 1/√2 1/

√
2 b/2

√
2 〉 for ground motion in the d–b

direction
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9.18 mü+ ku = −mιüg(t)

m = m

[ 1
1

1

]
, k = E I

L3

[ 0.9283 0.9088 0.2345
1.4294 0.2985

symm 0.3234

]

ιT =

⎧⎪⎨
⎪⎩
〈 1 0 0 〉 for ground motion in the x direction
〈 0 1 0 〉 for ground motion in the y direction
〈 0 0 1 〉 for ground motion in the z direction
(1/
√

3)〈 1 1 1 〉 for ground motion in the a–d direction

9.20 mü + 6E I

L3
u = −m 〈 1/2 1/2 〉

{
üg1(t)
üg2(t)

}
9.21 mü+ ku = −mιüg(t)

u =
{

u1

u2

}
, ug =

{
ug1

ug2

}

m = m

[
1

1

]
, k = 6E I

7L3

[
176 −48
−48 176

]
, ι = 1

448

[
266 182

42 −42

]

9.22 mü+ ku = −mιüg(t)

u =
{

u1

u2

}
, ug =

{
ug1

ug2

}

m = m

[
1

1/2

]
, k = 6E I

7L3

[
128 0

0 140

]
, ι =

[
0, 5 0.5
0.3 −0.3

]

9.23 mü+ ku = −mιüg(t)

uT = 〈 ux uy uθ 〉 uT
g = 〈 uga ugb ugc ugd 〉T

m = m

[ 1
1

b2/6

]
k = k

[ 4 0 0
0 4 0
0 0 2b2

]

ι = 1

4

[ 1 1 1 1
0 0 0 0
−1/b −1/b 1/b 1/b

]

9.25 mü+ ku = −mιüg(t)

u =
{

u1

u2

}
,ug =

{
ug1

ug2

}

m =
[

6.876
3.438

]
× 105kg,k = 104

[
216 164
169 297

]
, ι =

[
0.597 0.403
−0.231 1.231

]

Chapter 10

10.3 (a) u1(t) = 0.5 cosω1t + 0.5 cosω2t ; u2(t) = 0.5 cosω1t − 0.5 cosω2t

10.6 (a) ω1 = 3.750
√

E I/mh3, ω2 = 9.052
√

E I/mh3,
φ1 = 〈 1

√
2 〉T , φ2 = 〈 1 −√2 〉T
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10.7 ω1 = 1.971
√

E I/mh3, ω2 = 8.609
√

E I/mh3, φ1 = 〈 0.919 1 〉T ,
φ2 = 〈−0.544 1 〉T

10.8 (a) u1(t) = 1.207 cosω1t − 0.207 cosω2t , u2(t) = 1.707 cosω1t + 0.293 cosω2t

10.10 ω1 = 2.407
√

E I/mh3, ω2 = 7.193
√

E I/mh3

φ1 = 〈0.482 1 −0.490/h − 0.490/h − 0.304/h − 0.304/h〉T
φ2 = 〈−1.037 1 − 0.241/h − 0.241/h − 1.677/h − 1.677/h〉T

10.12 ωn = αn

√
E I/mh3, α1 = 2.241, α2 = 4.899, α3 = 7.14;φ1 = 〈 0.314 0.686 1 〉T ,

φ2 = 〈−0.5 −0.5 1 〉T , φ3 = 〈 3.186 −2.186 1 〉T
10.14 ωn = αn

√
E I/mh3, α1 = 1.423, α2 = 4.257, α3 = 6.469;φ1 = 〈 0.7 0.873 1 〉T ,

φ2 = 〈−0.549 −0.133 1 〉T , φ3 = 〈 1.301 −1.614 1 〉T

10.15 (a)

{ u1(t)
u2(t)
u3(t)

}
=
{ 1.2440

2.1547
2.4880

}
cosω1t+

{−0.3333
0
0.3333

}
cosω2t+

{ 0.0893
−0.1547

0.1786

}
cosω3t

10.16 (a)

{ u1(t)
u2(t)
u3(t)

}
=
{ 0.935

2.04
2.98

}
cosω1t +

{ 0.065
−0.0448

0.0205

}
cosω3t

10.23 (a) ωn = αn

√
E I/mL3; αn = 0.5259, 1.6135, 1.7321;

φ1 =
{ 1
−1.9492

1.9492

}
, φ2 =

{ 1
1.2826
−1.2826

}
, φ3 =

{ 0
1
1

}

(b)

{ u1(t)
u2(t)
u3(t)

}
=
{ 0.3969
−0.7736

0.7736

}
cosω1t +

{ 0.6031
0.7736
−0.7736

}
cosω2t

10.24 ωn = 5.87, 6.12, 10.74 rad/s
φ1 = 〈0 0.155 0.0093〉T , φ2 = 〈0.158 0 0〉T ,

φ3 = 〈0 −0.0304 0.0475〉T
10.28 (a) ωn = αn

√
E I/mL3, α1 = 0.4834, α2 = 0.4990, α3 = 1.4827

10.29–10.32 Compare against exact results.

Chapter 11

11.1 c =
[ 145.2 −45.2 0

106.4 −19.37
(sym) 40.30

]
kN-s/m, ζ2 = 0.0430

11.2, 11.4 c =
[ 149.2 −41.16 − 4.052

110.49 −23.43
(sym) 44.35

]
kN-s/m
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Chapter 12

12.1 u1(t) = (po/k)(1.207C1 − 0.207C2) sinωt ,

u2(t) = (po/k)(1.707C1 + 0.293C2) sinωt , where Cn =
[
1− (ω/ωn)

2
]−1

12.4 u1(t) = po

2m

(
sinω1t

ω1
+ sinω2t

ω2

)
, u2(t) = 0.707po

m

(
sinω1t

ω1
− sinω2t

ω2

)

12.5 (a) u1(t) = po

k
(1− 0.853 cosω1t − 0.147 cosω2t), u2(t) =

po

k
(1− 1.207 cosω1t + 0.207 cosω2t)

12.9 u3o = ω2 po

√( C1

K1
+ C2

K2
+ C3

K3

)2

+
(D1

K1
+ D2

K2
+ D3

K3

)2

, ü3o = ω2u3o,

where po = 0.60 N; K1 = 22909 kN/m, K2 = 171000 kN/m, and
K3 = 319090 kN/m; and Cn and Dn are as defined in Example 12.5.

12.16 {
u1(t)
u2(t)

}
=
{

1
1

}
5.55(1− cos 10t)+

{
1
−1

}
(−0.3704)(1− cos 38.73t); t ≤ 0.3 s

{
u1(t)
u2(t)

}
=
{

1
1

}
[11.08 sin 10(t − 0.15)]

+
{

1
−1

}
[0.3379 sin 38.73(t − 0.15)] ; t ≥ 0.3 s

12.18 Combined values of shears (in kN) and bending moments (in kN-m):

Va = Vb = 234; Vc = Vd = −261.6; Ve = Vf = 130.8

Ma = 0; Mb = Mc = −312; Md = Me = 36.5; Mf = 0

12.19 uo =
{

0.423
1.693

}
cm, üo =

{
264

1058

}
cm/s2

12.20 Mbo = 114.3 kN-m, Mdo = −228.6 kN-m

12.24 (a) M(t) =
∑

M stM̄n
[
ω2

n Dn(t)
]
, where

Dn(t) = po

ω2
n

1

1− (Tn/2td)2

[
sin

(
π

t

td

)
− Tn

2td
sin

(
2π

t

Tn

)]
; t ≤ td

Dn(t) = Dn(td) cosωn(t − td)+ Ḋn(td)

ωn
sinωn(t − td); t ≥ td

M st = −0.3125L; M̄1 = 0.3414, M̄2 = 0.6000, M̄3 = 0.0586

(b) M(t) = M st {p(t)+ M̄1
[
ω2

1 D1(t)− p(t)
]}
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Chapter 13

13.1 (a) s1 = m 〈 0.854 0.604 〉T , s2 = m 〈 0.146 −0.104 〉T
(b) u1(t) = 0.854D1(t)+ 0.146D2(t), u2(t) = 1.207D1(t)− 0.207D2(t)
(c) V1(t) = 1.458m A1(t)+ 0.042m A2(t), V2(t) = 0.604m A1(t)− 0.104m A2(t)
(d) Mb(t) = 2.062mh A1(t)− 0.062mh A2(t), M1(t) = 0.604mh A1(t)−

0.104mh A2(t)

13.2 (c) Peak values of total responses: u1 = 2.155 cm, u2 = 2.863 cm,
Vb = 485 kN, V2 = 202 kN, Mb = 2576 kN-m, M2 = 807 kN-m

13.4 (a) Floor displacements: u1(t) = 0.647D1(t)+ 0.353D2(t),
u2 = 1.341D1(t) − 0.341D2(t)

Joint rotations at first and second floors: u3(t)= (1/h)[−0.657D1(t) +
0.082D2(t)], u5(t) = (1/h) [−0.407D1(t)+ 0.572D2(t)]

(b) Bending moments in first-story column:
Top: Ma = mh [0.216A1(t)+ 0.0473A2(t)]
Bottom: Mb = mh [0.443A1(t)+ 0.0441A2(t)]
Bending moment at ends of second-floor beam:
Ma = Mb = mh[−0.211A1(t)+ 0.0332A2(t)]

13.5 (a) s1 = m 〈0.622 1.077 0.622〉T , s2 = m 〈0.333 0 − 0.167〉T ,
s3 = m 〈0.045 − 0.077 0.045〉T

(b) u1(t) = 0.622D1(t)+ 0.333D2(t)+ 0.045D3(t),
u2(t) = 1.077D1(t)− 0.077D3(t),
u3(t) = 1.244D1(t)− 0.333D2(t)+ 0.089D3(t)

(c) V1(t) = 2.321m A1(t)+ 0.167m A2(t)+ 0.012m A3(t),
V2(t) = 1.699m A1(t)− 0.167m A2(t)− 0.0326m A3(t),
V3(t) = 0.622m A1(t)− 0.167m A2(t)+ 0.045m A3(t)

(d) Mb(t) = mh [4.642A1(t)− 0.167A2(t)+ 0.024A3(t)]

13.7 Peak values of total responses: u1 = 1.81 cm, u2 = 3.04 cm, u3 = 3.479 cm,
Vb = 787 kN, V2 = 554 kN, V3 = 216 kN, Mb = 6053 kN-m, M2 = 3072 kN-m,
M1 = 863 kN-m

13.9 M∗1 = 2.3213m, M∗2 = 0.1667m, M∗3 = 0.0121m
h∗1 = 2h, h∗2 = −h, h∗3 = 2h

13.11 (a) Floor displacements: u1(t) = 0.427D1(t)+ 0.377D2(t)+ 0.197D3(t),
u2(t) = 1.007D1(t)+ 0.182D2(t)− 0.189D3(t),
u3(t) = 1.352D1(t)− 0.508D2(t)+ 0.157D3(t)

(b) Bending moments in first-story column:
Mtop = mh [0.301A1(t)+ 0.068A2(t)+ 0.023A3(t)] ,

Mbase = mh [0.753A1(t)+ 0.084A2(t)+ 0.020A3(t)]
Bending moments at ends of second-floor beams:
Ma = Mb = mh [−0.541A1(t)+ 0.057A2(t)+ 0.003A3(t)]

13.15 (a) s1 = m 〈0.849 0.594〉T , s2 = m 〈−0.849 0.406〉T
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(b) u1(t) = 0.283D1(t)− 0.283D2(t), u2(t) = 0.594D1(t)+ 0.406D2(t)
(c) Mb(t) = 1.443mL A1(t)− 0.443mL A2(t)

13.17 (a) s1 = m 〈 1.985 −0.774 0.774 〉T , s2 = m 〈 3.015 0.774 −0.774 〉T ,
s3 = 〈 0 0 0 〉T

(b) u1(t) = 0.397D1(t)+ 0.603D2(t), u2(t) = −0.774D1(t) + 0.774D2(t),
u3(t) = 0.774D1(t) − 0.774D2(t)

(c) Mb(t) = 3.533mL A1(t)+ 1.467mL A2(t), Ma(t) = −0.774mL A1(t)+
0.774mL A2(t)

13.23 (c) Peak responses: u3o = 101.6 cm, Vao = 3.302 kN, Vbo = 710.24 kN
(d) Seismic coefficients: 3.96 and 0.426 for appendage and for tower, respectively

13.25 (a) s1 = 〈0 27.2 17.4〉T (Mg), s2 = 〈28.3 0 0〉T ,
s3 = 〈0 1.05 − 17.45〉T

(c) ux (t) = 0.7071D2(t), uy(t) = 0.6809D1(t)+ 0.0262D3(t), uθ (t) =
0.0409D1(t)− 0.0409D3(t)

(d) Vbx (t) = 28284A2(t), Vby(t) = 27235A1(t)+ 1049A3(t), Tb(t) =
17457A1(t)− 17457A3(t)

13.26 (c) Peak responses: uyo = 10.63 cm, (b/2)uθo = 3.11 cm, Vbo = 156.9 kN,
Tbo = 223.2 kN-m

13.27 (a) s1 = m 〈 0.603 −0.382 −0.305 〉T ,
s2 = m 〈 0.043 −0.081 0.187 〉T ,
s3 = m 〈 0.353 0.463 0.118 〉T

(b) ux (t) = 0.603D1(t)+ 0.043D2(t)+ 0.353D3(t),
uy(t) = −0.382D1(t)− 0.081D2(t)+ 0.463D3(t),
uz(t) = −0.305D1(t)+ 0.187D2(t)+ 0.118D3(t)

(c) Mx (t) = mL [−0.077A1(t)− 0.268A2(t)+ 0.345A3(t)] ,
My(t) = mL [−0.908A1(t)+ 0.144A2(t)− 0.235A3(t)] ,

T (t) = mL [0.986A1(t)+ 0.124A2(t)− 0.110A3(t)]

13.32 (i) u(t) = 0.8889ugo sin 6.34t , ut (t) = 1.3889ugo sin 6.34t ,
M = −(3E I/L2)u(t); (ii) u(t) = 1.7778ugo sin 6.34t ,
ut (t) = 2.7778ugo sin 6.34t , M = −(3E I/L2)u(t)

13.34 (a) ut
1(t) = 0.5ug(t)+ 0.5ug(t − t ′)+ 0.5D1(t)

+ 0.5D1(t − t ′)+ 0D2(t)+ 0D2(t − t ′)
ut

2(t) = 0.3ug(t)− 0.3ug(t − t ′)+ 0D1(t)
+ 0D1(t − t ′)+ 0.30D2(t)− 0.30D2(t − t ′)

Ma(t) = (E I/L2)
[−7.2ug(t)+ 7.2ug(t − t ′)

]
+ mL

[
0.0781A1(t)+ 0.0781A1(t − t ′)

+ 0.0075A2(t)− 0.0075A2(t − t ′)
] ; etc.
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13.36 (a) ut
y(t) = −0.088ug(t)+ 0.088ug(t − t ′)− 0.126D1(t)

+ 0.126D1(t − t ′)+ 0D2(t)+ 0D2(t − t ′)
+ 0.038D3(t)− 0.038D3(t − t ′); etc.

Vax = −1392ug(t)+ 1392ug(t − t ′)+ 5.26A1(t)
+ 6.66A2(t)+ 12.17A3(t)− 5.26A1(t − t ′)
+ 6.66A2(t − t ′)− 12.17A3(t − t ′);

Vay = 1606ug(t)− 1606ug(t − t ′)− 3.43A1(t)
+ 12.34A3(t)+ 3.43A1(t − t ′)− 12.34A3(t − t ′); etc.

13.38 (a) ut
2(t) = −0.231ug(t)+ 1.231ug(t − t ′)− 0.37D1(t)

0.0056D1(t − t ′)+ 0.139D2(t)+ 1.225D2(t − t ′)
(b) ut

2(t) = ug(t)− 0.364D1(t)+ 1.364D2(t)

13.39 (a) u1 = 4.75 cm, u2 = 9.83 cm
(b) First-story column: Mtop = 352; Mbase = 709 kN-m

Second-floor beam: Mleft = Mright = 340 kN-m

13.40 u1 = 2.09 cm, u2 = 2.96 cm
Vb = 470 kN, V2 = 198 kN,
Mb = 2661, M1 = 792 kN-m

13.41 (a) u1 = 4.34, u2 = 10.22, u3 = 13.73 cm
(b) First-story column: Mtop = 484, Mbase = 1185 kN-m

Second-floor beam: Mleft = Mright = 852 kN-m

13.47 u1 = 2.97 cm, u2 = 6.13 cm, Mb = 21.3 kN-m

13.50 (a) u1 = 3.88, u2 = 7.41, u3 = 7.41cm
(b) Mb = 28.9, Ma = 9.88 kN-m

13.54
u3 (cm) Va (kN) Vb (kN)

SRSS 267 8.51 783
CQC 171 5.38 828

13.58
ux (cm) uy (cm) (b/2)uθ (cm) Vx (kN) Vy (kN) T (kN-m)

CQC 15.9 15.978 4.203 248.1 229.9 271.47
SRSS 15.9 15.970 4.243 248.1 229.5 274.56

Bending moments (kN-m):

May Max Mby Mbx Mcy Mcx Mdy Mdx

CQC 134.9 128.5 67.46 103.1 100.4 103.1 200.8 128.56
SRSS 171.2 128.0 85.6 103.2 85.6 103.3 171.2 128.02
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13.59
Displacement SRSS Rule (cm) CQC Rule (cm)

ux 2.47 2.616
uy 1.604 1.853
uz 1.427 0.663

Response SRSS Rule (kN-m) CQC Rule (kN-m)

Mx 1.059 1.154
My 2.269 1.951
T 2.394 2.642

13.63 Mα = 1.377 kN-m (SRSS rule) and 1.658 kN-m (CQC rule)

13.67 (a) Mα = (A sin2 α + B sinα cosα + C cos2 α)1/2

where A = 5.15, B = −0.536, C = 1.122, all in (kN-m)2. (SRSS rule);
A = 3.810, B = 1.8397, C = 1.333 (CQC rule)

(b) Maximum value of Mα = 2.273 kN-m at α = 93.78o (SRSS rule);
Mα = 2.02 kN-m at α = 71.69o (CQC rule)

Chapter 14

14.2 ω1 = 0.7709

√
k

m
ω2 = 1.8346

√
k

m

ψ1 =
{

0.7132− 0.0775 i
1.0000

}
ψ2 =

{−0.6732− 0.1806 i
1.0000

}
ζ1 = 0.1316 ζ2 = 0.0537

14.4 u(t) = e−0.1316ω1t

[{−0.1324
−0.2294

}
cosω1Dt −

{
0.3046
0.4022

}
sinω1Dt

]

+ e−0.0537ω2t

[{−0.8676
1.2294

}
cosω2Dt +

{
0.0731
0.2212

}
sinω2Dt

]

14.6 u(t) =
{

0.8681
1.2287

}
h1(t)+

{−0.0714
0.0736

}√
m

k
ḣ1 (t)+

{
0.1315
−0.2283

}
h2 (t)

+
{

0.0714
−0.0736

}√
m

k
ḣ2 (t)

where hn (t) and ḣn (t) are given by Eq. (14.8.4) and (14.8.5).

14.8 u(t) =
{

0.8681
1.2287

}
D1(t)+

{−0.0714
0.0736

}√
m

k
Ḋ1 (t)+

{
0.1315
−0.2283

}
D2 (t)

+
{

0.0714
−0.0736

}√
m

k
Ḋ2 (t)
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14.9 ω1 = 0.7743

√
k

m
ω2 = 1.8265

√
k

m

ζ1 = 0.2553 ζ2 = 1.0415

ψ1 =
{

0.7611+ 0.0873 i
1.0000

}
ψ2 =

{−0.4568
1.0000

}
ψ3 =

{−0.5421
1.0000

}
14.10 u(t) = u1(t)+ u2(t)

u1(t) = e−0.2553ω1t

[{
1.1901
1.4919

}
cosω1Dt +

{
0.3454
0.6250

}
sinω1Dt

]

u2(t) = e−1.0415ω2t

[{−0.1901
0.5081

}
coshω2Dt −

{
0.7240
−1.4928

}
sinhω2Dt

]

14.12 u(t) =
{

0.9178
1.1607

}
D1(t)+

{
0.0544
−0.1097

}√
m

k
Ḋ1(t)+

{−0.1034
0.2133

}
D2(t)

+
{−0.0544

0.1097

}√
m

k
Ḋ2 (t)

where Dn(t) and Ḋn(t) are defined in Eqs. (14.9.3) and (14.9.4).

Chapter 15

15.3 ω̃1 = 11.9, ω̃2 = 33.4 rad/s

φ̃1 = 〈0.2319 0.4639 0.6311 0.7983 0.9332〉T
φ̃2 = 〈−0.4366 − 0.8732 − 0.3396 0.1940 1.2126〉T

15.4 ω̃1 = 11.72, ω̃2 = 33.25 rad/s

φ̃1 = 〈0.0258 0.0495 0.0751 0.0917 0.1005〉T
φ̃2 = 〈−0.0915 − 0.088 − 0.0218 0.0439 0.0861〉T

15.9 Peak values of displacements using:
Two Ritz vectors: 0.656, 1.359, 2.191, 2.757, 3.064 cm
Two modes: 0.686, 1.355, 2.163, 2.7533, 3.1003 cm
Five modes: 0.661, 1.353, 2.182, 2.758, 3.078 cm

Chapter 16

16.1–16.4 Check numerical results against the theoretical solution.

16.5 Check numerical results against Table E16.1.

16.6 Check numerical results against Table E16.1 and the theoretical solution.

16.7 Check numerical results against Table E16.2.
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16.8 Check numerical results against Table E16.2.

16.10 Check numerical results against Table E16.3.

16.11 Check numerical results against Table E16.4.

Chapter 17

17.2 ωn = αn

√
E I/mL4; α1 = 15.42, α2 = 49.97, and α3 = 104.2

17.4 u

(
L

2
, t

)
= −2W L3

π4 E I

(
cosω1t + cosω3t

81
+ cosω5t

625
+ cosω7t

2401
+ · · ·

)

17.6 u

(
L

4
, t

)
= 8pL4

π5 E I

(
1− cosω2t

32
− 1− cosω6t

7776
+ 1− cosω10t

100,000
− · · ·

)
17.7 u(L/2, t) = q1(t)− q3(t)+ q5(t)− q7(t)− q9(t)− · · ·

where qn(t) is given by (valid if ωn �= nπv/L)

qn(t) = 2po

nπm

1

ω2
n

[
1− ω2

n

ω2
n − (nπv/L)2

cos
nπv

L
t + (nπv/L)2

ω2
n − (nπv/L)2

cosωnt

]

t ≤ L/v

qn(t) = 2po

nπm

1

ω2
n

{
2−

[
1+ ω2

n

ω2
n − (nπv/L)2

(−1)n
]

cosωn(t − td)

+ (nπv/L)2

ω2
n − (nπv/L)2

cosωnt

}
t ≥ L/v

17.11 uo(L) = 17.29 cm, Vbo = 7061 kN, Mbo = 29.3× 104 kN-m

Chapter 18

18.2 ω̃1 = 11.765

L2

√
E I

mo
, ω̃2 = 130.467

L2

√
E I

mo

φ̃1(x) = 1.0 sin(πx/L)− 0.0036 sin(3πx/L)
φ̃2(x) = 0.2790 sin(πx/L)+ 0.9603 sin(3πx/L)

18.3 (a) ωn = αn

√
EI/mL4; α1 = 9.9086, α2 = 43.818, α3 = 110.14, α4 = 200.80

(b) ω1 = 9.798
√

EI/mL4

18.5 (a) ωn = αn

√
EI/mL4; α1 = 15.56, α2 = 58.41, α3 = 155.64

(b) ω1 = 14.81
√

EI/mL4
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18.6 (a) ωn = αn

√
EI/mh4;α1 = 1.5354, α2 = 4.0365, α3 = 10.7471

φ1 = 〈 0.5440 −0.5933/h −0.5933/h 〉T

φ2 = 〈 0 −1/
√

2h 1/
√

2h 〉T

φ3 = 〈−0.0001 1/
√

2h 1/
√

2h 〉T

18.7 ω1 = 1.477
√

EI/mh4

φ = 〈 0.544 −0.594/h −0.594/h 〉T



Index

Absolute sum (ABSSUM) rule, 563, 574–579
Acceleration resonant frequency, 82
Acceleration response factor, 80
Acceleration response spectrum, 208
Accidental torsion, 551, 555
Amplitude of motion

forced harmonic vibration, 76
free vibration, 39

Average acceleration method, 174, 677, 690

Base-isolated buildings
multistory, 822
one-story, 822
rigid structure approximation for analysis

multistory buildings, 828
one-story systems, 818

Base isolation
applications, 828
effectiveness of

dependence on earthquake design spectrum,
819

dependence on natural period of fixed-base
structure, 819

Base isolation, effects of
multistory buildings, 823
one-story buildings, 814

Base isolation systems
bearings, 810
friction pendulum system bearings, 811
laminated bearings, 810
sliding elements, 810

Base rotation, 24, 376, 386, 555

Base shear coefficient, 210
Beam-to-column stiffness ratio, 10, 758, 851
Beam, transverse vibration

effective earthquake forces, 700
equation of motion

applied forces, 698
support excitation, 699

natural vibration frequencies and modes,
700–739

cantilever beam, 703
simply supported beam, 702

orthogonality of modes, 707
rotational inertia and shear, 705

influence of, 706
Bearings

additional damping in
hydraulic dampers, 810
lead plugs, 810
steel coils, 810

laminated bearings, 810
rubber, 92

Braced frames, 16, 17
Bridges

earthquake response, 222
equation of motion, 17
Golden Gate Bridge, 44
natural vibration period, 44, 47, 321
response to traveling load, 318, 713

Buckling restrained, braces, 287
Building code evaluation, 852–860

base shear, 852

933
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equivalent static forces, 856
higher-mode response, 852, 858, 859
overturning moment reduction factor, 859
overturning moments, 858
story shears, 852

Building codes
Eurocode 8, 844–846
International Building Code, 836–838
Mexico Federal District Code, 841–843
National Building Code of Canada, 839–841

Building codes, structural dynamics in, 846–852
design force reduction, 848
fundamental vibration period, 846
lateral force distribution, 850
overturning moment reduction factor, 851
overturning moments, 851
seismic coefficient, 846

Building evaluation guidelines and standards
ATC-40, 868
ASCE 41-06, 869, 874
FEMA 356, 874

Buildings, earthquake response of
influence of beam-to-column stiffness

ratio, 762
influence of fundamental period, 762

Buildings with soft first story (see Soft first-story
buildings)

Buildings with symmetric plan
accidental torsion, 551, 555
effective modal height, 530
effective modal mass, 528
equations of motion

inelastic systems, 392
linear systems, 375, 385

five-story shear frame, 531, 571
four-story frame with an

appendage, 536, 577
modal expansion of earthquake forces,

521
modal responses, 522

equivalent static forces, 522
modal static responses, 522–523

peak modal responses, 567
equivalent static forces, 567
modal static responses, 567

recorded torsion, 555
response history analysis, 520–524
response spectrum analysis, 567–579

Buildings with unsymmetric plan
arbitrary-plan buildings, 546

coupled lateral-torsional motion, 377, 381,
384, 419

effective modal height, 544
effective modal mass, 544
equations of motion, 375–386
modal expansion of earthquake forces, 540
modal responses

equivalent static lateral forces, 543
equivalent static torques, 543
modal static responses, 543

peak modal responses
equivalent static lateral forces, 580
equivalent static torques, 580
modal static responses, 580

response history analysis, 540
response spectrum analysis, 579–587

Buildings with weak first story (see Weak
first-story buildings)

Caracas, Venezuela earthquake (June 29, 1967),
269

Caughey damping, 459
Caughey series, 459
Central difference method, 171, 183, 676
Characteristic equation (see Frequency equation)
Characteristic values (see Eigenvalues)
Characteristic vectors (see Eigenvectors)
Chi-Chi, Taiwan earthquake (September 21,

1999), 199
Citicorp Center, New York, 472
Complete quadratic combination (CQC) rule,

563, 574, 578, 581, 583, 587
correlation coefficient, 564
correlation coefficient, variation with

damping, 565
frequency ratio, 565

Complex frequency-response function, 30,
884–886, 895

Components of a system
damping component, 7, 15, 352
mass component, 7, 15, 352
stiffness component, 7, 15, 352

Conservation of energy, 57
principle of, 329

Convolution integral, 129
Coulomb damping, 57
Coupling terms, 359

in mass matrix, 362
in stiffness matrix, 364

Critical damping, 48
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D’Alembert’s principle, 15, 309, 312, 325, 357
Damped systems

critically damped, 49
overdamped, 49
underdamped, 49

Damping, 7, 12, 355
classical, 424
Coulomb friction, 57
critical, 48
hysteretic (see Damping, rate-independent)
nonclassical, 424
numerical (see Numerical damping)
rate-independent, 105
solid (see Damping, rate-independent)
structural (see Damping, rate-independent)
viscous, 13

Damping component of a system, 7, 15, 352
Damping influence coefficient, 355
Damping matrix

Caughey damping, 459
definition, 356
mass-proportional, 455
Rayleigh damping, 455
stiffness-proportional, 455
when it is needed, 454

Damping matrix, computation of
structures with energy-dissipating devices, 464

Damping matrix from modal damping ratios
classical damping, 455
nonclassical damping, 463

Damping ratio, 48
Damping ratios, recommended, 454
Deformation response factor

half-cycle sine pulse, 147
harmonic force, 69, 80
rectangular pulse, 141

Dirac delta function, 126
Discrete Fourier transform method, 30, 892–903
Discretization

degrees of freedom, 353
elements, 353
nodal points, 353
nodes, 353

Displacement resonant frequency, 82
Dissipated energy (see Energy dissipated)
Distributed-mass systems

difficulty in analyzing practical systems,
724

effective modal height, 720
effective modal mass, 720

Rayleigh’s method for, 329
treated as generalized SDF

systems, 307
Duhamel’s integral, 29, 129–132, 136
Dynamic equilibrium, 15, 350, 357
Dynamic hysteresis, 102

Earthquake analysis of distributed-mass systems
Response history analysis (RHA), 716–720
Response spectrum analysis (RSA), 721–724

Earthquake analysis of linear systems, methods
for

Response history analysis (RHA), 514–562
Response spectrum analysis (RSA), 562–587

Earthquake design spectrum
as envelope of two design spectra, 241
distinction relative to response spectrum, 241

Earthquake design spectrum: elastic, 230, 761,
810

amplification factors, 231
comparison with building code

spectra, 848
comparison with response spectrum, 239
construction of, 232
mean-plus-one-standard-deviation, 231
median, 233
50th percentile, 233
84.1th percentile, 233

Earthquake design spectrum: inelastic, 289
comparison with response spectrum, 302
construction of, 289
displacement-based structural design, 299
evaluation of an existing structure, 298
normalized strength, 289
relations between peak deformations of

elastoplastic and linear systems, 295
relations between yield strengths of elastic and

elastoplastic systems, 295
structural design for allowable

ductility, 296
yield strength reduction factor, 290

Earthquake excitation, 197
influence matrix, 389
influence vector, 374, 389

Earthquake ground motion
multicomponent, 595
near-fault ground motion, 226, 872
rotational components, 24, 376, 520, 551
translational components, 23, 203, 372, 375,

377, 514, 539
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Earthquake response of buildings
influence of beam-to-column stiffness ratio,

762
influence of fundamental period, 762

Earthquake response of elastoplastic systems
response history, 267
response spectrum, 274

Earthquake response of generalized SDF systems,
314, 325

Earthquake response of linear SDF systems
deformation response, 205
equivalent static force, 206
pseudo-acceleration response, 206
response history, 205
response spectrum, 207

Earthquake response of MDF systems
classically damped systems, 513
nonclassically damped systems, 632, 642

Earthquake response spectrum for elastoplastic
systems

construction of, 276
pseudo-acceleration, 274
pseudo-velocity, 274
relative effects of yielding and damping, 280
yield deformation, 274
yield strength and deformation from, 278

Earthquake response spectrum for linear systems
acceleration, 208

comparison with pseudo-acceleration, 243
characteristics at long periods, 223
characteristics at short periods, 222
characteristics of, 222
combined deformation–pseudo-velocity–

pseudo-acceleration, 212
computation of peak structural response, 217
construction of, 215
deformation, 208, 215
effect of damping, 227
mean, 230
mean-plus-one-standard-deviation, 230
probability distribution, 230
pseudo-acceleration, 210
pseudo-velocity, 209
relative velocity, 208

comparison with pseudo-velocity, 242
Earthquakes

Caracas, Venezuela (June 29, 1967), 469
Chi-Chi, Taiwan (September 21, 1999), 199
Guam, U.S. Territory (August 8, 1993), 199
Haiti (January 12, 2010), 199

Imperial Valley, California (May 18, 1940),
202

Killari, India (September 30, 1993), 199
Koyna, India (December 11, 1967), 749
Loma Prieta, California (October 17, 1989),

199, 200, 453
Long Beach, California (March 10, 1933), 199
Lytle Creek, California (September 12, 1970),

452, 561
Mexico City, Mexico (September 19, 1985),

819
Northridge, California (January 17, 1994), 199,

453, 777
San Fernando, California (February 9, 1971),

199, 450, 453, 561, 783
Tohoku, Japan (March 11, 2011), 199
Upland, California (February 28, 1990), 561

Effective earthquake force: SDF systems, 24
Effective earthquake forces

buildings with unsymmetric plan, 385
distributed-mass systems, 700
MDF planar or symmetric-plan systems

rotational ground motion, 376
translational ground motion, 372, 375

multiple support excitation, 387
Effective modal height

buildings with symmetric plan, 530
buildings with unsymmetric plan, 543
distributed-mass systems, 720

Effective modal mass
buildings with symmetric plan, 528
buildings with unsymmetric plan, 543
distributed-mass systems, 720

Effective modal weight (first mode), 853
Eigenvalue problem, 407

complex, 622
modal matrix, 408
real, 407
quadratic, 622
spectral matrix, 408
transformation to standard form, 440

Eigenvalue problem, solution methods for
determinant search method, 429
inverse vector iteration method, 430–435

convergence criterion, 431
convergence proof, 432
convergence rate, 434
evaluation of fundamental mode, 431
evaluation of higher modes, 434
tolerance, 432
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inverse vector iteration with shifts, 435
convergence rate, 436

Lanczos method, 429
polynomial iteration techniques, 429
Rayleigh’s quotient iteration, 437

application to structural dynamics, 440
subspace iteration method, 429
transformation methods, 429
vector iteration methods, 429

Eigenvalues, 407
Eigenvectors, 408
Elastic–perfectly plastic system (see Elastoplastic

SDF system)
Elastoplastic SDF system

allowable ductility, 296
corresponding linear system, 264
ductility demand, 271
ductility factor, 265
effects of yielding on response, 267
influence of yield strength on earthquake

response, 270
normalized yield strength, 265, 271
peak deformation, 271
permanent displacement after

earthquake, 269
relationship between peak displacements of

elastoplastic and linear systems in
acceleration-sensitive region of spectrum,

273
displacement-sensitive region of spectrum,

272–273
velocity-sensitive region of spectrum, 273

yield deformation, 264
yield strength, 264
yield strength reduction factor, 265
yield strength for specified ductility, 275

El Centro ground motion, 202, 236,
245–249

Element forces
computed from displacements, 27, 391, 477
computed from equivalent static forces, 27,

391, 477
Energy

input, 56, 99
kinetic, 56, 100, 329–331
potential, 56, 100, 329–331
strain, 56, 100, 329–331

Energy conservation, 56
Energy dissipated

in Coulomb friction, 110

in rate-independent damping, 105
in viscous damping, 57, 99

Energy-dissipating devices, 284
buckling restrained braces, 287
fluid viscous dampers, 284
friction dampers, 287
metallic yielding dampers, 287
viscoelastic dampers, 284

Energy-dissipating mechanisms, 12, 455
Energy quantities for elastoplastic systems

earthquake input energy, 282
energy dissipated by viscous damping, 282
energy dissipated by yielding, 282
kinetic energy, 282
strain energy, 282

Equation of motion
buildings with symmetric plan

torsional excitation, 384
translational ground motion, 375

buildings with unsymmetric plan, 377–386
multistory one-way unsymmetric system,

386
one-story, one-way unsymmetric system,

381
one-story, two-way unsymmetric system,

377
coupling terms, 359
distributed-mass systems, 698–700
MDF systems subjected to external forces,

359–369
multiple support excitation, 387
one-story symmetric system, 382
planar systems: rotarional ground motion, 376
planar systems: translational ground motion,

372–375
SDF systems subjected to earthquake

excitation, 23
SDF systems subjected to external

force, 14
solution methods, overview of

direct solution, 393
modal analysis, 393

Equivalent static force: SDF systems, 27, 153,
206

Equivalent static forces
generalized SDF systems, 314, 326
MDF systems, 392, 477, 522, 542, 567, 580

Equivalent viscous damping, 13, 103
systems with Coulomb friction, 112
systems with rate-independent damping, 107
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Eurocode 8, 844–846
base shear, 844
design spectrum, 845
lateral forces, 845
overstrength factor, 844
overturning moment reduction

factor, 846
seismic coefficient, 844
seismic reduction factor, 844

Existing buildings
of historical or architectural merit, 829
retrofit of, 829
seismic strengthening, 829

Experimental testing
forced harmonic vibration, 87, 448
free vibration, 54, 427
resonance, 87

Explicit methods, 172, 674

Finite element method, 359, 735–752
comparison with exact solution, 747
direct assembly procedure, 738
element (applied) force vector, 738

consistent formulation, 743
simpler formulation, 743

element degrees of freedom, 737
element mass matrix, 738

consistent mass, 742
lumped mass, 742

element stiffness matrix, 738, 740
finite elements, 745
interpolation functions, 737, 740
nodal points, 737
nodes, 737
three-dimensional finite elements, 748
trial functions, 735
two-dimensional finite elements, 748

First Federal Savings, Pomona,
California, 552

Floor diaphragms
flexible, 358
rigid, 358, 375

Fluid viscous dampers, 284
Force

harmonic, 66
impulsive, 126
ramp, 131
step, 129
step with finite rise time, 132
varying arbitrarily with time, 127

Force–displacement relation
elastoplastic, 263
linear, 9, 354
nonlinear, 11, 391

Fourier series, 113, 887
Fourier transform, 30, 891

direct, 891
discrete, 894
fast, 896
inverse, 891
pair, 891

Four-way logarithmic graph paper, 82, 118, 212,
251

Fraction of critical damping (see Damping ratio)
Free-body diagram, 15, 20–21, 350
Free vibration equations for MDF system,

solution of
classically damped systems, 425
nonclassically damped systems, 623, 639
undamped systems, 421

Free vibration of MDF systems
classically damped systems, 423–425
nonclassically damped systems, 623–627,

639–643
undamped systems, 404

Free vibration of SDF systems
Coulomb-damped, 57
input energy, 56
kinetic energy, 56
potential energy, 56
strain energy, 56
undamped, 39
viscously damped, 48

Free vibration tests, 54, 424
Frequency-domain method, 30

complex frequency-response function,
884–886, 895

relation to unit impulse response, 891
discrete Fourier transform methods, 30,

892–903
complex frequency-response

function, 895
computation of response, 895
fast Fourier transform, 896
folding frequency, 895
Fourier series representation, 894
improved DFT solution, 901
multi-degree-of-freedom systems, 903
Nyquist frequency, 895
possible errors, 897
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response to arbitrary excitation, 890–891
direct Fourier transform, 891
Fourier integral, 890
Fourier transform, 891
inverse Fourier transform, 891

response to periodic excitation, 887–890
complex Fourier series, 887
steady-state response, 888

Frequency equation, 407, 429
Frequency-response curve

analytical solution, 76
experimental evaluation, 88

Friction dampers, 287

Generalized coordinate (see Generalized
displacement)

Generalized displacement, 306
Generalized properties

damping, 307, 476
force, 307, 473, 709
mass, 307, 473, 709
stiffness, 307, 473, 709

Generalized SDF systems, 307
lumped-mass system: shear building, 322
rigid-body assemblages, 308
systems with distributed mass and elasticity,

310
Gram–Schmidt orthogonalization, 434, 666
Guam, U.S. Territory earthquake (August 8,

1993), 199

Haiti earthquake (January 12, 2010), 199
Half-power bandwidth, 83
Harmonic tests, 87, 448
Harmonic vibration (forced)

steady state, 67, 72
systems with Coulomb friction, 109
systems with rate-independent damping,

105
transient, 67, 72
undamped systems, 66
viscously damped systems, 72

Higher-mode response of buildings
building code evaluation, 840, 846, 847
heightwise variation of, 769
influence of beam-to-column stiffness ratio,

768
influence of fundamental period, 765
number of modes to include

dependence on beam-to-column stiffness
ratio, 772

dependence on fundamental period, 772
Hysteresis

dynamic, 102
static, 102, 105

Hysteresis loop, 14, 101

Imperial Valley, California earthquake (May 18,
1940), 202

Implicit methods, 176, 674
Impulse response (see Unit impulse response

function)
Impulsive force, 126
Inelastic multistory buildings, 776

approximate analysis procedures, 788
modal pushover analysis, 797
uncoupled modal response history analysis,

790
base shear yield strength

modification factor, 788
corresponding SDF system, 787
ductility demand

heightwise variation of, 783
variation with fundamental period, 787

nonlinear response history analysis, 776
factors to be considered, 777–781

modeling assumptions, 779
P–� effects, 777
statistical variation, 780

SAC buildings, 777
story drift demands, 781

influence of inelastic behavior, 784
influence of plastic hinge mechanism,

781
uncoupled modal response history analysis,

790
inelastic systems, 792
linearly elastic systems, 790
modal uncoupling approximation, 793

Inelastic systems, 11, 392
International Building Code, 836–838

base shear, 836
design spectrum, 837
elastic seismic coefficient, 836
importance factor, 836
lateral forces, 838
seismic coefficient, 836
site class, 836
story forces, 838
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Isolation (see Vibration isolation)
Isolator deformation, 816

Killari, India earthquake (September 30, 1993),
199

Kinetic energy, maximum value of, 331–332
Koyna Dam, 749
Koyna, India earthquake (December 11, 1967),

749

Laplace transform, 30
Lateral force coefficient, 210
Lateral stiffness, 9, 27, 45
Linear acceleration method, 174, 677
Logarithmic decrement, 52
Loma Prieta, California earthquake (October 17,

1989), 199, 200, 453
Long Beach, California earthquake (March 10,

1933), 199
Loss factor, 102
Lumped-mass idealization, 357

for multistory buildings
floor diaphragm, flexible, 358
floor diaphragm, rigid, 358

Lytle Creek, California earthquake
(September 12, 1970), 452, 561

Mass component of system, 7, 15, 352
Mass influence coefficient, 357
Mass matrix

diagonal, 358
general, 357

Mass–spring–damper system, 19, 350
Matrix eigenvalue problem (see

Eigenvalue problem)
Metallic yielding dampers, 287
Mexico City ground motion (September 19,

1985), 819
Mexico Federal District Code, 841–843

base shear, 841
design spectrum, 842
lateral forces, 843
overturning moment reduction factor, 841
seismic behavior factor, 843
seismic coefficient, 841
seismic reduction factor, 843

Millikan Library, Pasadena, California, 447, 561
Lytle Creek earthquake, 452
San Fernando earthquake, 450

Millikan Library, vibration properties from
motions recorded during

forced harmonic vibration tests, 449
Lytle Creek earthquake, 449
San Fernando earthquake, 449

Millikan Library, vibration properties of
amplitude dependence, 450
damping ratios, 449
natural vibration periods, 449

Modal analysis, 472–478
modal expansion of displacements, 472
modal responses, 476
summary, 477
total response, 476

Modal analysis for p(t) = sp(t), 486–487
modal contribution factor, 487, 489
modal participation factor, 486
modal response contributions, 489
modal static response, 487
number of modes required, 489

dependence on dynamic response factors,
492

dependence on force distribution, 491
dependence on modal contribution

factors, 491
dependence on response quantity,

490–492
SDF system, nth mode, 486

Modal analysis interpretation, 487, 517
Modal analysis of distributed-mass systems

forced response, 709
modal equations, 709, 717
modal expansion of effective earthquake

forces, 717
modal responses, 710, 718–719

equivalent static forces, 718
modal static response, 719

SDF system, nth mode, 718
Modal analysis of earthquake response of

lumped-mass systems
modal equations, 515
modal expansion of displacements and forces,

514
modal responses

equivalent static forces, 516
modal static responses, 516

SDF system, nth mode, 515
total response, 516

Modal combination rules
absolute sum (ABSSUM), 563
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complete quadratic combination (CQC), 563
square-root-of-sum-of-squares (SRSS), 563

Modal contribution factors, 487, 763, 771
base overturning moment, 765
base shear, 764
dependence on force distribution, 491
dependence on response

quantity, 492
influence of beam-to-column stiffness ratio,

764
top-floor displacement, 765
top-story shear, 764

Modal coordinates, 420
Modal damping ratios, 425, 447, 452, 476

estimation of, 452
Modal equations

damped systems, 475
generalized

damping, 476
force, 473, 710
mass, 473, 710
stiffness, 473, 710

modal coordinates, 473, 475, 739
modal damping ratios, 476
undamped systems, 473, 709

Modal expansion of displacements, 418, 472,
514, 709

Modal expansion of excitation vector, 482, 514
Modal pushover analysis, 797

evaluation (of accuracy), 802–807
higher-mode contributions, 804

inelastic SDF system, nth mode, 794
inelastic systems, 798–801
linearly elastic systems, 797–798

equivalence to response spectrum
analysis, 798

nonlinear static (or pushover) analysis, 798
simplified modal pushover analysis for

practical application, 807
summary, 799

Modal static responses, 487, 492, 516, 523,
543, 719

Mode acceleration superposition method, 499
Mode displacement superposition method (see

Modal analysis)
Momentum, 127
Multicomponent combination rules

CQC3 rule, 596
percent rule, 599
SRSS rule, 599

Multicomponent ground motion
peak response to, 595

critical incident angle, 598
critical response, 598

principal axes
intermediate, 595
major, 595
minor, 595

seismic incident angle, 596
Multiple support excitation

equations of motion, 387
response analysis, 555–557

dynamic displacements, 556
equivalent static forces, 556
modal equations, 556
quasi-static displacements, 556
quasi-static support forces, 557
SDF system, nth mode, 556

National Building Code of Canada, 839–841
base shear, 839
design spectrum, 839
force modification factor, 840
higher mode factor, 839
lateral forces, 840
overturning moment reduction factor, 841
seismic coefficient, 839
seismic importance factor, 839
story forces, 841

Natural frequencies of MDF system
damped vibration, 427
undamped vibration, 405–420

Natural frequency of SDF system
damped vibration, 50
undamped vibration, 41

Natural period of SDF system
damped vibration, 50
undamped vibration, 41

Natural vibration frequencies and modes,
computation of (see Eigenvalue
problem, solution methods for)

Natural vibration frequency
by Rayleigh’s method

distributed-mass systems, 330
lumped-mass systems, 331

from generalized SDF system analysis,
313, 325

Natural vibration modes
fundamental mode, 408
nonclassically damped systems, 619
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Natural vibration modes (continued)
normalization, 410
orthonormal, 411

Natural vibration periods, 406–420
nonclassically damped systems, 619

Natural vibration periods and modes of
buildings

dependence on beam-to-column stiffness ratio,
758–760

Newmark’s method, 174, 183, 676
Newton–Raphson iteration, 184, 684

convergence criterion, 185, 685
Newton’s second law of motion, 14,

19, 348
Nonclassically damped systems

analysis of
earthquake response, 636, 646
free vibration, 627, 639
unit impulse response, 632, 643

definition, 424
eigenvalue problem, 622
examples, 463, 464, 813, 823
natural vibration frequencies, 623
natural vibration modes, 623

Nonlinear static (or pushover) analysis
building evaluation guidelines, 798
modal pushover analysis, 877
numerical methods, 684

Nonstructural elements, 561
Normal coordinates (see Modal coordinates)
Normal modes (see Eigenvectors)
Normal values (see Eigenvalues)
Northridge, California earthquake (January 17,

1994), 199, 453
Nuclear power plant reactor building, 749
Numerical damping, 182, 683
Numerical evaluation of response

linear systems, 167–183
linear systems with nonclassical

damping, 675
nonlinear systems, 184–194, 677–691

Numerical time-stepping methods
average acceleration method, 174, 677, 683
based on interpolation of excitation, 167
central difference method, 171, 183, 676
linear acceleration method, 174, 677
Newmark’s method, 174, 183, 676
Wilson’s method, 181

Numerical time-stepping methods, accuracy of
errors for linear systems, 180

Numerical time-stepping methods,
requirements for

accuracy, 167, 180, 674
convergence, 167, 180, 674
stability, 167, 180, 674

Numerical time-stepping methods, types of
conditionally stable, 180, 674, 677, 678
explicit methods, 172, 674, 676
implicit methods, 176, 674, 677
unconditionally stable, 180, 677, 678

Olive View Hospital, Sylmar, California, 783
Orthogonality of modes

discretized or lumped-mass systems, 409, 460,
473

distributed-mass systems, 707
interpretation of, 410
nonclassically damped systems, 623

Overstrength of buildings, 849

Periodic excitation, 113, 887–880
steady-state response, 114, 756

Phase angle, 69, 76
Phase lag (see Phase angle)
Potential energy, maximum value of, 330–331
Pulse force

approximate analysis for short pulses, 151
effects of pulse shape, 151
effects of viscous damping, 154
half-cycle sine pulse, 143
rectangular pulse, 137
symmetrical triangular pulse, 148

Pulse ground motion, 155
Pushover analysis (see Nonlinear static analysis)

Ramp force, 131
Random vibration theory, 566
Rayleigh damping, 455, 464
Rayleigh–Ritz method for discretized systems,

659–662
generalized coordinates, 660
orthogonality of approximate modes, 662
Ritz transformation, 660
Ritz vectors, 660

force-dependent, 665
mass orthonormal, 666

Rayleigh–Ritz method for distributed-mass
systems, 729–735

disadvantages, 735
formulation using conservation of energy, 729



Index 943

formulation using virtual work, 733
Ritz functions, 730
shape functions, 730

Rayleigh’s method, 329, 661, 846
for distributed-mass systems, 330
for lumped-mass systems, 331

Rayleigh’s quotient
bounds, 430
for distributed-mass systems, 331
for lumped-mass systems, 332, 661
in Rayleigh–Ritz method, 730
properties, 332

Rayleigh’s stationarity condition, 430, 661, 730
Reduction of degrees of freedom

kinematic constraints, 656
Rayleigh–Ritz method, 657

Resonance listing, 87
Resonant frequency, 70, 82

acceleration, 82
displacement, 82
velocity, 82

Response factors
acceleration, 80
deformation, 69, 80
velocity, 76

Response spectrum analysis of structures,
562–587, 761, 813, 823

avoidance of pitfall, 576
comparison with response history analysis,

575, 579
interpretation of, 566
modal combination rules, 563–564

absolute sum (ABSSUM) rule, 563
complete quadratic combination (CQC) rule,

563
square-root-of-sum-of-squares (SRSS) rule,

563
modal combination rules, errors in, 566
multicomponent combination rules

CQC3 rule, 596
percent rule, 599
SRSS rule, 599

nonclassically damped systems, 646
peak modal responses, 562
peak total response, 563
response envelope (see Simultaneous responses

to earthquake excitation)
Response spectrum for step force with finite rise

time, 134
Rigid bodies, inertia forces for, 338

Ritz vectors, selection of, 663–668
by visualizing natural modes, 663
force-dependent Ritz vectors, 665

San Andreas fault, 830
San Fernando, California earthquake (February 9,

1971), 199, 452, 554, 783
San Francisco Airport, 820
San Francisco City Hall, 829
Shaking machine (see Vibration generator)
Shape function, 307, 312
Shape function selection, 333

displacement boundary conditions, 333
from deflections due to static forces, 333

Shape vector, 324
Shear building, 323, 347

equations of motions for, 348
idealization, 347

Shock spectrum
half-cycle sine pulse, 148
rectangular pulse, 141
symmetrical triangular pulse, 150

Simple harmonic motion, 40, 369
Simultaneous responses to earthquake excitation

capacity surface (or curve), 588
design point, 587
response-spectrum-based envelope, 587

elliptical envelope, 589
rectangular envelope, 588

response trajectory, 588
Single-degree-of-freedom system, 7
Soft first-story buildings, 783

concentration of yielding in first story, 783
Soil–structure interaction, 464
Spatially varying ground motion (see Multiple

support excitation)
Specific damping capacity, 102
Specific damping factor, 102
Spectral regions

acceleration-sensitive, 224, 273, 280, 761, 766
displacement-sensitive, 224, 271, 280,

761, 766
velocity-sensitive, 224, 273, 280, 761, 766

Square-root-of-sum-of-squares (SRSS) rule, 563
Static condensation method, 11, 369, 659
Static correction method, 496, 501
Static hysteresis, 102, 105
Steady-state response (see Steady-state

vibration)
Steady-state vibration, 67, 73, 106, 109, 115
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Step force, 129
with finite rise time, 132

Stiffness
complex, 886
lateral, 9, 27, 45

Stiffness coefficients
uniform flexural element, 11, 33

Stiffness component of a system, 7,
15, 352

Stiffness influence coefficient, 354
Stiffness matrix

computation of
direct equilibrium method, 355, 378
direct stiffness method, 355, 379

condensed, 370
lateral, 376
two-story shear building, 349

Story stiffness, 324, 349
Strong-motion accelerograph, 198
Structural idealization, quality of, 561
Structure–fluid system, 32, 464
Structure–soil system, 32, 464
Supplemental dampers, 284

buckling restrained brace, 287
fluid viscous, 284
friction, 287
metallic yielding, 287
viscoelastic, 284

Support excitation (see Earthquake
excitation)

System identification, 452

Timoshenko beam theory, 705
Tohoku, Japan earthquake (March 11, 2011), 199
Transient response (see Transient vibration)
Transient vibration, 67–68, 73
Transmissibility, 91–92

Tributary length, 3
Tuned mass damper (see Vibration absorber)
Two-DOF systems, analysis of

analytical solution for harmonic
excitation, 468

Unit impulse, 126
Unit impulse response function, 127
Unit impulse response of MDF systems

classically damped systems, 620
nonclassically damped systems, 632, 636, 643

Upland, California earthquake (February 28,
1990), 561

Velocity resonant frequency, 82
Velocity response factor, 80
Vibration absorber, 470
Vibration generator, 85
Vibration isolation

applied force excitation, 91
ground motion excitation, 91

Vibration-measuring instruments,
95

Virtual displacements, principle of,
312, 325, 733

Viscoelastic dampers, 284
Viscous damping, 13, 65, 72, 99, 103, 154
Viscous damping effects

in earthquake response, 226, 280
in free vibration, 50–51
response to harmonic excitation, 76–79
response to pulse force, 154

Weak first-story buildings, 782
concentration of yielding in first story,

783
Wind-induced vibration of buildings, 472
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