EARTHQUAKE RESPONSE OF LINEAR SYSTEMS

- <u>Characteristics of Earthquake Response Spectra</u>
- Design Spectra (Ελαστικό Φάσμα Σχεδιασμού)

Lecture Notes: EARTHQUAKE ENGINEERING / SPRING 2012 / Page: 2 Lecturer: Prof. APOSTOLOS S. PAPAGEORGIOU SEOUL NATIONAL UNIVERSITY PART (01): EARTHQUAKE RESPONSE OF LINEAR SYSTEMS

Lecture Notes: EARTHQUAKE ENGINEERING / SPRING 2012 / Page: 3 Lecturer: Prof. APOSTOLOS S. PAPAGEORGIOU SEOUL NATIONAL UNIVERSITY PART (01): EARTHQUAKE RESPONSE OF LINEAR SYSTEMS

Lecture Notes: EARTHQUAKE ENGINEERING / SPRING 2012 / Page: 4 Lecturer: Prof. APOSTOLOS S. PAPAGEORGIOU SEOUL NATIONAL UNIVERSITY PART (01): EARTHQUAKE RESPONSE OF LINEAR SYSTEMS

EQUATION OF MOTION:

Single-degree-of-freedom systems

$$\begin{array}{l} m\ddot{u}^{t} + c\dot{u} + ku = 0\\ u^{t} = u_{g} + u \end{array} \right\} \implies m\ddot{u} + c\dot{u} + ku = -m\ddot{u}_{g} \\ \implies \overline{\ddot{u} + 2\xi\omega\dot{u} + \omega^{2}u = -\ddot{u}_{g}} \end{array}$$

For a given $\ddot{u}_g(t)$, the **deformation** u(t) **of the system depends only on the natural frequency** ω or **natural period** T of the system and **its damping ration** ξ , writing formally $u \stackrel{\text{def}}{=} u(t, T, \xi)$.

RESPONSE QUANTITIES:

- *u*(*t*): <u>deformation</u> of the system, to which the internal forces are linearly related
- $u^t(t)$: <u>total displacement of mass</u>; useful in providing enough separation between adjacent buildings **to avoid pounding**
- $\ddot{u}^t(t)$: **total acceleration**; useful if structure is supporting sensitive equipment

It is seen that **the time required for an SDOF system to complete a cycle of vibration** when subjected to earthquake ground motion **is very close to the natural period of the system**.

This interesting result, valid for 'typical' ground motions containing a wide range of frequencies (*i.e.*, having a *broad-band* spectrum), can be proven using <u>*Random Vibration Theory*</u>.

Lecture Notes: EARTHQUAKE ENGINEERING / SPRING 2012 / Page: 6 Lecturer: Prof. APOSTOLOS S. PAPAGEORGIOU SEOUL NATIONAL UNIVERSITY PART (01): EARTHQUAKE RESPONSE OF LINEAR SYSTEMS

RESPONSE HISTORY:

Equivalent Static Force $f_S(t)$

<u>The internal forces can be determined by static analysis of the</u> <u>structure at each time instant</u>.

Equivalent Static Force Method:

$$f_{S}(t) = ku(t)$$

= $m \underbrace{\omega^{2}u(t)}_{A(t):} = mA(t)$
A(t): **pseudo – acceleration**

Base Shear $V_b(t)$:

$$V_b(t) = f_S(t) = mA(t)$$

Overturning Moment *M*_b(*t*):

Lecture Notes: EARTHQUAKE ENGINEERING / SPRING 2012 / Page: 7 Lecturer: Prof. APOSTOLOS S. PAPAGEORGIOU SEOUL NATIONAL UNIVERSITY PART (01): EARTHQUAKE RESPONSE OF LINEAR SYSTEMS

Pseudo-acceleration response of SDF systems to El Centro ground motion

RESPONSE SPECTRUM CONCEPT:

A plot of the <u>peak value</u> of a <u>response quantity</u> as a function of the natural vibration period *T* of the system, or a related parameter such as circular frequency ω or cyclic frequency *f*, is called the response spectrum of the quantity.

A variety of response spectra can be defined depending on the response quantity that is plotted:

The Deformation Response Spectrum: (Φάσμα Απόκρισης Μετατόπισης)

 $u_o(T,\xi) \stackrel{\text{\tiny def}}{=} \max_t |u(t,T,\xi)|$

The Relative Velocity Response Spectrum: (Φάσμα Απόκρισης Σχετικής Ταχύτητας)

 $\dot{u}_o(T,\xi) \stackrel{\text{\tiny def}}{=} \max_t |\dot{u}(t,T,\xi)|$

The Acceleration Response Spectrum: (Φάσμα Απόκρισης Απολύτου Επιταχύνσεως)

 $\ddot{u}_o^t(T,\xi) \stackrel{\text{\tiny def}}{=} \max_t |\ddot{u}^t(t,T,\xi)|$

DEFORMATION, PSEUDO-VELOCITY, AND PSEUDO-ACCELERATION RESPONSE SPECTRA

(Φάσματα Απόκρισης Μετατοπίσεως, Ψευτοταχύτητος & Ψευτοεπιταχύνσεως)

The *Deformation Spectrum* provides all the information necessary to compute the <u>**peak values**</u> of deformation $D \stackrel{\text{def}}{=} u_o$, and

necessary to compute the **<u>peak values</u>** of deformation $D \stackrel{\text{def}}{=} u_o$, a **internal forces**.

The *Pseudo-Velocity* and *Pseudo-Acceleration Response Spectra* are included, however, because they are useful in:

- studying characteristics of response spectra
- constructing design spectra
- relating structural dynamics results to building codes

Deformation response spectrum

<u>Usually</u>, the peak occurs <u>during ground shaking</u>; however, for lightly damped systems with very long periods the peak response may occur during the free vibration phase after the ground shaking has stopped.

Pseudo-Velocity Response Spectrum:

$$V = \omega D = \frac{2\pi}{T} D$$

- *V* has the units of '*velocity*'
- *V* is related to the <u>peak value of strain energy</u> E_{S_o} <u>stored in</u> <u>the system</u> during the earthquake:

$$E_{S_o} = \frac{1}{2}ku_o^2 = \frac{1}{2}kD^2 = \frac{1}{2}k\left(\frac{V}{\omega}\right)^2 = \frac{1}{2}mV^2$$

Pseudo-Acceleration Response Spectrum:

$$A = \omega^2 D = \left(\frac{2\pi}{T}\right)^2 D$$

- *A* has the units of '*acceleration*'
- A is related to the <u>peak value of base shear</u> V_{bo} [or <u>the peak</u> <u>value of the equivalent static force</u> f_{so}]

$$V_{bo} = f_{So} = mA \qquad [A \stackrel{\text{\tiny def}}{=} \max_{t} |A(t)|]$$

Also:

$$V_{bo} = \frac{A}{g}W$$
 [W = weight of the structure]

$$\frac{A}{g} = \begin{cases} base - shear \ coefficient \\ or \\ lateral \ force \ coefficient \end{cases}$$

[The **base-shear coefficient** (συντελεστής τέμνουσας βάσης ή συντελεστής πλευρικής δύναμης) is used in building codes to represent the coefficient by which the structural weight is multiplied to obtain the base shear.]

Lecture Notes: EARTHQUAKE ENGINEERING / SPRING 2012 / Page: 11 Lecturer: Prof. APOSTOLOS S. PAPAGEORGIOU SEOUL NATIONAL UNIVERSITY PART (01): EARTHQUAKE RESPONSE OF LINEAR SYSTEMS

Deformation, pseudo-velocity, and pseudo-acceleration response spectra ($\zeta = 2\%$)

The integrated representation is possible because the three spectral quantities, D - V - A, are interrelated as follows:

$$\frac{A}{\omega} = V = \omega D \quad or \quad \frac{T}{2\pi}A = V = \frac{2\pi}{T}D$$

This type of plot was **used** for **earthquake response spectra** for the first time **by A.S. Veletsos & N.M. Newmark in 1960**.

<u>NOTE</u>: The '*tri-partite log form*' *graph paper* was invented in the **late 1950s** by **Edward FISHER** of the **Westinghouse Research Laboratory** in **Pittsburgh** and published in the *Shock and Vibration Handbook*.

Lecture Notes: EARTHQUAKE ENGINEERING / SPRING 2012 / Page: 14 Lecturer: Prof. APOSTOLOS S. PAPAGEORGIOU SEOUL NATIONAL UNIVERSITY PART (01): EARTHQUAKE RESPONSE OF LINEAR SYSTEMS

(Συνδιαςμένο Φάσμα D-V-A)

Response spectrum and spectral regions

Lecture Notes: EARTHQUAKE ENGINEERING / SPRING 2012 / Page: 16 Lecturer: Prof. APOSTOLOS S. PAPAGEORGIOU SEOUL NATIONAL UNIVERSITY PART (01): EARTHQUAKE RESPONSE OF LINEAR SYSTEMS

Response spectrum plotted on normalized scales

- For systems with **very short period** (*i.e.*, **very stiff systems**), $A \rightarrow \ddot{u}_{go}$ and D = very small.
- For systems with very long period (*i.e.*, very <u>flexible</u> systems),
 D → *u*_{go} and *A* = very small.
- For $T_b < T < T_c$, *A* may be idealized as constant at a value **equal to** \ddot{u}_{go} <u>amplified</u> by a factor depending on ξ .
- For $T_d < T < T_e$, **D** may be idealized as constant at a value **equal to** u_{go} <u>amplified</u> by a factor depending on ξ .
- For $T_c < T < T_d$, V may be idealized as constant at a value **equal to** \dot{u}_{go} <u>amplified</u> by a factor depending on ξ .

For systems with <u>very short period</u>, $A \rightarrow \ddot{u}_{qq}$ and D = very small.

For a fixed mass, a **very short period system** is **extremely stiff** or essentially **rigid**. Such a system would be **expected to undergo very little deformation and its mass would move more rigidly with the ground**; its peak acceleration should be approximately equal to \ddot{u}_{go} .

Observe that: $\ddot{u}^t(t) \cong \ddot{u}_g(t)$ and $\ddot{u}_o^t \cong \ddot{u}_{go}$

For **<u>lightly</u> damped systems** (*i.e.*, $\xi \to 0$) $\ddot{u}^t(t) \cong -A(t)$ and $\ddot{u}_o^t \cong A$. Therefore: $A \cong \ddot{u}_{go}$ Response $u(t) - T_n = 30 \text{ sec}, \zeta = 2\%$

For systems with <u>very long period</u>, $D \rightarrow u_{go}$ and A = very small.

For a fixed mass, a very <u>long</u> period system is <u>extremely flexible</u>. The <u>mass would be expected to remain essentially stationary</u> while the ground below moves.

Thus $\ddot{u}^t(t) \cong 0$, implying that $A(t) \cong 0$ and $u(t) \cong -u_g(t)$, implying that $D \cong u_{ao}$.

Observe that: $u_o \cong u_{go}$ and $u(t) \cong -u_g(t)$ but for rotation of the baseline.

[<u>NOTE</u>: The **discrepancy** between $u(t) \& u_g(t)$ arises, in part, from the **loss of the initial portion of the recorded motion prior to triggering** of the recording (<u>analog</u>) accelerograph.]

Lecture Notes: EARTHQUAKE ENGINEERING / SPRING 2012 / Page: 19 Lecturer: Prof. APOSTOLOS S. PAPAGEORGIOU SEOUL NATIONAL UNIVERSITY PART (01): EARTHQUAKE RESPONSE OF LINEAR SYSTEMS

Response spectrum and spectral regions

Divide the spectrum into three period ranges:

- *T_d* < *T*: *displacement-sensitive region*
- $T < T_c$: acceleration-sensitive region
- $T_c < T < T_d$: velocity-sensitive region
- T_a, T_b, T_e, T_f on idealized spectrum are **independent of damping**
- T_c , T_d on idealized spectrum **vary with damping**

<u>NOTE</u>: Idealizing the spectrum by a series of straight lines a - b - c - d - e - f in the fourway log plot is obviously **not a precise process**.

Variation of pseudo-acceleration with damping

Damping reduces the response of a structure, as expected.

Among the three period regions defined earlier, the <u>effect</u> of damping tends to be <u>greatest in the velocity-sensitive region</u> of the spectrum.

Observe that the <u>effect</u> of damping is <u>stronger for smaller damping</u> <u>values</u>.

The **effect of damping** in reducing the response **depends on** *T* of the system, but there is **no clear trend**. This is yet another indication of the complexity of structural response to earthquakes.

Lecture Notes: EARTHQUAKE ENGINEERING / SPRING 2012 / Page: 21 Lecturer: Prof. APOSTOLOS S. PAPAGEORGIOU SEOUL NATIONAL UNIVERSITY PART (01): EARTHQUAKE RESPONSE OF LINEAR SYSTEMS

Response spectra for three ground motions at El Centro site

Mean and mean + 1σ spectra
 Probability distributions for V

The **design spectrum** is **based on statistical analysis** of the response spectra for an '*appropriately selected*' ensemble of ground motions.

Each ground motion is **normalized** (*i.e.*, scaled up or down) so that all ground motions have the same peak ground acceleration, say \ddot{u}_{go} ; other bases for normalization can be chosen.

[**NOTE**: The above normalization procedure is a highly controversial and, as recently demonstrated by **GRIGORIU (2011)**, wrong procedure if one is interested in assessing the reliability of a structure.]

GRIGORIU, M. (2011). 'To Scale or Not to Scale Seismic Ground-Acceleration Records', *Journal of Engineering Mechanics*, ASCE, Vol. 137, No. 4, 284-293.

The quantities u_{go} , \dot{u}_{go} & \ddot{u}_{go} in the normalized scales (D/u_{go}) , (V/\dot{u}_{go}) , & (A/\ddot{u}_{go}) , are the **average values** of peak ground displacement, velocity and acceleration – averaged over the ensemble of motions. The **spectral ordinates** are *lognormally distributed*.

Lecture Notes: EARTHQUAKE ENGINEERING / SPRING 2012 / Page: 23 Lecturer: Prof. APOSTOLOS S. PAPAGEORGIOU SEOUL NATIONAL UNIVERSITY PART (01): EARTHQUAKE RESPONSE OF LINEAR SYSTEMS

Construction of elastic design spectrum

Natural vibration period (log scale)

TABLE 6.9.1 A	AMPLIFICATION FACTORS: ELASTIC DESIGN SPECTRA
---------------	---

	Median (50 percentile)			One Sigma (84.1 percentile		
Damping, ζ (%)	α_A	α_V	α_D	α_A	α _V	αD
1	3.21	2.31	1.82	4.38	3.38	2.73
2	2.74	2.03	1.63	3.66	2.92	2.42
5	2.12	1.65	1.59	2.71	2.30	2.01
10	1.64	1.37	1.20	1.99	1.84	1.69
20	1.17	1.08	1.01	1.26	1.37	1.38

Source: N. M. Newmark and W. J. Hall, *Earthquake Spectra and Design*, Earthquake Engineering Research Institute, Berkeley, Calif., 1982, pp. 35 and 36.

TABLE 6.9.2 AMPLIFICATION FACTORS: ELASTIC DESIGN SPECTRA®

Median (50 percentile) One Sigma (84.1 percentile)

aA	$3.21 - 0.68 \ln \zeta$	4.38 – 1.04 ln ζ
α_V	$2.31 - 0.41 \ln \zeta$	$3.38 - 0.67 \ln \zeta$
aD	$1.82 - 0.27 \ln \zeta$	$2.73 - 0.45 \ln \zeta$

Source: N. M. Newmark and W. J. Hall, Earthquake Spectra and Design, Earthquake Engineering Research Institute, Berkeley, Calif., 1982, pp. 35 and 36.

^aDamping ratio in percent.

Lecture Notes: EARTHQUAKE ENGINEERING / SPRING 2012 / Page: 24 Lecturer: Prof. APOSTOLOS S. PAPAGEORGIOU SEOUL NATIONAL UNIVERSITY PART (01): EARTHQUAKE RESPONSE OF LINEAR SYSTEMS

RELATIVE VELOCITY & ACCELERATION RESPONSE SPECTRA (not commonly used)

Equation of Motion:

$$m\ddot{u} + c\dot{u} + ku = \underbrace{-m\ddot{u}_g(t)}_{p_{eff}(t)}$$

<u>Response</u>:

$$u(t) = -\frac{1}{\omega_D} \int_0^t \ddot{u}_g(\tau) e^{-\xi \omega(t-\tau)} \sin[\omega_D(t-\tau)] d\tau$$

Applying *Leibnitz' Rule*, we get:

$$\dot{u}(t) = -\xi \omega u(t) - \frac{1}{\omega_D} \int_0^t \ddot{u}_g(\tau) e^{-\xi \omega(t-\tau)} \cos[\omega_D(t-\tau)] d\tau$$

Then:

$$\ddot{u}^t(t) = -\omega^2 u(t) - 2\xi \omega \dot{u}(t)$$

Lecture Notes: EARTHQUAKE ENGINEERING / SPRING 2012 / Page: 26 Lecturer: Prof. APOSTOLOS S. PAPAGEORGIOU SEOUL NATIONAL UNIVERSITY PART (01): EARTHQUAKE RESPONSE OF LINEAR SYSTEMS

For **long-period systems**, *V* < *u*_o, and the difference between the two is large.

As
$$T \to \infty$$
, $D \to u_{go}$ and $\dot{u}_o \to \dot{u}_{go}$

Now, $D \underset{T \to \infty}{\longrightarrow} u_{go} \Longrightarrow V \underset{T \to \infty}{\longrightarrow} 0$ because $V = \frac{2\pi}{T} D$

- For **short-period systems**, $V > \dot{u}_o$, with the difference increasing as $T \rightarrow 0$.
- For **medium-period systems**, the differences between *V* and \dot{u}_o are small over a wide range of *T*.

Lecture Notes: EARTHQUAKE ENGINEERING / SPRING 2012 / Page: 27 Lecturer: Prof. APOSTOLOS S. PAPAGEORGIOU SEOUL NATIONAL UNIVERSITY PART (01): EARTHQUAKE RESPONSE OF LINEAR SYSTEMS

The pseudo-acceleration and acceleration spectra are identical for systems without damping (*i.e.*, for $\xi = 0$):

Equation of motion $\Rightarrow \ddot{u}^t(t) = -\omega^2 u(t) \Rightarrow \ddot{u}_o^t = \omega^2 u_o = \omega^2 D = A$

The peak values, $\ddot{u}_o^t \& A$, occur at the same time and are equal only for $\xi = 0$.

Differences between $\ddot{u}_o^t \& A$ are expected to increase as the damping increases.

Another way of looking at it:

$$f_{So} = mA = peak value of the elastic - resisting force$$

 $m\ddot{u}_{o}^{t} = peak value of (elastic + damping) forces$

As seen in the above Figure, $\ddot{u}_o^t > A$ (*i.e.*, A **resists only elastic forces**).

Lecture Notes: EARTHQUAKE ENGINEERING / SPRING 2012 / Page: 28 Lecturer: Prof. APOSTOLOS S. PAPAGEORGIOU SEOUL NATIONAL UNIVERSITY PART (01): EARTHQUAKE RESPONSE OF LINEAR SYSTEMS