
Multi-Degree of Freedom Systems – 
Synopsis 

 

Classification of Problems in Structural Dynamics 
By the number of degrees of freedom: 
 

Single DOF

Multiple DOFs
lumped mass (discrete) system (finite DOF)
continuous systems (infinitely many DOF)

 

Discrete systems are characterized by systems of ordinary differential equations 
(ODEs), while continuous systems are described by systems of partial differential 
equations (PDEs). 
 
By the linearity of the governing equations: 
 

Linear systems linear elasticity, small motions assumption

Nonlinear systems
conservative (elastic) systems
nonconservative inelastic systems

 

 
By the type of excitation: 

⎩
⎪
⎨

⎪
⎧

Free vibrations

Forced vibrations
structural loads
seismic loads

⎩
⎪
⎨

⎪
⎧periodic harmonic

nonharmonic

transient
deterministic excitation

random excitation
stationary
non-stationary

 

 
By the type of mathematical problem: 
 
Static Boundary Value Problems (BVPs)

Dynamic
eigenvalue problems (free vibrations)
initial value problem, propagation problem (waves)

 

 
By the presence of energy dissipating mechanisms: 
 

⎩
⎪
⎨

⎪
⎧

Undamped vibrations

Damped vibrations

viscous damping
hysteretic damping
Coulomb damping
etc.
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Modeling – Discretization 

Although real physical structures are continuous in nature (i.e. their mass and stiffness 
are continuously distributed along their structural members), they cannot be analyzed as 
such. First, they must be cast in the form of discrete systems with a finite number of 
DOF. There are two major approaches to transform a continuous system into a 
discrete one: 

 Heuristic approach (based on physical approximations): Use common sense 
(intuition) to lump masses, then basic methods to obtain the required stiffness. 
  

 Mathematical methods: There are two classes of mathematical discretization 
schemes based on series of functions expansions, namely, 
o Rayleigh-Ritz type methods (such as the assumed-modes method, and 

the well-known Finite Element Method) and  
o Weighted Residual methods (such as the well-known Galerkin method). 

Rayleigh-Ritz type methods are based on a given variational principle (examples of 
variational principles are: Hamilton’s Principle; Virtual Work; The Method of Total Potential 
Energy; Complementary Virtual Work; Principle of Total Complementary Energy; Reissner’s 
Principle). By contrast, weighted residual methods are more general in scope and they 
do not require a variational principle. 

In this course we use exclusively the “heuristic approach” and develop discrete-
parameter models. 

For example, in modeling a structural frame for dynamic analysis we neglect vertical 
inertia forces and rotational inertias. Note carefully that this does not imply that the 
vertical motions or rotations vanish. Instead, these become static degrees of freedom, 
and thus depend linearly on the lateral translations, that is, they become slave DOF 
to the lateral translations, which are the master DOF. The process of reducing the 
number of DOF as a result of neglecting rotational and translational inertias can formally 
be achieved by matrix manipulations referred to as static condensation (see 
EXAMPLES 9.8 & 9.9 in the textbook). We introduce further simplification by 
assuming that that the beams are axially rigid and thus neglect axial deformations. This 
introduces a kinematic constraint between the axial components of motion at the two 
ends of a beam. The formal process by which this is accomplished through matrix 
manipulations is referred to as kinematic condensation. 

________________________ 

EXERCISE:  

Demonstrate that the lateral stiffness 𝑘 of a one-bay, 
one-story, frame (portal frame) is 

𝑘
24𝐸𝐼

𝐿
⎩
⎨

⎧ 1 1
6

𝐼
𝐼

𝐿
𝐿 4

𝐼
𝐿 𝐼

1 2
3

𝐼
𝐼

𝐿
𝐿 16

𝐼
𝐿 𝐼 ⎭

⎬

⎫
 



 

The above expression includes axial deformation of the columns. The girder is axially 
rigid. All members are made of the same material with modulus of elasticity 𝐸. 

HINT: 

1. Write the stiffness matrix and equilibrium equations for the free joints (i.e. joints 
1 & 2). 

2. Neglecting the axial deformation of the girder and assuming antisymmetric 
behavior, so that 𝑢 𝑢 𝑢, 𝑣 𝑣 𝑣, 𝜑 𝜑 𝜑, condense the 
stiffness matrix to a matrix 3 3 and the load vector to a vector with 3 
components. (Write 3 equilibrium equations. What does each one of these 
equations represent physically?) 

3. Eliminating the rotation 𝜑 and the axial deformation 𝑣 of the columns (static 
condensation) obtain a relation of the form 𝑃 𝑘𝑢 (obtain 𝑘). The parameter 𝑘 
is the lateral stiffness of the frame. 

NOTE: Accounting for axial deformation of the columns may not be important for a 
one-story frame. However, it becomes a crucial consideration for multi-story structures 
(say 10 stories and higher).  

________________________ 

 

As another example, for a multi-story structure, we lump masses at the level of each 
floor and we assume that the floor slabs act as disks (i.e. rigid in their own planes or, 
equivalently, they do not deform under shear forces; act as diaphragms). 

  

Thus each floor has three degrees of 
freedom (DOF): two DOFs 
corresponding to translational 
displacements along orthogonal axes that 
coincide with the principal axes of the plan 
of a typical floor, and a third DOF 
corresponding to rotation about a vertical 
axis. 
 
As a side note we remark that for low-rise 
buildings (less than ten floors), the 
columns may be assumed inextensible. 
However, for high-rise buildings (more 
than ten stories), the axial extensibility of 
columns must be considered.  
 

  



Formulation of the Equations of Motion 

There are four types of forces involved in the dynamic equilibrium of a structure: 

𝐩 𝑡 :  The external applied forces 

𝐟 𝑡 :  The inertia forces  
(involve accelerations measured w.r.t. an inertial frame of reference) 

𝐟 𝑡 :  The damping forces  
(involve velocities that describe rate of deformation) 

𝐟 𝑡 :  The restoring (elastic or inelastic) forces  
 (involve displacements that describe deformation)   
 

One way of looking at the problem is to visualize the external forces 𝐩 𝑡  as being 
distributed among the three forces 𝐟 𝑡 , 𝐟 𝑡 , and 𝐟 𝑡 , all of them resisting 
motion, that is 

𝐟 𝑡 𝐟 𝑡 𝐟 𝑡 𝐩 𝑡  

Another way of looking at the problem is by applying NEWTON’s 2nd law of motion 

𝐟 𝑡 𝐩 𝑡 𝐟 𝑡 𝐟 𝑡  

In the above equation the restoring forces 𝐟 𝑡  and the damping forces 𝐟 𝑡  appear 
with negative sign because these internal forces resist motion.  

Both approaches lead to the same equation of motion, as expected. 

 

If the structure is elastic, the restoring forces may be expressed as 𝐟 𝑡 𝐤𝐮 𝑡 , 
where 𝐤 is the stiffness matrix of the structure. 

If we assume that damping in the structure may be described by linear viscous 
damping, then 𝐟 𝑡 𝐜𝐮 𝑡 , where 𝐜 is the damping matrix of the structure. 

Finally, the inertia forces may be expressed as 𝐟 𝑡 𝐦𝐮 𝑡 , where 𝐦 is the mass 
matrix of the structure and the accelerations 𝐮 𝑡  must be measured w.r.t. an inertial 
frame of reference. 

In view of the above, the equation of dynamic equilibrium may be written as 

𝐦𝐮 𝑡 𝐜𝐮 𝑡 𝐤𝐮 𝑡 𝐩 𝑡  

The above matrix equation is the equation of motion of the discretized structure. 

 

As a corollary of BETTI’s law, we demonstrated that, the stiffness matrix 𝐤 as well as 
the flexibility matrix 𝐟 𝐤 𝟏 of a stable structure, are both symmetric. 

NOTE: The symmetry of the flexibility matrix, 𝐟 𝐟, is known as MAXWELL’s Law 
of Reciprocal Deflections.   



Furthermore, the matrices 𝐦 & 𝐤 are positive definite as the kinetic energy 𝑇
1 2⁄ 𝐮 𝐦𝐮 and the strain energy 𝑈 1 2⁄ 𝐮 𝐤𝐮 are positive definite functions 

of velocities and displacements, respectively.  

NOTE: For stable civil engineering structures, 𝐤 is always positive definite because civil 
engineering structures are normally supported at fixed points of support and, 
consequently, rigid body modes of motion are not possible (that is, the structure is 
restrained and motion of the structure cannot exist without deformation of the structure). 
On the other hand, for structures like an airplane, when they are flying (that is, when they 
are unrestrained), rigid body modes exist and, consequently, there exists motion without 
deformation of the structure; in this case, the stiffness matrix 𝐤 is positive semi-
definite.  

REMINDER: If the real quadratic form 𝛏 𝐀𝛏, associated with a real symmetric 
matrix 𝐀, is nonnegative for all real 𝛏, and is zero only if 𝛏 𝟎, then the quadratic 
form is said to be positive definite. Then, by convention, we say that that the matrix 𝐀 
is positive definite. On the other hand, a quadratic form 𝛏 𝐀𝛏, associated with a real 
symmetric matrix 𝐀, is said to be positive semi-definite when it takes on only 
nonnegative values for all real 𝛏, but vanishes for some 𝛏 𝟎. In this case we say that 
that the matrix 𝐀 is positive semi-definite.    

________________________ 

EXAMPLE [Problem 9.13 of the textbook]: 

An umbrella structure has been idealized as an assemblage of three flexural elements with 
lumped masses at the nodes as shown in FIGURE. 
(a) Identify the DOFs to represent the elastic properties and determine the stiffness 
matrix. Neglect axial deformations in all members. 
(b) Identify the DOFs to represent the inertial properties and determine the mass matrix. 
(c) Formulate the equations of motion governing the DOFs in part (b) when the 
excitation is (i) horizontal ground motion, (ii) vertical ground motion, (iii) ground motion 
in direction 𝑏 𝑑, (iv) ground motion in direction 𝑏 𝑐, and (v) rocking ground motion 
in the plane of the structure. 
 
SOLUTION: 

 
In view of the fact that we neglect axial deformation for all members we have only one 
horizontal DOF for all nodes (and consequently for all the corresponding concentrated 
masses 𝑚, 3𝑚 & 𝑚) at the level of the beams. Thus, we end up with a total number of 
six (6) DOFs for the entire structure (see FIGURE). Now, the DOFs 𝑢 , 𝑢  & 𝑢 , are 



associated with rotations of the corresponding nodes (and of the corresponding 
concentrated nitrated and thus are associated with zero rotational inertias. Thus, 

𝐮
𝐮
𝐮 𝐮

𝑢
𝑢
𝑢

𝐮
𝑢
𝑢
𝑢

 

 
Recall that the DOFs 𝐮  are associated with significant inertias and are called the 
dynamic DOFs, while 𝐮  are associated with insignificant (i.e. zero) inertias, are 
referred to as static DOFs and will be eliminated by static condensation. 
 
The stiffness matrix can formally be derived by the direct stiffness matrix method 
(i.e. the stiffness matrix of each individual member is formulated and rotated to the 
selected global reference system; the element matrices are assembled to form the global 
matrix; the boundary conditions are imposed and the equations not involving reactions 
are retained). 
 
For a simple structure (with few DOFs) like the one we are analyzing, we can obtain the 
stiffness matrix by imposing a unit displacement at each one of the DOFs sequentially, 
while ‘locking’ (i.e. setting equal to zero) all other DOFs. Thus, by setting 𝑢 1 we 
obtain, using simple statics, the elements of the 1st column: 𝑘 , 𝑘 , 𝑘 , 𝑘 , 𝑘 , and 
𝑘 . Proceeding with all the other DOFs in a similar way, we obtain 
 

𝐤
𝐸𝐼
𝐿

⎣
⎢
⎢
⎢
⎢
⎡
12 0 0 6𝐿 0 0

0 12 0 6𝐿 0 6𝐿
0 0 12 6𝐿 6𝐿 0

6𝐿 6𝐿 6𝐿 12𝐿 2𝐿 2𝐿
0 0 6𝐿 2𝐿 4𝐿 0
0 6𝐿 0 2𝐿 0 4𝐿 ⎦

⎥
⎥
⎥
⎥
⎤

 

 
The partitioned stiffness matrix may be written as 
 

𝐤
𝐤 𝐤
𝐤 𝐤

𝐤
12 0 0

0 12 0
0 0 12

𝐤 𝐤
6𝐿 0 0
6𝐿 0 6𝐿
6𝐿 6𝐿 0

𝐤
12𝐿 2𝐿 2𝐿

2𝐿 4𝐿 0
2𝐿 0 4𝐿

 

 
In view of the fact that all masses are concentrated / lumped, the mass matrix 𝐦 is a 
diagonal matrix 

𝐦 𝑚
3 1 1 0 0

0 1 0
0 0 1

𝑚
5 0 0
0 1 0
0 0 1

 



 
 
The condensed stiffness matrix (related only to the translational DOFs) is 

𝐤 𝐤 𝐤 𝐤 𝐤
3𝐸𝐼

10𝐿

28 6 6
6 7 3
6 3 7

 

 
The equations of dynamic equilibrium of the structure, for base excitation, are 
 

𝐦𝐮 𝐤 𝐮 𝟎 ⇒ 𝑚
5 0 0
0 1 0
0 0 1

𝑢
𝑢
𝑢

3𝐸𝐼
10𝐿

28 6 6
6 7 3
6 3 7

𝑢
𝑢
𝑢

0
0
0

 

 
For horizontal base excitation 𝑢 𝑡  

𝐮 𝐮 𝛊 𝑢 ⇒
𝑢
𝑢
𝑢

𝑢
𝑢
𝑢

1
0
0

𝑢 ⇒

𝐦𝐮 𝐤 𝐮 𝐩 𝑡

𝐩 𝑡
5𝑚
0
0

𝑢
 

 
for vertical base excitation 𝑢 𝑡  

𝐮 𝐮 𝛊 𝑢 ⇒
𝑢
𝑢
𝑢

𝑢
𝑢
𝑢

0
1
1

𝑢 ⇒

𝐦𝐮 𝐤 𝐮 𝐩 𝑡

𝐩 𝑡
0
𝑚
𝑚

𝑢
 

 
for base excitation 𝑢 𝑡  in the 𝑏 𝑑 direction 

𝐮 𝐮 𝛊 𝑢 ⇒
𝑢
𝑢
𝑢

𝑢
𝑢
𝑢

1 √2⁄

1 √2⁄

1 √2⁄

𝑢 ⇒

⎩
⎪
⎨

⎪
⎧ 𝐦𝐮 𝐤 𝐮 𝐩 𝑡

𝐩 𝑡
5𝑚 √2⁄

𝑚 √2⁄

𝑚 √2⁄

𝑢
 

 
for base excitation 𝑢 𝑡  in the 𝑏 𝑐 direction 

𝐮 𝐮 𝛊 𝑢 ⇒
𝑢
𝑢
𝑢

𝑢
𝑢
𝑢

1 √2⁄

1 √2⁄

1 √2⁄

𝑢 ⇒

⎩
⎪
⎨

⎪
⎧ 𝐦𝐮 𝐤 𝐮 𝐩 𝑡

𝐩 𝑡
5𝑚 √2⁄

𝑚 √2⁄

𝑚 √2⁄

𝑢
 

for rocking base excitation 𝑢 𝑡  (i.e. rotation of base about a horizontal axis normal 
to the plane of the structure) 

𝐮 𝐮 𝛊 𝑢 ⇒
𝑢
𝑢
𝑢

𝑢
𝑢
𝑢

𝐿
𝐿
𝐿

𝑢 ⇒

𝐦𝐮 𝐤 𝐮 𝐩 𝑡

𝐩 𝑡
5𝑚𝐿

𝑚𝐿
𝑚𝐿

𝑢
 

 _______________________  
  



Solution of the Equations of Motion – Modal 
Superposition Method 

Free Vibration of Systems without Damping 

We start by considering the free-vibrations of an undamped system. Indeed, we are 
looking for the response of the system performing synchronous motion (i.e. the system 
vibrates maintaining the overall shape and changing only the amplitude by a time-
dependent proportionality factor). 

We seek solutions (of the equations of motion of the undamped system) of the form 
𝐮 𝑡 𝑒 𝛟, where 𝛟 is the shape that the system maintains as it vibrates freely and 𝑒  
is the time-dependent proportionality factor: 

𝐦𝐮 𝐤𝐮 𝟎
𝐮 𝑡 𝑒 𝛟 ⇒ 𝑒 𝑠 𝐦𝛟 𝐤𝛟 𝟎

⇒ 𝐤𝛟 𝑠 𝐦𝛟
 

Therefore, 

𝐤𝛟 𝜆𝐦𝛟 , 𝜆 𝑠  

The above problem is known as the algebraic (or matrix) eigenvalue problem (or 
characteristic-value problem). 

 

Facts that we learn from Linear Algebra regarding the matrix eigenvalue problem: 

(1) The eigenvalues of an algebraic eigenvalue problem, in which 𝐤 & 𝐦 are both 
symmetric, and at least one positive definite, are all real. 
[NOTE: For stable civil engineering structures both matrices 𝐤 & 𝐦 are positive 
definite] 
 

(2) When matrices 𝐤 & 𝐦 are both positive definite, the eigenvalues are all 
positive. 
 

(3) When 𝐤 is singular, at least one of the eigenvalues must be zero. 
[NOTE: An example of a stable (but unconstrained) structure which has a 
singular 𝐤 matrix is an airborne airplane.] 
When 𝐦 is singular, at least one of the eigenvalues must be infinite. 
[NOTE: For a discrete model of a civil engineering structure that we develop 
and analyze in this course, 𝐦 is always non-singular as we have eliminated (by 
static condensation) any degrees associated with insignificant inertia.] 
 

(4) The eigenvectors, corresponding to different eigenvalues, are orthogonal to 

each other with respect to both 𝐤 & 𝐦. Therefore 



𝛟 𝐦𝛟
0 𝑛 𝑚

𝑀 𝑛 𝑚

𝛟 𝐤𝛟
0 𝑛 𝑚

𝐾 𝑛 𝑚

 

 
Evidently, 

𝐤𝛟 𝜔 𝐦𝛟 ⇒ 𝛟 𝐤𝛟 𝜔 𝛟 𝐦𝛟 ⇒ 𝜔
𝛟 𝐤𝛟
𝛟 𝐦𝛟

𝐾
𝑀

 

 
(5) To an eigenvalue of multiplicity 𝓂 there correspond 𝓂 linearly independent 

eigenvectors. These 𝓂 linearly independent eigenvectors can be made 
orthogonal (w.r.t. 𝐤 & 𝐦) to each other using the Gram-Schmidt 
orthogonalization procedure. These eigenvectors are already orthogonal to the 
rest 𝑛 𝓂  eigenvectors  
[NOTE: It is rather unlikely for a civil engineering structure to have eigenvalues 
with multiplicity higher than 1. However, it is not inconceivable.] 
 

(6) Any arbitrary 𝑁-vector 𝐮 can always be expressed as a linear combination of 
the linearly independent eigenvectors of the algebraic eigenvalue problem: 

𝐮 𝛟 𝑞 𝚽𝐪

where: 𝚽
↓ ↓ ↓

𝛟 𝛟 ⋯ 𝛟
↓ ↓ ↓

𝑴𝒐𝒅𝒂𝒍 𝑴𝒂𝒕𝒓𝒊𝒙

 

where 𝑞   𝑟 1,2, ⋯ , 𝑁  are scalar multipliers called modal coordinates or 
normal coordinates and 𝐪 𝑞 𝑞 ⋯ 𝑞 𝑻; 𝑁 = no. of Degrees of 
Freedom (DOF) of the structure. 
[NOTE: The above statement, known as the “eigenvector expansion 
theorem”, guaranties that whatever shape the structure takes as it vibrates, that 
shape can always be expressed as a linear combination of the modal shapes of 
the structure. This theorem forms the basis of the “modal superposition 
method” of expressing the response of the structure.] 

 

Returning to the solution of the matrix eigenvalue problem, now we know that 𝜆 0 
(always true for civil engineering structures). Therefore, we can set 𝜆 𝜔 . This implies 

that 𝑠 √ 𝜆 𝑖𝜔. It follows that the general solution of 𝐦𝐮 𝐤𝐮 𝟎 is 𝐮 𝑡
𝐶 𝑒 𝛟 𝐶 𝑒 𝛟 𝐶 𝑒 𝐶 𝑒 𝛟; for this expression to represent 

actual vibrations it must be a real expression; therefore 𝐶 �̅� 𝐴 𝑖𝐵  
(assuming that 𝐶 𝐴 𝑖𝐵  ). Then, 



𝐮 𝑡 2ℛℯ 𝐶 𝑒 𝛟
2 𝐴 cos 𝜔𝑡 𝐵 sin 𝜔𝑡 𝛟
𝐴 cos 𝜔𝑡 𝐵 sin 𝜔𝑡 𝛟

𝜌 sin 𝜔𝑡 𝜃 𝛟
𝜌 𝐴 𝐵

𝜃 tan
𝐴
𝐵

 

This demonstrates that the system/structure performs synchronous harmonic motion 
maintaining all the time the same shape. 

 

Now, if we give an arbitrary initial displacement 𝐮 𝑡 0 𝐮  and arbitrary initial 
velocity 𝐮 𝑡 0 𝐮  to the structure, the response may be expressed by invoking the 
eigenvector expansion theorem. Specifically  

𝐮 𝑡 𝑞 𝑡 𝛟  

Evidently, the step that precedes the above one is to solve the matrix eigenvalue problem 
𝐤𝛟 𝜆𝐦𝛟, and we know that we are going to obtain 𝑁 positive values 𝜆
𝜔  , 𝑛 1,2, ⋯ , 𝑁  and corresponding 𝑁 real eigenvectors 𝛟  , 𝑛 1,2, ⋯ , 𝑁 . 

In order to decouple the equations of motion, we substitute the above expression for the 
response / solution 𝐮 𝑡 , we pre-multiply by 𝛟  both sides of the equation of motion 

and we invoke the orthogonality theorem of the eigenvectors. As a result we obtain 𝑁 
uncoupled modal equations 

𝑞 𝑡 𝜔 𝑞 𝑡 0 , 𝑗 1,2, ⋯ , 𝑁  

subject to the following initial conditions 

𝑞 0
𝛟 𝐦𝐮

𝑀
, 𝑞 0

𝛟 𝐦𝐮

𝑀
 

The solution / response of the above set of uncoupled modal equations is 

𝑞 𝑡 𝑞 0 cos 𝜔 𝑡
𝑞 0

𝜔
sin 𝜔 𝑡 , 𝑗 1,2, ⋯ , 𝑁  

[NOTE: The modal equations are mathematically equivalent to the equation of motion 
of a SDOF system. Clearly, any method that is appropriate to use to solve the equation 
of motion of a SDOF system is also appropriate to solve also the modal equations.] 

We observe that in the general case, (that is for arbitrary initial displacement and 
velocity), all modes participate in the response. If we would like to excite only one 
mode, say the 𝑚-th mode, both the 𝐮  and 𝐮  would have to be proportional to 𝛟 , 
i.e. 𝐮 𝛼𝛟  & 𝐮 𝛽𝛟 . 

________________________ 



EXAMPLE [Problem 10.23 of the textbook]: 

(a) For the umbrella structure, determine the natural vibration frequencies and modes. 
Express the frequencies in terms of 𝑚, 𝐸𝐼, & 𝐿, and sketch the modes. 
(b) The structure is pulled through a lateral displacement 𝑢 0 1 and released. 
Determine the free vibration response. 
 
SOLUTION: 
 
We recall that 

𝐦 𝑚
5 0 0
0 1 0
0 0 1

, 𝐤
3𝐸𝐼

10𝐿

28 6 6
6 7 3
6 3 7

 

 
We form the eigenvalue problem: 

𝐤 𝜔 𝐦
3𝐸𝐼
10𝐿

28 5𝜆 6 6
6 7 𝜆 3
6 3 7 𝜆

, 𝜆
10𝑚𝐿

3𝐸𝐼
𝜔  

 
28 5𝜆 6 6

6 7 𝜆 3
6 3 7 𝜆

0 ⇒ 5𝜆 98𝜆 520𝜆 400 0 

 
The cubic equation (like the quadratic & quartic equations but not higher order 
equations) can be solved algebraically; for a detailed discussion see 
https://en.wikipedia.org/wiki/Cubic_equation ). 
 
The roots of the above characteristic equation are: 
  

𝜆 0.9219 𝜆 8.6780 𝜆 10

𝜔 0.5259
𝐸𝐼

𝑚𝐿
𝜔 1.6135

𝐸𝐼
𝑚𝐿

𝜔 1.7321
𝐸𝐼

𝑚𝐿

 

 
Then, from the equation 𝐤 𝜔 𝐦 𝛟 𝟎, and after setting one of the elements of 
𝛟  equal to an arbitrary value (see EXAMPLE 10.1), we obtain 
 

𝛟
1

1.9492
1.9492

𝛟
1

1.2826
1.2826

𝛟
0
1
1

 

 
 
Initial conditions: 

𝐮 0 𝐮
1
0
0

𝐮 0 𝐮
0
0
0

 

 



𝑞 0
𝛟 𝐦𝐮
𝛟 𝐦𝛟𝟏

0.3969 𝑞 0 0

𝑞 0
𝛟 𝐦𝐮
𝛟 𝐦𝛟𝟐

0.6031 𝑞 0 0

𝑞 0
𝛟 𝐦𝐮
𝛟 𝐦𝛟𝟑

0 𝑞 0 0

 

 
The free vibration response to the given initial displacement is 
 

𝐮 𝑡 𝛟 𝑞 𝑡 𝛟 𝑞 0 cos 𝜔 𝑡
𝑞 0

𝜔
sin 𝜔 𝑡  

 or 

𝐮 𝑡
𝑢 𝑡
𝑢 𝑡
𝑢 𝑡

0.3969
0.7736
0.7736

cos 𝜔 𝑡
0.6031
0.7736
0.7736

cos 𝜔 𝑡  

 
Notice that the 3rd mode does not contribute to the response because the initial 
conditions do not contain a component in that mode (recall that 𝑞 0 0 & 𝑞 0
0). 
________________________ 

  



Free Vibration of Systems with Classical Damping 

In order to simulate the damping mechanisms present in our physical structure, we 
introduce in the equations of motion the term 𝐜𝐮, where the damping matrix 𝐜 is 
assumed to satisfy the same properties of orthogonality as the matrices 𝐤 & 𝐦. 
Specifically, the eigenvectors (modal shapes) 𝚽 𝛟 𝛟 ⋯ 𝛟 ⋯ 𝛟  that 
we obtain by solving the matrix eigenvalue problem 𝐤𝛟 𝜔 𝐦𝛟 are assumed to be 
orthogonal w.r.t. the damping matrix 𝐜 as well, i.e. 

𝛟 𝐜𝛟
0 𝑛 𝑚

2𝜉 𝜔 𝑀 𝑛 𝑚 

or in terms of the modal matrix 𝚽 

𝚽 𝐜𝚽

⋱
2𝜉 𝜔 𝑀

⋱
 

 

The parameters 𝜉  . 𝑛 1,2, ⋯ , 𝑁  specify the damping ratios of the modes of the 
structure and are referred to as modal damping ratios. 

[NOTE: It is important to point out that the matrix eigenvalue problem 𝐤𝛟
𝜔 𝐦𝛟, solution of which produces the modal shapes 𝛟  and characteristic circular 
frequencies 𝜔 , does not involve the matrix 𝐜.] 

The above kind of damping is referred to as classical damping. This model of damping 
is appropriate for all common/conventional civil engineering structures. However, if a 
structure is equipped with modern protective (aseismic) systems, such as base isolation 
and/or energy absorbing dashpots, then the damping model of classical damping is not 
satisfactory and one has to make use of the non-classical damping model. This model 
is not discussed in this course. 

 

Let us consider the free vibrations of a structure with classical damping, subjected to 
initial displacement 𝐮 𝑡 0 𝐮  and initial velocity 𝐮 𝑡 0 𝐮 . Therefore 

Eqn of Motion: 𝐦𝐮 𝐜𝐮 𝐤𝐮 𝟎
Initial Conditions: 𝐮 𝑡 0 𝐮 , 𝐮 𝑡 0 𝐮

 

Invoking again the eigenvector expansion theorem, we express the response / 
solution of the structure as a linear combination of the modal shapes: 

𝐮 𝑡 𝑞 𝑡 𝛟  

Substituting the above expansion in the equations of motion, pre-multiplying by 𝛟  and, 

invoking the orthogonality property of the modal shapes w.r.t. 𝐤, 𝐦 & 𝐜, we obtain 



𝑁 uncoupled modal equations in terms of the normal co-ordinates 𝑞 𝑡  , 𝑗
1,2, ⋯ , 𝑁 : 

𝑞 𝑡 2𝜉 𝜔 𝑞 𝑡 𝜔 𝑞 𝑡 0 , 𝑗 1,2, ⋯ , 𝑁  

subject to the following initial conditions 

𝑞 0
𝛟 𝐦𝐮

𝑀
, 𝑞 0

𝛟 𝐦𝐮

𝑀
 

The solution / response of the above set of uncoupled modal equations is 

𝑞 𝑡 𝑒 𝑞 0 cos 𝜔 𝑡
𝑞 0 𝜉 𝜔 𝑞 0

𝜔
sin 𝜔 𝑡 , 𝑗 1,2, ⋯ , 𝑁

𝜔 𝜔 1 𝜉
 

We observe that in the general case, (that is for arbitrary initial displacement and 
velocity), all modes participate in the response. If we would like to excite only one 
mode, say the 𝑚-th mode, both the 𝐮  and 𝐮  would have to be proportional to 𝛟 , 
i.e. 𝐮 𝛼𝛟  & 𝐮 𝛽𝛟 . 

___________________ 

NOTE: For the analysis of conventional structures using discrete models developed 
and discussed in this course, it is not necessary to form the damping matrix 𝐜. The only 
information that the analyst needs is the damping ratios 𝜉  , 𝑗 1,2, ⋯ , 𝑁  of the 
modes of the structure. The damping ratios 𝜉  are used in the modal equations. 

However, there are problems of dynamic analysis of structures that require the formation 
of a damping matrix 𝐜. For example, a Finite Element Model (FEM) of the structure 
including part of the soil supporting the structure would be such a problem. The reason 
is that the nature and amount of damping in the soil is very different from that in the 
structure. Therefore, an explicit damping matrix needs to be formed for the soil part of 
the finite element mesh and a separate damping matrix for the mesh modeling the 
structure. Eventually, the two submatrices are combined to form a damping matrix for 
the complete soil-structure system. 

One way to form a damping matrix that provides classical damping is using the so called 
CAUGHEY damping series. Specifically 

𝐜 𝐦 𝛼ℓ 𝐦 𝐤 ℓ

ℓ

𝜉
1

2𝜔
𝛼ℓ𝜔 ℓ

ℓ ⎭
⎪
⎬

⎪
⎫

ℓ ⋯ , 2, 1, 0, 1, 2, ⋯ 

The damping ratios 𝜉  for as many modes need to be provided. However, for effective 
use of the CAUGHEY damping series, an even number of terms must be used in the 
series expression. 

 



Dynamic Analysis of Structural Systems with Classical 
Damping 

Let us consider a 𝑁-DOF system, having classical damping and subjected to the 
general loading 𝐩 𝑡  and having initial displacement 𝐮 𝑡 0 𝐮  and initial 
velocity 𝐮 𝑡 0 𝐮 . [NOTE: Normally, in most cases, civil engineering structures 
start vibrating from rest.] Therefore 

Eqn of Motion: 𝐦𝐮 𝐜𝐮 𝐤𝐮 𝐩 𝑡
Initial Conditions: 𝐮 𝑡 0 𝐮 , 𝐮 𝑡 0 𝐮

 

Invoking again the eigenvector expansion theorem, we express the response / 
solution of the structure as a linear combination of the modal shapes: 

𝐮 𝑡 𝐮 𝑡 𝑞 𝑡 𝛟  

Substituting the above expansion in the equations of motion, pre-multiplying by 𝛟  and 

invoking the orthogonality property of the modal shapes w.r.t. 𝐤, 𝐦 & 𝐜 we obtain 𝑁 
uncoupled modal equations in terms of the normal co-ordinates 𝑞 𝑡  , 𝑗
1,2, ⋯ , 𝑁 : 

𝑀 𝑞 𝑡 𝐶 𝑞 𝑡 𝐾 𝑞 𝑡 𝑃 𝑡 , 𝑗 1,2, ⋯ , 𝑁

⇒ 𝑞 𝑡
𝐶
𝑀

𝑞 𝑡
𝐾
𝑀

𝑞 𝑡
𝑃 𝑡

𝑀

⇒ 𝑞 𝑡 2𝜉 𝜔 𝑞 𝑡 𝜔 𝑞 𝑡
𝑃 𝑡

𝑀

where 𝑃 𝑡 𝛟 𝐩 𝑡

 

subject to the following initial conditions 

𝑞 0
𝛟 𝐦𝐮

𝑀
, 𝑞 0

𝛟 𝐦𝐮

𝑀
 

The above equations governing the response of the normal co-ordinates 
𝑞 𝑡  , 𝑗 1,2, ⋯ , 𝑁  is mathematically identical to the equation of motion of a SDOF 
system. Any one of the techniques that we developed in obtaining the response of the 
SDOF system, evidently may be applied here as well. 

 

Modal Analysis for 𝐩 𝑡 𝐬𝑝 𝑡  

One particular type of loading 𝐩 𝑡  is of interest to us. This is the case of 𝐩 𝑡 𝐬𝑝 𝑡 , 
where all the applied loads have common time variation 𝑝 𝑡 , while the (time-
independent) vector 𝐬 describes the spatial distribution of the load. This type of load 
describes various practical cases, including the earthquake load (i.e. the load induced by 
support motion) to be considered later. 



We resolve vector 𝐬 into its modal components: 

𝐬 𝐬 Γ 𝐦𝛟

Γ
𝛟 𝐬
𝑀

𝑴𝒐𝒅𝒂𝒍
𝑷𝒂𝒓𝒕𝒊𝒄𝒊𝒑𝒂𝒕𝒊𝒐𝒏 𝑭𝒂𝒄𝒕𝒐𝒓

 

It is evident that Γ  is not independent of how the modal shape is normalized. 
However, the modal component 𝐬 Γ 𝐦𝛟  is independent of how the modal shape 
is normalized. 

The above expansion of the 𝐬 vector has two useful properties: 

(1) The force vector 𝐬 𝑝 𝑡  produces response only in the 𝑛  mode but no 
response in any other mode.  

(2) The dynamic response of the 𝑛th mode is entirely due to the partial force 
vector 𝐬 𝑝 𝑡 . 

It should be noted that the spatial distribution of the inertia forces 𝐟  associated 
with the 𝑛  mode, is the same as that of 𝐬 Γ 𝐦𝛟 : 

𝐟 𝐦𝐮 𝑡 𝐦𝛟 𝑞 𝑡  

 

The uncoupled modal equations in this case are: 

𝑞 𝑡 2𝜉 𝜔 𝑞 𝑡 𝜔 𝑞 𝑡
𝑃 𝑡

𝑀
𝑛 1,2, ⋯ , 𝑁

where: 𝑃 𝑡 𝛟 𝐩 𝑡 𝛟 𝐬𝑝 𝑡 Γ 𝑀 𝑝 𝑡
 

Therefore: 
𝑞 𝑡 2𝜉 𝜔 𝑞 𝑡 𝜔 𝑞 𝑡 Γ 𝑝 𝑡 𝑛 1,2, ⋯ , 𝑁  

Introducing the new variable: 𝐷 𝑡 𝑞 𝑡 Γ⁄ ⇔ 𝑞 𝑡 Γ 𝐷 𝑡 , we obtain 

𝐷 𝑡 2𝜉 𝜔 𝐷 𝑡 𝜔 𝐷 𝑡 𝑝 𝑡 𝑛 1,2, ⋯ , 𝑁  

The reason that we express the modal equations in terms of the variable 𝐷 𝑡  (a 
seemingly trivial substitution) is because 𝐷 ≝ max|𝐷 𝑡 | may be read directly from 

the response spectrum of 𝑝 𝑡 .  

 

In order to find element forces (i.e. actions such as moments and shear forces of the 
various structural members of a structure subjected to dynamic analysis) we implement 
the equivalent static force method. Specifically, as the structure vibrates it deforms and 
the equivalent static forces that would cause the deformed shape 𝐮 𝑡  at any instant in 
time are the elastic forces 𝐟 𝑡 𝐤𝐮 𝑡  corresponding to that time instant. It is 
evident that 



𝐮 𝑡 𝐮 𝑡 𝑞 𝑡 𝛟 Γ 𝐷 𝑡 𝛟  

and 

𝐟 𝑡 𝐤𝐮 𝑡 𝐤 𝐮 𝑡 𝐤𝐮 𝑡 𝐟 𝑡  

We work with each mode separately. Therefore, the equivalent static forces 𝐟 𝑡  
in the 𝑛th mode are 

𝐟 𝑡 𝐤𝐮 𝑡 Γ 𝐤𝛟
𝐦𝛟

𝐷 𝑡 Γ 𝐦𝛟
𝐬

𝜔 𝐷 𝑡

⟹ 𝐟 𝑡 𝐬 𝜔 𝐷 𝑡
 

In words, the above result makes evident that the elastic forces in the 𝑛th mode consist 
of the modal component 𝐬  (which describes the spatial distribution of the elastic 
forces in the 𝑛th mode and is time independent) scaled by the time-varying 
coefficient 𝜔 𝐷 𝑡 . This suggests that in order to compute any response quantity 
𝑟 𝑡  [such as actions (e.g. moment, shear force) acting on members of the structure, or 
displacements at any of the nodes of the structure], we need to perform 𝑁 static 
analyses. The results of these static analyses, 𝑟  , 𝑛 1,2, ⋯ , 𝑁 , will be scaled by the 
respective time-varying coefficients, 𝜔 𝐷 𝑡  , 𝑛 1,2, ⋯ , 𝑁 , to obtain the 
corresponding modal contribution, 𝑟 𝑡  , 𝑛 1,2, ⋯ , 𝑁 , to the response quantity 
𝑟 𝑡 . 

𝐬 → 𝑀𝐷𝑂𝐹 𝑆𝑦𝑠𝑡𝑒𝑚 → 𝑟 ∙ 𝜔 𝐷 𝑡 𝑟 𝑡

𝐬 → 𝑀𝐷𝑂𝐹 𝑆𝑦𝑠𝑡𝑒𝑚 → 𝑟 ∙ 𝜔 𝐷 𝑡 𝑟 𝑡
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝐬 → 𝑀𝐷𝑂𝐹 𝑆𝑦𝑠𝑡𝑒𝑚 → 𝑟 ∙ 𝜔 𝐷 𝑡 𝑟 𝑡

_____ _______ ______

𝐬 𝐬 → 𝑀𝐷𝑂𝐹 𝑆𝑦𝑠𝑡𝑒𝑚 → 𝑟 𝑟 𝑟 𝑡 𝑟 𝑡

 

 

NOTE: From the relation 𝑟 ∑ 𝑟  we obtain 1 ∑ ∑ �̅� . Evidently 

�̅�  expresses the contribution of the 𝑛th mode to the response quantity 

𝑟 𝑡  and that is why it is referred to as the 𝑛th modal contribution factor to the 
response quantity 𝑟 𝑡 . The advantages of these factors over the 𝑛th modal participation 
factors Γ  are: (1) they are dimensionless; (2) they are independent of how modes are 
normalized; and (3) the sum of the modal contribution factors over all modes is unity, 
that is ∑ �̅� 1. 

 



Now, let us consider the peak response of the system. Let us introduce the following 
definitions: 

𝐷 ≝ max|𝐷 𝑡 |

𝐷 , max 𝐷 , 𝑡
𝒔𝒕𝒂𝒕𝒊𝒄 

𝒓𝒆𝒔𝒑𝒐𝒏𝒔𝒆

max|𝑝 𝑡 |

𝜔
𝑝
𝜔

⎭
⎪
⎬

⎪
⎫

𝑅
𝐷

𝐷 ,

𝑫𝒚𝒏𝒂𝒎𝒊𝒄
𝑹𝒆𝒔𝒑𝒐𝒏𝒔𝒆 𝑭𝒂𝒄𝒕𝒐𝒓

 

 NOTE: The static response 𝐷 , 𝑡  is obtained from 𝐷 𝑡 2𝜉 𝜔 𝐷 𝑡
𝜔 𝐷 𝑡 𝑝 𝑡 , by dropping the 𝐷  & 𝐷  terms. 

It follows that: 

𝑟 𝑟 �̅� 𝜔 𝐷 𝑟 �̅� 𝑝 𝑅  

NOTE: The algebraic sign of 𝑟  is the same as that of 𝑟 ≝ 𝑟 �̅�  because 𝑅  is 
positive by definition. 

 𝑟  & �̅�  : depend on the spatial distribution 𝐬 of the applied forces, but 
are independent of the time variation 𝑝 𝑡  of the applied forces. 

 𝑅  :  depends on 𝑝 𝑡 , but is independent of 𝐬. 

 

 

Earthquake Analysis of Linear Systems 

In the case of base excitation (earthquake problem) there are no external forces 
acting on the structure, i.e. 𝐩 𝑡 𝟎. Therefore 

𝐟 𝑡 𝐟 𝑡 𝐟 𝑡 𝟎 

It should be emphasized that the inertia forces vector depends on absolute 
accelerations (i.e. accelerations measured w.r.t. an inertial / Newtonian frame of 
reference). The absolute / total displacement vector 𝐮 𝑡  (the superscript ‘𝑡’ stands 
for ‘total’) may be resolved as follows 

𝐮 𝑡 𝐮 𝑡 𝛊𝑢 𝑡  

where: 𝛊𝑢 𝑡  is the part of displacements that describes rigid body motion of the 
structure as it undergoes support motion 𝑢 𝑡 , (i.e. if the structure were massless and 
were subjected to support motion 𝑢 𝑡 ); 𝛊 is the influence vector; 𝐮 𝑡  are the 
additional displacements / deformations that the structure (with its mass) 
experiences due to the inertia forces that are induced as the structure accelerates due 
to support movement.  

Evidently, the elastic forces 𝐟 𝑡  are associated with 𝐮 𝑡  (i.e. the part of displacements 
associated with the deformations of the structure), i.e. 𝐟 𝑡 𝐤𝐮 𝑡 , while the damping 



forces 𝐟 𝑡  are associated with the rate of deformations 𝐮 𝑡 , i.e. 𝐟 𝑡 𝐜𝐮 𝑡 . 
Therefore, the equation of dynamic equilibrium transforms to 

𝐦 𝐮 𝑡 𝛊𝑢 𝑡 𝐜𝐮 𝑡 𝐤𝐮 𝑡 𝟎
𝐦𝐮 𝑡 𝐜𝐮 𝑡 𝐤𝐮 𝑡 𝐦𝛊𝑢 𝑡

 

The right-hand side term 𝐩 𝑡 𝐦𝛊𝑢 𝑡  are the effective earthquake forces. 

Therefore, 𝐩 𝑡  are of the form 𝐬𝑝 𝑡  where 𝐬 𝐦𝛊 and 𝑝 𝑡 𝑢 𝑡 . Thus, 

all the development presented above regarding the response / solution for 𝐩 𝑡 𝐬𝑝 𝑡  
applies also for 𝐩 𝑡 𝐦𝛊𝑢 𝑡 . 

For instance, the expansion of the vector 𝐬 𝐦𝛊 of the effective earthquake forces is 

𝐬 𝐦𝛊 𝐬 Γ 𝐦𝛟 , Γ
𝛟 𝐬
𝑀

𝛟 𝐦𝛊
𝑀

 

The modal equations are 

𝐷 𝑡 2𝜉 𝜔 𝐷 𝑡 𝜔 𝐷 𝑡 𝑢 𝑡 𝑛 1,2, ⋯ , 𝑁  

The above equation is identical to the equation that is used to compute earthquake 
response spectra which display the peak (absolute) value of the response 𝐷 𝑡 , i.e. 
𝐷 ≝ max|𝐷 𝑡 |, by sweeping the circular frequency axis and for selected values of 

the damping ratio. Response spectra may display the same information in two 
alternative but equivalent forms:  

 in terms of the pseudo-velocity 𝑉 max|𝑉 𝑡 | max|𝜔 𝐷 𝑡 |

𝜔 𝐷 ; and,  
 in terms of pseudo-acceleration 𝐴 max|𝐴 𝑡 | max|𝜔 𝐷 𝑡 |

𝜔 𝐷    

________________________ 

EXAMPLE [Problem 13.17 of the textbook]: 

For the umbrella structure of the FIGURE excited by horizontal ground motion 
𝑢 𝑡 , determine (a) the modal expansion of effective earthquake forces, (b) the 
displacement response in terms of 𝐷 𝑡 , and (c) the bending moments at the base of 
the column and at location 𝑎 of the beam in terms of 𝐴 𝑡 . 
 
SOLUTION: 

We recall that for the given structure we have: 

𝐦 𝑚
5 0 0
0 1 0
0 0 1

, 𝐤
3𝐸𝐼

10𝐿

28 6 6
6 7 3
6 3 7

 



𝜔 0.5259
𝐸𝐼

𝑚𝐿
𝜔 1.6135

𝐸𝐼
𝑚𝐿

𝜔 1.7321
𝐸𝐼

𝑚𝐿

𝛟
1

1.9492
1.9492

𝛟
1

1.2826
1.2826

𝛟
0
1
1

 

For the given excitation, the influence vector 𝛊 is 

𝛊
1
0
0

 

The effective earthquake forces are: 

𝐬 𝐬 Γ 𝐦𝛟  

𝐿 𝛟 𝐦𝛊 5𝑚 𝐿 𝛟 𝐦𝛊 5𝑚 𝐿 𝛟 𝐦𝛊 0
𝑀 𝛟 𝐦𝛟𝟏 12.597𝑚 𝑀 𝛟 𝐦𝛟𝟐 8.292𝑚 𝑀 𝛟 𝐦𝛟𝟑 2𝑚

Γ
𝐿
𝑀

0.397 Γ
𝐿
𝑀

0.603 Γ
𝐿
𝑀

0

𝐬 Γ 𝐦𝛟
1.985𝑚
0.774𝑚
0.774𝑚

𝐬 Γ 𝐦𝛟
3.015𝑚
0.774𝑚
0.774𝑚

𝐬 Γ 𝐦𝛟
0
0
0

 

 

The displacement response in terms of 𝐷 𝑡  is 

𝐮 𝑡 Γ 𝛟 𝐷 𝑡
0.397
0.774
0.774

𝐷 𝑡
0.603
0.774
0.774

𝐷 𝑡
0
0
0

𝐷 𝑡  

 

 
The bending moment at the base of the column (point 𝑏) in terms of its modal 
contributions is 



𝑀 𝑡 𝑀 𝑡

𝑀 𝐴 𝑡

3.533 ∙ 𝑚𝐿 ∙ 𝐴 𝑡 1.467 ∙ 𝑚𝐿 ∙ 𝐴 𝑡

 

 

The bending moment at location 𝑎 of the beam in terms of its modal contributions is 

𝑀 𝑡 𝑀 𝑡

𝑀 𝐴 𝑡

0.774 ∙ 𝑚𝐿 ∙ 𝐴 𝑡 0.774 ∙ 𝑚𝐿 ∙ 𝐴 𝑡

 

 

________________________ 

In Earthquake Engineering we have two types of analysis: 

 Response History Analysis (RHA) 
 Response Spectrum Analysis (RSA) 

 

Response History Analysis (RHA) is feasible with the capacity and capabilities of 
present day personal computers. It is an “exact” analysis in that it is based on the exact 
(analytical or numerical) integration of the equations of motion that govern the response 
of the mathematical model that we have adopted. Thus, for a given ground acceleration, 
we can compute the time history of any response quantity 𝑟 𝑡 ∑ 𝑟 𝑡 . 

Structural design is usually based on peak values of forces and deformations over the 
duration of the earthquake-induced response. Estimation / calculation of such peak 
values may be determined directly from the response spectrum. Such an approach is 
referred to as Response Spectrum Analysis (RSA). We can use the response spectrum 
to predict exactly the response of a SDOF system, and estimate approximately the 
response of MDOF systems. The latter estimate is accurate enough for structural 
design applications. 

  

Peak Modal Response of any response quantity 𝑟 𝑡  is given by 

𝑟 𝑟 𝐴  

where, we recall that 𝐴 max|𝐴 𝑡 | 𝐴 𝑇 , 𝜉 ; the value 𝐴 𝑇 , 𝜉  (which is 

always non-negative) is the peak (absolute) value of the pseudo-acceleration and is 
read from the response spectrum. Evidently, all response quantities 𝑟 𝑡  



associated with a particular mode, say the 𝑛th mode, reach their peak values at the 
same time instant as 𝐴 𝑡  reaches its peak. 

[NOTE: The textbook is using the following notation: 𝐴 max|𝐴 𝑡 |] 

 

The basic question is the following: How do we combine the peak modal responses 
𝑟 𝑛 1,2, ⋯ , 𝑁  to determine the peak value 𝑟 ≝ max|𝑟 𝑡 | of the total 

response? It will not be possible to determine the exact value of 𝑟  from 𝑟  because, 
in general, the modal responses 𝑟 𝑡  attain their peaks at different time instants 
and the combined 𝑟 𝑡  attains its peak at yet a different instant. 

 

Modal Combination Rules 

 The Absolute Sum (ABSSUM) modal combination rule: 

𝑟 |𝑟 |  

This upper-bound value is usually too conservative. 

 The Square-Root-of-Sum-of-Squares (SRSS) rule: 

𝑟 ≅ 𝑟  

This rule provides excellent response estimates for structures with well-
separated natural frequencies. 

 The Complete Quadratic Combination (CQC) rule: 

𝑟 ≅ 𝜌 𝑟 𝑟  

where:  𝜌  correlation coefficient of modes 𝑖 & 𝑛 

[0 𝜌 1 ; 𝜌 1  for  𝑖 𝑛]  

It can be demonstrated that the double summation inside the 
parentheses is always positive.  

 

The expression for the CQC rule may be written as: 



𝑟 ≅

⎝

⎜
⎛

𝑟 𝜌 𝑟 𝑟

⎠

⎟
⎞

 

The estimate for 𝑟 , obtained by the CRC rule, maybe larger or smaller than the 
estimate provided by the SRSS rule. 

 

The SRSS & CQC rules have been derived based on RANDOM VIBRATION 
THEORY (also referred to as STOCHASTIC STRUCTURAL DYNAMICS) 

Implications of the assumptions behind the derivations: 

The modal combination rules would be most accurate for: 

 earthquake excitation that contain a wide band of frequencies (white noise 
assumption); 

 with long phases of strong shaking (stationarity); 

 which (i.e., long phases) are several times longer than 𝑇 (=fundamental period) 
of the structure (stationarity); 

 which (i.e., modes) are not too lightly damped (𝜉 0.005). 

The modal combination rules become less accurate for short-duration impulsive 
ground motions and are not recommended for ground motions that contain many 
cycles of essentially harmonic excitation   

 

________________________ 

EXAMPLE [Problem 13.50 of the textbook, but using metric units]: 

The umbrella structure of the FIGURE (also of previous EXAMPLES) is made of 
150 𝑚𝑚 nominal diameter standard steel pipe. Its properties are: 𝐼 1171.6 𝑐𝑚 , 
𝐸 200,000 𝑀𝑃𝑎, mass = 28.23 𝑘𝑔/𝑚, 𝑚 680 𝑘𝑔, and 𝐿 3 𝑚.  

Determine the peak response of this structure to horizontal ground motion 
characterized by the design spectrum of Fig. 6.9.5 (for 5% damping) scaled to 0.20𝑔 
peak ground acceleration. Using the SRSS combination rule, estimate:  

(a) displacements 𝑢 , 𝑢 , and 𝑢 , and  
(b) the bending moments at the base of the column and at location 𝑎 of the beam.  
 

SOLUTION: 

Weight of the pipe (we consider: 𝑔 9.81 𝑚/𝑠 ; recall that: 1 𝑁 1 𝑘𝑔 1 ):  

3 3𝑚 28.23 𝑔 2,492.43 𝑁;  

The weight of the concentrated masses is:  



3 1 1 𝑚𝑔 5 ∙ 680 𝑘𝑔 ∙ 9.81 33,354 𝑁  

Notice that the weight of the structural members is very small compared to the weight of 
the concentrated masses; thus we ignore it. 

Compute the characteristic periods of the structure (1 𝑃𝑎 1 𝑁/𝑚 ): 

𝜔 0.5259 𝜔 1.6135 𝜔 1.7321   

.

∙ 11.2971   

𝜔 5.927 𝜔 17.951 𝜔 19.634 
𝑇 1,06 𝑠 𝑇 0.35 𝑠 𝑇 0.32 𝑠

  

For the above values of the natural periods of the structure, the design spectrum of FIG. 
6.9.5 gives 

𝐴 0.2 .

.
0.340𝑔 ⇒ 𝐷 9.5 𝑐𝑚

𝐴 0.2 2.71𝑔 0.542𝑔 ⇒ 𝐷 1,7 𝑐𝑚
𝐴 0.2 2.71𝑔 0.542𝑔 ⇒ 𝐷 1,4 𝑐𝑚

  

Recall that we have previously determined that 

𝐮 𝑡
0.397
0.774
0.774

𝐷 𝑡
0.603
0.774
0.774

𝐷 𝑡
0
0
0

𝐷 𝑡   

Therefore, the peak modal responses of displacement are: 

𝐮 max 𝐮 𝑡
0.397
0.774
0.774

9.5
3,77
7,35
7,35

 𝑐𝑚

𝐮 max 𝐮 𝑡
0.603
0.774
0.774

1,7
1.03
1.32
1.32

 𝑐𝑚

  

𝐮 𝐮 𝐮 SRSS
3,77
7,35
7,35

𝑐𝑚
1.03
1.32
1.32

𝑐𝑚
0
0
0

𝑐𝑚
3.91
7.47
7.47

𝑐𝑚
  

Recall that for horizontal excitation, modal components of the effective earthquake 
forces 𝐬 are 

𝐬
1.985𝑚
0.774𝑚
0.774𝑚

𝐬
3.015𝑚
0.774𝑚
0.774𝑚

𝐬
0
0
0

  

Peak responses in the 𝑛th mode are induced by the equivalent static forces 𝐟
𝐬 𝐴 : 



𝐟 𝐬 𝐴
1.985𝑚
0.774𝑚
0.774𝑚

0.340𝑔
0.6749
0.2632
0.2632

𝑚𝑔
4.502
1.755
1.755

𝑘𝑁

𝐟 𝐬 𝐴
3.015𝑚
0.774𝑚
0.774𝑚

0.542𝑔
1.6341
0.4195
0.4195

𝑚𝑔
10.901

2.798
2.798

𝑘𝑁

𝐟 𝐬 𝐴
0
0
0

0.542𝑔
0
0
0

𝑘𝑁

  

We subject the structure to forces 𝐟 𝐬 𝐴 , we perform static analysis of the 
structure and we obtain the peak values 𝑀  & 𝑀  of the bending moments 
due to each mode: 

Mode 1 Mode 2 Mode 3 SRSS
𝑀 5.265 7.829 0 9.435
𝑀 24.036 15.915 0 28.827

  

 

Comment 
In evaluating the accuracy of the estimates based on the SRSS rule, one obvious choice is 
to compute the time history response and compare the SRSS estimates with the peak 
values of the time-history response. The other option is to obtain estimates based on the 
CQC combination rule and compare them with the SRSS results. We observe that the 
periods of the 2nd and 3rd modes are very close (0.35 𝑠 vs. 0.32 𝑠). As a consequence we 
would expect the cross-terms involving these two modes to make a significant 
contribution. All other cross-terms are expected to be significant. However, we have 
shown that the 3rd mode does not participate in the response. Consequently, the 
estimates using the CQC rule are expected to be very close to those of the SRSS rule.  

________________________ 

EXAMPLE: 

The umbrella structure of the previous examples is subjected to an impulsive loading 
𝛿 𝑡  along DOF #1 (the structure starts moving from rest).  

(1) Compute the displacement response of the structure to the impulsive loading. 
(2) Using the above result compute the response of the structure to a loading acting 

along DOF #1 with time variation 𝑝 𝑡 . 

 

SOLUTION: 

For the given structure we know: 

𝛟
1

1.9492
1.9492

𝛟
1

1.2826
1.2826

𝛟
0
1
1

𝐦 𝑚
5 0 0
0 1 0
0 0 1

 

The given impulsive loading may be expressed as follows: 



𝐩 𝑡 𝐬𝛿 𝑡
1
0
0

𝛿 𝑡  

 
The vector 𝐬 is resolved into its modal components: 

𝐬 𝐬 Γ 𝐦𝛟  

𝐿 𝛟 𝐬 1 𝐿 𝛟 𝐬 1 𝐿 𝛟 𝐬 0
𝑀 𝛟 𝐦𝛟𝟏 12.597𝑚 𝑀 𝛟 𝐦𝛟𝟐 8.292𝑚 𝑀 𝛟 𝐦𝛟𝟑 2𝑚

Γ
𝐿
𝑀

0.079𝑚 Γ
𝐿
𝑀

0.121𝑚 Γ
𝐿
𝑀

0

𝐬 Γ 𝐦𝛟
0.395
0.154
0.154

𝐬 Γ 𝐦𝛟
0.605
0.155
0.155

𝐬 Γ 𝐦𝛟
0
0
0

 

NOTE: Above, we have evaluated the modal components of 𝐬 even though this is not 
necessary for computing the displacement response. The modal components of 𝐬 will be 
necessary to calculate any 𝑟 (e.g. moments, shears, etc.) that may be needed. Specifically 

𝑟 𝑡 𝑟 𝑡 𝑟 𝐴 𝑡 𝑟 𝜔 𝐷 𝑡  

  

Therefore, the displacement response is: 

𝐡 𝑡 ≝ 𝐮 𝑡 | 𝐮 𝑡 𝑞 𝑡 𝛟 Γ 𝐷 𝑡 𝛟

0.079𝑚
0.154𝑚
0.154𝑚

𝐷 𝑡
0.121𝑚
0.155𝑚
0.155𝑚

𝐷 𝑡

 

where 𝐷 𝑡  , 𝑛 1,2,3  is governed by the modal equations 

𝐷 𝑡 2𝜉 𝜔 𝐷 𝑡 𝜔 𝐷 𝑡 𝛿 𝑡  

with initial conditions 

𝐷 0
1
Γ

𝑞 0
1
Γ

𝛟 𝐦𝐮
𝑀

0 , 𝐷 0
1
Γ

𝑞 0
1
Γ

𝛟 𝐦𝐮
𝑀

0 

The solution is 



𝐷 𝑡
1

𝜔
𝑒 sin 𝜔 𝑡 , 𝜔 𝜔 1 𝜉  

Notice that the above solution is the Green’s function (unit impulse response) ℎ 𝑡  of 
the governing differential equation ℎ 𝑡 2𝜉 𝜔 ℎ 𝑡 𝜔 ℎ 𝑡 𝛿 𝑡 . 

The response to any other kind of loading 𝑝 𝑡  may be computed by convolving the 
above derived solution with 𝑝 𝑡 , i.e. 

𝐮 𝑡 | 𝐡 𝑡 ∗ 𝑝 𝑡 Γ ℎ 𝑡 ∗ 𝑝 𝑡 𝛟  

________________________ 

EXAMPLE: 

The umbrella structure of the previous examples is subjected to harmonic loading 𝑒  
along DOF #1 (the structure starts moving from rest). 
 

(1) Compute the steady-state displacement response of the structure. 
(2) Using the above response results, compute the response of the structure to a 

loading acting along DOF #1 with time variation 𝑝 𝑡 ↔ 𝑃 Ω . 
 
SOLUTION: 

The given impulsive loading may be expressed as follows: 

𝐩 𝑡 𝐬𝑒  
1
0
0

𝑒  

 
The steady-state response may be written as follows: 

𝐮 𝑡 | 𝐮 𝑡 | 𝑞 𝑡 | 𝛟 Γ 𝐷 𝑡 | 𝛟  

where 𝐷 𝑡 |  , 𝑛 1,2,3  is governed by the modal equations 

𝐷 𝑡 2𝜉 𝜔 𝐷 𝑡 𝜔 𝐷 𝑡 | 𝑒  

We know that the steady-state solution of the above equation is of the form 𝐷 𝑡 |
𝐻 Ω 𝑒 . If we substitute the above expression in the modal equation we obtain 

𝑖Ω 𝐻 Ω 2𝜉 𝜔 𝑖Ω 𝐻 Ω 𝜔 𝐻 Ω 𝑒 𝑒  

Or 



𝐻 Ω
1

𝜔 Ω 𝑖2𝜉 𝜔 Ω

1
𝜔

1 Ω
𝜔 𝑖2𝜉 Ω

𝜔

1
𝜔

1 𝛽 𝑖2𝜉 𝛽
 

where: 𝛽 Ω 𝜔⁄ . 

Therefore, the steady-state response is 

𝐷 𝑡 | 𝐻 Ω 𝑒

1
𝜔

1 𝛽 𝑖2𝜉 𝛽
𝑒  

Recall, that the function: 𝐻 Ω 𝜔 Ω 𝑖2𝜉 𝜔 Ω  is referred to as complex 
frequency response. 

 

Now, the modal equations for the loading 𝐩 𝑡 𝐬𝑝 𝑡  would be written as 

𝐷 𝑡 2𝜉 𝜔 𝐷 𝑡 𝜔 𝐷 𝑡 𝑝 𝑡 , 𝑛 1,2,3  

Let us solve the above equations by using the Fourier Transform ℱ . Let the 
Fourier Transform pairs 𝑝 𝑡 ↔ 𝑃 Ω  & 𝐷 𝑡 ↔ 𝐷 Ω . Then 

ℱ 𝐷 𝑡 2𝜉 𝜔 𝐷 𝑡 𝜔 𝐷 𝑡 ℱ 𝑝 𝑡  

𝑖Ω 𝐷 Ω 2𝜉 𝜔 𝑖Ω 𝐷 Ω 𝜔 𝐷 Ω 𝑃 Ω  

Therefore 

𝐷 Ω
1

𝜔 Ω 𝑖2𝜉 𝜔 Ω
𝑃 Ω  

NOTE: The Fourier Transform 𝐷 Ω  of 𝐷 𝑡  is the product of the complex 
frequency response function 𝐻 Ω  times the Fourier Transform of the time variation 
of the loading 𝑝 𝑡 ↔ 𝑃 Ω . 

The response 𝐷 𝑡  in the time domain is obtained by inverse Fourier Transform 
ℱ : 

𝐷 𝑡 ℱ 𝐷 Ω
1

2𝜋
𝐷 Ω 𝑒  𝑑Ω

1
2𝜋

𝑃 Ω 𝑒
𝜔 Ω 𝑖2𝜉 𝜔 Ω

 𝑑Ω 

 

In the previous EXAMPLE we derived the response to an arbitrary loading 𝐩 𝑡
𝐬𝑝 𝑡 : 

𝐮 𝑡 | 𝐡 𝑡 ∗ 𝑝 𝑡 Γ ℎ 𝑡 ∗ 𝑝 𝑡 𝛟  

If we take the Fourier Transform of the above expression, we have 



ℱ 𝐮 𝑡 | ℱ 𝐡 𝑡 ∗ 𝑝 𝑡 ℱ Γ ℎ 𝑡 ∗ 𝑝 𝑡 𝛟  

Or 

𝐮 Ω | 𝐡 Ω ∙ 𝑃 Ω Γ ℎ Ω ∙ 𝑃 Ω 𝛟  

Evidently 

𝐡 Ω Γ ℎ Ω 𝛟  

The above result could have been derived by taking the Fourier Transform of the 
following expression that we have derived in the previous EXAMPLE: 

𝐡 𝑡 ≝ 𝐮 𝑡 | Γ 𝐷 𝑡 𝛟  

Or  

ℱ 𝐡 𝑡 ℱ 𝐮 𝑡 | ℱ Γ 𝐷 𝑡 𝛟  

Or 

𝐡 Ω 𝐮 Ω | Γ 𝐷 Ω 𝛟  

 

________________________ 

 

 

      

 


