
Multi-Degree of Freedom Systems – 
Synopsis 

 

Classification of Problems in Structural Dynamics 
By the number of degrees of freedom: 
 

ቐ
Single DOF

Multiple DOFs ൜
lumped mass (discrete) system (finite DOF)
continuous systems (infinitely many DOF)

 

Discrete systems are characterized by systems of ordinary differential equations 
(ODEs), while continuous systems are described by systems of partial differential 
equations (PDEs). 
 
By the linearity of the governing equations: 
 

ቐ
Linear systems linear elasticity, small motions assumption

Nonlinear systems ൜
conservative (elastic) systems
nonconservative ሺinelasticሻsystems

 

 
By the type of excitation: 

⎩
⎪
⎨

⎪
⎧

Free vibrations

Forced vibrations ቄstructural loads
seismic loads

ቅ

⎩
⎪
⎨

⎪
⎧periodic ቄharmonic

nonharmonic

transient ൝
deterministic excitation

random excitation ൜
stationary
non-stationary

 

 
By the type of mathematical problem: 
 

൝
Static Boundary Value Problems (BVPs)

Dynamic ൜
eigenvalue problems (free vibrations)
initial value problem, propagation problem (waves)

 

 
By the presence of energy dissipating mechanisms: 
 

⎩
⎪
⎨

⎪
⎧

Undamped vibrations

Damped vibrations ൞

viscous damping
hysteretic damping
Coulomb damping
etc.
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Modeling – Discretization 

Although real physical structures are continuous in nature (i.e. their mass and stiffness 
are continuously distributed along their structural members), they cannot be analyzed as 
such. First, they must be cast in the form of discrete systems with a finite number of 
DOF. There are two major approaches to transform a continuous system into a 
discrete one: 

 Heuristic approach (based on physical approximations): Use common sense 
(intuition) to lump masses, then basic methods to obtain the required stiffness. 
  

 Mathematical methods: There are two classes of mathematical discretization 
schemes based on series of functions expansions, namely, 
o Rayleigh-Ritz type methods (such as the assumed-modes method, and 

the well-known Finite Element Method) and  
o Weighted Residual methods (such as the well-known Galerkin method). 

Rayleigh-Ritz type methods are based on a given variational principle (examples of 
variational principles are: Hamilton’s Principle; Virtual Work; The Method of Total Potential 
Energy; Complementary Virtual Work; Principle of Total Complementary Energy; Reissner’s 
Principle). By contrast, weighted residual methods are more general in scope and they 
do not require a variational principle. 

In this course we use exclusively the “heuristic approach” and develop discrete-
parameter models. 

For example, in modeling a structural frame for dynamic analysis we neglect vertical 
inertia forces and rotational inertias. Note carefully that this does not imply that the 
vertical motions or rotations vanish. Instead, these become static degrees of freedom, 
and thus depend linearly on the lateral translations, that is, they become slave DOF 
to the lateral translations, which are the master DOF. The process of reducing the 
number of DOF as a result of neglecting rotational and translational inertias can formally 
be achieved by matrix manipulations referred to as static condensation (see 
EXAMPLES 9.8 & 9.9 in the textbook). We introduce further simplification by 
assuming that that the beams are axially rigid and thus neglect axial deformations. This 
introduces a kinematic constraint between the axial components of motion at the two 
ends of a beam. The formal process by which this is accomplished through matrix 
manipulations is referred to as kinematic condensation. 

________________________ 

EXERCISE:  

Demonstrate that the lateral stiffness 𝑘෠ of a one-bay, 
one-story, frame (portal frame) is 
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The above expression includes axial deformation of the columns. The girder is axially 
rigid. All members are made of the same material with modulus of elasticity 𝐸. 

HINT: 

1. Write the stiffness matrix and equilibrium equations for the free joints (i.e. joints 
1 & 2). 

2. Neglecting the axial deformation of the girder and assuming antisymmetric 
behavior, so that 𝑢ଵ ൌ 𝑢ଶ ൌ 𝑢, 𝑣ଵ ൌ െ𝑣ଶ ൌ 𝑣, 𝜑ଵ ൌ 𝜑ଶ ൌ 𝜑, condense the 
stiffness matrix to a matrix 3 ൈ 3 and the load vector to a vector with 3 
components. (Write 3 equilibrium equations. What does each one of these 
equations represent physically?) 

3. Eliminating the rotation 𝜑 and the axial deformation 𝑣 of the columns (static 
condensation) obtain a relation of the form 𝑃 ൌ 𝑘෠𝑢 (obtain 𝑘෠). The parameter 𝑘෠ 
is the lateral stiffness of the frame. 

NOTE: Accounting for axial deformation of the columns may not be important for a 
one-story frame. However, it becomes a crucial consideration for multi-story structures 
(say 10 stories and higher).  

________________________ 

 

As another example, for a multi-story structure, we lump masses at the level of each 
floor and we assume that the floor slabs act as disks (i.e. rigid in their own planes or, 
equivalently, they do not deform under shear forces; act as diaphragms). 

  

Thus each floor has three degrees of 
freedom (DOF): two DOFs 
corresponding to translational 
displacements along orthogonal axes that 
coincide with the principal axes of the plan 
of a typical floor, and a third DOF 
corresponding to rotation about a vertical 
axis. 
 
As a side note we remark that for low-rise 
buildings (less than ten floors), the 
columns may be assumed inextensible. 
However, for high-rise buildings (more 
than ten stories), the axial extensibility of 
columns must be considered.  
 

  



Formulation of the Equations of Motion 

There are four types of forces involved in the dynamic equilibrium of a structure: 

𝐩ሺ𝑡ሻ:  The external applied forces 

𝐟ூሺ𝑡ሻ:  The inertia forces  
(involve accelerations measured w.r.t. an inertial frame of reference) 

𝐟஽ሺ𝑡ሻ:  The damping forces  
(involve velocities that describe rate of deformation) 

𝐟ௌሺ𝑡ሻ:  The restoring (elastic or inelastic) forces  
 (involve displacements that describe deformation)   
 

One way of looking at the problem is to visualize the external forces 𝐩ሺ𝑡ሻ as being 
distributed among the three forces 𝐟ூሺ𝑡ሻ, 𝐟஽ሺ𝑡ሻ, and 𝐟ௌሺ𝑡ሻ, all of them resisting 
motion, that is 

𝐟ூሺ𝑡ሻ ൅ 𝐟஽ሺ𝑡ሻ ൅ 𝐟ௌሺ𝑡ሻ ൌ 𝐩ሺ𝑡ሻ 

Another way of looking at the problem is by applying NEWTON’s 2nd law of motion 

𝐟ூሺ𝑡ሻ ൌ 𝐩ሺ𝑡ሻ െ 𝐟஽ሺ𝑡ሻ െ 𝐟ௌሺ𝑡ሻ 

In the above equation the restoring forces 𝐟ௌሺ𝑡ሻ and the damping forces 𝐟஽ሺ𝑡ሻ appear 
with negative sign because these internal forces resist motion.  

Both approaches lead to the same equation of motion, as expected. 

 

If the structure is elastic, the restoring forces may be expressed as 𝐟ௌሺ𝑡ሻ ൌ 𝐤𝐮ሺ𝑡ሻ, 
where 𝐤 is the stiffness matrix of the structure. 

If we assume that damping in the structure may be described by linear viscous 
damping, then 𝐟஽ሺ𝑡ሻ ൌ 𝐜𝐮ሶ ሺ𝑡ሻ, where 𝐜 is the damping matrix of the structure. 

Finally, the inertia forces may be expressed as 𝐟ூሺ𝑡ሻ ൌ 𝐦𝐮ሷ ሺ𝑡ሻ, where 𝐦 is the mass 
matrix of the structure and the accelerations 𝐮ሷ ሺ𝑡ሻ must be measured w.r.t. an inertial 
frame of reference. 

In view of the above, the equation of dynamic equilibrium may be written as 

𝐦𝐮ሷ ሺ𝑡ሻ ൅ 𝐜𝐮ሶ ሺ𝑡ሻ ൅ 𝐤𝐮ሺ𝑡ሻ ൌ 𝐩ሺ𝑡ሻ 

The above matrix equation is the equation of motion of the discretized structure. 

 

As a corollary of BETTI’s law, we demonstrated that, the stiffness matrix 𝐤 as well as 
the flexibility matrix 𝐟ሚ ൌ 𝐤ି𝟏 of a stable structure, are both symmetric. 

NOTE: The symmetry of the flexibility matrix, 𝐟ሚ் ൌ 𝐟ሚ, is known as MAXWELL’s Law 
of Reciprocal Deflections.   



Furthermore, the matrices 𝐦 & 𝐤 are positive definite as the kinetic energy 𝑇 ൌ
ሺ1 2⁄ ሻ𝐮ሶ ்𝐦𝐮ሶ  and the strain energy 𝑈 ൌ ሺ1 2⁄ ሻ𝐮்𝐤𝐮 are positive definite functions 
of velocities and displacements, respectively.  

NOTE: For stable civil engineering structures, 𝐤 is always positive definite because civil 
engineering structures are normally supported at fixed points of support and, 
consequently, rigid body modes of motion are not possible (that is, the structure is 
restrained and motion of the structure cannot exist without deformation of the structure). 
On the other hand, for structures like an airplane, when they are flying (that is, when they 
are unrestrained), rigid body modes exist and, consequently, there exists motion without 
deformation of the structure; in this case, the stiffness matrix 𝐤 is positive semi-
definite.  

REMINDER: If the real quadratic form 𝛏்𝐀𝛏, associated with a real symmetric 
matrix 𝐀, is nonnegative for all real 𝛏, and is zero only if 𝛏 ൌ 𝟎, then the quadratic 
form is said to be positive definite. Then, by convention, we say that that the matrix 𝐀 
is positive definite. On the other hand, a quadratic form 𝛏்𝐀𝛏, associated with a real 
symmetric matrix 𝐀, is said to be positive semi-definite when it takes on only 
nonnegative values for all real 𝛏, but vanishes for some 𝛏 ് 𝟎. In this case we say that 
that the matrix 𝐀 is positive semi-definite.    

________________________ 

EXAMPLE [Problem 9.13 of the textbook]: 

An umbrella structure has been idealized as an assemblage of three flexural elements with 
lumped masses at the nodes as shown in FIGURE. 
(a) Identify the DOFs to represent the elastic properties and determine the stiffness 
matrix. Neglect axial deformations in all members. 
(b) Identify the DOFs to represent the inertial properties and determine the mass matrix. 
(c) Formulate the equations of motion governing the DOFs in part (b) when the 
excitation is (i) horizontal ground motion, (ii) vertical ground motion, (iii) ground motion 
in direction 𝑏 െ 𝑑, (iv) ground motion in direction 𝑏 െ 𝑐, and (v) rocking ground motion 
in the plane of the structure. 
 
SOLUTION: 

 
In view of the fact that we neglect axial deformation for all members we have only one 
horizontal DOF for all nodes (and consequently for all the corresponding concentrated 
masses 𝑚, 3𝑚 & 𝑚) at the level of the beams. Thus, we end up with a total number of 
six (6) DOFs for the entire structure (see FIGURE). Now, the DOFs 𝑢ସ, 𝑢ହ & 𝑢଺, are 



associated with rotations of the corresponding nodes (and of the corresponding 
concentrated nitrated and thus are associated with zero rotational inertias. Thus, 

𝐮 ൌ ቄ
𝐮௧
𝐮଴

ቅ 𝐮௧ ൌ ൝
𝑢ଵ
𝑢ଶ
𝑢ଷ

ൡ 𝐮଴ ൌ ൝
𝑢ସ
𝑢ହ
𝑢଺

ൡ 

 
Recall that the DOFs 𝐮௧ are associated with significant inertias and are called the 
dynamic DOFs, while 𝐮଴ are associated with insignificant (i.e. zero) inertias, are 
referred to as static DOFs and will be eliminated by static condensation. 
 
The stiffness matrix can formally be derived by the direct stiffness matrix method 
(i.e. the stiffness matrix of each individual member is formulated and rotated to the 
selected global reference system; the element matrices are assembled to form the global 
matrix; the boundary conditions are imposed and the equations not involving reactions 
are retained). 
 
For a simple structure (with few DOFs) like the one we are analyzing, we can obtain the 
stiffness matrix by imposing a unit displacement at each one of the DOFs sequentially, 
while ‘locking’ (i.e. setting equal to zero) all other DOFs. Thus, by setting 𝑢ଵ ൌ 1 we 
obtain, using simple statics, the elements of the 1st column: 𝑘ଵଵ, 𝑘ଶଵ, 𝑘ଷଵ, 𝑘ସଵ, 𝑘ହଵ, and 
𝑘଺ଵ. Proceeding with all the other DOFs in a similar way, we obtain 
 

𝐤 ൌ
𝐸𝐼
𝐿ଷ

⎣
⎢
⎢
⎢
⎢
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12 0 0 6𝐿 0 0
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0 0 12 6𝐿 6𝐿 0

6𝐿 െ6𝐿 6𝐿 12𝐿ଶ 2𝐿ଶ 2𝐿ଶ

0 0 6𝐿 2𝐿ଶ 4𝐿ଶ 0
0 െ6𝐿 0 2𝐿ଶ 0 4𝐿ଶ⎦

⎥
⎥
⎥
⎥
⎤

 

 
The partitioned stiffness matrix may be written as 
 

𝐤 ൌ ൤
𝐤௧௧ 𝐤௧଴
𝐤଴௧ 𝐤଴଴

൨

𝐤௧௧ ൌ ൥
12 0 0

0 12 0
0 0 12

൩ 𝐤௧଴ ൌ 𝐤଴௧
் ൌ ൥

6𝐿 0 0
െ6𝐿 0 െ6𝐿

6𝐿 6𝐿 0
൩ 𝐤଴଴ ൌ ൥

12𝐿ଶ 2𝐿ଶ 2𝐿ଶ

2𝐿ଶ 4𝐿ଶ 0
2𝐿ଶ 0 4𝐿ଶ

൩

 

 
In view of the fact that all masses are concentrated / lumped, the mass matrix 𝐦 is a 
diagonal matrix 

𝐦 ൌ 𝑚 ൥
ሺ3 ൅ 1 ൅ 1ሻ 0 0

0 1 0
0 0 1

൩ ൌ 𝑚 ൥
5 0 0
0 1 0
0 0 1

൩ 



 
 
The condensed stiffness matrix (related only to the translational DOFs) is 

𝐤መ ௧௧ ൌ 𝐤௧௧ െ 𝐤௧଴𝐤଴଴
ିଵ𝐤଴௧ ൌ

3𝐸𝐼
10𝐿ଷ ൥

28 6 െ6
6 7 3

െ6 3 7
൩ 

 
The equations of dynamic equilibrium of the structure, for base excitation, are 
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For horizontal base excitation 𝑢௚௫ሺ𝑡ሻ 
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for vertical base excitation 𝑢௚௬ሺ𝑡ሻ 
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for base excitation 𝑢௚௕ௗሺ𝑡ሻ in the 𝑏 െ 𝑑 direction 
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for base excitation 𝑢௚௕௖ሺ𝑡ሻ in the 𝑏 െ 𝑐 direction 
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for rocking base excitation 𝑢௚ఏሺ𝑡ሻ (i.e. rotation of base about a horizontal axis normal 
to the plane of the structure) 
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 _______________________  
  



Solution of the Equations of Motion – Modal 
Superposition Method 

Free Vibration of Systems without Damping 

We start by considering the free-vibrations of an undamped system. Indeed, we are 
looking for the response of the system performing synchronous motion (i.e. the system 
vibrates maintaining the overall shape and changing only the amplitude by a time-
dependent proportionality factor). 

We seek solutions (of the equations of motion of the undamped system) of the form 
𝐮ሺ𝑡ሻ ൌ 𝑒௦௧𝛟, where 𝛟 is the shape that the system maintains as it vibrates freely and 𝑒௦௧ 
is the time-dependent proportionality factor: 

𝐦𝐮ሷ ൅ 𝐤𝐮 ൌ 𝟎
𝐮ሺ𝑡ሻ ൌ 𝑒௦௧𝛟ൠ ⇒ 𝑒௦௧ሺ𝑠ଶ𝐦𝛟 ൅ 𝐤𝛟ሻ ൌ 𝟎

⇒ 𝐤𝛟 ൌ െ𝑠ଶ𝐦𝛟
 

Therefore, 

𝐤𝛟 ൌ 𝜆𝐦𝛟 , 𝜆 ൌ െ𝑠ଶ  

The above problem is known as the algebraic (or matrix) eigenvalue problem (or 
characteristic-value problem). 

 

Facts that we learn from Linear Algebra regarding the matrix eigenvalue problem: 

(1) The eigenvalues of an algebraic eigenvalue problem, in which 𝐤 & 𝐦 are both 
symmetric, and at least one positive definite, are all real. 
[NOTE: For stable civil engineering structures both matrices 𝐤 & 𝐦 are positive 
definite] 
 

(2) When matrices 𝐤 & 𝐦 are both positive definite, the eigenvalues are all 
positive. 
 

(3) When 𝐤 is singular, at least one of the eigenvalues must be zero. 
[NOTE: An example of a stable (but unconstrained) structure which has a 
singular 𝐤 matrix is an airborne airplane.] 
When 𝐦 is singular, at least one of the eigenvalues must be infinite. 
[NOTE: For a discrete model of a civil engineering structure that we develop 
and analyze in this course, 𝐦 is always non-singular as we have eliminated (by 
static condensation) any degrees associated with insignificant inertia.] 
 

(4) The eigenvectors, corresponding to different eigenvalues, are orthogonal to 

each other with respect to both 𝐤 & 𝐦. Therefore 



𝛟௡
்𝐦𝛟௠ ൌ ൜

0 𝑛 ് 𝑚
𝑀௡ 𝑛 ൌ 𝑚

𝛟௡
்𝐤𝛟௠ ൌ ൜

0 𝑛 ് 𝑚
𝐾௡ 𝑛 ൌ 𝑚

 

 
Evidently, 

𝐤𝛟௡ ൌ 𝜔௡
ଶ𝐦𝛟௡ ⇒ 𝛟௡

்𝐤𝛟௡ ൌ 𝜔௡
ଶ𝛟௡

்𝐦𝛟௡ ⇒ 𝜔௡
ଶ ൌ

𝛟௡
்𝐤𝛟௡

𝛟௡
்𝐦𝛟௡

ൌ
𝐾௡

𝑀௡
 

 
(5) To an eigenvalue of multiplicity 𝓂 there correspond 𝓂 linearly independent 

eigenvectors. These 𝓂 linearly independent eigenvectors can be made 
orthogonal (w.r.t. 𝐤 & 𝐦) to each other using the Gram-Schmidt 
orthogonalization procedure. These eigenvectors are already orthogonal to the 
rest ሺ𝑛 െ 𝓂ሻ eigenvectors  
[NOTE: It is rather unlikely for a civil engineering structure to have eigenvalues 
with multiplicity higher than 1. However, it is not inconceivable.] 
 

(6) Any arbitrary 𝑁-vector 𝐮 can always be expressed as a linear combination of 
the linearly independent eigenvectors of the algebraic eigenvalue problem: 

𝐮 ൌ ෍ 𝛟௥𝑞௥

ே

௥ୀଵ

ൌ 𝚽𝐪

where: 𝚽 ൌ ൭
↓ ↓ ↓

𝛟ଵ 𝛟ଶ ⋯ 𝛟ே

↓ ↓ ↓
൱

ᇣᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇥ
𝑴𝒐𝒅𝒂𝒍 𝑴𝒂𝒕𝒓𝒊𝒙

 

where 𝑞௥  ሺ𝑟 ൌ 1,2, ⋯ , 𝑁ሻ are scalar multipliers called modal coordinates or 
normal coordinates and 𝐪 ൌ ሾ𝑞ଵ 𝑞ଶ ⋯ 𝑞ேሿ𝑻; 𝑁 = no. of Degrees of 
Freedom (DOF) of the structure. 
[NOTE: The above statement, known as the “eigenvector expansion 
theorem”, guaranties that whatever shape the structure takes as it vibrates, that 
shape can always be expressed as a linear combination of the modal shapes of 
the structure. This theorem forms the basis of the “modal superposition 
method” of expressing the response of the structure.] 

 

Returning to the solution of the matrix eigenvalue problem, now we know that 𝜆 ൐ 0 
(always true for civil engineering structures). Therefore, we can set 𝜆 ൌ 𝜔ଶ. This implies 

that 𝑠 ൌ േ√െ𝜆 ൌ േ𝑖𝜔. It follows that the general solution of 𝐦𝐮ሷ ൅ 𝐤𝐮 ൌ 𝟎 is 𝐮ሺ𝑡ሻ ൌ
𝐶ଵ𝑒௜ఠ௧𝛟 ൅ 𝐶ଶ𝑒ି௜ఠ௧𝛟 ൌ ൫𝐶ଵ𝑒௜ఠ௧ ൅ 𝐶ଶ𝑒ି௜ఠ௧൯𝛟; for this expression to represent 

actual vibrations it must be a real expression; therefore 𝐶ଶ ൌ 𝐶̅ଵ ൌ 𝐴ᇱ ൅ 𝑖𝐵ᇱ 
(assuming that 𝐶ଵ ൌ 𝐴ᇱ െ 𝑖𝐵ᇱ ). Then, 



𝐮ሺ𝑡ሻ ൌ 2ℛℯ൫𝐶ଵ𝑒௜ఠ௧൯𝛟
ൌ 2ሾ𝐴ᇱ cosሺ𝜔𝑡ሻ ൅ 𝐵ᇱ sinሺ𝜔𝑡ሻሿ𝛟
ൌ ሾ𝐴 cosሺ𝜔𝑡ሻ ൅ 𝐵 sinሺ𝜔𝑡ሻሿ𝛟

ൌ 𝜌 sinሺ𝜔𝑡 ൅ 𝜃ሻ 𝛟 ቐ
𝜌 ൌ ඥ𝐴ଶ ൅ 𝐵ଶ

𝜃 ൌ tanିଵ ൬
𝐴
𝐵

൰

 

This demonstrates that the system/structure performs synchronous harmonic motion 
maintaining all the time the same shape. 

 

Now, if we give an arbitrary initial displacement 𝐮ሺ𝑡 ൌ 0ሻ ൌ 𝐮଴ and arbitrary initial 
velocity 𝐮ሶ ሺ𝑡 ൌ 0ሻ ൌ 𝐮ሶ ଴ to the structure, the response may be expressed by invoking the 
eigenvector expansion theorem. Specifically  

𝐮ሺ𝑡ሻ ൌ ෍ 𝑞௡ሺ𝑡ሻ𝛟௡

ே

௡ୀଵ

 

Evidently, the step that precedes the above one is to solve the matrix eigenvalue problem 
𝐤𝛟 ൌ 𝜆𝐦𝛟, and we know that we are going to obtain 𝑁 positive values 𝜆௡ ൌ
𝜔௡

ଶ , ሺ𝑛 ൌ 1,2, ⋯ , 𝑁ሻ and corresponding 𝑁 real eigenvectors 𝛟௡ , ሺ𝑛 ൌ 1,2, ⋯ , 𝑁ሻ. 

In order to decouple the equations of motion, we substitute the above expression for the 
response / solution 𝐮ሺ𝑡ሻ, we pre-multiply by 𝛟௝

் both sides of the equation of motion 

and we invoke the orthogonality theorem of the eigenvectors. As a result we obtain 𝑁 
uncoupled modal equations 

𝑞ሷ௝ሺ𝑡ሻ ൅ 𝜔௝
ଶ𝑞௝ሺ𝑡ሻ ൌ 0 , ሺ𝑗 ൌ 1,2, ⋯ , 𝑁ሻ 

subject to the following initial conditions 

𝑞௝ሺ0ሻ ൌ
𝛟௝

்𝐦𝐮଴

𝑀௡
, 𝑞ሶ௝ሺ0ሻ ൌ

𝛟௝
்𝐦𝐮ሶ ଴
𝑀௡

 

The solution / response of the above set of uncoupled modal equations is 

𝑞௝ሺ𝑡ሻ ൌ 𝑞௝ሺ0ሻ cos൫𝜔௝𝑡൯ ൅
𝑞ሶ௝ሺ0ሻ

𝜔௝
sin൫𝜔௝𝑡൯ , ሺ𝑗 ൌ 1,2, ⋯ , 𝑁ሻ 

[NOTE: The modal equations are mathematically equivalent to the equation of motion 
of a SDOF system. Clearly, any method that is appropriate to use to solve the equation 
of motion of a SDOF system is also appropriate to solve also the modal equations.] 

We observe that in the general case, (that is for arbitrary initial displacement and 
velocity), all modes participate in the response. If we would like to excite only one 
mode, say the 𝑚-th mode, both the 𝐮଴ and 𝐮ሶ ଴ would have to be proportional to 𝛟௠, 
i.e. 𝐮଴ ൌ 𝛼𝛟௠ & 𝐮ሶ ଴ ൌ 𝛽𝛟௠. 

________________________ 



EXAMPLE [Problem 10.23 of the textbook]: 

(a) For the umbrella structure, determine the natural vibration frequencies and modes. 
Express the frequencies in terms of 𝑚, 𝐸𝐼, & 𝐿, and sketch the modes. 
(b) The structure is pulled through a lateral displacement 𝑢ଵሺ0ሻ ൌ 1 and released. 
Determine the free vibration response. 
 
SOLUTION: 
 
We recall that 

𝐦 ൌ 𝑚 ൥
5 0 0
0 1 0
0 0 1

൩ , 𝐤መ ௧௧ ൌ
3𝐸𝐼

10𝐿ଷ ൥
28 6 െ6

6 7 3
െ6 3 7

൩ 

 
We form the eigenvalue problem: 

𝐤መ ௧௧ െ 𝜔ଶ𝐦 ൌ
3𝐸𝐼
10𝐿ଷ ൥

28 െ 5𝜆 6 െ6
6 7 െ 𝜆 3

െ6 3 7 െ 𝜆
൩ , 𝜆 ൌ

10𝑚𝐿ଷ

3𝐸𝐼
𝜔ଶ 

 

อ
28 െ 5𝜆 6 െ6

6 7 െ 𝜆 3
െ6 3 7 െ 𝜆

อ ൌ 0 ⇒ 5𝜆ଷ െ 98𝜆ଶ ൅ 520𝜆 െ 400 ൌ 0 

 
The cubic equation (like the quadratic & quartic equations but not higher order 
equations) can be solved algebraically; for a detailed discussion see 
https://en.wikipedia.org/wiki/Cubic_equation ). 
 
The roots of the above characteristic equation are: 
  

𝜆ଵ ൌ 0.9219 𝜆ଶ ൌ 8.6780 𝜆ଷ ൌ 10

𝜔ଵ ൌ 0.5259ඨ
𝐸𝐼

𝑚𝐿ଷ 𝜔ଶ ൌ 1.6135ඨ
𝐸𝐼

𝑚𝐿ଷ 𝜔ଷ ൌ 1.7321ඨ
𝐸𝐼

𝑚𝐿ଷ

 

 
Then, from the equation ൣ𝐤መ ௧௧ െ 𝜔௡

ଶ𝐦൧𝛟௡ ൌ 𝟎, and after setting one of the elements of 
𝛟௡ equal to an arbitrary value (see EXAMPLE 10.1), we obtain 
 

𝛟ଵ ൌ ൝
1

െ1.9492
1.9492

ൡ 𝛟ଶ ൌ ൝
1

1.2826
െ1.2826

ൡ 𝛟ଷ ൌ ൝
0
1
1

ൡ 

 
 
Initial conditions: 

𝐮ሺ0ሻ ൌ 𝐮଴ ൌ ൝
1
0
0

ൡ 𝐮ሶ ሺ0ሻ ൌ 𝐮ሶ ଴ ൌ ൝
0
0
0

ൡ 

 



𝑞ଵሺ0ሻ ൌ
𝛟ଵ

்𝐦𝐮଴

𝛟ଵ
்𝐦𝛟𝟏

ൌ 0.3969 𝑞ሶଵሺ0ሻ ൌ 0

𝑞ଶሺ0ሻ ൌ
𝛟ଶ

்𝐦𝐮଴

𝛟ଶ
்𝐦𝛟𝟐

ൌ 0.6031 𝑞ሶଶሺ0ሻ ൌ 0

𝑞ଷሺ0ሻ ൌ
𝛟ଷ

்𝐦𝐮଴

𝛟ଷ
்𝐦𝛟𝟑

ൌ 0 𝑞ሶଷሺ0ሻ ൌ 0

 

 
The free vibration response to the given initial displacement is 
 

𝐮ሺ𝑡ሻ ൌ ෍ 𝛟௡𝑞௡ሺ𝑡ሻ
ଷ

௡ୀଵ

ൌ ෍ 𝛟௡ ቈ𝑞௡ሺ0ሻ cosሺ𝜔௡𝑡ሻ ൅
𝑞ሶ௡ሺ0ሻ

𝜔௡
sinሺ𝜔௡𝑡ሻ቉

ଷ

௡ୀଵ

 

 or 

𝐮ሺ𝑡ሻ ൌ ቐ
𝑢ଵሺ𝑡ሻ
𝑢ଶሺ𝑡ሻ
𝑢ଷሺ𝑡ሻ

ቑ ൌ ൝
0.3969

െ0.7736
0.7736

ൡ cosሺ𝜔ଵ𝑡ሻ ൅ ൝
0.6031
0.7736

െ0.7736
ൡ cosሺ𝜔ଶ𝑡ሻ 

 
Notice that the 3rd mode does not contribute to the response because the initial 
conditions do not contain a component in that mode (recall that 𝑞ଷሺ0ሻ ൌ 0 & 𝑞ሶଷሺ0ሻ ൌ
0). 
________________________ 

  



Free Vibration of Systems with Classical Damping 

In order to simulate the damping mechanisms present in our physical structure, we 
introduce in the equations of motion the term 𝐜𝐮ሶ , where the damping matrix 𝐜 is 
assumed to satisfy the same properties of orthogonality as the matrices 𝐤 & 𝐦. 
Specifically, the eigenvectors (modal shapes) 𝚽 ൌ ሾ𝛟ଵ 𝛟ଶ ⋯ 𝛟௡ ⋯ 𝛟ேሿ that 
we obtain by solving the matrix eigenvalue problem 𝐤𝛟 ൌ 𝜔ଶ𝐦𝛟 are assumed to be 
orthogonal w.r.t. the damping matrix 𝐜 as well, i.e. 

𝛟௡
்𝐜𝛟௠ ൌ ൜

0 𝑛 ് 𝑚
2𝜉௡𝜔௡𝑀௡ 𝑛 ൌ 𝑚 

or in terms of the modal matrix 𝚽 

𝚽்𝐜𝚽 ൌ ൦

⋱
2𝜉௡𝜔௡𝑀௡ᇣᇧᇧᇤᇧᇧᇥ

஼೙

⋱

൪

ᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥ
ௗ௜௔௚௢௡௔௟ ௠௔௧௥௜௫

 

The parameters 𝜉௡ . ሺ𝑛 ൌ 1,2, ⋯ , 𝑁ሻ specify the damping ratios of the modes of the 
structure and are referred to as modal damping ratios. 

[NOTE: It is important to point out that the matrix eigenvalue problem 𝐤𝛟 ൌ
𝜔ଶ𝐦𝛟, solution of which produces the modal shapes 𝛟௡ and characteristic circular 
frequencies 𝜔௡, does not involve the matrix 𝐜.] 

The above kind of damping is referred to as classical damping. This model of damping 
is appropriate for all common/conventional civil engineering structures. However, if a 
structure is equipped with modern protective (aseismic) systems, such as base isolation 
and/or energy absorbing dashpots, then the damping model of classical damping is not 
satisfactory and one has to make use of the non-classical damping model. This model 
is not discussed in this course. 

 

Let us consider the free vibrations of a structure with classical damping, subjected to 
initial displacement 𝐮ሺ𝑡 ൌ 0ሻ ൌ 𝐮଴ and initial velocity 𝐮ሶ ሺ𝑡 ൌ 0ሻ ൌ 𝐮ሶ ଴. Therefore 

Eqn of Motion: 𝐦𝐮ሷ ൅ 𝐜𝐮ሶ ൅ 𝐤𝐮 ൌ 𝟎
Initial Conditions: 𝐮ሺ𝑡 ൌ 0ሻ ൌ 𝐮଴ , 𝐮ሶ ሺ𝑡 ൌ 0ሻ ൌ 𝐮ሶ ଴

 

Invoking again the eigenvector expansion theorem, we express the response / 
solution of the structure as a linear combination of the modal shapes: 

𝐮ሺ𝑡ሻ ൌ ෍ 𝑞௡ሺ𝑡ሻ𝛟௡

ே

௡ୀଵ

 

Substituting the above expansion in the equations of motion, pre-multiplying by 𝛟௝
் and, 

invoking the orthogonality property of the modal shapes w.r.t. 𝐤, 𝐦 & 𝐜, we obtain 



𝑁 uncoupled modal equations in terms of the normal co-ordinates 𝑞௡ሺ𝑡ሻ , ሺ𝑗 ൌ
1,2, ⋯ , 𝑁ሻ: 

𝑞ሷ௝ሺ𝑡ሻ ൅ 2𝜉௝𝜔௝𝑞ሶ௝ሺ𝑡ሻ ൅ 𝜔௝
ଶ𝑞௝ሺ𝑡ሻ ൌ 0 , ሺ𝑗 ൌ 1,2, ⋯ , 𝑁ሻ 

subject to the following initial conditions 

𝑞௝ሺ0ሻ ൌ
𝛟௝

்𝐦𝐮଴

𝑀௡
, 𝑞ሶ௝ሺ0ሻ ൌ

𝛟௝
்𝐦𝐮ሶ ଴
𝑀௡

 

The solution / response of the above set of uncoupled modal equations is 

𝑞௝ሺ𝑡ሻ ൌ 𝑒ିకೕఠೕ௧ ቊ𝑞௝ሺ0ሻ cos൫𝜔஽௝𝑡൯ ൅
𝑞ሶ௝ሺ0ሻ ൅ 𝜉௝𝜔௝𝑞௝ሺ0ሻ

𝜔஽௝
sin൫𝜔஽௝𝑡൯ቋ , ሺ𝑗 ൌ 1,2, ⋯ , 𝑁ሻ

𝜔஽௝ ൌ 𝜔௝ට1 െ 𝜉௝
ଶ

 

We observe that in the general case, (that is for arbitrary initial displacement and 
velocity), all modes participate in the response. If we would like to excite only one 
mode, say the 𝑚-th mode, both the 𝐮଴ and 𝐮ሶ ଴ would have to be proportional to 𝛟௠, 
i.e. 𝐮଴ ൌ 𝛼𝛟௠ & 𝐮ሶ ଴ ൌ 𝛽𝛟௠. 

___________________ 

NOTE: For the analysis of conventional structures using discrete models developed 
and discussed in this course, it is not necessary to form the damping matrix 𝐜. The only 
information that the analyst needs is the damping ratios 𝜉௝ , ሺ𝑗 ൌ 1,2, ⋯ , 𝑁ሻ of the 
modes of the structure. The damping ratios 𝜉௝ are used in the modal equations. 

However, there are problems of dynamic analysis of structures that require the formation 
of a damping matrix 𝐜. For example, a Finite Element Model (FEM) of the structure 
including part of the soil supporting the structure would be such a problem. The reason 
is that the nature and amount of damping in the soil is very different from that in the 
structure. Therefore, an explicit damping matrix needs to be formed for the soil part of 
the finite element mesh and a separate damping matrix for the mesh modeling the 
structure. Eventually, the two submatrices are combined to form a damping matrix for 
the complete soil-structure system. 

One way to form a damping matrix that provides classical damping is using the so called 
CAUGHEY damping series. Specifically 

𝐜 ൌ 𝐦 ෍ 𝛼ℓሾ𝐦ିଵ𝐤ሿℓ

ℓ

𝜉௝ ൌ
1

2𝜔௝
෍ 𝛼ℓ𝜔௝

ଶℓ

ℓ ⎭
⎪
⎬

⎪
⎫

ℓ ൌ ⋯ , െ2, െ1, 0, ൅1, ൅2, ⋯ 

The damping ratios 𝜉௝ for as many modes need to be provided. However, for effective 
use of the CAUGHEY damping series, an even number of terms must be used in the 
series expression. 

 



Dynamic Analysis of Structural Systems with Classical 
Damping 

Let us consider a 𝑁-DOF system, having classical damping and subjected to the 
general loading 𝐩ሺ𝑡ሻ and having initial displacement 𝐮ሺ𝑡 ൌ 0ሻ ൌ 𝐮଴ and initial 
velocity 𝐮ሶ ሺ𝑡 ൌ 0ሻ ൌ 𝐮ሶ ଴. [NOTE: Normally, in most cases, civil engineering structures 
start vibrating from rest.] Therefore 

Eqn of Motion: 𝐦𝐮ሷ ൅ 𝐜𝐮ሶ ൅ 𝐤𝐮 ൌ 𝐩ሺ𝑡ሻ
Initial Conditions: 𝐮ሺ𝑡 ൌ 0ሻ ൌ 𝐮଴ , 𝐮ሶ ሺ𝑡 ൌ 0ሻ ൌ 𝐮ሶ ଴

 

Invoking again the eigenvector expansion theorem, we express the response / 
solution of the structure as a linear combination of the modal shapes: 

𝐮ሺ𝑡ሻ ൌ ෍ 𝐮௡ሺ𝑡ሻ
ே

௡ୀଵ

ൌ ෍ 𝑞௡ሺ𝑡ሻ𝛟௡

ே

௡ୀଵ

 

Substituting the above expansion in the equations of motion, pre-multiplying by 𝛟௝
் and 

invoking the orthogonality property of the modal shapes w.r.t. 𝐤, 𝐦 & 𝐜 we obtain 𝑁 
uncoupled modal equations in terms of the normal co-ordinates 𝑞௝ሺ𝑡ሻ , ሺ𝑗 ൌ
1,2, ⋯ , 𝑁ሻ: 

𝑀௝𝑞ሷ௝ሺ𝑡ሻ ൅ 𝐶௝𝑞ሶ௝ሺ𝑡ሻ ൅ 𝐾௝𝑞௝ሺ𝑡ሻ ൌ 𝑃௝ሺ𝑡ሻ , ሺ𝑗 ൌ 1,2, ⋯ , 𝑁ሻ

⇒ 𝑞ሷ௝ሺ𝑡ሻ ൅
𝐶௝

𝑀௝
𝑞ሶ௝ሺ𝑡ሻ ൅

𝐾௝

𝑀௝
𝑞௝ሺ𝑡ሻ ൌ

𝑃௝ሺ𝑡ሻ

𝑀௝

⇒ 𝑞ሷ௝ሺ𝑡ሻ ൅ 2𝜉௝𝜔௝𝑞ሶ௝ሺ𝑡ሻ ൅ 𝜔௝
ଶ𝑞௝ሺ𝑡ሻ ൌ

𝑃௝ሺ𝑡ሻ

𝑀௝

where 𝑃௝ሺ𝑡ሻ ൌ 𝛟௝
்𝐩ሺ𝑡ሻ

 

subject to the following initial conditions 

𝑞௝ሺ0ሻ ൌ
𝛟௝

்𝐦𝐮଴

𝑀௡
, 𝑞ሶ௝ሺ0ሻ ൌ

𝛟௝
்𝐦𝐮ሶ ଴
𝑀௡

 

The above equations governing the response of the normal co-ordinates 
𝑞௝ሺ𝑡ሻ , ሺ𝑗 ൌ 1,2, ⋯ , 𝑁ሻ is mathematically identical to the equation of motion of a SDOF 
system. Any one of the techniques that we developed in obtaining the response of the 
SDOF system, evidently may be applied here as well. 

 

Modal Analysis for 𝐩ሺ𝑡ሻ ൌ 𝐬𝑝ሺ𝑡ሻ 

One particular type of loading 𝐩ሺ𝑡ሻ is of interest to us. This is the case of 𝐩ሺ𝑡ሻ ൌ 𝐬𝑝ሺ𝑡ሻ, 
where all the applied loads have common time variation 𝑝ሺ𝑡ሻ, while the (time-
independent) vector 𝐬 describes the spatial distribution of the load. This type of load 
describes various practical cases, including the earthquake load (i.e. the load induced by 
support motion) to be considered later. 



We resolve vector 𝐬 into its modal components: 

𝐬 ൌ ෍ 𝐬௥

ே

௥ୀଵ

ൌ ෍ Γ௥𝐦𝛟௥

ே

௥ୀଵ

Γ௥ ൌ
𝛟௥

்𝐬
𝑀௥

𝑴𝒐𝒅𝒂𝒍
𝑷𝒂𝒓𝒕𝒊𝒄𝒊𝒑𝒂𝒕𝒊𝒐𝒏 𝑭𝒂𝒄𝒕𝒐𝒓

 

It is evident that Γ௥ is not independent of how the modal shape is normalized. 
However, the modal component 𝐬௥ ൌ Γ௥𝐦𝛟௥ is independent of how the modal shape 
is normalized. 

The above expansion of the 𝐬 vector has two useful properties: 

(1) The force vector 𝐬௡𝑝ሺ𝑡ሻ produces response only in the 𝑛௧௛ mode but no 
response in any other mode.  

(2) The dynamic response of the 𝑛th mode is entirely due to the partial force 
vector 𝐬௡𝑝ሺ𝑡ሻ. 

It should be noted that the spatial distribution of the inertia forces ሺ𝐟ூሻ௡ associated 
with the 𝑛௧௛ mode, is the same as that of 𝐬௡ ൌ Γ௡𝐦𝛟௡: 

ሺ𝐟ூሻ௡ ൌ 𝐦𝐮ሷ ௡ሺ𝑡ሻ ൌ 𝐦𝛟௡𝑞ሷ௡ሺ𝑡ሻ 

 

The uncoupled modal equations in this case are: 

𝑞ሷ௡ሺ𝑡ሻ ൅ 2𝜉௡𝜔௡𝑞ሶ௡ሺ𝑡ሻ ൅ 𝜔௡
ଶ𝑞௡ሺ𝑡ሻ ൌ

𝑃௡ሺ𝑡ሻ
𝑀௡

ሺ𝑛 ൌ 1,2, ⋯ , 𝑁ሻ

where: 𝑃௡ሺ𝑡ሻ ൌ 𝛟௡
்𝐩ሺ𝑡ሻ ൌ 𝛟௡

்𝐬𝑝ሺ𝑡ሻ ൌ Γ௡𝑀௡𝑝ሺ𝑡ሻ
 

Therefore: 
𝑞ሷ௡ሺ𝑡ሻ ൅ 2𝜉௡𝜔௡𝑞ሶ௡ሺ𝑡ሻ ൅ 𝜔௡

ଶ𝑞௡ሺ𝑡ሻ ൌ Γ௡𝑝ሺ𝑡ሻ ሺ𝑛 ൌ 1,2, ⋯ , 𝑁ሻ 

Introducing the new variable: 𝐷௡ሺ𝑡ሻ ൌ 𝑞௡ሺ𝑡ሻ Γ௡⁄ ⇔ 𝑞௡ሺ𝑡ሻ ൌ Γ௡𝐷௡ሺ𝑡ሻ, we obtain 

𝐷ሷ ௡ሺ𝑡ሻ ൅ 2𝜉௡𝜔௡𝐷ሶ ௡ሺ𝑡ሻ ൅ 𝜔௡
ଶ𝐷௡ሺ𝑡ሻ ൌ 𝑝ሺ𝑡ሻ ሺ𝑛 ൌ 1,2, ⋯ , 𝑁ሻ 

The reason that we express the modal equations in terms of the variable 𝐷௡ሺ𝑡ሻ (a 
seemingly trivial substitution) is because 𝐷௡௢ ≝ max

௧
|𝐷௡ሺ𝑡ሻ| may be read directly from 

the response spectrum of 𝑝ሺ𝑡ሻ.  

 

In order to find element forces (i.e. actions such as moments and shear forces of the 
various structural members of a structure subjected to dynamic analysis) we implement 
the equivalent static force method. Specifically, as the structure vibrates it deforms and 
the equivalent static forces that would cause the deformed shape 𝐮ሺ𝑡ሻ at any instant in 
time are the elastic forces 𝐟ௌሺ𝑡ሻ ൌ 𝐤𝐮ሺ𝑡ሻ corresponding to that time instant. It is 
evident that 



𝐮ሺ𝑡ሻ ൌ ෍ 𝐮௡ሺ𝑡ሻ
ே

௡ୀଵ

ൌ ෍ 𝑞௡ሺ𝑡ሻ𝛟௡

ே

௡ୀଵ

ൌ ෍ Γ௡𝐷௡ሺ𝑡ሻ𝛟௡

ே

௡ୀଵ

 

and 

𝐟ௌሺ𝑡ሻ ൌ 𝐤𝐮ሺ𝑡ሻ ൌ 𝐤 ෍ 𝐮௡ሺ𝑡ሻ
ே

௡ୀଵ

ൌ ෍ 𝐤𝐮௡ሺ𝑡ሻ
ே

௡ୀଵ

ൌ ෍ 𝐟ௌ௡ሺ𝑡ሻ
ே

௡ୀଵ

 

We work with each mode separately. Therefore, the equivalent static forces 𝐟ௌ௡ሺ𝑡ሻ 
in the 𝑛th mode are 

𝐟ௌ௡ሺ𝑡ሻ ൌ 𝐤𝐮௡ሺ𝑡ሻ ൌ Γ௡ 𝐤𝛟௡ถ
ఠ೙

మ 𝐦𝛟೙

𝐷௡ሺ𝑡ሻ ൌ Γ௡𝐦𝛟௡ᇣᇧᇤᇧᇥ
𝐬೙

ሾ𝜔௡
ଶ𝐷௡ሺ𝑡ሻሿ

⟹ 𝐟ௌ௡ሺ𝑡ሻ ൌ 𝐬௡ሾ𝜔௡
ଶ𝐷௡ሺ𝑡ሻሿ

 

In words, the above result makes evident that the elastic forces in the 𝑛th mode consist 
of the modal component 𝐬௡ (which describes the spatial distribution of the elastic 
forces in the 𝑛th mode and is time independent) scaled by the time-varying 
coefficient ሾ𝜔௡

ଶ𝐷௡ሺ𝑡ሻሿ. This suggests that in order to compute any response quantity 
𝑟ሺ𝑡ሻ [such as actions (e.g. moment, shear force) acting on members of the structure, or 
displacements at any of the nodes of the structure], we need to perform 𝑁 static 
analyses. The results of these static analyses, 𝑟௡

௦௧ , ሺ𝑛 ൌ 1,2, ⋯ , 𝑁ሻ, will be scaled by the 
respective time-varying coefficients, ሾ𝜔௡

ଶ𝐷௡ሺ𝑡ሻሿ , ሺ𝑛 ൌ 1,2, ⋯ , 𝑁ሻ, to obtain the 
corresponding modal contribution, 𝑟௡ሺ𝑡ሻ , ሺ𝑛 ൌ 1,2, ⋯ , 𝑁ሻ, to the response quantity 
𝑟ሺ𝑡ሻ. 

𝐬ଵ → 𝑀𝐷𝑂𝐹 𝑆𝑦𝑠𝑡𝑒𝑚 → 𝑟ଵ
௦௧ ∙ 𝜔ଵ

ଶ𝐷ଵሺ𝑡ሻ ൌ 𝑟ଵሺ𝑡ሻ

𝐬ଶ → 𝑀𝐷𝑂𝐹 𝑆𝑦𝑠𝑡𝑒𝑚 → 𝑟ଶ
௦௧ ∙ 𝜔ଶ

ଶ𝐷ଶሺ𝑡ሻ ൌ 𝑟ଶሺ𝑡ሻ
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝐬ே → 𝑀𝐷𝑂𝐹 𝑆𝑦𝑠𝑡𝑒𝑚 → 𝑟ே
௦௧ ∙ 𝜔ே

ଶ 𝐷ேሺ𝑡ሻ ൌ 𝑟ேሺ𝑡ሻ

_____ _______ ______

𝐬 ൌ ෍ 𝐬௡

ே

→ 𝑀𝐷𝑂𝐹 𝑆𝑦𝑠𝑡𝑒𝑚 → 𝑟௦௧ ൌ ෍ 𝑟௡
௦௧

ே

𝑟ሺ𝑡ሻ ൌ ෍ 𝑟௡ሺ𝑡ሻ
ே

 

 

NOTE: From the relation 𝑟௦௧ ൌ ∑ 𝑟௡
௦௧

ே  we obtain 1 ൌ ∑ ቀ௥೙
ೞ೟

௥ೞ೟ቁே ൌ ∑ 𝑟̅௡ே . Evidently 

𝑟̅௡ ൌ ቀ௥೙
ೞ೟

௥ೞ೟ቁ expresses the contribution of the 𝑛th mode to the response quantity 

𝑟ሺ𝑡ሻ and that is why it is referred to as the 𝑛th modal contribution factor to the 
response quantity 𝑟ሺ𝑡ሻ. The advantages of these factors over the 𝑛th modal participation 
factors Γ௡ are: (1) they are dimensionless; (2) they are independent of how modes are 
normalized; and (3) the sum of the modal contribution factors over all modes is unity, 
that is ∑ 𝑟̅௡ே ൌ 1. 

 



Now, let us consider the peak response of the system. Let us introduce the following 
definitions: 

𝐷௡௢ ≝ max
௧

|𝐷௡ሺ𝑡ሻ|

൫𝐷௡,௦௧൯
௢

ൌ max
௧

ห𝐷௡,௦௧ሺ𝑡ሻหᇣᇧᇧᇤᇧᇧᇥ
𝒔𝒕𝒂𝒕𝒊𝒄 

𝒓𝒆𝒔𝒑𝒐𝒏𝒔𝒆

ൌ ൭
max

௧
|𝑝ሺ𝑡ሻ|

𝜔௡
ଶ ൱ ൌ ൬

𝑝௢

𝜔௡
ଶ൰

⎭
⎪
⎬

⎪
⎫

𝑅ௗ௡ ൌ
𝐷௡௢

൫𝐷௡,௦௧൯
௢ᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥ

𝑫𝒚𝒏𝒂𝒎𝒊𝒄
𝑹𝒆𝒔𝒑𝒐𝒏𝒔𝒆 𝑭𝒂𝒄𝒕𝒐𝒓

 

 NOTE: The static response 𝐷௡,௦௧ሺ𝑡ሻ is obtained from 𝐷ሷ ௡ሺ𝑡ሻ ൅ 2𝜉௡𝜔௡𝐷ሶ ௡ሺ𝑡ሻ ൅
𝜔௡

ଶ𝐷௡ሺ𝑡ሻ ൌ 𝑝ሺ𝑡ሻ, by dropping the 𝐷ሷ ௡ & 𝐷ሶ ௡ terms. 

It follows that: 

𝑟௡௢ ൌ 𝑟௦௧𝑟̅௡ถ
௥೙

ೞ೟

𝜔௡
ଶ𝐷௡௢ ൌ 𝑟௦௧𝑟̅௡𝑝௢𝑅ௗ௡ 

NOTE: The algebraic sign of 𝑟௡௢ is the same as that of 𝑟௡
௦௧ ≝ 𝑟௦௧𝑟̅௡ because 𝑅ௗ௡ is 

positive by definition. 

 𝑟௦௧ & 𝑟̅௡ : depend on the spatial distribution 𝐬 of the applied forces, but 
are independent of the time variation 𝑝ሺ𝑡ሻ of the applied forces. 

 𝑅ௗ௡ :  depends on 𝑝ሺ𝑡ሻ, but is independent of 𝐬. 

 

 

Earthquake Analysis of Linear Systems 

In the case of base excitation (earthquake problem) there are no external forces 
acting on the structure, i.e. 𝐩ሺ𝑡ሻ ൌ 𝟎. Therefore 

𝐟ூሺ𝑡ሻ ൅ 𝐟஽ሺ𝑡ሻ ൅ 𝐟ௌሺ𝑡ሻ ൌ 𝟎 

It should be emphasized that the inertia forces vector depends on absolute 
accelerations (i.e. accelerations measured w.r.t. an inertial / Newtonian frame of 
reference). The absolute / total displacement vector 𝐮௧ሺ𝑡ሻ (the superscript ‘𝑡’ stands 
for ‘total’) may be resolved as follows 

𝐮௧ሺ𝑡ሻ ൌ 𝐮ሺ𝑡ሻ ൅ 𝛊𝑢௚ሺ𝑡ሻ 

where: 𝛊𝑢௚ሺ𝑡ሻ is the part of displacements that describes rigid body motion of the 
structure as it undergoes support motion 𝑢௚ሺ𝑡ሻ, (i.e. if the structure were massless and 
were subjected to support motion 𝑢௚ሺ𝑡ሻ); 𝛊 is the influence vector; 𝐮ሺ𝑡ሻ are the 
additional displacements / deformations that the structure (with its mass) 
experiences due to the inertia forces that are induced as the structure accelerates due 
to support movement.  

Evidently, the elastic forces 𝐟ௌሺ𝑡ሻ are associated with 𝐮ሺ𝑡ሻ (i.e. the part of displacements 
associated with the deformations of the structure), i.e. 𝐟ௌሺ𝑡ሻ ൌ 𝐤𝐮ሺ𝑡ሻ, while the damping 



forces 𝐟஽ሺ𝑡ሻ are associated with the rate of deformations 𝐮ሶ ሺ𝑡ሻ, i.e. 𝐟஽ሺ𝑡ሻ ൌ 𝐜𝐮ሶ ሺ𝑡ሻ. 
Therefore, the equation of dynamic equilibrium transforms to 

𝐦ൣ𝐮ሷ ሺ𝑡ሻ ൅ 𝛊𝑢ሷ௚ሺ𝑡ሻ൧ ൅ 𝐜𝐮ሶ ሺ𝑡ሻ ൅ 𝐤𝐮ሺ𝑡ሻ ൌ 𝟎
𝐦𝐮ሷ ሺ𝑡ሻ ൅ 𝐜𝐮ሶ ሺ𝑡ሻ ൅ 𝐤𝐮ሺ𝑡ሻ ൌ െ𝐦𝛊𝑢ሷ௚ሺ𝑡ሻ

 

The right-hand side term 𝐩௘௙௙ሺ𝑡ሻ ൌ െ𝐦𝛊𝑢ሷ௚ሺ𝑡ሻ are the effective earthquake forces. 

Therefore, 𝐩௘௙௙ሺ𝑡ሻ are of the form 𝐬𝑝ሺ𝑡ሻ where 𝐬 ൌ 𝐦𝛊 and 𝑝ሺ𝑡ሻ ൌ ቀെ𝑢ሷ௚ሺ𝑡ሻቁ. Thus, 

all the development presented above regarding the response / solution for 𝐩ሺ𝑡ሻ ൌ 𝐬𝑝ሺ𝑡ሻ 
applies also for 𝐩௘௙௙ሺ𝑡ሻ ൌ െ𝐦𝛊𝑢ሷ௚ሺ𝑡ሻ. 

For instance, the expansion of the vector 𝐬 ൌ 𝐦𝛊 of the effective earthquake forces is 

𝐬 ൌ 𝐦𝛊 ൌ ෍ 𝐬௥

ே

௥ୀଵ

ൌ ෍ Γ௥𝐦𝛟௥

ே

௥ୀଵ

, Γ௥ ൌ
𝛟௥

்𝐬
𝑀௥

ൌ
𝛟௥

்𝐦𝛊
𝑀௥

 

The modal equations are 

𝐷ሷ ௡ሺ𝑡ሻ ൅ 2𝜉௡𝜔௡𝐷ሶ ௡ሺ𝑡ሻ ൅ 𝜔௡
ଶ𝐷௡ሺ𝑡ሻ ൌ െ𝑢ሷ௚ሺ𝑡ሻ ሺ𝑛 ൌ 1,2, ⋯ , 𝑁ሻ 

The above equation is identical to the equation that is used to compute earthquake 
response spectra which display the peak (absolute) value of the response 𝐷௡ሺ𝑡ሻ, i.e. 
𝐷௡௢ ≝ max

௧
|𝐷௡ሺ𝑡ሻ|, by sweeping the circular frequency axis and for selected values of 

the damping ratio. Response spectra may display the same information in two 
alternative but equivalent forms:  

 in terms of the pseudo-velocity 𝑉௡௢ ൌ max
௧

|𝑉௡ሺ𝑡ሻ| ൌ max
௧

|𝜔௡𝐷௡ሺ𝑡ሻ| ൌ

𝜔௡𝐷௡௢; and,  
 in terms of pseudo-acceleration 𝐴௡௢ ൌ max

௧
|𝐴௡ሺ𝑡ሻ| ൌ max

௧
|𝜔௡

ଶ𝐷௡ሺ𝑡ሻ| ൌ

𝜔௡
ଶ𝐷௡௢   

________________________ 

EXAMPLE [Problem 13.17 of the textbook]: 

For the umbrella structure of the FIGURE excited by horizontal ground motion 
𝑢ሷ௚௫ሺ𝑡ሻ, determine (a) the modal expansion of effective earthquake forces, (b) the 
displacement response in terms of 𝐷௡ሺ𝑡ሻ, and (c) the bending moments at the base of 
the column and at location 𝑎 of the beam in terms of 𝐴௡ሺ𝑡ሻ. 
 
SOLUTION: 

We recall that for the given structure we have: 

𝐦 ൌ 𝑚 ൥
5 0 0
0 1 0
0 0 1

൩ , 𝐤መ ௧௧ ൌ
3𝐸𝐼

10𝐿ଷ ൥
28 6 െ6

6 7 3
െ6 3 7

൩ 



𝜔ଵ ൌ 0.5259ඨ
𝐸𝐼

𝑚𝐿ଷ 𝜔ଶ ൌ 1.6135ඨ
𝐸𝐼

𝑚𝐿ଷ 𝜔ଷ ൌ 1.7321ඨ
𝐸𝐼

𝑚𝐿ଷ

𝛟ଵ ൌ ൝
1

െ1.9492
1.9492

ൡ 𝛟ଶ ൌ ൝
1

1.2826
െ1.2826

ൡ 𝛟ଷ ൌ ൝
0
1
1

ൡ

 

For the given excitation, the influence vector 𝛊 is 

𝛊 ൌ ൝
1
0
0

ൡ 

The effective earthquake forces are: 

𝐬 ൌ ෍ 𝐬௡

ଷ

௡ୀଵ

ൌ ෍ Γ௡𝐦𝛟௡

ଷ

௡ୀଵ

 

𝐿ଵ ൌ 𝛟ଵ
்𝐦𝛊 ൌ 5𝑚 𝐿ଶ ൌ 𝛟ଶ

்𝐦𝛊 ൌ 5𝑚 𝐿ଷ ൌ 𝛟ଷ
்𝐦𝛊 ൌ 0

𝑀ଵ ൌ 𝛟ଵ
்𝐦𝛟𝟏 ൌ 12.597𝑚 𝑀ଶ ൌ 𝛟ଶ

்𝐦𝛟𝟐 ൌ 8.292𝑚 𝑀ଷ ൌ 𝛟ଷ
்𝐦𝛟𝟑 ൌ 2𝑚

Γଵ ൌ
𝐿ଵ

𝑀ଵ
ൌ 0.397 Γଶ ൌ

𝐿ଶ

𝑀ଶ
ൌ 0.603 Γଷ ൌ

𝐿ଷ

𝑀ଷ
ൌ 0

𝐬ଵ ൌ Γଵ𝐦𝛟ଵ ൌ ൝
1.985𝑚

െ0.774𝑚
0.774𝑚

ൡ 𝐬ଶ ൌ Γଶ𝐦𝛟ଶ ൌ ൝
3.015𝑚
0.774𝑚

െ0.774𝑚
ൡ 𝐬ଷ ൌ Γଷ𝐦𝛟ଷ ൌ ൝

0
0
0

ൡ

 

 

The displacement response in terms of 𝐷௡ሺ𝑡ሻ is 

𝐮ሺ𝑡ሻ ൌ ෍ Γ௡𝛟௡𝐷௡ሺ𝑡ሻ
ଷ

௡ୀଵ

ൌ ൝
0.397

െ0.774
0.774

ൡ 𝐷ଵሺ𝑡ሻ ൅ ൝
0.603
0.774

െ0.774
ൡ 𝐷ଶሺ𝑡ሻ ൅ ൝

0
0
0

ൡ 𝐷ଷሺ𝑡ሻ 

 

 
The bending moment at the base of the column (point 𝑏) in terms of its modal 
contributions is 



𝑀௕ሺ𝑡ሻ ൌ ෍ 𝑀௕௡ሺ𝑡ሻ
ଷ

௡ୀଵ

ൌ ෍ 𝑀௕௡
௦௧ 𝐴௡ሺ𝑡ሻ

ଷ

௡ୀଵ

ൌ 3.533 ∙ 𝑚𝐿 ∙ 𝐴ଵሺ𝑡ሻ ൅ 1.467 ∙ 𝑚𝐿 ∙ 𝐴ଶሺ𝑡ሻ

 

 

The bending moment at location 𝑎 of the beam in terms of its modal contributions is 

𝑀௔ሺ𝑡ሻ ൌ ෍ 𝑀௔௡ሺ𝑡ሻ
ଷ

௡ୀଵ

ൌ ෍ 𝑀௔௡
௦௧ 𝐴௡ሺ𝑡ሻ

ଷ

௡ୀଵ

ൌ െ0.774 ∙ 𝑚𝐿 ∙ 𝐴ଵሺ𝑡ሻ ൅ 0.774 ∙ 𝑚𝐿 ∙ 𝐴ଶሺ𝑡ሻ

 

 

________________________ 

In Earthquake Engineering we have two types of analysis: 

 Response History Analysis (RHA) 
 Response Spectrum Analysis (RSA) 

 

Response History Analysis (RHA) is feasible with the capacity and capabilities of 
present day personal computers. It is an “exact” analysis in that it is based on the exact 
(analytical or numerical) integration of the equations of motion that govern the response 
of the mathematical model that we have adopted. Thus, for a given ground acceleration, 
we can compute the time history of any response quantity 𝑟ሺ𝑡ሻ ൌ ∑ 𝑟௡ሺ𝑡ሻே . 

Structural design is usually based on peak values of forces and deformations over the 
duration of the earthquake-induced response. Estimation / calculation of such peak 
values may be determined directly from the response spectrum. Such an approach is 
referred to as Response Spectrum Analysis (RSA). We can use the response spectrum 
to predict exactly the response of a SDOF system, and estimate approximately the 
response of MDOF systems. The latter estimate is accurate enough for structural 
design applications. 

  

Peak Modal Response of any response quantity 𝑟ሺ𝑡ሻ is given by 

𝑟௡௢ ൌ 𝑟௡
௦௧𝐴௡௢ 

where, we recall that 𝐴௡௢ ൌ max
௧

|𝐴௡ሺ𝑡ሻ| ൌ 𝐴ሺ𝑇௡, 𝜉௡ሻ; the value 𝐴ሺ𝑇௡, 𝜉௡ሻ (which is 

always non-negative) is the peak (absolute) value of the pseudo-acceleration and is 
read from the response spectrum. Evidently, all response quantities 𝑟ሺ𝑡ሻ 



associated with a particular mode, say the 𝑛th mode, reach their peak values at the 
same time instant as 𝐴௡ሺ𝑡ሻ reaches its peak. 

[NOTE: The textbook is using the following notation: 𝐴௡ ൌ max
௧

|𝐴௡ሺ𝑡ሻ|] 

 

The basic question is the following: How do we combine the peak modal responses 
𝑟௡௢ሺ𝑛 ൌ 1,2, ⋯ , 𝑁ሻ to determine the peak value 𝑟௢ ≝ max

௧
|𝑟ሺ𝑡ሻ| of the total 

response? It will not be possible to determine the exact value of 𝑟௢ from 𝑟௡௢ because, 
in general, the modal responses 𝑟௡ሺ𝑡ሻ attain their peaks at different time instants 
and the combined 𝑟ሺ𝑡ሻ attains its peak at yet a different instant. 

 

Modal Combination Rules 

 The Absolute Sum (ABSSUM) modal combination rule: 

𝑟௢ ൑ ෍|𝑟௡௢|
ே

௡ୀଵ

 

This upper-bound value is usually too conservative. 

 The Square-Root-of-Sum-of-Squares (SRSS) rule: 

𝑟௢ ≅ ൭෍ 𝑟௡௢
ଶ

ே

௡ୀଵ

൱

ଵ
ଶൗ

 

This rule provides excellent response estimates for structures with well-
separated natural frequencies. 

 The Complete Quadratic Combination (CQC) rule: 

𝑟௢ ≅ ൭෍ ෍ 𝜌௜௡𝑟௜௢𝑟௡௢

ே

௡ୀଵ

ே

௜ୀଵ

൱

ଵ
ଶൗ

 

where:  𝜌௜௡ ൌ correlation coefficient of modes 𝑖 & 𝑛 

[0 ൑ 𝜌௜௡ ൑ 1 ; 𝜌௜௡ ൌ 1  for  𝑖 ൌ 𝑛]  

It can be demonstrated that the double summation inside the 
parentheses is always positive.  

 

The expression for the CQC rule may be written as: 



𝑟௢ ≅

⎝

⎜
⎛

෍ 𝑟௡௢
ଶ

ே

௡ୀଵ

൅ ෍ ෍ 𝜌௜௡𝑟௜௢𝑟௡௢

ே

௡ୀଵ

ே

௜ୀଵᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥ
௜ஷ௡ ⎠

⎟
⎞

ଵ
ଶൗ

 

The estimate for 𝑟௢, obtained by the CRC rule, maybe larger or smaller than the 
estimate provided by the SRSS rule. 

 

The SRSS & CQC rules have been derived based on RANDOM VIBRATION 
THEORY (also referred to as STOCHASTIC STRUCTURAL DYNAMICS) 

Implications of the assumptions behind the derivations: 

The modal combination rules would be most accurate for: 

 earthquake excitation that contain a wide band of frequencies (white noise 
assumption); 

 with long phases of strong shaking (stationarity); 

 which (i.e., long phases) are several times longer than 𝑇ଵ(=fundamental period) 
of the structure (stationarity); 

 which (i.e., modes) are not too lightly damped (𝜉௡ ൐ 0.005). 

The modal combination rules become less accurate for short-duration impulsive 
ground motions and are not recommended for ground motions that contain many 
cycles of essentially harmonic excitation   

 

________________________ 

EXAMPLE [Problem 13.50 of the textbook, but using metric units]: 

The umbrella structure of the FIGURE (also of previous EXAMPLES) is made of 
150 െ 𝑚𝑚 െnominal diameter standard steel pipe. Its properties are: 𝐼 ൌ 1171.6 𝑐𝑚ସ, 
𝐸 ൌ 200,000 𝑀𝑃𝑎, mass = 28.23 𝑘𝑔/𝑚, 𝑚 ൌ 680 𝑘𝑔, and 𝐿 ൌ 3 𝑚.  

Determine the peak response of this structure to horizontal ground motion 
characterized by the design spectrum of Fig. 6.9.5 (for 5% damping) scaled to 0.20𝑔 
peak ground acceleration. Using the SRSS combination rule, estimate:  

(a) displacements 𝑢ଵ, 𝑢ଶ, and 𝑢ଷ, and  
(b) the bending moments at the base of the column and at location 𝑎 of the beam.  
 

SOLUTION: 

Weight of the pipe (we consider: 𝑔 ൌ 9.81 𝑚/𝑠ଶ; recall that: 1 𝑁 ൌ 1 𝑘𝑔 ൈ 1൫೘
ೞమ൯):  

3 ൈ 3𝑚 ൈ 28.23 ௞௚

௠
ൈ 𝑔 ൌ 2,492.43 𝑁;  

The weight of the concentrated masses is:  



ሺ3 ൅ 1 ൅ 1ሻ𝑚𝑔 ൌ 5 ∙ 680 𝑘𝑔 ∙ 9.81 ௠

௦మ ൌ 33,354 𝑁  

Notice that the weight of the structural members is very small compared to the weight of 
the concentrated masses; thus we ignore it. 

Compute the characteristic periods of the structure (1 𝑃𝑎 ൌ 1 𝑁/𝑚ଶ): 

𝜔ଵ ൌ 0.5259ට ாூ

௠௅య 𝜔ଶ ൌ 1.6135ට ாூ

௠௅య 𝜔ଷ ൌ 1.7321ට ாூ

௠௅య
  

ට ாூ

௠௅య ൌ ඨ
ଶൈଵ଴భభቀ ಿ

೘మቁൈଵଵ଻ଵ.଺ൈଵ଴షఴ௠ర

଺଼଴ቀಿ∙ೞమ
೘ ቁൈሺଷሻయ௠య

ൌ 11.2971 ቀೝೌ೏
ೞ

ቁ  

𝜔ଵ ൌ 5.927 ൫ೝೌ೏
ೞ

൯ 𝜔ଶ ൌ 17.951 ൫ೝೌ೏
ೞ

൯ 𝜔ଷ ൌ 19.634 ൫ೝೌ೏
ೞ

൯
𝑇ଵ ൌ 1,06 𝑠 𝑇ଶ ൌ 0.35 𝑠 𝑇ଷ ൌ 0.32 𝑠

  

For the above values of the natural periods of the structure, the design spectrum of FIG. 
6.9.5 gives 

𝐴ଵ ൌ 0.2 ൈ ଵ.଼଴௚

ଵ.଴଺
ൌ 0.340𝑔 ⇒ 𝐷ଵ ൌ 9.5 𝑐𝑚

𝐴ଶ ൌ 0.2 ൈ 2.71𝑔 ൌ 0.542𝑔 ⇒ 𝐷ଶ ൌ 1,7 𝑐𝑚
𝐴ଷ ൌ 0.2 ൈ 2.71𝑔 ൌ 0.542𝑔 ⇒ 𝐷ଷ ൌ 1,4 𝑐𝑚

  

Recall that we have previously determined that 

𝐮ሺ𝑡ሻ ൌ ൝
0.397

െ0.774
0.774

ൡ 𝐷ଵሺ𝑡ሻ ൅ ൝
0.603
0.774

െ0.774
ൡ 𝐷ଶሺ𝑡ሻ ൅ ൝

0
0
0

ൡ 𝐷ଷሺ𝑡ሻ  

Therefore, the peak modal responses of displacement are: 

𝐮ଵ ൌ max
௧

൫𝐮ଵሺ𝑡ሻ൯ ൌ ൝
0.397

െ0.774
0.774

ൡ ൈ 9.5 ൌ ൝
3,77

െ7,35
7,35

ൡ  𝑐𝑚

𝐮ଶ ൌ max
௧

൫𝐮ଵሺ𝑡ሻ൯ ൌ ൝
0.603
0.774

െ0.774
ൡ ൈ 1,7 ൌ ൝

1.03
1.32

െ1.32
ൡ  𝑐𝑚

  

𝐮ଵ 𝐮ଶ 𝐮ଷ SRSS

൝
3,77

െ7,35
7,35

ൡ 𝑐𝑚 ൝
1.03
1.32

െ1.32
ൡ 𝑐𝑚 ൝

0
0
0

ൡ 𝑐𝑚 ൝
3.91
7.47
7.47

ൡ 𝑐𝑚
  

Recall that for horizontal excitation, modal components of the effective earthquake 
forces 𝐬 are 

𝐬ଵ ൌ ൝
1.985𝑚

െ0.774𝑚
0.774𝑚

ൡ 𝐬ଶ ൌ ൝
3.015𝑚
0.774𝑚

െ0.774𝑚
ൡ 𝐬ଷ ൌ ൝

0
0
0

ൡ  

Peak responses in the 𝑛th mode are induced by the equivalent static forces 𝐟௡ ൌ
𝐬௡𝐴௡: 



𝐟ଵ ൌ 𝐬ଵ𝐴ଵ ൌ ൝
1.985𝑚

െ0.774𝑚
0.774𝑚

ൡ 0.340𝑔 ൌ ൝
0.6749

െ0.2632
0.2632

ൡ 𝑚𝑔 ൌ ൝
4.502

െ1.755
1.755

ൡ 𝑘𝑁

𝐟ଶ ൌ 𝐬ଶ𝐴ଶ ൌ ൝
3.015𝑚
0.774𝑚

െ0.774𝑚
ൡ 0.542𝑔 ൌ ൝

1.6341
0.4195

െ0.4195
ൡ 𝑚𝑔 ൌ ൝

10.901
2.798

െ2.798
ൡ 𝑘𝑁

𝐟ଷ ൌ 𝐬ଷ𝐴ଷ ൌ ൝
0
0
0

ൡ 0.542𝑔 ൌ ൝
0
0
0

ൡ 𝑘𝑁

  

We subject the structure to forces 𝐟௡ ൌ 𝐬௡𝐴௡, we perform static analysis of the 
structure and we obtain the peak values ሺ𝑀௔ሻ௡௢ & ሺ𝑀௕ሻ௡௢ of the bending moments 
due to each mode: 

Mode 1 Mode 2 Mode 3 SRSS
ሺ𝑀௔ሻ௡௢ 5.265 7.829 0 9.435
ሺ𝑀௕ሻ௡௢ 24.036 15.915 0 28.827

  

 

Comment 
In evaluating the accuracy of the estimates based on the SRSS rule, one obvious choice is 
to compute the time history response and compare the SRSS estimates with the peak 
values of the time-history response. The other option is to obtain estimates based on the 
CQC combination rule and compare them with the SRSS results. We observe that the 
periods of the 2nd and 3rd modes are very close (0.35 𝑠 vs. 0.32 𝑠). As a consequence we 
would expect the cross-terms involving these two modes to make a significant 
contribution. All other cross-terms are expected to be significant. However, we have 
shown that the 3rd mode does not participate in the response. Consequently, the 
estimates using the CQC rule are expected to be very close to those of the SRSS rule.  

________________________ 

EXAMPLE: 

The umbrella structure of the previous examples is subjected to an impulsive loading 
𝛿ሺ𝑡ሻ along DOF #1 (the structure starts moving from rest).  

(1) Compute the displacement response of the structure to the impulsive loading. 
(2) Using the above result compute the response of the structure to a loading acting 

along DOF #1 with time variation 𝑝ሺ𝑡ሻ. 

 

SOLUTION: 

For the given structure we know: 

𝛟ଵ ൌ ൝
1

െ1.9492
1.9492

ൡ 𝛟ଶ ൌ ൝
1

1.2826
െ1.2826

ൡ 𝛟ଷ ൌ ൝
0
1
1

ൡ 𝐦 ൌ 𝑚 ൥
5 0 0
0 1 0
0 0 1

൩ 

The given impulsive loading may be expressed as follows: 



𝐩ሺ𝑡ሻ ൌ 𝐬𝛿ሺ𝑡ሻ ൌ ൝
1
0
0

ൡ 𝛿ሺ𝑡ሻ 

 
The vector 𝐬 is resolved into its modal components: 

𝐬 ൌ ෍ 𝐬௡

ଷ

௡ୀଵ

ൌ ෍ Γ௡𝐦𝛟௡

ଷ

௡ୀଵ

 

𝐿ଵ ൌ 𝛟ଵ
்𝐬 ൌ 1 𝐿ଶ ൌ 𝛟ଶ

்𝐬 ൌ 1 𝐿ଷ ൌ 𝛟ଷ
்𝐬 ൌ 0

𝑀ଵ ൌ 𝛟ଵ
்𝐦𝛟𝟏 ൌ 12.597𝑚 𝑀ଶ ൌ 𝛟ଶ

்𝐦𝛟𝟐 ൌ 8.292𝑚 𝑀ଷ ൌ 𝛟ଷ
்𝐦𝛟𝟑 ൌ 2𝑚

Γଵ ൌ
𝐿ଵ

𝑀ଵ
ൌ 0.079𝑚ିଵ Γଶ ൌ

𝐿ଶ

𝑀ଶ
ൌ 0.121𝑚ିଵ Γଷ ൌ

𝐿ଷ

𝑀ଷ
ൌ 0

𝐬ଵ ൌ Γଵ𝐦𝛟ଵ ൌ ൝
0.395

െ0.154
0.154

ൡ 𝐬ଶ ൌ Γଶ𝐦𝛟ଶ ൌ ൝
0.605
0.155

െ0.155
ൡ 𝐬ଷ ൌ Γଷ𝐦𝛟ଷ ൌ ൝

0
0
0

ൡ

 

NOTE: Above, we have evaluated the modal components of 𝐬 even though this is not 
necessary for computing the displacement response. The modal components of 𝐬 will be 
necessary to calculate any 𝑟௡

௦௧(e.g. moments, shears, etc.) that may be needed. Specifically 

𝑟ሺ𝑡ሻ ൌ ෍ 𝑟௡ሺ𝑡ሻ
ே

ൌ ෍ 𝑟௡
௦௧𝐴௡ሺ𝑡ሻ

ே

ൌ ෍ 𝑟௡
௦௧𝜔௡

ଶ𝐷௡ሺ𝑡ሻ
ே

 

  

Therefore, the displacement response is: 

𝐡ሺ𝑡ሻ ≝ 𝐮ሺ𝑡ሻ|ఋሺ௧ሻ ൌ ෍ 𝐮௡ሺ𝑡ሻ
ே

௡ୀଵ

ൌ ෍ 𝑞௡ሺ𝑡ሻ𝛟௡

ே

௡ୀଵ

ൌ ෍ Γ௡𝐷௡ሺ𝑡ሻ𝛟௡

ே

௡ୀଵ

൝
0.079𝑚ିଵ

െ0.154𝑚ିଵ

0.154𝑚ିଵ
ൡ 𝐷ଵሺ𝑡ሻ ൅ ൝

0.121𝑚ିଵ

0.155𝑚ିଵ

െ0.155𝑚ିଵ
ൡ 𝐷ଶሺ𝑡ሻ

 

where 𝐷௡ሺ𝑡ሻ , ሺ𝑛 ൌ 1,2,3ሻ is governed by the modal equations 

𝐷ሷ ௡ሺ𝑡ሻ ൅ 2𝜉௡𝜔௡𝐷ሶ ௡ሺ𝑡ሻ ൅ 𝜔௡
ଶ𝐷௡ሺ𝑡ሻ ൌ 𝛿ሺ𝑡ሻ 

with initial conditions 

𝐷௡ሺ0ሻ ൌ
1
Γ௡

𝑞௡ሺ0ሻ ൌ
1
Γ௡

𝛟௡
்𝐦𝐮଴

𝑀௡
ൌ 0 , 𝐷ሶ ௡ሺ0ሻ ൌ

1
Γ௡

𝑞ሶ௡ሺ0ሻ ൌ
1
Γ௡

𝛟௡
்𝐦𝐮ሶ ଴
𝑀௡

ൌ 0 

The solution is 



𝐷௡ሺ𝑡ሻ ൌ
1

𝜔௡
𝑒ିక೙ఠ೙௧ sinሺ𝜔ௗ௡𝑡ሻ , 𝜔ௗ௡ ൌ 𝜔௡ඥ1 െ 𝜉௡

ଶ 

Notice that the above solution is the Green’s function (unit impulse response) ℎ௡ሺ𝑡ሻ of 
the governing differential equation ℎሷ

௡ሺ𝑡ሻ ൅ 2𝜉௡𝜔௡ℎሶ
௡ሺ𝑡ሻ ൅ 𝜔௡

ଶℎ௡ሺ𝑡ሻ ൌ 𝛿ሺ𝑡ሻ. 

The response to any other kind of loading 𝑝ሺ𝑡ሻ may be computed by convolving the 
above derived solution with 𝑝ሺ𝑡ሻ, i.e. 

𝐮ሺ𝑡ሻ|௣ሺ௧ሻ ൌ 𝐡ሺ𝑡ሻ ∗ 𝑝ሺ𝑡ሻ ൌ ෍ Γ௡ሾℎ௡ሺ𝑡ሻ ∗ 𝑝ሺ𝑡ሻሿ𝛟௡

ே

௡ୀଵ

 

________________________ 

EXAMPLE: 

The umbrella structure of the previous examples is subjected to harmonic loading 𝑒௜ஐ௧ 
along DOF #1 (the structure starts moving from rest). 
 

(1) Compute the steady-state displacement response of the structure. 
(2) Using the above response results, compute the response of the structure to a 

loading acting along DOF #1 with time variation 𝑝ሺ𝑡ሻ ↔ 𝑃ሺΩሻ. 
 
SOLUTION: 

The given impulsive loading may be expressed as follows: 

𝐩ሺ𝑡ሻ ൌ 𝐬𝑒௜ஐ௧  ൌ ൝
1
0
0

ൡ 𝑒௜ஐ௧ 

 
The steady-state response may be written as follows: 

𝐮ሺ𝑡ሻ|௦௦ ൌ ෍𝐮௡ሺ𝑡ሻ|௦௦

ே

௡ୀଵ

ൌ ෍𝑞௡ሺ𝑡ሻ|௦௦𝛟௡

ே

௡ୀଵ

ൌ ෍ Γ௡𝐷௡ሺ𝑡ሻ|௦௦𝛟௡

ே

௡ୀଵ

 

where 𝐷௡ሺ𝑡ሻ|௦௦ , ሺ𝑛 ൌ 1,2,3ሻ is governed by the modal equations 

𝐷ሷ ௡ሺ𝑡ሻห
௦௦

൅ 2𝜉௡𝜔௡𝐷ሶ ௡ሺ𝑡ሻห
௦௦

൅ 𝜔௡
ଶ𝐷௡ሺ𝑡ሻ|௦௦ ൌ 𝑒௜ஐ௧ 

We know that the steady-state solution of the above equation is of the form 𝐷௡ሺ𝑡ሻ|௦௦ ൌ
𝐻௡ሺΩሻ𝑒௜ஐ௧. If we substitute the above expression in the modal equation we obtain 

ሾሺ𝑖Ωሻଶ𝐻௡ሺΩሻ ൅ 2𝜉௡𝜔௡ሺ𝑖Ωሻ𝐻௡ሺΩሻ ൅ 𝜔௡
ଶ𝐻௡ሺΩሻሿ𝑒௜ஐ௧ ൌ 𝑒௜ஐ௧ 

Or 



𝐻௡ሺΩሻ ൌ
1

𝜔௡
ଶ െ Ωଶ ൅ 𝑖2𝜉௡𝜔௡Ω

ൌ
൬

1
𝜔௡

ଶ൰

ቆ1 െ ቀ Ω
𝜔௡

ቁ
ଶ

ቇ ൅ 𝑖2𝜉௡ ቀ Ω
𝜔௡

ቁ
ൌ

൬
1

𝜔௡
ଶ൰

ሺ1 െ 𝛽ଶሻ ൅ 𝑖2𝜉௡𝛽
 

where: 𝛽 ൌ ሺΩ 𝜔௡⁄ ሻ. 

Therefore, the steady-state response is 

𝐷௡ሺ𝑡ሻ|௦௦ ൌ 𝐻௡ሺΩሻ𝑒௜ஐ௧ ൌ
൬

1
𝜔௡

ଶ൰

ሺ1 െ 𝛽ଶሻ ൅ 𝑖2𝜉௡𝛽
𝑒௜ஐ௧ 

Recall, that the function: 𝐻௡ሺΩሻ ൌ ሾ𝜔௡
ଶ െ Ωଶ ൅ 𝑖2𝜉௡𝜔௡Ωሿିଵ is referred to as complex 

frequency response. 

 

Now, the modal equations for the loading 𝐩ሺ𝑡ሻ ൌ 𝐬𝑝ሺ𝑡ሻ would be written as 

𝐷ሷ ௡ሺ𝑡ሻ ൅ 2𝜉௡𝜔௡𝐷ሶ ௡ሺ𝑡ሻ ൅ 𝜔௡
ଶ𝐷௡ሺ𝑡ሻ ൌ 𝑝ሺ𝑡ሻ , ሺ𝑛 ൌ 1,2,3ሻ 

Let us solve the above equations by using the Fourier Transform ℱሼ ሽ. Let the 
Fourier Transform pairs 𝑝ሺ𝑡ሻ ↔ 𝑃ሺΩሻ & 𝐷௡ሺ𝑡ሻ ↔ 𝐷෩௡ሺΩሻ. Then 

ℱ൛𝐷ሷ ௡ሺ𝑡ሻ ൅ 2𝜉௡𝜔௡𝐷ሶ ௡ሺ𝑡ሻ ൅ 𝜔௡
ଶ𝐷௡ሺ𝑡ሻൟ ൌ ℱሼ𝑝ሺ𝑡ሻሽ 

ሺ𝑖Ωሻଶ𝐷෩௡ሺΩሻ ൅ 2𝜉௡𝜔௡ሺ𝑖Ωሻ𝐷෩௡ሺΩሻ ൅ 𝜔௡
ଶ𝐷෩௡ሺΩሻ ൌ 𝑃ሺΩሻ 

Therefore 

𝐷෩௡ሺΩሻ ൌ
1

𝜔௡
ଶ െ Ωଶ ൅ 𝑖2𝜉௡𝜔௡Ω

𝑃ሺΩሻ 

NOTE: The Fourier Transform 𝐷෩௡ሺΩሻ of 𝐷௡ሺ𝑡ሻ is the product of the complex 
frequency response function 𝐻௡ሺΩሻ times the Fourier Transform of the time variation 
of the loading 𝑝ሺ𝑡ሻ ↔ 𝑃ሺΩሻ. 

The response 𝐷௡ሺ𝑡ሻ in the time domain is obtained by inverse Fourier Transform 
ℱିଵሼ ሽ: 

𝐷௡ሺ𝑡ሻ ൌ ℱିଵ൛𝐷෩௡ሺΩሻൟ ൌ
1

2𝜋
න 𝐷෩௡ሺΩሻ𝑒ା௜ஐ௧ 𝑑Ω

ାஶ

ିஶ

ൌ
1

2𝜋
න

𝑃ሺΩሻ𝑒ା௜ஐ௧

𝜔௡
ଶ െ Ωଶ ൅ 𝑖2𝜉௡𝜔௡Ω

 𝑑Ω

ାஶ

ିஶ

 

 

In the previous EXAMPLE we derived the response to an arbitrary loading 𝐩ሺ𝑡ሻ ൌ
𝐬𝑝ሺ𝑡ሻ: 

𝐮ሺ𝑡ሻ|௣ሺ௧ሻ ൌ 𝐡ሺ𝑡ሻ ∗ 𝑝ሺ𝑡ሻ ൌ ෍ Γ௡ሾℎ௡ሺ𝑡ሻ ∗ 𝑝ሺ𝑡ሻሿ𝛟௡

ே

௡ୀଵ

 

If we take the Fourier Transform of the above expression, we have 



ℱ൛𝐮ሺ𝑡ሻ|௣ሺ௧ሻൟ ൌ ℱሼ𝐡ሺ𝑡ሻ ∗ 𝑝ሺ𝑡ሻሽ ൌ ℱ ൝෍ Γ௡ሾℎ௡ሺ𝑡ሻ ∗ 𝑝ሺ𝑡ሻሿ𝛟௡

ே

௡ୀଵ

ൡ 

Or 

𝐮෥ሺΩሻ|௉ሺஐሻ ൌ 𝐡ሚ ሺΩሻ ∙ 𝑃ሺΩሻ ൌ ෍ Γ௡ൣℎ෨௡ሺΩሻ ∙ 𝑃ሺΩሻ൧𝛟௡

ே

௡ୀଵ

 

Evidently 

𝐡ሚ ሺΩሻ ൌ ෍ Γ௡ℎ෨௡ሺΩሻ𝛟௡

ே

௡ୀଵ

 

The above result could have been derived by taking the Fourier Transform of the 
following expression that we have derived in the previous EXAMPLE: 

𝐡ሺ𝑡ሻ ≝ 𝐮ሺ𝑡ሻ|ఋሺ௧ሻ ൌ ෍ Γ௡𝐷௡ሺ𝑡ሻ𝛟௡

ே

௡ୀଵ

 

Or  

ℱሼ𝐡ሺ𝑡ሻሽ ൌ ℱ൛𝐮ሺ𝑡ሻ|ఋሺ௧ሻൟ ൌ ℱ ൝෍ Γ௡𝐷௡ሺ𝑡ሻ𝛟௡

ே

௡ୀଵ

ൡ 

Or 

𝐡ሚ ሺΩሻ ൌ 𝐮෥ሺΩሻ|ଵ ൌ ෍ Γ௡𝐷෩௡ሺΩሻ𝛟௡

ே

௡ୀଵ

 

 

________________________ 

 

 

      

 


