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FREE VIBRATION RESPONSE: MDOF SYSTEMS 

SYSTEMS WITHOUT DAMPING 

Equation of Motion:   𝐦𝐮 𝐤𝐮 𝟎  

 

A very important case in the study of vibrations of MDOF systems is that in which all the coordinates, i.e., 
all components 𝑢 𝑡   𝑖 1,2, ⋯ , 𝑁  of  𝐮 𝑡 , execute the same motion in time.  

In other words, the system vibrates maintaining the overall shape of these 
coordinates/displacements/deflections and changing only their amplitude by a proportionality 
factor. 

In this case, the system is said to execute synchronous motion. 

 

To examine the possibility that such motions exist, we consider the solution of the Equation of Motion 
(see above) in the exponential form: 

𝐮 𝑡 𝑒 𝛟

where:
𝑠 is a constant scalar
𝛟 is a constant 𝑁-vector

 

Introducing the solution 𝐮 𝑡 𝑒 𝛟 in the Equation of Motion we obtain: 

𝐦𝐮 𝐤𝐮 𝟎
𝐮 𝑡 𝑒 𝛟 ⟹ 𝑒 𝑠 𝐦𝛟 𝐤𝛟 𝟎 ⟹ 𝐤𝛟 𝑠 𝐦𝛟 

Therefore: 

𝐤𝛟 𝜆𝐦𝛟 , 𝜆 𝑠  

The above matrix equation represents a set of 𝑁 simultaneous homogeneous algebraic equations in the 
unknowns  𝛟 ≝ 𝜙   𝑖 1,2, ⋯ , 𝑁 , with 𝜆 playing the role of a parameter. 

The problem of determining the values of the parameter 𝜆 for which the matrix equation 𝐤𝛟 𝜆𝐦𝛟  
admits nontrivial solutions 𝛟 is known as the algebraic (or matrix) eigenvalue (or characteristic-value) 
problem. [NOTE: The obvious, but trivial, solution is 𝛟 𝟎, however we are not interested in such a 
solution because it is not associated with motion.] Another name by which the above problem may be 
encountered is generalized characteristic-value problem. 
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Before we proceed, we summarize the properties of the matrix eigenvalue problem that are demonstrated 
mathematically: 

 

  

PROPERTIES OF THE ALGEBRAIC (or MATRIX) EIGENVALUE PROBLEM 

(1) The eigenvalues of an algebraic eigenvalue problem, in which 𝐤 & 𝐦 are both symmetric, and 
at least one positive definite, are all real. 

[NOTE: For civil engineering structures, both matrices 𝐤 & 𝐦 are real, symmetric and 

positive definite. Indeed, 𝐮 𝐤𝐮 0 for 𝐮 𝟎, because civil engineering structures are 

restrained and stable, and 𝐮 𝐦𝐮 0 for 𝐮 𝟎, because all DOFs associated with 
zero mass/inertia have been eliminated by static condensation.] 

 
(2) When matrices 𝐤 & 𝐦 are both real and positive definite, the eigenvalues are all positive, 

and the corresponding eigenvectors are all real. 
 

(3) When 𝐤 is singular, at least one of the eigenvalues must be zero. 
When 𝐦 is singular, at least one of the eigenvalues must be infinite. 
 

(4) The eigenvectors are orthogonal with respect to both 𝐤 & 𝐦. 
For symmetric 𝐤 & 𝐦 matrices: 

𝛟 𝐦𝛟 0 𝑖 𝑗

𝛟 𝐤𝛟 0 𝑖 𝑗
 

 
(5) The eigenvectors of an algebraic eigenvalue problem in which the matrices involved are 

symmetric, including those corresponding to repeated eigenvalues, are all linearly 
independent. 
 

(6) Any arbitrary vector of order 𝑁 can be expressed as a superposition of the eigenvectors of an 
𝑁 𝑁 symmetrical algebraic eigenvalue problem: 

𝐮 𝛟 𝑞 𝚽𝐪

where: 𝚽
↓ ↓ ↓

𝛟 𝛟 ⋯ 𝛟
↓ ↓ ↓

𝑴𝒐𝒅𝒂𝒍 𝑴𝒂𝒕𝒓𝒊𝒙

 

where 𝑞   𝑟 1,2, ⋯ , 𝑁  are scalar multipliers called modal coordinates or normal 
coordinates and 𝐪 𝑞 𝑞 ⋯ 𝑞 𝑻. This theorem is referred to as modal expansion 
theorem or eigenvector expansion theorem. 
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Examples of models of structures and their modal shapes: 

 

FIGURE: Free vibration of an undamped 2-DOF system. 
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FIGURE: Free vibration of a classically damped 2-DOF system. 
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FIGURE: 2-DOF system: Rigid bar on elastic supports. 
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FIGURE: Cantilever beam & L-shaped frame modeled as 2-DOF systems. 
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NOTES: 

Kinetic and Strain Energy 

Consider the discretized model of a structure. Its strain energy is given by 𝑉 𝐮 𝐤𝐮, while its kinetic 

energy 𝑇 𝐮 𝐦𝐮. 

__________________________ 
NOTE: The above expressions for the kinetic and strain energies of a discretized structure are 
justified/obtained as follows:  

The forces that are acting on the masses of the structure along the DOFs and accelerate them are equal to: 

𝐦𝐮 . The work produced by moving the masses of the structure from state/position 1 to state/position 

2 is equal to: 𝑊 𝐦𝐮 𝑑𝐮 𝐦𝐮 𝐮𝑑𝑡 𝑑 𝐮 𝐦𝐮 𝑇 𝑇 , where 

𝑇  𝑖 1,2  is the kinetic energy at state/position 𝑖.  

In an analogous fashion, the strain energy of the structure may be introduced in terms of the work performed 
by the elastic forces 𝐟 𝐤𝐮 as the structure is deformed from state/position 1 to state/position 2:   

𝑊 𝐟 𝑑𝐮 𝐤𝐮 𝑑𝐮 𝑑 𝐮 𝐤𝐮 𝑉 𝑉 . 

__________________________ 

Both energy expressions presented above involve a scalar function of the form 𝑓 𝐱 𝐀𝐱, where the matrix 

𝐀 (i.e., either 𝐤 or 𝐦) is a real symmetric matrix. The scalar function 𝑓 𝐱 𝐀𝐱 is known as a quadratic 
form. If for any real vector 𝐱 𝟎 the value of 𝑓 is positive, i.e., 𝑓 𝐱 𝐀𝐱 0  ∀ 𝐱 𝟎 ∈ ℝ , then the 

quadratic form 𝑓 𝐱 𝐀𝐱 is called positive definite and the associated matrix 𝐀 is referred to as a positive 
definite matrix. We have already argued that for civil engineering structures both matrices 𝐦 & 𝐤 are 
positive definite (because civil engineering structures are stable and rigidly attached to the ground 
and, additionally, all DOFs associated with zero mass/inertia have been eliminated by static 

condensation). Simply stated, for any deformed shape 𝐮, the strain energy of the structure is positive, i.e., 

𝑉 𝐮 𝐤𝐮 0. Similarly, for any velocity vector 𝐮, the kinetic energy of the structure is positive, i.e., 

𝑇 𝐮 𝐦𝐮 0.  

 

Linear Dependence 

 We consider a set of real vectors 𝐱 , 𝐱 , ⋯ , 𝐱  in linear space 𝓛 and a set of real scalars 
𝛼 , 𝛼 , ⋯ , 𝛼 . Then, the vector 𝐱 given by:  

𝐱 𝛼 𝐱 𝛼 𝐱 ⋯ 𝛼 𝐱  
is said to be a linear combination of  𝐱 , 𝐱 , ⋯ , 𝐱   with coefficients 𝛼 , 𝛼 , ⋯ , 𝛼 . 

 The vectors 𝐱 , 𝐱 , ⋯ , 𝐱  are said to be linearly independent if the relation: 
𝛼 𝐱 𝛼 𝐱 ⋯ 𝛼 𝐱 𝟎 (1) 
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can be satisfied only for the trivial case, i.e., only when all the coefficients 𝛼 , 𝛼 , ⋯ , 𝛼  are 
identically zero. 

 If relation (1) is satisfied and at least one of the coefficients 𝛼 , 𝛼 , ⋯ , 𝛼   is different from zero, 
then the vectors 𝐱 , 𝐱 , ⋯ , 𝐱   are said to be linearly dependent, with the implication that one 

vector is linear combination of the remaining 𝑺 𝟏  vectors. 
Thus, considering vectors in the 3D space, two (non-zero) vectors are linearly dependent if they 
are collinear (i.e., parallel), and three (non-zero) vectors are linearly dependent if they are 
coplanar (i.e., lie in the same plane). 

 The subspace 𝓢 of 𝓛 consisting of the linear combination of the vectors  𝐱 , 𝐱 , ⋯ , 𝐱  is called a 
subspace spanned by the vectors  𝐱 , 𝐱 , ⋯ , 𝐱  . 

If  𝓢 𝓛 , then 𝐱 , 𝐱 , ⋯ , 𝐱  are said to span  𝓛 . 

How is the concept of ‘Linear Independence’ relevant to our discussion?  

The modal shapes 𝛟 , 𝛟 , ⋯ , 𝛟  of a civil engineering structure are linearly independent and, consequently, 
any deformed shape 𝐮 of the structure may be expressed as a linear combination of the modal 

shapes (modal expansion theorem). Evidently, the modal shapes 𝛟  𝑛 1,2, ⋯ , 𝑁  play the same role 

as the three basis vectors 𝒊 1,0,0 , 𝒋 0,1,0 , and 𝒌 0,0,1 , in the 3D space. Any vector 𝐯
𝑣 𝒊 𝑣 𝒋 𝑣 𝒌 in the 3D space may be expressed as a linear combination of the above three basis vectors, 
or in matrix form 

𝐯 𝑣 𝒊 𝑣 𝒋 𝑣 𝒌 𝑣
1
0
0

𝑣
0
1
0

𝑣
0
0
1

1 0 0
0 1 0
0 0 1

𝑣
𝑣
𝑣

𝑣
𝑣
𝑣

 

 

The interested reader may consult the following two references: 

HILDEBRAND, F.B. (1965), Methods of Applied Mathematics, 2nd Edition, PRENTICE-HALL, Inc. 
[Chapter 1: Matrices and Linear Equations] 

STRANG, G. (1980). Linear Algebra and Its Applications, 2nd Edition, ACADEMIC PRESS, Inc. 

__________________________ 
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Since 𝐤 & 𝐦 are both positive definite, it follows that all 𝜆   𝑗 1,2, ⋯ , 𝑁  are positive. Then, it is 
convenient to introduce the notation: 

𝜆 𝜔 𝑗 1,2, ⋯ , 𝑁  

where  𝜔   𝑗 1,2, ⋯ , 𝑁  are real positive numbers. 
 

Recall that 𝜆 𝑠 . Therefore, 𝑠 √ 𝜆 √ 𝜔 𝑖𝜔 we conclude that to each eigenvalue 𝜆  there 
corresponds the pair of pure imaginary complex conjugate exponents: 

𝑠
�̅� 𝑖𝜔 𝑗 1,2, ⋯ , 𝑁  

Introducing the exponents into the expression  𝐮 𝑡 𝑒 𝛟 , we conclude that the equation of motion  

𝐦𝐮 𝐤𝐮 𝟎 admits synchronous solutions of the form: 

𝐮 𝑡 𝐶 𝑒 𝐶̅ 𝑒 𝛟

𝐴 cos 𝜔 𝑡 𝐵 sin 𝜔 𝑡 𝛟

𝜌 cos 𝜔 𝑡 𝜃 𝛟

𝜌 sin 𝜔 𝑡 𝜗 𝛟

𝑗 1,2, ⋯ , 𝑁  

where:  𝜌  = amplitude; 𝜌 𝐴 𝐵  

  𝜃  = phase angle; 𝜃 tan 𝐵 𝐴⁄  [Consult the notes on SDOF System] 

  𝜗  = phase angle; 𝜗 tan 𝐴 𝐵⁄  [Consult the notes on SDOF System] 

  𝜔  = natural frequency corresponding to natural mode of vibration 𝛟  

(𝛟  are also referred to as eigenvectors, or characteristic vectors, or natural modes) 

It is straightforward to demonstrate that 𝐮 𝑡 𝑞 𝑡 𝛟   satisfies the equation of motion 𝐦𝐮 𝐤𝐮

𝟎. Indeed, by direct substitution, 𝜔 𝐦𝛟 𝐤𝛟 𝑞 𝑡 𝟎 ⇔ 𝐤𝛟 𝜔 𝐦𝛟 . 

Clearly, the synchronous motions that we have established are harmonic (i.e., all DOFs oscillate 
harmonically about their equilibrium position with the same circular frequency). 
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FREE VIBRATION RESPONSE – UNDAMPED SYSTEM 

We want to solve the Equation of Motion 𝐦𝐮 𝐤𝐮 𝟎, subject to the following initial conditions: 
𝐮 𝑡 0 𝐮  & 𝐮 𝑡 0 𝐮 . 

We express the solution/response by invoking the modal expansion theorem: 

𝐮 𝑡 𝐴 cos 𝜔 𝑡 𝐵 sin 𝜔 𝑡 𝛟 𝑞 𝑡 𝛟

𝐮 𝑡 𝐴 sin 𝜔 𝑡 𝐵 cos 𝜔 𝑡 𝜔 𝛟 𝑞 𝑡 𝛟

 

where 𝑁 is the total number of DOF of the model of the discretized structure. 

Therefore, 

𝐮 𝐮 0 𝐴 𝛟 𝑞 0 𝛟

𝐮 𝐮 0 𝐵 𝜔 𝛟 𝑞 0 𝛟

 

Pre-multiplying, both equations, by 𝛟 𝐦 and invoking the eigenvector orthogonality theorem we obtain: 

𝛟 𝐦𝐮 𝐴 𝛟 𝐦𝛟 ⟹ 𝐴
𝛟 𝐦𝐮
𝛟 𝐦𝛟

𝑞 0

𝛟 𝐦𝐮 𝐵 𝜔 𝛟 𝐦𝛟 ⟹ 𝐵 𝜔
𝛟 𝐦𝐮
𝛟 𝐦𝛟

𝑞 0
 

Therefore, the free vibration response of the undamped system is expressed as follows: 

𝐮 𝑡 𝑞 𝑡 𝛟 𝑞 0 cos 𝜔 𝑡
𝑞 0

𝜔
sin 𝜔 𝑡 𝛟

𝑞 0
𝛟 𝐦𝐮

𝛟 𝐦𝛟

𝛟 𝐦𝐮
𝑀

, 𝑞 0
𝛟 𝐦𝐮

𝛟 𝐦𝛟

𝛟 𝐦𝐮
𝑀

 

 

IMPORTANT NOTE: Evidently, for the structure to vibrate only in the 𝑛-th mode, the initial 
displacement 𝐮  and/or the initial velocity 𝐮  must both be proportional to 𝛟 , i.e., 𝐮  ~ 𝛟  & 𝐮  ~ 𝛟 .  
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FREE VIBRATION RESPONSE –SYSTEM WITH DAMPING 

Statement of the problem: 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑀𝑜𝑡𝑖𝑜𝑛: 𝐦𝐮 𝐜𝐮 𝐤𝐮 𝟎
𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠: 𝐮 𝐮 0 , 𝐮 𝐮 0

 

We are seeking a solution to the above problem. Procedures to obtain the desired solution differ depending 
on the form of damping: classical or non-classical; these terms are defined next. 

For civil engineering structures it is reasonable to assume that the matrices 𝐦, 𝐤, & 𝐜 are all symmetric 
and positive definite.  

It can be demonstrated that the necessary and sufficient condition for the above system to possess 
natural modes of vibration, that are real-valued and identical to those of the associated undamped 
system (also referred to as classical normal modes), is the following equality: 

𝐜𝐦 𝐤 𝐤𝐦 𝐜  

or, equivalently, that 𝐦 𝐤  & 𝐦 𝐜  commute, i.e., 𝐦 𝐤 𝐦 𝐜 𝐦 𝐜 𝐦 𝐤 . 
 

Let 𝚽 be the modal matrix and 𝛀  the spectral matrix. Specifically, 

𝚽 𝛟 𝛟 ⋯ 𝛟 ⋯ 𝛟 𝛀

⎣
⎢
⎢
⎡
𝜔

𝜔
⋱

𝜔 ⎦
⎥
⎥
⎤
 

 
Invoking the eigenvector expansion theorem, we may express the structural response as 𝐮 𝑡 𝚽𝐪 𝑡 . 
Then, 

𝐦𝐮 𝐜𝐮 𝐤𝐮 𝟎 ⇒ 𝐦𝚽𝐪 𝑡 𝐜𝚽𝐪 𝑡 𝐤𝚽𝐪 𝑡 𝟎 ⇒⏞
𝚽

𝐦𝚽𝐪 𝑡 𝐜𝚽𝐪 𝑡 𝐤𝚽𝐪 𝑡 𝟎 

𝐦𝐮 𝐜𝐮 𝐤𝐮 𝟎
⇓

𝐦𝚽𝐪 𝑡 𝐜𝚽𝐪 𝑡 𝐤𝚽𝐪 𝑡 𝟎
⇓

𝚽 | 𝐦𝚽𝐪 𝑡 𝐜𝚽𝐪 𝑡 𝐤𝚽𝐪 𝑡 𝟎
⇓

𝚽 𝐦𝚽
𝐌

𝐪 𝑡 𝚽 𝐜𝚽
𝐂

𝐪 𝑡 𝚽 𝐤𝚽
𝐊

𝐪 𝑡 𝟎

⇓
𝐌𝐪 𝑡 𝐂𝐪 𝑡 𝐊𝐪 𝑡 𝟎

 

where 

𝐌 𝚽 𝐦𝚽

⎣
⎢
⎢
⎡
𝑀

𝑀
⋱

𝑀 ⎦
⎥
⎥
⎤

𝐂 𝚽 𝐜𝚽

⎣
⎢
⎢
⎡
𝐶

𝐶
⋱

𝐶 ⎦
⎥
⎥
⎤

𝐊 𝚽 𝐤𝚽

⎣
⎢
⎢
⎡
𝐾

𝐾
⋱

𝐾 ⎦
⎥
⎥
⎤
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𝑀 𝛟 𝐦𝛟 , 𝐶 𝛟 𝐜𝛟 , 𝐾 𝛟 𝐤𝛟  

Therefore 

𝑀 𝑞 𝐶 𝑞 𝐾 𝑞 0 

At this point we introduce the damping ration of each mode: 

𝜉
𝐶

2𝑀 𝜔
 

Therefore 

𝑞 2𝜉 𝜔 𝑞 𝜔 𝑞 0 𝑛 1,2, ⋯ , 𝑁  

Noticing that the above equation is mathematically identical to the equation that governs the free vibration 
response of a SDOF with damping, we may write 

𝑞 𝑡 𝑒 𝑞 0 cos 𝜔 𝑡
𝑞 0 𝜉 𝜔 𝑞 0

𝜔
sin 𝜔 𝑡

where: 𝜔 𝜔 1 𝜉 , 𝑞 0
𝛟 𝐦𝐮

𝑀
, 𝑞 0

𝛟 𝐦𝐮
𝑀

 

Recall that  

𝐮 𝑡 𝚽𝐪 𝑡 𝑞 𝑡 𝛟  

 

IMPORTANT NOTE: As for the undamped case, for the structure to vibrate only in the 𝑛-th mode, 
the initial displacement 𝐮  and/or the initial velocity 𝐮  must both be proportional to 𝛟 , i.e., 𝐮  ~ 𝛟  & 
𝐮  ~ 𝛟 .  
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APPENDIX 

The properties of the Generalized Characteristic-Value Problem 𝐤𝐮 𝜆𝐦𝐮 that we enumerated earlier may be 
demonstrated by following one of the following two strategies:  

(1) One may work directly with the Generalized Characteristic-Value Problem 𝐤𝐮 𝜆𝐦𝐮, or  
(2) One may convert/transform the problem 𝐤𝐮 𝜆𝐦𝐮 to an equivalent Standard Eigenvalue Problem of 

the form 𝐀𝐯 𝜆𝐯, where the matrix 𝐀 is symmetric and positive definite. 

 

Let us start by considering strategy #1: 

We start by demonstrating that the characteristic values (𝜆 𝜔 ) and modal shapes (𝛟 ) of a civil 
engineering structure are real. 

Theorem 
The eigenvalues 𝜆 of a Generalized Eigenvalue Problem 𝐤𝐮 𝜆𝐦𝐮, with 𝐤 & 𝐦 real & symmetric 

matrices, and 𝐦 is positive definite, are real. 

As a corollary, the corresponding eigenvectors are also real. 

Proof 
We consider the eigenvalue-eigenvector pair 𝜆 , 𝛟  and assume they are complex. 

Because 𝐤 & 𝐦 are real, it follows that the complex conjugate pair �̅� , 𝛟  must also constitute an 
eigenvalue-eigenvector pair. 

Therefore: 
𝐤𝛟 𝜆 𝐦𝛟
𝐤𝛟 �̅� 𝐦𝛟

⟹ 

𝛟 𝐤𝛟 𝜆 𝛟 𝐦𝛟
𝐤𝛟 𝛟 �̅� 𝐦𝛟 𝛟

⟹
𝛟 𝐤𝛟 𝜆 𝛟 𝐦𝛟

𝛟 𝐤 𝛟 �̅� 𝛟 𝐦 𝛟
⟹

𝐦 𝐦
𝐤 𝐤

𝑹𝒆𝒄𝒂𝒍𝒍

 

𝛟 𝐤𝛟 𝛟 𝐤 𝛟 𝜆 �̅� 𝛟 𝐦𝛟  

Recalling that the mass matrix 𝐦 is a real, symmetric, and positive definite matrix, it is straight forward to 

demonstrate that 𝛟 𝐦𝛟  is real and positive. Indeed,  

𝛟 𝐦𝛟 𝛟 𝐦𝛟 𝛟 𝐦 𝛟 𝐦𝛟 𝛟 𝐦𝛟 𝛟 𝛟 𝐦 𝛟 𝛟 𝐦𝛟  

Therefore, 𝛟 𝐦𝛟  is real and positive.  
It follows that 

𝜆 �̅� 0 

Which can be satisfied if and only if  𝜆  is real.  
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The eigenvectors also can be taken to be real, by rejecting permissible complex multiplicative 
factors. 

 

Then we proceed to prove that modal shapes 𝛟𝒓 & 𝛟𝒔, corresponding to distinct eigenvalues, 𝜆  and 𝜆 , are 
mutually orthogonal relative to 𝐦 and 𝐤. 

Theorem 

If 𝛟𝒓 & 𝛟𝒔 are eigenvectors, corresponding to two distinct eigenvalues 𝜆  and 𝜆 , respectively, of the 

eigenvalue problem 𝐤 𝝀𝐦 𝛟 𝟎, where 𝐤 & 𝐦 are real and symmetric matrices, and 𝐦 is 
positive definite, there follows: 

𝛟𝑻𝐦𝛟 𝟎 , 𝛟𝑻𝐤𝛟 𝟎 , 𝜆 𝜆  

We say that eigenvectors 𝛟𝒓 & 𝛟𝒔 are orthogonal (to each other) relative to  𝐤 & 𝐦. 

Proof 
If 𝜆 & 𝜆  are distinct eigenvalues corresponding, respectively, to the eigenvectors 𝛟 & 𝛟  , there follows: 

𝐤𝛟 𝜆 𝐦𝛟 , 𝐤𝛟 𝜆 𝐦𝛟  

and hence, also: 
𝐤𝛟 𝛟 𝜆 𝐦𝛟 𝛟 , 𝛟 𝐤𝛟 𝜆 𝛟 𝐦𝛟  

or, making use of the symmetry in 𝐤 & 𝐦 ,  

 
𝛟 𝐤𝛟 𝜆 𝛟 𝐦𝛟  

 
(1) 

 
𝛟 𝐤𝛟 𝜆 𝛟 𝐦𝛟  (2) 

 
2  – 1  ⟹ 𝜆 𝜆 𝛟 𝐦𝛟 0 

Thus, since 𝜆 𝜆   by assumption, we conclude that: 

𝛟 𝐦𝛟 0
1
𝜆

𝛟 𝐤𝛟 𝛟 𝐦𝛟
⟹ 𝛟 𝐤𝛟 0 

 

 

Finally, we demonstrate that the modal shapes 𝛟𝒓 are linearly independent, a fact that forms the basis of the 
modal superposition method. 
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Theorem 

For mass matrix 𝐦 real, symmetric, and positive definite, any set of non-zero real vectors which are 

mutually orthogonal relative to 𝐦 is a set of linearly independent vectors. 

Proof 
The above Theorem may easily be demonstrated by contradiction. Indeed, let us assume that 𝐱 , 𝑖
1,2, ⋯ , ℓ, ⋯ , 𝑆  are 𝑆 vectors that are mutually orthogonal relative to 𝐦 and let us assume they are 

linearly dependent, i.e., 𝛼 𝐱 𝛼 𝐱 ⋯ 𝛼ℓ𝐱ℓ ⋯ 𝛼 𝐱 𝟎 ⇒  𝐱ℓ ∑ 𝛼 𝛼ℓ⁄ 𝐱ℓ . We pre-

multiply by 𝐱ℓ 𝐦 and we exploit the orthogonality property: 𝐱ℓ 𝐦𝐱ℓ ∑ 𝛼 𝛼ℓ⁄ 𝐱ℓ 𝐦𝐱ℓ ∑ 0ℓ

0. But this is a contradiction given that 𝐦 is positive definite and, consequently, 𝐱ℓ 𝐦𝐱ℓ 0. Thus, by 
contradiction, the mutually orthogonal, relative to 𝐦, vectors 𝐱 , 𝑖 1,2, ⋯ , ℓ, ⋯ , 𝑆  are linearly 
independent. 

 

Now let us consider strategy #2: 

A quick way to transform the generalized eigenvalue problem 𝐤𝐮 𝜆𝐦𝐮 to the standard eigenvalue problem of the 

form 𝐀𝐯 𝜆𝐯, is the following: 𝐤𝐮 𝜆𝐦𝐮 ⇔  𝐦 𝐤 𝐮 𝜆𝐮. However, the matrix 𝐦 𝐤  is not 
symmetric, and this obscures the problem. For this reason, we adopt a different approach.  

We start with the following theorem: 

Theorem 
If matrix 𝐁 is real, symmetric and positive definite, then there exists a non-singular real matrix 𝐖 such 

that 𝐁 𝐖 𝐖 

Proof   
The matrix 𝐁 can be written as: 

𝐁 𝐑𝐃𝐑  
where:  

 the columns of matrix 𝐑 consist of the orthonormal eigenvectors of  𝐁, and 

 𝐃 diag 𝜇 , 𝜇 , ⋯ , 𝜇  , where the numbers  𝜇 0  𝑖 1,2, ⋯ , 𝑁 , are the corresponding 
eigenvalues of 𝐁. 

Indeed, let 𝐞  be the orthonormal eigenvectors of 𝐁, i.e., 𝐁𝐞 𝜇 𝐞 . Then,  

𝐑
↓ ↓ ⋯ ↓

𝐞 𝐞 ⋯ 𝐞
↓ ↓ ⋯ ↓

 

Evidently 

𝐑 𝐑

⎝

⎛

→ 𝐞 →
→ 𝐞 →
⋮ ⋮ ⋮

→ 𝐞 →⎠

⎞
↓ ↓ ⋯ ↓

𝐞 𝐞 ⋯ 𝐞
↓ ↓ ⋯ ↓

𝐈 

Therefore, 𝐑 𝐑 𝐈 ⇔  𝐑 𝐑  ⇔   𝐑 𝐑. 
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We may write 

𝐁𝐑 𝐁
↓ ↓ ⋯ ↓

𝐞 𝐞 ⋯ 𝐞
↓ ↓ ⋯ ↓

↓ ↓ ⋯ ↓
𝜇 𝐞 𝜇 𝐞 ⋯ 𝜇 𝐞

↓ ↓ ⋯ ↓
𝐑𝐃 

It follows that: 𝐁𝐑 𝐑𝐃 ⇔  𝐁𝐑𝐑 𝐑𝐃𝐑  ⇔ 𝐁𝐈 𝐑𝐃𝐑  ⇔  𝐁 𝐑𝐃𝐑  
 
Then: 

𝐁 𝐑𝐃𝐑 𝐑√𝐃√𝐃𝐑 √𝐃𝐑 √𝐃𝐑 𝐖 𝐖

where: 𝐖 √𝐃𝐑
 

Matrices, 𝐑  & 𝐑, are invertible because they are non-singular (linear independence of eigenvectors). 
Consequently, also 𝐖 is non-singular. 
Notice that: 

𝐖 𝐑√𝐃 √𝐃 𝐑

𝐖 𝐑 √𝐃 √𝐃 𝐑 √𝐃 𝐑
 

Therefore:     

𝐖 𝐖  

 

Using the above Theorem, the mass matrix 𝐦, being a real, symmetric and positive definite matrix, may be 
resolved as follows: 

𝐦 𝐐 𝐐 
where 𝐐 is a real, nonsingular matrix. 
Therefore: 

𝐤𝛟 𝜆𝐦𝛟 ⟹ 𝐤𝛟 𝜆 𝐐𝑻𝐐 𝛟 (1) 

Next, we consider the linear transformation: 

𝐐𝛟 𝐯  (2) 

from which we obtain the inverse transformation:  

𝛟 𝐐 𝟏𝐯 (3) 

The inverse 𝐐 𝟏 is guaranteed to exist because 𝐐 is non-singular. 

Introducing (2) & (3) into (1) and pre-multiplying on the left by  𝐐𝑻 𝟏
 , we obtain the eigenvalue problem: 

𝐀𝐯 𝜆𝐯  

where, considering the relation 𝐐𝑻 𝟏
𝐐 𝟏 𝑻

, we conclude that: 

𝐀 𝐐𝑻 𝟏
𝐤𝐐 𝟏 𝐐 𝟏 𝑻

𝐤𝐐 𝟏 𝐀𝑻 

i.e., matrix 𝐀 𝐐𝑻 𝟏
𝐤𝐐 𝟏 𝐐 𝟏 𝑻

𝐤𝐐 𝟏 is a real, symmetric matrix. 
 
It is evident that the original 𝐤𝛟 𝜆𝐦𝛟 has the same eigenvalues as the problem 𝐀𝐯 𝜆𝐯 (with 𝐀

𝐐𝑻 𝟏
𝐤𝐐 𝟏 𝐐 𝟏 𝑻

𝐤𝐐 𝟏) and the eigenvectors are related as follows: 𝐐𝛟 𝐯 ⇔  𝛟 𝐐 𝟏𝐯. 
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Furthermore, the orthogonality properties of the eigenvectors of one problem imply the orthogonality 
properties of the eigenvectors of the other problem. Specifically, 

‘𝐦-orthogonality’  𝛟 𝐦𝛟 𝛟 𝐐 𝐐𝛟 𝐯 𝐯 0 𝑖 𝑗  , which leads to: 

‘𝐤-orthogonality’  𝛟 𝐤𝛟 𝜆 𝛟 𝐦𝛟 0 𝑖 𝑗  

The real eigenvalues 𝜆 , 𝑟 1,2, ⋯ , 𝑁  of the problem 𝐤𝛟 𝜆𝐦𝛟 are all positive because 𝛟 𝐦𝛟 0 

and 𝛟 𝐤𝛟 0. Specifically,  

𝐤𝛟 𝜆 𝐦𝛟 ⇔ 𝛟 𝐤𝛟 𝜆 𝛟 𝐦𝛟 ⇔ 𝜆 𝛟 𝐤𝛟 𝛟 𝐦𝛟⁄ 0 
For completeness we remind the reader that the eigenvalues 𝜆  are also the eigenvalues of the problem 𝐀𝐯

𝜆𝐯 [with 𝐀 𝐐 𝟏 𝑻
𝐤𝐐 𝟏], which implies that matrix 𝐀, besides being real and symmetric, is also 

positive definite.  
____________________ 

NOTE: The relationship 𝐐𝑻 𝟏
𝐐 𝟏 𝑻

 is obtained as follows: 

𝐈 𝐈 𝑻 ⟺ 𝐈 𝐐 𝟏𝐐
𝑻

⟺ 𝐈 𝐐𝑻 𝐐 𝟏 𝑻
⟺ 𝐐𝑻 𝟏

𝐐 𝟏 𝑻 

__________________________ 
NOTE: 
The orthogonality property of eigenvectors, demonstrated above, was based on the assumption that the 
corresponding eigenvalues are distinct. 

The question arises as to what happens when there are repeated eigenvalues, i.e., when two or more 
eigenvalues have the same value, and we note that when an eigenvalue 𝜆  is repeated 𝓂  times, where 𝓂   
is integer, 𝜆  is said to have multiplicity 𝓂 . 

The answer to the above question lies in the following Theorem: 

Theorem 
If an eigenvalue 𝜆  of a real-symmetric matrix 𝐀 has multiplicity 𝓂 , then 𝐀 has exactly 𝓂  linearly 

independent eigenvectors corresponding to 𝜆 . 
[For a proof see section 1.18 of HILDEBRAND, F.B. (1965), Methods of Applied Mathematics, 2nd Edition.] 

These eigenvectors are not unique, as any linear combination of the eigenvectors belonging to a 
repeated eigenvalue is also an eigenvector. 

The linearly independent eigenvectors corresponding to 𝜆  are not necessarily orthogonal. Any set of 
linearly independent eigenvectors, though, can be rendered orthogonal by a procedure known as the 
Gram-Schmidt orthogonalization process. 

Of course, the eigenvectors belonging to the repeated eigenvalue are orthogonal to the eigenvectors 
belonging to the remaining eigenvalues. Hence, all the eigenvectors of a real symmetric matrix 𝐀 are 
orthogonal regardless of whether there are repeated eigenvalues or not. 

 


