Lecture Notes: STRUCTURAL DYNAMICS / FALL 2011 / Page: 1
 Lecturer: Prof. APOSTOLOS S. PAPAGEORGIOU
 SEOUL NATIONAL UNIVERSITY
 PART (11): MDOF SYSTEMS - FREE VIBRATION RESPONSE - EIGENVALUE PROBLEM

 FREE VIBRATION RESPONSE: MDOF SYSTEMS

 FREE VIBRATION RESPONSE: MDOF SYSTEMS

 SYSTEMS WITHOUT DAMPING

 SYSTEMS WITHOUT DAMPING}

Equation of Motion:

$\mathbf{m} \ddot{\mathbf{u}}+\mathbf{k u}=\mathbf{0}$

A very important case in the study of vibrations of MDOF systems is that in which all the coordinates, i.e., all components $u_{i}(t)(i=1,2, \cdots, N)$ of $\mathbf{u}(t)$, execute the same motion in time.

In other words, the system vibrates maintaining the overall shape of these coordinates/displacements/deflections and changing only their amplitude by a proportionality factor.

In this case, the system is said to execute synchronous motion.

To examine the possibility that such motions exist, we consider the solution of the Equation of Motion (see above) in the exponential form:
$\mathbf{u}(t)=e^{s t} \boldsymbol{\phi}$
where: $\left\{\begin{array}{l}s \quad \text { is a constant scalar } \\ \boldsymbol{\phi} \\ \text { is a constant } N \text {-vector }\end{array}\right.$

Introducing the solution $\mathbf{u}(t)=e^{s t} \boldsymbol{\phi}$ in the Equation of Motion we obtain:

$$
\left.\begin{array}{c}
\mathbf{m} \ddot{\mathbf{u}}+\mathbf{k} \mathbf{u}=\mathbf{0} \\
\mathbf{u}(t)=e^{s t} \boldsymbol{\phi}
\end{array}\right\} \Rightarrow e^{s t}\left(s^{2} \mathbf{m} \boldsymbol{\phi}+\mathbf{k} \boldsymbol{\phi}\right)=\mathbf{0} \Rightarrow \mathbf{k} \boldsymbol{\phi}=-s^{2} \mathbf{m} \boldsymbol{\phi}
$$

Therefore:

$$
\mathbf{k} \boldsymbol{\phi}=\lambda \mathbf{m} \boldsymbol{\phi}, \lambda=-s^{2}
$$

The above matrix equation represents a set of N simultaneous homogeneous algebraic equations in the unknowns $\boldsymbol{\phi} \stackrel{\text { def }}{=}\left\{\phi_{i}\right\}(i=1,2, \cdots, N)$, with λ playing the role of a parameter.

The problem of determining the values of the parameter λ for which the matrix equation $\mathbf{k} \boldsymbol{\phi}=\lambda \mathbf{m} \boldsymbol{\phi}$ admits nontrivial solutions $\boldsymbol{\phi}$ is known as the algebraic (or matrix) eigenvalue (or characteristic-value) problem. [NOTE: The obvious, but trivial, solution is $\boldsymbol{\phi}=\mathbf{0}$, however we are not interested in such a solution because it is not associated with motion.] Another name by which the above problem may be encountered is generalized characteristic-value problem.

```
    Lecture Notes: STRUCTURAL DYNAMICS / FALL 2011 / Page: 2
    Lecturer: Prof. APOSTOLOS S. PAPAGEORGIOU
    SEOUL NATIONAL UNIVERSITY
PART (11): MDOF SYSTEMS - FREE VIBRATION RESPONSE - EIGENVALUE PROBLEM
```

Before we proceed, we summarize the properties of the matrix eigenvalue problem that are demonstrated mathematically:

PROPERTIES OF THE ALGEBRAIC (or MATRIX) EIGENVALUE PROBLEM

(1) The eigenvalues of an algebraic eigenvalue problem, in which $\mathbf{k} \& \mathbf{m}$ are both symmetric, and at least one positive definite, are all real.

NOTE: For civil engineering structures, both matrices $\mathbf{k} \& \mathbf{m}$ are real, symmetric and positive definite. Indeed, $\mathbf{u}^{T} \mathbf{k u}>0$ for $\mathbf{u} \neq \mathbf{0}$, because civil engineering structures are restrained and stable, and $\mathbf{u}^{T} \mathbf{m u}>0$ for $\mathbf{u} \neq \mathbf{0}$, because all DOFs associated with zero mass/inertia have been eliminated by static condensation.]
(2) When matrices $\mathbf{k} \& \mathbf{m}$ are both real and positive definite, the eigenvalues are all positive, and the corresponding eigenvectors are all real.
(3) When \mathbf{k} is singular, at least one of the eigenvalues must be zero.

When \mathbf{m} is singular, at least one of the eigenvalues must be infinite.
(4) The eigenvectors are orthogonal with respect to both $\mathbf{k} \& \mathbf{m}$.

For symmetric $\mathbf{k} \& \mathbf{m}$ matrices:

$$
\begin{array}{|ll|}
\hline \boldsymbol{\phi}_{i}^{T} \mathbf{m} \boldsymbol{\phi}_{j}=0 & i \neq j \\
\boldsymbol{\phi}_{i}^{T} \mathbf{k} \boldsymbol{\phi}_{j}=0 & i \neq j \\
\hline
\end{array}
$$

(5) The eigenvectors of an algebraic eigenvalue problem in which the matrices involved are symmetric, including those corresponding to repeated eigenvalues, are all linearly independent.
(6) Any arbitrary vector of order N can be expressed as a superposition of the eigenvectors of an $N \times N$ symmetrical algebraic eigenvalue problem:

where $q_{r}(r=1,2, \cdots, N)$ are scalar multipliers called modal coordinates or normal coordinates and $\mathbf{q}=\left[\begin{array}{llll}q_{1} & q_{2} & \cdots & q_{N}\end{array}\right]^{T}$. This theorem is referred to as modal expansion theorem or eigenvector expansion theorem.

Examples of models of structures and their modal shapes:

Free vibration of undamped system: $\mathbf{u}(0)=\phi_{1}$

(a)

(b)
(c)

(d)

Free vibration of undamped system: $\mathbf{u}(0)=\phi_{2}$

Free vibration of undamped system: Arbitrary $\mathbf{u}(0)$

FIGURE: Free vibration of an undamped 2-DOF system.
(c)

(a)

(b)

(d)

FIGURE: Free vibration of a classically damped 2-DOF system.

FIGURE: 2-DOF system: Rigid bar on elastic supports.
(a)

(b)

(c)

$$
\omega_{2}=16.2580 \sqrt{\frac{E I}{m L^{4}}}
$$

FIGURE: Cantilever beam \& L-shaped frame modeled as 2-DOF systems.

Lecture Notes: STRUCTURAL DYNAMICS / FALL 2011 / Page: 7
 Lecturer: Prof. APOSTOLOS S. PAPAGEORGIOU
 SEOUL NATIONAL UNIVERSITY
 PART (11): MDOF SYSTEMS - FREE VIBRATION RESPONSE - EIGENVALUE PROBLEM

NOTES:

Kinetic and Strain Energy

Consider the discretized model of a structure. Its strain energy is given by $V=\left(\frac{1}{2}\right) \mathbf{u}^{T} \mathbf{k u}$, while its kinetic energy $T=\left(\frac{1}{2}\right) \dot{\mathbf{u}}^{T} \mathbf{m} \dot{\mathbf{u}}$.

NOTE: The above expressions for the kinetic and strain energies of a discretized structure are justified/obtained as follows:

The forces that are acting on the masses of the structure along the DOFs and accelerate them are equal to: $\frac{d}{d t}(\mathbf{m} \dot{\mathbf{u}})$. The work produced by moving the masses of the structure from state/position 1 to state/position 2 is equal to: $W_{12}^{(T)}=\int_{1}^{2}\left[\frac{d}{d t}(\mathbf{m} \dot{\mathbf{u}})\right]^{T} d \mathbf{u}=\int_{1}^{2}\left[\frac{d}{d t}(\mathbf{m} \dot{\mathbf{u}})\right]^{T} \dot{\mathbf{u}} d t=\int_{1}^{2} d\left(\frac{1}{2} \dot{\mathbf{u}}^{T} \mathbf{m} \dot{\mathbf{u}}\right)=T_{2}-T_{1}$, where $T_{i}(i=1,2)$ is the kinetic energy at state/position i.

In an analogous fashion, the strain energy of the structure may be introduced in terms of the work performed by the elastic forces $\mathbf{f}_{S}=\mathbf{k u}$ as the structure is deformed from state/position 1 to state/position 2 :
$W_{12}^{(V)}=\int_{1}^{2} \mathbf{f}_{S}^{T} d \mathbf{u}=\int_{1}^{2}(\mathbf{k u})^{T} d \mathbf{u}=\int_{1}^{2} d\left(\left(\frac{1}{2}\right) \mathbf{u}^{T} \mathbf{k} \mathbf{u}\right)=V_{2}-V_{1}$.

Both energy expressions presented above involve a scalar function of the form $f=\mathbf{x}^{T} \mathbf{A} \mathbf{x}$, where the matrix \mathbf{A} (i.e., either \mathbf{k} or \mathbf{m}) is a real symmetric matrix. The scalar function $f=\mathbf{x}^{T} \mathbf{A x}$ is known as a quadratic form. If for any real vector $\mathbf{x} \neq \mathbf{0}$ the value of f is positive, i.e., $f=\mathbf{x}^{T} \mathbf{A x}>0 \forall \mathbf{x} \neq \mathbf{0} \in \mathbb{R}^{N}$, then the quadratic form $f=\mathbf{x}^{T} \mathbf{A} \mathbf{x}$ is called positive definite and the associated matrix \mathbf{A} is referred to as a positive definite matrix. We have already argued that for civil engineering structures both matrices $\mathbf{m} \& \mathbf{k}$ are positive definite (because civil engineering structures are stable and rigidly attached to the ground and, additionally, all DOFs associated with zero mass/inertia have been eliminated by static condensation). Simply stated, for any deformed shape \mathbf{u}, the strain energy of the structure is positive, i.e., $V=\left(\frac{1}{2}\right) \mathbf{u}^{T} \mathbf{k u}>0$. Similarly, for any velocity vector $\dot{\mathbf{u}}$, the kinetic energy of the structure is positive, i.e., $T=\left(\frac{1}{2}\right) \dot{\mathbf{u}}^{T} \mathbf{m} \dot{\mathbf{u}}>0$.

Linear Dependence

- We consider a set of real vectors $\mathbf{x}_{1}, \mathbf{x}_{2}, \cdots, \mathbf{x}_{S}$ in linear space \mathcal{L} and a set of real scalars $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{S}$. Then, the vector \mathbf{x} given by:

$$
\mathbf{x}=\alpha_{1} \mathbf{x}_{1}+\alpha_{2} \mathbf{x}_{2}+\cdots+\alpha_{S} \mathbf{x}_{S}
$$

is said to be a linear combination of $\mathbf{x}_{1}, \mathbf{x}_{2}, \cdots, \mathbf{x}_{S}$ with coefficients $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{S}$.

- The vectors $\mathbf{x}_{1}, \mathbf{x}_{2}, \cdots, \mathbf{x}_{S}$ are said to be linearly independent if the relation:

$$
\begin{equation*}
\alpha_{1} \mathbf{x}_{1}+\alpha_{2} \mathbf{x}_{2}+\cdots+\alpha_{S} \mathbf{x}_{S}=\mathbf{0} \tag{1}
\end{equation*}
$$

Lecture Notes: STRUCTURAL DYNAMICS / FALL 2011 / Page: 8
 Lecturer: Prof. APOSTOLOS S. PAPAGEORGIOU
 SEOUL NATIONAL UNIVERSITY
 PART (11): MDOF SYSTEMS - FREE VIBRATION RESPONSE - EIGENVALUE PROBLEM

can be satisfied only for the trivial case, i.e., only when all the coefficients $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{S}$ are identically zero.

- If relation (1) is satisfied and at least one of the coefficients $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{S}$ is different from zero, then the vectors $\mathbf{x}_{1}, \mathbf{x}_{2}, \cdots, \mathbf{x}_{S}$ are said to be linearly dependent, with the implication that one vector is linear combination of the remaining ($S-1$) vectors.
Thus, considering vectors in the 3D space, two (non-zero) vectors are linearly dependent if they are collinear (i.e., parallel), and three (non-zero) vectors are linearly dependent if they are coplanar (i.e., lie in the same plane).
- The subspace \boldsymbol{S} of \mathcal{L} consisting of the linear combination of the vectors $\mathbf{x}_{1}, \mathbf{x}_{2}, \cdots, \mathbf{x}_{S}$ is called a subspace spanned by the vectors $\mathbf{x}_{1}, \mathbf{x}_{2}, \cdots, \mathbf{x}_{S}$.

If $\boldsymbol{S}=\mathcal{L}$, then $\mathbf{x}_{1}, \mathbf{x}_{2}, \cdots, \mathbf{x}_{S}$ are said to span \mathcal{L}.
How is the concept of 'Linear Independence' relevant to our discussion?
The modal shapes $\boldsymbol{\phi}_{1}, \boldsymbol{\Phi}_{2}, \cdots, \boldsymbol{\phi}_{N}$ of a civil engineering structure are linearly independent and, consequently, any deformed shape u of the structure may be expressed as a linear combination of the modal shapes (modal expansion theorem). Evidently, the modal shapes $\boldsymbol{\phi}_{n}(n=1,2, \cdots, N)$ play the same role as the three basis vectors $\boldsymbol{i}=[1,0,0]^{T}, \boldsymbol{j}=[0,1,0]^{T}$, and $\boldsymbol{k}=[0,0,1]^{T}$, in the 3D space. Any vector $\mathbf{v}=$ $v_{x} \boldsymbol{i}+v_{y} \boldsymbol{j}+v_{z} \boldsymbol{k}$ in the 3 D space may be expressed as a linear combination of the above three basis vectors, or in matrix form

$$
\mathbf{v}=v_{x} \boldsymbol{i}+v_{y} \boldsymbol{j}+v_{z} \boldsymbol{k}=v_{x}\left\{\begin{array}{l}
1 \\
0 \\
0
\end{array}\right\}+v_{y}\left\{\begin{array}{l}
0 \\
1 \\
0
\end{array}\right\}+v_{z}\left\{\begin{array}{l}
0 \\
0 \\
1
\end{array}\right\}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left\{\begin{array}{l}
v_{x} \\
v_{y} \\
v_{z}
\end{array}\right\}=\left\{\begin{array}{l}
v_{x} \\
v_{y} \\
v_{z}
\end{array}\right\}
$$

The interested reader may consult the following two references:
HILDEBRAND, F.B. (1965), Methods of Applied Mathematics, $2^{\text {nd }}$ Edition, PRENTICE-HALL, Inc. [Chapter 1: Matrices and Linear Equations]

STRANG, G. (1980). Linear Algebra and Its Applications, 2nd Edition, ACADEMIC PRESS, Inc.

Lecture Notes: STRUCTURAL DYNAMICS / FALL 2011 / Page: 9
 Lecturer: Prof. APOSTOLOS S. PAPAGEORGIOU
 SEOUL NATIONAL UNIVERSITY
 PART (11): MDOF SYSTEMS - FREE VIBRATION RESPONSE - EIGENVALUE PROBLEM

Since $\mathbf{k} \& \mathbf{m}$ are both positive definite, it follows that all $\lambda_{j}(j=1,2, \cdots, N)$ are positive. Then, it is convenient to introduce the notation:

$$
\lambda_{j}=\omega_{j}^{2} \quad(j=1,2, \cdots, N)
$$

where $\omega_{j}(j=1,2, \cdots, N)$ are real positive numbers.

Recall that $\lambda=-s^{2}$. Therefore, $s= \pm \sqrt{-\lambda}= \pm \sqrt{-\omega^{2}}= \pm i \omega$ we conclude that to each eigenvalue λ_{j} there corresponds the pair of pure imaginary complex conjugate exponents:

$$
\left.\begin{array}{l}
s_{j} \\
\bar{s}_{j}
\end{array}\right\}= \pm i \omega_{j} \quad(j=1,2, \cdots, N)
$$

Introducing the exponents into the expression $\mathbf{u}(t)=e^{s t} \boldsymbol{\phi}$, we conclude that the equation of motion $\mathbf{m u}+\mathbf{k u}=\mathbf{0}$ admits synchronous solutions of the form:

$$
\begin{aligned}
& \mathbf{u}_{j}(t)=\left(C_{j} e^{i \omega_{j} t}+\bar{C}_{j} e^{-i \omega_{j} t}\right) \boldsymbol{\phi}_{j} \\
& =\underbrace{\left[A_{j} \cos \left(\omega_{j} t\right)+B_{j} \sin \left(\omega_{j} t\right)\right]}_{q_{j}(t)} \boldsymbol{\Phi}_{j} \\
& =\quad \underbrace{\rho_{j} \cos \left(\omega_{j} t-\theta_{j}\right)}_{q_{j}(t)} \boldsymbol{\phi}_{j} \quad(j=1,2, \cdots, N) \\
& =\quad \underbrace{\rho_{j} \sin \left(\omega_{j} t+\vartheta_{j}\right)}_{q_{j}(t)} \boldsymbol{\phi}_{j} \\
& \text { where: } \quad \rho_{j}=\text { amplitude; } \rho_{j}=\sqrt{A_{j}^{2}+B_{j}^{2}} \\
& \left.\theta_{j}=\text { phase angle; } \theta_{j}=\tan ^{-1}\left(B_{j} / A_{j}\right) \text { [Consult the notes on SDOF System }\right] \\
& \vartheta_{j}=\text { phase angle; } \vartheta_{j}=\tan ^{-1}\left(A_{j} / B_{j}\right) \text { [Consult the notes on SDOF System] } \\
& \omega_{j}=\text { natural frequency corresponding to natural mode of vibration } \boldsymbol{\phi}_{j}
\end{aligned}
$$

($\boldsymbol{\phi}_{j}$ are also referred to as eigenvectors, or characteristic vectors, or natural modes)
It is straightforward to demonstrate that $\mathbf{u}_{j}(t)=q_{j}(t) \boldsymbol{\phi}_{j}$ satisfies the equation of motion $\mathbf{m u}+\mathbf{k u}=$ $\mathbf{0}$. Indeed, by direct substitution, $\left[-\omega_{j}^{2} \mathbf{m} \boldsymbol{\phi}_{j}+\mathbf{k} \boldsymbol{\phi}_{j}\right] q_{j}(t)=\mathbf{0} \Leftrightarrow \mathbf{k} \boldsymbol{\phi}_{j}=\omega_{j}^{2} \mathbf{m} \boldsymbol{\phi}_{j}$.

Clearly, the synchronous motions that we have established are harmonic (i.e., all DOFs oscillate harmonically about their equilibrium position with the same circular frequency).

Lecture Notes: STRUCTURAL DYNAMICS / FALL 2011 / Page: 10
 Lecturer: Prof. APOSTOLOS S. PAPAGEORGIOU
 SEOUL NATIONAL UNIVERSITY
 PART (11): MDOF SYSTEMS - FREE VIBRATION RESPONSE - EIGENVALUE PROBLEM

FREE VIBRATION RESPONSE - UNDAMPED SYSTEM

We want to solve the Equation of Motion $\mathbf{m u}+\mathbf{k u}=\mathbf{0}$, subject to the following initial conditions: $\mathbf{u}(t=0)=\mathbf{u}_{0} \& \dot{\mathbf{u}}(t=0)=\dot{\mathbf{u}}_{0}$.

We express the solution/response by invoking the modal expansion theorem:

$$
\begin{aligned}
& \mathbf{u}(t)=\sum_{n=1}^{N}\left(A_{n} \cos \left(\omega_{n} t\right)+B_{n} \sin \left(\omega_{n} t\right)\right) \boldsymbol{\phi}_{n}=\sum_{n=1}^{N} q_{n}(t) \boldsymbol{\phi}_{n} \\
& \dot{\mathbf{u}}(t)=\sum_{n=1}^{N}\left(-A_{n} \sin \left(\omega_{n} t\right)+B_{n} \cos \left(\omega_{n} t\right)\right) \omega_{n} \boldsymbol{\phi}_{n}=\sum_{n=1}^{N} \dot{q}_{n}(t) \boldsymbol{\phi}_{n}
\end{aligned}
$$

where N is the total number of DOF of the model of the discretized structure.
Therefore,

$$
\begin{aligned}
& \mathbf{u}_{0}=\mathbf{u}(0)=\sum_{r=1}^{N} A_{r} \boldsymbol{\phi}_{r}=\sum_{r=1}^{N} q_{r}(0) \boldsymbol{\phi}_{r} \\
& \dot{\mathbf{u}}_{0}=\dot{\mathbf{u}}(0)=\sum_{r=1}^{N} B_{r} \omega_{r} \boldsymbol{\phi}_{r}=\sum_{r=1}^{N} \dot{q}_{r}(0) \boldsymbol{\phi}_{r}
\end{aligned}
$$

Pre-multiplying, both equations, by $\boldsymbol{\phi}_{n}^{T} \mathbf{m}$ and invoking the eigenvector orthogonality theorem we obtain:

$$
\begin{array}{llr}
\boldsymbol{\phi}_{n}^{T} \mathbf{m} \mathbf{u}_{0}=A_{n} \boldsymbol{\phi}_{n}^{T} \mathbf{m} \boldsymbol{\phi}_{n} \quad & \Rightarrow \quad A_{n}=\frac{\boldsymbol{\phi}_{n}^{T} \mathbf{m} \mathbf{u}_{0}}{\boldsymbol{\phi}_{n}^{T} \mathbf{m} \boldsymbol{\phi}_{r}}=q_{n}(0) \\
\boldsymbol{\phi}_{n}^{T} \mathbf{m} \dot{\mathbf{u}}_{0}=B_{n} \omega_{n} \boldsymbol{\phi}_{n}^{T} \mathbf{m} \boldsymbol{\phi}_{n} \quad & \Rightarrow \quad B_{n} \omega_{n}=\frac{\boldsymbol{\phi}_{n}^{T} \mathbf{m} \mathbf{u}_{0}}{\boldsymbol{\phi}_{n}^{T} \mathbf{m} \boldsymbol{\phi}_{n}}=\dot{q}_{n}(0)
\end{array}
$$

Therefore, the free vibration response of the undamped system is expressed as follows:

$$
\begin{gathered}
\mathbf{u}(t)=\sum_{n=1}^{N} q_{n}(t) \boldsymbol{\phi}_{n}=\sum_{n=1}^{N}\left(q_{n}(0) \cos \left(\omega_{n} t\right)+\frac{\dot{q}_{n}(0)}{\omega_{n}} \sin \left(\omega_{n} t\right)\right) \boldsymbol{\phi}_{n} \\
q_{n}(0)=\frac{\boldsymbol{\phi}_{n}^{T} \mathbf{m} \mathbf{u}_{0}}{\boldsymbol{\phi}_{n}^{T} \mathbf{m} \boldsymbol{\phi}_{n}}=\frac{\boldsymbol{\phi}_{n}^{T} \mathbf{m} \mathbf{u}_{0}}{M_{n}}, \dot{q}_{n}(0)=\frac{\boldsymbol{\phi}_{n}^{T} \mathbf{m} \dot{\mathbf{u}}_{0}}{\boldsymbol{\phi}_{n}^{T} \mathbf{m} \boldsymbol{\phi}_{n}}=\frac{\boldsymbol{\phi}_{n}^{T} \mathbf{m} \dot{\mathbf{u}}_{0}}{M_{n}}
\end{gathered}
$$

IMPORTANT NOTE: Evidently, for the structure to vibrate only in the n-th mode, the initial displacement \mathbf{u}_{0} and/or the initial velocity $\dot{\mathbf{u}}_{0}$ must both be proportional to $\boldsymbol{\phi}_{n}$, i.e., $\mathbf{u}_{0} \sim \boldsymbol{\phi}_{n} \& \dot{\mathbf{u}}_{0} \sim \boldsymbol{\phi}_{n}$.

FREE VIBRATION RESPONSE -SYSTEM WITH DAMPING

Statement of the problem:

Equation of Motion:	$\mathbf{m u ̈}+\mathbf{c u}+\mathbf{k u}=\mathbf{0}$
Initial Conditions:	$\mathbf{u}_{0}=\mathbf{u}(0) \quad, \quad \dot{\mathbf{u}}_{0}=\dot{\mathbf{u}}(0)$

We are seeking a solution to the above problem. Procedures to obtain the desired solution differ depending on the form of damping: classical or non-classical; these terms are defined next.

For civil engineering structures it is reasonable to assume that the matrices $\mathbf{m}, \mathbf{k}, \& \mathbf{c}$ are all symmetric and positive definite.

It can be demonstrated that the necessary and sufficient condition for the above system to possess natural modes of vibration, that are real-valued and identical to those of the associated undamped system (also referred to as classical normal modes), is the following equality:

$$
\mathbf{c m}^{-1} \mathbf{k}=\mathbf{k m}^{-1} \mathbf{c}
$$

or, equivalently, that $\left(\mathbf{m}^{-1} \mathbf{k}\right) \&\left(\mathbf{m}^{-1} \mathbf{c}\right)$ commute, i.e., $\left(\mathbf{m}^{-1} \mathbf{k}\right)\left(\mathbf{m}^{-1} \mathbf{c}\right)=\left(\mathbf{m}^{-1} \mathbf{c}\right)\left(\mathbf{m}^{-1} \mathbf{k}\right)$.

Let $\boldsymbol{\Phi}$ be the modal matrix and $\boldsymbol{\Omega}^{2}$ the spectral matrix. Specifically,

$$
\boldsymbol{\Phi}=\left[\begin{array}{llllll}
\boldsymbol{\phi}_{1} & \boldsymbol{\phi}_{2} & \cdots & \boldsymbol{\phi}_{n} & \cdots & \boldsymbol{\phi}_{N}
\end{array}\right] \quad \boldsymbol{\Omega}^{2}=\left[\begin{array}{lllll}
\omega_{1}^{2} & & & \\
& \omega_{2}^{2} & & \\
& & \ddots & \\
& & & \omega_{N}^{2}
\end{array}\right]
$$

Invoking the eigenvector expansion theorem, we may express the structural response as $\mathbf{u}(t)=\boldsymbol{\Phi} \mathbf{q}(t)$. Then,

$$
\begin{aligned}
& \mathbf{m u ̈}+\mathbf{c u}+\mathbf{k u}=\mathbf{0} \Rightarrow \mathbf{m} \boldsymbol{\Phi} \ddot{\mathbf{q}}(t)+\mathbf{c} \boldsymbol{\Phi} \dot{\mathbf{q}}(t)+\mathbf{k} \boldsymbol{\Phi} \mathbf{q}(t)=\mathbf{0} \stackrel{\boldsymbol{\Phi}^{T}}{\Rightarrow} \quad \mathbf{m} \boldsymbol{\Phi} \ddot{\mathbf{q}}(t)+\mathbf{c} \boldsymbol{\Phi} \dot{\mathbf{q}}(t)+\mathbf{k} \boldsymbol{\Phi} \mathbf{q}(t)=\mathbf{0} \\
& \mathbf{m u}+\mathbf{c u}+\mathbf{k u}=\mathbf{0} \\
& \Downarrow \\
& \mathbf{m \Phi} \ddot{\mathbf{q}}(t)+\mathbf{c} \boldsymbol{\Phi} \dot{\mathbf{q}}(t)+\mathbf{k} \boldsymbol{\Phi} \mathbf{q}(t)=\mathbf{0} \\
& \Downarrow \\
& \boldsymbol{\Phi}^{T} \mid \mathbf{m} \boldsymbol{\Phi} \ddot{\mathbf{q}}(t)+\underset{\Downarrow}{\mathbf{c} \boldsymbol{\Phi} \dot{\mathbf{q}}}(t)+\mathbf{k} \boldsymbol{\Phi} \mathbf{q}(t)=\mathbf{0} \\
& \underbrace{\boldsymbol{\Phi}^{T} \mathbf{m} \boldsymbol{\Phi}}_{\mathbf{M}} \ddot{\mathbf{q}}(t)+\underbrace{\boldsymbol{\Phi}^{T} \mathbf{c} \boldsymbol{\Phi}}_{\mathbf{C}} \dot{\mathbf{q}}(t)+\underbrace{\boldsymbol{\Phi}^{T} \mathbf{k} \boldsymbol{\Phi}}_{\mathbf{K}} \mathbf{q}(t)=\mathbf{0} \\
& \Downarrow \\
& \mathbf{M} \ddot{\mathbf{q}}(t)+\mathbf{C} \dot{\mathbf{q}}(t)+\mathbf{K q}(t)=\mathbf{0}
\end{aligned}
$$

where
$\mathbf{M}=\boldsymbol{\Phi}^{T} \mathbf{m} \boldsymbol{\Phi}=\left[\begin{array}{llll}M_{1} & & & \\ & M_{2} & & \\ & & \ddots & \\ & & & M_{N}\end{array}\right] \mathbf{C}=\boldsymbol{\Phi}^{T} \mathbf{c} \boldsymbol{\Phi}=\left[\begin{array}{llll}C_{1} & & & \\ & C_{2} & & \\ & & \ddots & \\ & & & C_{N}\end{array}\right] \quad \mathbf{K}=\boldsymbol{\Phi}^{T} \mathbf{k} \boldsymbol{\Phi}=\left[\begin{array}{llll}K_{1} & & & \\ & K_{2} & & \\ & & \ddots & \\ & & & K_{N}\end{array}\right]$

PART (11): MDOF SYSTEMS - FREE VIBRATION RESPONSE - EIGENVALUE PROBLEM

$$
M_{n}=\boldsymbol{\phi}_{n}^{T} \mathbf{m} \boldsymbol{\phi}_{n} \quad, \quad C_{n}=\boldsymbol{\phi}_{n}^{T} \mathbf{c} \boldsymbol{\phi}_{n} \quad, \quad K_{n}=\boldsymbol{\phi}_{n}^{T} \mathbf{k} \boldsymbol{\phi}_{n}
$$

Therefore

$$
M_{n} \ddot{q}_{n}+C_{n} \dot{q}_{n}+K_{n} q_{n}=0
$$

At this point we introduce the damping ration of each mode:

$$
\xi_{n}=\frac{C_{n}}{2 M_{n} \omega_{n}}
$$

Therefore

$$
\ddot{q}_{n}+2 \xi_{n} \omega_{n} \dot{q}_{n}+\omega_{n}^{2} q_{n}=0 \quad(n=1,2, \cdots, N)
$$

Noticing that the above equation is mathematically identical to the equation that governs the free vibration response of a SDOF with damping, we may write

$$
\begin{aligned}
& q_{n}(t)=e^{-\xi_{n} \omega_{n} t}\left[q_{n}(0) \cos \left(\omega_{D n} t\right)+\frac{\dot{q}_{n}(0)+\xi_{n} \omega_{n} q_{n}(0)}{\omega_{D n}} \sin \left(\omega_{D n} t\right)\right] \\
& \text { where: } \quad \omega_{D n}=\omega_{n} \sqrt{1-\xi_{n}^{2}} \quad, \quad q_{n}(0)=\frac{\boldsymbol{\phi}_{n}^{T} \mathbf{m} \mathbf{u}_{0}}{M_{n}}, \quad \dot{q}_{n}(0)=\frac{\boldsymbol{\phi}_{n}^{T} \mathbf{m} \dot{\mathbf{u}}_{0}}{M_{n}}
\end{aligned}
$$

Recall that

$$
\mathbf{u}(t)=\boldsymbol{\Phi} \mathbf{q}(t)=\sum_{n=1}^{N} q_{n}(t) \boldsymbol{\phi}_{n}
$$

IMPORTANT NOTE: As for the undamped case, for the structure to vibrate only in the n-th mode, the initial displacement \mathbf{u}_{0} and/or the initial velocity $\dot{\mathbf{u}}_{0}$ must both be proportional to $\boldsymbol{\phi}_{n}$, i.e., $\mathbf{u}_{0} \sim \boldsymbol{\phi}_{n}$ \& $\dot{\mathbf{u}}_{0} \sim \boldsymbol{\phi}_{n}$.

```
Lecture Notes: STRUCTURAL DYNAMICS / FALL 2011 / Page: 13
Lecturer: Prof. APOSTOLOS S. PAPAGEORGIOU
SEOUL NATIONAL UNIVERSITY
PART (11): MDOF SYSTEMS - FREE VIBRATION RESPONSE - EIGENVALUE PROBLEM
```


APPENDIX

The properties of the Generalized Cbaracteristic-V alue Problem $\mathbf{k u}=\lambda \mathbf{m u}$ that we enumerated earlier may be demonstrated by following one of the following two strategies:
(1) One may work directly with the Generalized Characteristic-V alue Problem $\mathbf{k u}=\lambda \mathbf{m u}$, or
(2) One may convert/transform the problem $\mathbf{k u}=\lambda \mathbf{m u}$ to an equivalent Standard Eigenvalue Problem of the form $\mathbf{A v}=\lambda \mathbf{v}$, where the matrix \mathbf{A} is symmetric and positive definite.

Let us start by considering strategy \#1:
We start by demonstrating that the characteristic values $\left(\lambda_{r}=\omega_{r}^{2}\right)$ and modal shapes $\left(\boldsymbol{\phi}_{r}\right)$ of a civil engineering structure are real.

Theorem

The eigenvalues λ of a Generalized Eigenvalue Problem $\mathbf{k u}=\lambda \mathbf{m u}$, with $\mathbf{k} \& \mathbf{m}$ real \& symmetric matrices, and \mathbf{m} is positive definite, are real.

As a corollary, the corresponding eigenvectors are also real.

Proof

We consider the eigenvalue-eigenvector pair $\left(\lambda_{r}, \boldsymbol{\phi}_{r}\right)$ and assume they are complex.
Because $\mathbf{k} \& \mathbf{m}$ are real, it follows that the complex conjugate pair $\left(\bar{\lambda}_{r}, \overline{\boldsymbol{\phi}}_{r}\right)$ must also constitute an eigenvalue-eigenvector pair.

Therefore:

$$
\begin{aligned}
&\left.\begin{array}{rl}
\mathbf{k} \boldsymbol{\phi}_{r} & =\lambda_{r} \mathbf{m} \boldsymbol{\phi}_{r} \\
\mathbf{k} \overline{\boldsymbol{\phi}}_{r} & =\bar{\lambda}_{r} \mathbf{m} \overline{\boldsymbol{\phi}}_{r}
\end{array}\right\} \Rightarrow \\
&\left.\left.\begin{array}{c}
\overline{\boldsymbol{\phi}}_{r}^{T} \mathbf{k} \boldsymbol{\phi}_{r}= \\
\left(\mathbf{k} \overline{\boldsymbol{\phi}}_{r}\right)^{T} \boldsymbol{\lambda}_{r} \overline{\boldsymbol{\phi}}_{r}^{T} \mathbf{m} \boldsymbol{\phi}_{r} \\
\bar{\lambda}_{r}\left(\mathbf{m} \overline{\boldsymbol{\phi}}_{r}\right)^{T} \boldsymbol{\phi}_{r}
\end{array}\right\} \Rightarrow \begin{array}{c}
\overline{\boldsymbol{\phi}}_{r}^{T} \mathbf{k} \boldsymbol{\phi}_{r}=\lambda_{\bar{\prime}} \overline{\boldsymbol{\phi}}_{r}^{T} \mathbf{m} \boldsymbol{\phi}_{r} \\
\overline{\boldsymbol{\phi}}_{r}^{T} \mathbf{k}^{T} \boldsymbol{\phi}_{r}=\bar{\lambda}_{r} \overline{\boldsymbol{\phi}}_{r}^{T} \mathbf{m}^{T} \boldsymbol{\phi}_{r}
\end{array}\right\} \underbrace{\substack{\mathbf{m}=\mathbf{m}^{T} \\
\mathbf{k}=\mathbf{k}^{T}}}_{0} \\
& \underbrace{\Longrightarrow}_{\text {Recall }} \\
& \overline{\boldsymbol{\phi}}_{r}^{T} \mathbf{k} \boldsymbol{\phi}_{r}-\overline{\boldsymbol{\phi}}_{r}^{T} \mathbf{k}^{T} \boldsymbol{\phi}_{r}=\left(\lambda_{r}-\bar{\lambda}_{r}\right) \overline{\boldsymbol{\phi}}_{r}^{T} \mathbf{m} \boldsymbol{\phi}_{r}
\end{aligned}
$$

Recalling that the mass matrix \mathbf{m} is a real, symmetric, and positive definite matrix, it is straight forward to demonstrate that $\overline{\boldsymbol{\phi}}_{r}^{T} \mathbf{m} \boldsymbol{\phi}_{r}$ is real and positive. Indeed,

$$
\left(\overline{\overline{\boldsymbol{\phi}}_{r}^{T} \mathbf{m} \boldsymbol{\phi}_{r}}\right)=\boldsymbol{\phi}_{r}^{T} \mathbf{m} \overline{\boldsymbol{\phi}}_{r}=\boldsymbol{\phi}_{r}^{T} \mathbf{m}^{T} \overline{\boldsymbol{\phi}}_{r}=\left(\mathbf{m} \boldsymbol{\phi}_{r}\right)^{T} \overline{\boldsymbol{\phi}}_{r}=\left(\left(\mathbf{m} \boldsymbol{\phi}_{r}\right)^{T} \overline{\boldsymbol{\phi}}_{r}\right)^{T}=\overline{\boldsymbol{\phi}}_{r}^{T} \mathbf{m}^{T} \boldsymbol{\phi}_{r}=\overline{\boldsymbol{\phi}}_{r}^{T} \mathbf{m} \boldsymbol{\phi}_{r}
$$

Therefore, $\overline{\boldsymbol{\phi}}_{r}^{T} \mathbf{m} \boldsymbol{\phi}_{r}$ is real and positive.
It follows that

$$
\left(\lambda_{r}-\bar{\lambda}_{r}\right)=0
$$

Which can be satisfied if and only if λ_{r} is real.

```
Lecture Notes: STRUCTURAL DYNAMICS / FALL 2011 / Page: 14
Lecturer: Prof. APOSTOLOS S. PAPAGEORGIOU
SEOUL NATIONAL UNIVERSITY
PART (11): MDOF SYSTEMS - FREE VIBRATION RESPONSE - EIGENVALUE PROBLEM
```

The eigenvectors also can be taken to be real, by rejecting permissible complex multiplicative factors.

Then we proceed to prove that modal shapes $\boldsymbol{\phi}_{r} \& \boldsymbol{\phi}_{s}$, corresponding to distinct eigenvalues, λ_{r} and λ_{s}, are mutually orthogonal relative to \mathbf{m} and \mathbf{k}.

Theorem

If $\phi_{r} \& \phi_{s}$ are eigenvectors, corresponding to two distinct eigenvalues λ_{r} and λ_{s}, respectively, of the eigenvalue problem $(\mathbf{k}-\lambda \mathbf{m}) \boldsymbol{\phi}=0$, where $\mathbf{k} \& \mathbf{m}$ are real and symmetric matrices, and \mathbf{m} is positive definite, there follows:

$$
\boldsymbol{\phi}_{r}^{T} \mathbf{m} \boldsymbol{\phi}_{s}=\mathbf{0} \quad, \quad \boldsymbol{\phi}_{r}^{T} \mathbf{k} \boldsymbol{\phi}_{s}=\mathbf{0}, \quad \lambda_{r} \neq \lambda_{s}
$$

We say that eigenvectors $\phi_{r} \& \phi_{s}$ are orthogonal (to each other) relative to $\mathbf{k} \& \mathbf{m}$.

Proof

If $\lambda_{r} \& \lambda_{s}$ are distinct eigenvalues corresponding, respectively, to the eigenvectors $\boldsymbol{\phi}_{r} \& \boldsymbol{\phi}_{s}$, there follows:

$$
\mathbf{k} \boldsymbol{\phi}_{r}=\lambda_{r} \mathbf{m} \boldsymbol{\phi}_{r} \quad, \quad \mathbf{k} \boldsymbol{\phi}_{s}=\lambda_{s} \mathbf{m} \boldsymbol{\phi}_{s}
$$

and hence, also:

$$
\left(\mathbf{k} \boldsymbol{\phi}_{r}\right)^{T} \boldsymbol{\phi}_{s}=\lambda_{r}\left(\mathbf{m} \boldsymbol{\phi}_{r}\right)^{T} \boldsymbol{\phi}_{s} \quad, \quad \boldsymbol{\phi}_{r}^{T} \mathbf{k} \boldsymbol{\phi}_{s}=\lambda_{s} \boldsymbol{\phi}_{r}^{T} \mathbf{m} \boldsymbol{\phi}_{s}
$$

or, making use of the symmetry in $\mathbf{k} \& \mathbf{m}$,

$$
\begin{aligned}
\boldsymbol{\phi}_{r}^{T} \mathbf{k} \boldsymbol{\phi}_{s} & =\lambda_{r} \boldsymbol{\phi}_{r}^{T} \mathbf{m} \boldsymbol{\phi}_{s} \\
\boldsymbol{\phi}_{r}^{T} \mathbf{k} \boldsymbol{\phi}_{s} & =\lambda_{s} \boldsymbol{\phi}_{r}^{T} \mathbf{m} \boldsymbol{\phi}_{s} \\
(2)-(1) \quad & \Rightarrow\left(\lambda_{s}-\lambda_{r}\right) \boldsymbol{\phi}_{r}^{T} \mathbf{m} \boldsymbol{\phi}_{s}=0
\end{aligned}
$$

Thus, since $\lambda_{s} \neq \lambda_{r}$ by assumption, we conclude that:

$$
\left.\begin{array}{c}
\boldsymbol{\phi}_{r}^{T} \mathbf{m} \boldsymbol{\phi}_{s}=0 \\
\left(\frac{1}{\lambda_{s}}\right) \boldsymbol{\phi}_{r}^{T} \mathbf{k} \boldsymbol{\phi}_{s}=\boldsymbol{\phi}_{r}^{T} \mathbf{m} \boldsymbol{\phi}_{s}
\end{array}\right\} \Rightarrow \boldsymbol{\phi}_{r}^{T} \mathbf{k} \boldsymbol{\phi}_{s}=0
$$

Finally, we demonstrate that the modal shapes $\boldsymbol{\phi}_{r}$ are linearly independent, a fact that forms the basis of the modal superposition method.

Lecture Notes: STRUCTURAL DYNAMICS / FALL 2011 / Page: 15
 Lecturer: Prof. APOSTOLOS S. PAPAGEORGIOU
 SEOUL NATIONAL UNIVERSITY
 PART (11): MDOF SYSTEMS - FREE VIBRATION RESPONSE - EIGENVALUE PROBLEM

Theorem

For mass matrix m real, symmetric, and positive definite, any set of non-zero real vectors which are mutually orthogonal relative to \mathbf{m} is a set of linearly independent vectors.

Proof

The above Theorem may easily be demonstrated by contradiction. Indeed, let us assume that $\mathbf{x}_{i},(i=$ $1,2, \cdots, \ell, \cdots, S)$ are S vectors that are mutually orthogonal relative to \mathbf{m} and let us assume they are linearly dependent, i.e., $\alpha_{1} \mathbf{x}_{1}+\alpha_{2} \mathbf{x}_{2}+\cdots+\alpha_{\ell} \mathbf{x}_{\ell}+\cdots+\alpha_{S} \mathbf{x}_{S}=\mathbf{0} \Rightarrow \mathbf{x}_{\ell}=-\sum_{i \neq \ell}\left(\alpha_{i} / \alpha_{\ell}\right) \mathbf{x}_{i}$. We premultiply by $\mathbf{x}_{\ell}^{T} \mathbf{m}$ and we exploit the orthogonality property: $\mathbf{x}_{\ell}^{T} \mathbf{m} \mathbf{x}_{\ell}=-\sum_{i \neq \ell}\left(\alpha_{i} / \alpha_{\ell}\right) \mathbf{x}_{\ell}^{T} \mathbf{m} \mathbf{x}_{i}=-\sum_{i \neq \ell} 0=$ 0 . But this is a contradiction given that \mathbf{m} is positive definite and, consequently, $\mathbf{x}_{\ell}^{T} \mathbf{m} \mathbf{x}_{\ell}>0$. Thus, by contradiction, the mutually orthogonal, relative to \mathbf{m}, vectors $\mathbf{x}_{i},(i=1,2, \cdots, \ell, \cdots, S)$ are linearly independent.

Now let us consider strategy \#2:
A quick way to transform the generalixed eigenvalue problem $\mathbf{k u}=\lambda \mathbf{m u}$ to the standard eigenvalue problem of the form $\mathbf{A v}=\lambda \mathbf{v}$, is the following: $\mathbf{k u}=\lambda \mathbf{m u} \Leftrightarrow\left(\mathbf{m}^{-1} \mathbf{k}\right) \mathbf{u}=\lambda \mathbf{u}$. However, the matrix $\left(\mathbf{m}^{-1} \mathbf{k}\right)$ is $\underline{\text { not }}$ symmetric, and this obscures the problem. For this reason, we adopt a different approach.

We start with the following theorem:

Theorem

If matrix \mathbf{B} is real, symmetric and positive definite, then there exists a non-singular real matrix \mathbf{W} such that $\mathbf{B}=\mathbf{W}^{T} \mathbf{W}$

Proof

The matrix \mathbf{B} can be written as:

$$
\mathbf{B}=\mathbf{R D R}^{T}
$$

where:

- the columns of matrix \mathbf{R} consist of the orthonormal eigenvectors of \mathbf{B}, and
- $\mathbf{D}=\operatorname{diag}\left(\mu_{1}, \mu_{2}, \cdots, \mu_{N}\right)$, where the numbers $\mu_{i}>0(i=1,2, \cdots, N)$, are the corresponding eigenvalues of \mathbf{B}.
Indeed, let \mathbf{e}_{r} be the orthonormal eigenvectors of \mathbf{B}, i.e., $\mathbf{B} \mathbf{e}_{r}=\mu_{r} \mathbf{e}_{r}$. Then,

$$
\mathbf{R}=\left(\begin{array}{cccc}
\downarrow & \downarrow & \cdots & \downarrow \\
\mathbf{e}_{1} & \mathbf{e}_{2} & \cdots & \mathbf{e}_{N} \\
\downarrow & \downarrow & \cdots & \downarrow
\end{array}\right)
$$

Evidently

$$
\mathbf{R}^{T} \mathbf{R}=\left(\begin{array}{ccc}
\rightarrow & \mathbf{e}_{1}^{T} & \rightarrow \\
\vec{\rightarrow} & \mathbf{e}_{2}^{T} & \rightarrow \\
\vdots & \vdots & \vdots \\
\rightarrow & \mathbf{e}_{N}^{T} & \rightarrow
\end{array}\right)\left(\begin{array}{cccc}
\downarrow & \downarrow & \cdots & \downarrow \\
\mathbf{e}_{1} & \mathbf{e}_{2} & \cdots & \mathbf{e}_{N} \\
\downarrow & \downarrow & \cdots & \downarrow
\end{array}\right)=\mathbf{I}
$$

Therefore, $\mathbf{R}^{T} \mathbf{R}=\mathbf{I} \Leftrightarrow \mathbf{R}^{T}=\mathbf{R}^{-1} \Leftrightarrow\left(\mathbf{R}^{T}\right)^{-1}=\mathbf{R}$.

We may write

$$
\mathbf{B R}=\mathbf{B}\left(\begin{array}{cccc}
\downarrow & \downarrow & \cdots & \downarrow \\
\mathbf{e}_{1} & \mathbf{e}_{2} & \cdots & \mathbf{e}_{N} \\
\downarrow & \downarrow & \cdots & \downarrow
\end{array}\right)=\left(\begin{array}{cccc}
\downarrow & \downarrow & \cdots & \downarrow \\
\mu_{1} \mathbf{e}_{1} & \mu_{2} \mathbf{e}_{2} & \cdots & \mu_{N} \mathbf{e}_{N} \\
\downarrow & \downarrow & \cdots & \downarrow
\end{array}\right)=\mathbf{R D}
$$

It follows that: $\mathbf{B R}=\mathbf{R D} \Leftrightarrow \mathbf{B R R}^{T}=\mathbf{R D R}^{T} \Leftrightarrow \mathbf{B I}=\mathbf{R D R}^{T} \Leftrightarrow \mathbf{B}=\mathbf{R D R}^{T}$

Then:

$$
\begin{gathered}
\mathbf{B}=\mathbf{R D R}^{T}=\mathbf{R} \sqrt{\mathbf{D}} \sqrt{\mathbf{D}} \mathbf{R}^{T}=\left(\sqrt{\mathbf{D}} \mathbf{R}^{T}\right)^{T}\left(\sqrt{\mathbf{D}} \mathbf{R}^{T}\right)=\mathbf{W}^{T} \mathbf{W} \\
\text { where: } \mathbf{W}=\sqrt{\mathbf{D}} \mathbf{R}^{T}
\end{gathered}
$$

Matrices, $\mathbf{R}^{T} \& \mathbf{R}$, are invertible because they are non-singular (linear independence of eigenvectors). Consequently, also \mathbf{W} is non-singular.
Notice that:

$$
\begin{gathered}
\left(\mathbf{W}^{T}\right)^{-1}=(\mathbf{R} \sqrt{\mathbf{D}})^{-1}=(\sqrt{\mathbf{D}})^{-1} \mathbf{R}^{-1} \\
\left(\mathbf{W}^{-1}\right)^{T}=\left[\left(\mathbf{R}^{T}\right)^{-1}(\sqrt{\mathbf{D}})^{-1}\right]^{T}=(\sqrt{\mathbf{D}})^{-1} \mathbf{R}^{T}=(\sqrt{\mathbf{D}})^{-1} \mathbf{R}^{-1}
\end{gathered}
$$

Therefore:

$$
\left(\mathbf{W}^{T}\right)^{-1}=\left(\mathbf{W}^{-1}\right)^{T}
$$

Using the above Theorem, the mass matrix \mathbf{m}, being a real, symmetric and positive definite matrix, may be resolved as follows:

$$
\mathbf{m}=\mathbf{Q}^{T} \mathbf{Q}
$$

where \mathbf{Q} is a real, nonsingular matrix.
Therefore:

$$
\begin{equation*}
\mathbf{k} \boldsymbol{\phi}=\lambda \mathbf{m} \boldsymbol{\phi} \quad \Rightarrow \quad \mathbf{k} \boldsymbol{\phi}=\lambda\left(\mathbf{Q}^{T} \mathbf{Q}\right) \boldsymbol{\phi} \tag{1}
\end{equation*}
$$

Next, we consider the linear transformation:

$$
\begin{equation*}
\mathbf{Q} \boldsymbol{\phi}=\mathbf{v} \tag{2}
\end{equation*}
$$

from which we obtain the inverse transformation:

$$
\begin{equation*}
\phi=\mathbf{Q}^{-\mathbf{1}} \mathbf{v} \tag{3}
\end{equation*}
$$

The inverse $\mathbf{Q}^{\mathbf{- 1}}$ is guaranteed to exist because \mathbf{Q} is non-singular.
Introducing (2) \& (3) into (1) and pre-multiplying on the left by $\left(\mathbf{Q}^{\boldsymbol{T}}\right)^{\mathbf{- 1}}$, we obtain the eigenvalue problem:

$$
\mathbf{A v}=\lambda \mathbf{v}
$$

where, considering the relation $\left(\mathbf{Q}^{\boldsymbol{T}}\right)^{\mathbf{- 1}}=\left(\mathbf{Q}^{\mathbf{- 1}}\right)^{\boldsymbol{T}}$, we conclude that:

$$
\mathbf{A}=\left(\mathbf{Q}^{T}\right)^{-1} \mathbf{k} \mathbf{Q}^{-1}=\left(\mathbf{Q}^{-1}\right)^{T} \mathbf{k} \mathbf{Q}^{-1}=\mathbf{A}^{T}
$$

i.e., matrix $\mathbf{A}=\left(\mathbf{Q}^{\boldsymbol{T}}\right)^{-\mathbf{1}} \mathbf{k} \mathbf{Q}^{-\mathbf{1}}=\left(\mathbf{Q}^{\mathbf{- 1}}\right)^{\boldsymbol{T}} \mathbf{k} \mathbf{Q}^{-\mathbf{1}}$ is a real, symmetric matrix.

It is evident that the original $\mathbf{k} \boldsymbol{\phi}=\lambda \mathbf{m} \boldsymbol{\phi}$ has the same eigenvalues as the problem $\mathbf{A v}=\lambda \mathbf{v}$ (with $\mathbf{A}=$ $\left.\left(\mathbf{Q}^{\boldsymbol{T}}\right)^{\mathbf{- 1}} \mathbf{k} \mathbf{Q}^{-\mathbf{1}}=\left(\mathbf{Q}^{-\mathbf{1}}\right)^{\boldsymbol{T}} \mathbf{k} \mathbf{Q}^{-\mathbf{1}}\right)$ and the eigenvectors are related as follows: $\mathbf{Q} \boldsymbol{\phi}=\mathbf{v} \Leftrightarrow \boldsymbol{\phi}=\mathbf{Q}^{\mathbf{- 1}} \mathbf{v}$.

```
    Lecture Notes: STRUCTURAL DYNAMICS / FALL 2011 / Page: 17
    Lecturer: Prof. APOSTOLOS S. PAPAGEORGIOU
    SEOUL NATIONAL UNIVERSITY
PART (11): MDOF SYSTEMS - FREE VIBRATION RESPONSE - EIGENVALUE PROBLEM
```

Furthermore, the orthogonality properties of the eigenvectors of one problem imply the orthogonality properties of the eigenvectors of the other problem. Specifically,

$$
\begin{aligned}
& \text { 'm-orthogonality' } \boldsymbol{\phi}_{i}^{T} \mathbf{m} \boldsymbol{\phi}_{j}=\boldsymbol{\phi}_{i}^{T} \mathbf{Q}^{T} \mathbf{Q} \boldsymbol{\phi}_{j}=\mathbf{v}_{i}^{T} \mathbf{v}_{j}=0 \quad(i \neq j) \text {, which leads to: } \\
& { }^{\prime} \mathbf{k} \text {-orthogonality' } \boldsymbol{\phi}_{i}^{T} \mathbf{k} \boldsymbol{\phi}_{j}=\lambda_{j} \boldsymbol{\phi}_{i}^{T} \mathbf{m} \boldsymbol{\phi}_{j}=0 \quad(i \neq j)
\end{aligned}
$$

The real eigenvalues $\lambda_{r},(r=1,2, \cdots, N)$ of the problem $\mathbf{k} \boldsymbol{\phi}=\lambda \mathbf{m} \boldsymbol{\phi}$ are all positive because $\boldsymbol{\phi}_{r}^{T} \mathbf{m} \boldsymbol{\phi}_{r}>0$ and $\boldsymbol{\phi}_{r}^{T} \mathbf{k} \boldsymbol{\phi}_{r}>0$. Specifically,

$$
\mathbf{k} \boldsymbol{\phi}_{r}=\lambda_{r} \mathbf{m} \boldsymbol{\phi}_{r} \Leftrightarrow \boldsymbol{\phi}_{r}^{T} \mathbf{k} \boldsymbol{\phi}_{r}=\lambda_{r} \boldsymbol{\phi}_{r}^{T} \mathbf{m} \boldsymbol{\phi}_{r} \Leftrightarrow \lambda_{r}=\left(\boldsymbol{\phi}_{r}^{T} \mathbf{k} \boldsymbol{\phi}_{r}\right) /\left(\boldsymbol{\phi}_{r}^{T} \mathbf{m} \boldsymbol{\phi}_{r}\right)>0
$$

For completeness we remind the reader that the eigenvalues λ_{r} are also the eigenvalues of the problem $\mathbf{A v}=$ $\lambda \mathbf{v}$ [with $\mathbf{A}=\left(\mathbf{Q}^{-\mathbf{1}}\right)^{\boldsymbol{T}} \mathbf{k} \mathbf{Q}^{-\mathbf{1}}$], which implies that matrix \mathbf{A}, besides being real and symmetric, is also positive definite.

NOTE: The relationship $\left(\mathbf{Q}^{\boldsymbol{T}}\right)^{\mathbf{- 1}}=\left(\mathbf{Q}^{\mathbf{- 1}}\right)^{\boldsymbol{T}}$ is obtained as follows:

$$
\mathbf{I}=(\mathbf{I})^{T} \Leftrightarrow \mathrm{I}=\left(\mathbf{Q}^{-1} \mathbf{Q}\right)^{T} \Leftrightarrow \mathrm{I}=\mathbf{Q}^{T}\left(\mathbf{Q}^{-1}\right)^{T} \Leftrightarrow \quad \Leftrightarrow \quad\left(\mathbf{Q}^{T}\right)^{-1}=\left(\mathbf{Q}^{-1}\right)^{T}
$$

NOTE

The orthogonality property of eigenvectors, demonstrated above, was based on the assumption that the corresponding eigenvalues are distinct.

The question arises as to what happens when there are repeated eigenvalues, i.e., when two or more eigenvalues have the same value, and we note that when an eigenvalue λ_{i} is repeated m_{i} times, where m_{i} is integer, λ_{i} is said to have multiplicity m_{i}.

The answer to the above question lies in the following Theorem:

Theorem

If an eigenvalue λ_{i} of a real-symmetric matrix \mathbf{A} has multiplicity m_{i}, then $\mathbf{A} \underline{\text { has exactly }} m_{i} \underline{\text { linearly }}$ independent eigenvectors corresponding to λ_{i}.
[For a proof see section 1.18 of HILDEBRAND, F.B. (1965), Methods of Applied Mathematics, $2^{\text {nd }}$ Edition.]
These eigenvectors are not unique, as any linear combination of the eigenvectors belonging to a repeated eigenvalue is also an eigenvector.

The linearly independent eigenvectors corresponding to λ_{i} are not necessarily orthogonal. Any set of linearly independent eigenvectors, though, can be rendered orthogonal by a procedure known as the Gram-Schmidt orthogonalization process.

Of course, the eigenvectors belonging to the repeated eigenvalue are orthogonal to the eigenvectors belonging to the remaining eigenvalues. Hence, all the eigenvectors of a real symmetric matrix \mathbf{A} are orthogonal regardless of whether there are repeated eigenvalues or not.

