
Lecture Notes: STRUCTURAL	DYNAMICS   /     FALL 2011   /   Page: 1 
Lecturer: Prof.  APOSTOLOS	S.	PAPAGEORGIOU	

SEOUL	NATIONAL	UNIVERSITY	
PART	(07):	FOURIER	TRANSFORM	(FOURIER	INTEGRAL) 

 

FOURIER TRANSFORM (FOURIER INTEGRAL) 

𝑭𝒐𝒖𝒓𝒊𝒆𝒓 𝑻𝒓𝒂𝒏𝒔𝒇𝒐𝒓𝒎
𝑭𝒐𝒖𝒓𝒊𝒆𝒓 𝑰𝒏𝒕𝒆𝒈𝒓𝒂𝒍

𝑭 𝝎 𝒇 𝒕 𝒆 𝒊𝝎𝒕 𝒅𝒕

𝑰𝒏𝒗𝒆𝒓𝒔𝒆 𝑭𝒐𝒖𝒓𝒊𝒆𝒓 𝑻𝒓𝒂𝒏𝒔𝒇𝒐𝒓𝒎
𝑺𝒚𝒏𝒕𝒉𝒆𝒔𝒊𝒔 𝑬𝒒𝒖𝒂𝒕𝒊𝒐𝒏

𝒇 𝒕
𝟏

𝟐𝝅
𝑭 𝝎 𝒆 𝒊𝝎𝒕 𝒅𝝎

 

The Fourier Integral does not converge for all functions. 

The DIRICHLET conditions, 

 The function 𝒇 𝒕  is absolutely integrable, that is 

|𝑓 𝑡 | 𝑑𝑡 ∞  

 𝒇 𝒕  has a finite number of maxima and minima and a finite number of 
discontinuities in any finite interval, 

provide a set of sufficient conditions for the existence of the Fourier Transform 
𝑭 𝝎 . 

 

If 𝒇 𝒕  is absolutely integrable, then:  lim
→

𝐹 𝜔 lim
→

𝑓 𝑡 𝑒  𝑑𝑡 0 

Intuitively this result derives from the fact that, for large  𝝎, the exponential oscillates 
faster than any length scale present in 𝒇 𝒕  . Thus, for 𝝎 large enough, 𝒇 𝒕  is 
essentially constant over each interval 2𝑛𝜋  𝜔𝑡  2 𝑛  1 𝜋 and the integral vanishes. 

Functions that do not meet the DIRICHLET conditions may still have a Fourier 
Transform. These include periodic functions, whose transforms consist of impulses, 
and functions whose Fourier Integral only converges as a limit. 

__________ 

REFERENCES: 
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BRACEWELL, R.N. (1965). The Fourier Transform and its Applications, 
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KRANIAUSKAS, P. (1992). Transforms in Signals and Systems, Addison 
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We use the notation: 

𝑓 𝑡 ↔ 𝐹 𝜔  

to indicate that the functions 𝒇 𝒕  & 𝑭 𝒕  form a Fourier Transform pair. 

𝐹 𝜔 𝑓 𝑡 𝑒  𝑑𝑡 𝑅 𝜔 𝑖𝑋 𝜔 𝐴 𝜔 𝑒  

where:  𝑨 𝝎    = Fourier Spectrum of 𝒇 𝒕  

  𝑨𝟐 𝝎  = Energy Spectrum of 𝒇 𝒕  

  𝝓 𝝎    = phase angle 

 

Real time functions: 

If f is real, then the real and imaginary parts of 𝑭 𝝎 𝑹 𝝎 𝒊𝑿 𝝎  are given by: 

𝑅 𝜔 𝑓 𝑡 cos 𝜔𝑡  𝑑𝑡 𝑋 𝜔 𝑓 𝑡 sin 𝜔𝑡  𝑑𝑡 

From the above expressions we conclude that 𝑹 𝝎  is even and 𝑿 𝝎  is odd, i.e. 

𝑅 𝜔 𝑅 𝜔 𝑋 𝜔 𝑋 𝜔  

Therefore, 
𝐹 𝜔 𝐹∗ 𝜔 ∗ 𝒄𝒐𝒎𝒑𝒍𝒆𝒙 𝒄𝒐𝒏𝒋𝒖𝒈𝒂𝒕𝒆  

 

Conversely, if  𝑭 𝝎 𝑭∗ 𝝎   then 𝒇 𝒕  = real. 

Thus, 𝑭 𝝎 𝑭∗ 𝝎  is a necessary and sufficient condition for 𝒇 𝒕  to be real, i.e. 

𝑓 𝑡 𝑟𝑒𝑎𝑙 ⟺ 𝐹 𝜔 𝐹∗ 𝜔  
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EXAMPLE: Let 𝒇 𝒕 𝒆 𝜶𝒕𝑼 𝒕 𝜶 𝟎 , where: 𝑼 𝒕  = Heaviside (unit step) function. 

𝐹 𝜔 𝑒 𝑈 𝑡 𝑒  𝑑𝑡 𝑒 𝑒  𝑑𝑡
1

𝛼 𝑖𝜔
 

 

In the FIGURE below, we show the various ways of plotting 𝑭 𝝎 : 

𝐹 𝜔
1

𝛼 𝑖𝜔
𝛼

𝛼 𝜔
𝑖

𝜔
𝛼 𝜔

1

√𝛼 𝜔
𝑒 ⁄  
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EXAMPLE: Find the Fourier Transform of the signum function defined as: 

𝑓 𝑡 sgn 𝑡 1 𝑡 0
1 𝑡 0

 

which is not absolutely integrable and its Fourier integral does not converge. 

We form the auxiliary function:  𝑔 𝑡 𝑒 𝑡 0
𝑒 𝑡 0

 

which yields 𝑓 𝑡 sgn 𝑡  as the limit: 𝑓 𝑡 lim
→

𝑔 𝑡  

The Fourier transform of 𝑔 𝑡  is:  ℱ 𝑔 𝑡 𝑒 𝑒  𝑑𝑡 𝑒 𝑒  𝑑𝑡

𝑒  𝑑𝑡 𝑒  𝑑𝑡  

and the transform of 𝑓 𝑡  is obtained as the limit: 

𝐹 𝜔 ℱ sgn 𝑡 lim
→

ℱ 𝑔 𝑡
2

𝑖𝜔
𝑖

2
𝜔

 

This yields the Fourier transform pair: sgn 𝑡 ↔ 𝑖  

which is real odd in time, hence imaginary odd in frequency. 

 

NOTE: Some authors denote the Fourier transform of 𝑓 𝑡  by 𝐹 𝑖𝜔  [instead of 𝐹 𝜔 ]. This 
is consistent with the fact that the Fourier Transform is a special case of Laplace 
Transform. 
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SIMPLE THEOREMS: 

The following is a list of simple theorems that can be easily derived from 
the Fourier integral and its inverse; it is assumed that all functions under 
consideration have Fourier integrals. 

Most of these theorems are valid, in slightly modified forms, for the 
Laplace Transform, the discreet classes of the Fourier 
Transform and the z-transform [the z-transform is to discrete-
time signals what the Laplace Transform is to their continuous-time 
counterparts]. 
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LINEARITY: 

Let:   𝒇𝟏 𝒕 ↔ 𝑭𝟏 𝝎 , 𝒇𝟐 𝒕 ↔ 𝑭𝟐 𝝎 , ⋯ , 𝒇𝒏 𝒕 ↔ 𝑭𝒏 𝝎  

Then:  𝒂𝟏𝒇𝟏 𝒕 𝒂𝟐𝒇𝟐 𝒕 ⋯ 𝒂𝒏𝒇𝒏 𝒕 ↔ 𝒂𝟏𝑭𝟏 𝝎 𝒂𝟐𝑭𝟐 𝝎 ⋯ 𝒂𝒏𝑭𝒏 𝝎  
where:  𝒂𝟏, 𝒂𝟐, ⋯ , 𝒂𝒏 are arbitrary constants. 

Proof: The theorem is self-evident and is based on the linearity of the Fourier Integral. 

EXAMPLE: Find the transform of the unit step 𝑈 𝑡  from the transforms of its even and odd 
components. 

NOTE: In general, any real function 𝒇 𝒕  may be expressed as: 

𝑓 𝑡 𝑓 𝑡
𝒆𝒗𝒆𝒏

𝑓 𝑡
𝒐𝒅𝒅

𝑤ℎ𝑒𝑟𝑒
𝑓 𝑡 𝑓 𝑡 𝑓 𝑡

𝑓 𝑡 𝑓 𝑡 𝑓 𝑡
 

Therefore, in our example: 

𝑢 𝑡
1
2

1
2

sgn 𝑡 ↔ 𝑈 𝜔
1

𝑖𝜔
𝜋𝛿 𝜔  
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TIME SCALING: 

Let:  𝒇 𝒕 ↔ 𝑭 𝝎   then  𝒇 𝒂𝒕 ↔
𝟏

|𝒂|
𝑭

𝝎

𝒂
 

Thus, expansion of the time scale (or time duration) leads to compression of the 
frequency scale (or bandwidth) and vice versa. This is accompanied by an 
inverse scaling of the amplitude. 

Proof:    ℱ 𝑓 𝑎𝑡 𝑓 𝑎𝑡 𝑒  𝑑𝑡 

The change of variable 𝑥 𝑎𝑡, which implies 𝑡 𝑥 𝑎⁄  & 𝑑𝑡 𝑑𝑥 𝑎⁄ , yields: 

ℱ 𝑓 𝑎𝑡 𝑓 𝑥 𝑒  𝑑𝑥 . This is valid when 𝑎 0. For 𝑎 0 the integration limits 

are inverted: ℱ 𝑓 𝑎𝑡 𝑓 𝑥 𝑒  𝑑𝑥 𝑓 𝑥 𝑒  𝑑𝑥. These are combined 

into the single pair: 𝑓 𝑎𝑡 ↔
| |

𝐹 . 

EXAMPLE: 

𝑓 𝑡 𝑝 𝑡
1 |𝑡|

1
2

𝜏

0 |𝑡|
1
2

𝜏
↔ 𝐹 𝜔 𝜏

sin
𝜔𝜏
2

𝜔𝜏
2
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FREQUENCY SCALING: 

Scaling the frequency variable by a factor 𝑏 has a similar effect to the scaling. Making the 

substitution 𝑏 1 𝑎⁄  in expression 𝑓 𝑎𝑡 ↔
| |

𝐹  yields the expression: 

𝟏
|𝒃|

𝒇
𝒕
𝒃

↔ 𝑭 𝒃𝝎  

which is completely symmetrical to the expression for ‘time scaling’ and, therefore, is an 
expression of the duality of the Fourier Transform. 

EXAMPLE: 

𝑓 𝑡
𝜈
𝜋

sin 𝜈𝑡
𝜈𝑡

↔ 𝐹 𝜔 𝑝 𝜔  
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SYMMETRY (DUALITY) OF TRANSFORM: 

If 𝐹 𝜔  is the Fourier Integral of 𝑓 𝑡 , then: 

𝑭 𝒕 ↔ 𝟐𝝅𝒇 𝝎  

Proof:  

The above follows from: 

𝑓 𝑡
1

2𝜋
𝐹 𝜔 𝑒  𝑑𝜔 

if we write it as follows: 

2𝜋𝑓 𝑡 𝐹 𝜔 𝑒  𝑑𝜔 

and interchange 𝑡 and 𝜔. 

EXAMPLE: From 𝛿 𝑡 ↔ 1 and the symmetry 𝛿 𝜔 𝛿 𝜔  deduce that 1 ↔ 2𝜋𝛿 𝜔 . 
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SYMMETRY (DUALITY) OF TRANSFORM: (continued) 

EXAMPLE: From knowledge of 𝑝 𝑡 𝜏 sin  find the inverse transform of a 

rectangular frequency domain pulse: 

𝐹 𝜔 𝑝 𝜔 1 |𝜔|
1
2

𝜈

0 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒
 

 

 

EXAMPLE: Gaussian Function (represents the ultimate in symmetry and duality): 

𝑒 ↔
𝜋
𝑎

𝑒 ⁄  

For  𝑎  : 

𝑒 ↔ √2𝜋 𝑒 ⁄   
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TIME SHIFTING: 

Let 𝒇 𝒕 ↔ 𝑭 𝝎 𝑨 𝝎 𝒆𝒊𝝓 𝝎  then: 

𝒇 𝒕 𝒕𝟎 ↔ 𝑭 𝝎 𝒆 𝒊𝒕𝟎𝝎 𝑨 𝝎 𝒆𝒊 𝝓 𝝎 𝒕𝟎𝝎  

i.e., if the function 𝒇 𝒕  is shifted by a constant, 𝒕𝟎, then its Fourier spectrum remains the 
same, but a linear term 𝒕𝟎𝝎 is added to its phase angle. 

Proof: 

𝑓 𝑡 𝑡 𝑒  𝑑𝑡 𝑓 𝑥 𝑒  𝑑𝑥 𝐹 𝜔 𝑒  

EXAMPLE: 
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FREQUENCY SHIFTING: 

𝒆𝒊𝝎𝟎𝒕𝒇 𝒕 ↔ 𝑭 𝝎 𝝎𝟎  

Proof: 

𝑓 𝑡 𝑒 𝑒  𝑑𝑡 𝑓 𝑡 𝑒  𝑑𝑡 𝐹 𝜔 𝜔  

EXAMPLE: 

1
2𝜋

↔ 𝛿 𝜔 ⟹
1

2𝜋
𝑒 ↔ 𝛿 𝜔 𝜔  
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TIME CONVOLUTION: 

The Fourier Transform 𝑭 𝝎  of the convolution 𝒇 𝒕  of two functions 𝒇𝟏 𝒕  & 𝒇𝟐 𝒕  equals 
the product of the Fourier Transform 𝑭𝟏 𝝎  & 𝑭𝟐 𝝎  of these two functions. Thus: 

If   𝒇𝟏 𝒕 ↔ 𝑭𝟏 𝝎 & 𝒇𝟐 𝒕 ↔ 𝑭𝟐 𝝎  

Then   𝒇𝟏 𝒕 ∗ 𝒇𝟐 𝒕 ≝ 𝒇𝟏 𝝉 𝒇𝟐 𝒕 𝝉  𝒅𝝉 ↔ 𝑭𝟏 𝝎 𝑭𝟐 𝝎  

Proof: 

Clearly, 𝐹 𝜔 𝑒 𝑓 𝜏 𝑓 𝑡 𝜏  𝑑𝜏  𝑑𝑡 

Changing the order of integration, we obtain: 

𝐹 𝜔 𝑓 𝜏 𝑒 𝑓 𝑡 𝜏  𝑑𝑡

𝑭𝟐 𝝎 𝒆 𝒊𝝎𝝉

𝑻𝒊𝒎𝒆 𝒔𝒉𝒊𝒇𝒕𝒊𝒏𝒈 𝑻𝒉𝒆𝒐𝒓𝒆𝒎

 𝑑𝜏 

Therefore:   𝐹 𝜔 𝑓 𝜏 𝑒 𝐹 𝜔  𝑑𝜏 𝐹 𝜔 𝐹 𝜔  

EXAMPLE: 

 

COMMENT: In the above proof it was assumed that the order of integration can be 
changed. This is true if the functions 𝒇𝟏 𝒕  & 𝒇𝟐 𝒕  are square-integrable in the sense 

|𝒇𝒊 𝒕 |𝟐 𝒅𝒕 ∞  𝒊 𝟏, 𝟐 , i.e., 𝒇𝟏 𝒕  & 𝒇𝟐 𝒕  have finite energy.   
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FREQUENCY CONVOLUTION: 

From the time convolution theorem and the symmetry (duality) theorem it follows 
that the Fourier Transform 𝑭 𝝎  of the product 𝒇𝟏 𝒕 𝒇𝟐 𝒕  of two functions equals the 
convolution 𝑭𝟏 𝝎 ∗ 𝑭𝟐 𝝎  of their respective derivatives divided by 2𝜋  : 

𝒇𝟏 𝒕 𝒇𝟐 𝒕 ↔
𝟏

𝟐𝝅
𝑭𝟏 𝝃 𝑭𝟐 𝝎 𝝃  𝒅𝝃 

One could also give a direct proof as in the time-convolution theorem. 
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TIME DIFFERENTIATION: 

Let 𝒇 𝒕 ↔ 𝑭 𝝎 then
𝒅𝒏𝒇 𝒕

𝒅𝒕𝒏 ↔ 𝒊𝝎 𝒏𝑭 𝝎  

For  𝑛 1 ⟹ ⟷ 𝑖𝜔 𝐹 𝜔   i.e., a time differentiation therefore causes a 

frequency domain rotation 
𝝅

𝟐
 of  𝑭 𝝎 , and a linear scaling by 𝝎. 

Proof: 

Taking the 𝑛  derivative of both sides of 𝑓 𝑡 𝐹 𝜔 𝑒  𝑑𝜔 leads to: 

𝑑 𝑓 𝑡
𝑑𝑡

1
2𝜋

𝑖𝜔 𝐹 𝜔 𝑒  𝑑𝜔 ⟹
𝑑 𝑓 𝑡

𝑑𝑡
⟷ 𝑖𝜔 𝐹 𝜔  

FREQUENCY DIFFERENTIATION: 

Let 𝒇 𝒕 ↔ 𝑭 𝝎 then 𝒊𝒕 𝒏𝒇 𝒕 ⟷
𝒅𝒏𝑭 𝝎

𝒅𝝎𝒏
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INTEGRATION: 

Let 𝒇 𝒕 ↔ 𝑭 𝝎 then 𝒇 𝝉  𝒅𝝉

𝒕

⟷
𝟏

𝒊𝝎
𝑭 𝝎 𝝅𝜹 𝝎 𝑭 𝟎  

Proof: 

We interpret the integral of 𝒇 𝒕  as a convolution with the unit step function 
𝑼 𝒕 , i.e. 

𝑔 𝑡 𝑓 𝜏  𝑑𝜏 𝑈 𝑡 ∗ 𝑓 𝑡  

Recall that: 

𝑈 𝑡
1

𝑖𝜔
𝜋𝛿 𝜔  

Let:       
𝑔 𝑡 ↔ 𝐺 𝜔  

Then, invoking the convolution in time theorem, we get: 

𝐺 𝜔 𝑈 𝜔 𝐹 𝜔
1

𝑖𝜔
𝐹 𝜔 𝜋𝛿 𝜔 𝐹 0  

The term 𝑭 𝝎 𝒊𝝎⁄  represents the inverse of the differentiation property. If  𝑭 𝟎 𝟎, 
then the properties (of differentiation and integration) are fully recoverable, in 
the sense that the function 𝑮 𝝎  can be recovered from 𝑭 𝝎  through division by 
𝒊𝝎 . 

In contrast, if the function 𝒇 𝒕  contains a non-zero 𝒅. 𝒄. component, represented 
by a non-zero value of  𝑭 𝟎 , the transform of its integral contains an additional 
impulse of strength 𝝅𝑭 𝟎  at the origin. 
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EXAMPLE: 

𝑓 𝑡
𝜈
𝜋

sin 𝜈𝑡
𝜈𝑡

↔ 𝐹 𝜔 𝑝 𝜔  

The 𝒅. 𝒄. value of the function is 𝑭 𝟎 𝟏. Thus,: 

𝑔 𝑡 𝑓 𝜏  𝑑𝜏
𝜈
𝜋

sin 𝜈𝑡
𝜈𝑡

 𝑑𝜏 ↔ 𝐺 𝜔
𝑖
𝜔

𝑝 𝜔 𝜋𝛿 𝜔  

 

The frequency representation consists of a hyperbola in the imaginary plane, truncated by 
the pulse 𝒑𝟐𝝂 𝝎 , and a real impulse at the origin of magnitude 𝝅. This impulse 
transforms back to the time domain as the constant 𝟏 𝟐⁄ , which represents the 
𝒅. 𝒄. value of 𝒈 𝒕 . Even symmetry of 𝒇 𝒕  makes this value coincide with the value at the 
origin, 𝒈 𝟎 𝟏 𝟐⁄ , and leads to the asymptotic value 𝒈 ∞ 𝟏. 
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EXAMPLE: 

Let: 

𝑓 𝑡 𝑝 𝑡 ↔ 𝐹 𝜔 𝜏
sin

𝜔𝜏
2

𝜔𝜏
2

 

The 𝒅. 𝒄. value of this function is 𝑭 𝟎 𝝉. Thus: 

𝑔 𝑡 𝑓 𝜏  𝑑𝜏 𝑝 𝜏  𝑑𝜏 ↔ 𝐺 𝜔 2𝑖
sin

𝜔𝜏
2

𝜔
𝜋𝜏𝛿 𝜔  

The integral of 𝒇 𝒕  is a truncated ramp, whose value at the origin 𝑔 0 𝜏 corresponds to 

the function’s 𝒅. 𝒄. value and related to the frequency domain impulse of 
strength  𝝅𝝉. 
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CONJUGATE FUNCTIONS: 

Let 𝒇 𝒕 ↔ 𝑭 𝝎 then 𝒇∗ 𝒕 ↔ 𝑭∗ 𝝎  

i.e., the Fourier Transform of the conjugate 𝒇∗ 𝒕 𝒇𝟏 𝒕 𝒊𝒇𝟐 𝒕  of a complex function 
𝒇 𝒕 𝒇𝟏 𝒕 𝒊𝒇𝟐 𝒕  is given by 𝑭∗ 𝝎 . 

 

Proof: 

From 

𝐹 𝜔 𝑓 𝑖𝑓 𝑒  𝑑𝑡

⟹ 𝐹∗ 𝜔 𝑓 𝑖𝑓 𝑒  𝑑𝑡

⟹ 𝐹∗ 𝜔 𝑓 𝑖𝑓 𝑒  𝑑𝑡

⟹ 𝑓∗ 𝑡 ↔ 𝐹∗ 𝜔
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PARSEVAL’s FORMULA: 

If 𝒇 𝒕 ↔ 𝑭 𝝎 𝑨 𝝎 𝒆𝒊𝝓 𝝎  then: 

|𝒇 𝒕 |𝟐 𝒅𝒕
𝟏

𝟐𝝅
𝑨𝟐 𝝎  𝒅𝝎 

Proof: 

𝑓 𝑡 ↔ 𝐹 𝜔 ⟹ 𝑓∗ 𝑡 ↔ 𝐹∗ 𝜔 𝒄𝒐𝒏𝒋𝒖𝒈𝒂𝒕𝒆 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏𝒔  

Therefore: 

|𝑓 𝑡 | 𝑓 𝑡 𝑓∗ 𝑡 ↔
1

2𝜋
𝐹 𝜔 ∗ 𝐹∗ 𝜔 𝒇𝒓𝒆𝒒𝒖𝒆𝒏𝒄𝒚 𝒄𝒐𝒏𝒗𝒐𝒍𝒖𝒕𝒊𝒐𝒏  

i.e. 

1
2𝜋

𝐹 𝑦 𝐹∗ 𝜔 𝑦  𝑑𝑦 |𝑓 𝑡 | 𝑒  𝑑𝑡

⟹
1

2𝜋
𝐹 𝑦 𝐹∗ 𝑦  𝑑𝑦 |𝑓 𝑡 |  𝑑𝑡

 

Therefore: 

|𝑓 𝑡 |  𝑑𝑡
1

2𝜋
𝐴 𝜔  𝑑𝜔 

The following is a more general form of PARSEVAL’s formula: 

If     𝒇𝟏 𝒕 ↔ 𝑭𝟏 𝝎 & 𝒇𝟐 𝒕 ↔ 𝑭𝟐 𝝎     then: 

𝒇𝟏 𝒕 𝒇𝟐 𝒕  𝒅𝒕
𝟏

𝟐𝝅
𝑭𝟏 𝝎 𝑭𝟐 𝝎  𝒅𝝎  

If     𝒇𝟏 𝒕 & 𝒇𝟐 𝒕      are real functions then:  

𝒇𝟏 𝒕 𝒇𝟐 𝒕  𝒅𝒕
𝟏

𝟐𝝅
𝑭𝟏

∗ 𝝎 𝑭𝟐 𝝎  𝒅𝝎  

NOTE:  𝑨𝟐 𝝎      = energy spectrum of 𝒇 𝒕   

  𝑬𝟏𝟐 𝝎 𝑭𝟏
∗ 𝝎 𝑭𝟐 𝝎   = cross-energy spectrum of  𝒇𝟏 𝒕  & 𝒇𝟐 𝒕  
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FOURIER TRANSFORMS INVOLVING IMPULSES: 

We derive the Fourier Transforms of the time domain functions: 

𝑓 𝑡 cos 𝜔 𝑡 & 𝑔 𝑡 sin 𝜔 𝑡  

We can easily derive:   𝑒 ↔ 𝜋𝛿 𝜔 𝜔 & 𝑒 ↔ 𝜋𝛿 𝜔 𝜔  

Therefore: 𝑓 𝑡 cos 𝜔 𝑡 ↔ 𝜋𝛿 𝜔 𝜔 𝜋𝛿 𝜔 𝜔  

and:  𝑔 𝑡 sin 𝜔 𝑡 ↔ 𝑖𝜋𝛿 𝜔 𝜔 𝑖𝜋𝛿 𝜔 𝜔  

 

1
2

𝛿 𝑡 𝑡 ↔
1
2

𝑒 &
1
2

𝛿 𝑡 𝑡 ↔
1
2

𝑒

𝑓 𝑡
1
2

𝛿 𝑡 𝑡
1
2

𝛿 𝑡 𝑡 ↔ 𝐹 𝜔 cos 𝜔𝑡

𝑔 𝑡 𝑖
1
2

𝛿 𝑡 𝑡 𝑖
1
2

𝛿 𝑡 𝑡 ↔ 𝐺 𝜔 sin 𝜔𝑡
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APPENDIX 

FOURIER SERIES REPRESENTATION OF A PERIODIC FUNCTION 

A function 𝑔 𝑡  of time 𝑡 is said to be a periodic function of 𝑡 with a period equal to 
𝑇  if it satisfies the following relationship  

𝑔 𝑡 𝑛𝑇 𝑔 𝑡  

where 𝑛 is an integer with negative or positive values. 

The following FIGURE presents several examples of periodic functions. 
  

 
 
A periodic function with a finite number of discontinuities and a finite number of 
maxima or minima within a range of time equal to its period 𝑇  can be represented 
by an infinite trigonometric series as follows 

𝑔 𝑡 𝑎 𝑎 cos 2𝜋𝑛𝑓 𝑡 𝑏 sin 2𝜋𝑛𝑓 𝑡  

where 𝑎  and 𝑏  are constants to be determined and 𝑓 1 𝑇⁄  is the frequency in cycles 
per second. The trigonometric series of the above Equation is known as the Fourier 
series. Setting 𝜔 2𝜋𝑓 , where 𝜔  is the circular frequency in radians per second, 
the series can be expressed in the alternative form 

𝑔 𝑡 𝑎 𝑎 cos 𝑛𝜔 𝑡 𝑏 sin 𝑛𝜔 𝑡  

To obtain the coefficients 𝑎 , we multiply the left- and the right-hand sides of the above 
Equation by cos 𝑚𝜔 𝑡  and integrate over a period. Then noting that 
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cos 𝑛𝜔 𝑡 cos 𝑚𝜔 𝑡  𝑑𝑡

⁄

⁄

0 for 𝑛 𝑚
𝑇 2⁄ for 𝑛 𝑚

cos 𝑚𝜔 𝑡  𝑑𝑡

⁄

⁄

0 for 𝑚 0
𝑇 for 𝑚 0

sin 𝑛𝜔 𝑡 cos 𝑚𝜔 𝑡  𝑑𝑡

⁄

⁄

0 for all 𝑚 and 𝑛

 

we obtain the following expression for coefficients 𝑎: 

𝑎
1
𝑇

𝑔 𝑡  𝑑𝑡

⁄

⁄

𝑎
2
𝑇

𝑔 𝑡 cos 𝑛𝜔 𝑡  𝑑𝑡

⁄

⁄

 

Coefficients 𝑏  are obtained in a similar manner by multiplying the left- and the right-hand 
sides of the Fourier series expansion (i.e. the last boxed equation shown above) by sin 𝑛𝜔 𝑡  
and integrating over a period. Then, because of the relationships 

sin 𝑛𝜔 𝑡 sin 𝑚𝜔 𝑡  𝑑𝑡

⁄

⁄

0 for 𝑛 𝑚
𝑇 2⁄ for 𝑛 𝑚

sin 𝑛𝜔 𝑡 cos 𝑚𝜔 𝑡  𝑑𝑡

⁄

⁄

0 for all 𝑚 and 𝑛

 

the coefficient 𝑏  is obtained as 

𝑏
2
𝑇

𝑔 𝑡 sin 𝑛𝜔 𝑡  𝑑𝑡

⁄

⁄

 

It can be shown that at a discontinuity such as the one shown in the FIGURE (above), the 
Fourier series expansion converges to a value that is the average of the values of the 
function 𝑔 𝑡  immediately to the left and the right of the discontinuity. 
 
NOTE: The coefficients 𝑎 , 𝑎  and 𝑏  are called Fourier coefficients of 𝑔 𝑡 . 
 
 
 
COMPLEX EXPONENTIAL FORM OF THE FOURIER SERIES 
 
In developing the frequency-domain analysis procedure, it is convenient first to obtain an 
exponential form for the Fourier series (see boxed equations above). Using Euler’s 
formula, the sine and cosine functions in the Fourier series expansion can be expressed 
in terms of complex exponentials as follows 
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sin 𝑛𝜔 𝑡
𝑒 𝑒

2𝑖

cos 𝑛𝜔 𝑡
𝑒 𝑒

2

 

Substitution of the second of the above expressions in the expression for X (shown in the box 
above) yields 

𝑎
1
𝑇

𝑔 𝑡 𝑒 𝑒  𝑑𝑡

⁄

⁄

 

If we replace 𝑛 by 𝑛 in the above equation, we get 

𝑎
1
𝑇

𝑔 𝑡 𝑒 𝑒  𝑑𝑡

⁄

⁄

𝑎  

In a similar manner, 𝑏  is obtained as follows 

𝑏
1
𝑇

𝑔 𝑡
𝑒 𝑒

𝑖
 𝑑𝑡

⁄

⁄

𝑏
1
𝑇

𝑔 𝑡
𝑒 𝑒

𝑖
 𝑑𝑡

⁄

⁄

𝑏

 

Then, the Fourier series expansion can be expressed as 

𝑔 𝑡 𝑎 𝑎
𝑒 𝑒

2
𝑏

𝑒 𝑒
2𝑖

𝑎 𝑒
𝑎
2

𝑏
2𝑖

𝑒
𝑎
2

𝑏
2𝑖

𝑎 𝑒
𝑎
2

𝑏
2𝑖

𝑒
𝑎
2

𝑏
2𝑖

𝑎 𝑒
1
2

𝑎 𝑏 𝑒
1
2

𝑎 𝑏

𝑐 𝑒

 

Evidently, the coefficient 𝑐  is given by 

𝑐
1
2

𝑎 𝑏

1
2𝑇

𝑔 𝑡 𝑒 𝑒 𝑒 𝑒  𝑑𝑡

⁄

⁄

1
𝑇

𝑔 𝑡 𝑒  𝑑𝑡

⁄

⁄

 

Evidently,  
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𝑐
1
𝑇

𝑔 𝑡  𝑑𝑡

⁄

⁄

𝑎  

Summarizing, the complex exponential form of the Fourier series is 

𝑔 𝑡 𝑐 𝑒

𝑐
1
𝑇

𝑔 𝑡 𝑒  𝑑𝑡

⁄

⁄

 

 
 
 
HEURISTIC ARGUMENT TO OBTAIN THE FOURIER INTEGRAL 
REPRESENTATION OF A NON-PERIODIC FUNCTION FROM FOURIER SERIES 
 
To obtain a Fourier representation of a non-periodic function, we first construct a periodic 
version of the given function. The first step is to select a value for the period. The selected 
period should, of course, be larger than the duration of the function. Within each period, the 
periodic version has a magnitude equal to the specified function for the duration of the latter 
but is zero otherwise. A periodic version constructed as above is shown in the FIGURE 
(below). 

 
 
It is evident that the curves shown by dashed lines represent fictitious replicas of the 
function that, in fact, do not exist. If 𝑇  is now increased to a very large value, the fictitious 
replicas of the function will move to infinity and in the limit we will get a true representation 
of the given function. We apply this reasoning to derive a Fourier representation of a non-
periodic function. [NOTE: If the non-periodic function has infinite duration, we consider the 
Fourier series representation of finite duration segment of it, 𝑇 2⁄ , 𝑇 2⁄ , which in the 
limit, as 𝑇 → ∞, leads to the original function.] 
 
First since 𝑇  is very large, we set 

𝜔
2𝜋
𝑇

∆Ω 

and 
𝑛𝜔 Ω  

With this notation we get 

𝑐
1
𝑇

𝑔 𝑡 𝑒  𝑑𝑡

⁄

⁄

⇒ 𝑐 𝑇 𝑔 𝑡 𝑒  𝑑𝑡

⁄

⁄

 

Thus 
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𝑔 𝑡 𝑐 𝑒

1
𝑇

𝑐 𝑇 𝑒

1
2𝜋

𝑐 𝑇 𝑒 ∆Ω

 

In the limit as 𝑇 → ∞, Ω 𝑛 ∙ ∆Ω becomes a continuous variable, i.e. Ω → Ω, and 𝑐 𝑇 →
𝐺 Ω , i.e. 

𝑐 𝑇 → 𝐺 Ω 𝑔 𝑡 𝑒  𝑑𝑡  

while 

𝑔 𝑡
1

2𝜋
𝑐 𝑇 𝑒 ∆Ω → 𝑔 𝑡

1
2𝜋

𝐺 Ω 𝑒  𝑑Ω  

Evidently, of the above two boxed equations, the first represents the Fourier transform of 
the function 𝑔 𝑡 , and the second equation is the inverse Fourier transform. 
 
The above heuristic argument is mathematically problematic (see the discussion of section 1-
1, pages 1 & 2, in PAPOULIS 1962). 
 
 


