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FOURIER TRANSFORM (FOURIER INTEGRAL)

+ 00
Fourier Transform _ ot
(Fourier Integral) Flw) = j JOL dt
Inverse Fourier Transform

+ 00
f(t) = 1 j F(w)et®t dw
(Synthesis Equation) 21

The Fourier Integral does not converge for all functions.

The DIRICHLET conditions,

e The function f(t) is.absolutely integrable, that is

j F(D)] dt < o

e f(t) has a finite number of maxima and minima and a finite number of
discontinuities in any finite interval,

provide a set of sufficient conditions for the existence of the Fourier Transform
F(w).

If £(t) is absolutely integrable, then: lir}rq F(w) = lier f_":o f(e @tdt =0
w—>1T 00 w—>1 00

Intuitively this result derives from the fact that, for large w, the exponential oscillates
faster than any length scale present in f(t) . Thus, for w large enough, f(t) is
essentially constant over each interval 2nt < wt < 2(n + 1)m and the integral vanishes.

Functions that do not meet the DIRICHLET conditions may still have a Fourier
Transform. These include periodic functions, whose transforms consist of impulses,
and functions whose Fourier Integral only converges as a limit.
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We use the notation:

f@) o F(w)

to indicate that the functions f(t) & F(t) form a Fourier Transform pair.

+ o0

F(w) = J f(t)e ™t dt = R(w) + iX(w) = A(w)e'®@

where: Alw) = Fourier Spectrum of f(t)
A%(w) = Energy Spectrum of f(t)
P(w) = phase angle

Real time functions:

If f is real, then the real and imaginary parts of F(w) = R(w) + iX(w) are given by:

R(w) = f f(O) cos(wt) dt X(w) = — f £(6) sin(wt) dt

From the above expressions we conclude that R(w) is even and X(w) is odd, i.e.
R(—w) = R(w) X(—w) = —X(w)

Therefore,
F(—w) = F'(w) (x= complex conjugate)

Conversely, if F(—w) = F*(w) then f(t) =real.

Thus, F(—w) = F*(w) is a necessary and sufficient condition for f(t) to be real, i.e.

f(t) =real & F(-w)=F"(w)
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EXAMPLE: Let f(t) = e *U(t) a > 0,where: U(t) = Heaviside (unit step) function.

+oo t
F(w) = ] e My(t)e @t dt = fe‘“te‘i“’t dt = ,
a+iw
—00 0
@
A
1
e at
} i A
0 1
a

In the FIGURE below, we show the various ways of plotting F(w):

1 a W 1
= —1 =
a+tio a?+w? a?+w? Ja? + w?

A

—itan " Y(w/a)

F(w) =

e

A

®),

R(w)

X(w)

X(w)
F(w) —plane

(2a) T
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EXAMPLE: Find the Fourier Transform of the signum function defined as:

t<o0

fO=sem®={71 137

which is not absolutely integrable and its Fourier integral does not converge.

We form the auxiliary function: gt) = {_e_gt £<0
' +e7¥ t>0

which yields f(t) = sgn(t) as the limit: f(t) = }}E& g(t)

The Fourier transform of g(t) is: F{g(t)} = f_()oo(—e“)e‘i‘*’t dt + f0+°°(+e“)e‘i“’t dt =

_fo ele—io)t gp 4 f+°°e—(£+iw)t dt = — 1' + 1.
—o0 0 e—ilw et+iw

and the transform of f(t) is obtained as the limit:

2 2
F(w) = F{sgn(®)} = lim F{g()} = — = —i—

2
This yields the Fourier transform pair: [sgn(t) < —i =

which is real odd in time, hence imaginary odd in frequency.

g(t)
A

+1

gt
-1
£t

A

+1 .

-t

= Im[F(w)]

Fourier Transformof signum function

NOTE: Some authors denote the Fourier transform of f(t) by F(iw) [instead of F(w)]. This
is consistent with the fact that the Fourier Transform is a special case of Laplace
Transform.
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SIMPLE THEOREMS:

The following is a list of simple theorems that can be easily derived from
the Fourier integral and its inverse; it is assumed that all functions under
consideration have Fourier integrals.

Most of these theorems are valid, in slightly modified forms, for the
Laplace Transform, the discreet classes of the Fourier
Transform and the z-transform [the z-transform is to discrete-
time signals what the Laplace Transform is to their continuous-time
counterparts].
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LINEARITY:

Let: f1®) © Fi(w) , f2(8) o F2(w) , - , fa() o Fylw)

Then: a;f1(t) + ayf2(0) + -+ a,fr,(t) © a;Fi(w) +azF3(w) + -+ a,Fp(w)
where: a;,a,, -, a, are arbitrary constants.

Proof: The theorem is self-evident and is based on the linearity of the Fourier Integral.

EXAMPLE: Find the transform of the unit step U(t) from the transforms of its even and odd
components.

NOTE: In general, any real function f(t) may be expressed as:

£.(0) = J[f®) + f(-1)]
t)=£0t)+f,({t) wh 2
FOZLD oD e e = 2ipo) - fe-n)

Therefore, in our example:

1 1 1
u(t) = §+ Esgn(t) o Ulw) = Z-I_ o (w)

Fourier Transformof unit step function

Vo A Re[U(w)]
11— jm

|
/N

/N

Im w

U,(t) = 3sgn(

LF F
o

.

Im w
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TIME SCALING:

Let: f©) o Flw) then f(at) © ip(ﬁ)

la| a

Thus, expansion of the time scale (or time duration) leads to compression of the
frequency scale (or bandwidth) and vice versa. This is accompanied by an
inverse scaling of the amplitude.

Proof: Fif(a)} = [ fat)e ™t dt

The change of variable x = at, which implies t = (x/a) & dt = (dx/a), yields:

F{f(at)} = %ff;o f(x)e_i(E)x dx . This is valid when a > 0. For a < 0 the integration limits

_ w

are inverted: F{f (at)} = %L(: f(x)e‘i(a)x dx = —%ff; f(x)e_i(%)x dx. These are combined

into the single pair: f(at) < L1F (g)

lal

EXAMPLE:
1
1 Jt] < 5T sin (%)
f@) =p.(t) = 1 © Flo)=1—55"
0 Itl> T (7)
Ari =r@o A Fi(@) = 3F(0)
a, =2 F‘—-l"{ 1 > f 4%?&* w
ot ‘
AF(t) =p.(8) F(w)
1 - v
a=1 >t w
= - 1 21T
T T
Fy(w) =2F2w)
2T
A f2(®) = f(3¢)
1
a2 = % [ >~ :
2T




Lecture Notes: STRUCTURAL DYNAMICS / FALL2011 / Page:8
Lecturer: Prof. APOSTOLOS S. PAPAGEORGIOU
SEOUL NATIONAL UNIVERSITY
PART (07): FOURIER TRANSFORM (FOURIER INTEGRAL)

FREQUENCY SCALING:

Scaling the frequency variable by a factor b has a similar effect to the scaling. Making the

substitution b = (1/a) in expression f(at) |711|F (%) yields the expression:

% (%) o F(bw)

which is completely symmetrical to the expression for ‘time scaling’ and, therefore, is an
expression of the duality of the Fourier Transform.

EXAMPLE:
vy sin(vt
0= o pw) = payl@)
A f1(®) = 3f(3t) A Fw)
7 F 1
bl — 2 4%&_» t = > (1)
v 7V
f(t A F(w)
T F 1
b=1 t > )
v - v
w Af2(®) = 2£(20)
" AF(w)
.4 F !
zv ———
bz = % 'AVAVAVAVAU UAUAVAVA"A‘ >t zv > )
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SYMMETRY (DUALITY) OF TRANSFORM:

If F(w) is the Fourier Integral of f(t), then:
Fit) o 2nf(-w)

Proof:

The above follows from:

1 .
f(t)=% f F(w)et*t dw

if we write it as follows:
+co

2nf(—t) = f F(w)e ™t dw

and interchange t and w.

EXAMPLE: From §(t) < 1 and the symmetry §(—w) = §(w) deduce that 1 & 275 (w).

f(@®) A F(w)

1
F
(1) D
- ol ¢ >
\_\‘ /_f
A F(®) _‘;x:(puamy F(w)
1 yd \'\
L (2m)
> > (1)

Duality of Fourier Transforms of Impulses




Lecture Notes: STRUCTURAL DYNAMICS / FALL 2011 / Page: 10
Lecturer: Prof. APOSTOLOS S. PAPAGEORGIOU
SEOUL NATIONAL UNIVERSITY
PART (07): FOURIER TRANSFORM (FOURIER INTEGRAL)

SYMMETRY (DUALITY) OF TRANSFORM: (continued)

EXAMPLE: From knowledge of p,(t) = © {sin (%)/(%)} find the inverse transform of a
rectangular frequency domain pulse:
1
Fw) = py(w) =t lol<3V
0 elsewhere

A f(D) A F(w)
f=p:() 1 F T
T ~t =
T 2w
T
“'\ /'{
.
A S0 /,-"-f?sahty A F(w)
g g b 1 F)=p,w)
F
t = (1)
2 =
am v
v

Duality of Fourier Transforms of Rectangular Pulses
EXAMPLE: Gaussian Function (represents the ultimate in symmetry and duality):

T
e—at2 o /_e—(w2/4a)
a

1
e_ftz PN \/27‘[@‘(“’2/2)

For a = G)

A f(t) A F(w)
1 g F = 1.2
e 2 -~ 2me 2
/\Q 1
i s ol 1 > @

Gaussian function and its Fourier Transform
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TIME SHIFTING:

Let f(t) & F(w) = A(w)e!®®@ then:
£t tg) © Fw)e 0 = A(w)eil#@-to)

i.e., if the function f(t) is shifted by a constant, t,, then its Fourier spectrum remains the
same, but a linear term —tyw is added to its phase angle.

1

SE—t) "

Proof:
f f(t - to)e—iwt dt = f f(x)e—iw(t0+x) dx = F(a))e_ito“’
EXAMPLE:
f(t) A
VA 1
1 - t - P
—ty 0 qu(w)
[ i
g(® F LG (w)| = |F(w)]

Ol £

t

() 1= (¢t

_ t(]) PN e—iwtg

A

f@®

A IF ()]
> @

T 4F (w)
- @

|

AlG(w)]
>

S A<G(w)
] .

e
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FREQUENCY SHIFTING:

e'™'f(t) o F(w— )

Proof:
| r@etsetorde= [ petoeot de=F(w - o)
EXAMPLE:
1
— o flw) = et@ol & §(w — wy)
A IF(@®)]
. e F(w)
2w —~— 6(&))
> ! -
- o
A f(@0)
> t
A lg(®)]
" pe G(w)
= ——p— f 5(“’ o 0)0)
>t > )
0 P
<g(t)
Wy
| o
A [R(D] A H(w)
% F §(w + wg)
>t
gD il




Lecture Notes: STRUCTURAL DYNAMICS / FALL 2011 / Page: 13
Lecturer: Prof. APOSTOLOS S. PAPAGEORGIOU

SEOUL NATIONAL UNIVERSITY

PART (07): FOURIER TRANSFORM (FOURIER INTEGRAL)

TIME CONVOLUTION:

The Fourier Transform F(w) of the convolution f(t) of two functions f(t) & f,(t) equals
the product of the Fourier Transform F, (w) & F,(w) of these two functions. Thus:

I f1) © Fi(w) & f(t) o Fy(w)
Then 1O+ f20) & [T f1(Df,(t—1)dT & Fi(0)Fy(w)
Proof

Clearly, F(w) = [ e~ [*7 () f,(t — 7) dr| dt

Changing the order of integration, we obtain:

Flw) = f ﬁ(ﬂlj‘edw7xt—f)dttﬁ

Fy (w)e—iwr
Time—shifting Theorem

Therefore: F(w) = [*7 fi(©)e T Fy(w) dt = Fy(0)Fy(w)
EXAMPLE:

A pr(t) y Pr(w)

1

* A

| P(0)

N

= A F(w)
‘.'.'2
.\
e
— = > )

COMMENT: In the above proof it was assumed that the order of integration can be
changed. This is true if the functions f(t) & f,(t) are square-integrable in the sense

fj;olfi(t)lz dt <o (i=1,2),i.e., f1(t) & f,(t) have finite energy.
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FREQUENCY CONVOLUTION:

From the time convolution theorem and the symmetry (duality) theorem it follows
that the Fourier Transform F(w) of the product f4(t)f,(t) of two functions equals the
convolution F,4 (w) * F,(w) of their respective derivatives divided by (27) :

1
[ORO o 5 | FOFR0-0d

One could also give a direct proof as in the time-convolution theorem.
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TIME DIFFERENTIATION:

n

)
o < ()" F(@)

Let f(t) & F(w) then

For n=1 %(t)

— (iw)F(w) i.e., atime differentiation therefore causes a

frequency domain rotation (+ g) of F(w), and a linear scaling by w.

Proof:

Taking the nt" derivative of both sides of f(t) = i[:’;" F(w)ei®t dw leads to:

afe 1 - dnf(t)
Ien =E_f [(Gw)"F(w)]e'*t dw Ien

< (iw)"F(w)

FREQUENCY DIFFERENTIATION:

Let f(t) & F(w) then (—it)"f(t) < d"dF—aE:))
A f(O)
T
2m
Ag®
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INTEGRATION:

Let f(t) & F(w) then ff(‘l’) dt & %F(w) + mé(w)F(0)

Proof:

We interpret the integral of f(t) as a convolution with the unit step function
U(t), i.e.

t
9(0) = f F(@) de = U * F(O

Recall that:
1
U(t) =—+n6(w)
Lw
Let:
g@) © G(w)

Then, invoking the convolution in time theorem, we get:
1
G(w) =U(w)F(w) = BF(w) + 185 (w)F(0)

The term [F(w)/(iw)] represents the inverse of the differentiation property. If F(0) =0,
then the properties (of differentiation and integration) are fully recoverable, in
the sense that the function G(w) can be recovered from F(w) through division by

(iw).

In contrast, if the function f(t) contains a non-zero d.c. component, represented
by a non-zero value of F(0), the transform of its integral contains an additional
impulse of strength wF(0) at the origin.
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EXAMPLE:
sin(vt)
vt

=) o F(w) =pyy(w)

The d. c. value of the function is F(0) = 1. Thus,:

vt

60 = [roar= [T ar o 6@) =) +15@)

— 00

The frequency representation consists of a hyperbola in the imaginary plane, truncated by
the pulse p,,(w), and a real impulse at the origin of magnitude m. This impulse
transforms back to the time domain as the constant (1/2), which represents the
d.c.value of g(t). Even symmetry of f(t) makes this value coincide with the value at the
origin, g(0) = (1/2), and leads to the asymptotic value g(o) = 1.

Re|F]
AF@®
T e 1
t
Im|F k.
w
Re|G]
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EXAMPLE:

Let:
sin (%)

(%)

f)=p(t) © Flw=r1

The d. c. value of this function is F(0) = 7. Thus:

t

t . (0T
gt) = ff(r)d‘r= fp,(r)dr o G(a))=—2ismcg—22)+n16(a))

— 00

The integral of f(t) is a truncated ramp, whose value at the origin g(0) = %‘r corresponds to

the function’s d. c. value and related to the frequency domain impulse of
strength nt.

RelF]
A f(@) 4
1 b o
—~~>—
1 i
2" Im|F]
T @ Re[G) w
Tt (Tm)
? v F
| > — t
5T
Im|G]
w

Fourier Transformof Integral
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CONJUGATE FUNCTIONS:
Let f(t) © F(w) then f*(t) o F'(—w)

i.e., the Fourier Transform of the conjugate f*(t) = f(t) — if,(t) of a complex function
f() =f1(t) +if,(t) isgiven by F*'(—w).

F(o) = f (i + ify)et dt
= ()= f (fy — ify)eiet dt

= F(w) = f (fy — ify)e-iet dt

= () o F*(—w)
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PARSEVAL’s FORMULA:

If f(t) & F(w) = A(w)e?® then:

+o00 1 +oo
f If(t)lzdt=§_f 42(w) do

Proof
f(t) o Flw) = f*(t) & F'(—w) (conjugate functions)
Therefore:
IfFOI?=f)f*() o %F((u) * F*(—w) (frequency convolution)
i.e.
1 i .
o | FOF-@-may = [ Iroreeta
1 "
= == | FOF*(y) dy = If @)% dt
Pyr 2”_[0 20 _[o
Therefore:

flf(t)lzdt=% [ 2@ do

The following is a more general form of PARSEVAL'’s formula:

If f1(H) o Fi(w) & f2(t) « F2(w) then:

+oo 1 +00
[ nonwa = o [ ok @ do

If fi(t) & f,(t) arereal functions then:

+00 1 +o
| nona = 5 | Fi@kw do

NOTE: A% (w) = energy spectrum of f(t)

Eqz(w) = Fi(w)F,(w) = cross-energy spectrum of f,(¢t) & f,(t)
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FOURIER TRANSFORMS INVOLVING IMPULSES:
We derive the Fourier Transforms of the time domain functions:
fi(®) = cos(wit) & g1(t) = sin(w;t)
We can easily derive: %ei‘”lt ond(w—w) & %e‘i‘“lt o nd(w+ wy)

elw1t+e—l(1)1t

Therefore:  f(t) = cos(w,t) =———— & n8(w - w,) +78(w + @)
. eiwlt_e—iwlt i )
and: g1(t) = sin(w4t) = — © —iné(w — wy) + ind(w + wq)
Relf1(8)] Re[F ()]
A
¢ ()
()
T
e -
w1
Im[F(w)]
Re[Gy(w)] =
L y
1 t
2 F @1 (—jm)
N (m) w7y
Imlg,(®)] Im|[G, (w)] i

1 1 . 1 1 .
=8(t —ty) © —e Wl & =6(t+ty) o —e@h
6t —t0) =3 Z6(t+ )

1 1
f2() = 25(15 —to) + 55@ +t)) © F(w)=cos(wty)

g2(t) = i%S(t —ty) — i%(ﬁ(t +t,) < Gy(w)=sin(wty)

Relf2(w)] Re[F,(w)]
A
1
(1 (f) t
2z
?
to e

Re[gz(w)] Im|fa(w)]

@)

Im|gz(w)]

Im[Gz(w)]
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APPENDIX
FOURIER SERIES REPRESENTATION OF A PERIODIC FUNCTION

A function g(t) of time t is said to be a periodic function of t with a period equal to
T, if it satisfies the following relationship

gt +nTy) = g(t)
where n is an integer with negative or positive values.

The following FIGURE presents several examples of periodic functions.

g(t)

k— Ty —— T, — t
(@)

g(t)x g(t") + g(t™)

A A K

A W i DRy o TR o .
=, 1, — E

(b)

g(®)
=17, ==, t

(c)

A periodic function with a finite number of discontinuities and a finite number of
maxima or minima within a range of time equal to its period T, can be represented
by an infinite trigopnometric series as follows

git) = ao+ z a, cos(2nnfyt) + 2 b, sin(2nnfyt)
n=1 n=1

where a,, and b,, are constants to be determined and f;, = (1/T,) is the frequency in cycles
per second. The trigonometric series of the above Equation is known as the Fourier
series. Setting w, = 21 f;, where w, is the circular frequency in radians per second,
the series can be expressed in the alternative form

glt) = ao+ Z a, cos(nwyt) + 2 b,, sin(nwyt)
n=1 n=1

To obtain the coefficients a,,, we multiply the left- and the right-hand sides of the above
Equation by cos(mw,t) and integrate over a period. Then noting that
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To/2
cos(nwot) cos(mwot) dt = {ToO/Z gﬁ irmn
~To/2
To/2
0 form=+=0
cos(mwyt) dt = {To form = 0
—To/2
To/2

sin(nwyt) cos(mwyt) dt 0 forallmandn
-To/2
we obtain the following expression for coefficients a:

Ty/2

3
a, = — (t) dt
0 T, T/zg
—1o
To/2

a, = Tio j g(t) cos(nwyt) dt
~To/2

Coefficients b,, are obtained in a similar manner by multiplying the left- and the right-hand

sides of the Fourier series expansion (i.e. the last boxed equation shown above) by sin(nwgt)

and integrating over a period. Then, because of the relationships
To/2

. _ 0 forn #m
/ sin(nwyt) sin(mwyt) dt {To/z forn=m
—~To/2

To/2

sin(nwyt) cos(mwyt) dt 0 forallmandn
—To/2

the coefficient b,, is obtained as

Ty/2

b, = Tio j g(t) sin(nwyt) dt
~To/2

It can be shown that at a discontinuity such as the one shown in the FIGURE (above), the

Fourier series expansion converges to a value that is the average of the values of the

function g(t) immediately to the left and the right of the discontinuity.

NOTE: The coefficients a,, a,, and b,, are called Fourier coefficients of g(t).

COMPLEX EXPONENTIAL FORM OF THE FOURIER SERIES

In developing the frequency-domain analysis procedure, it is convenient first to obtain an
exponential form for the Fourier series (see boxed equations above). Using Euler’s
formula, the sine and cosine functions in the Fourier series expansion can be expressed
in terms of complex exponentials as follows
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einwot _ e—inwot

sin(nwyt) =

(nwot) —
ein(uot + e—in(uot

cos(nwyt) = 3

Substitution of the second of the above expressions in the expression for X (shown in the box
above) yields

To/2
1 . .
a, = T_ j g(t)(emwot + e—mwot) dt
O /2
If we replace n by —n in the above equation, we get
To/2
1 . )
a, = T_ f g(t)(e—ma)ot + emwot) dt = a,
/2
In a similar manner, b,, is obtained as follows
To/2
1 einwot _ e—inwot
b, = — t dt
~To/2
To/2 ) .
1 e—mwot _ elnwot
b, = — t dt = -—b
v = | st )
~To/2

Then, the Fourier series expansion can be expressed as

had mwot + e—mwot had mwot —mwot
ag + E a, E b, ;

g(®)

) a b ) a b
— inwet (1 _n) Z inwgt (_n _n)
%+Ze (2+2+ _e 2 T2

=1
= o+ z inoot 2= b+ Z ot (@, ~ by)

ne—w _,_/
Cn
+ oo

— c. einwot
§ n

n=—oo

Evidently, the coefficient ¢, is given by
Ch = E(an —by)
To/2
— % j g(t){(einwot + e—inwot) _ (einwot _ e—inwot)} dt
0

—To/2
To/2

1 .
= — fg(t)e“"“’otdt
To
—To/2
Evidently,
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To/2
1
Co = = f gt)dt = ag
To
~To/2
Summarizing, the complex exponential form of the Fourier series is
+00
9O = Y et
n=-—oo
To/2
1 ;
= fg(t)e“"“’otdt
O /2

HEURISTIC ARGUMENT TO OBTAIN THE FOURIER INTEGRAL
REPRESENTATION OF A NON-PERIODIC FUNCTION FROM FOURIER SERIES

To obtain a Fourier representation of a non-periodic function, we first construct a periodic
version of the given function. The first step is to select a value for the period. The selected
period should, of course, be larger than the duration of the function. Within each period, the
periodic version has a magnitude equal to the specified function for the duration of the latter
but is zero otherwise. A periodic version constructed as above is shown in the FIGURE
(below).

g(t)

It is evident that the curves shown by dashed lines represent fictitious replicas of the
function that, in fact, do not exist. If T, is now increased to a very large value, the fictitious
replicas of the function will move to infinity and in the limit we will get a true representation
of the given function. We apply this reasoning to derive a Fourier representation of a non-
periodic function. [NOTE: If the non-periodic function has infinite duration, we consider the
Fourier series representation of finite duration segment of it, (—T,/2,T,/2), which in the
limit, as T, — +oo, leads to the original function.]

First since T, is very large, we set

_ 21 — A
wy = T =
and
nw, = Q,
With this notation we get
To/2 To/2
1 . .
tn =7 ge ¥t qt = ¢, Ty = gt)e Mt gt
° _1/2 —1,/2

Thus
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+o00

§ Cnemwot

n=-—oo
+o00

1 .
= T_o 2 ¢, Toe!nt

n=—oo
+o00
1 iQnt
= o cnToe Mt AQ
n=—oo

In the limitas Ty — +, Q,, = n - AQ becomes a continuous variable, i.e. Q,, = Q, and ¢, T, =
G(Q),i.e.

g(t)

+00

0T, - |6@Q) = f g(t)ei9% dt

— 0o

while

400

Foo
1 . 1 .
gt) = P 2 e, Toe'™tAQ — |g(b) = 7 f G(Q)e¥ dn

n=-—oo

Evidently, of the above two boxed equations, the first represents the Fourier transform of
the function g(t), and the second equation is the inverse Fourier transform.

The above heuristic argument is mathematically problematic (see the discussion of section 1-
1, pages 1 & 2, in PAPOULIS 1962).



