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ENERGY DISSIPATED BY DAMPING 

 

 

 

𝑾𝑫 𝒇𝑫 𝒅𝒖  

Depending on the type of damping present, the dissipative force-
displacement relationship when plotted may differ greatly. In all cases, 
however, the dissipative force-displacement curve will enclose 
an area, referred to as the ‘hysteretic loop’, that is proportional to 
the energy lost per cycle. 

NOTE: Energy dissipation is usually determined under 
conditions of cyclic oscillations. 
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ENERGY DISSIPATED IN VISCOUS DAMPING 

Energy balance in a system with viscous damping undergoing steady-state harmonic 
motion: 

Energy is input into the system by the applied force   𝒑 𝒕 𝒑𝟎 𝐬𝐢𝐧 𝛀𝒕 . Then, the 
energy input per cycle is given by: 

𝑊 𝑝 sin Ω𝑡  𝑑𝑢 

But:  𝑢 𝑡 𝜌 sin Ω𝑡 𝜑 ⟹ 𝑑𝑢 𝜌Ω cos Ω𝑡 𝜑 𝑑𝑡 

Therefore: 𝑊 𝑝 sin Ω𝑡 ∙ 𝜌Ω cos Ω𝑡 𝜑 𝑑𝑡
⁄

𝑝 𝜌𝜋 sin 𝜑 

Recall that: tan 𝜑  

⟹ sin 𝜑 ⁄ 2𝜉𝛽   

 

Therefore:  

𝑊 2𝜋𝜉𝛽𝑘𝜌 ⏟ 𝑐𝜋Ω𝜌  

 

The energy 𝑾𝑫 dissipated by the viscous damping force 𝒇𝑫 𝒄𝒖 𝒄𝛀𝝆 𝐜𝐨𝐬 𝛀𝒕 𝝋  is: 

𝑊 𝑓  𝑑𝑢 𝑐Ω𝜌 cos Ω𝑡 𝜑

⁄

∙ 𝜌Ω cos Ω𝑡 𝜑 𝑑𝑡 𝑐𝜋Ω𝜌  

Therefore: 

𝑊 𝑊 𝑐𝜋Ω𝜌  

i.e., we demonstrated that the total input is dissipated by viscous damping. 
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The energy balance represented by the equation 𝑾𝒊𝒏𝒑𝒖𝒕 𝑾𝑫 implies 

that the work done by the spring and inertial forces per cycle is 
zero. 

This can also be proved by noting that: 

𝑓 𝑘𝑢 𝑘𝜌 sin Ω𝑡 𝜑   

and  𝑓 𝑚𝑢 𝑚Ω 𝜌 sin Ω𝑡 𝜑 𝑚Ω 𝑢 

and integrating the infinitesimal work terms 𝒇𝑺𝒅𝒖 & 𝒇𝑰𝒅𝒖 over one cycle (see textbook). 

A graphical method is probably more illustrative of the concepts involved: 

The  𝒇𝑰 vs. 𝒖 relation (plotted below) consists of a single line as shown. Since the area 
enclosed by the  𝒇𝑰 vs. 𝒖 curve over one cycle of motion is zero, the corresponding 
work done should also be zero. 

In a similar manner, the 𝒇𝑺 vs. 𝒖 diagram (drawn below) is a straight line and shows 
that the work done per cycle by 𝒇𝑺 is also zero. 
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Since   𝑢 Ω𝜌 cos Ω𝑡 𝜑 Ω𝜌 1 sin Ω𝑡 𝜑 Ω 𝜌 𝑢  

Therefore:  

𝑓 𝑐𝑢 𝑐Ω 𝜌 𝑢 ⟹
𝑓𝐷

𝑐Ωρ

2
𝑢
𝜌

2

1  

The above equation is the equation of an ellipse shown below. The area of the ellipse is   

𝜋 𝑐Ω𝜌 𝜌 𝜋𝑐Ω𝜌  

and represents the energy dissipated per cycle in viscous damping. 

 

Total resisting force = 𝒇𝑫 𝒇𝑺  (= force measured in experiments). 

𝑓 𝑓 𝑘𝑢 𝑐𝑢

𝑘𝑢 𝑐Ω 𝜌 𝑢
 

A plot of 𝒇𝑫 𝒇𝑺  vs. 𝒖 is a rotated ellipse, as shown below (see APPENDIX below). 
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Since  𝒑 𝒕 𝒇𝑰 𝒕 𝒇𝑫 𝒕 𝒇𝑺 𝒕 , the applied force 𝒑 𝒕  vs. displacement 𝒖 𝒕  is given by: 

𝑝 𝑡 Ω 𝑚𝑢 𝑐Ω 𝜌 𝑢 𝑘𝑢 

The relationship 𝒑 𝒕  vs. 𝒖 𝒕  is a rotated ellipse (see APPENDIX below) whose principal 
axes are inclined w.r.t. to the coordinate axes. The area of the skew ellipse is equal to the 

area enclosed by the ellipse of 𝒇𝑫 𝒕  vs. 𝒖 𝒕 , i.e., equal to 𝝅𝒄𝛀𝝆𝟐  = energy dissipated 
per cycle in viscous damping. 

 

At phase resonance (i.e., 𝜷 𝟏) 𝒇𝑫 𝒕  exactly balances 𝒑 𝒕  (see corresponding force 
balance diagram) and the figure of 𝒑 𝒕  vs. 𝒖 𝒕  reduces (i.e., becomes identical) to the 
figure of 𝒇𝑫 𝒕  vs. 𝒖 𝒕 .  

We mention two measures of damping: 

𝑺𝒑𝒆𝒄𝒊𝒇𝒊𝒄 𝑫𝒂𝒎𝒑𝒊𝒏𝒈 𝑪𝒂𝒑𝒂𝒄𝒊𝒕𝒚
𝑾𝑫

𝑾𝑺
𝑤ℎ𝑒𝑟𝑒: 𝑊

1
2

𝑘𝜌

𝑳𝒐𝒔𝒔 𝑭𝒂𝒄𝒕𝒐𝒓
𝟏

𝟐𝝅
𝑾𝑫

𝑾𝑺
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APPENDIX: 

Consider the general equation  

𝐴𝑥 𝐵𝑥𝑦 𝐶𝑦 𝐷𝑥 𝐸𝑦 𝐹 0 

Such an equation is a general second-degree equation in rectangular coordinates 
and always represents a conic (i.e., ellipse, parabola, hyperbola). The specific type of conic 
may be identified as follows (you may consult any book on ‘Analytic Geometry’, e.g., YATES, 
R.C., 1961. Analytic Geometry with Calculus, PRENTICE-HALL): 

𝐵 4𝐴𝐶 0 ⇒ ellipse
𝐵 4𝐴𝐶 0 ⇒ parabola
𝐵 4𝐴𝐶 0 ⇒ hyperbola

 

If the conic is an ellipse, then its principal axes are rotated (w.r.t. the axes of the rectangular 

coordinates) by an angle 𝜗, such that 

tan 2𝜗
𝐵

𝐴 𝐶
 

As an example, we consider the total resisting 𝑓 ≝ 𝑓 𝑓  vs. 𝑢 for steady-state harmonic 
motion: 

𝑓 𝑘𝑢 𝑐Ω 𝜌 𝑢
𝑓

𝑘
𝑢

𝑐Ω
𝑘

𝜌 𝑢

𝑓
𝑘

2
𝑓

𝑘
𝑢 𝑢

𝑐Ω
𝑘

𝜌 𝑢

1
𝑐Ω
𝑘

𝑢 2
𝑓

𝑘
𝑢

𝑓
𝑘

𝑐Ωρ
𝑘

0

 

Since 

𝑐Ω
𝑘

2𝜉√𝑘𝑚 Ω
𝑘

2𝜉𝛽 

then 

1 2𝜉𝛽 𝑢 2
𝑓

𝑘
𝑢

𝑓
𝑘

2𝜉𝛽𝜌 0 

Then, the expression 𝐵 4𝐴𝐶 for the above 2nd order equation becomes 

2 4 ∙ 1 2𝜉𝛽 ∙ 1 4 2𝜉𝛽 0 

Therefore the 2nd order equation of 𝑓 ≝ 𝑓 𝑓  vs. 𝑢 represents an ellipse, the principal 

axes of which are rotated w.r.t. the axes 𝑓 𝑘⁄  vs. 𝑢 by an angle 𝜗. Specifically, 

tan 2𝜗
2

1 2𝜉𝛽 2 1

2
2𝜉𝛽 2 

Therefore, 



Lecture Notes: STRUCTURAL	DYNAMICS   /     FALL 2011   /   Page: 7 
Lecturer: Prof.  APOSTOLOS	S.	PAPAGEORGIOU	

SEOUL	NATIONAL	UNIVERSITY	
PART	(05):	ENERGY	DISSIPATED	BY	DAMPING 

cos 2𝜗
1

1 2 2𝜉𝛽⁄

2𝜉𝛽

2𝜉𝛽 4
 

cos 2𝜗 2 cos 𝜗 1 ⇒ cos 𝜗
1 cos 2𝜗

2

1
2

1
2𝜉𝛽

2𝜉𝛽 4
 

Therefore 

𝜗 cos
1
2

1
2𝜉𝛽 2

2𝜉𝛽 4 4
 

 

A similar analysis may be performed to demonstrate that 𝑝 𝑓 𝑓 𝑓  vs. 𝑢 is an ellipse. 
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EQUIVALENT VISCOUS DAMPING 

Definition of Equivalent Viscous Damping: 

 

 

DEFINITION #1: 

Based on the measured response of the system at phase resonance (i.e., 𝜷 𝟏 ⇔ 𝛀 𝝎): 

𝜉

𝑝
𝑘

2𝜌
 

 

DEFINITION #2: 

Equivalent viscous damping is the amount of damping that provides the same 
bandwidth in the frequency-response curve as obtained experimentally for an 
actual system: 

𝜉
Ω Ω

2𝜔
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DEFINITION #3: (most common) 

Equate the energy dissipated in a vibration cycle of the actual structure and an 
equivalent viscous system. 

 

 

 

Let  𝑾𝑫 =  energy dissipated per cycle in the actual structure 
(i.e., area enclosed by the hysteresis loop) 
 

4𝜋𝜉 𝛽𝑊 𝑊
𝒆𝒏𝒆𝒓𝒈𝒚 𝒅𝒊𝒔𝒔𝒊𝒑𝒂𝒕𝒆𝒅 𝒑𝒆𝒓 𝒄𝒚𝒄𝒍𝒆

𝒃𝒚 𝒆𝒒𝒖𝒊𝒗𝒂𝒍𝒆𝒏𝒕 𝒗𝒊𝒔𝒄𝒐𝒖𝒔 𝒔𝒚𝒔𝒕𝒆𝒎

⟹ 𝜉
1

4𝜋
1
𝛽

𝑊
𝑊  

 
 𝑾𝑺 = strain energy 𝟏

𝟐
𝒌𝝆𝟐  calculated from the stiffness 𝒌 determined by experiment 

 

The experiment should be conducted at phase resonance (i.e., 𝜷 𝟏 ⇔ 𝛀 𝝎), where 
the response of the system is most sensitive to damping, i.e.  

𝜉
1

4𝜋
𝑊
𝑊
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RATE-INDEPENDENT LINEAR DAMPING 
[Also referred to as HYSTERETIC or STRUCTURAL or SOLID DAMPING] 
 
Experiments indicate that the energy dissipated per cycle (and consequently 
corresponding force) is independent of frequency and proportional to the square of 
the amplitude of vibration (unlike viscous damping where the energy loss per cycle is 
proportional to the square of the amplitude and directly proportional to the frequency of 
motion). 

This is because damping forces are not viscous in nature but arise from internal 
friction. 

 

Rate-independent linear damping – Equation of Motion: 

𝑚𝑢 𝑓 𝑢 𝑝 𝑡  

where:   𝒇𝑺
𝒕 𝒖  = nonlinear function of displacement 

 

In the general case, the solution of the above equation is quite complex. However, for 
steady-state harmonic motion, rate-independent damping can be accounted for by 
expressing the total spring force 𝒇𝑺

𝒕 𝒖  as the sum of two components: an average spring 
force  𝒇𝑺 𝒌𝒖, where 𝒌 is the average stiffness and a damping force 𝒇𝑫 given by 

𝑓
𝜂𝑘
Ω

𝑢  

where 𝜼 = a constant, indicating a dimensionless measure of damping. 

 

Then, it is straightforward to demonstrate that the energy dissipated per cycle of 

steady-state vibration at frequency 𝛀 is independent of  𝛀, i.e., 

𝑊 𝜋𝜂𝑘𝜌 2𝜋𝜂𝑊  
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Equation of motion:   𝑚𝑢 𝑓 𝑢 𝑝 𝑡  

Total Spring/Resisting Force:  𝑓 𝑢 𝑘𝑢 𝑢  

It follows that:    𝑚𝑢 𝑢 𝑘𝑢 𝑝 sin Ω𝑡  

We define:    𝑐 , 𝜉
√

 

 

Clearly, while  𝜼  𝑐𝑜𝑛𝑠𝑡. , 𝒄𝒉 & 𝝃𝒉 vary with  𝜷
𝛀

𝝎
 . 

 

Then, the steady-state response is: 

𝑢 𝑡 𝜌 sin Ω𝑡 𝜑

where:
𝜌

𝑝
𝑘

1

1 𝛽 𝜂

tan 𝜑
𝜂

1 𝛽
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Approximate Solution Using Equivalent Viscous Damping: 

Matching dissipated energies at phase resonance (𝜷 𝟏 ⇔ 𝛀 𝝎), we obtain: 

𝜉
𝜂
2

 

 The approximate solution matches the exact results at 𝛀 𝝎 because that was the 
criterion used in selecting  𝝃𝒆𝒒 . 

 Amplitude resonance (i.e., maximum amplitude) for the exact solution 
occurs at 𝛀 𝝎 , while for the approximate solution it occurs at 𝛀 𝝎 . 

 The phase angle 𝝋𝒉 for 𝛀 𝟎 is 𝝋𝒉 𝐭𝐚𝐧 𝟏 𝜼 for the exact solution. For the 
approximate solution, the phase angle is zero for 𝛀 𝟎. This implies that motion 
with rate independent damping can never be in phase with the forcing 
function. 
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Complex Stiffness 

For simple harmonic motion, hysteretic damping can conveniently be expressed by using the 
concept of complex stiffness. 

𝑚𝑢
𝜂𝑘
Ω

𝑢 𝑘𝑢 𝑝 𝑒  

Response: 
𝑢 𝑈𝑒
𝑢 𝑈 𝑖Ω 𝑒 𝑖Ω 𝑢

 

Damping force: 

𝑓
𝜂𝑘
Ω

𝑢

𝜂𝑘
Ω

𝑖Ω 𝑢

𝑖𝜂𝑘𝑢

 

Therefore: 
𝑚𝑢 1 𝑖𝜂 𝑘

𝒌

𝑢 𝑝 𝑒  

𝒌 𝟏 𝒊𝜼 𝒌 𝑪𝒐𝒎𝒑𝒍𝒆𝒙 𝑺𝒕𝒊𝒇𝒇𝒏𝒆𝒔𝒔  

 

The concept of complex stiffness applies only for harmonic 
oscillations, and it is useful in taking account of rate-independent (i.e., 
hysteretic) damping when the analysis is carried out in the 
frequency domain. 
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HARMONIC VIBRATION WITH COULOMB FRICTION 

 

 

Equation of Motion: 

𝑚𝑢 𝑘𝑢 sgn 𝑢 𝜇𝑁
𝑭

𝑝 sin Ω𝑡  

Even though the differential equation is linear over each time segment that 𝒖 𝒕  does not 
change sign (i.e., over each time segment that the block moves in the same direction) the 
problem is nonlinear. 

An exact analytical solution for the steady-state response of the system subjected to 
harmonic force was developed by J.P. DEN HARTOG (1930, 1931). 

 

NOTE: It must be remembered that the friction force is passive one, which means that 
it is able to oppose the motion but not to produce it. 
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NOTE: For all cases the response of the system is periodic but non-
harmonic. 

After the system has been in motion for some time a ‘steady-state’ will be reached which 
must satisfy the following conditions: 

1) The frequency of the motion must be the same as that of the disturbing 
force. 

2) The downward half-cycle of the motion must follow the same law as the 
upward half-cycle. 

 

Cases (I) & (II) above show two possible types of such motion. 
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CASE (I): 

When the friction force 𝑭 is sufficiently smaller than 𝒑𝟎, a continuous motion (i.e., the 
block/mass never comes to a dead stop) will occur and a type of steady-state solution will 
result. 

For this type of motion the maximum displacement 𝝆 is given by: 

𝜌
𝑝
𝑘

𝑉
𝐹
𝑝

𝑈

where:

⎩
⎨

⎧ 𝑉
1

1 𝛽

𝑈
1
𝛽

tan
𝜋

2𝛽

 

In the attached 𝝆 𝒑𝟎 𝒌⁄⁄  vs. 𝜷 FIGURE, only the part of the diagram above the 
broken line corresponds to the above formula. 

 

Notice that: 

 𝑽 is the deformation response function of the un-damped SDOF system. 
 

 If  𝑭 𝟎, the above expression for 𝝆 reduces to the well known one for the un-
damped SDOF system. 
  

 At the upper and lower peaks, the displacement curve suddenly changes 
its curvature (see attached FIGURE, CASE I). The explanation of this is that the 
curvature is proportional to the second derivative. The second derivative of the 
displacement is the acceleration, which is proportional to all the forces acting on the 
mass. Since the frictional force suddenly reverses at the peaks, the curvature there 
must show a discontinuous change.  
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CASE (I): (continued) 
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CASE (I): (continued) 

Phase Resonance  𝜷 𝟏 ⇔ 𝛀 𝝎: 

A remarkable property of the above response/solution is that for 

𝐹
𝑝

𝜋
4

0.785  

The response amplitude becomes infinitely large. In other words, even with considerable 
amount of Coulomb friction, the amplitudes at resonance still extend to infinity. 
This apparently paradoxical fact can be understood by considering the facts involved as 
follows: 

It can be demonstrated that at resonance  𝜷 𝟏 , and assuming that the condition  
𝑭

𝒑𝟎

𝝅

𝟒
 is satisfied, the following relation is true: 

𝑊 𝑊  

That is, the energy dissipated in friction per cycle is less than the input energy. 
Therefore, the displacement amplitude would increase cycle after cycle and grow without 
bound. 

The above behavior is quite different from that of a system with viscous 
damping, or rate-independent damping. For these forms of damping, 𝑾𝑫 𝒄𝝅𝛀𝝆𝟐 or 

𝑾𝑫 𝝅𝜼𝒌𝝆𝒉
𝟐 while the input energy is 𝑾𝒊𝒏𝒑𝒖𝒕 𝒑𝟎𝝆𝝅 𝐬𝐢𝐧 𝝋 𝝅

𝟐
𝒑𝟎𝝆𝝅 . Thus, in these 

cases, 𝑾𝑫 & 𝑾𝒊𝒏𝒑𝒖𝒕 match each other at the steady-state amplitude 𝝆, which will be bounded 

no matter how small the damping. 
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CASE (II): 

 

An increase in the friction force 𝑭 will decrease the amplitude of motion and will also reduce 
the curvature at point 𝑨 (see FIGURE corresponding to CASE I above). When 𝑭 reaches a 
certain value, the curvature becomes zero, and for larger values of 𝑭 than this, the motion of 
FIGURE/CASE (I) above cannot exist and will be replaced by that of FIGURE/CASE (II). 
During each half-cycle the mass 𝒎 will stop moving for a while, and while stopping the value 
of the friction force may be anything between 𝑭 and – 𝑭. Since the mass 𝒎 during this 
interval has no acceleration, then it follows that 𝒌𝒖 sgn 𝒖 𝑭 𝒑 𝒕  . This last relation 
determines the friction force 𝑭 as shown in FIGURE/CASE (II). 
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CASE (II): (continued) 

NOTE: For CASE (II) (i.e., one ‘stop’ per half cycle) it is possible to obtain an exact 
solution, but it is not possible to put it into explicit form. 

 

For Coulomb friction, the friction force 𝑭 is constant, whereas 𝒇𝑰 and 𝒇𝑺 increase with 
amplitude of displacement. 

Thus, for large amplitudes the motion will be practically sinusoidal and the 
‘equivalent viscous damping’ approximation should be very satisfactory. For 
smaller amplitudes the curve of motion becomes very distorted and 
consequently the ‘equivalent viscous damping’ approximation for the amplitude 
is poor. 

Below the intermittent line running 
through the FIGURE, of the deformation 
response function (above), we have motions 
with one ‘stop’ per half cycle. 

In the blank part in the left half lower 
corner of the above FIGURE, the motion has 
more than one stop per half-cycle (see 
CASE III above). No solution could be 
obtained in that region. In practice, however, 
we are interested only in the conditions near 
resonance.  
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COULOMB DAMPING: Solution Using Equivalent Viscous Damping 

 

Equation of Motion: 

𝑚𝑢 𝑘𝑢 sgn 𝑢 𝜇𝑁
𝑭

𝑝 sin Ω𝑡  

The work done by the friction force per cycle of steady-state motion is: 

𝑊 4𝐹𝜌 4 𝜇𝑁 𝜌  

 

Equivalent Viscous Damping: 

𝜌 𝜋Ω𝑐
𝒆𝒏𝒆𝒓𝒈𝒚 𝒍𝒐𝒔𝒔 𝒑𝒆𝒓 𝒄𝒚𝒄𝒍𝒆
𝒃𝒚 𝒗𝒊𝒔𝒄𝒐𝒖𝒔 𝒅𝒂𝒎𝒑𝒊𝒏𝒈

4𝐹𝜌
𝒆𝒏𝒆𝒓𝒈𝒚 𝒍𝒐𝒔𝒔 𝒑𝒆𝒓 𝒄𝒚𝒄𝒍𝒆
𝒃𝒚 𝑪𝒐𝒖𝒍𝒐𝒎𝒃 𝒇𝒓𝒊𝒄𝒕𝒊𝒐𝒏

 

It follows that: 

𝑐
4𝐹

𝜌𝜋Ω
 

Therefore: 

𝜉
𝑐

2√𝑘𝑚

2𝐹
𝜋𝑘𝜌𝛽
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Displacement response amplitude: 

𝜌
𝑝
𝑘

1

1 𝛽
4𝐹

𝜋𝑘𝜌

 

The above expression contains 𝝆 on the right hand side also. Solving for  𝝆, we obtain: 

𝜌
𝑝
𝑘

1
4𝐹
𝜋𝑝

1 𝛽
 

The above result is valid, provided that  
𝑭

𝒑𝟎

𝝅

𝟒
𝟎. 𝟕𝟖𝟓  . For larger friction force, 

the numerator becomes imaginary and the method breaks down. In fact, for reasonable 

accuracy, 𝑭 𝒑𝟎
 must be less than about  𝟏

𝟐  . 

The FIGURE below shows a comparison of the exact solution (DEN HARTOG, 1931) 

with the approximate one (i.e., equivalent viscous damping) for  𝑭 𝒑𝟎
𝟎. 𝟕. The 

general conclusion is that the approximate solution applied to the constant-friction system 
underestimates the amplitude below resonance, while above resonance the values it gives are 
too large. In the resonance region the agreement is reasonably good. 
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The steady-state response of the equivalent viscous system (i.e., the approximation) is 
represented as follows: 

𝑢 𝑡 𝜌 sin Ω𝑡 𝜑

where:

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

𝜌
𝑝
𝑘

1
4𝐹
𝜋𝑝

1 𝛽

tan 𝜑

4𝐹
𝜋𝑝

1
4𝐹
𝜋𝑝

 

For the phase 𝝋
the  sign applies for 𝜷 𝟏
the  sign applies for 𝜷 𝟏 

 

The phase is independent of 𝜷 but it changes 
sign as 𝜷 passes through 𝟏. 

 


