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ENERGY DISSIPATED BY DAMPING

fp(=p at resonance)

Ellipse (viscous damping)
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Depending on the type of damping present, the dissipative force-
displacement relationship when plotted may differ greatly. In all cases,
however, the dissipative force-displacement curve will enclose
an area, referred to as the ‘hysteretic loop’, that is proportional to
the energy lost per cycle.

NOTE: Energy dissipation is usually determined under
conditions of cyclic oscillations.
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ENERGY DISSIPATED IN VISCOUS DAMPING

Energy balance in a system with viscous damping undergoing steady-state harmonic
motion:

Energy is input into the system by the applied force p(t) = p,sin(Qt). Then, the
energy input per cycle is given by:

Winput = fpo sin(Qt) du
But: u(t) = psin(Qt —p) = du = pQcos(Qt — @) dt

Therefore:  Winpur = |, 2n/Q

o Po sin(Qt) - pQ cos(Qt — @) dt =

PopPT Sin @
_ _ 288
Recall that: tang = D
. _ 28B — _P_
= sin@ = [(1—32)2‘}'(253)2]1/2 - Zfﬁ (%)
Therefore:
— 2 = z
Winput - Zﬂfﬁ kp — CT[QP
_c _2k _Q
f—a cr=" PB=%

The energy W, dissipated by the viscous damping force f, = cu = cQp cos(Qt — @) is:

21/Q

w, = %fD du = f cQp cos(Qt — @) - pQcos(Qt — @) dt = cQp?
0

Therefore:

Winpue = Wp = cmtflp 2

i.e., we demonstrated that the total input is dissipated by viscous damping.

(2$B)
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The energy balance represented by the equation W,,,,,, = W, implies

that the work done by the spring and inertial forces per cycle is
zero.

This can also be proved by noting that:
fs = ku = kp sin(Qt — ¢)
and f; = mii = —mQ?psin(Qt — @) = —mQ%u
and integrating the infinitesimal work terms f¢du & f;du over one cycle (see textbook).
A graphical method is probably more illustrative of the concepts involved:

The f;vs. urelation (plotted below) consists of a single line as shown. Since the area
enclosed by the f; vs. u curve over one cycle of motion is zero, the corresponding
work done should also be zero.

In a similar manner, the fs vs. u diagram (drawn below) is a straight line and shows
that the work done per cycle by fs is also zero.
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o mQ?p = pkp?
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Since i = Qp cos(Qt — @) = £Qp/1 —sin2(Qt — ¢) = +0/p? — u?

Therefore:

o\, )
pmei =zl (o) + () -1

The above equation is the equation of an ellipse shown below. The area of the ellipse is

w(cQp)p = mcOp?

and represents the energy dissipated per cycle in viscous damping.

(fp)
u>0 c)p

p

= u
T mi<o

Total resisting force = f + fs (= force measured in experiments).

fS + fD = ku +cu
= ku+cQp?—u?
A plotof (fp + fs) vs. uis a rotated ellipse, as shown below (see APPENDIX below).
(fp+fs)
fS = ku
P
b

/ p - (u)

\Unloading u<o

Area of ellipse = mcQp?
[Ellipse in Gray: fp vs.u]
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Since p(t) = f;(t) + fp(t) + fs(t), the applied force p(t) vs. displacement u(t) is given by:

p(t) = —Q%mu + cQ/p? — u? + ku

The relationship p(t) vs. u(t) is a rotated ellipse (see APPENDIX below) whose principal
axes are inclined w.r.t. to the coordinate axes. The area of the skew ellipse is equal to the
area enclosed by the ellipse of f5(¢) vs. u(t), i.e., equal to (mcQp?) = energy dissipated
per cycle in viscous damping.

P=fr+fp+fs
c()
P | _

)

—cQp

At phase resonance (i.e., f = 1) fp(t) exactly balances p(t) (see corresponding force
balance diagram) and the figure of p(t) vs. u(t) reduces (i.e., becomes identical) to the
figure of f,(t) vs. u(t).

We mention two measures of damping:

w 1
Specific Damping Capacity = WD (Where: W5 = Ekpz)
S
Loss Fact - 1%
oss Factor = oW,

(fp+fs)
Resisting Force

I
-
wd |
/=2

Deformation
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APPENDIX:
Consider the general equation
Ax? +Bxy +Cy?+Dx+Ey+F =0

Such an equation is a general second-degree equation in rectangular coordinates
and always represents a conic (i.e., ellipse, parabola, hyperbola). The specific type of conic
may be identified as follows (you may consult any book on ‘Analytic Geometry’, e.g., YATES,
R.C., 1961. Analytic Geometry with Calculus, PRENTICE-HALL):

—4AC<0 = ellipse
B?—4AC=0 = parabola
B2 —4AC >0 = hyperbola

If the conic is an ellipse, then its principal axes are rotated (w.r.t. the axes of the rectangular

coordinates) by an angle 9, such that

B
tan(219) = m

As an example, we consider the total resisting f,..s & fs + fp vs. u for steady-state harmonic
motion:

fres = kutcQyp? —u?
Fe)-u = #(F)rw
) -ole)ure = (§) 02w

)l -

c Vkm
(%)=

Since
= 2¢p
then

(1+ @Ep)2u? — (fk)u+(f—) — (28Bp)? = 0

Then, the expression B2 — 4AC for the above 2" order equation becomes

—4-1+@2PHH-1 = —428p)? < 0

Therefore the 2nd order equation of f,., & fs + fp vS. u represents an ellipse, the principal
axes of which are rotated w.r.t. the axes (f,.s/k) vs. u by an angle 9. Specifically,
-2 -2

@) = Grapn-1 - @

Therefore,
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cos(29) = 1 = - (26p)°

it @/ @pD? S+ 4

1 28EB)%
cos(29) =2cos?(¥) —1 = cos(®) = \/H+S(219) - \/E <1 B \/%)

Therefore

9 = cost 1<1——(2§ﬁ)2 >
2\ J@ipr+4

A similar analysis may be performed to demonstrate that p = f; + fp + fs vs. u is an ellipse.
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EQUIVALENT VISCOUS DAMPING

Definition of Equivalent Viscous Damping:

DEFINITION #1:

Based on the measured response of the system at phase resonance (i.e., f =1 © Q = w):

®

DEFINITION #2:

Equivalent viscous damping is the amount of damping that provides the same
bandwidth in the frequency-response curve as obtained experimentally for an
actual system:

Qg —Qy
20

f:
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DEFINITION #3: (most common)

Equate the energy dissipated in a vibration cycle of the actual structure and an
equivalent viscous system.

Restoring Force

|
: WS::_fff:
L= )

Deformation

Let Wp = energy dissipated per cycle in the actual structure
(i.e., area enclosed by the hysteresis loop)

1 /IN\NWp
47Tfeq.BWS = Wp = Eeq = E (E) WS

energy dissipated per cycle
by equivalent viscous system

Wg = strain energy (%kpz) calculated from the stiffness k determined by experiment

The experiment should be conducted at phase resonance (i.e.,, § =1 & Q = w), where
the response of the system is most sensitive to damping, i.e.

1w,
Seq = 41 Wi
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RATE-INDEPENDENT LINEAR DAMPING
[Also referred to as HYSTERETIC or STRUCTURAL or SOLID DAMPING]

Experiments indicate that the energy dissipated per cycle (and consequently
corresponding force) is independent of frequency and proportional to the square of
the amplitude of vibration (unlike viscous damping where the energy loss per cycle is
proportional to the square of the amplitude and directly proportional to the frequency of
motion).

This is because damping forces are not viscous in nature but arise from internal
friction.

Rate-independent linear damping — Equation of Motion:

mil + f§ (W) = p(t)

where: f&(uw) = nonlinear function of displacement

In the general case, the solution of the above equation is quite complex. However, for
steady-state harmonic motion, rate-independent damping can be accounted for by
expressing the total spring force f%(w) as the sum of two components: an average spring
force fg = ku, where k is the average stiffness and a damping force f given by

= ().

where 1 = a constant, indicating a dimensionless measure of damping.

Then, it is straightforward to demonstrate that the energy dissipated per cycle of
steady-state vibration at frequency () is independent of £}, i.e.,

Wp = mnkpp, = 2mnWs
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Equation of motion: mii + f&(u) = p(t)
k.
Total Spring/Resisting Force: fEu) = /le + %u
fs 7"’
D
. k . .
It follows that: mii + %u + ku = p, sin(Qt)
. _ Nk —_ % _ M
We define: Ch q ¢ Zvkm) . 2B

Clearly, while n = const., ¢, & &, vary with g = (%) .

Then, the steady-state response is:

uss () = pp sin(Qt — @)
o __DPo 1
L=
where: kVA=-p +n?
. n
@nen =152
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Approximate Solution Using Equivalent Viscous Damping:

Matching dissipated energies at phase resonance (f = 1 © Q = w), we obtain:

n
feqzz

e The approximate solution matches the exact results at Q = w because that was the
criterion used in selecting &, .

e Amplitude resonance (i.e., maximum amplitude) for the exact solution
occurs at Q = w , while for the approximate solutionitoccursatQ < w .

e The phase angle ¢, for @ = 0 is ¢, = tan~' 7 for the exact solution. For the
approximate solution, the phase angle is zero for Q = 0. This implies that motion
with rate independent damping can never be in phase with the forcing
function.

Response of system
with rate-independent damping

/T]:{:O
| _n=02

Rate-independent damping
= - - — Equivalent viscous damping

_-n=04

Deformation response factor

0
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Complex Stiffness

For simple harmonic motion, hysteretic damping can conveniently be expressed by using the
concept of complex stiffness.

k .
mil + (%)u + ku = pye

Response:
u = Ue
u = UGQe™ = (Qu
Damping force:
k
ho= (G)
k
= () aaw
= inku

Therefore:
mii + (1 + inku = pye’™
k

k=1 +in)k ComplexStiffness

The concept of complex stiffness applies only for harmonic
oscillations, and it is useful in taking account of rate-independent (i.e.,
hysteretic) damping when the analysis is carried out in the
frequency domain.
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HARMONIC VIBRATION WITH COULOMB FRICTION

(P,
u pN

7 k - @b

in(Qt
1, = Po Sin _
é VWA N =5 )
s e

(a) (b)

Equation of Motion:

mil + ku + sgn(it) (uN) = p, sin(Qt)
F

Even though the differential equation is linear over each time segment that (t) does not
change sign (i.e., over each time segment that the block moves in the same direction) the
problem is nonlinear.

An exact analytical solution for the steady-state response of the system subjected to
harmonic force was developed by J.P. DEN HARTOG (1930, 1931).

NOTE: It must be remembered that the friction force is passive one, which means that
it is able to oppose the motion but not to produce it.
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CASE II: Diagram of motion with stops

NOTE: For all cases the response of the system is periodic but non-
harmonic.

After the system has been in motion for some time a ‘steady-state’ will be reached which
must satisfy the following conditions:

1) The frequency of the motion must be the same as that of the disturbing
force.

2) The downward half-cycle of the motion must follow the same law as the
upward half-cycle.

Cases (1) & (11) above show two possible types of such motion.
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CASE (1):

When the friction force F is sufficiently smaller than p,, a continuous motion (i.e., the
block/mass never comes to a dead stop) will occur and a type of steady-state solution will
result.

For this type of motion the maximum displacement p is given by:

Po F\?
ot - () o
k Po

- 1
T 1 _ p2
where: { 1 1-F

kU = Etan <%)

In the attached [p/(po/k)] vs. B FIGURE, only the part of the diagram above the
broken line corresponds to the above formula.

Notice that:

o Visthe deformation response function of the un-damped SDOF system.

o |If F =0, the above expression for p reduces to the well known one for the un-
damped SDOF system.

e At the upper and lower peaks, the displacement curve suddenly changes
its curvature (see attached FIGURE, CASE 1). The explanation of this is that the
curvature is proportional to the second derivative. The second derivative of the
displacement is the acceleration, which is proportional to all the forces acting on the
mass. Since the frictional force suddenly reverses at the peaks, the curvature there
must show a discontinuous change.
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CASE (I): (continued)
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CASE (I): (continued)
Phase Resonance =1 Q = w:

A remarkable property of the above response/solution is that for

F T
— < —=(=10.785)
po 4

The response amplitude becomes infinitely large. In other words, even with considerable
amount of Coulomb friction, the amplitudes at resonance still extend to infinity.
This apparently paradoxical fact can be understood by considering the facts involved as

follows:
It can be demonstrated that at resonance (f = 1), and assuming that the condition

(i) < (E) is satisfied, the following relation is true:
Po 4

WF < Winput

That is, the energy dissipated in friction per cycle is less than the input energy.
Therefore, the displacement amplitude would increase cycle after cycle and grow without

bound.

The above behavior is quite different from that of a system with viscous
damping, or rate-independent damping. For these forms of damping, W, = cnQp? or
Wy = mnkp}, while the input energy is Wi, = popmsin(¢ =7) = popm . Thus, in these
cases, Wp & Wy, match each other at the steady-state amplitude p, which will be bounded
no matter how small the damping.

Coulomb friction Viscous damping

W inpue Wo Winput

Winput =Wp

Energy
X
Energy

p
|
Amplitude Amplitude
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CASE (I1):

f)‘ !\_ frict‘ion
B\

CASE II: Diagram of motion with stops

An increase in the friction force F will decrease the amplitude of motion and will also reduce
the curvature at point A (see FIGURE corresponding to CASE | above). When F reaches a
certain value, the curvature becomes zero, and for larger values of F than this, the motion of
FIGURE/CASE (l) above cannot exist and will be replaced by that of FIGURE/CASE (II).
During each half-cycle the mass m will stop moving for a while, and while stopping the value
of the friction force may be anything between +F and - F. Since the mass m during this
interval has no acceleration, then it follows that ku — sgn(i) F = p(t) . This last relation
determines the friction force F as shown in FIGURE/CASE (Il).
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CASE (I1): (continued)

NOTE: For CASE (I1) (i.e., one ‘stop’ per half cycle) it is possible to obtain an exact
solution, but it is not possible to put it into explicit form.

30—

_) o

204 e

b AT

GBS
T
=

Magnitication

1.0

More than one 'sto‘p'/é '

per half cycle

0
0 02 04 06

For Coulomb friction, the friction force F is constant, whereas f; and f¢ increase with
amplitude of displacement.

Thus, for large amplitudes the motion will be practically sinusoidal and the
‘equivalent viscous damping’ approximation should be very satisfactory. For
smaller amplitudes the curve of motion becomes very distorted and

consequently the ‘equivalent viscous damping’ approximation for the amplitude
is poor.

Below the intermittent line running Stop CASE (IT)

through the FIGURE, of the deformation
\ ,tt’me

response function (above), we have motions
with one ‘stop’ per half cycle.

Displacement
a—

In the blank part in the left half lower

i 'stop’
corner of the above FIGURE, the motion has iy 3

5 CASE (1II)
more than one stop per half-cycle (see §
CASE 111 above). No solution could be 3 P
obtained in that region. In practice, however, ‘g m time
we are interested only in the conditions near 8 b’

resonance.
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COULOMB DAMPING: Solution Using Equivalent Viscous Damping

(F)4l
u puN
TR T o
sin(Qt
TN IR - y
é p N
GIIII IV I I, ﬂ o
uN —uN
(a) (b}

Equation of Motion:

mil + ku + sgn(it) (uN) = p, sin(Qt)
F

The work done by the friction force per cycle of steady-state motion is:

Wy = 4Fp = 4(uN)p

Equivalent Viscous Damping:

p?mQce, = 4Fp
N— — N——r
energy loss per cycle energy loss Pef CJfCle
by viscous damping by Coulomb friction
It follows that:
4F
Ceq = prQ
Therefore:
£ = Ceq 2F
eq = =
T vkm mkpp
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Displacement response amplitude:

1

@)

Ja-m e ()

The above expression contains p on the right hand side also. Solving for p, we obtain:

The above result is valid, provided that ( ) < - ( 0.785) . For larger friction force,

the numerator becomes imaginary and the method breaks down. In fact, for reasonable
accuracy, (F/po) must be less than about (1/2) .

The FIGURE below shows a comparison of the exact solution (DEN HARTOG, 1931)
with the approximate one (i.e., equivalent viscous damping) for (F/po) =0.7.The
general conclusion is that the approximate solution applied to the constant-friction system

underestimates the amplitude below resonance, while above resonance the values it gives are

too large. In the resonance region the agreement is reasonably good.

H, e — = 0.7 (approximalion)
,\ — = Q.7 (exact solution)

below this curve

Stops occur
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The steady-state response of the equivalent viscous system (i.e., the approximation) is

represented as follows:

For the phase ¢ {

The phase is independent of g but it changes

where:

uss(t) = psin(Qt — @)
( 2
4F
__ (Po e (ﬂ_po)
p=(%) 1- B2
4F
= (750)
2
R EA

1

sign as B passes through 1.

the (+) sign appliesfor g < 1
the (—) sign applies for g > 1

A
|
|
|
|
Z |
ol |
2 E
S’
g I
B |
@ |
il
2 |
= |
£ |
< |
|
|
|
|
|
| 1 |
1 2 0 3
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A 4uN i
| TPy w
180 02
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