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MEASUREMENT OF DAMPING

Mass and stiffness of a dynamic system can be determined by its
physical characteristics, while an estimate of damping resistance can be
obtained by experimental measurements of the response of the structure
to a given excitation.

Experimental Evaluation Techniques of Damping Ratios:

e Free Vibration Decay

e Forced-Vibration Response:
0 Resonant Response
o Width of Response Curve & Half-Power Method
o Energy Loss per Cycle




Lecture Notes: STRUCTURAL DYNAMICS / FALL2011 / Page:2

Lecturer: Prof. APOSTOLOS S. PAPAGEORGIOU
SEOUL NATIONAL UNIVERSITY
PART (04): MEASUREMENT OF DAMPING

FREE VIBRATION DECAY — LOGARITHMIC DECREMENT:

u
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Free vibration of an under-damped system:

Let:
U & u(ty) = pe~$@tsin(wgt; + @)

Then:
2n - 2n 2n
u (tl + —) = pe foltargy) sin [a)d (t1 + w_) + <p]
d

sin(wqgt1+¢9)

The ratio u(t;) tou (tl + Z)—") provides a measure of the decrease in displacement
d

over one cycle of motion. The ratio is constant and
does not vary with time; its natural logarithm is called
logarithmic decrement and is denoted by 6.
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[For small valuesof ¢ ie., { K1 =>6d=2né &= %]
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If the decay of motion is slow, it is desirable to relate the ratio of two amplitudes
several cycles apart, instead of successive amplitudes, to the damping ratio.

W W U Us  Un
Un+1 Uy U3z Ugp Upyq
Therefore:
1
Snd:“ln( >=n6=n-2n
Un+1 1-— 52

It follows that:

\/(Znn)z + 62

For lightly damped systems (i.e., small §):

IR

o)
8, =né =n2nf = |& ﬁ

To determine the number of cycles elapsed for a 50% reduction in displacement
amplitude, we obtain:
In 2 0.11

n50%=ﬁ— 3
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The damping ratio & can be obtained from:

Accelerations are easier to measure than displacement. [The latter equation (i.e. the
equation involving accelerations) is (approximately) valid for lightly damped systems.]

or

The damped period T; = T//1 — &2 of the system can be determined from the free
vibration record by measuring the time required to complete one cycle of vibration.
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RESPONSE TO VIBRATION GENERATOR

' op() = (m,eQ?)sin(Qt)

Counter-rotating eccentric-weight vibration generator
Consider two counter-rotating masses, m,/2.
Harmonic force produced:  p(t) = (m,eQ?) sin(Qt)

Equation of motion (assuming m, < m = mass of structure):

m,eQ?
mii + ci + ku = (m,eQ?)sin(Qt) = u(t) = (ek—)Rd sin(Qt — @)
Po
Therefore:
(m,e0?) mee mee
=—7—Ra=——"(B’R) =——"Rq

2

. myew

ity = 02p = T2 (§7R,)

Ry , R,=PBR; , Ra:.BZRd

Acceleration response to vibration generator

10
8 I ¢=0.01
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meew?\ , 0
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0 1 2 0 3
Frequency ratio 8 = (a)
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FORCED-VIBRATION RESPONSE

Resonant Response:

At phase resonance, § = 1 & phase angle ¢ = g

Therefore, phase resonance can be detected by measuring the phase angle and
T

progressively adjusting the exciting frequency until ¢ = 2

om_ 1| 1(®)
Rd|ﬁ=1 - (%) = 28 = [§= 2 pp-

Usually, the acceleration amplitude ii, is measured and

Ui

P

Measurement of the phase angle may be somewhat difficult. Therefore, as an
alternative the resonance curve is obtained in the vicinity of resonance and the peak
response p,qx 1S measured. For viscous damping

_ Pmax _ 1

(Rd)max - (%) - 25\/1_762

The above equation can be used to obtain § from the measured value of p,,.. - For light
1(po/k)
2 Pmax

damping ¢ =
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Width of Response Curve Method:

A
Ry
mplitude Resonance (@ Bpeak =1 - 252)

3

Phase Resonance (@ 8 = 1)

(Rd)max

2
(Rd)max
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| |
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BaB1 1 BeB2
0
Frequency ratio, f§ = =

The width of response curve near resonance can be used to obtain an estimate of the

damping.

Measurement of frequencies Q; & ., at which ¢ = + G) = tangp = +1

. 2861 _ 28B,
Therefore: v 1& vk 1 =

1—[?12—2531=0}
1-p3 +26p,=0

= [e=20 - =5(-=)

The above method relies on the ability to measure the phase angle, which may
require sophisticated instrumentation.
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Half-Power Method:

Rd3 L mplitude Resonance (@ Break = W)
Phase Resonance (@ f = 1)
NOTE: (Ra)max
The ratio
2 ol Rma
Qp—Q,4 2¢ T

is referred to as the

quality factor and

is a measure of the

sharpness of the 1
response curve.

Y

| 1
BaB1 1 BgbB: 2

N
Frequency ratio, = |—

W) —

w
If the response curve in the vicinity of resonance has been plotted, the frequencies at which

the amplitude is (1/+/2) times that at the peak can be measured. As shown in the above
FIGURE there are two such frequencies, denoted Q, & Qp and the corresponding ratios 4 &

Bg. [The power (~p?) at B, p is half the power at Bpear> hence the name Half-
Power Method.]

1 1

1 1
Ra(Pan) = FRalBpear) = Topmmramre ~ imne

= B*—2(1- 269> +1-882(1-§2) =0

= pP=01-28)+2§J1-¢2

2
For small damping = g2 = (2)

w
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Therefore:

Qp — 1 1 -
o Ax2e = =SB - ) =5

w 2 w

The above equation is similar to the one obtained by the previous method. In fact, for small
damping 4 & By are very close to ; & 3,, respectively.
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EXAMPLE:

The steady-state acceleration amplitude of a structure caused by an eccentric-mass vibration
generator was measured for several excitation frequencies. These data are as follows:

Tvyvomta (Hz) Emtdayvvoig (1073g) Tvyvotnta (Hz) Emtdyvvog (1073 g)
1.337 0.68 1.500 7.10
1.378 0.90 1.513 5.40
1.400 1.15 1.520 4.70
1.417 1.50 1.530 3.80
1.438 2.20 1.540 3.40
1.453 3.05 1.550 3.10
1.462 4.00 1.567 2.60
1.477 7.00 1.605 1.95
1.487 8.60 1.628 1.70
1.493 8.15 1.658 1.50
1.497 7.60

Determine the natural frequency and damping ratio of the structure.

SOLUTION:

[en]

o0
—
it

P ot

2 7

o
a0l

14 L 1.6 13
Frequency,Hz

-
=
LS

Acceleration
amplitude 1073 X g

Natural frequency

Phase resonance (i.e., f = 1) occurs very near the peak (but not exactly at the peak).
However, for small damping it is reasonable to say that the frequency response curve peaks
at

|fa, = 1487 Hz|

where f,, is the natural frequency of the structure.

Damping ratio

The acceleration amplitude at the peak is ppeqr = 8.6 X 1073g.
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We draw a horizontal line at the level ppeak/\/f = 6.08 X 10~3g to obtain the two frequencies
fa& fginHz:

fa=1473Hz , fz=1507Hz
Then,

fo—fa 1507 — 1473

= 0.0114
2f, 2 x 1.487

&=
Therefore

T = 1.14%
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TRANSMITTED MOTION DUE TO SUPPORT MOVEMENT

A system mounted on a moving support will have some of the support motion transmitted to
it. Often the design of such a system requires that the transmitted motion be
minimized.

-
k =<
m 4 Y miitt (¢t)
1, (1) . + ycu®
o o o A A
(a) (b)

Let: uy (t) = G sin(Qt)
Then: ut(t) = u(t) +uy(t)
(The superscript ‘t’ stands for ‘total’; the subscript ‘g’ stands for ‘ground’)

Equation of Motion: mii + ¢t + ku =0

{mil +cu+ku = —mil,
mGQ? sin(Qt)

Steady-state Response: u . (t) = psin(Qt — @)

_ (mGQZ) 1
= T ) Japoreine
G £

T B2+ 22P)?
265
1-p2

where: =

tang =

(2$B)
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N

Amplitude ratio,

Y

Total displacement u!:
Gp?
t G sin(Qt) +
GO0 + gy + azpy?

ug(t)

{(1 = B?)sin(Qt) — (2B) cos(Qt)}
u(t)

- - 32)2G+ 2Ep)? {[1 - B2 + (2¢B)?] sin(Qt) — (2¢B3) cos(Qt)}

= x sin(Qt —y)

u

where:

1+ (2§p)? (2§B°)
x=G 22 ; & tany = 22 2
(1-B%)2+(28p) (1-B%)2*+(25B)
The amplitude ratio (x/G) vs. B is plotted above. The ratio ()x/G) is referred to as
displacement transmissibility.

The rotating vector representation can also be used quite effectively to obtain the total
displacement u' (see FIGURE above):
x? = G?+ p?—2Gpcos(m— @)
= G? + p? +2Gpcos @

_ a-p
J@ =22 + (28)2
Phase angle y between G & y is obtained by applying the cosine identity to the triangle

A (OPQ): p> = G*+ y* — 2Gy cosy. This leads to the same value of y as the one derived
above.

where cos @
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TRANSMISSIBILITY AND VIBRATION ISOLATION

In practical design it is frequently required that the dynamic forces transmitted by a machine
to its surroundings be minimized.

(Force Isolation)

Total transmitted force F (assuming steady-state response):

F = fs+ /o
= kpsin(Qt — @) + cQp cos(Qt — @)
= Fysin(Qt — ¢ + 1)

Fo = y/(kp)? + (c2p)?

where: cQ
tann = —
ann = —
: _ (Po 1 c_Z
We know that: p= (k) T BECTIIT & il

It follows that:

o 1+ (2¢p)?
0 TP A=+ 2B
tann = 2&0

Note that the force balance diagram, along with the concept of rotating vector
representation, can be utilized effectively to obtain the transmitted force F (see
FIGURE below).

Im
|
Po Sit](ﬂt)
QQ
'J;,-(E) . (E)é \Q\// |fpl =c2p
A e
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Transmission Ratio
or

Force Transmissibility (TR);

FU)
Po

Amplitude ratio, (

R | 1+@p
TRy =3 = (A= g2 + @epy

(TR)s is a measure of the force
transmitted to the foundation

Note that the ratio (Fy/py) is the same as the ratio (y/G) that we derived for the
‘Transmitted motion due to support movement’.

If the transmitted force |F| = F, is to be smaller than the applied
force p,, the natural frequency w should be selected so that the

frequency ratio 8 = (Q/w) > V2 .

Also, for g > /2, the transmission ratio decreases with damping, so that theoretically,
zero damping will give the smallest transmitted force. In practice, however, some
damping should always be provided to ensure that during startup as the
machine passes through the resonant frequency, the response is kept within
reasonable limits.
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MEASUREMENT OF ACCELERATION — ACCELEROMETER

)
-
e
g
S t
E
T T, 7 TR =
ug(t)
Let: iy (t) = Asin(Qt)
Equation of Motion: mii + ctt + ku = —mA sin(Qt)

Steady-state response:  ug(t) = psin(Qt — ¢)

— (m_A) _r
P =) o peraepy
268
1-p2

where:

tang =

If the instrument is to be designed to measure an input acceleration which may, in
fact, have several harmonic components of different frequencies, the measured
displacement u(t) should be proportional to the input for all values of the input
frequency.

p 1 1

A 0 [(1= 22 + (2¢h)2

For a satisfactory instrument design, (pw?/A4) should not vary with 3.

For £ =0.7, (pw?/A) stays approximately constant at a value of 1, provided that 0 <
B<06.

The time shift for one harmonic is:

26 ) Lt (22 )

1
ty = ?_ tant —tan"!(——
) 1-p2) " wp 1-p2

Q
Itis required that ¢, = % not vary with g.

For § =0.7, (¢/Q) is practically constant, i.e., ¢ is a linear function of Q and hence
of B (see attached FIGURE).
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Variation of R;and @with f = (/w)

1.05 T 1
L N\§=06
) N\
- 064
Ry ' —=— "
TN AN \ ]
N N07 N\ X
N0-75 \,
4 88 | N NC N TN _
0.0 0.2 0.4 0.6 0.8 1.0
90°
0.75
(p 45° | . 0.64 -
Linear £-06
0° : . : .
0.0 0.2 0.4 0.6 0.8 1.0
Frequency ratio 8 = (Q/w)
(pw?/A) (¢/B)
B
E=0 §=0.7 $=0.7
0 1.00 1.000 1.400
0.1 1.01 1.000 1.405
0.2 1.04 1.000 1.419
0.3 1.10 0.998 1.442
0.4 1.19 0.991 1.470
0.5 1.33 0.975 1.502
0.6 1.56 0.947 1.533
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EXAMPLE:

Investigate the output of the accelerometer with damping § = 0. 70 when used to measure
ground motion with the ground acceleration i, (t) given by:

ilg (t) = Y1 Sin(ﬂlt) + YZ Sin(ﬂz t)

For §=10.7, ((p = G) (%)) (where w is the natural circular frequency of the

accelerometer), so that:

n=@() & w=00)

[The natural circular frequency w of the instrument has been selected so that w > Q4,Q,.]

. iy o0 T (Qq\]
Y, sin(Qqt) — |Accelerometer|— (—2> sin |Q,t — = (—)
w I 2\w/]

1 YZ ] T -Qz 1
Y, sin(Q,t) — |Accelerometer|— (w_> sin QZt_E(Z)

. sin(@8) <%) sin [Ql (t — %)]
-+ — |Accelerometer| — +
Y, sin(Q,t) (%) sin [Qz (t - %)]

Because the time functions in both terms are equal to (t - i) , the shift of both

components along the time axis is equal. Thus, the instrument faithfully reproduces
(within a multiplicative factor w?) the ground acceleration ity (1) .




Lecture Notes: STRUCTURAL DYNAMICS / FALL2011 / Page: 18
Lecturer: Prof. APOSTOLOS S. PAPAGEORGIOU
SEOUL NATIONAL UNIVERSITY
PART (04): MEASUREMENT OF DAMPING

MEASUREMENT OF DISPLACEMENT — DISPLACEMENT METER

The transducer must be designed so that the spring is so flexible or the mass so large, or
both, that the mass stays still while the support beneath it moves. Such an instrument is
unwieldy.

% ' 1 ' 2 ' 3

180

Phase angle ¢
w
DO

4]

0 1 2 3
Frequency ratic g =(Q/w)

Support Displacement:  u,(t) = ug, sin(Qt) = iy (t) = —uy, Q2 sin(Qt)

mit+ci+ku=0 = mil + cu + ku = —miigy (t)
Equation of Motion: = mii + cu + ku = mugy, Q2 sin(Qt)
(Perr),
(p ) sin(Qt) — Displacement S psin(Qt — @)
ef1 /o Meter
(peff) mugo0? Q\?2
where: p=—210Ry =" Ry = ug, (2) Rg = ugoRa

For B = (%) > 1 (i.e., sufficiently large), R, = 1 (i.e., independent of 8) and ¢ = m (for
sufficiently small damping). This implies that although the measured motion is
negative of the input motion, there is no shift along the time axis and the output
motion, comprised of any number of harmonic components, will be reproduced
correctly.



