Lecture Notes: STRUCTURAL DYNAMICS / FALL 2011 / Page:1
Lecturer: Prof. APOSTOLOS S. PAPAGEORGIOU
SEOUL NATIONAL UNIVERSITY
PART (03): VISCOUSLY DAMPED SDOF SYSTEM: RESPONSE TO HARMONIC EXCITATION

VISCOUSLY DAMPED SDOF SYSTEM:
RESPONSE TO HARMONIC EXCITATION

HARMONIC VIBRATION OF UNDAMPED SYSTEMS:

Equation of Motion: mii + ku = p, sin(Qt)
Initial Conditions: uy=ult=0) & u,=ult=0)
Solution: u(t) = up(t) + uy(t)

For a particular solution, we try: u,(t) = G sin(Qt)

Substitution in the Equation of Motion:

G (k — mQ?) sin(Qt) = p, sin(Qt)
(4]

= k—m) @)

= G

Therefore:
Do
(k —mQ2)
up (1)

u(t) = Acos(wt) + Bsin(wt) +
up(t)

sin(Qt)

NOTE: The complementary solution uy,(t) represents a fraction of the transient part of
the solution, and for the slightest amount of damping resistance it dies out with time.
This will become evident when we consider damped harmonic response.

The unknown constants A & B are determined so that u, (t) + u,(t) satisfies the initial

conditions u, & 1,. The reader is warned against simply assumingA =uy, & B = % .



Lecture Notes: STRUCTURAL DYNAMICS / FALL 2011 / Page:2
Lecturer: Prof. APOSTOLOS S. PAPAGEORGIOU
SEOUL NATIONAL UNIVERSITY
PART (03): VISCOUSLY DAMPED SDOF SYSTEM: RESPONSE TO HARMONIC EXCITATION

Introducing the initial conditions, we obtain:

u(t) = ugcos(wt) + [1:5 (Po (1 g )] sin(wt) + (Po) D) sin(Qt)

TRANSIENT STEADY—STATE

where: ﬂ —

freguency ratio

Sl =

Transient Vibration:

It depends on uy & 1,

Itexistsevenifu, =1u,=0

Steady-State Vibration:

It may be expressed as follows,

1
u(t) = (use)o 1—p? )sm(Qt)

where:

(Us)o = I]’(_o static deformation
Therefore:
t = Ot —
u’( ) (uSt)O |1 ,32| Sln( (p)
(use)o Rq sin(Qt — @)
p sin(Qt — @)
where:

deformation (or displacement)

Ra = response factor
_ 0 O<w
@ = {n < phase angle
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By following a procedure identical to that outlined above, it can be shown that when the
excitation is

p(t) = po cos(Qt)

the steady-state response is given by

uss(t) = (@

1
X ) (1——ﬁ2) cos(Qt)

and the total response is given by

u(t) = [uo — (Po (1 g )] cos(wt) + sm(wt) + (po) a 1,82) cos(Qt)

TRANSIENT STEADY—-STATE

~ ("] NN L]
T

(1- 8%

0 1 2 3
Frequency ratio f8
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Deformation response factor
and phase angle (¢ = 0)
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RESONANT RESPONSE OF AN UNDAMPED SYSTEM:

We assume that the system starts from rest, i.e., u, = 1, = 0 and that:
p(t) = po sin(€2t) = p, sin(Bwt)
Then:

1
u(t) = (Z;{—O)m [sin(Bwt) — B sin(wt)]

Resonance < £ =1:

. (Do wt cos(Bwt) —sin(wt)  ['Hospital's
limu(t) = lim (—)
B-1 B-1\k —2f Rule
1 /Doy, .
= (—) [sin(wt) — wt cos(wt)]
2\k
A
10— /f’
8 e =
6 =T
c:l. gl ///
® = | I I L I L >
= ~. T 2 3 4m 5w 67 wt
78__
-10p

The response is periodic with period (%") . The amplitude of the response continues to

grow indefinitely. It should be recognized that after a short time the second term
represents a good approximation to total response, i.e., u(t) = —;’—;wt cos(wt).

A measure of the rate of growth may be obtained by taking the difference of amplitude at two
successive peaks:

u=§_zw2tsin(wt) & wt=nt (n=012-)

nm

Peaks occur at t = -

2m  nmy _ o (PT) _ _Po — 4P
u(w+w) u(w) 2kZiTcos(mt) ikn
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For general (i.e., not necessarily zero) initial conditions, the response to p(t) = p, sin(wt) is
given by

u
u(t) = ug cos(wt) + ;Osin(wt) + Z_loc [sin(wt) — wt cos(wt)]

Then:
. . . Poa)z .
u(t) = —ugw sin(wt) + 1y cos(wt) + T t sin(wt)
For large t:
u(t) = — mt cos(wt)
2k
and

a) =P

2
ow .
T t sin(wt)

Notice that u(t) is “in phase” with (t) = p, sin(wt) and, consequently, power input is
always positive:

Power . -~ pow? . 2
input p(Hu(t) = T t sin“(wt)
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RESONANT RESPONSE OF AN UNDAMPED SYSTEM (continued):

Alternative derivation of the response:

Excitation: p(t) = p, sin(Qt)

Initial Conditions:  u(0) =u(0) =0

Response: u(t) = (%) ( 1ﬂ 2> [sin(Qt) - (%) sin(cut)]

1-(2)

When the forcing frequency Q is equal to or very close to the natural frequency w of the system,
then we proceed as follows:

Let: w—0=2¢ (e=small quantity)

We may re-write the response in the following form:

2

u(t)

(p_o) @ {w 0 [sin(Qt) — sin(wt)] + -

ozl 2 [sin(Qt) + sin(wt)]}

(};(—O) 2 f 02 {(a) + Q) cos @ -;w)tsin @ —za))t + (w — Q) sin @ -;w)t cos @ —Za))t}
= - (;;c_o)%{siniet) cos[(w — &)t] — cosEst) sin[(w — s)t]}

Evaluating the above equation in the limit, as € — 0, we have:

lgi_r)ré u(t) = — % (%) {wt cos(wt) — sin(wt)}

In phase-angle form, this expression becomes:

_ Po
u(t) = — (F) p cos(wt — @)
1 -1
where p = Ew/(wt)z +1 & ¢@=tan™’ (E)

Therefore, in the limiting case when Q = w, the amplitude of vibration p increases
indefinitely with time (see FIGURE).
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—%[(wt) cos(wt) — sin(wt)]

The solid curve is a dimensionless plot of equation:

. _ 1o .
il_l:[(l) u(t) = — 3 (7) {wt cos(wt) — sin(wt)}
whereas the dashed curve is a similar plot of the first term only.

It can be seen that after a short time the first term represents a good approximation
to total response, as follows:

Po

I ~_2
g‘i‘é“(t):_i(k

) t cos(wt)

The curve in the FIGURE shows that the system theoretically attains an infinite amplitude of
forced vibration at resonance in the absence of damping, but this amplitude requires infinite
time to build up.
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u »42;7-5

When the frequency, Q, of the forcing function, is close to (but not exactly equal to) that of
the vibrating system, a phenomenon known as beating may be observed.

Equation,

w(©) = — (@)%{sin(et) cos[(@ — )¢] — cos(et)

. sin[(w — s)t]}

represents this situation, and we may obtain a good approximation to the response by
considering a simplified form of the first term, as follows:

u(t) = — (%) %siniet) cos(wt)

Because the quantity € is small, the function sin(et) varies slowly; and its period, equal to
(2m/¢), is large. Therefore, the above expression may be recognized as representing vibrations
with period (2r/w) and a variable amplitude equal to (w/2¢&)(py/k) sin(et). This kind of
vibration builds up and diminishes in a regular pattern of beats, as indicated in the FIGURE.
The period of beating, equal to (it/¢), increases as Q - w (i.e., as € —» 0). At resonance,
the period of beating becomes infinite.

NOTE: The phenomenon of beats is hot uncommon in engineering structures. For example, see
the following references:

Lin, B.C. and A.S. Papageorgiou (1989). “Demonstration of Torsional Coupling Caused by Closely Spaced
Periods: 1984 Morgan Hill Earthquake, Response of the Santa Clara County Building”, Earthquake
Spectra, Vol. 5, No. 3, pp. 539-556.

Papageorgiou, A.S. and B.C. Lin (1989). “Influence of Lateral-Load-Resisting System on the Earthquake
Response of Structures - A System Identification Study”, Earthquake Engineering and Structural
Dynamics, Vol. 18, pp. 799-814.
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HARMONIC VIBRATION WITH VISCOUS DAMPING:

Equation of Motion: mil + cu + ku = p, sin(Qt)
Initial Conditions: uy=ult=0) & u,=ult=0)
Solution: u(t) = up(t) + up(t)

As a particular integral, we try a solution of the form:
u(t) = G, cos(Qt) + G, sin(Qt)

Introducing the above trial solution in the Equation of Motion, we obtain:

[—G,19%m + G,Qc + Gk] cos(Qt) + [-G,Q%m — G,Qc + Gyk]sin(Qt) = p, sin(Qt)
2 _
{—G1QZm +G0c+ Gk = 0 } _ (1 =BG + 286G, = z?
—G,0%°m — G, Qc + G,k = p, —28BG, + (1= BHG, = 70
I{G - (@) —288
' k7 (1= B2+ (28B)?

| _ (Po (1-p%
& = (Pa—prramy

~ Particular Solution:

_ (Po 1
w® = () =g

{(1 = B?)sin(Qt) — 2&B cos(Qt)}
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Complete Solution:

u(t) = up(t) +up(t)

e 59 A cos(wgyt) + B sin(wgt)}
TRANSIENT [u;(0)]
+

1
(O a4~ #9sin@) — 266 cos(an)

STEADY—STATE [ugs(t)]

(
u(t) = {
l

Introducing the initial conditions uy, & 1, , we obtain:

_ Po 28p
4 = ﬁoﬁ—ﬁﬁ+@$ﬁ+%

_ Poy ([ 2887 = B(1-B?) Uy + Swilg
B ‘(?xaﬂu—mﬂ+mm4+ i

Therefore, the total response is expressed as follows:

( e~fwt {uo cos(w,t) + o + Sty sin(wdt)}
d
TRANSIENT (related to IC)
+
_ I e st @ .
u(t) = o (f) T TG {253 cos(wyt) + (w_d> [2B€% — B(1 — B?)] sm(wdt)}

TRANSIENT (related to loading)
+

p sin(Qt — @)
~—_——————————
\ STEADY—STATE
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Particular Solution/Integral:

Po) 1
k) (1-B2)7 + (2¢p)?

uy(8) = ( {(1 = B?) sin(Qt) — 2¢B cos(Qt)}

The phase-angle form of the particular solution:

u,(t) = psin(Qt — @)
e
where { V(- ﬂ;)z + (2¢p)?
| tang = §ﬁ2
\ 1-8

Displacement (or Deformation) Response Factor:

1
Rdg p = p =

(sdo  (B0) (- D)7 + (22p)?

(2$B)
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Amplitude Resonance < ml?XRd(ﬁ,f)

QRa(BE)  1-4B(1—B?) + 4B(262)
Ra(B, VIR E . =0
mpxRaB) = g 21— g2y + 2ep) T2

= .Bpeak = 1- 252

1

(R max = m

[NOTE: Observe that for & > % no peak occurs for R;.]

Phase Resonance < f=1 ie. Q=w

1

Ry(B=1,¢) = 2

Notice that R;(B = 1,¢) < (Rg)max » 1-€., the maximum steady-state response is achieved
at amplitude resonance and not at phase resonance.

It must be recognized, however, that the largest deformation peak may occur before the
system has reached steady-state.
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Deformation response factor and phase angle
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Response to sinusoidal force with Q = w (¢ = 5%)

Envelope curves Steady -state amplitude

LA H\N‘uﬁ /Y\NK\

-10 (

u(t)] 20

@I (%s)

0 | T T T |
0 10 20 30 40 50

j = number of cycles
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We examine the rate at which the steady-state is attained in the case of phase
resonance,ie.,f =1 Q = w.

Consider the viscously damped SDOF system starting from rest and subjected to p(t) =
po sin(Qt). The complete response is:

u(t) = (%0) (%) {e—s‘wt [Cos(wdt) + \/%_fzsin(a)dt)] - cos(wt)}

_i)_/
= steady—state
response
amplitude
For lightly damped systems (i.e., § « 1) the term [ f_fz sin(wdt)] issmall and w,; =
w/1—§% = @ ; thus:
—Ewt |ui| —2m¢;
u(t) Ep(e fwt _ 1)cos(a)t) = |—=1-e"""
envelope p
function

where: u; = peak amplitude after j cycles of vibration.
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COMPLEX FREQUENCY RESPONSE FUNCTION

SDOF System with Viscous Damping:

Equation of Motion: mii + cu + ku = p(t)
——

1.ei.(2t

Steady-State Response: |1 (t) = H,(Q)e™*t

e The real part of H,(Q2)e'® represents the response to the real part of (1-e'),i.e.,

Re{l-e' ¥} —|[SDOF]- Re{H,(Q)e'}

e The imaginary part of H,(Q)e'™ represents the response to the imaginary part of
(1-€'%),ie.,

Im{1-e¥} —[SDOF|- Im{H,(Q)e!"}

Introducing ug(t) = H,(Q)e™** in the Equation of Motion, we obtain:

H, (e (—0%m + iQc + k) = e'¥

Y 1
= Hu( )_(E) (1—B2) +i(28B)

H,(Q) = Complex Frequency-Response Function (the subscript denotes that the
function describes the amplitude of the (harmonic) displacement).

NOTE: Complex frequency-response functions can be similarly derived for other response
guantities, quantities, e.g., velocity i, acceleration it , elastic restoring force f¢ = ku , etc.

Notice that H,,(Q) , being a complex number, may be expressed as follows:

H,(Q) = [Hy, (Q)]e™"?

1

%) 1
|Hu(Q)| = =(7]|R
where: J (1 = B2)2 + (2¢B)2 ( ) ¢
_ —Im[H, ()] (28B)

B0 = e Hy (@] (1 - B
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System Linearity (Superposition Principle):
1- el — [SDOF | — H,(Q)e™
po - e" — [SDOF| — po - H, (Q)e' ¥

D (o)~ t) —EDOFl— ) (o), - Hu(®)e™™")

] J
forcing fu'nction p(®) steady—state 1:esponse ugs(t)

Therefore, the steady-state response u(t) to p(t) = (o) jeiﬂf‘ may be expressed as follows:

w0 =) (o) Hu(@)ei®t

]
= S oo @)]e e
J
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VECTOR AND COMPLEX NUMBER REPRESENTATION OF HARMONIC MOTIONS

(Im)

‘\QX

X sin(Qt) Ot

Xcos(at) | (Re)

It is convenient to represent a harmonic motion by means of a rotating vector of constant
magnitude X at a constant angular velocity Q.

A mathematically convenient way to represent such a rotating vector is using a complex number
representation in the complex (Argand) plane as follows:

z = Xcos(Qt (X sin(Qt
Q) + ( )} phasor (= phase vector)
— Xelﬂt
The projection of the rotating vector on the real — (horizontal—) axis is:
Re[Xe'M] = X cos(Qt)

The projection of the rotating vector on the imaginary — (vertical—) axis is:

Im|[Xe"M] = X sin(Q¢)
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i
(Im) g
2
X
X 0x
Ot
(Qt)
(Re)
=X

If a harmonic displacement is x(t) = X cos(Qt) , then:
Displacement: x(t) = Re[Xe'¥] = X cos(t)
Velocity: () = Re[iXe!®] = Re [QXei(“”%)] = QX cos (Qt + g)
Acceleration: X(t) = Re[(i0)?Xe'] = Re[Q2Xe! @+ D] = 02X cos(Qt + 1)

NOTE: Recall that, i = ei@, and 2 = i1 = el3) . ¢!3) = ¢iG*3) = i

The representation of displacement, velocity and acceleration by rotating vectors
is illustrated in the FIGURE above.

Since the given displacement x(t) = X cos(Qt) is a cosine function, (i.e., the projections of the
corresponding rotating vector along the real axis), the velocity and acceleration must be also
along the real axis. Hence the real parts of the respective rotating vectors give the physical
guantities at a given time t.

If the given harmonic displacement is a sine function (i.e., x(t) = X sin(Qt)), then the physical
guantities at a given time t are the imaginary parts of the respective rotating vectors (i.e.,
projection of vectors on the vertical axis).
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Addition Of Two Harmonic Motions

(Im) (Im)
-s\g‘ X
X;sina
%, X
X, cosa :
X1 @ 7 X,sina
(Re) X, X,cosa (Re)
X cos(Qt + B)
Vector addition Vector addition with 2t = 0

Harmonic motions can be added algebraically (and graphically/geometrically) by
means of vector addition.
As an example, let us consider two harmonic motions having the same circular

frequency Q:

x1(t) = X; cos(Qt) x,(t) = X, cos(Qt + a)
The complex number/vector representation is:
z, = Xleiﬂt Z, = Xzei(ﬂ.t+a)
The sum of the above two harmonic motions/functions may be expressed as follows:
z = z1 + z,

Xleiﬂt +Xzei(ﬂt+a')
(X1 + X,e'@)eit
= (X;+X,cosa + iX, sina)e'
XelB ittt
Yelt+p)

X= \/(Xl + X, cos a)? + (X, sin a)?
where: B = tan! X, sina
X1 +X,cosa
Since the given harmonic motions, x4 (t) & x,(t) , are along the real axis, their sum is:
x(t) = Re[z] = Re[Xe!@W+A)] = X cos(Qt + B)
Evidently, the sum of two harmonic motions of the same frequency, but with
different phase angles, is itself a harmonic motion of the same frequency.

However, the sum of two harmonic motions of different frequencies is not harmonic
or, in general, periodic.
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FORCE-BALANCE DIAGRAM OF STEADY-STATE RESPONSE

p(t) = pee™*t — — U (t) = pet@t=9)
= () ke
where: = tan™? (1(2_5'[;,)) 0<¢p<n)
Spring Force: fo = kug(t) = kpelt-9
Damping Force: fo = cig®) = cpQell®eti)
Inertia Force: fi = mi(t) = mpQlel@t-o+m)

To compare the magnitudes of fg, fp, f; for the various ranges of g = (%) , divide the
magnitudes of the vectors by k:

: Ifsl _ IfDI Ifil _ p2 PO _ po
e, —==p , =28pp , -=BP , Y —=7
and recall that: fi+ fp+fs—p =0, (dynamic equilibrium)
(Im) (Im) (Im)
o o vy
= =0 - [ =0 ;=50
£ =\C . AP f P
D
ar = kP oo TSl fsﬁkp i i_sﬁkp
@ P he P PoN| ¢ P
e, 3 e, ; e, -
(Re) (Re) (Re)

B )= (5)>
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RESPONSE TO PERIODIC LOADINGS

Any periodic loading of period T, [i.e., p(t + nTy) = p(t)] can be written as a sum of
exponentials:

+oo
PO = ) Cpeinfor
n=-—oo
0 = 2T
0=
where: 1 To
C,=—| p(t)e ™t gt
Ty
0

For real periodic functions p(t): C_, = C;,

(the “*” indicates complex conjugate)

We recall that:

p(t) =1-e —|[SDOF|— uy(t) = H,(Q)e
1

H,(Q) = ! .
where: u( )_<E) (1-pB2)+i(2¢B)

complex frequency response

Therefore, the steady-state response to a periodic loading p(t) is given by
superposition:

+00 +o
Z C,en%t  _[SDOF] — Z C, H, (n€y)e %t

n=—oo n=—oo

p(t) ugs(t)




