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VISCOUSLY DAMPED SDOF SYSTEM: 
RESPONSE TO HARMONIC EXCITATION 

 

HARMONIC VIBRATION OF UNDAMPED SYSTEMS: 

Equation of Motion:  𝑚𝑢 𝑘𝑢 𝑝 sin Ω𝑡  

Initial Conditions:   𝑢 𝑢 𝑡 0 & 𝑢 𝑢 𝑡 0  

Solution:    𝑢 𝑡 𝑢 𝑡 𝑢 𝑡  

For a particular solution, we try:  𝑢 𝑡 𝐺 sin Ω𝑡  

Substitution in the Equation of Motion: 

𝐺 𝑘 𝑚Ω sin Ω𝑡 𝑝 sin Ω𝑡

⟹ 𝐺
𝑝

𝑘 𝑚Ω
Ω 𝜔  

 

Therefore: 

𝑢 𝑡 𝐴 cos 𝜔𝑡 𝐵 sin 𝜔𝑡
𝒖𝒉 𝒕

𝑝
𝑘 𝑚Ω

sin Ω𝑡

𝒖𝒑 𝒕

 

 

NOTE: The complementary solution 𝒖𝒉 𝒕  represents a fraction of the transient part of 
the solution, and for the slightest amount of damping resistance it dies out with time. 
This will become evident when we consider damped harmonic response.  

________________ 

The unknown constants 𝐴 & 𝐵 are determined so that 𝑢 𝑡 𝑢 𝑡  satisfies the initial 

conditions 𝑢  & 𝑢 . The reader is warned against simply assuming 𝐴 𝑢   &  𝐵  . 
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Introducing the initial conditions, we obtain: 

𝑢 𝑡 𝑢 cos 𝜔𝑡
𝑢
𝜔

𝑝
𝑘

𝛽
1 𝛽

sin 𝜔𝑡

𝑻𝑹𝑨𝑵𝑺𝑰𝑬𝑵𝑻

𝑝
𝑘

1
1 𝛽

sin Ω𝑡

𝑺𝑻𝑬𝑨𝑫𝒀 𝑺𝑻𝑨𝑻𝑬

 

where:       𝜷
𝛀

𝝎
      frequency ratio 

 

Transient Vibration: 

It depends on 𝑢  & 𝑢  

It exists even if 𝑢 𝑢 0  

 

Steady-State Vibration: 

It may be expressed as follows, 

𝑢 𝑡 𝑢  
1

1 𝛽
sin Ω𝑡  

where: 

𝑢
𝑝
𝑘

static deformation 

Therefore: 

𝑢 𝑡 𝑢  
1

|1 𝛽 |
sin Ω𝑡 𝜑

𝑢  𝑅 sin Ω𝑡 𝜑
𝜌 sin Ω𝑡 𝜑

 

where: 

𝑅
deformation or displacement

response factor

𝜑 0 Ω ω
𝜋 ω Ω

phase angle

 

 

  



Lecture Notes: STRUCTURAL	DYNAMICS   /     FALL 2011   /   Page: 3 
Lecturer: Prof.  APOSTOLOS	S.	PAPAGEORGIOU	

SEOUL	NATIONAL	UNIVERSITY	
PART	(03):	VISCOUSLY	DAMPED	SDOF	SYSTEM:	RESPONSE	TO	HARMONIC	EXCITATION 

 
By following a procedure identical to that outlined above, it can be shown that when the 
excitation is 

𝑝 𝑡 𝑝 cos Ω𝑡  

the steady-state response is given by 

𝑢 𝑡
𝑝
𝑘

1
1 𝛽

cos Ω𝑡  

and the total response is given by 

𝑢 𝑡 𝑢
𝑝
𝑘

1
1 𝛽

cos 𝜔𝑡
𝑢
𝜔

sin 𝜔𝑡

𝑻𝑹𝑨𝑵𝑺𝑰𝑬𝑵𝑻

𝑝
𝑘

1
1 𝛽

cos Ω𝑡

𝑺𝑻𝑬𝑨𝑫𝒀 𝑺𝑻𝑨𝑻𝑬
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RESONANT RESPONSE OF AN UNDAMPED SYSTEM: 

We assume that the system starts from rest, i.e., 𝑢 𝑢 0 and that: 

𝑝 𝑡 𝑝 sin Ω𝑡 𝑝 sin 𝛽𝜔𝑡  

Then: 

𝑢 𝑡
𝑝
𝑘

1
1 𝛽

sin 𝛽𝜔𝑡 𝛽 sin 𝜔𝑡  

Resonance  ⟺ 𝜷 𝟏: 

lim
→

𝑢 𝑡 lim
→

𝑝
𝑘

𝜔𝑡 cos 𝛽𝜔𝑡 sin 𝜔𝑡
2𝛽

𝐿 𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙 𝑠
𝑅𝑢𝑙𝑒

1
2

𝑝
𝑘

sin 𝜔𝑡 𝜔𝑡 cos 𝜔𝑡
 

 

The response is periodic with period  
𝟐𝝅

𝝎
 . The amplitude of the response continues to 

grow indefinitely. It should be recognized that after a short time the second term 

represents a good approximation to total response, i.e., 𝑢 𝑡 ≅ 𝜔𝑡 cos 𝜔𝑡 . 

A measure of the rate of growth may be obtained by taking the difference of amplitude at two 
successive peaks: 

𝑢
𝑝
2𝑘

𝜔 𝑡 sin 𝜔𝑡 ⟺ 𝜔𝑡 𝑛𝜋 𝑛 0,1,2, ⋯  

∴ Peaks occur at   𝑡   

∴  𝑢 𝑢 2𝜋 cos 𝑛𝜋 𝜋 
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For general (i.e., not necessarily zero) initial conditions, the response to 𝑝 𝑡 𝑝 sin 𝜔𝑡  is 
given by 

𝑢 𝑡 𝑢 cos 𝜔𝑡
𝑢
𝜔

sin 𝜔𝑡
𝑝
2𝑘

sin 𝜔𝑡 𝜔𝑡 cos 𝜔𝑡  

Then: 

𝑢 𝑡 𝑢 𝜔 sin 𝜔𝑡 𝑢 cos 𝜔𝑡
𝑝 𝜔

2𝑘
𝑡 sin 𝜔𝑡  

For large 𝒕: 

𝑢 𝑡 ≅
𝑝 𝜔
2𝑘

𝑡 cos 𝜔𝑡  

and 

𝑢 𝑡 ≅
𝑝 𝜔

2𝑘
𝑡 sin 𝜔𝑡  

Notice that 𝑢 𝑡  is “in phase” with 𝑡 𝑝 sin 𝜔𝑡  and, consequently, power input is 
always positive: 

𝑷𝒐𝒘𝒆𝒓
𝒊𝒏𝒑𝒖𝒕 𝑝 𝑡 𝑢 𝑡 ≅

𝑝 𝜔
2𝑘

𝑡 sin 𝜔𝑡  
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RESONANT RESPONSE OF AN UNDAMPED SYSTEM (continued): 

Alternative derivation of the response: 

Excitation:  𝑝 𝑡 𝑝 sin Ω𝑡  

Initial Conditions: 𝑢 0 𝑢 0 0 

Response:  𝑢 𝑡 sin Ω𝑡 sin 𝜔𝑡  

When the forcing frequency 𝛀 is equal to or very close to the natural frequency 𝝎 of the system, 
then we proceed as follows: 

Let:   𝜔 Ω 2𝜀 (𝜀 = small quantity) 

We may re-write the response in the following form: 

𝑢 𝑡
𝑝
𝑘

𝜔
𝜔 Ω

𝜔 Ω
2

sin Ω𝑡 sin 𝜔𝑡
𝜔 Ω

2
sin Ω𝑡 sin 𝜔𝑡

𝑝
𝑘

𝜔
𝜔 Ω

𝜔 Ω cos
Ω 𝜔 𝑡

2
sin

Ω 𝜔 𝑡
2

𝜔 Ω sin
Ω 𝜔 𝑡

2
cos

Ω 𝜔 𝑡
2

𝑝
𝑘

𝜔
2

sin 𝜀𝑡
𝜀

cos 𝜔 𝜀 𝑡
cos 𝜀𝑡
𝜔 𝜀

sin 𝜔 𝜀 𝑡

 

Evaluating the above equation in the limit, as 𝜀 → 0, we have: 

lim
→

𝑢 𝑡
1
2

𝑝
𝑘

𝜔𝑡 cos 𝜔𝑡 sin 𝜔𝑡  

In phase-angle form, this expression becomes: 

𝑢 𝑡
𝑝
𝑘

𝜌 cos 𝜔𝑡 𝜑

where 𝜌
1
2

𝜔𝑡 1 & 𝜑 tan
1

𝜔𝑡

 

Therefore, in the limiting case when 𝛀 𝝎, the amplitude of vibration 𝝆 increases 
indefinitely with time (see FIGURE). 
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The solid curve is a dimensionless plot of equation: 

lim
→

𝑢 𝑡
1
2

𝑝
𝑘

𝜔𝑡 cos 𝜔𝑡 sin 𝜔𝑡  

whereas the dashed curve is a similar plot of the first term only. 

It can be seen that after a short time the first term represents a good approximation 
to total response, as follows: 

lim
→

𝑢 𝑡 ≅
𝜔
2

𝑝
𝑘

𝑡 cos 𝜔𝑡  

The curve in the FIGURE shows that the system theoretically attains an infinite amplitude of 
forced vibration at resonance in the absence of damping, but this amplitude requires infinite 
time to build up. 

 

  



Lecture Notes: STRUCTURAL	DYNAMICS   /     FALL 2011   /   Page: 9 
Lecturer: Prof.  APOSTOLOS	S.	PAPAGEORGIOU	

SEOUL	NATIONAL	UNIVERSITY	
PART	(03):	VISCOUSLY	DAMPED	SDOF	SYSTEM:	RESPONSE	TO	HARMONIC	EXCITATION 

 

 

 

When the frequency, 𝛀, of the forcing function, is close to (but not exactly equal to) that of 
the vibrating system, a phenomenon known as beating may be observed. 

Equation, 

𝑢 𝑡
𝑝
𝑘

𝜔
2

sin 𝜀𝑡
𝜀

cos 𝜔 𝜀 𝑡
cos 𝜀𝑡
𝜔 𝜀

sin 𝜔 𝜀 𝑡  

represents this situation, and we may obtain a good approximation to the response by 
considering a simplified form of the first term, as follows: 

𝑢 𝑡 ≅
𝑝
𝑘

𝜔
2

sin 𝜀𝑡
𝜀

cos 𝜔𝑡  

Because the quantity 𝜺 is small, the function 𝐬𝐢𝐧 𝜺𝒕  varies slowly; and its period, equal to 
𝟐𝝅 𝜺⁄ , is large. Therefore, the above expression may be recognized as representing vibrations 

with period 𝟐𝝅 𝝎⁄  and a variable amplitude equal to 𝝎 𝟐𝜺⁄ 𝒑𝟎 𝒌⁄ 𝐬𝐢𝐧 𝜺𝒕 . This kind of 
vibration builds up and diminishes in a regular pattern of beats, as indicated in the FIGURE. 
The period of beating, equal to 𝝅 𝜺⁄ , increases as 𝛀 → 𝝎 (i.e., as 𝜺 → 𝟎). At resonance, 
the period of beating becomes infinite. 

__________________ 
NOTE: The phenomenon of beats is not uncommon in engineering structures. For example, see 
the following references: 

Lin, B.C. and A.S. Papageorgiou (1989).  “Demonstration of Torsional Coupling Caused by Closely Spaced 
Periods:  1984 Morgan Hill Earthquake, Response of the Santa Clara County Building”, Earthquake 
Spectra, Vol. 5, No. 3, pp. 539-556.  

Papageorgiou, A.S. and B.C. Lin (1989).  “Influence of Lateral-Load-Resisting System on the Earthquake 
Response of Structures - A System Identification Study”, Earthquake Engineering and Structural 
Dynamics, Vol. 18, pp. 799-814. 
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HARMONIC VIBRATION WITH VISCOUS DAMPING: 

Equation of Motion:  𝑚𝑢 𝑐𝑢 𝑘𝑢 𝑝 sin Ω𝑡  

Initial Conditions:  𝑢 𝑢 𝑡 0 & 𝑢 𝑢 𝑡 0  

Solution:   𝑢 𝑡 𝑢 𝑡 𝑢 𝑡  

As a particular integral, we try a solution of the form: 

𝑢 𝑡 𝐺 cos Ω𝑡 𝐺 sin Ω𝑡  

Introducing the above trial solution in the Equation of Motion, we obtain: 

𝐺 Ω 𝑚 𝐺 Ω𝑐 𝐺 𝑘 cos Ω𝑡 𝐺 Ω 𝑚 𝐺 Ω𝑐 𝐺 𝑘 sin Ω𝑡 𝑝 sin Ω𝑡  

⟹
𝐺 Ω 𝑚 𝐺 Ω𝑐 𝐺 𝑘 0
𝐺 Ω 𝑚 𝐺 Ω𝑐 𝐺 𝑘 𝑝

⟹
1 𝛽 𝐺 2𝜉𝛽𝐺 0

2𝜉𝛽𝐺 1 𝛽 𝐺
𝑝
𝑘

 

⟹

⎩
⎪
⎨

⎪
⎧𝐺

𝑝
𝑘

2𝜉𝛽
1 𝛽 2𝜉𝛽

𝐺
𝑝
𝑘

1 𝛽
1 𝛽 2𝜉𝛽

 

 

∴ Particular Solution: 

 

𝑢 𝑡
𝑝
𝑘

1
1 𝛽 2𝜉𝛽

1 𝛽 sin Ω𝑡 2𝜉𝛽 cos Ω𝑡  
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Complete Solution: 

𝑢 𝑡 𝑢 𝑡 𝑢 𝑡  

𝑢 𝑡

⎩
⎪
⎨

⎪
⎧ 𝑒 𝐴 cos 𝜔 𝑡 𝐵 sin 𝜔 𝑡

𝑻𝑹𝑨𝑵𝑺𝑰𝑬𝑵𝑻 𝒖𝒕 𝒕

𝑝
𝑘

1
1 𝛽 2𝜉𝛽

1 𝛽 sin Ω𝑡 2𝜉𝛽 cos Ω𝑡

𝑺𝑻𝑬𝑨𝑫𝒀 𝑺𝑻𝑨𝑻𝑬 𝒖𝒔𝒔 𝒕

 

 

Introducing the initial conditions 𝒖𝟎 & 𝒖𝟎 , we obtain: 

𝐴
𝑝
𝑘

2𝜉𝛽
1 𝛽 2𝜉𝛽

𝑢

𝐵
𝑝
𝑘

𝜔
𝜔

2𝛽𝜉 𝛽 1 𝛽
1 𝛽 2𝜉𝛽

𝑢 𝜉𝜔𝑢
𝜔

 

 

Therefore, the total response is expressed as follows: 

𝑢 𝑡

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ 𝑒 𝑢 cos 𝜔 𝑡

𝑢 𝜉𝜔𝑢
𝜔

sin 𝜔 𝑡

𝑻𝑹𝑨𝑵𝑺𝑰𝑬𝑵𝑻 𝒓𝒆𝒍𝒂𝒕𝒆𝒅 𝒕𝒐 𝑰𝑪

𝑝
𝑘

𝑒
1 𝛽 2𝜉𝛽

2𝜉𝛽 cos 𝜔 𝑡
𝜔

𝜔
2𝛽𝜉 𝛽 1 𝛽 sin 𝜔 𝑡

𝑻𝑹𝑨𝑵𝑺𝑰𝑬𝑵𝑻 𝒓𝒆𝒍𝒂𝒕𝒆𝒅 𝒕𝒐 𝒍𝒐𝒂𝒅𝒊𝒏𝒈

𝜌 sin Ω𝑡 𝜑
𝑺𝑻𝑬𝑨𝑫𝒀 𝑺𝑻𝑨𝑻𝑬
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Particular Solution/Integral: 

𝑢 𝑡
𝑝
𝑘

1
1 𝛽 2𝜉𝛽

1 𝛽 sin Ω𝑡 2𝜉𝛽 cos Ω𝑡  

 

The phase-angle form of the particular solution: 

𝑢 𝑡 𝜌 sin Ω𝑡 𝜑

where

⎩
⎪
⎨

⎪
⎧𝜌

𝑝
𝑘

1

1 𝛽 2𝜉𝛽

tan 𝜑
2𝜉𝛽

1 𝛽

 

 

Displacement (or Deformation) Response Factor: 

𝑅 ≝
𝜌

𝑢
𝜌
𝑝
𝑘

1

1 𝛽 2𝜉𝛽
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𝑨𝒎𝒑𝒍𝒊𝒕𝒖𝒅𝒆 𝑹𝒆𝒔𝒐𝒏𝒂𝒏𝒄𝒆 ⟺ 𝐦𝐚𝐱
𝜷

𝑹𝒅 𝜷, 𝝃  

max 𝑅 𝛽, 𝜉 ⟹
𝑑𝑅 𝛽, 𝜉

𝑑𝛽
1
2

4𝛽 1 𝛽 4𝛽 2𝜉

1 𝛽 2𝜉𝛽
0

⟹ 𝛽 1 2𝜉

∴ 𝑅
1

2𝜉 1 𝜉

 

[NOTE: Observe that for 𝜉
√

 no peak occurs for 𝑅 .] 

 

𝑷𝒉𝒂𝒔𝒆 𝑹𝒆𝒔𝒐𝒏𝒂𝒏𝒄𝒆 ⟺ 𝜷 𝟏 𝒊. 𝒆. , 𝛀 𝝎  

𝑅 𝛽 1, 𝜉
1

2𝜉
 

 

 

Notice that 𝑅 𝛽 1, 𝜉 𝑅  , i.e., the maximum steady-state response is achieved 
at amplitude resonance and not at phase resonance. 

It must be recognized, however, that the largest deformation peak may occur before the 
system has reached steady-state. 
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We examine the rate at which the steady-state is attained in the case of phase 
resonance, i.e., 𝜷 𝟏 ⟺ 𝛀 𝝎. 

Consider the viscously damped SDOF system starting from rest and subjected to 𝑝 𝑡
𝑝 sin Ω𝑡 . The complete response is: 

𝑢 𝑡
𝑝
𝑘

1
2𝜉

𝝆
 𝒔𝒕𝒆𝒂𝒅𝒚 𝒔𝒕𝒂𝒕𝒆

𝒓𝒆𝒔𝒑𝒐𝒏𝒔𝒆 
𝒂𝒎𝒑𝒍𝒊𝒕𝒖𝒅𝒆

𝑒 cos 𝜔 𝑡
𝜉

1 𝜉
sin 𝜔 𝑡 cos 𝜔𝑡  

For lightly damped systems (i.e., 𝝃 ≪ 𝟏) the term sin 𝜔 𝑡  is small and 𝝎𝒅

𝝎 𝟏 𝝃𝟐 ≅ 𝝎 ; thus: 

𝑢 𝑡 ≅ 𝜌 𝑒 1
𝒆𝒏𝒗𝒆𝒍𝒐𝒑𝒆
𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏

cos 𝜔𝑡 ⟹
𝒖𝒋

𝝆
𝟏 𝒆 𝟐𝝅𝝃𝒋

 

where:  𝒖𝒋 = peak amplitude after 𝒋 cycles of vibration. 
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COMPLEX FREQUENCY RESPONSE FUNCTION 

SDOF System with Viscous Damping: 

Equation of Motion:  𝑚𝑢 𝑐𝑢 𝑘𝑢 𝑝 𝑡
𝟏∙𝒆𝒊𝛀𝒕

 

Steady-State Response: 𝑢 𝑡 𝐻 Ω 𝑒   

 The real part of 𝑯𝒖 𝛀 𝒆𝒊𝛀𝒕 represents the response to the real part of  𝟏 ∙ 𝒆𝒊𝛀𝒕 , i.e., 

ℛℯ 1 ∙ 𝑒 → 𝑆𝐷𝑂𝐹 → ℛℯ 𝐻 Ω 𝑒  

 The imaginary part of 𝑯𝒖 𝛀 𝒆𝒊𝛀𝒕 represents the response to the imaginary part of 

𝟏 ∙ 𝒆𝒊𝛀𝒕 , i.e., 

ℐ𝓂 1 ∙ 𝑒 → 𝑆𝐷𝑂𝐹 → ℐ𝓂 𝐻 Ω 𝑒  

Introducing 𝑢 𝑡 𝐻 Ω 𝑒  in the Equation of Motion, we obtain: 

𝐻 Ω 𝑒 Ω 𝑚 𝑖Ω𝑐 𝑘 𝑒  

⟹  𝐻 Ω
1
𝑘

∙
1

1 𝛽 𝑖 2𝜉𝛽
 

𝑯𝒖 𝛀  =  Complex Frequency-Response Function (the subscript denotes that the 
function describes the amplitude of the (harmonic) displacement). 

 

NOTE: Complex frequency-response functions can be similarly derived for other response 
quantities, quantities, e.g., velocity 𝒖 , acceleration 𝒖 , elastic restoring force 𝒇𝑺 𝒌𝒖 , etc. 

Notice that 𝑯𝒖 𝛀  , being a complex number, may be expressed as follows: 

𝐻 Ω |𝐻 Ω |𝑒

where:
|𝐻 Ω |

1
𝑘

1 𝛽 2𝜉𝛽

1
𝑘

𝑅

tan 𝜑
𝐼𝑚 𝐻 Ω

𝑅𝑒 𝐻 Ω
2𝜉𝛽

1 𝛽
0 𝜑 𝜋
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System Linearity (Superposition Principle):  

1 ∙ 𝑒 ⟶ 𝑆𝐷𝑂𝐹 ⟶ 𝐻 Ω 𝑒

𝑝 ∙ 𝑒 ⟶ 𝑆𝐷𝑂𝐹 ⟶ 𝑝 ∙ 𝐻 Ω 𝑒

𝑝 ∙ 𝑒

𝒇𝒐𝒓𝒄𝒊𝒏𝒈 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏 𝒑 𝒕

⟶ 𝑆𝐷𝑂𝐹 ⟶ 𝑝 ∙ 𝐻 Ω 𝑒

𝒕𝒆𝒂𝒅𝒚 𝒔𝒕𝒂𝒕𝒆 𝒓𝒆𝒔𝒑𝒐𝒏𝒔𝒆 𝒖𝒔𝒔 𝒕

 

 

Therefore, the steady-state response 𝑢 𝑡  to 𝑝 𝑡 ∑ 𝑝 𝑒  may be expressed as follows: 

𝑢 𝑡 𝑝 𝐻 Ω 𝑒

𝑝 𝐻 Ω 𝑒 𝑒

𝑝
1
𝑘

𝑅 𝑒

𝜌 𝑒
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VECTOR AND COMPLEX NUMBER REPRESENTATION OF HARMONIC MOTIONS 

 

It is convenient to represent a harmonic motion by means of a rotating vector of constant 
magnitude 𝑿 at a constant angular velocity 𝛀. 

A mathematically convenient way to represent such a rotating vector is using a complex number 
representation in the complex (Argand) plane as follows: 

𝑧 𝑋 cos Ω𝑡 𝑖𝑋 sin Ω𝑡
𝑋𝑒

𝒑𝒉𝒂𝒔𝒐𝒓 𝒑𝒉𝒂𝒔𝒆 𝒗𝒆𝒄𝒕𝒐𝒓  

The projection of the rotating vector on the 𝒓𝒆𝒂𝒍 ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙  axis is: 

ℛℯ 𝑋𝑒 𝑋 cos Ω𝑡  

The projection of the rotating vector on the 𝒊𝒎𝒂𝒈𝒊𝒏𝒂𝒓𝒚 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙  axis is: 

ℐ𝓂 𝑋𝑒 𝑋 sin Ω𝑡  
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If a harmonic displacement is  𝒙 𝒕 𝑿 𝐜𝐨𝐬 𝛀𝒕  , then: 

Displacement:  𝑥 𝑡 ℛℯ 𝑋𝑒 𝑋 cos Ω𝑡  

Velocity:   𝑥 𝑡 ℛℯ 𝑖Ω𝑋𝑒 ℛℯ Ω𝑋𝑒 Ω𝑋 cos Ω𝑡  

Acceleration:  𝑥 𝑡 ℛℯ 𝑖Ω 𝑋𝑒 ℛℯ Ω 𝑋𝑒 Ω 𝑋 cos Ω𝑡 𝜋  
_________________ 

NOTE: Recall that, 𝑖 𝑒 , and 𝑖 𝑖 ∙ 𝑖 𝑒 ∙ 𝑒 𝑒 𝑒  
_________________ 

The representation of displacement, velocity and acceleration by rotating vectors 
is illustrated in the FIGURE above.  

Since the given displacement  𝒙 𝒕 𝑿 𝐜𝐨𝐬 𝛀𝒕   is a cosine function, (i.e., the projections of the 
corresponding rotating vector along the real axis), the velocity and acceleration must be also 
along the real axis. Hence the real parts of the respective rotating vectors give the physical 
quantities at a given time 𝒕. 

If the given harmonic displacement is a sine function (i.e., 𝒙 𝒕 𝑿 𝐬𝐢𝐧 𝛀𝒕 ), then the physical 
quantities at a given time 𝒕 are the imaginary parts of the respective rotating vectors (i.e., 
projection of vectors on the vertical axis). 
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Addition Of Two Harmonic Motions 

 
Vector addition Vector addition with 𝛺𝑡 0  

 

Harmonic motions can be added algebraically (and graphically/geometrically) by 
means of vector addition. 
As an example, let us consider two harmonic motions having the same circular 
frequency 𝛀: 

𝑥 𝑡 𝑋 cos Ω𝑡 𝑥 𝑡 𝑋 cos Ω𝑡 𝛼  

The complex number/vector representation is: 

𝑧 𝑋 𝑒 𝑧 𝑋 𝑒  
The sum of the above two harmonic motions/functions may be expressed as follows: 

𝑧 𝑧 𝑧
𝑋 𝑒 𝑋 𝑒

𝑋 𝑋 𝑒 𝑒

𝑋 𝑋 cos 𝛼 𝑖𝑋 sin 𝛼 𝑒
𝑋𝑒 𝑒
𝑋𝑒

where:
𝑋 𝑋 𝑋 𝑐𝑜𝑠 𝛼 𝑋 𝑠𝑖𝑛 𝛼

𝛽 𝑡𝑎𝑛
𝑋 𝑠𝑖𝑛 𝛼

𝑋 𝑋 𝑐𝑜𝑠 𝛼

 

Since the given harmonic motions, 𝒙𝟏 𝒕  & 𝒙𝟐 𝒕  , are along the real axis, their sum is: 

𝑥 𝑡 ℛℯ 𝑧 ℛℯ 𝑋𝑒 𝑋 cos Ω𝑡 𝛽  
Evidently, the sum of two harmonic motions of the same frequency, but with 
different phase angles, is itself a harmonic motion of the same frequency. 

However, the sum of two harmonic motions of different frequencies is not harmonic 
or, in general, periodic. 
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FORCE-BALANCE DIAGRAM OF STEADY-STATE RESPONSE 

𝑝 𝑡 𝑝 𝑒 ⟶ 𝑆𝐷𝑂𝐹 ⟶ 𝑢 𝑡 𝜌𝑒

where:
𝜌

𝑝
𝑘

𝑅

𝜑 tan
2𝜉𝛽

1 𝛽
0 𝜑 𝜋

 

Spring Force:  𝑓 𝑘𝑢 𝑡 𝑘𝜌𝑒  

Damping Force:  𝑓 𝑐𝑢 𝑡 𝑐𝜌Ω𝑒  

Inertia Force:  𝑓 𝑚𝑢 𝑡 𝑚𝜌Ω 𝑒  

 

To compare the magnitudes of  𝒇𝑺, 𝒇𝑫, 𝒇𝑰 for the various ranges of  𝜷
𝛀

𝝎
 , divide the 

magnitudes of the vectors by 𝒌: 

i.e., 
| |

𝜌 ,
| |

2𝜉𝛽𝜌 ,
| |

𝛽 𝜌 ,
| |

 

and recall that: 𝑓 𝑓 𝑓 𝑝 0,  (dynamic equilibrium) 
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RESPONSE TO PERIODIC LOADINGS 

Any periodic loading of period 𝑇  [i.e., 𝑝 𝑡 𝑛𝑇 𝑝 𝑡 ] can be written as a sum of 
exponentials: 

𝑝 𝑡 𝐶 𝑒

where:

Ω
2𝜋
𝑇

𝐶
1
𝑇

𝑝 𝑡 𝑒  𝑑𝑡

 

For real periodic functions  𝒑 𝒕  : 𝑪 𝒏 𝑪𝒏
∗     

(the “*” indicates complex conjugate) 
 

We recall that: 

𝑝 𝑡 1 ∙ 𝑒 ⟶ 𝑆𝐷𝑂𝐹 ⟶ 𝑢 𝑡 𝐻 Ω 𝑒

where:
𝐻 Ω

1
𝑘

∙
1

1 𝛽 𝑖 2𝜉𝛽
𝒄𝒐𝒎𝒑𝒍𝒆𝒙 𝒇𝒓𝒆𝒒𝒖𝒆𝒏𝒄𝒚 𝒓𝒆𝒔𝒑𝒐𝒏𝒔𝒆

 

 

Therefore, the steady-state response to a periodic loading 𝒑 𝒕  is given by 
superposition: 

𝐶 𝑒

𝒑 𝒕

⟶ 𝑆𝐷𝑂𝐹 ⟶ 𝐶 𝐻 𝑛Ω 𝑒

𝒖𝒔𝒔 𝒕

 

 

 


