
Question 5.2
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An old concrete frame (see Fig. 5.18) has all columns the same: 0.25 m wide and 0.4 m deep, with 

the strong direction in the plane of the frame, with only one 18 mm dia. bar at each corner. All the 

beams have a depth of 0.5 m and a width of 0.25 m; they have two 14 mm dia. bars at top and 

bottom, continuous across all spans, plus two additional 14 mm top bars over the interior supports on 

the columns. The quasi-permanent gravity load, g+ψ2q, is 8kN/m2 (all inclusive) and is applied over 

the 4.0 m wide tributary floor strip of the frame. Gravity loads go to the column which is nearest in 

plan. 

Concrete is C30/37 and steel S500, with a 25 mm concrete cover.  

The frame is evaluated under a seismic action represented by a system of horizontal forces on the 

floors, with inverted triangular heightwise distribution: fi = 0.1iVb, where i indexes the storeys (from 

bottom to top) and Vb is the total seismic base shear. The overturning moment due to these seismic 

loads induces axial forces only in the two outer columns; seismic axial forces in the interior columns 

may be neglected. 

1) Given that the size and the reinforcement of members is the same in all storeys and that only the 

column axial force changes from storey to storey, around which beam-column joint is the strong 

column-weak beam criterion ∑MRd,c > ∑MRd,b most likely to be met; around which one is it least 

likely? Provide separate answers for interior and exterior columns, excluding the top floor and taking 

into account any effects of the overturning moment. For the two interior and the two exterior joints 



expected to be most or least likely to fulfill this criterion, identify where the plastic hinges will form 

around these joints by checking numerically the criterion ∑MRd,c > ∑MRd,b. On the basis of the 

outcome, identify the most likely plastic hinge pattern and plastic mechanism in the frame under 

lateral seismic loading. 

2) On the same basis as in 1) above, identify the beam span and the interior or exterior column in the 

frame with the largest capacity design shear force according to Eurocode 8. For the beam span and 

the interior and exterior columns with the expected highest capacity design shear, calculate its value. 

You may calculate any effects of the overturning moment using a seismic base shear equal to 20% of 

the weight.  

3) Estimate the maximum horizontal force resistance that the frame can develop at its base, from the 

shear forces that can develop in its four columns when plastic hinges form at the base of these 

columns and around their top joint. Express it as a fraction of the weight of the frame. 

Answer of Question 5.2: 

1) Only the values of MRd,c change from storey to storey in the criterion ∑MRd,c > ∑MRd,b; the change 

is due to the axial force alone. In interior columns, the axial force ranges from 8×4×(3+2.5)/2 = 88 

kN in the top storey to 4×88= 352 kN in the ground storey. The corresponding dimensionless values 

are 88/(0.25×0.4×20000) = 0.044 and 4×0.044 = 0.176, well below the limit value ν1 in Eq. (5.37a), 

which gives the maximum moment resistance for given reinforcement ("balance point"). So, the 

moment resistance of the column increases with increasing axial force, i.e., from the top to the base 

of the building. Therefore, as far as the interior joints are concerned, it is around those in the 3rd 

floor that the criterion ∑MRd,c > ∑MRd,b is most likely to be violated, and the ground storey joints 

where it is least likely.  

In exterior columns, the axial force due to gravity ranges from 8×4×3/2 = 48 kN in the top storey to 

4×48= 192 kN in the ground storey. The overturning moment at mid-height of the top storey is f4H/2 

= 0.1Vb×4×3/2 = 0.6Vb, inducing axial forces of ±0.6Vb/(3+2.5+3) = ±0.0705Vb in the exterior 



columns; at mid-height of the ground storey it is equal to f4(7H/2)+f3(5H/2)+f2(3H/2)+f1(H/2) = 

0.1Vb×3/2×(7×4+5×3+3×2+1×1)=7.5Vb, inducing axial forces of ±7.5Vb/(3+2.5+3) = ±0.8825Vb in 

the exterior columns; i.e., the seismic axial force increases in absolute terms from top to bottom 

much faster than the one due to gravity actions. At mid-height of the 3rd or the 2nd storey it is equal 

to f4(3H/2)+f3(H/2) = 0.1Vb×3/2×(3×4+1×3) = 2.25Vb or f4(5H/2)+f3(3H/2)+f2(H/2) = 

0.1Vb×3/2×(5×4+3×3+1×2) = 4.65Vb, respectively, inducing axial forces of ±0.2645Vb or ±0.547Vb, 

respectively, in the exterior columns. What counts is the effect of the axial force variation on the sum 

of MRd,c above and below a joint, which roughly depends on the average of the axial forces in the 

columns above and below. At the 3rd storey joints the average seismic axial force is ±0.1675Vb and 

at the 2nd storey ones ±0.715Vb; the difference of 0.547Vb in the seismic axial tension of these two 

joints can overcome the 96 kN increase in axial compression due to gravity if Vb > 96/0.547 = 177.5 

kN. (Note that we arrive at the same outcome if we consider the difference between the ground and 

top storey columns). As the total weight is 8×4×4×(3+2.5+3) = 1088 kN, there will be a net 

reduction of the axial force from top to bottom of the windward column, if the base shear is more 

than 177.5/1088 = 16.3% of the weight. In that case, the exterior joint most likely to violate criterion 

∑MRd,c > ∑MRd,b is the ground storey one on the windward side; otherwise, it is the one at the 3rd 

storey. No matter the magnitude of Vb, the least likely violator is the ground storey joint of the 

leeward column. 

We calculate first the values of MRd,b:  

fcd=30/1.5=20 MPa; fyd=500/1.15=434.8 MPa; εyd=434.8/200000=0.217%;  

Distance of centre of longitudinal bars from nearest concrete surface: 

d1=c+dbh+dbL/2~0.025+0.006+0.014/2 ~0.04 m; d=0.46 m.  

Bottom reinforcement: 308 mm2; top reinforcement: 308 mm2, except over the two interior supports, 

where it is 616 mm2.  

MRd,b
+=308×0.9×0.46×0.4348 =55.5 kNm.  



MRd,b
- = 55.5 kNm at the outer supports, MRd,b

- = 616×0.9×0.46×0.4348 = 111 kNm at the interior 

ones. 

So: ∑MRd,b = 55.5 kNm at exterior joints, ∑MRd,b = 111+55.5 = 166.5 kNm at interior ones. 

The value of MRd,c depends on the axial load: 

d1= 40 mm, d= 360 mm, δ1 = d1/d= 40/360= 0.111, ω1d=ω2d= 509/(250×360)×434.8/20 = 0.123, 

ωvd=0. 

The limits of Eq. (5.37a) are: 

ν1 = (0.0035-0.002/3)/(0.0035+0.00217) = 0.5. 

ν2 = 0.111×(0.0035-0.002/3)/(0.0035-0.00217) = 0.237. 

A ground storey interior column has: νd = 352/(0.25×0.36×20000) = 0.1955 < ν2 = 0.237. Hence Eqs. 

(5.38b), (5.39b) apply to all columns. Eq. (5.38b) gives: 
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,  

with the value of ξ from Eq. (5.39b), which takes the form: 

[1-0.002/(3×0.0035)]ξ2-[νd+0.123×(1-0.0035/0.00217)]ξ-0.123×0.111×0.0035/0.00217=0 →  

0.8095ξ2-[νd-0.0754]ξ-0.022=0  

Above the 3rd storey interior joint (the most likely violator of the criterion): νd = 

88/(0.25×0.36×20000) = 0.049, and below it: νd =0.098, giving: MRd,c = 51.3 and 66.9 kNm, 

respectively, i.e., ∑MRd,c = 118.2 kNm < ∑MRd,b = 166.5 kNm. (Note that, if we had used in the 

calculation the average of the axial forces above and below the joint, the outcome would have been 

∑MRd,c = 118.6 kNm). 

Above the 1st storey interior joint (the least likely violator of the criterion): νd = 0.147 and below it: 

νd = 0.196, giving: MRd,c = 81 and 93.6 kNm, respectively, i.e., ∑MRd,c = 174.6 kNm > ∑MRd,b = 

166.5 kNm. (If we had based the calculation on the average of the axial forces above and below the 

joint, the outcome would have been ∑MRd,c = 175 kNm). 

The conclusion is that at the interior joints of the 3rd floor plastic hinges will form in the columns, 



but at those of the 1st storey in the beams. To see where the mechanism changes, we repeat the 

excercise at the 2nd storey joints, this time with the average axial force above and below the joint: νd 

= 0.122. The outcome is ∑MRd,c = 148 kNm; hence, also at the second storey interior joints, plastic 

hinges develop in the columns, and not in the beams. 

Concerning the exterior joints: even for zero average axial force in the columns, ∑MRd,c = 68.8 kNm 

> ∑MRd,b = 55.5 kNm. So, the plastic hinge forms in the beam at all joints of both outer columns.  

So, the frame will develop a beam sway mechanism in the lower storey and a mixed one in the other 

three, with plastic hinges forming in the interior columns from the 2nd floor up. 

2) The maximum capacity design shear in a beam takes place when the beam itself forms plastic 

hinges at both ends, not the columns it is connected to. Moreover, the central beam span is more 

critical than the two outer ones: first, because its hogging moment resistance is high at both ends, 

while that of the outer spans is lower; second, because it has a shorter clear span. This points to the 

central span of the first storey, where the capacity design shear, without a γRd factor, is: 

VCD,1,int,b = (MRd,b
++MRd,b

-)/Lcl = (111+55.5)/2.1 = 79.3 kN.  

The shear due to the transverse loading of 32kN/m should be added to VCD. 

In principle, the maximum capacity design shear in a column takes place when the column itself 

forms plastic hinges at both ends, not the beams it is connected to. This is the case of the 3rd storey 

interior column, where plastic hinges form at both ends, with MRd,c = 66.9 kNm. There, without a γRd 

factor: 

VCD,3,int,c = (MRd,c
++MRd,c

-)/Hcl = (66.9+66.9)/2.5 = 53.5 kN.  

However, there is a possibilty that the 1st storey interior column may develop even higher capacity 

design shear, despite the fact that it will not form a plastic hinge at the top (the 1st storey beams will, 

instead); in fact, that column has MRd,c = 93.6 kNm at both ends and ∑MRd,c = 174.6 kNm > ∑MRd,b = 

166.5 kNm at its top joint. Therefore, it can develop a much higher capacity design shear: 

VCD,1,int,c = (93.6+93.6×166.5/174.6)/2.5 = 73.1 kN.  



By the same token, the maximum capacity design shear in an outer column takes place at the location 

with the maximum possible compression. This is obviously the 1st storey leeward column; its 

maximum compressive axial force is the sum of the maximum possible beam shears applied on that 

column over all four storeys. These are indeed the capacity design shears at the outer end of the side 

span, for hogging bending there and sagging bending at the end connected to the interior column, 

plus the shear due to the transverse load in a simply supported beam: 

maxN = 4×[(55.5+55.5)/2.6+8×4×3/2]=170.8+192=362.8 kN 

(This level of force is reached about when the base shear reaches the value Vb = 170.8/0.8825 = 

193.5 kN, i.e., 17.8% of the weight). 

For N = 362.8 kN, νd = 362.8/(0.25×0.36×20000) = 0.20155, for which Eqs. (5.38b), (5.39b) give 

MRd,c = 95 kNm, while in the storey above N = 3×362.8/4 = 272.1 kN, νd = 272.1/(0.25×0.36×20000) 

= 0.15117 and MRd,c = 82.1 kNm. Then: 

VCD,1,ext,c = (95+95×55.5/(82.1+95))/2.5 = 49.9 kN  

which is still less than the value applying to the interior column of the storey. 

3) The maximum shear that can develop at the ground storey of each interior colum has been 

computed in 2) above as: VCD,3,int,c = 53.5 kN. If we want to add the value VCD,1,ext,c = 49.9 kN 

determined above for the leeward column under its maximum possible compression, we should also 

add the value of VCD in the opposite (windward) colum under an axial force of minN = -

170.8+192=21.2 kN, i.e., for νd = 21.2/(0.25×0.36×20000) = 0.0118, which gives MRd,c = 38.6 kNm. 

At the storey above, νd = 0.75×0.012 = 0.009 and MRd,c = 37.6 kNm. Then that column develops a 

shear force of (38.6+38.6×55.5/(37.6+38.6))/2.5 = 26.7 kN. Therefore, the maximum horizontal 

force resistance that the frame can develop at the base is: maxVb = 26.7+2×53.5+49.9 = 183.6 kN, 

i.e., 16.9% of the weight.  

Note that if we had used the axial load of the two outer columns due to gravity actions alone, i.e., N 

= 192 kN, νd = 0.107 in the ground storey and 75% of these values in the storey above, giving MRd,c = 



69.5 kNm and MRd,c = 61.4 kNm in these two floors, the capacity design shears of these columns 

would have been (69.5+69.5×55.5/(69.5+61.4))/2.5 = 39.6 kN, giving a maximum horizontal force 

resistance of the frame: maxVb = 2×(53.5+39.6) = 186.2 kN, i.e., 17.1% of the weight. This value, 

though, is not realistic, because it corresponds to a frame staying still, not swaying. The smaller 

value of 183.6 kN estimated above is more representative.  

At any rate, even if there is no shear failure anywhere in the frame (which can be spotted by 

comparing the capacity design shears computed above to the shear resistance of the member), it 

cannot develop a base shear equal to 20% of the weight: a flexural plastic mechanism will form 

before that. 

Question 5.3  

A 3-storey RC frame, with storey height Η = 3 m, has two bays, each one with span length L = 5 m 

(Fig. 5.19). The central column is 0.4 m square; the outer ones 0.35 m square. The beams have width 

bw = 0.3 m and depth hb= 0.5 m and are connected on both sides to a 150 mm thick slab. Design is 

for a ground motion with design peak ground acceleration (on rock) of 0.30g and the type 1 spectrum 

per Eurocode 8 on ground type C. Ductility Class (DC) is Medium (M).  

The moment, M, and the axial force, N, diagrams shown in Figure 5.20 over the clear member length 

(joints are considered rigid) are obtained from linear analysis for the quasi-permanent gravity loads, 

G+ψ2Q, with ψ2 = 0.3, and for the design seismic action. For the latter, the full quasi-permanent 

gravity loads are taken to produce inertia forces (without reduction for the calculation of masses). 



The lateral force method is used, but, since the fundamental period, T1, is not known yet, the M- and 

N-diagrams have been constructed assuming that T1 is in the constant-acceleration range, i.e., shorter 

than the corner period TC = 0.6 s on type C ground. The column axial forces at the base give the total 

weight, and hence the mass of the frame, which corresponds to the quasi-permanent gravity loads; its 

distribution to the floors is obtained from the storey shears. Columns are taken as fixed at the top of 

the footing.  

 

 

Concrete grade is C30/37 and steel is of Class C with 500 MPa nominal yield stress; the concrete 

cover to reinforcement is c = 25 mm. Importance Class is II (ordinary). 

1) Calculate from the moment diagram the lateral forces, fj, and the resulting floor displacements, uj; 

use these values to calculate the fundamental period of the frame through the Rayleigh quotient, Eq. 
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(3.109); correct the moment and axial force diagrams in Figure 5.21 to be consistent with the 

computed value of T1. 

2) Calculate the interstorey drifts under the damage limitation seismic action and the sensitivity 

coefficient for second-order effects. 

3) Dimension the longitudinal bars of the beams in floors 1 and 2, taking into account the "persistent 

and transient design situation" for the combinations of Eqs. (6.10a), (6.10b) of EN 1990 (the most 

unfavourable of (1.35ξ)Gk "+" 1.5Qk or 1.35Gk "+" (1.5ψ0)Qk, with ξ = 0.85 and ψ0 = 0.7); to this 

end, you may assume that the ratio of permanent-to-imposed nominal loads, Gk-to-Qk, is 3. 

4) Dimension the vertical reinforcement of the central and outer columns in storeys 1 and 2 to meet 

the strong-column/weak beam capacity design rule, Eq. (5.31). 

5) Calculate the capacity design shears at the end sections of the first and second storey beams and 

columns from Eqs. (5.42), (5.44). 

6) Dimension the transverse reinforcement of the first storey beams. 

7) Dimension and detail the transverse reinforcement of the first storey columns, including 

confinement at the base. 

Answer of Question 5.3: 

1) Total weight = Sum of axial forces at the base: 1343.3 kN. 

Storey shears from the lateral force method moments: 

Storey 3: V3 = (80.7-(-74.6))/2.5+2×(42.8-(-37.8))/2.5 = 126.5 kN 

Storey 2: V2 = (126.7-(-132))/2.5+2×(66.7-(-67.7))/2.5 = 211 kN 

Storey 1: V1 = (130.9-(-172.2))/2.5+2×(69-(-96.4))/2.5 = 253 kN 

Storey lateral forces as difference of shears across floors: 

Storey 3: f3 = V3 = 126.5 kN 

Storey 2: f2 = V2 - V3 = 84.5 kN 

Storey 1: f1 = V1 - V2 = 42 kN 



Storey weights and masses: 

Storey 3: W3 = (126.6/1.5)×1343.3/(126.6/1.5+84.4+42.56/0.5)= 446.5 kN, m3 = 446.5/9.81 = 45.5 tn  

Storey 2: W2 = (84.4/1.0)×1343.3/(126.6/1.5+84.4+42.56/0.5)= 446.5 kN, m2 = 446.5/9.81 = 45.5 tn 

Storey 1: W1 = (42.56/0.5)×1343.3/(126.6/1.5+84.4+42.56/0.5)= 450.5 kN, m3 = 450.5/9.81 = 45.9 tn 

The floor displacements, uj, due to the above seismic lateral forces, fj, are calculated from the 

moment diagram, by applying unit forces at floor levels and using the Virtual Work principle: the 

single cantilever moment diagrams for fj = 1 shown in the figure below on the left are multiplied with 

those due to the full suite of lateral forces on the right; the product is integrated over the height of the 

columns (excluding the 0.5 m lengths within beam-column joints, which are taken as rigid). The final 

outcome is essentially the same, no matter whether the integration takes place along an exterior (Iext = 

0.354/12 = 0.00125 m4) or the central column (Iint = 0.44/12 = 0.002133 m4).  

For example, for an exterior column and 50% of the uncracked section stiffness: 

u1 =-(2×0.5×69-2×3.0×96.4-0.5×96.4+3.0×69)×2.5/(6×0.5×33000000×0.00125) = 0.0071 m  

u2 =-(2×0.5×66.7-2×3.0×67.7-0.5×67.7+3.0×66.7+2×3.5×69-2×6.0×96.4-3.5×96.4+6.0×69) 

×2.5/(6×0.5×33000000×0.00125) = 0.0156 m  

u3 =-(2×0.5×42.8-2×3.0×37.8-0.5×37.8+3.0×42.8+2×3.5×66.7-2×6.0×67.7-3.5×67.7+ 

6.0×66.7+2×6.5×69-2×9×96.4-6.5×96.4+9×69)×2.5/(6×0.5×33000000×0.00125) = 0.0223 m 

With the above values of uj, fj, mj, Eq. (3.109) gives:  

T1 = 0.565 s,  

which is less than TC = 0.6 s; therefore the internal force diagrams do not need to be corrected for the 
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value of the period. As T1 < 2TC=1.2 sec, we may reduce the base shear by 15% in the lateral force 

method of analysis (Section 3.1.6). 

The behaviour factor is equal to q=qo=3x1.3=3.9. 

Then, at T1 = 0.565 s the base shear is: 

Vb = 0.85×(0.3×1.15)×2.5/3.9×1343.3 = 253 kN. 

2) The floor deflections calculated above should be multiplied by q = 3.9 and by the reduction factor 

of 0.5 for the damage limitation seismic action. Then the interstorey drifts are: 

Δu3/hst = 0.5×(0.0225-0.0156)×3.9/3.0 = 0.45%; 

Δu2/hst = 0.5×(0.0156-0.0071)×3.9/3.0 = 0.55%; 

Δu1/hst = 0.5×0.0071×3.9/3.0 = 0.46%. 

The interstorey drift limit of 0.5% for brittle partitions is slightly violated at storey 2. 

The sensitivity coefficient for second-order effects is: 

θ3 = 3.9×(0.0225-0.0156)×446.5/(126.5×3.0) = 0.032 < 0.10; 

θ2 = 3.9×(0.0156-0.0071)×2×446.5/(211×3.0) = 0.047 < 0.10; 

θ1 = 3.9×0.0071×1343.3/(253×3.0) = 0.049< 0.10. 

3) Dimensioning of beam longitudinal reinforcement  

Parameters:  

fcd=30/1.5=20 MPa; fctm=2.9 MPa, Ec=33000000 kPa;  

fyd=500/1.15=434.8 MPa; εyd=434.8/200000=0.217%;  

Distance of centre of longitudinal bars from nearest concrete surface: 

d1=c+dbh+dbL/2~0.025+0.008+0.018/2 ~0.04m. 

Curvature ductility demand for detailing:  

As T < TC, Eq. (5.64b) applies: μφ = 2(qo - 1)TC/T + 1 = 2×(3.9-1)×0.6/0.565+1= 7.16. 

ρmin =0.5fctm/fyk =0.5×2.9/500=0.0029 

d=0.46m, z=0.46-0.04=0.42m, As,min =0.0029×300×460=400mm2 (2Φ16 - 402mm2). 



If G/Q = 3, then:  

For Eq. (6.10a) in EN1990: (1.35ξG+1.5Q)/(G+ψ2Q)=(1.35×0.85×3+1.5×1)/(3+0.3×1)=1.498,  

For Eq. (6.10b): (1.35G+1.5ψ0Q)/(G+ψ2Q)=(1.35×3+1.5×0.7×1)/(3+0.3×1)=1.545 (i.e., more 

unfavourable). 

The beam moments in the persistent and transient design situation are equal to those due to the quasi-

permanent gravity loads, G+ψ2Q times 1.545. 

Design moments of 1st floor beams B1: 

At the support on the central column:  

– Hogging design moment for the top reinforcement: 

Μd1 = max[ΜEN1990; Mg+ψ2q+|maxME|] = max[1.545×71.3=110.2; 71.3+155.4=226.7] = 226.7 kNm 

– Sagging design moment for the bottom reinforcement: 

Μd2 = -Mg+ψ2q+|maxME|= 155.4-71.3=84.1 kNm 

At the support on the exterior column: 

– Hogging design moment for the top reinforcement:  

Μd1 = max[ΜEN1990; Mg+ψ2q+|maxME|] = max[1.545×32.8=50.7; 32.8+165.8=198.6] = 198.6 kNm. 

– Sagging design moment for the bottom reinforcement: 

Μd2 = -Mg+ψ2q+|maxME|= 165.8-32.8=133 kNm 

Beam longitudinal reinforcement (computed as As =Md/zfyd, with z =d-d1): 

Maximum diameter of bars, dbL, at the support on the exterior column, per Eq. (5.2b): 

minN=min(minN1st storey, minN2nd storey)=min(294.5-140.3=154.2; 197-70=127)= 127 kN  

For νd=minNd/(0.352×20000)=0.052: dbL/hc,ex ≤7.5×1.042×2.9/(1×434.8)=0.0521, dbL≤18 mm 

At the support on the central column, per Eq. (5.2a):  

νd=min(N1st story,g+ψ2q, N2nd storey,g+ψ2q)/(0.42×20000)=0.157. 

If '=0.5ρmax: dbL/hc,int ≤ 7.5×1.1255×2.9/(434.8×1.25)=0.045, dbL ≤ 18mm  

Longitudinal reinforcement at the central support:  



– Top: As1 =226.7×103/(0.42×434.8)=1241 mm2: 5Φ16+1Φ18 (1260mm2),  = 

1257/(460×300)=0.0091. 

– Bottom: As2 = 84.1×1241/226.7 = 460 mm2: 4Φ16 (804 mm2> 1260/2 = 630 mm2), '= 

804/(460×300) = 0.0058,  

From Eq. (5.4b): ρmax='+0.0018fcd/(μφydfyd)=0.0058+0.0018×20/(7.16×0.00217×434.8) = 0.0111, 

ρmax >=0.0091 

MRd,b
- = 1260×0.42×434.8/103 = 230 kNm, MRd,b

+ = 804×0.42×434.8/103 = 146.8 kNm, ΣΜRd,b=376.8 

kNm. 

Longitudinal reinforcement at the support on the exterior column: 

– Top reinforcement: As1 = 198.6×1241/226.7 = 1087 mm2: 5Φ16 (1005 mm2) > As,min = 400 

mm2 

=1005/(460×300)=0.00728 < ρmax=0.0111.  

– Bottom reinforcement: As2 = 133×1241/226.7 = 728 mm2: 4Φ16 (804mm2> 

1260/2=630mm2), '=804/(460×300)=0.0058  

MRd,b
- =1005×0.42×434.8/103 = 183.5 kNm, MRd,b

+ = 804×0.42×434.8/103=146.8 kNm 

Design moments of 2nd floor beams B1: 

At the support on the central column:  

– Hogging design moment for the top reinforcement: 

Μd1 = max[ΜEN1990; Mg+ψ2q+|maxME|] = max[1.545×65.1=100.6; 65.1+122.2=187.3] = 187.3 kNm 

– Sagging design moment for the bottom reinforcement: 

Μd2 = -Mg+ψ2q+|maxME|= 122.2-65.1 = 57.1 kNm 

At the support on the exterior column: 

– Hogging design moment for the top reinforcement:  

Μd1 = max[ΜEN1990; Mg+ψ2q+|maxME|] = max[1.545×41.6=64.3; 41.6+128.6=170.2]= 170.2 kNm 

– Sagging design moment for the bottom reinforcement: 



Μd2 = -Mg+ψ2q+|maxME|= 128.6-41.6=87 kNm 

Beam longitudinal reinforcement (as As =Md/zfyd, with z =d-d1): 

Maximum diameter of bars, dbL, at the support on the exterior column, per Eq. (5.2b): 

minN = min(minN3rd storey, minN2nd storey) = min(197-70=127; 96-24.6=71.4)= 71.4 kN  

For νd = minNd/(0.352×20000)=0.029: dbL/hc,ext ≤ 7.5×1.023×2.9/434.8 = 0.0512, dbL ≤ 18mm 

At the support on the central column, per Eq. (5.2a):  

νd = min(N3rd story,g+ψ2q, N2nd storey,g+ψ2q)/(0.42×20000) = 255/(0.42×20000) =0.08. 

If '=0.5ρmax: dbL/hc,int ≤7.5×1.064×2.9/(434.8×1.25)=0.0426, dbL ≤ 17 mm  

Longitudinal reinforcement at the central support:  

– Top: As1 = 187.3×103/(0.42×434.8) = 1026 mm2: 5Φ16 (1005 mm2),  = 1005/(460×300) = 

0.0073 

– Bottom: As2 = 57.1×1026/187.3 = 313 mm2: 2Φ16+1Φ14 (555 mm2> 1005/2 = 502 mm2), '= 

555/(460×300) = 0.004  

– ρmax = 0.004+0.0018×20/(7.16×0.00217×434.8) = 0.0093>=0.0073. 

MRd,b
- = 1005×0.42×434.8/103 = 183.5 kNm, MRd,b

+= 555×0.42×434.8/103 = 101.4 kNm,  

ΣΜRd,b = 284.9 kNm 

Longitudinal reinforcement at the support on the exterior column: 

– Top: As1 = 170.2×103/(0.42×434.8) = 932 mm2: 4Φ16+1Φ14 (958 mm2) > As,min = 400 mm2 , 

 = 958/(460×300) = 0.0069 

– Bottom: As2 = 87×932/170.2 = 476 mm2: 2Φ16+1Φ14 (555 mm2> 958/2=479 mm2), ' = 

555/(460×300) = 0.004  

ρmax = 0.004+0.0018×20/(7.16×0.00217×434.8) = 0.0093 >  = 0.0069. 

MRd,b
- =958×0.42×434.8/103=175 kNm, MRd,b

+=555×0.42×434.8/103= 101.4 kNm 

4) Dimensioning of column vertical reinforcement, including capacity design. Calculation of column 

moment resistance. 



The peak values of the column bending moments from the analysis are listed in the first half of the 

table below, along with the concurrent axial force. The second half of the table gives the moment 

resistance of the columns required in order to meet Eq. (5.31), with the value of 1.3ΣΜRb equally 

split between the column sections above and below the joint; in that case the mean axial load above 

and below the joint applies.  

Moments and axial forces at column ends for dimensioning of the vertical reinforcement  

Column Exterior Central 

Storey 1st  2nd 3rd 1st  2nd 3rd 

End section base  top base top base base Top base  top base 

From the 

analysis 

+E M (kNm) 106.6 84.8 89.4 85.7 62 172.2 130.9132 126.7 74.6 

N (kN) 434.8 434.8267 267 120.6754.3 754.3502 502 255 

-E M (kNm) 86.2 53.2 46 47.7 13.6 - - - - - 

N (kN) 154.2 154.2127 127 71.4 - - - - - 

(1.3ΣΜRd,b)/2 

at mean value 

of N above & 

below joint 

+E MRc (kNm)  - 119.3 113.8 - 244.9 185.2 

N (kN) - 350.9 193.8 - 628.2 378.5 

-E M (kNm) - 95.4 65.9 -     

N (kN) - 140.6 99.2 -     

 

The moments from the analysis are much lower than the demands of capacity design; so, they are not 

considered. The starter bars at the connection to the foundation should be dimensioned for the 

internal forces at the base section from the analysis; however, this is omitted, because the internal 

forces for the column design at the top of the 1st storey are more critical: the vertical bars extending 

all along a column's 1st storey and into the base of the 2nd, extend also downwards into the 

foundation. 

a) Central column. 



δ1 = d1/d=40/360=0.111, ρmin =0.01, As,min =0.01×400×400 = 1600 mm2; minimum number of bars: 8 

(3 per side). 

At the 1st storey and the base of the 2nd storey: 

μd = 244.9/(0.4×0.362×20000) = 0.236, νd= 628.2/(0.4×0.36×20000)=0.218. 

At the 2nd storey and the base of the 3rd storey:  

μd = 185.2/(0.4×0.362×20000) = 0.179, νd = 378.5/(0.4×0.36×20000) = 0.1315. 

The limit per Eqs. (5.33a), (5.33b) is ν2 = 0.111×(0.0035-0.002/3)/(0.0035-0.00217)=0.2365, and 

exceeds νd at both storeys. 

Eqs. (5.34b), (5.35b) apply, as follows:  

 ξξμ
ξ

ξ
ω dd 3367.04048.0

111.0
613.11

9

4
1 







 
 , 

  01792.0613.08095.0 11
2  ddd ωξωνξ  

They are solved iteratively, giving: 

 At the 1st storey and the base of the 2nd storey: ω1d =0.175; As1 = 0.175×(400×360)×20/434.8 

= 1160 mm2 

We place 5Φ16 per side (with the mid-side bars restrained at the corner of a diamond-shaped tie), i.e. 

16Φ16 total (3216mm2), giving: =3216/(400×400)=0.0201>ρmin=0.01.  

We calculate next the moment resistance above and below the joint resulting from this 

reinforcement; to this end, half of the corner bars count in ωvd, in order to have the "web" 

reinforcement uniformly spread between ω1d and ω2d: ω1d=ω2d=0.25×3216/(400×360)×434.8/20 = 

0.1214, ωvd=2ω1d=0.2428. 

The limits of Eq. (5.37a) are: 

ν1 = 0.2428×[(0.0035-0.00217)/(0.0035+0.00217)-0.111]/(1-0.111)+(0.0035-

0.002/3)/(0.0035+0.00217) = 0.53. 

ν2 = 0.2428×[0.111×(0.0035+0.00217)/(0.0035-0.00217)-1]/(1-0.111)+0.111×(0.0035-



0.002/3)/(0.0035-0.00217) = 0.093. 

The limits are met both above and below the joint: 

 Above the joint: νd= 502/(0.4×0.36×20000)=0.174 > ν2. 

 Below the joint: νd= 754.3/(0.4×0.36×20000)=0.262 > ν2. 

Eqs. (5.38a), (5.39a) apply, giving ξ = (0.889νd+1.111×0.2428)/(0.889×0.8095+2×0.2428): 

 Above the joint: ξ = 0.352. 

 Below the joint: ξ = 0.417. 

The moment resistance provided by this reinforcement per Eq. (5.38a): 

      889.0/1281.01111.02428.01214.0889.033676.040476.0 2

2

, ξξξξξ
fbd

M

cd

cRd  , giving: 

 Above the joint: MRd,c= 256.1 kNm. 

 Below the joint: MRd,c= 270.4 kNm.  

∑MRd,c = 526.5 kNm > 1.3∑MRd,b = 489.8 kNm. 

(Note that, if we had placed 3Φ20 per side, with the mid-side bar restrained at the corner of a cross-

tie or hoop, the resulting moment resistances would give ∑MRd,c = 466.7 kNm < 1.3∑MRd,b = 489.8 

kNm. The alternative option of 4Φ18 per side satisfies ∑MRd,c > 1.3∑MRd,b, but requires restraining 

both intermediate bars at a hoop corner). 

 At the 2nd storey and the base of the 3rd storey: ω1d =0.144; As1 = 

0.144×(400×360)×20/434.8= 954 mm2. We place 3Φ20 per side (with the mid-side bar restrained at 

the corner of a cross-tie or hoop), i.e. 8Φ20 total (2513 mm2), giving: 

=2513/(400×400)=0.0157>ρmin=0.01.  

ω1d=ω2d=0.25×2513/(400×360)×434.8/20 = 0.0948, ωvd=2ω1d=0.1896. 

The limits of Eq. (5.37a) are: 

ν1 = 0.1896×[(0.0035-0.00217)/(0.0035+0.00217)-0.111]/(1-0.111)+(0.0035-

0.002/3)/(0.0035+0.00217) = 0.525. 



ν2 = 0.1896×[0.111×(0.0035+0.00217)/(0.0035-0.00217)-1]/(1-0.111)+0.111×(0.0035-

0.002/3)/(0.0035-0.00217) = 0.124. 

 Above the joint: νd= 255/(0.4×0.36×20000)=0.0885. 

 Below the joint: νd= 502/(0.4×0.36×20000)=0.174. 

Below the joint, Eqs. (5.38a), (5.39a) apply, giving: 

ξ = (0.889×0.174+1.111×0.1896)/(0.889×0.8095+2×0.1896) = 0.3325. 

      889.0/1281.01111.01896.00948.0889.033676.040476.0 2

2

, ξξξξξ
fbd

M

cd

cRd  , MRd,c= 217.9 kNm. 

Above the joint, Eqs. (5.38b), (5.39b) apply: 

[1-0.002/(3×0.0035)+0.1853×(0.0035+0.00217)2/(2×0.0035×0.00217×(1-0.111)]ξ2 

-[0.0885+0.0927×(1-0.0035/0.00217)+0.1896×(1+0.111×0.0035/0.00217)/(1-0.111)]ξ- 

[0.0948-0.5×0.1896×0.111/(1-0.111)]×0.111×0.0035/0.00217=0 → 1.2609ξ2-0.28185ξ-0.01485=0 

→ ξ = 0.2675 

Eq. (5.38b) gives: 
 
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MRd,c= 195.5 kNm  

∑MRd,c = 413.4 kNm > 1.3∑MRd,b = 370.4 kNm. 

b) Exterior column  

δ1 = d1/d=40/310=0.129 

At the 1st storey and the base of the 2nd storey.  

For maxN: νd= 350.9/(0.35×0.31×20000)=0.1617; μd = 119.3/(0.35×0.312×20000) = 0.1773. 

For minN: νd= 140.6/(0.35×0.31×20000)=0.0648; μd = 95.4/(0.35×0.312×20000) = 0.1418. 

At the 2nd storey and the base of the 3rd storey. 

For maxN: νd= 193.8/(0.35×0.31×20000)=0.0893; μd = 113.8/(0.35×0.312×20000) = 0.1692. 

For minN: νd= 99.2/(0.35×0.31×20000)=0.0457; μd = 65.9/(0.35×0.312×20000) = 0.098. 

The limit per Eqs. (5.33a), (5.33b) is ν2 = 0.129×(0.0035-0.002/3)/(0.0035-0.00217) = 0.2748, and 



exceeds all values of νd above; therefore, Eqs. (5.34b), (5.35b) apply; they take the form:  

 ξξμ
ξ

ξ
ω dd 3367.04048.0

129.0
613.114355.0 1 







 
 , 

  0208.0613.08095.0 11
2  ddd ωξωνξ  

They are solved iteratively, giving: 

 At the 1st storey and the base of the 2nd storey:  

For maxN: ω1d =0.123; for minN: ω1d =0.121; As1=0.123×(310×350)×20/434.8=614 mm2. We place 

3Φ16 per side (with the mid-side bar restrained at the corner of a cross-tie or hoop), i.e. 8Φ16 total 

(1608 mm2), giving: =1608/(350×350)=0.0131>ρmin=0.01. This reinforcement gives: 

ω1d=ω2d=0.25×1608/(350×310)×434.8/20 = 0.0805, ωvd=2ω1d=0.1611. 

For maxN: 

 Above the joint: νd= 267/(0.35×0.31×20000)=0.123. 

 Below the joint: νd= 434.8/(0.35×0.31×20000)=0.20. 

For minN: 

 Above the joint: νd= 127/(0.35×0.31×20000)=0.0585. 

 Below the joint: νd= 154.2/(0.35×0.31×20000)=0.071. 

The values of νd for maxN and minN are less than the limit of Eq. (5.37b): 

ν2 = 0.1611×[0.129×(0.0035+0.00217)/(0.0035-0.00217)-1]/(1-0.129)+0.129×(0.0035-

0.002/3)/(0.0035-0.00217) = 0.1916. 

Eq. (5.38b) applies and takes the form:  

[1-0.002/(3×0.0035)+0.1611×(0.0035+0.00217)2/(2×0.0035×0.00217×(1-0.129)]ξ2 

-[νd+0.0805×(1-0.0035/0.00217)+0.1611×(1+0.129×0.0035/0.00217)/(1-0.129)]ξ- 

[0.0805-0.5×0.1611×0.129/(1-0.129)]×0.129×0.0035/0.00217=0 → 1.201ξ2-[νd+0.1741]ξ-0.01427=0 

Eq. (5.38b) gives: 
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For maxN: 

 Above the joint: νd= 0.123, ξ= 0.2885, MRd,c= 117.2 kNm. 

 Below the joint: νd= 0.20, ξ= 0.346, MRd,c= 130.2 kNm 

∑MRd,c = 247.4 kNm > 1.3∑MRd,b = 238.6 kNm 

For minN: 

 Above the joint: νd= 0.0585, ξ= 0.2425, MRd,c= 104.1 kNm 

 Below the joint: νd= 0.071, ξ= 0.2515, MRd,c= 106.8 kNm 

∑MRd,c = 210.9 kNm > 1.3∑MRd,b = 190.8 kNm 

 At the 2nd storey and the base of the 3rd storey:  

For maxN: ω1d =0.1417; for minN: ω1d =0.0807; As1=0.1417×(310×350)×20/434.8=707 mm2. 

We keep the same reinforcement as in the 1st storey: 8Φ16: 1608 mm2 (ωvd = 0.1611, ω1d = ω2d = 

0.0805). So, the only additional information to be computed on the basis of the above is the moment 

resistance for the axial load values above the joint. Whatever has been computed for the section 

above the 1st storey joint applies here at the section below the 2nd storey joint: 

For maxN: 

 Above the joint: νd= 120.6/(0.35×0.31×20000)=0.056, ξ= 0.241, MRd,c= 103.6 kNm 

 Below the joint: νd= 267/(0.35×0.31×20000)=0.123, ξ= 0.2885, MRd,c= 117.2 kNm 

∑MRd,c = 220.8 kNm ~ 1.3∑MRd,b = 227.6 kNm 

(The minor shortfall is ignored, to avoid increasing the reinforcement over what is placed in the 1st 

storey). 

For minN: 

 Above the joint: νd= 71.4/(0.35×0.31×20000)=0.033, ξ= 0.224, MRd,c= 98.5 kNm 

 Below the joint: νd= 127/(0.35×0.31×20000)=0.0585, ξ= 0.2425, MRd,c= 104.2 kNm 

∑MRd,c = 212.7 kNm > 1.3∑MRd,b = 131.8 kNm 

5) Capacity design shears in the beams and the columns of the 1st and 2nd storey 



The moment resistance of beams and columns around joints are summarised in the tables below. 

Note that the direction of the seismic action which causes compression and maximum axial force in 

an exterior column is associated with tension at the top flange of the beam end connected to that 

column (MRd,b
-) and at the bottom flange at the opposite end (MRd,b

+).  

Moment resistance at beam end sections 

Storey 1st 2nd 

Beam end at: Outer column Central column Outer column Central column

Earthquake causes in column: maxN minN maxN minN maxN minN maxN minN 

Moment resistance, kNm MRd,b
- MRd,b

+ MRd,b
+  MRd,b

- MRd,b
- MRd,b

+ MRd,b
+   MRd,b

- 

183.5 146.8 146.8  230 175 101.4 101.4 183.5 

 

Column moment resistance MRd,c (kNm) around joints 

 1st storey joints 2nd storey joints 

Column Exterior Central Exterior Central 

Seismic action direction causes: maxN minN  maxN minN  

Above joint 117.2 104.1 256.1 103.6 98.5 195.5 

Below joint 130.2 106.8 270.4 117.2 104.2 217.9 

 

Assuming one-way frame action, the column axial forces balance the shear forces of the 2-bay frame 

alone. Then, the shears at beam ends due to the quasi-permanent gravity loads may be calculated 

from the column axial forces. By subtracting from these shears the part due to the moment difference 

between the two beam ends, we can estimate the shear force induced by the gravity loads on the 

beam, Vg+ψq,o, with the beam considered as simply supported. The calculation is carried out in the 

first part of the table below; in the second part, the maximum capacity design shear at a beam end is 

estimated from Eq. (5.42), considering that a hogging plastic hinge forms at the beam end in question 



and a negative one at the opposite end. Recall that plastic hinges form at beam ends (even in the case 

of the 2nd storey exterior joints under the action which causes maxN in the columns). 

 

Beam capacity design shears (kN) 

Storey 1st 2nd 

Beam end Exterior column Central column Exterior column Central column 

Shear, Vg+ψq  294.5-197=97.5 (754.3-502)/2=126.2 197-96=101 (502-255)/2=123.5

V due to end 

moments 

(32.8-71.3)/4.625= 

-8.3 

(71.3-32.8)/4.625= 

8.3 

(46.1-65.1)/4.625= 

-4.1 

(65.1-46.1)/4.625=

4.1 

Vg+ψq,o in simply 

supported beam 

97.5-(-8.3) =105.8 126.2-8.3=117.9 101-(-4.1) =105.1 123.5-4.1=119.4 

Shear due to 

plastic hinging 

(183.5+146.8)/ 

4.625 = 71.4 

(230+146.8)/4.625 = 

81.5 

(175+101.4)/4.625 

= 59.8 

(183.5+101.4)/ 

4.625 = 61.6 

Capacity design 

shear 

105.8+71.4=177.2 117.9+81.5=199.4 105.1+59.8=164.9 119.4+61.6=181 

 

The column capacity design shears are estimated in the table below from Eq. (5.44). 

Column capacity design shears  

Storey 1st  2nd 

Column Exterior Central Exterior Central 

Seismic action direction causing: maxN minN  maxN minN  

Column top  MRd,c 127.7 103.9 270.4 117.2 104.2 217.9 

∑MRd,b 183.5 146.8 376.8 175 101.4 284.9 

∑MRd,c 247.4 211.0 526.5 220.8 202.7 413.4 

Column base MRd,c 127.7 103.9 270.4 117.2 104.2 256.1 

∑MRd,b - - - 183.5 146.8 376.8 



∑MRd,c - - - 244.9 208.1 526.5 

Capacity design shear 97.9 77.5 204.1 79.5 55.2 146.7 

 

6) Dimensioning of transverse reinforcement in the first storey beams. 

In Part 3 of this Answer, it was estimated that the action effects in the persistent and transient design 

situation are equal to those due to the quasi-permanent gravity loads, G+ψ2Q, times 1.545. So, the 

shear forces at the “persistent and transient design situation” vary (presumably linearly) from 

1.545×97.5= 150.6 kN at the face of the exterior support to 1.545×126.2=195 kN at the face of the 

central support.  

The shear resistance at the face of the support for shear compression in the web is according to 

Eurocode 2:  

VRd,max = 0.3(1-fck(MPa)/250)bwzfcdsin2θ = 0.3×(1-30/250)×0.3×0.9×0.46×20000sin2θ = 655.8sin2θ  

with 1cot θ2.5. 

Acting shears:  

At the face of the exterior support: VEd(0) = max(150.6, 177.2) = 177.2 kN < VRd,max  θ > 8o 

At the face of the central support: VEd(0) = max(195, 199.4) = 199.4 kN < VRd,max  θ > 9o 

So, cotθ =2.5, i.e. θ = 21.8o over the full length of the beam. 

 Shear reinforcement in the “critical regions” of the beam next to the column faces:  

Design shear force at a distance h=0.5m from the support on the exterior column. 

VEd(0.5m)=71.4+105.8×(1-0.5/(4.625/2)) = 154.3 kN 

Design shear force at a distance h=0.5 m from the support on the central column. 

VEd(0.5m)=81.5+117.9×(1-0.5/(4.625/2)) = 173.9 kN 

For VRd,s=bwzwfywdcotθ =0.3×0.9×0.46×434800×2.5w = 135000w > 173.9 kN  w>0.00129, 

larger than the minimum stirrup ratio required by Eurocode 2: minw=0.08√fck(MPa)/fyk(MPa)= 

0.000876. 



mindbL =16 mm, mindbw = 6 mm and maxsw=8dbL=128 mm: 6 mm-dia. stirrups at 125 mm centres, in 

the “critical region” next to the exterior column, giving w=2×28.3/(125×300)= 0.00151 > 0.00129. 

According to Eurocode 8, the 1st stirrup is not further than 50 mm from the face of the column; so 

five 6 mm-dia. stirrups @ 125 mm centres extend up to 500 mm from the face of the exterior 

column. Similar stirrup reinforcement (6 mm stirrups @ 125 mm centres) is placed in the “critical 

region” next to the exterior column. 

 Shear reinforcement between the “critical regions” at the two ends of the beam: 

The length of the beam outside the “critical regions” is: 4.625-2×0.50=3.625m.  

Design shear force at a distance zcotθ = 0.9×0.46×2.5=1.035 m from last stirrup of the "critical 

region", i.e., 1.535 m from the face of the support: 

VEd(1.535 m)=81.5+117.9×(1-1.535/(4.625/2)) = 121 kN 

There, the minimum stirrup spacing according to Eurocode 2 is 0.75d=0.75×460=345 mm. 18 6 mm-

dia. stirrups at 200 mm centres cover that length, giving w= 2×28.3/(200×300) =0.000943 > 

minw=0.000876 and providing shear resistance: VRd,s= 135000w = 127.5 kN which exceeds the 

maximum design shear VEd(1.535 m)=121 kN outside the “critical regions”.  

7) Dimensioning and detailing of transverse reinforcement of the first storey columns, including 

confinement at the base. 

a) Central column: 

Outside the critical regions, the maximum stirrup spacing that allows lap-splicing is  12dbL=12×16 

= 192 mm, 0.6hc = 0.6×400 = 240 mm, 240 mm, i.e., the minimum is Φ6/190 (149 mm2/m per 

stirrup leg). In addition to the perimeter tie, a diamond-shaped one is placed, engaging the four mid-

side bars. The shear resistance provided by these stirrups is: 

VRd,s = 754.3×0.9×0.36/2.5+0.9×0.36×149×0.4348×(2+√2)cotθ= 97.8+71.7cotθ (where the first term 

is the contribution of the axial force to shear resistance and the parenthesis at the end is the effective 

no. of stirrup legs).  



VRd,max = 0.3×(1-30/250)×0.4×0.9×0.36×(1+754.3/(0.42×20000))×20000sin2θ = 845sin2θ;  

For cotθ = 2.5: VRd,max = 583 kN, VRd,s = 277 kN, both above the capacity design shear of VEd = 204.1 

kN. 

The critical region length should be  hc= 0.4 m,  0.45 m and  Hcl/6 = 0.417 m, i.e., 0.45 m. For a 

distance from the end sections equal to the critical region length: 

 stirrup diameter, dbw  6 mm, 0.25dbL= 0.25×16 = 4 mm;  

 spacing  8dbL=8×16 = 128 mm; bo/2= (400-2×25-8)/2= 171 mm. 

Stirrups chosen are Φ6/125 (226 mm2/m per stirrup leg). There is no need to check the shear  

resistance provided by these ties, because the lighter arrangement of Φ6/190 chosen outside the 

critical regions is sufficient for the same design shears along the column. 

In the critical region at the base the transverse reinforcement should also provide confinement 

through an effective mechanical ratio satisfying the conditions: 

wd > 0.08, and 

awd > 30dydbc/bo -0.035, 

where yd = 0.00217,  = 2(qo-1)TC/T+1 = 2×(3.9-1)×0.6/0.565+1= 7.16, bc= 0.4 m, bo = 0.4-

2×0.025-0.008= 0.342 m, d =754.3/(0.42×20000)=0.236,  

i.e., awd > 30×7.16×0.236×0.00217×0.4/0.342 -0.035= 0.0937. 

The pattern of Φ6/125 stirrups adopted for the critical regions above the base gives: 

a = (1-0.5×125/342)2[1-8/(4×6)] = 0.445 

wd = 2×(2+√2)×226/(342×1000)×(434.8/20)=0.0981 > 0.08 and 

awd= 0.445×0.0981 = 0.0437 < 0.0937. So, specifically in the critical region at the base, the stirrups 

increase to Φ8/100 (503 mm2/m per stirrup leg), giving: 

a = (1-0.5×100/342)2[1-8/(4×6)] = 0.486;  

wd = 2×(2+√2)×503/(342×1000)×(434.8/20)=0.218, and 

awd= 0.486×0.218 = 0.1059 > 0.0937. 



So, the stirrups of the 1st storey central column are: 

 Φ6/190 between the two 0.45 m long end regions,  

 Φ6/125 in the end region at the top of the column and  

 Φ8/100 in the end region at the base. 

b) Exterior column: 

The same minimum reinforcement applies and the same stirrups are chosen as in the central column: 

Φ6/190 (149 mm2/m per stirrup leg), in the form of a perimeter tie and a diamond-shaped one, 

engaging the four mid-side bars. The shear resistance provided by these stirrups is: 

 For maxN = 434.8 kN:  

VRd,s = 434.8×0.9×0.31/2.5+0.9×0.31×149×0.4348×(2+√2)cotθ= 48.5+61.7cotθ;  

VRd,max = 0.3×(1-30/250)×0.35×0.9×0.31×20000×(1+434.8/(0.352×20000))×sin2θ = 608sin2θ;  

for cotθ = 2.5: VRd,s = 202.8 kN, VRd,max = 419.3 kN, both well above the capacity design shear of 

VEd = 97.9 kN. 

 For minN = 154.2 kN:  

VRd,s = 154.2×0.9×0.31/2.5+0.9×0.31×149×0.4348×(2+√2)cotθ= 17.2+61.7cotθ,  

VRd,max = 516×(1+154.2/(0.352×20000))sin2θ=548sin2θ 

for cotθ = 2.5: VRd,s = 171.5 kN, VRd,max = 378 kN, both well above the capacity design shear of 

VEd = 77.5 kN. 

The critical region length should be  hc= 0.35 m,  0.45 m and  Hcl/6 = 0.417 m, i.e., 0.45 m. For a 

distance from the end sections equal to the critical region length: 

 stirrup diameter, dbw  6 mm, 0.25dbL= 0.25×16 = 4 mm;  

 spacing  6dbL=8×16 = 128 mm; bo/2= (350-2×25-8)/2= 146 mm. 

The stirrups chosen are again Φ6/125 (226 mm2/m per stirrup leg), with the same pattern of a 

perimeter tie and a diamond-shaped one engaging the four mid-side bars. The shear verification is 

ommited, because the lighter arrangement of Φ6/190 chosen outside the critical regions suffices for 



the same design shears along the column. 

The confinement requirements are larger for maxN = 434.8 kN, i.e., d =434.8/(0.352×20000) = 

0.1775: 

i.e., awd > 30×7.16×0.1775×0.00217×0.35/0.292-0.035= 0.0642. 

The pattern of Φ6/125 stirrups adopted for the critical regions above the base is not sufficient. It is 

changed in the critical region to Φ8/125 (402 mm2/m per stirrup leg), giving: 

a = (1-0.5×125/292)2[1-8/(4×6)] = 0.412 

wd = 2×(2+√2)×402/(292×1000)×(434.8/20)=0.2044 > 0.08 

awd= 0.412×0.2044 = 0.0842 > 0.0642. 

The stirrups of the 1st storey exterior column are: 

 Φ6/190 between the two 0.45 m long end regions,  

 Φ6/125 in the end region at the top of the column and  

 Φ8/125 in the end region at the base.  



Question 5.4  

For the building shown in Figure 5.21: 

 The seismic action in direction X is considered to be resisted by the two exterior 3-bay frames 

alone. Seismic forces are applied at floor levels and at the lowest level of the roof; they are 

derived from the masses and a presumed inverted triangular pattern of horizontal 

displacements.The two interior columns of these frames have twice the moment of inertia of the 

corner ones and take twice as large seismic shears as the corner columns; hence the seismic 

moments at the two ends of the beams of that frame are numerically equal across all three spans 

of a floor. The columns of the two X-direction frames may be considered to develop zero 

seismic moment (inflection point) at storey mid-height. At the top they are fixed against rotation 

within the X-direction vertical plane, because the sloping roof works with the type B1, B2 

perimeter beams as a very wide, inclined flange, imparting to these beams very high stiffness 

and flexural resistance for bending in the plane of the X-direction frames; for that reason, 

column C3 and the like cannot escape from plastic hinging at the top under strong seismic action 

in direction X.  



 The pitched roof is supported by beams only along the perimeter. Its ridge is a non-deflecting 

support of the two roof slabs on either side. These slabs are one-way and, by in-plane action, 

transfer to the perimeter beams which are parallel to the ridge the vertical reaction to gravity 

loads which would normally go to the support along the ridge. So, the full gravity load of the 

roof goes to beams B1 and B2. Under a uniform load p (kN/m), these beams develop bending 

moments at the interior supports equal to 0.1pL2, and zero at the end supports. 

 Gravity loads go to the closest column in plan, but may be taken to induce no bending moments 

to columns. Floor slabs are one-way and can be taken to be supported only on their long sides in 

plan: floor beams B3, B4 and the like are considered as unloaded by gravity loads. 

1) Estimate the seismic moments and axial forces in the members, due to the seismic action in 

direction X. 

2) Dimension the longitudinal reinforcement at the end sections of the second floor beams B3 and B4 

and of the roof beams B1 and B2.  

3) Dimension the vertical reinforcement of the third and second floor columns, C3 and C2, to meet 

the strong column/weak beam capacity design rule around its joint with beams B3, B4 and resist at 

the top the seismic moments from the analysis for earthquake in direction X. 

4) Calculate the capacity design shears of the second storey beam B4 and of the third storey column 

C3 in the plane of the exterior X-direction frame. 

• Ductility Class H (High). 

• Base shear in direction X: 25% of the weight of the building. 

• Bay lengths: L = 5.0 m, B = 11 m. Storey height Η = 3.6 m. Roof slope to the horizontal: 12o. 

• Concrete C25/30, S500 steel. Cover of reinforcement 30 mm. 

• Permanent loads (all inclusive): for the roof 8 kN/m2 per m2 of horizontal projection; for the 

floors 9 kN/m2. 

• Live loads: 2 kN/m2 on the floors; zero on the roof. 



• ψ2=0.30 

• Beam width 0.3 m and depth 0.5 m. Slab thickness 0.16 m. 

• Interior columns: 0.6 m square; corner ones: 0.5 m square. 

• Curvature ductility demand for detailing: μφ = 2qo -1, where qo is the behaviour factor appropriate 

for the building. 

Answer of Question 5.4: 

1) Effects of the seismic action in direction X: 

The total quasi-permanent loads are: 

On the roof: W3 = 8×11×15= 1320 kN; on each floor: W1 = W2 = (9+0.3×2)×11×15= 1584 kN. 

Total: W = 1320+2×1584=4488 kN 

Total base shear in X: 0.25×4488 = 1122 kN. 

Seismic forces at the three levels:  

f3= 1122×3×1320/(3×1320+2×1584+1×1584) = 510 kN; 

f2= 1122×2×1584/(3×1320+2×1584+1×1584)= 408 kN; 

f1= 1122×1584 /(3×1320+2×1584+1×1584) = 204 kN. 

Storey seismic shears: 

V3= 510 kN; 

V2= 510+408 = 918 kN; 

V1= 918+204 = 1122 kN. 

Seismic shears in an interior column, presuming that the share of a corner column to the storey shear 

is half that of an interior column and taking into account that the two exterior frames share the total 

seismic shear: 

VEc,3= 0.5×510/3 = 85 kN; 

VEc,2= 0.5×918/3 = 153 kN; 

VEc,1= 0.5×1122/3 = 187 kN. 



Bending moments at interior column ends, for point of inflection presumed to be at storey mid-

height:  

MEc,3= VEc,3Η/2 = 85×3.6/2 = 153 kNm; 

MEc,2= VEc,2Η/2 = 153×3.6/2 = 275.4 kNm; 

MEc,1= VEc,1Η/2 = 187×3.6/2 = 336.6 kNm. 

Corner columns take just half of the above seismic shears and moments. 

Seismic moments at beam ends: 

MEb,2= (MEc,3+MEc,2)/2 = 214.2 kNm; 

MEb,1= (MEc,2+MEc,1)/2 = 306 kNm. 

Beam seismic moments at the face of the supporting column (neglecting the different size of corner 

columns): 

MEb,2d= (1-hc/Lcl)MEb,2 = (1-0.6/5)×214.2 = 188.5 kNm; 

MEb,1d= (1-hc/Lcl)MEb,1 = (1-0.6/5)×306 = 269.3 kNm. 

For earthquake in the X-direction, the 3rd-storey beams B1, B2 work as integral with the roof, with 

the roof playing the role of a deep, inclined flange. The column moments MEc,3 computed above are 

taken by the inclined roof slab, working together with beams B1, B2. 

The columns at mid-length of the Y-direction sides take a negligible share of the X-direction seismic 

shear, because they are not connected to any beams in that direction. If their tops are considered as 

fixed against rotation by the large rigidity which the sloping roof presents to bending in a vertical 

plane parallel to X, these columns may at most be considered as free-standing over a height of 

3×3.6+5.5tan(12o) = 12 m, with double fixity at top and bottom. For such a height, their stiffness ‒ 

and uptake of seismic forces ‒ in direction X may be neglected. By the same token, their contribution 

to the uptake of the overturning moment is neglected. 

The corner columns develop axial forces resisting the seismic overturning moment; these forces are 

computed by considering equilibrium of moments at a horizontal section through storey mid-height, 



where the column moments are assumed to be zero: 

Storey 3: Overturning moment: f3Η/2 = 510×3.6/2 = 918 kNm, corner column axial forces: NEc,3 = 

0.5×918/15=30.6 kN; 

Storey 2: Overturning moment: f3(3Η/2)+f2Η/2 = 510×3×3.6/2 + 408×3.6/2 = 3488.4 kNm, corner 

column axial forces: NEc,2 = 0.5×3488.4/15=116.3 kN; 

Storey 1: Overturning moment: f3(5Η/2)+f2(3Η/2)+f1Η/2 = 510×5×3.6/2 + 408×3×3.6/2 +204×3.6/2 

= 7160.4 kNm, corner column axial forces: NEc,1 = 0.5×7160.4/15= 238.7 kN. 

2) Dimensioning of the longitudinal reinforcement of the X-direction beams: 

Parameters:  

fcd=25/1.5=16.67 MPa; fctm=2.6 MPa, Ec=31000000 kPa;  

fyd=500/1.15=434.8 MPa; εyd=434.8/200000=0.217%;  

qo = 4.5×1.3= 5.85, μφ = 2qo -1= 10.7 

Distance of centre of longitudinal bars from nearest concrete surface: 

d1=c+dbh+dbL/2~0.030+0.006+0.014/2 ~0.045m. 

ρmin =0.5fctm/fyk =0.5×2.6/500=0.0026 

a) Beams B1, B2: 

Maximum diameter of bars, dbL, at the support by a corner column, Eq. (5.2b): 

minN=8×2.5×5.5-30.6 = 79.4 kN, νd = 79.4/(0.52×16667)=0.019: dbL/hc,ext ≤ 

7.5×1.015×2.6/(1.2×434.8) = 0.038, dbL ≤ 0.038×500 = 19 mm 

Maximum diameter of bars, dbL, at the support on an intermediate exterior column, Eq. (5.2a): 

minN=8×5×5.5 = 220 kN.  

For νd = 220/(0.62×16667)=0.0367 and '=0.5ρmax: dbL/hc,ext ≤ 7.5×1.029×2.6/(1.2×1.375×434.8) = 

0.028, dbL ≤ 0.028×600 = 17 mm. 

The roof works as a folded plate, supported in an one-way fashion by the ridge and by beams B1, B2. 

These beams take the ridge's share of the vertical reactions of the roof slabs and are subjected to a 



uniform line load due to the permanent loads equal to p = 5.5×8 = 44 kN/m. It makes little sense to 

design these beams for seismic moments due to earthquake in direction X, as though the roof slab 

were horizontal. These moments are taken by the roof slab, which works as an inclined deep beam. 

Therefore, beams B1, B2 are designed for gravity loads alone, and indeed for the factored gravity 

load, 1.35G= 1.35p = 59.4 kN/m. Beams B1, B2 may be dimensioned for the resulting moments as 

T-beams. Controlling, in this respect, is the direction of the flange; so the vertical load of 59.4 kN/m 

is analysed into two components: 59.4cos(12o)=58.1 kN/m, at right angles to the roof slab, and 

59.4sin(12o) = 12.4 kN/m, within the plane of the roof slab. The second component is taken by in-

plane action in the slab and is of no interest. The first one causes bending of the beams about an axis 

parallel to the roof slab; it is for this bending action that these beams are dimensioned in flexure. To 

this end, we should take as depth of the beam the projection of its real depth onto the normal to the 

roof slab: 0.5cos(12o) = 0.49 m, the effective depth is computed similarly: (500-30-6-16/2)cos(12o) = 

445 mm; the effective width of its web is the width parallel to the roof slab: 0.3/cos(12o) = 0.307 m.  

As,min =0.0026×307×445= 355 mm2; bottom: 3Φ14 (462 mm2), top: 2Φ16 (402 mm2). 

The hogging moment at interior supports, with vector parallel to the roof slab, is: 0.1×58.1×52 = 145 

kNm; it requires 860 mm2 of top reinforcement: 2Φ16 (As,min)+3Φ14 (additional), in total 864 mm2, 

giving:  = 864/(307×445) = 0.00632, ' = 462/(307×445) = 0.00338, ρmax='+0.0018fcd/(μφydfyd)= 

0.00338 + 0.0018×16.667/(10.7×0.00217×434.8)= 0.00635 >  = 0.00632. 

The detailing rule: As,bottom (in this case 462 mm2) > 0.5As,top (864 mm2) is satisfied. 

b) Beams B3, B4: 

Unlike B1 and B2, beams B3, B4 bear little gravity loads (neglected in this case). Their bending is 

exclusively due to the seismic action. To design them in flexure, we first have to estimate the effects 

of the seismic action component in direction X. 

Maximum diameter of bars, dbL, at the support of B3 on a corner column, Eq. (5.2b): 

minN=(8+9.6)×2.5×5.5 -116.3 = 125.7 kN, νd = 125.7/(0.52×166667)=0.03: dbL/hc,ext ≤ 



7.5×1.024×2.6/(1.2×434.8) = 0.0384, dbL ≤ 0.0384×500 = 19 mm 

Maximum diameter of bars, dbL, at the support on an exterior column, Eq. (5.2a): 

minN=(8+9.6)×5×5.5 = 484 kN.  

For νd = 484/(0.62×16667)=0.0807 and '=0.5ρmax: dbL/hc,ext ≤ 7.5×1.065×2.6/(1.2×1.375×434.8) = 

0.029, dbL ≤ 0.029×600 = 17.5 mm. 

As,min =0.0026×300×455= 355 mm2; bottom: 2Φ16 (402 mm2). 

The design moments for beams B3, B4 are: ±MEb,2d = ±188.5 kNm, for which 1124 mm2 are needed; 

provided at top and bottom: 2Φ16 (As,min)+5Φ14 (additional), in total 1172 mm2. There is no need to 

check  against ρmax, because  = '. 

MRd,b
- = MRd,b

+ = 1172×0.9×0.455×434.8/103= 208.7 kNm 

3) Design of 2nd and 3rd storey interior columns in flexure. 

Distance of centre of vertical bars from the nearest concrete surface: d1 = c+dbh+dbL/2 ~ 0.045 m. 

Minimum number of bars per side, to respect the maximum spacing of 150 mm between bars 

engaged at a stirrup corner or cross-tie: 5 (total 16); As,min = 0.01×600×600 = 3600 mm2.  

Minimum reinforcement: 4Φ20 (at the corners) + 12Φ16 (intermediate bars along the sides): 3668 

mm2;  = 3668/(600×600) = 0.0102 > 0.01. 

At 3rd storey: N = 8×5×5.5 = 220 kN.  

At 2nd storey: N = (8+9.6)×5×5.5 = 484 kN.  

Design moment at the top of column C3 (3rd storey):  

MEc,3= VEc,3Η/2 = 85×3.6/2 = 153 kNm. 

Capacity design moment input at the joint of columns C3 and C2 with beams B3 and B4: 

1.3∑MRd,b=1.3×2×208.7 kNm = 542.6 kNm 

As the column section is large, its moment resistance with the minimum reinforcement may suffice 

for the moment demands above. It is computed below for the 2nd and 3rd storeys: 

d = 600-45 = 555 mm; d1 = 45 mm, δ1 = d1/d=45/555=0.081, 



In order to have the "web" reinforcement uniformly spread between ω1d and ω2d, half the area of 

1Φ16 is subtracted from each corner bar and counts in ωvd. So: 

ω1d=ω2d = (2×314+2×201)/(600×555)×434.8/16.67 = 0.0807,  

ωvd = 2×4×201/(600×555)×434.8/16.67 = 0.126. 

The limit in Eqs. (5.37a), (5.37b) is: 

ν2 = 0.126×[0.081×(0.0035+0.00217)/(0.0035-0.00217)-1]/(1-0.081)+ 0.081×(0.0035-

0.002/3)/(0.0035-0.00217) = 0.17256-0.0898=0.0828 

Top storey: νd= 220/(0.6×0.555×16667)=0.0396 < 0.0828 .  

Second storey: νd= 484/(0.6×0.555×16667)=0.0872 > 0.0828.  

Eq. (5.39b) applies to the top storey column, in the form:  

[1-0.002/(3×0.0035)+ 0.126×(0.0035+0.00217)2/(2×0.0035×0.00217×(1-0.081)]ξ2 

-[0.0396+0.0807×(1-0.0035/0.00217)+ 0.126×(1+0.081×0.0035/0.00217)/(1-0.081)]ξ- 

[0.0807-0.5×0.126×0.081/(1-0.081)]×0.081×0.0035/0.00217=0 → 1.1ξ2-0.1452ξ-0.00982=0 → 

ξ=0.1812 

Eq. (5.38b) gives: 
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which MRd,c = 441 kNm. 

For νd= 0.0872, Eq. (5.39a) applies to the top storey column: 
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fbd

M

cd

cRd  = 0.16, MRd,c 

= 492.6 kNm 

∑MRd,c =492.6+441=933.6 > 1.3∑MRd,b=542.6 kNm  

The minimum reinforcement suffices in both storeys. 

4) Capacity design shears: 



Beam B4: 

As ∑MRd,c = 933.6 kNm > ∑MRd,b = 417.4 kNm at both ends of the beam, the capacity design shear 

is: 

maxVCD,B4 = 1.2×2×208.7/4.4 = 113.8 kN, minVCD,B2 = -113.8 kN, ζ = -1 (full reversal of the shear). 

However, maxVCD = 113.8 kN < (2+)fctdbwd  =(2-1)×(0.7×2600/1.5)×0.3×0.455 = 165.6 kN → no 

need for diagonal or inclined shear reinforcement. 

Column C3: 

The column is fixed at the top by the sloping roof; so: 

As ∑MRd,c > ∑MRd,b at both ends of the beam, the capacity design shear is: 

VCD,C3 = 1.3×(441+441×417.4/933.6)/3.1 = 267.6 kN. 

 

Question 5.5  

The building in Fig. 5.22 has many similar 4-bay, 2-storey frames in direction X. Column tops are 

connected in direction Y through beams of type B3, into five parallel Y-direction frames, each one 

with practically infinite, similar bays. There is a diaphragm only at roof level.  

Simplifying assumptions: 



 The self weight of beams and columns is neglected for all purposes.  

 The roof comprises one-way slabs, supported only on the Y-direction beams B3; beams of type 

B1 may be taken as not loaded by the roof slabs.  

 Under gravity loads, beams of type B3 are considered as fixed at the end section against rotation. 

 Bending of columns due to gravity loads is ignored. 

 The seismic action is considered to produce horizontal forces only at the roof level. 

 The seismic action components in direction X and Y are taken to act separately, not 

concurrently. 

 Columns take the horizontal seismic forces, as well as the gravity loads acting on the roof, in 

proportion to their tributary area in plan. Exterior columns have one-half the moment of inertia 

of interior ones; so, their share of the forces may indeed be assumed to be about half of that of 

interior columns.  

 Under the seismic action, the inflection point (zero moment) of the columns is at the following 

fraction of the storey height from the base of the column in the storey: 

 In the one-storey frames along the Y-direction: (6kY +1)/(12kY +1), where 

kY=(EI)B3/(EI)CY(H/B), with (EI)B3 denoting the rigidity of beam B3, (EI)CY that of an 

interior column for bending within a plane parallel to Y (strong axis) and B, H, the length of 

these elements. 

 In the two-storey frames along the X-direction:  

 at the lower storey: (3kX2+1)(12kX1+1)/[(6kX2+1)(12kX1+1)-1/2], 

 at the upper storey: [6kX2(6kX1+1)+1/2]/[(6kX2+1)(12kX1+1)-1/2], 

where kX1=(EI)B1/(EI)CX(H/2L), kX2=(EI)B2/(EI)CX(H/2L), with (EI)B1, (EI)B2 denoting the 

rigidity of beams B1 and B2, (EI)CX that of an interior column for bending within a plane 

parallel to X (weak axis) and L, H/2 the length of these elements. 

 The inflection points of the beams under seismic loading are always at mid-span. 



 The effective flange width of roof beams B1 and B3 may be taken per Eurocode 2: on each side 

of the web where there is a slab: 10% of the distance of the beam from the nearest parallel one 

(but not greater than 7% of the beam span) plus another 7% of the beam span. 

1) What is the value of the behaviour factor, q, of the building in directions X and Y according to 

Eurocode 8 for Ductility Class High (H)? 

2) Calculate the fundamental periods of the building in directions X and Y, after establishing the 

stiffness of the corresponding single-degree-of-freedom (SDOF) system. 

3) Using the outcomes of 1) and 2), compute the floor seismic forces for the design of the building in 

directions X and Y.  

4) Calculate the interstorey drifts under the design seismic action in directions X and Y and use them 

to estimate the sensitivity coefficients to second-order effects and the interstorey drifts under a 

damage limitation earthquake equal to 50% of the design seismic action. 

5) What is the use of X-direction beams of type B2 at building mid-height, since there are no slabs or 

seismic forces at that level? 

6) Dimension the longitudinal reinforcement of interior beams B1, B2 and B3 at the supports.  

7) Dimension the vertical reinforcement of an interior column, separately in directions X and Y, on 

the basis of the analysis results for the seismic forces in 3) above. 

8) Calculate the capacity design shears at the ends of interior beams B1, B2, B3 and at both storeys 

of an interior column, in directions X and Y. 

9) Dimension and detail the shear reinforcement of Beams B1, B2 and B3. 

10) Dimension and detail the transverse reinforcement of an interior column 

 Type 1 spectrum of Eurocode 8 for ground type E and design ground acceleration 0.42g. 

 Ductility Class H (High). 

 Bay lengths: L = 3.0 m, B = 10 m.  

 Height to mid-depth of the roof slab, where the seismic forces are applied: Η = 7 m. 



 Concrete C35/45, S500 steel. Cover of reinforcement 25 mm. 

 The roof slab is 160 mm thick and has only permanent loads: g = 6.5 kN/m2 

 Beams B1, B2: width 0.3 m; depth 0.40 m; beams B3: width 0.3 m; depth 0.50 m. 

 Interior column: 0.35 m in direction X, 0.60 m in Υ; Exterior column: 0.30 m in X, 0.50 m in 

Υ. 

Answer of Question 5.5: 

1) The building is regular, in plan and in elevation. The dimensionless axial load at the base of a 

column is (6.5×3×10)/(0.35×0.6×23333)=195/4900=0.04 < 0.3, hence the building is not considered 

an inverted pendulum system, despite having all its mass at the top. In direction Y it is a one-storey 

multi-bay frame; hence u/1=1.1 and qY = 4.5×1.1=4.95. In direction X it is considered as a multi-

bay frame with more than one storey, hence u/1=1.3 and qX = 4.5×1.3=5.85. 

2) Direction Y: 

Beam B3: effective flange width on each side of the web: 0.1×3+0.07×10=1 m; total flange width: 

2.3 m, I = 0.006759 m4; 

Column in direction Y: I = 0.35×0.63/12 = 0.0063 m4 

kY= (0.006759/0.0063)×(7/10)=0.751. 

Point of inflection: (6kY +1)Η/(12kY +1) = 0.55×7 = 3.85 m from the base, 6kYΗ/(12kY +1) = 3.15 

m from the top. Seismic moments: 3.85V at the bottom, 3.15V at the top, where V: seismic shear 

in the column. 

From virtual work:  

Top deflection due to horizontal force V at the top: [2(6kY +1)-6kY]VΗ3/[6EICY(12kY +1)] = 

(3kY+1)VΗ3/[3EICY(12kY +1)] = 0.1083VΗ3/EICY;  

Frame stiffness per interior column: KY = 9.233×(0.5×34000000×0.0063)/73 = 2883 kN/m 

Tributary mass of interior column: M=195/9.81=19.88 tn 

T=2π√(19.88/2823)=0.527 sec. 



Direction X: 

Beam B1: effective flange width on each side of the web: 0.07×3+0.07×3=0.42 m; total flange 

width: 0.3+2×0.42=1.14 m, I = 0.0028 m4; 

Beam B2: I = 0.3×0.43/12 = 0.0016 m4; 

Column in X: I = 0.6×0.353/12 = 0.002144 m4 

kX1=(0.0028/0.002144)×(3.5/3)=1.524,  

kX2=(0.0016/0.002144)×(3.5/3)=0.871.  

Points of inflection: 

 in the first storey column:  

 from the base (M1b): (3kX2 +1)(12kX1 +1)H/[2(6kX2 +1)(12kX1 +1)-1] = 0.5827×3.5=2.04 

m, 

 from the top of first storey (M1t): [3kX2(12kX1+1)-1/2]H/[2(6kX2 +1)(12kX1+1)-1] = 3.5-

2.04 = 1.46 m. 

Seismic moments: 2.04V at the base, 1.46V at the top. 

 in the second storey column:  

 from the base of second storey (M2b): [6kX2(6kX1+1)+1/2]H/[2(6kX2 +1)(12kX1+1)-1] = 

0.4473×3.5 = 1.57 m, 

 from the top (M2t): 12kX1(3kX2 +1)H/[2(6kX2 +1)(12kX1 +1)-1] = 3.5-1.57 = 1.93 m. 

Seismic moments: 1.57V at the bottom, 1.93V at the top. 

From virtual work:  

Top deflection due to horizontal force V at the top: (5M1b+2M2b-4M1t-M2t)Η
2/(24EICX) = 

[24kX2kX1+5kX2+16kX1+3]VΗ3/{8EICX[2(6kX2 +1)(12kX1+1)-1]}= 0.03324VΗ3/EICX;  

Frame stiffness per interior column: KX = 30.1×(0.5×34000000×0.002144)/73 = 3197 kNm2 

We calculate also, for later use, the deflection in the X direction at column mid-height (level of 

beams B2) due to a horizontal force V at roof level: (2M1b-M1t)Η
2/(24EICX) = 



[72kX2kX1+6kX2+48kX1+5]VΗ3/{48EICX[2(6kX2 +1)(12kX1 +1)-1]}= 0.01559VΗ3/EICX = 

0.01559×73V/(0.5×34000000×0.002144) = 0.0001467V 

Tributary mass of an interior column: M=195/9.81=19.88 tn 

T=2π√(19.88/3197)=0.495 sec. 

3) Direction Y: 

Design spectral acceleration: Sd(T=0.527)=1.4×0.42×(2.5/4.95)×(0.5/0.527) = 0.282g 

Seismic force at the level of the roof per span between two X-direction frames:  

VY = 0.282×12.3×10×6.5=225 kN 

Direction X: 

Design spectral acceleration: Sd(T=0.587)=1.4×0.42×(2.5/5.85) = 0.251g 

Seismic force at the level of the roof per one X-direction frame:  

VX = 0.251×12.3×10×6.5=200 kN 

4) Direction Y: 

Stiffness of all four interior and two exterior columns: 5KY =5×2883 kN/m. 

Roof displacement: uY = 4.95×225/(5×2883)=0.077 m 

Interstorey drift under 50% of the design seismic action: 0.5uY/H= 0.5×0.077/7=0.0055 > 0.5%. 

Sensitivity coefficient for second-order effects: θ= 0.077×(12.3×10×6.5)/(225×7)=0.039 < 0.1 

Direction X: 

Stiffness of all four interior and two exterior columns: 5KX =5×3197 kN/m. 

Roof displacement: uY = 5.85×200/(5×3197)=0.073 m 

Deflection at column mid-height (level of beams B2) due to a horizontal force V = 200/5 = 40 kN 

acting at roof level: 5.85×0.0001467×40 = 0.034 m; deflection from that level to the roof: 0.073-

0.034 = 0.039 m. 

Interstorey drift under 50% of the design seismic action:  

 Lower storey of the frame: 0.5×0.034/3.5=0.0049 < 0.5%. 



 Top storey of the frame: 0.5×0.039/3.5=0.0056 > 0.5%. 

The damage limitation limit for brittle infills is not met, but the limit for the frame without 

interacting infills (1%) is. 

Sensitivity coefficient for second-order effects: θ= 0.073×(12.3×10×6.5)/(200×7)=0.042 < 0.1 

5) According to 2) above, the maximum column moment due to a horizontal force V is 3.85V for 

framing action in the Y direction and 2.04V for bending in the X direction. So, beams B2 reduce the 

moment resistance requirements by almost 50%. Besides, they increase the in-plane stiffness from 

9.23EIC/Η3 in Y to 30.1EIC/Η3 in X. Thanks to the reduction in the flexural strength demand and the 

increased stiffness, the columns are slimmer in the X direction than in Y. 

6) Dimensioning of the beams in flexure: 

Parameters:  

fcd=35/1.5=23.33 MPa; fctm=3.2 MPa, Ec=34000000 kPa;  

fyd=500/1.15=434.8 MPa; εyd=434.8/200000=0.217%;  

Distance of centre of longitudinal bars from nearest concrete surface: 

d1=c+dbh+dbL/2~0.025+0.008+0.016/2 ~0.04m. 

Curvature ductility demand for detailing:  

As T > TC, Eq. (5.64b) applies: μφ = 2qo -1 = 10.7 in X, 8.9 in Y. 

Beams B1 and B2 develop only seismic moments, because the elements of the X-direction frame 

have been taken as weightless and the loads of the roof go to beams B3 alone in one-way action: 

d = 0.4-0.04 = 0.36 m; ρmin =0.5fctm/fyk =0.5×3.2/500=0.0032 

As,min =0.0032×300×360= 346 mm2.  

Maximum diameter of bars, dbL, at the support on the interior column, per Eq. (5.2a): 

minN= 6.5×3×10=195 kN  

For νd = minN/(0.35×0.6×23333))=0.04 and '=0.5ρmax:  

dbL/hc ≤7.5×1.032×3.2/(1.2×1.375×434.8)=0.0345, dbL ≤ 0.0345×350=12 mm 



Beams B1:  

The seismic moment is one-half that of the moment at the top of the column for seismic action in 

direction X: MB1,E = ±0.5×1.93×40 = ±38.6 kNm, As = 267 mm2 < As,min . We place 3Φ12 (339 mm2 ~ 

As,min) at top and bottom. 

MRd,b
- = MRd,b

+ = 339×0.9×0.36×434.8/103= 47.8 kNm 

Beams B2:  

The seismic moment is the average moment at the top of the 1st storey column and the bottom of the 

2nd storey one: MB2,E = ±0.5×(1.46+1.57)×40 = 60.6 kNm, As = 424 mm2 ~ As,min. We place 4Φ12 

(452 mm2) at top and bottom. 

MRd,b
- = MRd,b

+ = 452×0.9×0.36×434.8/103= 63.7 kNm 

Beams B3:  

d = 0.5-0.04 = 0.46 m. As,min =0.0032×300×460= 442 mm2.  

Maximum diameter of bars, dbL, at the support on the interior column, per Eq. (5.2a): 

minN= 6.5×3×10=195 kN  

For νd = minN/(0.35×0.6×23333)=0.04 and '=0.5ρmax:  

dbL/hc ≤7.5×1.032×3.2/(1.2×1.375×434.8)=0.0345, dbL ≤ 0.0345×600= 20 mm 

As,min : 3Φ16 (603mm2) at top and bottom. 

The seismic moment is one-half the moment at the top of the column for seismic action in direction 

Y (with V = 225/5 = 45 kN per column): 

MB3,E = ±0.5×3.15×45 = ±70.9 kNm. 

The moment due to the quasi-permanent gravity loads of 6.5×3.0= 19.5 kN/m is: 

MB3,G = -19.5×102/12= -162.5 kNm 

and due to the factored gravity loads, 1.35G: 

at the supports: MB3,1.35G = -1.35×162.5 = -219.5 kNm, at midspan: 219.5/2= 109.7 kNm. 

The design hogging moment at the supports is: max(219.5; 162.5+70.9=233.4) = 233.4 kNm 



and the sagging one: 70.9-162.5 < 0 (there is no sagging moment). 

Bottom reinforcement at mid-span (for 109.7 kNm): As = 582 mm2 : 3Φ16 (603 mm2) 

Top reinforcement (for 233.4 kNm): As = 1353 mm2: 3Φ16 (As,min ) + 4Φ16 additional top bars at the 

supports (total: 1407 mm2). 

Bottom reinforcement at the supports at least 50% of top reinforcement area (704 mm2); we place 

3Φ16 (As,min ) + 1Φ16 in addition, over the critical region at the beam end supports; total: 804 mm2;  

 = 1407/(300×460) = 0.0102, ' = 804/(300×460) = 0.00583, 

ρmax='+0.0018fcd/(μφydfyd)= 0.00583 + 0.0018×23.33/(8.9×0.00217×434.8)= 0.01083 >  = 0.0102. 

MRd,b
- = 1407×0.9×0.46×434.8/103= 253.3 kNm, MRd,b

+= 804×0.9×0.46×434.8/103= 144.7 kNm 

7) There is no capacity design of the columns around joints, as the building has just one storey in one 

direction and two in the other; so, the columns are dimensioned on the basis of the analysis results 

alone. 

Distance of centre of vertical bars from nearest concrete surface: d1 = c+dbh+dbL/2 ~ 0.04m. 

Minimum number of bars, to respect the maximum spacing of 150 mm between bars engaged at a 

stirrup corner or cross-tie: 3 on the short sides, 5 on the long ones (total 12); As,min = 0.01×350×600 = 

2100 mm2.  

Minimum reinforcement: 4Φ18 (at the corners) + 8Φ14 (intermediate bars along the sides): 2250 

mm2;  = 2250/(350×600)=0.0107 > 0.01. 

Direction Y: 

Maximum Md = 3.85×45 = 173.5 kNm (at the base), μd = 173.5/(0.35×0.562×23333)=0.06765 

Direction X: 

Maximum Md = 2.04×40 = 81.6 kNm (at the base), μd = 81.6/(0.6×0.312×23333)=0.06065. 

As the design moments are low, we will put the minimum reinforcement and we will check whether 

the moment resistance it provides meets the demands from the analysis. 

In order to have the "web" reinforcement uniformly spread between ω1d and ω2d, half the area of 



1Φ14 is subtracted from each corner bar and counts in ωvd 

Direction Y: 

d = 560 mm, d1 = 40 mm, δ1 = d1/d=40/560=0.0715, νd= 195/(0.35×0.56×23333)=0.0426.  

ω1d=ω2d=509/(350×560)×434.8/23.33 = 0.0484, ωvd=1232/(350×560)×434.8/23.33 = 0.1171. 

The limit in Eqs. (5.37a), (5.37b) is: 

ν2 = 0.117×[0.0715×(0.0035+0.00217)/(0.0035-0.00217)-1]/(1-0.0715)+ 0.0715×(0.0035-

0.002/3)/(0.0035-0.00217) = 0.1523-0.0876=0.0647 > νd= 0.0415.  

Eq. (5.39b) applies and takes the form:  

[1-0.002/(3×0.0035)+ 0.117×(0.0035+0.00217)2/(2×0.0035×0.00217×(1-0.0715)]ξ2 

-[0.0415+0.0484×(1-0.0035/0.00217)+ 0.117×(1+0.0715×0.0035/0.00217)/(1-0.0715)]ξ- 

[0.0484-0.5×0.117×0.0715/(1-0.0715)]×0.0715×0.0035/0.00217=0 → 1.0762ξ2-0.1524ξ-0.00506=0 

→ ξ=0.1695 

Eq. (5.38b) gives: 
 
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from which MRd,c = 287 kNm.  

The minimum reinforcement provides the resistance required in direction Y. 

Direction X: 

d = 310 mm, d1 = 40 mm, δ1 = d1/d=40/310=0.129, νd= 195/(0.31×0.6×23333)=0.0449;  

ω1d=ω2d=817/(310×600)×434.8/23.33 =0.08185, ωvd=616/(310×600)×434.8/23.33 = 0.06171. 

The limit in Eqs. (5.37a), (5.37b) is: 

ν2 = 0.06171×[0.129×(0.0035+0.00217)/(0.0035-0.00217)-1]/(1-0.129)+ 0.129×(0.0035-

0.002/3)/(0.0035-0.00217) = 0.247> νd= 0.0449.  

Eq. (5.39b) applies and takes the form:  

[1-0.002/(3×0.0035)+ 0.06171×(0.0035+0.00217)2/(2×0.0035×0.00217×(1-0.129)]ξ2 

-[0.0449+0.08185×(1-0.0035/0.00217)+ 0.06171×(1+0.129×0.0035/0.00217)/(1-0.129)]ξ- 



[0.08185-0.5×0.06171×0.129/(1-0.129)]×0.129×0.0035/0.00217=0 → 0.9595ξ2-0.08032ξ-0.01608=0 

→ ξ=0.178 

Eq. (5.38b) gives: 
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= 0.116, 

from which MRd,c = 156 kNm > 81.6 kNm. The minimum reinforcement suffices. 

8) Capacity design shears 

Beams B1:  

At the joints: ∑MRd,c = 156 kNm, ∑MRd,b = 2×47.8 = 95.6 kNm 

maxVCD,B1 = 1.2×2×47.8/2.65 = 43.3 kN, minVCD,B1 = -43.3 kN, ζ = -1 (full reversal of shear). 

Beams B2:  

At the joints: ∑MRd,c = 2×156 = 312 kNm, ∑MRd,b = 2×63.7 = 127.4 kNm. 

maxVCD,B2 = 1.2×2×63.7/2.65 = 57.7 kN, minVCD,B2 = -57.7 kN, ζ = -1 (full reversal of shear). 

Beams B3: 

At the joints: ∑MRd,c = 287 kNm, ∑MRd,b = 253.3+144.7 = 398 kNm.  

maxVCD,B3=1.2×[253.3×287/398+144.7×287/398]/9.4 +19.5×9.4/2 = 36.6+91.65 = 128.25 kN 

minVCD,B3 = -36.6+91.65 = 55.05 kN, ζ = 55.05/128.25 > 0 (no reversal of shears). 

Interior column, direction Y 

At the top joint: ∑MRd,c = 287 kNm < ∑MRd,b = 253.3+144.7 = 398 kNm.  

VCD,CY = 1.3×[287+287]/6.5 = 114.8 kN. 

Interior column, direction X: 

Lower storey: at the joint: ∑MRd,c = 2×156 kNm = 312 kNm > ∑MRd,b = 2×63.7 = 127.4 kNm. 

VCD,CX1 = 1.3×[156+156×127.4/312]/3.1 = 92.1 kN. 

Upper storey: 

at the roof joint: ∑MRd,c = 156 kNm > ∑MRd,b = 2×47.8 = 95.6 kNm; 

at the intermediate storey: ∑MRd,c = 2×156 kNm = 312 kNm > ∑MRd,b = 2×63.7 = 127.4 kNm. 



VCD,CX2 = 1.3×[156×95.6/156+156×127.4/312]/3.1 = 66.8 kN. 

9) Design of beam shear reinforcement  

Beams B1: 

maxVEd = 43.3 kN, ζ = -1 (full reversal of shear). 

In Eq. (5.49): (2+)fctdbwd  =(2-1)×(0.7×3200/1.5)×0.3×0.36 = 161.3 > maxVEd = 43.3 kN → no need 

for diagonal or inclined shear reinforcement. 

Minimum shear reinforcement ratio per Eurocode 2: minw=0.08√fck(MPa)/fyk(MPa)= 0.000947. 

In critical regions of length 0.6 m:  

cotθ = 1; maximum stirrup spacing < 6dbL= 6×12 = 72 mm; < h/4 = 100 mm; < 24dbw = 24×6= 144 

mm. Φ6/70 (808 mm2/m, w = 808/(300×1000)=0.002693 > minw). 

VRd,s=bwzwfywdcotθ = 0.3×0.9×0.36×0.002693×434800×1.0 = 113.8 kN > maxVEd = 43.3 kN.  

Outside the critical regions:  

cotθ ≤ 2.5; maximum stirrup spacing = 0.75d= 0.75×360 = 270 mm.  

Φ6/200 (283 mm2/m, w = 283/(300×1000)=0.000943 ~ minw). 

VRd,s=bwzwfywdcotθ = 0.3×0.9×0.36×0.000943×434800×2.5 = 99.6 kN > maxVEd = 43.3 kN.  

Beams B2:  

maxVCD,B2 = 57.7 kN, ζ = -1. 

On the resistance side, whatever has been said above for B1 applies; the minimum reinforcement of 

Φ6/70 in critical regions of length 0.6 m and Φ6/200 outside, suffices. 

Beams B3: 

In critical regions of length 0.75 m:  

cotθ = 1; maximum stirrup spacing < 6dbL= 6×16 = 96 mm; < h/4 = 125 mm; < 24dbw = 24×6= 144 

mm.  

At a distance of d = 0.46 m from the face of the support: VEd (0.46 m) = 36.6+19.5×(9.4/2-0.46)= 

119.3 kN  



VRd,s=bwzwfywdcotθ = 0.3×0.9×0.46×434800×1.0w = 54000w > VEd = 119.3 kN → w > 0.00221. 

Φ6/85 (665 mm2/m, w = 665/(300×1000)=0.002217 > minw). 

Outside the critical regions:  

cotθ ≤ 2.5; maximum stirrup spacing = 0.75d= 0.75×460 = 345 mm.  

At a distance of zcotθ = 0.9×0.46×2.5 = 1.035 m from the end of the critical region: 

VEd = 36.6+19.5×(9.4/2-0.75-1.035) = 93.4 kN 

Φ6/200 (283 mm2/m, w = 283/(300×1000)=0.000943 ~ minw= 0.000947). 

VRd,s=bwzwfywdcotθ = 0.3×0.9×0.46×0.000943×434800×2.5 = 127.3 kN > VEd = 93.4 kN.  

10) Transverse reinforcement of interior column  

Over a distance from the end sections 1.5 times the critical region length: 

 stirrup diameter, dbw  6 mm, 0.4√(fyd/fywd)dbL= 0.4×18 =7.2 mm;  

 spacing  6dbL=6×14 = 84 mm; bo/3= (350-2×25-8)/3= 97.5 mm 

Critical region length:  

 In direction Y:  1.5hc= 0.9 m and  Hcl/5 = 1.3 m, i.e. 1.3 m 

 In direction X:  1.5hc= 0.9 m and  Hcl/5 = 0.62 m, i.e. 0.9 m; this applies to the intermediate 

level too.  

So, 1.5 times the critical region length for direction Y covers a distance of up to 1.95 m from the 

base or from the soffit of the roof beam, leaving free 3.1-1.95 = 1.15 m from the top and the soffit of 

Beam B2, which should accommodate 1.5 times the critical region length for direction X, i.e., 

1.5×0.9=1.35 m. Therefore, in the end, the minimum transverse reinforcement of critical regions 

applies throughout the column height. 

Stirrups chosen are Φ8/80 (628 mm2/m per stirrup leg); apart from the perimeter tie, they comprise a 

diamond engaging the four mid-side bars (with legs at an inclination to direction Y of tanδ = (300/2-

8-18/2)/(550/2-8-18/2)=0.515 (δ = 0.476 rad) and a rectangular stirrup engaging the two other 

intermediate bars of the long sides; that latter tie contributes to shear strength and confinement only 



in direction Y. The shear resistance provided by these stirrups is: 

 In direction Y:  

VRd,s = 195×0.9×0.56/6.5+0.9×0.56×628×0.4348×(2+2cosδ) cotθ= 15+520cotθ (where the first 

term is the contribution of the axial force to shear resistance and the paranthesis at the end is the 

effective no. of stirrup legs) and  

VRd,max = 0.3×(1-35/250)×0.35×0.9×0.56×23333×(1+195/(0.35×0.6×23333))sin2θ = 1104sin2θ,  

for cotθ = 1.783: VRd,s = VRd,max = 942 kN >> VEd,Y = 114.8 kN  

 In direction X:  

VRd,s = 195×0.9×0.31/3.1+0.9×0.31×628×0.4348×(4+2sinδ)cotθ = 17.5 +374.5cotθ and  

VRd,max = 0.3×(1-35/250)×0.60×0.9×0.31×23333×(1+195/(0.35×0.6×23333))sin2θ = 1040sin2θ;  

for cotθ = 2.105: VRd,s = VRd,max = 806 kN >> VEd,X = 92.1 kN. 

In the critical regions at the base, as well as at the top of the column where in the Y direction ∑MRd,c 

<1.3∑MRd,b, the transverse reinforcement should provide confinement through an effective 

mechanical ratio awd > 30dydbc/bo -0.035, where yd = 0.00217, d= 195/(0.35×0.6×23333)=0.04 

 In direction Y:  = 8.9, bc= 0.35, bo = 0.266 m, awd > 30dydbc/bo -0.035= -0.0046.  

 In direction X:  = 10.7, bc= 0.6, bo = 0.516 m, awd > 30dydbc/bo -0.035= -0.0026. 

Thanks to the low axial load ratio, the target values of  can be achieved without confinement.  



Question 5.6  

An elevated concrete silo, 8 m in diameter, is supported on four concrete columns at a 5 m square 

arrangement (Fig. 5.23). The columns are 0.6 m square and have a clear height of 4.5 m, with double 

fixity at top and bottom. The silo may be considered as rigid, with a centre of mass 3 m above the top 

of the supporting columns. According to Part 4 of Eurocode 8 ("Silos, tanks and pipelines"), the 

seismic design of the columns and their foundation follows Part 1 of Eurocode 8, except that the q-

factor is reduced by 30% owing to the irregularity in elevation. The design peak ground acceleration 

(on rock) is 0.3g and the Eurocode 8 spectrum for ground type B applies. Ductility Class Medium 

(DC M) is chosen. The total weight of the silo and its contents is 3000 kN and may be taken as 

permanent load. Concrete grade is C35/45 and steel is of Class C with 500 MPa nominal yield stress; 

concrete cover to reinforcement is c =30 mm. Importance Class is II (ordinary). 

1) Considering the structure as a SDOF system, calculate its period and compute its design base 

shear and the horizontal displacements under the design seismic action. Calculate the sensitivity 

coefficient to second order effects. Compute the correlation coefficient of the two natural modes in 

horizontal seismic action components X and Y and consider the implications for the CQC rule. 

Consider the case of a horizontal seismic action component acting along the diagonal of the column 



section (including the implications for the column axial forces, as  calculated from the overall 

overturning moment at column midheight).  

2) Calculate the accidental eccentricity per Part 1 of Eurocode 8 and its effects on column internal 

forces, for concurrent horizontal seismic action components X and Y. Discuss the implications of the 

correlation of the modes in the context of accidental eccentricity. 

3) Dimension the vertical reinforcement of the columns. 

4) Calculate the capacity design shears of the columns. 

Answer of Question 5.6: 

fcd=35/1.5=23.33 MPa; Ec=34000000 kPa; fyd=500/1.15=434.8 MPa.  

1) For a single column: EI = 0.5×34000000×0.64/12 = 183600 kNm2, K = 12EI/h3 = 12×183600/4.53 

= 24178 kN/m. For all four columns: K = 96710 kN/m. Mass: 3000/9.81 = 305.8 t.  

T = 2π√(305.8/96710) = 0.35 s. 

q-factor: DC M frame, with system redundancy u/1 = 1.1, reduced by 30% for irregularity in 

elevation:  

q = 0.7×3×1.1= 2.31 (54% larger than the value of 1.5 for inverted pendulum systems of DC M). 

Vb = (0.3×1.2)×2.5/2.31×3000 = 1170 kN.  

Computed displacement: ud=Vb/K=1170/96710=0.0121 m. Seismic displacement ue=qud 

=2.31×0.0121= 0.028 m 

θ = 0.028×3000/(1170×4.5) = 0.016< 0.10. 

The correlation coefficient of the two natural modes in orthogonal directions is obtained from Eq. 

(3.89) for βnr = 1; it is nr = 1. This introduces a full cross-term in Eq. (3.88); however, the 

participation factor of each one of the two vibration modes is zero in the orthogonal direction. So, 

there is no practical implication in this respect of the full correlation of these two modes. The case of 

the seismic axial force in the column, considered next, is an illustration. 

At column mid-height the bending moments in the columns are zero. If we consider a horizontal 



section across the columns at that level, the overturning moment produced by the horizontal seismic 

force acting at silo mid-height is equilibrated by a couple of axial forces in the columns: tensile on 

the windward side, compressive on the leeward one. The overturning moment with respect to that 

level is (3+4.5/2)Vb = 5.25Vb = 6142 kNm, and is equilibrated by forces of 6142/(2×5) = 614 kN in 

the four columns, tensile in the two windward ones, compressive in the other two.  

 If the effects of the two horizontal components are combined via the linear approximation, 

Eq. (3.100), in the combination of 100% of EX with 30% of EY the column shear force in the 

direction of EX is equal to Vb/4, while in the orthogonal direction each column is subjected to a shear 

force of 0.3Vb/4 = 0.075Vb. These biaxial shears, and the biaxial bending they produce, are combined 

with a column axial force equal to ±(1+0.3)×614 = ±798 kN. 

 If the effects of the two horizontal components are combined with the SRSS rule, Eq. (3.99), 

the peak moments and shears in the columns do not change. The peak axial force becomes √2×614 = 

869 kN. As a matter of fact (Fardis 2009), the biaxial moments and shears which are concurrent with 

the peak axial force are equal to 1/√2 of their unidirectional peak values. This conclusion is 

independent of the correlation of the two modes, because each mode has zero participation factor in 

the orthogonal direction. So, two combinations should be considered: a) uniaxial bending, due to a 

column unidirectional shear of Vb/4, acting together with a column axial force of ±614 kN; b) equal 

biaxial moments and shears, corresponding to column shears of Vb/(4√2) in each direction, alongside 

a column axial force of ±614√2 = 868 kN. Physically, the second combination is produced by a 

single component seismic action along the diagonal of the columns. 

2) The accidental eccentricity is eaX = 0.05×8 = 0.4 m along X, eaY =0.4 m along Y. The accidental 

eccentricity of a unidirectional base shear, Vb, induces a shear force of 0.4Vb×2.5/(8×2.52) = 0.02Vb 

in each direction of the column: it increases the design shear force in a column from Vb/4 to 0.27Vb 

and introduces a force of 0.02Vb in the orthogonal direction. 

 If the effects of the two horizontal components are combined via the linear approximation, 



Eq. (3.100), the torque about the vertical axis increases by 30%. So, in the combination of 100% of 

EX and 30% of EY, the column shear forces in the direction of EX increase to Vb/4 + 1.3×0.02Vb = 

0.276×1170 = 323 kN, while in the orthogonal direction EY each column is subjected to a shear 

force of 0.3×0.25Vb, plus a contribution 1.3×0.02Vb of the accidental eccentricities, i.e. to a total of 

0.101Vb= 0.101×1170 = 118 kN. According to part 2 of the answer to this question, these biaxial 

shears, and the biaxial bending they produce, are combined with a column axial force of 

±(1+0.3)×614 = ±798 kN. 

 If the effects of the two horizontal components are combined with the SRSS rule, Eq. (3.99), 

the torsional moments due to the two eccentricities are combined into one, which induces in each 

direction of a column an additional shear force of √2×0.02Vb = 0.0282Vb. Since the silo has perfect 

symmetry and independent unidirectional response in each horizontal direction, the application of 

Eq. (3.99) does not increase the maximum unidirectional shears and moments in the columns. So, 

combination a) per the last paragraph of part 2 of this answer gives a shear force of 0.25Vb + 

0.0282Vb = 0.2782×1170 = 325.5 kN in the direction of EX and a shear of 0.0282Vb = 33 kN 

contributed by the accidental eccentricities to the concurrent shear in the orthogonal direction EY 

(with this latter shear being zero according to the last paragraph of part 2). These biaxial shears and 

moments act together with a column axial force of ±614 kN. Combination b) in the last paragraph of 

part 2 gives a shear force of 0.25Vb/√2+ 0.0282Vb = 0.205Vb = 240 kN in both directions of the 

column, acting together with a column axial force of ±614√2 = ±868 kN.  

Note that, in all cases above, the tensile axial force overcomes the column compression due to 

gravity, which is equal to 750 kN at the top and 790.5 kN at the base of a column.  

The perfect correlation of the two modes, i.e. in the X and the Y direction, would have a significant 

impact on the column internal forces due to simultaneous seismic action components in X and Y, if 

the accidental eccentricities had been addressed not per the simplified static approach of Eurocode 8, 

but by shifting laterally the centre of mass, producing a system with three coupled degrees of 



freedom. The three modes of that system would be strongly correlated. 

The column shear forces produce moments at the column end sections equal to the shear times half 

the column length (i.e., 2.25 m). 

Combination EX, EY VEx, kN MEx, kNm VEy, kN MEy, kNm NE, kN maxN, kN 

top/bottom 

minN, kN 

top/bottom

Eq. (3.100) 100%-30% 323 727 118 266 ±798 1548/1588 -48*/-8* 

Eq. (3.99) 

SRSS 

 Case (a) 325.5 732 33 74 ±614 1364/1404 136/176 

Case (b) 240 540 240 540 ±868 1618/1658 -118*/-78*

* Net tension 

The use of Eq. (3.99), with its four cases (including the ± sign in the axial force) is more sound and 

rational; so, it is used here as the basis of dimensioning. 

3) Minimum reinforcement 0.01×600×600=3600 mm2. At least 4 laterally engaged bars per side, 

e.g., 12Φ20 (3770 mm2), =3770/(600×600)=0.0105 > ρmin=0.01. 

As the section is large, we calculate the moment resistance provided by the minimum reinforcement 

and then check whether it is sufficient. 

d1 = 50 mm, δ1 = d1/d=50/550=0.091.  

Half of the corner bars count in ωvd, in order to have the "web" reinforcement uniformly spread 

between ω1d and ω2d:  

ω1d=ω2d=0.25×3770/(600×550)×434.8/23.33 = 0.05322, ωvd=2ω1d=0.10644 

The limit ν2 of Eq. (5.37a) is: 

ν2 = 0.10644×[0.091×(0.0035+0.00217)/(0.0035-0.00217)-1]/(1-0.091)+0.091×(0.0035-

0.002/3)/(0.0035-0.00217) = 0.1939-0.0717=0.1222. N2 = 0.1222×0.6×0.55×23333=941 kN 

All cases with minN are below ν2; Eqs. (5.37b), (5.38b), (5.39b) apply. Those with maxN are above 

ν2. Most critical are the minN cases, in which Eq. (5.39b) applies and takes the form:  

[1-0.002/(3×0.0035)+0.10644×(0.0035+0.00217)2/(2×0.0035×0.00217×(1-0.091)]ξ2 



-[νd+0.05322×(1-0.0035/0.00217)+0.10644×(1+0.091×0.0035/0.00217)/(1-0.091)]ξ- 

[0.05322-0.5×0.10644×0.091/(1-0.091)]×0.091×0.0035/0.00217=0 → 1.05735ξ2-[νd+0.10166]ξ-

0.00703=0 

Eq. (5.38b) gives: 
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Case (a) of Eq. (3.99) has: νd =136/(0.6×0.55×23333)=0.018, for which Eqs. (5.38b), (5.39b) give 

MRd,c= 460 kNm, only! The reinforcement needs to be drastically increased. 

As engaged bars are needed at third-points of each side anyway, we should either maintain the 

number of bars to 12 and considerably increase their diameter, or place an extra bar at mid-point 

between the present 12 bars. This second option gives 24 bars. We opt for 24Φ20 (7540 mm2), 

=7540/(600×600)=0.021 >0.01. 

ω1d=ω2d=0.25×7540/(600×550)×434.8/23.33 = 0.10644, ωvd=2ω1d=0.21288.  

ν2 = 0.21288×[0.091×(0.0035+0.00217)/(0.0035-0.00217)-1]/(1-0.091)+0.091×(0.0035-

0.002/3)/(0.0035-0.00217) = 0.1939-0.1434=0.0505. All cases with minN are below ν2. 

Therefore, Eq. (5.39b) applies and takes the form:  

[1-0.002/(3×0.0035)+0.21288×(0.0035+0.00217)2/(2×0.0035×0.00217×(1-0.091)]ξ2 

-[νd+0.10644×(1-0.0035/0.00217)+0.21288×(1+0.091×0.0035/0.00217)/(1-0.091)]ξ- 

[0.10644-0.5×0.21288×0.091/(1-0.091)]×0.091×0.0035/0.00217=0 → 1.30518ξ2-[νd+0.20332]ξ-

0.01406=0 

Eq. (5.38b) gives: 
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Case (a) of Eq. (3.99) with νd =0.018 gives, through the form of Eqs. (5.38b), (5.39b) above: MRd,c= 

834 kNm, which is sufficient for case (a) of Eq. (3.99), and for Eq. (3.100) as well, leaving a margin 

for the concurrent, smaller component in the orthogonal direction. The only case that now needs to 



be checked explicitly is case (b), with the equal biaxial moments. However, that case cannot be 

addressed with the present analytical tools. So, recourse is sought to the safe-sided option given by 

Eurocode 8 to check under uniaxial bending for a moment equal to one of the components of the 

biaxial case divided by 0.7. That option gives a uniaxial moment of 540/0.7 = 771 kNm, under an 

axial tension of νd = 118/(0.6×0.55×23333) = -0.015 (tension). For this value Eqs. (5.38b), (5.39b) 

give MRd,c= 784 kNm, which exceeds the uniaxial value of 771 kNm. An additional confirmation on 

the basis of biaxial bending interaction diagrams (CEB/FIP Manual for bending and compression, 

1982) gives a value of 580 kNm for the moment resistance of the section under equal biaxial 

moments. This value exceeds by 7.5% the equal biaxial moment demands of 540 kNm for case (b). 

Therefore, all things considered, the verification of case (b) is deemed to be met. 

4) Capacity design shears of the column 

The most adverse situation is under maxN. However, the cases with the higher maxN values in the 

table with the column internal forces are associated with strongly biaxial bending of the columns; 

case (b) in the application of Eq. (3.99) is characteristic in this respect. So, it is nonsensical to base 

the calculation of the capacity design shears on the value of maxN of one of these cases, using 

uniaxial values of MRd,c. The most rational of all uniaxial cases, namely case (a) in the application of 

Eq. (3.99), is considered instead. 

For maxN = 1404 kN, νd =1404/(0.6×0.55×23333)=0.182 > ν2, and Eqs. (5.37a), (5.38a), (5.39a) 

apply, giving: ξ = (0.909νd+1.091×0.21288)/(0.909×0.8095+2×0.21288)=0.342, and 
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cRd   = 0.231, MRd,c = 978 kNm, 

while, for maxN = 1364 kN at the top: νd =1364/(0.6×0.55×23333)=0.177> ν2, ξ = 

(0.909νd+1.091×0.21288)/ (0.909×0.8095+2×0.21288) = 0.3385, MRd,c = 974.4 kNm. So, the 

capacity design shear is: 

VCD = 1.1×(978+974.4)/4.5 = 477.3 kN.  


