
Behavior and 
modelling of concretemodelling of concrete 

members for cyclicmembers for cyclic 
loadingg



• Mechanisms of force transfer in prismatic concrete 
members: 
– flexure, 

h– shear, 
– bond of longitudinal bars beyond the member end:

i iin series →
Member force capacity (resistance) = minimum of individual 

resistance;resistance;
Member deformations = sum of individual deformations.

• If shear span ratio, M/Vh > ~2.5 →If shear span ratio, M/Vh > 2.5 → 
– flexure & shear ~independent (uncoupled) mechanisms;

• If shear span ratio M/Vh < ~2 5 →If shear span ratio, M/Vh < 2.5 →
– flexure & shear coupled (merge into ~one mechanism).

• ↓ shear span ratio M/Vh → shear effects ↑↓ shear span ratio, M/Vh, → shear effects ↑
(even for linear elasticity:                       ).Vh

M4 = 
xy,
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FlexureFlexure 
(& bond of longitudinal bars(& bond of longitudinal bars 

past the member end)past t e e be e d)



Flexural behavior at the cross-section level 
(Moment-curvature behavior)(Moment curvature behavior)

• Very convenient: 
Physical meaning/importance of curvature in concrete 

members:
normal strain ε at distance y from neutral axis: ε = φy.
– at extreme compression fibres: εc=φx (x=ξd: neutral axis depth, ξ=x/d: 

dimensionless neutral axis depth);dimensionless neutral axis depth); 
– tension reinforcement: εs1=φ(d-x)=φ(1-ξ)d
– compression steel at distance d1 from extreme compression fibres: εs2=φ(x- d1).

• But after cracking: curvature loses physical meaning:
– concrete cracking, 
– cover spalling, 
– bar buckling, 
– concrete crushing:– concrete crushing:

are all of discrete nature. 
• Curvature: φ=Δθ/Δx: relative rotation Δθ of two sections over their• Curvature: φ=Δθ/Δx: relative rotation Δθ of two sections over their

finite distance, Δx~h/2 to h (:distance of flexural cracks, length 
within which concrete spalls or crushes, bars buckle or break). 



M-φ curve:

• From any geometry of cross-section, amount/ 
t f i f t & t i l larrangement of reinforcement & material σ-ε laws:

– For given φ, a value of x assumed, strain distribution: ε=φy, 
t di t ib ti f lstress distribution from σ-ε laws. 

– Force equilibrium in axial direction: N= ∫σdA checked, value 
of x revised till force equilibriumof x revised, till force equilibrium.

– M=∫ycgσdA.
N t l f t t / t i l l f th t f i– Next value of φ: start w/ trial value of x = that of previous 
step. 



Members with continuous 
ribbed (deformed) barsribbed (deformed) bars



M-φ at yielding of section w/ rectangular 
compression zone (width b, effective depth d)compression zone (width b, effective depth d)

• Yield moment (from moment-equilibrium & elastic σ-ε laws):• Yield moment (from moment-equilibrium & elastic σ-ε laws):
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• 1, 2 : tension & compression reinforcement ratios, v: “web” reinforcement 
ratio, ~uniformly distributed between 1, 2 : (all normalized to bd); 1=d1/d. 
C t t i ldi f t i t l

 

• Curvature at yielding of tension steel:
• from axial force-equilibrium & elastic σ-ε laws ( = Es/Ec):  dE
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Moment & curvature at corner of bilinear envelope to 
experimental moment-deformation curve vs calculated values

2282 beams/columns cov:16 9%; 326 rect walls cov:18 6%2282 beams/columns, cov:16.9%; 326 rect. walls, cov:18.6% 
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Moment & curvature at corner of bilinear (envelope to) 
experimental moment-deformation curve v values from analysis

392 t ll C V 16% 332 i l l C V 13 7%392 non-rect. walls, CoV:16% 332 circular columns, CoV:13.7% 
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Empirical formulas for yield curvature - section w/ 
rectangular compression zone

f531 f741
for rectangular columns or beams: 
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The empirical expressions give no bias w r to the experimental

for circular columns: 
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The empirical expressions give no bias w.r.to the experimental 
yield moment; but the scatter greater: 
In ~3000 test beams columns or walls: cov: 16 5%In ~3000 test beams, columns or walls: cov: 16.5%
(The “theoretical” expressions underestimate the yield point by up 
to 4% because the corner of the bilinear envelope to theto 4% because the corner of the bilinear envelope to the 
experimental curve is above the point of first yielding in a section).



Cyclic M-φ behavior

Experimental curves: 
M vs (mean) φM vs. (mean) φ, 

symmetrically 
reinforced sectionreinforced section

• Unloading:
• Unloading stiffness: initially high• Unloading stiffness: initially high, 

~"elastic" secant stiffness, My/φy.
• Unloading branch softens, as Mg

→ 0. 
• Overall, down to M=0, unloading 

l < “ l ti ” tiff tslope < “elastic” stiffness to 
yielding.

• Unloading slope ↓ as curvature φUnloading slope ↓ as curvature, φr
(from where unloading started) ↑ 
("stiffness degradation“).



• Reloading (loading in opposite 
direction):

• After M changes sign, “stiffness” in 
“reloading” ↓: 
crack is open thro gh section depth as– crack is open through section depth, as 
compression steel previously yielded in 
tension & has plastic extension locked-in;

– M resisted only by force couple between 
tension & compression steel, until crack 
closes ~when compression steel yields;closes when compression steel yields; 

– till then, slope of M-φ diagram < slope of 
unloading to M=0; 

– when crack closes, reloading slope ↑ again.
• Reloading towards maximum previous 

curvature in current direction of loading

Experimental curves: 
M–(mean) φ, 

t i llcurvature in current direction of loading.
• Unloading-reloading curve: inverted-S 

shape; “pinching” of hysteresis loop.

symmetrically 
reinforced section

shape; pinching  of hysteresis loop. 
• Axial load closes the crack, reduces 

pinching



Cyclic M-φ behavior
• Effect of section asymmetry y y
• Larger moment resistance & 

“elastic” stiffness in the direction 
th t i d t i t th id /that induces tension to the side w/ 
more reinforcement;

• Unloading-reloading curve:Unloading reloading curve: 
inverted-S shape only for 
reloading towards the direction of 
th l t i tthe larger moment resistance:

– in the other direction, steel of 
tension side is too little to yield intension side is too little to yield in 
compression the steel on the other 
side → The open crack may never 
close thereclose there.

Experimental curves:Experimental curves: 
M–(mean) φ, 

asymmetrically reinforced section



Flexural damage or failure of column tops in the field

horizontal crack, 
tconcrete 

spallinag at the 
corners, buckling 

of corner bars

loss of cover, 
partial disintegration of concrete, 

buckling of bars 
in horizontal zone near column top 



Flexural failure at column bottom in the lab or the field

Loss of cover, partial 
disintegration ofdisintegration of 
concrete core & 

buckling of bars w/ 
ti i istirrups opening in 

horizontal zone 
above the column 

base 

complete disintegration of 
t & b kli f bconcrete & buckling of bars 

in splice zone just above 
column base 



Flexural damage or failure of beams in the field or the lab
local crushing of concrete 
& buckling of bar at the g
bottom of T-beam 

through-depth g p
cracks at support 
of L- or T-beams, 

w/ extension ofw/ extension of 
cracking in slab 
at the top flange 

disintegration of 
concrete, bar 
buckling at bottombuckling at bottom 
of L-beam, 
extension of 
th h d ththrough-depth 
flexural cracks into 
slab at top flange



Conventional definition of ultimate deformation

The value beyond which, any increase in deformation cannot 
increase the resistance above 80% of the maximum previous 
( lti t ) i t(ultimate) resistance. 
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Calculation of ultimate curvature of sections with 
rectangular compression zone, from 1st principlesg p , p p
• Concrete σ-ε law:
– Parabolic up to a stress fc, at a strain εco, p c, co,
– constant stress (rectangular) for εco< ε < εcu

• Steel σ-ε law:Steel σ ε law:
– Elastic-perfectly plastic, if steel strain low and concrete fails;
– elastic-perfectly plastic up to the strain εsh, linearly strain-elastic perfectly plastic up to the strain εsh, linearly strain

hardening thereafter, until steel breaks at stress and strain ft, εsu

Notation:
Normalisation to effective depth d=h-d1 and to d times compression zone width b1 

Indices: 1, 2, v: tension, compression & “web” reinforcement ~uniformly spread 
between tension & compression reinforcement. 
 d /d ξ /d di i l t l i d th1=d1/d, ξ=x/d: dimensionless neutral axis depth.
ν=N/bdfc: dimensionless axial load; ω= fy/fc mechanical reinforcement ratio.   



Possibilities for ultimate curvature:
1. Section fails by rupture of tension steel, εs1= εsu, before extreme 

compression fibres reach their ultimate strain (spalling) ε < ε →compression fibres reach their ultimate strain (spalling), εc < εcu →
Ultimate curvature occurs in unspalled section, due to steel rupture:

(1)su

2. Compression fibres reach their ultimate strain (spalling): εc = εcu →
th fi d t b th b ti

 dsu

su
su 





1

the confined concrete core becomes now the member section. 
Two possibilities:

i The moment capacity of the spalled section ΜR never increasesi. The moment capacity of the spalled section, ΜRo, never increases 
above 80% of the moment at spalling, ΜRc: ΜRo< 0.8ΜRc → 
Ultimate curvature occurs in unspalled section, due to the concrete:

(2) (2)

ii. Moment capacity of spalled section increases above 80% of moment at
dcu

cu
cu 


 

ii. Moment capacity of spalled section increases above 80% of moment at 
spalling: ΜRo> 0.8ΜRc →
The confined concrete core is now the member section and Cases 1 

d 2(i) li d f th fi d th t ibiliti fand 2(i) - applied for the confined core - are the two possibilities for 
attainment of the ultimate curvature → φsu, φcu calculated as above but 
for the confined core; the minimum of the two is the ultimate curvature.



Ultimate curvature by steel rupture:• If: (3)

 Steel rupture occurs before concrete crushes after compression steel yields if:

if: 

sucu
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1

 Steel rupture occurs before concrete crushes, after compression steel yields, if:

(4) 
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• ξsu and ultimate moment computed from axial force and moment equilibrium:

(5)
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 The tension bars rupture, before the concrete crushes or the compression steel yields, if:

(7)
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• ξsu and the ultimate moment from:
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Ultimate curvature by steel rupture – transition to concrete crushing
• If: (3a)

if: 

ycu








 2

1

Steel rupture occurs before concrete crushes, always with compression steel elastic, if:

(4a)

sucu  

  co

ff 1
 (4a)

• ξ and the ultimate moment are computed from eqs (8) (9)
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• ξsu and the ultimate moment are computed from eqs. (8), (9)

• No matter the value of 1=d1/d with respect to the limit of eqs. (3), (3a), 
the concrete cover spalls before the tension bars rupture if 

(10)
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Ultimate curvature for concrete crushing• If: (11)
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The extreme concrete fibers crush with tension and compression bars past yielding if:

(12)
111221 ycuycuycuycu 
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• ξcu and the ultimate moment are computed as:

(13)

 2

(14)

Tension bars are elastic & compression bars yield if: 
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• ξcu and the ultimate moment are computed from:
•

(15)
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Tension bars yield & compression bars are elastic if: co
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Tension bars yield & compression bars are elastic if:
• ξcu and the ultimate moment are computed from:

(17)
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Ultimate curvature by concrete crushing (cont’d)
• If: (11a)
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When the extreme compression fibers crush, tension and compression bars are elastic, 
if:
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• ξcu and the ultimate moment are computed from:
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When the e treme compression fibers cr sh tension bars ha e ielded b t
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When the extreme compression fibers crush, tension bars have yielded but 
compression bars are elastic, if:

• ξ and the ultimate moment are computed from eqs (17) (18):
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• ξcu and the ultimate moment are computed from eqs. (17), (18):
When the extreme compression fibers crush, tension bars are elastic but compression 

bars have yielded, if:
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• ξcu and the ultimate moment are computed from eqs. (15), (16).






 






 


2

12
1111

22,
1 ycu

cuy
yvy

yc





Ultimate strains inferred from experimental curvatures by back-analysis
• Before spalling: Steel - Monotonic: 

Steel Cyclic:
  nomsutensbarsmonsu N ,,, ln3.01  
40 Steel - Cyclic: 

Concrete:

• After spalling Steel C clic

nomsucysu ,, 4.0  

  01.0)(/5.180035.0 2  mmhcu

 Nb bd 404 



• After spalling:  Steel - Cyclic:

Confined concrete: fib MC2010:
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  4/3/5.31/ cywwccc ffαρff 

cywscuccu ffa /04.0,  

cywscuccu ffa /07.0,  

 rect. compression zone: 

 in circular sections:

cywscuccu ffa /12.0,   triangular compression zone:
 s: tie steel ratio in direction of bending; 

f ti i ld t fyw: tie yield stress,
 : confinement effectiveness factor    



(a) Eurocode 8 

(374) measured ultimate curvatures from (184) cyclic tests vs
values calculated using ultimate strains from current seismic codes
( )
(2005) for existing 
buildings, with 
confinement modelconfinement model 
of MC1990 or 
Eurocode 2 (2004) 

CoV:59 5%;– CoV:59.5%; 
(b) Eurocode 8 
(2005) for existing 
buildings but with 
its own 
confinement model 
– CoV:54.5%; 
(c) Caltrans (2006) 
for bridgesfor bridges –
CoV:72%;  
(d) Eurocode 8 
(2005) for bridges 
– CoV:64%.



(645) measured ultimate curvatures in (410) tests vs values 
calculated using ultimate strains from Grammatikou et al 2016

monotonic & cyclic data, CoV:46%monotonic & cyclic data, CoV:46%
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Fixed-end rotation of member end due to pull-out of 
straight ribbed bars from the zone beyond member’s end

Sli ( ll t) f t i b f i b d d ti• Slippage (pull-out) of tension bars from region beyond end section
(e.g. from joint or footing) →
rigid body rotation of entire shear span = fixed end rotation θrigid-body rotation of entire shear span = fixed-end rotation, θslip

(included in measured chord-rotations of test specimen w.r. to base or joint; 
doesn’t affect measured relative rotations between any two member sections).doesn t affect measured relative rotations between any two member sections). 

• If s = slippage of tension bars from anchorage → θslip= s/(1-ξ)d
• If bond stress uniform over straight length lb of ribbed bar past section og g b p

maximum moment → bar stress decreases along lb from σs (=fyL at 
yielding) at section of maximum M to zero at end of lb → s=σslb/(2Es) 
l b d f d d it l th ( A /( d ) d /4) di id d b• lb= bond force demand per unit length (=Asσs/(dbL)=dbLσs/4), divided by
~bond strength (assume =√fc)

• ε (=σ /E )/(1-)d = φεs( σs/Es)/(1 )d  φ
• At yielding of member end section

fd
(fyL, fc in MPa ) 

c

ybLy
slipy f

fd

8,


 



Fixed-end rotation of member end due to ribbed bar pull-out 
from  zone beyond member end, at member yielding

φy,measured/(φy,predicted+y,slip,/lgauge) no.160 measurements w/ slip: 
median = 1.0, C.o.V = 34% 
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Fixed-end rotation of member end due to ribbed bar pull-
out from yield penetration length in zone beyond the 

member end, at member ultimate curvature

• Monotonic flexure:   dord  109 • Monotonic flexure: 

• Cyclic flexure:

  ubslipuyubslipu dord  10,9 ,, 

  blibli dord  5.4,25.4 Cyclic flexure:   ubslipuyubslipu dord  5.4,25.4 ,, 

C l t ll tComplete pull-out 
of beam bars, due 
to short anchorageto short anchorage 
in corner joint
←                  →



Mean axial deformations due to flexural response

)d(0 5||= 
• Over entire member length:

Additional mean axial strain (at section centroid): )d-(0.5||=o 

d)-(0.5 = dx|| = AB

 

l
o

 

l
x  )d-(0.5 = dx    

– Additional mean axial strain (at section centroid): 
– Member axial elongation between ends A, B, due to flexural deformation: 

ll• Only in region that yielded - plastic hinge:
– Mean axial strain at φ = 0, εo= mean permanent strain in bars of both sides ≠ 0
– ε ↑ w/ cycling of flexural deformationsεo ↑ w/ cycling of flexural deformations.
– εo = tensile, if N = 0 or low.
– In columns, after loss of cover & partial disintegration of concrete core or bar 

buckling ε turns from extension to shortening when cyclic failure approachesbuckling, εo turns from extension to shortening when cyclic failure approaches
– In columns w/ intermediate to high values of ν=Ac/fc (e.g., ν >0.15-0.2), εo is 

shortening from the beginning of cyclic flexure.
Evolution of mean axial strain ε in plastic hinge w/ lateral deflection cyclingEvolution of mean axial strain, εo, in plastic hinge w/ lateral deflection cycling
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Effect of axial load variation w/ cyclic flexure 
(exterior columns due to overturning moment)( g )

• Yield moment, M-resistance, stiffness in virgin loading & unloading/reloading:
– All ↑, when compressive N ↑, 
– All ↓, when compressive N ↓.

• If N varies w.r.to mean value ~in proportion to M:
– effect of N gradual: it accelerates softening when N ↓; reduces it (even to stiffening)

when N ↑ (deflection may even ↓ w/ ↑ transverse force if stiffening due to N↑ governs)when N ↑ (deflection may even ↓ w/ ↑ transverse force if stiffening due to N↑ governs)
– N ~constant after yielding in virgin loading or reloading. 

• If N varies w.r.to mean ~in proportion to deflection:
– when N ↑ 

• yield moment & resistance, post yield stiffness: ↑ ;
• after yielding: large strength decay for cycling at ~same peak deflection (failure y g g g y y g p (

w/ cycling sooner).
– when N ↓ 

• after yielding: M ↓;

N ↓N ↓
after yielding: M ↓; 

• cyclic failure delayed.

N ↑N ↑



• Biaxial flexure:
Cyclic biaxial flexure w/ axial force

• Biaxial flexure: 
– M-resistance ↓, 
– deterioration of stiffness & strength w/ cycling ↑– deterioration of stiffness & strength w/ cycling ↑. 

→ Against strong-column/weak-beam behaviour, even when columns 
capacity-designed separately in 2 orthogonal horizontal directions.p y g p y g

• After flexural yielding under Mx-My → strong coupling between 
behaviour in the two orthogonal transverse directions → 
In each individual direction:
– apparent resistance & stiffness ↓;

(ratcheting flexural deformations in direction where M = constant
due to cycling of flexural deformation in the other direction).

– deformation capacity ↓ 
(individual deformation components, normalized by the 
corresponding ultimate deformation under uniaxial loading:corresponding ultimate deformation under uniaxial loading: 
~circular interaction diagram).



• Strong coupling of behavior in the two orthogonal transverse directions → 
↑ apparent hysteretic energy dissipation (wider hysteresis loops) 

t t il M M t b " h l "– φx-φy vector trails Mx-My vector by "phase lag", ψ; 
– sinψ = viscous damping ratio, equivalent to additional hysteretic energy dissipation 

due to coupling;
– ψ ↑ when inelasticity ↑. 



Chord rotation at the end of a member, θ:
Flexure of member (Moment-chord rotation behavior)

angle between normal to end section and chord connecting 
member ends at displaced position).

B1  dxx-x(x)
x-x

= B

xB

x AAB
A  

1

 dxx-x(x)
x-x

= A

xB

x AAB
B  

1
xx x AAB

Relative rotation between 
ends A, B: 

   = (x)dx = BA

xB

x A
AB  

Elastic moments at ends A, B from chord rotations at A, B: 

x A

• ΜΑ = (2ΕΙ/L)(2θΑ+θΒ), 
• ΜΒ = (2ΕΙ/L)(2θΒ+θΑ) 



Chord rotation of shear span at yielding of end section
V hzaL  





Rectangular beams or columns:
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Walls & hollow piers:
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Circular columns:
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“shift rule” (in ULS dimensioning in bending): 
Diagonal cracking shifts value of force in tension reinforcement to a 
section at a distance from member end equal to z: internal lever arm

pyyy D83 

section at a distance from member end equal to z: internal lever arm 
• z = d-d1 in beams, columns, or walls of barbelled or T-section, 
• z = 0.8h in rectangular walls. 

a = 0 if V > M /L ;– av = 0, if VRc > My/Ls; 
– av = 1, if VRc ≤ My/Ls .
VRc = force at diagonal cracking, according to Eurocode 2 (in kN, 
di i i f i MP )dimensions in m, fc in MPa):
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V wcccR


































 15.02.012.0135,100180max 3/16/13/1

1, 
Add c 







– asl = 0, if no slip from zone beyond the end section; 
– asl = 1, if there is slip from the zone past the end section.



Effective elastic stiffness, EIeff (for analysis, 
linear or nonlinear)linear or nonlinear)

Part 1of EC8 (force-based design of new buildings): 
EI : secant stiffness at yielding =50% of uncracked gross EIeff : secant stiffness at yielding =50% of uncracked gross-
section stiffness.

- Safe-sided for forces in force-based design of new buildings;Safe-sided for forces in force-based design of new buildings;
- Unsafe in displacement-based design or assessment 

(underestimates displacement demands).(underestimates displacement demands).
More realistic:

sy LM
EI 

secant stiffness at yielding
y

effEI
3



secant stiffness at yielding
of end of shear span Ls=M/V

–on average, ~25% of un-
cracked, gross-section
stiffness
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Member ultimate deformations
• For seismic loading, material failure at the local level (even loss of a 

) f f fbar) is not by itself member failure. A plastic hinge fails by 
accumulating local material failures during cycling of deformations, 
until it loses a good part (~20%) of its moment resistance.until it loses a good part ( 20%) of its moment resistance.

 Deformation measures used in the verifications should reflect the 
behavior of the plastic hinge as a whole.

 Appropriate deformation measure for plastic hinge: 
plastic part of chord rotation at a member end, θpl (= plastic hinge 
rotation at member end plus post yield part of fixed end rotation θrotation at member end, plus post-yield part of fixed-end-rotation, θslip, 
due to slippage of longitudinal bars from zone past the member end).



Flexure-controlled ultimate chord rotation from 
curvatures & plastic hinge length 
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Assume: entire deformation due to flexure; plastic φ=const.  in “pl. hinge length” 
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• Plastic hinge length 
i i ll fitt d t t t d tempirically fitted to test data, 

in terms of member geometry.

Fitti d d d l• Fitting depends on model 
used for φy & (mainly) for φu
(confinement, strain, limits, 
etc.).

• Empirical model for plastic 
hi l h hi hhinge length which were 
developed in conjunction to 
specific model for φu, ultimate 
strains, etc., should not be 
used with other φu , etc., 
models.



Plastic hinge length, empirically fitted to data
Modified expression accounting for slip from anchorage zone & shear effects 
on chord rotation at yielding:  Lon chord rotation at yielding:

• Using the models for θy, φy, φu:
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g y, φy, φu
• From ~300 monotonic tests of members with non-circular section: 
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• From ~1200 cyclic tests of members with non-circular section (beams, 
l ll ) ith d t ili f i t t i i d
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columns, walls) with detailing conforming to recent seismic codes:
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• From ~150 cyclic tests on columns with circular section:
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• From ~50 cyclic tests on members not conforming to seismic codes:

 );7.0min(7.01;9min
7
117.0 
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• From ~50 cyclic tests on members not conforming to seismic codes:

Lpl,non-conforming =1.3L pl,conforming 
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Empirical ultimate chord rotation – rect. compression  zone  

Option 1: the
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Option 1: the
simplest

Option 2: elastic
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fixed-end-rotation
separate; unified
approach for walls.
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ast = 0 for hot-rolled or heat-treated tempcore steel; ast = 1 for brittle cold-worked steel;
acy = 1 for cyclic loading, acy = 0 for monotonic loading;
anc = 1 for members non-conforming to seismic codes, anc = 0 otherwise;

1 if li f l b f h ibl 0 th iasl = 1, if slip of long. bars from anchorage zone possible, asl = 0 otherwise
aw,r = 1 for rectangular walls; aw,r = 0 otherwise;
aw,nr = 1 for non-rectangular walls; aw,nr = 0 otherwise;
  : mechanical ratio of longitudinal steel total or compression bars only;tot, 2: mechanical ratio of longitudinal steel, total or compression bars only;
 = N/bhfc (b: width of compression zone; N>0 for compression);
Ls/h = M/Vh: shear-span-to-depth ratio;
α : confinement effectiveness factor = α αα : confinement effectiveness factor = αnαs
s = Ash/bwsh: transverse steel ratio in direction of loading;
d: ratio of diagonal reinforcement (each direction);
bw: width of (one) web.
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Members with continuous ribbedMembers with continuous ribbed 
(deformed) bars and FRP ( )

wrapping of plastic hinge region



• Yield moment My: Enhanced by 
FRP jacket (tests: +9% w.r.to value 
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Effective (elastic) stiffness EIeff
Enhanced by FRP jacket (pre-damaged columns: EI drops despite jacket)
Modulus from strength of confined concrete 

52 undamaged circular columns159 undamaged rect columns 52 undamaged circular columns
median=1.15, CoV=22.4%
(5 pre-damaged columns:

1 06 C V 25 5%)

159 undamaged rect. columns
median=0.99, CoV=29.4%
(22 pre-damaged columns
median=0 68 mean=0 71 CoV=25 4%) mean=1.06, CoV=25.5%)median=0.68, mean=0.71, CoV=25.4%)

80

90

Median:EIeff,exp=1.15EIeff,pred

 

300

350

Mean:EIeff,exp=1.02EIeff,pred

 

60

70

N
m

2 ]

200

250

N
m

2 ]

30

40

50

EI
ef

f,e
xp

 [M
N

Mean:
EIeff exp=1.12EIeff pred

150

200

EI
ef

f,e
xp

 [M
N

Median:
EI =0 99EI

10

20

30E eff,,exp eff,pred

non predamaged
predamaged

50

100

E EIeff,,exp=0.99EIeff,pred

non predamaged
d d

0 10 20 30 40 50 60 70 80 90
0

EIeff,pred [MNm2]

 

predamaged

0 50 100 150 200 250 300 350
0

EIeff,pred [MNm2]

 

predamaged



Only the ultimate strains in the calculation of the ultimate curvature, φu
change:

Cyclic plastic chord rotation capacity: Physical model

change:
• Steel:
• (Confined by FRP) concrete:

 ,nom bar,tension0.6 1- 0.15lnsu suε = ε N

• (Confined by FRP) concrete:

– FRP-confinement effectiveness:
    cfufcfuffcuccu ffffa /;5.0min1/;5.0min ,,,  

– FRP-confinement effectiveness:
   

bh
RbRh

3
221

22 


b, h: sides of circumscribed 
rect. section; 

R: corner radius

bh3

– βf=0.115 for CFRP/GFRP; βf=0.1 for AFRP.

R: corner radius 

βf ; βf

– ρf=2tf/bw : FRP ratio parallel to direction of loading;
– fu,f=0.6Efεu,f

Ef : FRP Modulus; 
εu,f: FRP limit strain. CFRP/AFRP: εu,f=1.5%; GFRP: εu,f=2%



Empirical cyclic ultimate chord rotation
f  
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– cf=2.8 for CFRP, 





  ccfc fff

– cf=1.15 for GFRP; 
– cf=0.95 for AFRP.

ρ 2t /b : FRP ratio in direction of loading;– ρf=2tf/bw : FRP ratio in direction of loading;
Ef : FRP Modulus; 
εu,f: FRP limit strain. u,f

CFRP/AFRP: εu,f=1.5%; 
GFRP: εu,f=2%
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Members with ribbed (deformed) bars, 
lap spliced in the plastic hinge regionlap-spliced in the plastic hinge region, 
starting at the member’s yielding end g y g
section (without or with FRP wrapping 

f l li i )of lap-splice region)



Ribbed bars lap-spliced over length lo in plastic hinge (case 
without FRP wrapping: zero FRP thickness) 
1 Both bars in pair of lapped compression bars co nt in compression steel

l  /25.0 tb ffd

1. Both bars in pair of lapped compression bars count in compression steel
2. For yield properties (My, y, θy, EIeff), stress fs of tension bars:
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• fct: concrete tensile strength; fct: concrete tensile strength;
• Ef: FRP Modulus; Ec: concrete Modulus
• tf: FRP thickness; Rc: FRP radius (chamfered corner of rect. section or 
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Test-to-prediction ratio of chord rotation at yielding θy
no FRP wraps with FRP wraps 
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0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
0

y,pred [%]
0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

0

y,pred [%]
0 0.5 1 1.5 2

0

y,pred [%]
0 0.5 1 1.5 2 2.5

0

y,pred [%]

 

101s rect. columns cov=24% 42 circ. columns cov=23% 49 rect. columns cov=23% 36circ. columns 
cov=19%

no FRP wraps with FRP wraps   
120300

Mean:EI =0 99EI900

1000250  

60

80

100

ef
f,e

xp
 [M

N
m

2 ]

Mean:EIeff,exp=0.95EIeff,pred

150

200

250

ff,
ex

p [M
N

m
2 ]

Mean:EIeff,exp=0.99EIeff,pred

400

500

600

700

800

ef
f,e

xp
 [M

N
m

2 ] Mean:EIeff,exp=1.01EIeff,pred

100

150

200

f,e
xp

 [M
N

m
2 ]

Mean:EIeff,exp=1.01EIeff,pred

0 20 40 60 80 100 120
0

20

40EI
e

EI [MNm2]

Median:
EIeff,exp=0.91EIeff,pred

0 50 100 150 200 250 300
0

50

100EI
ef

EI [MNm2]

Median:
EIeff,exp=0.985EIeff,pred

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300EI
e

EI [MNm2]

Median:
EIeff,exp=0.97EIeff,pred

0 50 100 150 200 250
0

50

100

EI
ef

f

2

Median:
EIeff,exp=EIeff,pred

 

beams & columns
rect. walls
non-rect. sections

EIeff,pred [MNm ]EIeff,pred [MNm ]EIeff,pred [MNm ]EIeff pred [MNm2]



Effect of FRP bending radius, thickness & stiffness
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3. Ultimate chord rotation drops, if lapping lo< lou,min
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• a : confinement effectiveness within section
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an: confinement effectiveness within section, 
 an=1 in circular section, a
 an=nrestr/ntot in rect. section with nrestr lapped bar pairs at corners or hooks 
of ties or at chamfered corners of FRP jacket, out of a total of ntot bar pairs;

• as: confinement effectiveness along member:
 a =1 for FRP; as=1 for FRP; 
 for steel ties , w/ Do replacing bo, ho in circ. columns

• ac: confining medium factor: 
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c g
 ac=7.5 for steel ties, 
 ac=9.5 for CFRP, ac=10.5 for GFRP, ac=12 for AFRP;

R fi i di di b di di f l i FRP j k• Rc: confining medium radius, = bending radius of steel tie or FRP jacket;
• pc: confining pressure on lap splice, 

 p =A hf /(shR ) for steel ties pc Ashfyw/(shRc) for steel ties, 
 pc=tffu,f/Rc=0.6Efεu,ftf/Rc for FRP with failure strain εu,f & eff. strength fu,f.

4. The minimum value of lou,min for steel or FRP confinement applies



Physical model for ultimate plastic chord rotation
(w/ curvatures & plastic hinge length) 
Lpl, fcc, εcu as in members (FRP-wraps or no) w/ continuous bars 

Steel strain at ult. member deformation w/ lapping lo:Steel strain at ult. member deformation w/ lapping lo:
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Empirical ultimate plastic chord rotation for rect. columns
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Ultimate chord-rotation, without FRP wrapping
Physical model Empirical model
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Members with smooth (plain)Members with smooth (plain) 
bars continuous or lap-splicedbars, continuous or lap spliced 
(with hooks or straight ends), ( g )
without or with FRP wrapping



Chord rotation at yielding, θy - Smooth (plain) bars
θy = sum of:

11. flexural component in uncracked member:
MyLs/3(EI)g (EI)g: uncracked, gross-section stiffness 
22. shear deformation (as in members with ribbed bars) 
3.fixed-end-rotation due to slippage of tension bars from their length

t id & i id th b t d th d ti th t i ld doutside & inside the member, towards the end section that yielded
ϕyloy,min(min[1;(1+fo,1/fy)l1/loy,min]+min[1;(1+fo,2/fy)l2/loy,min])/2
l1, l2: distance of hook or bend from end section on either side of it;
loy,min=0.5dbfy(MPa)/fc(MPa): straight anchorage length of plain bar 
max. stress bar can develop ahead of hook or bend (fib Bull. 72)
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Yield moment for plane-sections (>15db hooked laps: feff=fy; 
straight ends: feff = min(1; lo/loy,min)fy , loy,min=0.5dbfy(MPa)/fc(MPa)
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Test-to-prediction ratio, secant-to-yield-point stiffness
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Ultimate chord rotation of members with 
continuous smooth bars

Physical, Strut-and-Tie model 
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Ultimate chord rotation of members with 
continuous smooth bars & FRP wraps

Strut-and-Tie model
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axis depth of section w/ FRP wrapping
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Ultimate chord rotation of members with lap-spliced
smooth bars & FRP wraps
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Empirical model for ultimate chord rotation
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