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II. CONCRETE MEMBERS    



Shear  
(w/ some effects of inelastic flexure) 



Shear failures of columns or walls 



Shear failures 
of columns or 

walls  
(top two, in 

plastic hinge 
region)  



Brittle vs ductile behaviour in cyclic shear 

Shear force-chord 
rotation behaviour: 
(a) brittle shear;  
(b) “ductile shear” or 
flexural behaviour 
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Brittle vs ductile behaviour in cyclic shear (cont’d) 
 



  Effect of cyclic inelastic deformations on shear behaviour 
after flexural yielding  

                              (a)               (b)            (c)  
(a) M-φ loops next to end section; (b) V-γ loops in plastic hinge region; 

(c) loops of shear force (V) - stirrup strain 



(a), (b): M-φ loops next to base of 1st & 2nd storey; (c), (d): V-γ loops over 1st
 & 2nd

 storey; (f) base 
shear v top deflection (e) loops of base moment v fixed-end rotation due to bar pull-out from footing  

  Effect of cyclic inelastic flexural deformations on shear behaviour -cont’d 



Fundamental models - monotonic shear resistance 
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90-δ 

Truss model w/ variable strut inclination δ, CEB/FIP Model 
Code 90 & Eurocode 2 

– Shear resistance in diagonal tension, 
due to transverse reinforcement: 

– Diagonal compression field at 
angle δ to member axis 
 
– may reach diagonal concrete 
strength, nfc 
– n: reduction factor due to 
transverse tensile stresses/strains 
•Eurocode 2 & Model Code 90:  
       n=0.6(1-fc(MPa)/250)  
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• Eurocode 2: 0.4≤tanδ≤1, 22o≤δ≤45o,  
  Model Code 90: 1/3≤tanδ≤1, 18o≤δ≤45ο  
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Fundamental models for monotonic shear resistance (cont’d) 

 

  

strut 

90-δ 
 

AIJ Guidelines model 
Concrete strut w/ width equal to 50% of section depth: 
– contributes to VR via transverse component of strut force; 
– consumes part of the diagonal concrete strength, nfc 
– rest of concrete strength is available for diagonal compression field in 
truss mechanism (angle: δ) 

VR for cotδ ≤ min[2; √(nfc/ρwfyw-1)] 
unless: 0.5tanφ (≈h/2Ls=h/L) ≥ 2z/h 
Then VR reaches maximum value if:  
cotδ=z/(htanφ)≈4Lsz/h2  

Maximum VR equal to (with ζ=z/h):  

Inelastic cyclic deformation effect:  
•cotδ ≤ max(2-50θpl, 1);  
•n on fc multiplied x max(0.25, 1-15θpl)  
with θpl=(μθ-1)θy  



Cyclic shear strength degradation 
– Shear resistance degrades with cyclic loading: RC member that yields 
in flexure may ultimately fail in shear. 
– Provisions of concrete design codes for shear strength apply to 
monotonic loading;  
– Seismic codes (e.g. EC8) may reduce VR if cyclic 
   ductility demands are high. 
  
Degradation mechanisms : 
• Gradual reduction of aggregate interlock along diagonal cracks, as 
interfaces become smoother with cyclic loading. 
• Degradation of dowel action (also due to accumulation of inelastic 
strains in longitudinal reinforcement). 
• Development of flexural cracks throughout the depth of the member → 
reduction of contribution of compression zone to shear resistance.  
• Bond slippage & accumulation of inelastic strains in shear reinforcement 
→ aggregate interlock reduced as diagonal cracks gradually open up.   
• Softening of concrete in diagonal compression due to accumulation of 
transverse tensile strains. 
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Biskinis et al 2004, Part 3 of EC8  
(circular columns, rectangular beams/columns/walls, 

non-rectangular walls, hollow rectangular piers) 
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Models for diagonal tension cyclic shear 
resistance after flexural yielding  

• Vw , VN , Vc terms; 
• Inclination of compression struts: δ =45o 

 
• Linear degradation of Vc for ductility ratio demand from 1 to 6;  
• In 1st model: Vc for μθ ≥ 6 is 52.5% of initial one 
• In 2nd model: Vw+Vc for μθ ≥ 6 is 75% of initial one. 

or: 



no. tests: 335  
median=1.00 
CoV=16.2% 

Test v model: Diagonal tension cyclic shear 
resistance in plastic hinge (after flexural yielding) 
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Cyclic shear resistance of squat walls in diagonal 
compression before or after flexural yielding 

Experimental cyclic shear 
resistance for shear 

compression failure of squat 
walls v predictions 0
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median: VR,exp= VR,pred

no. tests: 62, median=1.00, 
CoV=14.5% 



Flexure-shear interaction 
in squat members  



Monotonic lateral force resistance of squat 
members w/ flexure-shear interaction  

Generalization of AIJ Guidelines model 
Concrete strut over depth x of compression zone: 
– takes also the axial load, N; 
– contributes to VR via transverse component of strut force; 
– consumes part of diagonal concrete strength, nfc 
– rest of concrete strength is available for diagonal compression field in 
truss mechanism, at angle δ, w/ cotδ ≤√(nfc/ρwfyw-1); cotδ ~Ls/h . 

 



Monotonic lateral force resistance of squat members w/ 
flexure-shear interaction (cont’d) 

1. In axial force range: N1=0.5bhnfc -As,totfy+ρwbwfyw [cotδ(2Ls+(z-0.5h)cotδ)-0.5h]≤ 
  N ≤ N2=0.5bhnfc+As,totfy-ρwbwfyw [cotδ(2Ls-(z-0.5h)cotδ)+0.5h] 
Strut inclination is:  

Very brittle failure: 
Concrete fails in diagonal 
compression, w/ yielding of transverse 
reinforcement, but no yielding of 
tension or compression reinforcement, 
at an ultimate shear force of: 
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Schematic 
interaction 
diagram in 

dimensionless 
V-N space 

N-range exists if: 
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Monotonic lateral force resistance of squat members w/ 
flexure-shear interaction (cont’d) 
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2. In axial force range: N1 ≥  N  ≥ -As,totfy  
 
Strut inclination is: 
 
where: 
 
 
& ultimate shear is: 
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VR= 
(N+As,totfy)tanφ+ρwfywbwcotδ[z-(2Ls+zcotδ)tanφ]   

 

  

Schematic 
interaction 
diagram in 

dimensionless 
V-N space 

Moderately brittle failure: 
Concrete fails by diagonal 
compression, w/ yielding of transverse 
reinforcement & of tension 
reinforcement. 



Monotonic lateral force resistance of squat members w/ 
flexure-shear interaction (cont’d) 
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3. In axial force range:  Nfcbwh+As,tot fy  ≥  N  ≥ N2  
 
Strut inclination is: 
 
where: 
 
 
& ultimate shear is: 

 

  

Schematic 
interaction 
diagram in 

dimensionless 
V-N space VR= 

(N-As,totfy)tanφ+ρwfywbwcotδ[z+(2Ls-zcotδ)tanφ]   

Moderately brittle failure: 
Concrete fails by diagonal 
compression, w/ yielding of transverse 
reinforcement & of compression 
reinforcement. 

If shear effects unimportant (Ls/h>>2.5),  
interaction diagram degenerates into simple 
μ-ν diagram:  
μ=0.5ζ(ν+ωtot) for  0.5n>ν≥-ωtot 
μ=0.5ζ(n+ωtot-ν) for  n+ωtot≥ν≥0.5n 
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 (b) 
(b) Dimensional interaction M-N and V-N diagrams of 200mm square column 

with four 16mm bars; (c) example dimensionless M-V-N diagrams 

Monotonic lateral force resistance of squat members w/ flexure 
-shear interaction (cont’d) 

(c) 



Cyclic shear resistance of squat columns in diagonal 
compression after flexural yielding 
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Experimental cyclic shear 
resistance for shear compression 

failure of squat columns after 
flexural yielding v predictions 

Monotonic lateral force resistance of squat members w/ 
flexure-shear interaction (cont’d) 

δ = angle of column 
diagonal to member 

axis: tanδ = h/2Ls  
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no. tests: 64, median=1.00, 
CoV=10.4% 



Diagonal reinforcement in squat columns or deep 
beams  

VEd=2Asdfydsinδ
   
Md=zAsdfydcosδ
   

(tanδ = z/L = z/2Ls)   

Coupling beams w/ diagonal reinforcement in Eurocode 8 

Monotonic lateral force resistance of squat members w/ 
flexure-shear interaction (cont’d) 
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