Etcaywyn otov Mpoypappatiopo
(Introduction to Programming)

MIA EIZAFQMH
2THN TEXNH TOY

NMPOrPAMMATIZEMOY
pe Tn C kat to Al Chatbot

Ta&wounon kat AvaZntnon - Part B

A Step-By-Step Approach
https://sites.google.com/view/i2art-of-programming

MnynR: M Eloaywyn
otnv T€Xvn Tou
[MpoypaUUATIOUOU

Sorting and
Searching

https://sites.google.com/view/i2art-of-programming/home
https://sites.google.com/view/i2art-of-programming/home
https://sites.google.com/view/i2art-of-programming/home

= Aivel TN diauopPpwon TNS OOUNC EVOC NPOYPANKATOC/EPAPHOYNC, NMOU EXEI WC KUPIO
XapakTnpPIoTIKO eva MEvOU, ano TO OMoI0 Ol XPNOTEC NNOPOUV va €NIAEEOUV Ao eva
ouvoAo O1aBeoipwyv unnpeaiwv. Mapouaialel pia enavaypnoiponoinoiun Auon (JoTifo
oxedlaopou-design pattern) yia Tnv avTIHETWNION AUTNC TNE anaiTnong.

= ToviCel Tn onuacia TNC oTadiaknc avanTu&ng Tou aAyopiOpou pesa ano Jid
enavaAnnTikn d1adIKkacia yia TNV AavTIHET®NION TG NOAUNAOKOTNTAC,

= Eioayel Tic TeXVIKEC TNC TUNUaTonoinong (partitioning) kal TG ano To YEVIKO NPOC TO
€101kO avanTuénc (top-down).

= OIEPEUVA MEPAITEPW TO XEIPIOUO CUUPBOAOCEIpWY, Kal BETEI TO NAAIOIO YIa TNV €l0aywyn
aAyopiOpwv Ta&ivopnonc kai avalnTnonc, kKabwc Kal EVVOIEC ONwWC OUVAHIKN
EKXWPNON MVAHNG KAl 0pyavwon TOU NNyaiou kwoika o€ noAAanAa apyeia.

H 1kavoTNTa va OKEPTETAI KAVEIC aPalpeTIKA Kal va diatunwvel Tn AekTikn Mepiypan, evioxuel TNV
anOTEAECUATIKOTNTA Kal TIC OEEIOTNTEC TOU NPOYPAUUATIOTN, I01AITEPA KATA TOV OXEQIACHO aAyopiBuwy.

© 2025 Mwa Etcaywyn otnv TExvn Tou Mpoypaptatiopou Sorting and Searching Awdaveia 2

= AIVEI EPPAON 0 CUYKEKPILIEVOUC alyopiOpouc Ta&ivounonc (ApaoTtnpioTnTa
BubbleSort) kai avaliitnonc (ApactnpioTnta BinarySearch), kair otn diadikacia
uAonoinonc TOUC JE TN HOPPN ENAvVAXPNOINOMNOINCINWY CUVAPTNOEWV.

= Eomiade :
= 0Tn oTadiakn avanTu&n Tnc ASIToUpyIKOTNTAC JECA Ano Hia Osipa eKOOCEWV, Kal,
= 01N BeATiwon TG anodoonc Tou aAyopibpovu.
= MeAeTa Tnv aonoinon cuvaptnoswv Ta&ivopunonc (gsort) kar avalntnonc (bsearch)
TNC TUNIKNG BIBAI0BNKNC
= Eomialel oto onuavTiko NAEOVEKTNA NOU NApeXel N a&lonoinon OgikTn cuvapTNoNG
Y14 va NEPACOUNE OTIC OUVAPTNOEIC AUTEC GUYKEKPIUEVN AOYIKN OUYKPIONG NMOU anaiTel
N epapuoyn Tou alyopibuou.
= [poxwpa oTnv avanTtu&n uiac yevikng cuvaptnong Ta&ivounonc (bsort), n onoia
uAonoiel Tov aAyopiBuo Bubble Sort kal pnopei va epapuooTEl G€ NIVAKEC
OMoIoUdNNOTE TUMOU

© 2025 Miwa Elgaywyn atnv Téxvn Tou Mpoypappatiopoy Sorting and Searching Awgaveia 3

» Ta&lvopunon pE xpnon Tng i2p BiBAIoONKNC
= [ivaka akepainv
= [ivaka aA@apiBunTikwv

= A step-by-step Approach yia nivaka akepaiwv
= EvvaAakTikeg YAonoinoeic (+AvadpopikoTnTa)
= Ta&vounon nivaka AEIKTWV 0€ aKEPAiout
= Ta&vopnon Ae€swv

= Ta&vounon nivaka aApapiounTIKwy

= Ta&vounon nivaka AsikTwv o€ aA@apiBunTIKa

= Linear - Binary
>€ nivaka akepaiwv
= 2€ Mivaka aA@apiOunTIKwy

© 2025 Mwa Etoaywyn otnv Téxvn Tou Mpoypappatiopoy Sorting and Searching Awdavela 4

1. Taéwounon (avéovoa kat pOivovoa) Mivaka _

OLKEPOLLWV

void sortIntArrayInc(int ar[],int numOfElements);
void sortIntArrayDec(int ar[],int numOfElements);

2. Ta&wounon (avéovoa kat pOivouvoa) Mivaka
aAdaplOpntikwy

void sortStringArrayInc(char base[],int numOfElements, int strilidth)
void sortStringhrrayDec(char base[],int numOfElements, int strlidth)

‘
1
'
3

© 2025 Mua Elcaywyn otnv Téxvn tou Mpoypaupatiopou Sorting and Searching Awdaveia 5

Hands-on : TaEwvopnon MNivaka akepalwy

void sortIntArrayInc(int ar[],int numOfElements);
void sortIntArrayDec(int ar[],int numOfElements);

Array before sorting
9 4 12 2 17 21 8 18 3
Array status: Not sorted

Press any key to continue . . .

Array after incremental sort

2 3 4 8 9 16 12 17 27
Array status: Incrementaly sorted AVCll'ITL'JETE éVCl npévpauua nou vda éXEl T|'|V
Press any key to continue . . . I'ICIpCII'I)\El'Jp(Dq éEOéO KC'IVOVTGC Xpl’"]O'I'] TWV

dUO Napanavw ouvapTnOEwWV TAEIVOUNGCNG.

Array after decremental sort
21 17 12 16 9 8 4 3 2
Array status: Decrementaly sorted

Process exited after 4.325 seconds with return value @
Press any key to continue . . .

© 2025 Mia Etocaywyn atnv Téxvn tou Mpoypapatiopou Sorting and Searching Awdaveia 6

Hands-on : TaEwvopnon MNivaka aApaplBunTikKwy

void sortStringlfrrayInc(char base[],int numOfElements, int striidth);
void sortStringlfrrayDec(char base[],int numOfElements, int striidth);

khar ar[][lﬂ] {"paris","nikos","alekos","kostas",
' ' "basos","andreas","petros"};

XpnaoiponoinoTe TIC OUO Napanavw cuvapTnOoEIC yid va

avanTu&Te eva npoypappa nou va exel e€0do avaloyn Ue
auTn TOU NPOYPAauPaToc Nou avanTuéaTe yia Ta&ivounon
aKkePaiwv.

© 2025 Mia Etocaywyn atnv Téxvn tou Mpoypapatiopou Sorting and Searching Awgaveia 7

= [ivaka akepaiwv
= [ivaka aA@apiBunTikwyv

=« Ta&ivounon - Bubble Sort
= A step-by-step Approach yia nivaka akepaiwv
= EvvaAakTikeg YAonoinoeic (+AvadpopikoTnTa)
= Ta&vounon nivaka AEIKTWV 0€ aKEPAiout
= Ta&vopnon Ae€swv
« Ta&vounon nivaka aA@apidunTIKwV
= Ta&vounon nivaka AsikTwv o€ aA@apiOunTIKa

= Linear - Binary
= 2€ Mivaka akepainv
= 2€ Mivaka aA@apiOunTIKwy

© 2025 Mwa Etoaywyn otnv Téxvn Tou Mpoypappatiopoy Sorting and Searching Awdaveia 8

AvanTu€Te £va npoypaupa nou 6a xpnoiLonoIEl pia ouvapTnon
bubbleSort4ArrayOflInts, Tnv onoia 6a avanTu&eTe yia Ta&ivounon nivaka
akepaiwv Pe Baon Tov aAyopiOpo puoaAidac.

» H Apaotnplotnta £XeL 6TOXO TV £€AlOKNON UE TNV Bripna-Ttpoc-frpa
Sladikaoia avamtuéng ocuvaptnoswv taélvopunong mou Bacilovtoal
navw otov aAyoplOpuo bubble sort (aAyoptlBpo pucaAidac) yia tnv
taélvopnon aplBuwyv kat cuppoloocelpwy

© 2025 Mua Etoaywyn otnv Téxvn Tou Mpoypappatiopou Sorting and Searching Awdaveia 9

AvanTuUETE €va npoypappa nou 6a XpnoIKONoIEl Jia ouvapTnon Nou uAonolei Tov aAyopiBuo Bubble Sort yia va
Ta&IVoUNOEl Eva Nivaka akepaiwv.

Awote tn Aektikn Nepypadn
oéLormotwvtoc o aLPETLKOTNTA OTLC
Slepyaoilec KaL 0T CUVEXELD YPAWTE TNV
main L€ OTOXO0 TO MPOYPAHO OAC VA EXEL

TNV napakatw £€odo.

Awote povo tn 6nAwon tng bubbleSort

3 = U 7 2 8 1 0) 6

Array status: not sorted

Press any Key to continue .
2] 1 2 3 L] 6 7 8 9

Array status: sorted

Sorting and Searching Awadaveia 10

void bubbleSort(int ar[], int numOfElements);

16 int ar[] = {3,5,4,7,2,8,1,08,9,6};
17 =] int main(int argc, char *argv[]) {

18 A&ionoinbnkav ol
19 int numOfElements =sizeof(ar)/sizeof(int); TEXVIKEC TNC

208 displayArray(ar,numOfElements); TUNUATOMNOINONG
21 arrayStatus(ar,numOfElements); (partitioning) kai
22 system("pause"); TNC ano TO YEVIKO
23 bubbleSort(ar, numOfElements); npoc TO c101KO
24 displayArray(ar,numOfElements); avanTuénc (top-
25 arrayStatus(ar,numOfElements); down).

26 return o;

27 L}

© 2025 Mua Elcaywyn otnv Téxvn tou Mpoypaupatiopou Sorting and Searching Awdaveia 11

int ar[] = {3,5,4,7,2,8

“Bubble sort (...) is a simple sorting algorithm t

»y1,8,9,6};

nat repeatedly steps

through the input list element by element, com

paring the current

element with the one after it, swapping their values if needed. These

passes through the list are repeated until no swaps had to be

performed during a pass, meaning that the list

has become fully

sorted. The algorithm, which is a comparison sort, is named for the

way the larger elements "bubble" up to the top

© 2025 Mua Elcaywyn otnv Téxvn tou Mpoypaupatiopou Sorting and Searching

of the list.” Wikipedia

Awdavela 12

int ar[] = {3,5,4,7,2,8,1,8,9,6};

“Bubble sort (...) is a simple sorting algorithm that repeatedly steps through the input list element by element, comparing the
current element with the one after it, swapping their values if needed. These passes through the list are repeated until no swaps
had to be performed during a pass, meaning that the list has become fully sorted. The algorithm, which is a comparison sort, is

named for the way the larger elements "bubble" up to the top of the list.” Wikipedia

= Avo €ival ol BaolkEg dlepyaoieg mov ekTeAEL
= JUyKplon 6U0 otolxeiwv (comparing the current element with the one after it)
= EvaAAayn B€onc av n cuykplon to amnoaltei (swapping their values if needed)

= Me tnv enavalappavopevn ektéAeon Twv SU0 AUTWV SLEPYOCLWV ETILTUYXAVEL
TNV TALVOUNON TWV CTOLXELWV TOU Ttivaka

= repeatedly steps through the input list element by element
= These passes through the list are repeated

© 2025 Mua Elcaywyn otnv Téxvn tou Mpoypaupatiopou Sorting and Searching Awdavela 13

“Bubble sort (...) is a simple sorting algorithm that repeatedly steps through the input list element by element, comparing
the current element with the one after it, swapping their values if needed. These passes through the list are repeated until
no swaps had to be performed during a pass, meaning that the list has become fully sorted. The algorithm, which is a
comparison sort, is named for the way the larger elements "bubble" up to the top of the list.” Wikipedia

int ar[] = {3,5,4,7,2,8,1,8,9,6};

= XTOXOC Pac va avanTtu&oupe Tnv bubbleSort Bnua-npoc-prua.
= Step 1 — YAonolei TO KiTPIVO HEPOC TNG NEPIYPAPNG
Kavel moveBubbleUp yia Tov nivaka ar pe otoixeia numOfElements

= Step 2 - YAonolei Tnv enavaAnywn Tou Step 1 yia 0AouC TOUC UMO-NIVAKEC TOU ar PJEXPI TOV
uno-nivaka Pe 2 oToixeia (Npacivo JEPOC NEPIYPAPC).
>Tnv ouoia enavaiapBavel Tnv douAeid Tou BAuatog 1, dnAadn To moveBubbleUp, yia kGBe uno-nivaka Tou ar
MEXP! QUTOV WE 2 OTOIXEIQ.

= Step 3 — BeATiwon Tou BrHAToC 2 yia va anopuUYOUE TIC AOKOMEC ENAVAANWEIC

© 2025 Mua Elcaywyn otnv Téxvn tou Mpoypaupatiopou Sorting and Searching Awdaveia 14

BubbleSort Version 1(moveBubbleUp)

Avantuéte pia ouvapTnon bubbleSort nou uAonoiel To Bripa 1 (Step 1) dnAadn Tn
dlepyacia moveBubbleUp.

= Step 1 — YAonoleil TO KITPIVO HEPOC
TNG NEPIYPAPNG

Kavelr moveBubbleUp yia Tov nivaka ar pe
otoixeia numOfElements

© 2025 Mua Elcaywyn otnv Téxvn tou Mpoypaupatiopou Sorting and Searching Awdaveia 15

“Bubble sort (...) is a simple sorting algorithm that repeatedly steps through the input list element by element,
comparing the current element with the one after it, swapping their values if needed. (...)" Wikipedia

= Ovopaloupe moveBubbleUp Tn diepyacia nou nepiypapeTal napanavw
LE KITPIVO

= AuTn €ival n npwTn OOUAEIG Nou NPenel va kavel n bubbleSort
= Me Baon auto n bubbleSort diapoppwveTal oONwc NnapakaTw

28
29
3@
31
32

I

€

void bubbleSort(int ar[], int numOfElements){
moveBubbleUp(ar, numOfElements);

} A®OTE TO oWPa TNS moveBubbleUp

void moveBubbleUp(int ar[], int numOfElements){

© 2025 Mua Elcaywyn otnv Téxvn tou Mpoypaupatiopou Sorting and Searching Awdaveia 16

st Step - moveBubbleUp for ar (2/2)

O nivakag
int ar[] = {3,5,4,7,2,8,1,8,9,6};

Screenshot ekTéAeonc 11 ekdoonc

3 S 4 7 2 8 1 e 9 6
Arra.g status: not sorted

Press any key to continue . . .

Iteration No2-=3 Lu 51 7 8 1 0 9 6
Iteration Nou->3 4 5 I_z_% 8 1 0 9 6
Iteration No6->3 4 5 2 7 (1 B 0 9 6
Iteration No7->3 4 5 2 7 1 P 9 6
Iteratign No9-=3 it 5 2 7 1 0 8 L6 9 |

End of array pass

Press any key to continue 50
3) 5 2 7 1 2] 8 6

———————————————————————————————— AwaoTe Tov Nnyaio kwdika
Process exited after 15.26 seconds with return value © X X
Press any key to continue . . . YIG TO Bﬂ]JG auro (Vl)

© 2025 Mia Etocaywyn atnv Téxvn tou Mpoypapatiopou Sorting and Searching Awdaveia 17

O nivakac npiv Tnv eKTEAEoN Tou Step 1

Ch\Code\courses\|2ZP2023-24_

3]) 7 2 8 1) 9 6
Array status: not sorted

O nivakac YHETA TNV EKTEAEON TOU Step 1 (moveBubbleUp)

3 45 2 7 1 0 8 5E
Array status: not sorted

@ Next step Mooa steps;

3 2 U 1 e 2 6

© 2025 Mua Elcaywyn otnv Téxvn tou Mpoypaupatiopou Sorting and Searching Awdavela 18

BubbleSort Version 2

AvaBabuioTe TNV 1n €kdoon TNEC ouvapTNONG WOTE Va UAOMOIEI Kal TN AEITOUpYIKOTNTA
TOU 20U BrpuaToc.

= Step 2 - Y\onoiei Tnv enavaAnyn Tou Step 1 yia
OAOUC TOUC UMO-NiVAKEC TOU ar JEXPI TOV UMo-
nivaka pe 2 oroixeia (Npacivo JEPOC NEPIYPAPNC).
>Tnv ouaia enavaiappavel Tnv douA&id Tou BApaTtoc 1,

dnAadn To moveBubbleUp, yia kGbs uno-nivaka Tou ar
LEXPI AUTOV HE 2 OTOIXEId.

© 2025 Mua Elcaywyn otnv Téxvn tou Mpoypaupatiopou Sorting and Searching Awdaveia 19

Screenshot ekTteAeonc 27S ekdoong (1st part)

Ch\Code\courses\|2P2023-24_ X

3 5 4 7 2
Array status: not sorted

Press any key to continue .
Iteration No2-=3
Iteration Nod-=3
Iteration No6—->3
Iteration No7-=3
Iteration No9->3

e s e E E
th thn noon

End of array pass for 18 elements

Press any key to continue .

Iteration No3->3 4 2
Iteration No5->3 4 2
Iteration No6-=3 u 2
Iteration Nog8->3 0 2

End of array pass for 9 elements
___|

Press any key to continue .

Iteration No2->3 2 4
Iteration Noud->3 2 4
Iteration No5-=3 2 u
Iteration No7->3 2 U

End of array pass for 8 elements
___|

© 2025 Mua Elcaywyn otnv Téxvn tou Mpoypaupatiopou

8

nth tnoon [ST S T S S R |

CR

1

ol B R | =] =] =] =] M

D DW=

2] 9 2]

8 1l 8 9 B
8 1 e 9 5]
1 8 2] 9 5]
1l 8 8 9 5]
1 e 8 5] 9
1 e 8 5]

7 2] 8 2]

e 7 8 5]

e 7 3]]

e 7 5]

2] 7 2]

] 7 5]

5 e 7 |

Sorting and Searching

AvaBabuioTe Tov nnyaio
kwdika Tou BRuatog 1 (V1)
yla va uAonoinoel Tnv
eKTEAEON TNC
AEITOUPYIKOTNTAC
moveBubbleUp yia oAouc
TOUC UMO-MIVAKEC TOU ar
(V2).

Awdavela 20

Step 2 - MoveBubbleUp for all sub-arrays

Screenshot ekteAeonc 27S ekdoong (last part)

Iteration Nol->1 2 0 3 1l
Iteration No2->1 E 2 | 3 4

End of array pass for 5 elements
|

Press any key to continue .

Iteration Mnl—ﬁﬁ 1 | 2 3

End of array pass for 4 elements
|

Press any key to continue .

MapatnpnoTE TIC AOKOMEC
End of array pass for 3 elements €I'ICIVCI)\|"]l.|JEIC yia 3 kai 2 OTOIXEiCI

Press any key to continue .

End of array pass for 2 elements

Press any key to continue .
2] 1 2 3 4 5 6 7 8 o
Array status: sorted

________________________________ Avoid meaningless

Process exited after 17.62 seconds with return value 0
Press any key to continue . . . iterations

© 2025 Mia Etocaywyn atnv Téxvn tou Mpoypapatiopou Sorting and Searching Awdaveia 21

BubbleSort Version 3

AvaBabuioTe TNV 2n £kdoon TNC ouvapTNONG WOTE va BEATIWOETE TO XPOVO TAEIVOUNONG
anogpeuyovTac ackonec enavaAnyeic Tne diepyaciac moveBubbleUp

= Step 3 — BeATiwon Tou BruaToc 2
Y1 va ano@uUYOUNE TIC AOKOMEC
£NAVAANWEIC

© 2025 Mua Elcaywyn otnv Téxvn tou Mpoypaupatiopou Sorting and Searching Awdaveia 22

Screenshot ekteAeonc 31S ekdoong (last part)

Press any key to continue . . .

Iteration No2-=2 1 3] U 5
Iteration No3->2 1 2] 3 U 5
End of array pass for 6 elements
Press any key to continue . . .
1 —]]]
S T > & 85 = AvaBaBpioTe Tov nnyaio kwdIKa

Tou BnuaTtoc 2 (V2) yia va
ano@UYETE TNV EKTEAEDN TNG
ees MY ey Locommnus e AEITOUPYIKOTNTAC moveBubbleUp
yla TOUC Ta&IVOUNMEVOUC
uno-nivakec Tou ar (V3).

End of array pass for 5 elements

End of array pass for 4 elements

Press any key to continue . . .

End of arrag Eass for 3 elements

Press any key to continue . . .
8 1 2 3 4 5 6 7 8 9

‘ﬂrrag status: sorted

| Process exited after 12.04 seconds with return value ©
Press any key to continue . . .|

© 2025 Mia Etocaywyn atnv Téxvn tou Mpoypapatiopou Sorting and Searching Awdaveia 23

1. 'Evac Bpoyoc kal ouvaptnon moveBubbleUp
2. AUO Bpoyol (xwpic Tn ouvapTtnon moveBubbleUp)

3. AvadpopikoTnTa (recursion)
H bubbleSort kaAei Tov €auToO TNC.

4. Ta&vounon nivaka OEIKTWV OE akepaioug ?
int *ar[188];
5. Ta&vounon AAQapIBunTiKwy ?

14{E char aw[][l@] = {“:de","ab:","cef",“abb",“aab“,
15 : : : "klm","kab","gbc","gab","aaa"};

char *EF[] = {"ede","abc","cef","abb","aab"
"klm","kab","gbec","gab","aaa’ }J

© 2025 Mua Elcaywyn otnv Téxvn tou Mpoypaupatiopou Sorting and Searching

Awdavela 24

AvanTtuéTe pia cuvapTtnon nou Ba uAonolei Tov aAyopiBuo BubbleSort yia Ta&ivounon
nivaka OEIKTWV O€ aKEPAIOUC.

arPtr[] ar[]
arPtr ar
0 | . 0
=] 0
=14
| /
«| 2
=1 8
15
Fynua 8-4 O mivakec ar Kol arPtr.
© 2025 Mua Elcaywyn otnv Téxvn tou Mpoypaupatiopou Sorting and Searching Awdavela 25

11 int arr[] = {3,5,4,7,2,8,1,0,9,6}; i
12 Slint arrf[] = {1,0,4,7,2,8,5,3,9,6}; S 74
13

14| int main(int argc, char *argv[]) {

15 int numOfElements;

16

17 numOfElements=sizeof(arr)/sizeof(int);
15

12 I int *ar[numOfElements];

20 for(int 1;i1<numOfElements;i++)

21 E ar[1]=&arr[i];

AwoTe ToV nnyaio Kwdika
TPOMONOIWVTAC TOV KWAIKA TNG
bubbleSort yia nivaka akepaiwv

© 2025 Mia Etocaywyn atnv Téxvn tou Mpoypapatiopou Sorting and Searching Awdaveia 26

AvanTu&Te pia ouvapTtnon nou Ba uAonoiei Tov aAyopiBuo BubbleSort yia Ta&vounon

nivaxka GUHBO)\OUEIP(bV- char ar[][18] = {"cde","abc","cef","abb","aab",
IlklmlljIlkahlljllgbcllj“gahlljIlaaall};

[C:xcade‘\courses‘hlzpznz3_24_ *

cde abc cef abb aab klm kab gbc gab aaa
Array status: not sorted
Press any key to continue .

Iteration Nol-=abc cde cef abb aab klm kab gbc gab aaa
Iteration No3-=abc cde abb cef aab klm kab gbc gab aaa
Iteration Noud-=abc cde abb aab cef klm kab gbc gab aaa
Iteration Noé-=abc cde abb aab cef kab klm gbc gab aaa
Iteration No7-=abc cde abb aab cef kab gbc Klm gab aaa
Iteration No8-=abc cde abb aab cef kab gbc gab klm aaa
Iteration No9-=abc cde abb aab cef kab gbc gab aaa KLlm

End of array pass for 18 Elements. Array is not sorted
__|

Press any key to continue .

Iteration No2-=abc abb cde aab cef kab gbc gab aaa
Iteration No3-=abc abb aab cde cef kab gbc gab aaa
Iteration No6-=abc abb aab cde cef gbc kab gab aaa
Iteration No7-=abc abb aab cde cef gbc gab kab aaa
Iteration No8-=abc abb aab cde cef gbc gab aaa kab

End of array pass for 9 Elements. Array is not sorted
Press any key to continue .

© 2025 Mia Etocaywyn atnv Téxvn tou Mpoypapatiopou Sorting and Searching Awdaveia 27

AvanTu&Te pia ouvapTtnon nou Ba uAonoiei Tov aAyopiBuo BubbleSort yia Ta&vounon

nivaka OEIKTAV O OUPBONOOEIPEG. char *ar[] = {"cde","abc","cef","abb","aab",
IlklmlljIlkablljIlghclljIlgahlljllaaall};

cde abc cef abb aab klm kab gbc gab aaa
Array status: not sorted
Press any key to continue .
Iteration Nol-=abc cde cef abb aab Klm kab gbc gab aaa
Iteration No3->abc cde abb cef aab KkLlm kab gbc gab aaa
Iteration Nod->abc cde abb aab cef Klm kab gbc gab aaa
Iteration No6—=abc cde abb aab cef kab klm gbc gab aaa
Iteration No7-=abc cde abb aab cef kab gbc Klm gab aaa
Iteration No8->abc cde abb aab cef kab gbc gab klm aaa
Iteration No9->abc cde abb aab cef kab gbc gab aaa klm
End of array pass for 10 Elements. Array is not sorted
Press any key to continue .
Iteration No2-=abc abb cde aab cef kab gbc gab aaa
Iteration No3-=abc abb aab cde cef kab gbc gab aaa
Iteration No6—>abc abb aab cde cef gbe kab gab aaa
Iteration No7->abc abb aab cde cef gbc gab kab aaa
Iteration No8-=abc abb aab cde cef gbc gab aaa kab
End of array pass for 9 Elements. Array is not sorted
]
Press any key to continue .
Iteration Nol-=abb abc aab cde cef gbc gab aaa
Iteration No2->abb aab abc cde cef gbc gab aaa
Iteration No6->abb aab abc cde cef gab gbc aaa
Iteration No7-=abb aab abc cde cef gab aaa gbc
EFnd nf arrav nace Far 8 Flementc Arrawv 1e nnt ennrter

© 2025 Mia Etocaywyn atnv Téxvn tou Mpoypapatiopou Sorting and Searching Awdaveia 28

= [ivaka akepaiwv
= [ivaka aA@apiBunTikwyv

= A step-by-step Approach yia nivaka akepaiwv
= EvvaAakTikeg YAonoinoeic (+AvadpopikoTnTa)
= Ta&vounon nivaka AEIKTWV 0€ aKEPAiout
Ta&vounon Ae€ewv
= Ta&vounon nivaka aA@apiBunTIKwy
« Ta&vounon nivaka AsikTwv o€ aA@apiBunTIKa
= AvalnTnon
= Linear - Binary
= 2€ Mivaka akepainv
= 2€ Mivaka aA@apiOunTIKwy

© 2025 Mwa Etoaywyn otnv Téxvn Tou Mpoypappatiopoy Sorting and Searching Awdaveia 29

MeAeTnoTe Tov aAyopiOuo duadiknc avalnTnong kai avanTu&ére pia
ouvapTnNon Nou TOV UAOMOIEI,

» «Binary search begins by comparing an element in the middle of the
array with the target value. If the target value matches the element,
its position in the array is returned. If the target value is less than the
element, the search continues in the lower half of the array. If the
target value is greater than the element, the search continues in the
upper half of the array. ... » wikipedia

© 2025 Mwa Etcaywyn otnv TExvn Tou Mpoypaptatiopou Sorting and Searching Awadaveia 30

AvanTUETE Eva NnpOypapHa CUL@PWVa LUE TO 0MNoio To cuoTnua 6a ektelei avalnTnon He Baon Tov aAyoplOuo linear

search. AwaTe Tn AekTIKn MNepiypagpn yia Tn ouvapTtnon aiyopiOuo linearSearch kar avanTu&te eva npoypappua
LinearSearchTester yia avaliTnon o€ nivaka akepaiwv.

AwoTe Kal pia ekdoxn yia avalntnon o< nivaka OsIKkTwV O€ aKEPAioud.

1nt ar[] {1,0,4,7,2,8,32,3,9,6};

AlapoppwaoTe ToV KwdIKA ETOI
WOTE va EXeTE €000 avaloyn He
TNV NApakaTw

Linear search for Array of Pointers to Ints
Enter number to search for:6
~ 6 found at index 9

== Binary search

= .rPtr: 0 1 2 3 Y 5 6 7 8 9

B mid=U
~ mid=7

mid=5

mid=6

6 found at index 6

© 2025 Mua Elcaywyn otnv Téxvn tou Mpoypaupatiopou Sorting and Searching Awdaveia 31

AwoTe Tn AekTIKN Mepiypapn yia Tn ouvapTtnon duadikne avalntnong kai avanTuéTe eva
npoypaupa BinarySearchTester yia avaltnon o€ nivaka OEIKTWV O aKEPAiouc.

1nt ar[] {1,0,4,7,2,8,32,3,9,6};

AlapoppwaoTe ToV KwdIKA ETOI
WOTE va EXeTE €000 avaloyn He
TNV NApakaTw

Linear search for Array of Pointers to Ints
Enter number to search for:6
—— 6 found at index 9

== Binary search

= .rPtr: 0 1 2 3 Y 5 6 7 8 9

B mid=U
~ mid=7

mid=5

mid=6

6 found at index 6

© 2025 Mua Elcaywyn otnv Téxvn tou Mpoypaupatiopou Sorting and Searching Awdaveia 32

int binarySearch (int ar([], int low,

0 ar ITht high, int key);
mid=(low+high)/2;
if(ar[mid]==key)

mid = (low+high)/2”~ return mid;
if(ar[fmid]>key)
l if(ar[mid]<key)
..... AwOoTe ToV Nnyaio kKwoIka
TNG binarySearch() pe kai
n-1 XWPIG avadpopIKoTNTA

© 2025 Mua Elcaywyn otnv Téxvn tou Mpoypaupatiopou Sorting and Searching Awdavela 33

AwoTe Tn AekTIKN Mepiypapn yia Tn ouvapTtnon duadikne avalntnong kai avanTuéTe eva
npoypaupa BinarySearchTester yia avalntnon o€ nivaka dEIKTwV 0 GUUPBOAOCEIPEC.

char words[MAX WOERDS] [MAX WORD LEN] = {"klmn", "lmno",
“EI.]:::I:C].“ . 1ral:“:flr '|1l:m:l1r} ;

BinarySearhcV2 - Linear search on Array of Pointers to Strings
words: klmn Lmno abcd abc Lmn

wordsPtr: klmn lmno abcd abc Lmn

Enter word to search for:abcd

abcd found at index 2

Binary search on Array of Pointers to Strings

wordsPtr: abc abcd klmn Lmn Llmno

mid=2 ; ; ;
mid=0 AlguopPWOTE TOV KWOIKA ETOI
mid=1 WOTE VA EXETE £€000 avaloyn He
abcd found at index 1 TNC EIKbVCIC;

© 2025 Mua Elcaywyn otnv Téxvn tou Mpoypaupatiopou Sorting and Searching Awdaveia 34

Avalntnon (Linear-Binary) 4String

6 int linearSearch(char *ar[],int numOfElements, char *key);
7 knt binarySearch(char *ar[], int low, int high, char *key);
8

9-ichar ®*ar{] = {"cde”,"abc","cef","abb", "aab",

10 L é é é "klm","kab","gbc","gab","aaa"};

13l

12 int main(int argc, char *argv[]) {

13 int index=0;

14 int numOfElements =sizeof(ar)/sizeof(char *);

1l char key[] = "gbc";

© 2025 Mia Etocaywyn atnv Téxvn tou Mpoypapatiopou Sorting and Searching Awdaveia 35

= [ivaka akepaiwv
= [ivaka aA@apiBunTikwy

A step-by-step Approach yia nivaka akepaiwv
EvvaAakTikeC YAonoinoeic (+AvadpopikoTnTa)
Ta&vounon nivaka AEIKTWV O aKEPAIOUC
Ta&ivounon Ae€swv

= Ta&vounon nivaka aA@apiBunTIKwy

= Ta&vounon nivaka AsikTwv o€ aA@apiBunTIKa

= Linear - Binary
= 2€ NiVaKa akePaiwv
= 2€ Nivaka aA@apidunTIKwV

« Ta&ivounon ka1 AvalnTnon M€ TNV TUunikn BiBA1odNkn

© 2025 Mwa Etoaywyn otnv Téxvn Tou Mpoypappatiopoy Sorting and Searching Awadavela 36

H ouvaptnon memcpy

8 int ar[] = {1,0,4,7,2,83,5,3,2,6};
= int arl[10]:;
10 char words[MAX WCRDS] [MAX WCRD LEN] = {"kElmpn", "lmno®,"abcd", "abe","lmn®™!:
11 char wordsl[MAX WORDS] [MAX WOERD LEN]:
12
13 Eﬂint main(int argc, char *argv[]){
14 printf ("QsortHelperFunctionsVa- memcry (Memory to Memory copy)\n™);
15 memcpy (arl,ar,sizeocf (ar)).
16 printArrayC0fInts ("grl",arl,sizeof (arl) /sizeof(arl[0])):
17 memcpy (wordsl, words, sizeof (words)) ;
18 printArrayO0fstrings ("wordl",wordsl MAX WCORDS) ;
19 retuorn CO;
20 =

© 2025 Mia Etocaywyn atnv Téxvn tou Mpoypapatiopou Sorting and Searching Awadaveia 37

» To ovopa poc cuvaptnonc eivoit SeikTnC 6To CWHO TNE CUVAPTNONC KOl WC
OELKTNC UMOPEL va TIEPACEL WC OPLOLA OE piot cuvapTnon.

» MmopoUpe va nepaooupe o€ pa cuvaptnon funcl tov deiktn pag AAANC
ouvaptnonc func2.

» Tov 6elktn autov pmopel va xpnotpomotnoet n funcl oto cwpa TNE yla va
kKaAeoel Tnv func?.

» Me tov TpOmo auto £xoupe tn duvatotnta va aAAA{oUVUE TN cupmepLdopA TNG
ouvaptnonc funcl Katd To XpOVo EKTEAECNC TOU MTPOYPAUMUATOC.

vold flexiblePrinti(int *ar, int size,voidi(*printliint *, int

© 2025 Mua Etoaywyn otnv Téxvn Tou Mpoypappatiopou Sorting and Searching Awdavela 38

Av £XETE OAOKANPWOEI ENITUXWCE TIC Napanavw dpaceic Ta&IvVOuNoNnc, EXETE TO unofabpo
MOoU anaiTeiTal yia va eEETA0ETE TO EVOEXOUEVO OPICUOU ouvapTnong nou 6a ulonolei Tov
aAyopiBuo BubbleSort yia Ta&ivopnon nivaka oToixeiwv onoloudnnoTe Tunou. Eival eva
OUOKOAO £pYO0. ZNUEIWOTE TIC NAPATNPNOEIC 0AC KAl TOAUNOTE vVa NEPACETE 0€ KWOIKA.

Av ouvavTnoeTe OUOKOAIEC, ival
noAu niBavo, n evotnta 8.8 Ba
oac BonBnoel NoAu va Tnv
oAokANpwaoeTe. Mpoc To napov
OUVEXIOTE YE TNV gsort.

© 2025 Mua Elcaywyn otnv Téxvn tou Mpoypaupatiopou Sorting and Searching Awdaveia 39

base: dcikTnG oTnv Beon TOU width : To peyebocg oe bytes Tou
NPWTOU OTOIXEIOU TOU Mivaka OTOIXEIOU TOU nivakd.

. : num: o apiBuoc Twv
void gsort(void *base; OTOIXEIWV TOU Mivako

size_t num; size_t width;
int (Xcomp)(const void *, const void*));

N

comp: ival O€ikTNG o€ vwyapTnon n onoia dexeral dUo opiouaTa TUMNou
deikTn o€ void kal enioTpePerint. H enioTpe@opevn TIWN €ivar:

a) >0 av To nePIEXOPEVO TNG BEGNC UVNKNG Tou 10V deikTn €ival > and auto Tou 20V
B) <0 av To NepIeEXOUEVO TNG BEONC PvVANG Tou 19U deikTn €ival < and auTo Tou 2%
y) =0 av To nepiexouevo TnG Beonc uvAuNG Tou lou deikTn €ival ico e autd Tou 2%V

© 2025 Mua Elcaywyn otnv Téxvn tou Mpoypaupatiopou Sorting and Searching Awadaveia 40

AvanTu&Te eva PIKPO NpOypauua nou Ba XpnoIKonolEi Tn
ouvapTtnon gsort yia va Ta&ivounoel eva nivaka akepaiwy.

© 2025 Mua Elcaywyn otnv Téxvn tou Mpoypaupatiopou

Sorting and Searching

Array before sorting

[0]->9
[1]->4
[2]->12
[3]->2
[4]->17
[5]->21
[6]->8
[7]->10
[8]->3

Array after sorting

[0]->2
[1]->3
[2]->4
[3]->8
[4]->9
[5]->10
[6]->12
[7]->17
[8]->21

Awdavela 42

AvanTuU&Te eva PIKPO NpOypauua nou Oa XpnoIKONOIEl TN cuvapTnon gsort yia va
Ta&Ivounoel €va nivaka akepaiwv.

= Odnyiec:
= [payTte yia ouvaptnon displayIntArray n onoia 6a

TUNWVEI TOV Nivaka PE TNV Jopdpn nou OIveETal NapanAeupwd.

« pawTe pia ocuvaptnon compInt n onoia
= @) Ba &xel To function prototype nou opilel n gsort kai

=) Ba kavel cast og int * Ta opiopaTa TG, 6a CUYKPIVEl TA NEPIEXOUEVA TWV
B€ocwv PvrAuNng nou auta dsixvouv kal Ba enioTpePel: 0 av eival ioa, >0 av
TO NPWTO €ival JeyaAUTEPO kal <0 av To NPWTO €ival HIKPOTEPO.

= TpononoinoTe Tnv compInt woTte n gsort va Ta&Ivouei e
¢Oivouoa oeipa

© 2025 Mua Elcaywyn otnv Téxvn tou Mpoypaupatiopou Sorting and Searching

Array before sorting

[0]->9
[1]->4
[2]->12
[3]->2
[4]->17
[5]->21
[6]->8
[7]->10
[8]->3

Array after sorting

[0]->2
[1]->3
[2]->4
[3]->8
[4]->9
[5]->10
[6]->12
[7]->17
[8]->21

Awdavela 43

188 void displayIntArray(int ar[], int s){

19
20
21
22
23

-}

int 1=0;
for(1=0;1<s;1++)
printf("[%d]->%d\n",1i,ar[1]);

24H 1nt compInt(const void *a, const void*b){

25
26
27
28
29

//

-}

if(*(int*)a==*(int*)b)

return 9;
return *(int*)a>*(1nt*)b?1:-1;
return *(int*)a - *(int*)b;

H ékdpaon kavel cast tov deiktn a anod deiktn o€ void o€
SelkTn o€ int KAl TTOLLPVEL TO TIEPLEXOEVO TOU.

© 2025 Mia Etocaywyn atnv Téxvn tou Mpoypapatiopou Sorting and Searching

Array before sorting

[0]->9
[1]->4
[2]->12
[3]->2
[4]->17
[5]->21
[6]->8

[7]->10 AR

[8]->3

Array after sorting

[0]->2
[1]->3
[2]->4
[3]->8
[4]->9
[5]->10
[6]->12
[7]->17
[8]->21

Awadavela 44

AvanTU&Te £va npoypappa nou Ba xpnoiyonolEl TN ouvapTnon gsort yia va Ta&ivounaoel
eva nivaka OsIKTwV O aKEPAioud.

arPtr[] ar[]

+] F W
ol l=)J] &) O

Fynua 8-4 O mivakec ar Kol arPtr.

© 2025 Mua Elcaywyn otnv Téxvn tou Mpoypaupatiopou Sorting and Searching Awdaveia 45

Array before sorting

AvanTuU&Te eva npoypappa nou Oa XpnoIKoOnoIEl TN cuvapTnon gsort yia va Ta&ivounoel [0]->paris
gva nivaka oupBoAoceipwv. 210 id10 NPOypappa aglonoinoTe TIG OUVAPTAOEIG TNG TUMNIKAG [1]->nikos
BIBAI0BNKNC yia osipiakn kal duadikn avalntnon o€ nivakec. [2]->alekos
[3]->kostas
= OOnyIec: [4]->basos
]] i i . [5]->andreas
= [payTte pia ocuvaptnon displayStringArray n onoia 6a [6]->petros

TUNWVEI TOV Nivaka Pe TNV Pop@n nou diveTal napanAeupwc.

= [payTe Yia ouvapTtnon compString n onoia
=) Ba gxel To function prototype nou opilel n gsort ka 1]->andreas

[
, , , , [
= B) Ba kavel cast oe char * Ta opiopata TnG, Ba oUyKpIVEl TA NEPIEXOPEVA TWV [2]->basos
Beoewv pvnung nou auta deixvouv kal Ba emoTpeer: 0 av ival ioa, >0 av [3]->kostas
[
[
[

Array after sorting
0]->alekos

TO NPWTO €ival peyaAUTEPO Kal <0 av To NPWTO €ival HIKPOTEPO. 41->nikos

5]->paris
6]->petros |

= TpOMonoInoTe TNV compString woTe n gsort va Ta&ivouei e
¢pOivouoa oeipa

© 2025 Mua Elcaywyn otnv Téxvn tou Mpoypaupatiopou Sorting and Searching Awdaveia 46

QsortArray5tring.c

1 #include <stdio.h> Array before sorting

2 #include <stdlib.h> [@]->paris

= _ , [1]->nikos

4 void displayStringArray(char ar[][10], int s); [2]->alekos

5 int compString(const void *, const void*); |

6 char ar[][10]={"paris", "nikos","alekos","kostas","basos","andreas","petros"}; [3]->kostas

7 [4]->basos

8 [5]->andreas

9t int main(int argc, char *argv[]) { [6]->petros

10 printf("Array before sorting\n");

i; displayStringArray(ar,sizeof(ar)/sizeof(ar[0])); Array after sorting

13 qsort(ar,sizeof(ar)/sizeof(ar[@]),sizeof(ar[0]),compString); [@]->alekos

14 [1]->andreas

15 printf("\nArray after sorting\n"); [2]->basos

16 displayStringArray(ar,sizeof(ar)/sizeof(ar[9])); [3]->kostas

17 return 9; [4]—>nikos

18 -

19 : [5]->paris A
[6]->petros =

© 2025 Mia Etocaywyn atnv Téxvn tou Mpoypapatiopou Sorting and Searching

Awdavela 47

Hands-on : gsort yia ta§lvopnon mivaka cupBologsipwy

13 gsort(ar,sizeof(ar)/sizeof(ar[@]),sizeof(ar[0]),compString);® sorting
14

15 printf("\nArray after sorting\n");

16 displayStringArray(ar,sizeof(ar)/sizeof(ar[9]));

17 return 9;

18 L } 5

19

ZBEHvoid'dis?laystringArray(char ar[][10], int s){ sorting
21 int 1=0;

22 for(i=0;i<s;1i++) 5

23 | printf("[%d]->%s\n",1i,ar[1]);

24 -}

25

268 int compString(const void *a, const void*b){

27T? return strcmp((char*)a,(char*)b);

28 L }

© 2025 Mia Etocaywyn atnv Téxvn tou Mpoypapatiopou Sorting and Searching Awdaveia 48

AvanTtuéte pia ouvaptnon bsort avaloyn Tnc gsort Tnc TUMKNG BIBAIOONKNG
ue TN Slapopa oTI B6a ulonolsi Tov aAyopiBuo bubble sort.

EmAEETe va OOUAEWETE yia TNV avanTuén
TNC bsort pe €va nivaka akepaiwv.
Mia kaAn enihoyn €ival va XpnolJonoINOETE
w¢ Baon Tov nnyaio kwdika TN¢ 3n¢
£kdoonc Tn¢ BubbleSort

© 2025 Mua Elcaywyn otnv Téxvn tou Mpoypaupatiopou Sorting and Searching Awdaveia 49

AvanTu&Te eva npoypauua nou Oa XpnolIKonolEl TN cuvapTnon gsort yia va Ta&ivounoel eva nivaka Oodwy.

Address Book Not eEKTEAEOTEL HETA TNV struct abEntry{

’ e . t '
gvotnta 9 (AopuEg) 223.-”1";3%[20];

struct abEntry ab[MAX_ENTRIES]; Chor addrecatan
int abFreeEntry=0; e meiiToar.

char

}s

Mivakac ab

lan Lname Fname Address Zip email

H 1G&n Tou npwTou
eAeUBgpPOU OTOIXEIOU
TOU nivaka ab.

L (| pa = S

© 2025 Mua Elcaywyn otnv Téxvn tou Mpoypaupatiopou Sorting and Searching Awadaveia 50

void qsort(void *base,

nst void *, const void*));

M Lname Fname Address Zip email

ApIBUOC eyypapwy,
nivaka

MeyeBoc o€ bytes TnG
eyypapng abEntry

Ln | |wa | pa = [S

>uvapTtnon oUykpIonG Tou PEAoUC TNG abEntry pe Baon To onoio BEAoOUE va Yivel n
Ta&ivounon. Aexetal we opiopata dUo OeikTeC o OUO EyYPAPEC TOU Nivaka. Oa ouykpivel Ta
MEAN pe Baon Ta onoia BEAoupe va yivel n Ta&ivounon kal Ba enioTpEPEl avaioya.

Awadaveia 51

© 2025 Mua Elcaywyn otnv Téxvn tou Mpoypaupatiopou Sorting and Searching

struct abEntry *abp[MAX_ENTRIES];
int abpFreeEntry=0;

AM ILname IFname I..ﬁ.ddrESE Izip Iemail

struct abEn | |
0 /J:AM ILname IFname |Address Izlp Iemall
1
2)AM ILname |Fname I;ﬁ.ddrESS Izip Iemail
3
4 LL
-5 \,&M ILname IFname Iﬁ.ddrezﬁ Izip Iemail

abpFreeEntry is 4 #include <stdlib.h>

#include <malloc.h>
void *malloc(size_t size);
void free(void *buffer);

Awdavela 52

© 2025 Mia Etocaywyn atnv Téxvn tou Mpoypapatiopou Sorting and Searching

struct abEntry *abp[MAX_ENTRIES];
int abpFreeEntry=0;

AM ILnamE IFnamE I.ﬁ.ddrEES Izip Iemail |

(strucf abeEntry*)malloc(sizeof(struct abEntry))

/J:AM ILnamE IFname IAddrEES Izip Iemail |

qt (strucf abEntry*)malloc(sizeof(struct abEntry))

struct abEn

)AM ILnamE IFnamE I.ﬂ.ddrEES Izip Iemail |

(strucf abeEntry*)malloc(sizeof(struct abEntry))

---"‘~ii

AN ILname IFname I.ﬂ.ddrEES Izip Iemail |

LL

| | [= |

(strucf abeEntry*)malloc(sizeof(struct abEntry))

a N void *a = (void™)abp;

(*(strhct abEntry**)a)->ém

Awdavela 53

© 2025 Mia Etocaywyn atnv Téxvn tou Mpoypapatiopou Sorting and Searching

void qsort(void *base,
size_t num, size_t width,

in nst void *, const void*));
uct abEﬂ'tr",-' * /[AM |Lname |Fname |Address |zip |emai| |
0 ¢ /
Aple“éq Evvpaq)d)v 1 i %[AM |Lname |Fname |Address |2i|:3 |emai| |
nivaka abp 2 ~
. 3 \[AM |Lname |Fname |Address |2ip |emai| |
MéyeBoc o€ bytes Tou | 4 \
o-rOIXEiOU TOU niVGKG abp \5 \[,&M |Lname |Fname |,ﬁddress |zip |emai| |

>uvapTnaon OUYKPIoNG Tou hEAoUG TNG abEntry pe Baon To onoio BeAoupe va yivel n Ta&ivounon.
AexeTal w¢ opiopaTta dUo OeikTeC o€ dUO OEIKTEC O eyypaPeC abEntry. ©a ouykpivel Ta HeAn
TWV EYYpapwv Pe Baon Ta onoia BeAoupe va yivel n Ta&ivopnon kal 6a enioTpe@el avaloya.

© 2025 Mua Elcaywyn otnv Téxvn tou Mpoypaupatiopou Sorting and Searching Awdaveia 54

void *bsearch(const void *key,
void *base, size_t num, size_t width,
int (*comp)(const void *, const void*));

>uvapTtnon ¢ Baaoikng BIBAIOBNKNC n onoia dnAwveTal oTo
apxeio stdlib.h

Ta otolyela Tov Iivaka Ba TtpemeL va €(ovv Talvoun el
TLPONYOVHEVWGS PE TNV (Sla cuvApTNHON Comp.

© 2025 Mua Elcaywyn otnv Téxvn tou Mpoypaupatiopou Sorting and Searching Awdavela 55

key: dcikTng oTo kA€1di pe Baon 1o onoio Ba yivel n avaliTnon

base: GeikTNG 0TV Be0N TOU MPWTOU num: o apIBUOC TwV OTOIXEIWV ToU Mivaka
OTOIXEIOU TOU nivaka

width : To peyeboc oe bytes

void *bsearch(const void *key rou oroieiou Tou nivaka.
void *base, size_t num, size_t width,
int (*comp))(const void *, const void*));

comp: eival OgiKTnNG o€ BUyapTNoN N onoia dexeTal dUo opiouaTa TUnou
deikTn o€ void kal enioTpePel int. H enioTpe@opevn Tiun €ivai:

a) >0 av To/NePIEXOPEVO TNG BECNC PVNKNG Tou 1°V BeikTn €ival > ano auto Tou 20V
B) <0 av 7O NepIEXOUEVO TNG BEONC PVAING TOU 19U deikTn €ival < and auTo Tou 2°U
y) =0 ay' 1o nepiexopevo TnG B€onc PvnungG Tou 1ou deikTn €ival ico PE AUTO Tou 2°U

comp: JuvapTtnon cUyKpIonG Tou key HE TIC EyypagES Tou nivaka nou Oeixvel n base.

Awadavela 56

© 2025 Mua Elcaywyn otnv Téxvn tou Mpoypaupatiopou Sorting and Searching

void* bsearch(const void *key,
void *base,

size_t num,

size_t wid

int (*

>uvapTnon ouykpIong Tou

key WE TIC eyypagEC Tou
nivaka nou Oeixvel n base.

© 2025 Mua Elcaywyn otnv Téxvn tou Mpoypaupatiopou

J:,E.M aname IFnamE

l,ﬂ.ddrEEE

|Email

ompJ(const void*, const void*));

Lname

Fname

Address

zZip

email

N[w k[O

Sorting and Searching

Awdavela 57

Avalntnon o€ Tivaka * o Aouec

void* bsearch(const void *key,
void *base, e

struct abeEntry *keyPtr = &key;
size_t/num,
AM Ilname IFname IAddrESE Izip Iemail .

Size WiCth/ .str'uct abEntry key;
intA*comp)(const void*, const void*));

%AM |Lname |Fname |Addre55 |1ip |emai|
%uct abEntry * | ' | | '
—
- %AM ILname IFname IAddre55 Izip Iemail |
)]:AM ILname IFname IAddress Izip Iemail |

~

(05 I I N I T I T S

\l‘ﬁ‘m ILnamE IFnamE |Address Ilip IEH"IE“

© 2025 Mia Etocaywyn atnv Téxvn tou Mpoypapatiopou Sorting and Searching Awdaveia 58

	Διαφάνεια 1
	Διαφάνεια 2: Στόχος Ενότητας
	Διαφάνεια 3: Η ενότητα
	Διαφάνεια 4: Οργάνωση Διάλεξης
	Διαφάνεια 5
	Διαφάνεια 6
	Διαφάνεια 7
	Διαφάνεια 8: Οργάνωση Διάλεξης
	Διαφάνεια 9: Δραστηριότητα 8.3 - BubbleSort
	Διαφάνεια 10: Hands-on : Η main
	Διαφάνεια 11
	Διαφάνεια 12
	Διαφάνεια 13
	Διαφάνεια 14
	Διαφάνεια 15: Bubble Sort – Step 1 (BubbleSort Version 1(moveBubbleUp))
	Διαφάνεια 16
	Διαφάνεια 17
	Διαφάνεια 18
	Διαφάνεια 19: Bubble Sort – Step 2 (BubbleSort Version 2)
	Διαφάνεια 20
	Διαφάνεια 21
	Διαφάνεια 22: Bubble Sort – Step 3 (BubbleSort Version 3)
	Διαφάνεια 23
	Διαφάνεια 24
	Διαφάνεια 25: Hands-on: Ταξινόμηση Πίνακα Δεικτών σε int
	Διαφάνεια 26
	Διαφάνεια 27: Hands-on: Ταξινόμηση Πίνακα Συμβολοσειρών
	Διαφάνεια 28: Hands-on: Ταξινόμηση Πίνακα * σε συμβολοσειρές
	Διαφάνεια 29: Οργάνωση Διάλεξης
	Διαφάνεια 30: Δραστηριότητα 8.6 - Binary Search
	Διαφάνεια 31: Hands-on : Linear Search
	Διαφάνεια 32: Hands-on : Binary Search
	Διαφάνεια 33: Binary Search
	Διαφάνεια 34: Hands-on : Binary Search
	Διαφάνεια 35: Αναζήτηση (Linear-Binary) 4String
	Διαφάνεια 36: Οργάνωση Διάλεξης
	Διαφάνεια 37: Η συνάρτηση memcpy
	Διαφάνεια 38: Συμπεριφορά ως όρισμα (Δείκτης συνάρτησης- function pointer)
	Διαφάνεια 39: Hands-on : BubbleSort
	Διαφάνεια 40: Η συνάρτηση qsort
	Διαφάνεια 42: Hands-on : qsort
	Διαφάνεια 43: Hands-on : qsort για ταξινόμηση πίνακα ακεραίων
	Διαφάνεια 44: Hands-on : qsort για ταξινόμηση πίνακα ακεραίων
	Διαφάνεια 45: Hands-on : qsort (πίνακα δεικτών σε int)
	Διαφάνεια 46: Hands-on : qsort για ταξινόμηση πίνακα συμβολοσειρών
	Διαφάνεια 47: Hands-on : qsort για ταξινόμηση πίνακα συμβολοσειρών
	Διαφάνεια 48: Hands-on : qsort για ταξινόμηση πίνακα συμβολοσειρών
	Διαφάνεια 49: Δραστηριότητα 8.5 - BubbleSort4Arrays
	Διαφάνεια 50: Hands-on : qsort για ταξινόμηση πίνακα Δομών
	Διαφάνεια 51: Ταξινόμηση πίνακα Δομών
	Διαφάνεια 52: Ταξινόμηση πίνακα δεικτών σε Δομές 1/3
	Διαφάνεια 53: Ταξινόμηση πίνακα δεικτών σε Δομές 2/3
	Διαφάνεια 54: Ταξινόμηση πίνακα δεικτών σε Δομές 3/3
	Διαφάνεια 55: Αναζήτηση – bsearch() 1/2
	Διαφάνεια 56: Αναζήτηση – bsearch() 2/2
	Διαφάνεια 57: Αναζήτηση σε πίνακα Δομών
	Διαφάνεια 58: Αναζήτηση σε πίνακα * σε Δομές

