
ΕΙΣΑΓΩΓΉ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΌ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ – ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ

ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

❑ Ορίσματα γραμμής εντολών
❑ Δείκτες/pointer σε συναρτήσεις
❑ Aρχεία

Ενώσεις (Unions) -1

Μία ένωση (union) μπορεί να περιέχει αντικείμενα
διαφορετικών τύπων και μεγεθών

π.χ. union u_tag {

 int ival;

 float fval;

 char *sval;

 } u;

CEID – ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ

Ενώσεις (Unions) -2

if (utype == INT)

 printf(“%d\n”, u.ival);

else if (utype==FLOAT)

 printf(“%f\n”, u.fval);

else if (utype==STRING)

 printf(“%s\n”, u.sval);

Στις ενώσεις επιτρέπεται απόδοση τιμής ή αντιγραφή
σαν ενότητα, λήψη διεύθυνσης, προσπέλαση μέλους.

Η αρχική τιμή πρέπει να έχει τύπο ίδιο με αυτό του
πρώτου της μέλους.

CEID – ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ

Ορίσματα Γραμμής Διαταγών (1)

#include <stdio.h>

main(int argc, char * argv[])

{

 int i;

 for (i=1; i<argc; i++)

 printf(“%s%s”, argv[i], (i<argc-1)? ” ” : ” \n”);

 return 0;

 }

CEID – ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ

Ορίσματα Γραμμής Διαταγών (2)

#include <stdio.h>

main(int argc, char * argv[])

{

 while (--argc >0)

 printf(“%s%s”, *++argv, (argc>1)?” ”: ”\n ”);

 return 0;

 }

CEID – ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ

Δείκτες σε Συναρτήσεις

Στην C η συνάρτηση δεν είναι μεταβλητή. Μπορούμε να
ορίσουμε δείκτες σε συναρτήσεις, που μπορούν να
αποδίδονται σαν τιμές, να τοποθετούνται σε πίνακες, να
μεταβιβάζονται σε συναρτήσεις και να επιστρέφονται από
αυτές.

CEID – ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ

Pointers to Functions στη C

❑- Τι είναι pointer σε συνάρτηση;

❑- Γιατί τους χρησιμοποιούμε;

❑- Βασική σύνταξη

❑- Παραδείγματα & συνηθισμένες χρήσεις (callbacks, πίνακες συναρτήσεων)

CEID – ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ

Δείκτες σε συναρτήσεις

Παράδειγμα: bubblesort

◦ Η συνάρτηση bubble παίρνει είσοδο δείκτη συνάρτησης

◦ bubble καλεί αυτή τη βοηθητική συνάρτηση

◦ Αυτό καθορίζει την αύξουσα ή φθίνουσα ταξινόμηση

◦ Το όρισμα στην ταξινόμηση φυσαλίδων για τον δείκτη συνάρτησης:

int (*compare)(int a, int b)
λέει στο bubblesort να αναμένει έναν δείκτη σε μια συνάρτηση που παίρνει δύο ακέραιους και

επιστρέφει έναν ακέραιο

Αν οι παρενθέσεις παρέλειπαν:

int *compare(int a, int b)
◦ Ορίζει μια συνάρτηση που λαμβάνει δύο ακέραιους αριθμούς και επιστρέφει έναν δείκτη σε

έναν ακέραιο

CEID – ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ

Τι είναι pointer σε συνάρτηση;

❑- Στη C, οι συναρτήσεις έχουν διεύθυνση στη μνήμη, όπως και οι μεταβλητές.

❑- Ένας pointer to function είναι μια μεταβλητή που κρατάει τη διεύθυνση μιας
συνάρτησης.

❑- Μέσω αυτού:

❑ - Μπορούμε να καλούμε διαφορετικές συναρτήσεις δυναμικά (run-time).

❑ - Μπορούμε να περνάμε «συμπεριφορά» ως όρισμα (callbacks).

❑ - Μπορούμε να φτιάχνουμε πίνακες από «στρατηγικές» (π.χ. διαφορετικοί
αλγόριθμοι).

CEID – ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ

Βασική μορφή δήλωσης

❑Γενική μορφή: return_type (*pointer_name)(parameter_types);

❑Παράδειγμα:

int add(int a, int b)

{

return a + b;

}

int (*fp)(int, int); // δήλωση pointer σε συνάρτηση

- fp είναι pointer σε συνάρτηση που παίρνει δύο int και επιστρέφει
int.

CEID – ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ

Ανάθεση & κλήση

❑Ανάθεση διεύθυνσης συνάρτησης:

fp = &add; // ή απλά fp = add;

Κλήση μέσω pointer:

int result1 = fp(2, 3); // έμμεση κλήση

int result2 = (*fp)(2, 3); // ισοδύναμο

❑- Η έκφραση add «αποσυντίθεται» σε pointer στη συνάρτηση,
οπότε το & είναι προαιρετικό.

❑- Αντίστοιχα, το * στην κλήση είναι προαιρετικό.

CEID – ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ

Πλήρες απλό παράδειγμα

#include <stdio.h>

int add(int a, int b)

{ return a + b; }

int main(void) {

int (*fp)(int, int); // pointer σε συνάρτηση

fp = add; // ανάθεση

int x = 5, y = 7;

int sum = fp(x, y); // κλήση της add μέσω fp

printf("Sum = %d\n", sum); return 0;}

CEID – ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ

Pointers σε functions ως ορίσματα (callbacks)

Μπορούμε να περάσουμε pointers σε συνάρτηση ως παραμέτρους σε άλλες συναρτήσεις:

void apply_and_print(int (*op)(int, int), int a, int b) {

int result = op(a, b);

printf("Result = %d\n", result);

}

int add(int a, int b) { return a + b; }

int mul(int a, int b) { return a * b; }

int main(void) {

apply_and_print(add, 3, 4); // χρησιμοποιεί add

apply_and_print(mul, 3, 4); // χρησιμοποιεί mul

}

CEID – ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ

Δείκτες σε συναρτήσεις

Δείκτης στη συνάρτηση
◦ Περιέχει διεύθυνση συνάρτησης

◦ Παρόμοιο με το πώς το όνομα του πίνακα είναι η διεύθυνση του πρώτου
στοιχείου ..

◦ Το όνομα της συνάρτησης είναι η αρχική διεύθυνση του κώδικα που ορίζει
τη συνάρτηση

Οι δείκτες στη συνάρτηση μπορούν να:
◦ Περαστούν σε συναρτήσεις

◦ Αποθηκευτούν σε πίνακας

◦ Ανατεθούν σε άλλες δείκτες συνάρτησης.

CEID – ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ

Typedef για function pointers
typedef int (*operation)(int, int);

int add(int a, int b) { return a + b; }

int sub(int a, int b) { return a - b; }

int main(void) {

operation op;

op = add;

printf("%d\n", op(10, 3)); // 13

op = sub;

printf("%d\n", op(10, 3)); // 7

}

CEID – ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ

Πίνακες από pointers
σε συναρτήσεις```c

#include <stdio.h>

int add(int a, int b) { return a + b; }

int sub(int a, int b) { return a - b; }

int mul(int a, int b) { return a * b; }

typedef int (*operation)(int, int);

int main(void) {

operation ops[3] = { add, sub, mul };

int a = 10, b = 5;

printf("add: %d\n", ops[0](a, b));

printf("sub: %d\n", ops[1](a, b));

printf("mul: %d\n", ops[2](a, b));

return 0;

}

```

- Χρήσιμο για μενού επιλογών ή πίνακες «στρατηγικών».

CEID – ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ



Function pointers σε struct

```c

typedef struct {

const char *name;

int (*op)(int, int);

} Command;

int add(int a, int b) { return a + b; }

int main(void) {

Command c = {"add", add};

printf("%s(2, 3) = %d\n", c.name, c.op(2, 3));

return 0;

}

- Χρήσιμο για πίνακες από «εντολές» ή προσομοίωση OOP.

CEID – ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ

Σημειώσεις για συμβατότητα τύπων

- Ο τύπος του pointer σε συνάρτηση πρέπει να ταιριάζει ακριβώς με τον τύπο της
συνάρτησης:

- Τύποι παραμέτρων

- Τύπος επιστροφής

- const / volatile qualifiers στις παραμέτρους

- Διαφορετικά → undefined behavior.

- Απαγορεύεται η αριθμητική σε function pointers (π.χ. fp + 1).

CEID – ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ

Συνηθισμένα λάθη

- Ξεχνάμε παρενθέσεις στη δήλωση:

int *fp(int, int); // ΔΕΝ είναι pointer σε συνάρτηση, είναι δήλωση συνάρτησης

int (*fp)(int, int); // σωστό

- Παίρνουμε pointer σε συνάρτηση static από άλλο αρχείο (δεν είναι ορατή).

- Χρήση λάθος υπογραφής (π.χ. callback με λάθος παραμέτρους).

CEID – ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ

Mini calculator με
function pointers`#include <stdio.h>

typedef int (*operation)(int, int);

int add(int a, int b) { return a + b; }

int sub(int a, int b) { return a - b; }

int mul(int a, int b) { return a * b; }

int main(void) {

operation ops[] = { add, sub, mul };

char symbols[] = { '+', '-', '*' };

int choice, a, b;

printf("0: +, 1: -, 2: *\n");

printf("Επιλογή: ");

scanf("%d", &choice);

CEID – ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ

printf("Δώσε δύο αριθμούς: ");

scanf("%d %d", &a, &b);

if (choice < 0 || choice > 2) {

 printf("Άκυρη επιλογή\n");

 return 1;

 }

 int result = ops[choice](a, b);

 printf("%d %c %d = %d\n", a, symbols[choice], b, result);

 return 0;

}

CEID – ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ

Πότε αξίζει να τους
χρησιμοποιήσω;

❑- Όταν θέλω:

❑ - Callbacks (sort, events, signal handlers).

❑ - Πίνακες από λειτουργίες (π.χ. emulator, interpreters, state machines).

❑ - Pluggable πολιτικές/στρατηγικές (π.χ. διαφορετικοί αλγόριθμοι).

❑- Σε απλό κώδικα ίσως να είναι περιττή πολυπλοκότητα.

CEID – ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ

❑ Function pointer = μεταβλητή που δείχνει σε συνάρτηση.

❑ Μορφή: return_type (*name)(params);

❑ Μπορούμε:

❑ Να τους περνάμε ως ορίσματα (callbacks).

❑ Να τους αποθηκεύουμε σε arrays & structs.

❑ Να χρησιμοποιούμε typedef για καθαρότερη σύνταξη.

❑- Προσοχή σε:

❑ Συμβατότητα τύπων

❑ Σωστή δήλωση (παρενθέσεις!).

CEID – ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ

CEID - ΠΡΟΓΡΑΜΜΑΤΙΣΜΌΣ ΣΕ ANSI C 24

#include <stdio.h>

#define N 10

/* Απλός αλγόριθμος διατάξεως με χρήση bubblesort

και με χρήση δείκτη σε συνάρτηση*/

void read(int ar[], int size);

void display(int ar[], int size);

void bubblesort(int ar[], int size, int (*comp)(int,

int));

int unsorted(int ar[], int size);

int afksousa(int x,int y);

int fthinousa(int x,int y);

int bsearch(int ar[], int left, int right, int element);

CEID - ΠΡΟΓΡΑΜΜΑΤΙΣΜΌΣ ΣΕ ANSI C 25

int main()

{ int ar[N];

 int x;

 int result;

 read(ar, N);

 if (unsorted(ar,N)==1) bubblesort(ar, N, afksousa);

 display(ar,N);

 printf("\n");

 printf("Give element: ");

 scanf("%d", &x);

 result=bsearch(ar, 0, N-1, x);

 if (result==-1) printf("The element does not exist.");

 else printf("It exists in %d position\n", result);

 bubblesort(ar, N, fthinousa);

 display(ar,N);

}

CEID - ΠΡΟΓΡΑΜΜΑΤΙΣΜΌΣ ΣΕ ANSI C

void read(int ar[], int size)

{

 printf("Give elements: ");

 int i;

 for (i=0; i<size; i++) scanf("%d", &ar[i]);

}

void display(int ar[], int size)

{

 printf("The elements are: ");

 int i;

 for (i=0; i<size; i++) printf("%d ", ar[i]);

}

CEID - ΠΡΟΓΡΑΜΜΑΤΙΣΜΌΣ ΣΕ ANSI C

int afksousa(int x, int y)

{

 return x>y;

}

int fthinousa(int x, int y)

{

 return x<y;

}

CEID - ΠΡΟΓΡΑΜΜΑΤΙΣΜΌΣ ΣΕ ANSI C

void helper(int ar[], int up, int (*comp)(int, int))

{

 int j;

 for (j=0; j<up; j++)

 {

 if (comp(ar[j], ar[j+1])>0)

 {

 int temp;

 temp=ar[j];

 ar[j]=ar[j+1];

 ar[j+1]=temp;

 }

 }

}

CEID - ΠΡΟΓΡΑΜΜΑΤΙΣΜΌΣ ΣΕ ANSI C

void bubblesort(int ar[], int size, int (*comp)(int, int))

{

 int i;

 for (i=N-1; i>=1; i--) helper(ar, i, comp);

}

int unsorted(int ar[], int size)

{

 int i;

 for (i=0; i<=size-2; i++)

 if (ar[i]>ar[i+1]) return 1;

 return 0;

}

Παραδείγματα Δηλώσεων

char **argv δείκτης σε δείκτη σε char

int (*daytab)[13] δείκτης σε πίνακα[13] int

int *daytab[13] πίνακας[13] με δείκτες σε int

void *comp() συνάρτηση που επιστρέφει δείκτη σε void

void (*comp)() δείκτης σε συνάρτηση που επιστρέφει void

char (*(*x())[])() συνάρτηση που επιστρέφει δείκτη σε
πίνακα δεικτών σε συνάρτηση που

 επιστρέφει char

char (*(*x[3])())[5] πίνακας [3] με δείκτες σε συνάρτηση που
επιστρέφει δείκτη σε πίνακα [] char

CEID – ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ

char **argv

…

argv

char

char

char

char

…

char

char

char

char

…

char

char

char

char

…

char

char

char

char

…

CEID – ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ

char (*daytab)[13]

char char char char char char char char char char char char char

daytab

CEID – ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ

char *daytab[13]

…

daytab

char char char char char

CEID – ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ

void (*comp)()

comp

void X () {

………

return …

}

CEID – ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ

char (*(*x())[])()

A

char Y (..) {

………

return …

}

…… * x (..) {

………

return A;

}

… … … …

char Z (..) {

………

return …

}

CEID – ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ

char (*(*x[3])())[5]

A

… * Y (..) {

………

return A

}

… * W (..) {

………

return C

}

… * Z (..) {

………

return B

}

char char char char char

x

CEID – ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ

Επεξεργασία Αρχείων στη C

• Με τη χρήση FILE * αναπαριστάνουμε δείκτη σε ένα

αρχείο.

• fopen χρησιμοποιείται για να ανοίγει ένα αρχείο.
Επιστρέφει την ειδική τιμή NULL για να δείξει ότι δεν

μπορεί να ανοίξει ένα αρχείο.

FILE *fptr;

char filename[]= "file2.dat";

fptr= fopen (filename,"w");

if (fptr == NULL) {

 fprintf (stderr, “ERROR”);

 /* DO SOMETHING */

}

CEID – ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ

Τρόποι Ανοίγματος Αρχείου

• FILE * fopen(const char * filename, const char *
mode)

• Το δεύτερο όρισμα της fopen καθορίζει τον τρόπο με

τον οποίο ανοίγουμε ένα αρχείο.

Υπάρχουν οι εξής επιλογές:

• "r" ανοίγει ένα αρχείο για διάβασμα

• "w" ανοίγει ένα αρχείο για εγγραφή

• "a" ανοίγει ένα αρχείο για προσθήκη / εγγραφή

• “b” δυαδικά δεδομένα (binary)

• rb, wb, ab, r+, w+, a+, rb+,wb+,ab+

CEID – ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ

Διαχείριση Αρχείων

• Κλείσιμο αρχείων

int fclose (FILE * fp);

• Είσοδος – έξοδος χαρακτήρων

int putc(int c, FILE * fp);

 (ισοδύναμα fputc())

 int getc(FILE * fp);

 (ισοδύναμα fgetc())

• Είσοδος – έξοδος συμβολοσειρών

int fputs (const char * s, FILE * fp);

 char * fgets (char * s, int n, FILE * fp);

CEID – ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ

•int feof(FILE *fp)

Not 0: end of file

•void rewind (FILE *fp);

•int fflush(FILE *fp)

0: success, EOF: error

•int fseek(FILE *fp, long int apostasi, int thesi)

thesi=SEEK_SET (0), SEEK_CUR (1), SEEK_END (2)

int ftell(FILE *fp)

•int fread(void *buffer, int arbytes, int fores, FILE *fp)

Διάβασε fores στοιχεία, μεγέθους arbytes το καθένα, στο buffer array

•int fwrite(void *buffer, int arbytes, int fores, FILE *fp)

Γράψε fores στοιχεία, μεγέθους arbytes το καθένα, από το buffer array

CEID – ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ

Παράδειγμα
#include <stdio.h>

void filecopy(FILE *, FILE *);

int main (int argc, char *argv[])

{ FILE *fp;

 if (argc==1) filecopy(stdin, stdout);

 else

 while (--argc>0) if ((fp=fopen(*++argv, “r”))==NULL)

 { printf(“cat: δεν μπορώ να ανοίξω το %s\n”, argv);

 return 1; }

 else {filecopy(fp, stdout); fclose(fp);}

 return 0; }

void filecopy(FILE *ifp, FILE *ofp)

{ int c;

 while ((c=getc(ifp))!=EOF) putc(c,ofp);

}

CEID – ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ

Γράφοντας σε Αρχείο με fprintf

• Η fprintf δουλεύει όπως η printf και η sprintf
με την διαφορά ότι το πρώτο όρισμα είναι
ένας δείκτης σε αρχείο.

• Θα μπορούσαμε επίσης να διαβάσουμε
αριθμούς από ένα αρχείο χρησιμοποιώντας
fscanf – αλλά υπάρχει και καλύτερος τρόπος.

FILE *fptr;

fptr= fopen ("file.dat","w");

/* Check it's open */

fprintf (fptr,"Hello World!\n");

CEID – ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ

Διαβάζοντας από Αρχείο με fgets
•fgets είναι ένας καλύτερος τρόπος ανάγνωσης από
αρχείο

•Μπορούμε να διαβάσουμε από αρχείο με fgets

FILE *fptr;

char line [1000];

/* Open file and check it is open */

while (fgets(line,1000,fptr) != NULL) {

 printf ("Read line %s",line);

}fgets έχει 3 ορίσματα, μία συμβολοσειρά, ένα μέγιστο

αριθμό χαρακτήρων προς ανάγνωση και ένα δείκτη αρχείου.

It returns NULL if there is an error (such as EOF)

fgets(char*s, int n, FILE *fstream); (διαβάζει το πολύ n-1 χαρακτήρες

σταματώντας αν συναντήσει χαρακτήρα νέας γραμμής)

CEID – ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ

Κλείνοντας ένα Αρχείο

• Μπορούμε να κλείσουμε ένα αρχείο απλώς
χρησιμοποιώντας fclose και το δείκτη
αρχείου. Ακολουθεί παράδειγμα "hello files".

FILE *fptr;

char filename[]= "myfile.dat";

fptr= fopen (filename,"w");

if (fptr == NULL) {

 printf ("Cannot open file to write!\n");

 exit(-1);

}

fprintf (fptr,"Hello World of filing!\n");

fclose (fptr);

CEID – ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ

Παράδειγμα (3)

Να υλοποιηθούν και να χρησιμοποιηθούν οι ακόλουθες

συναρτήσεις:

1. int createRandFile(char *fileName,int N): Δημιουργεί ένα

αρχείο με όνομα fileName στο οποίο γράφει Ν τυχαίους

αριθμούς. Επιστρέφει 1 σε επιτυχία και -1 σε αποτυχία

2. int *loadData(char *fileName,int N): Διαβάζει από το αρχείο

fileName Ν τυχαίους αριθμούς και τους επιστρέφει σε ένα

δείκτη ακεραίων.

3. int writeArray2File(char *fileName,int *array,int N): Γράφει

τους αριθμούς του διανύσματος array στο αρχείο fileName.

Επιστρέφει 1 σε επιτυχία και -1 σε αποτυχία.

CEID – ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ

int createRandFile(char *fileName,int N)
{

 FILE *fp;
 int i;

 fp = fopen(fileName,"w");
 if (fp)
 {

 srand((unsigned)time(NULL));
 for (i=0;i<N;i++)
 {

 fprintf(fp,"%d\n",(MAX*rand())/RAND_MAX);
 }
 fclose(fp);

 return 1;
 }
 else

 return -1;
}

 stdlib.h → srand, rand

 time.h -> time()

CEID – ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ

int *loadData(char *fileName,int N)
{

 int *array = (int*)malloc(sizeof(int)*N);
 FILE *fp;
 int i;

 fp = fopen(fileName,"r");
 if (fp)
 {

 for (i=0;i<N;i++)
 {

 fscanf(fp,"%d",&array[i]);
 }
 fclose(fp);
 return array;

 }
 else

 return NULL;
}

CEID – ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ

int writeArray2File(char *fileName,int *array,int N)
{

 FILE *fp;
 int i;

 fp = fopen(fileName,"w");
 if (fp)
 {

 for (i=0;i<N;i++)
 {

 fprintf(fp,"%d\n",array[i]);
 }
 fclose(fp);
 return 1;

 }
 else
 return -1;

}

CEID – ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ

	Διαφάνεια 1
	Διαφάνεια 2: Ενώσεις (Unions) -1
	Διαφάνεια 3: Ενώσεις (Unions) -2
	Διαφάνεια 4: Ορίσματα Γραμμής Διαταγών (1)
	Διαφάνεια 5: Ορίσματα Γραμμής Διαταγών (2)
	Διαφάνεια 6: Δείκτες σε Συναρτήσεις
	Διαφάνεια 7: Pointers to Functions στη C
	Διαφάνεια 8: Δείκτες σε συναρτήσεις
	Διαφάνεια 9: Τι είναι pointer σε συνάρτηση;
	Διαφάνεια 10: Βασική μορφή δήλωσης
	Διαφάνεια 11: Ανάθεση & κλήση
	Διαφάνεια 12: Πλήρες απλό παράδειγμα
	Διαφάνεια 13: Pointers σε functions ως ορίσματα (callbacks)
	Διαφάνεια 14: Δείκτες σε συναρτήσεις
	Διαφάνεια 15: Typedef για function pointers
	Διαφάνεια 16: Πίνακες από pointers σε συναρτήσεις
	Διαφάνεια 17: Function pointers σε struct
	Διαφάνεια 18: Σημειώσεις για συμβατότητα τύπων
	Διαφάνεια 19: Συνηθισμένα λάθη
	Διαφάνεια 20: Mini calculator με function pointers
	Διαφάνεια 21
	Διαφάνεια 22: Πότε αξίζει να τους χρησιμοποιήσω;
	Διαφάνεια 23
	Διαφάνεια 24
	Διαφάνεια 25
	Διαφάνεια 26
	Διαφάνεια 27
	Διαφάνεια 28
	Διαφάνεια 29
	Διαφάνεια 30: Παραδείγματα Δηλώσεων
	Διαφάνεια 31: char **argv
	Διαφάνεια 32: char (*daytab)[13]
	Διαφάνεια 33: char *daytab[13]
	Διαφάνεια 34: void (*comp)()
	Διαφάνεια 35: char (*(*x())[])()
	Διαφάνεια 36: char (*(*x[3])())[5]
	Διαφάνεια 37
	Διαφάνεια 38: Τρόποι Ανοίγματος Αρχείου
	Διαφάνεια 39: Διαχείριση Αρχείων
	Διαφάνεια 40
	Διαφάνεια 41: Παράδειγμα
	Διαφάνεια 42: Γράφοντας σε Αρχείο με fprintf
	Διαφάνεια 43: Διαβάζοντας από Αρχείο με fgets
	Διαφάνεια 44: Κλείνοντας ένα Αρχείο
	Διαφάνεια 45: Παράδειγμα (3)
	Διαφάνεια 46
	Διαφάνεια 47
	Διαφάνεια 48

