
01/06/2024

1

Αντικειμενοστρεφής Προγραμματισμός
(Object-Oriented Programming)

Kleanthis Thramboulidis
Prof. of Software and System Engineering

University of Patras
https://sites.google.com/site/thramboulidiskleanthis/

(CEID_NNY106)

C++ for Java Developers

Moving from Java to C++

© 2023 Κλεάνθης Θραμπουλίδης Διαφάνεια 2C++ for Java Developers

◼ “This appendix explains how to transfer your Java programming skills to a
substantial subset of C++.

◼ learning to move from one language to another is a fact of life for
today's software professionals.

◼ C++ has many features in common with Java, and it is easy for a Java
programmer to gain a working knowledge of C++.

◼ Nevertheless, C++ is a much more complex language than Java.

◼ This appendix does not attempt to cover all features of C++. But if you
master all of the constructs described in this appendix, you will be able to
use C++ effectively.

◼ We only cover the differences between Java and C++.

◼ control flow statements are essentially identical in C++ and Java.

https://horstmann.com/ccj2/ccjapp3.html

https://sites.google.com/site/thramboulidiskleanthis/

01/06/2024

2

Data Types and Variables

© 2023 Κλεάνθης Θραμπουλίδης Διαφάνεια 3C++ for Java Developers

◼ The data types in C++ are similar to those in Java.

◼ the range of the numeric types such as int is machine-dependent.
◼ On 16-bit systems such as PCs running DOS or Windows 3.x, int are 2-byte quantities with a much more

limited range than the 4-byte Java int type. On those machines, you need to switch to long whenever the int
range is not sufficient.

◼ C++ has short and unsigned types that can store numbers more efficiently. It is
best to avoid these types unless the added efficiency is crucial.

◼ The Boolean type is called bool in C++.

◼ The C++ string type is called string (std::string). It is quite similar to the Java

String type. However, pay attention to these differences:

1. C++ strings store ASCII characters, not Unicode characters

2. C++ strings can be modified, whereas Java strings are immutable.

4. You can only concatenate strings with other strings, not with arbitrary objects.

5. To compare strings, use the relational operators == != < <= > >=. The last four operators
perform lexicographic comparison (more convenient than the use of equals and compareTo in Java).

Variables and Constants

© 2023 Κλεάνθης Θραμπουλίδης Διαφάνεια 4C++ for Java Developers

◼ In C++, local variables are defined just as in Java.

int n = 5;

◼ There is, however, a major difference between C++ and Java.

◼ The C++ compiler does not check whether all local variables are initalized before
they are read. It is quite easy to forget initializing a variable in C++. The value of the
variable is then the random bit pattern that happened to be in the memory location that
the local variable occupies. This is clearly a fertile source of programming errors.

◼ As in Java, classes can have data fields and static variables.

◼ Variables can be declared outside functions and classes (global variables).

◼ In C++, constants can be declared anywhere. (Recall that in Java, they had
to be static data of a class.)

◼ C++ uses the const keyword instead of final.

const int DAYS_PER_YEAR = 365;

01/06/2024

3

Classes

© 2023 Κλεάνθης Θραμπουλίδης Διαφάνεια 5C++ for Java Developers

class Point { /* C++ */
public:

Point();
Point(double xval, double yval);
~Point(); // destructor
void move(double dx, double dy);
double getX() const;
double getY() const;

private:
double x;
double y;

};

◼ there are public and private sections.

◼ Accessor methods are tagged with the keyword const

◼ There is a semicolon at the end of the class

◼ The class definition only contains the declarations of
the methods. The actual implementations can be
listed separately.

Point::Point() { x = 0; y = 0; }

void Point::move(double dx, double dy){

x = x + dx;

y = y + dy;

}

double Point::getX() const {

return x; }

Instances 1/2

© 2023 Κλεάνθης Θραμπουλίδης Διαφάνεια 6C++ for Java Developers

◼ The major difference between Java and C++ is the behavior of object variables.

◼ In C++, object variables hold values, not object references.

◼ Instances You simply supply the construction parameters after the variable name.

Point* p = new Point(1,2); /* new operator returns a pointer */

Point p(1, 2); /* construct p */

◼ If you do not supply construction parameters, then the object is constructed with the
default constructor.

Time now; /* construct now with Time::Time() */

◼ When one object is assigned to another, a copy of the actual values is made. Copying a C++
object is just like calling clone in Java. Modifying the copy does not change the original.

Point q = p; /* copies p into q */

q.move(1, 1); /* moves q but not p */

01/06/2024

4

Instances 2/2

© 2023 Κλεάνθης Θραμπουλίδης Διαφάνεια 7C++ for Java Developers

In most cases, the fact that objects behave like values is very convenient.
There are, however, a number of situations where this behavior is undesirable.

◼ 1. When modifying an object in a function, you must remember to use call by reference

◼ 2. Two object variables cannot jointly access one object. If you need this effect in C++,
then you need to use pointers

◼ 3. An object variable can only hold values of a particular type. If you want a variable to
hold objects from different subclasses, you need to use pointers

◼ 4. If you want a variable point to either null or to an actual object, then you need to use
pointers

Functions

© 2023 Κλεάνθης Θραμπουλίδης Διαφάνεια 8C++ for Java Developers

◼ Define behavior of instances or classes.

◼ Global functions: Functions defined outside of classes.

◼ Argument passing : call by value and call by reference.

01/06/2024

5

Input and Output 1/2

© 2023 Κλεάνθης Θραμπουλίδης Διαφάνεια 9C++ for Java Developers

◼ In C++, the standard input and output stream are represented by the cin and cout objects.
use the << operator to write output.

cout << "Hello, World!";

◼ To print multiple items.

cout << "The answer is " << x << "\n";

◼ To read a number or a word from input, use the >> operator.

double x;

cout << "Please enter x: ";

cin >> x;

string fname;

cout << "Please enter your first name: ";

cin >> fname;

Input and Output 2/2

© 2023 Κλεάνθης Θραμπουλίδης Διαφάνεια 10C++ for Java Developers

◼ If the end of input has been reached, or if a number could not be read
correctly, the stream is set to a failed state. You can test for that with the fail
method.

int n;

cin >> n;

if (cin.fail()) cout << "Bad input";

◼ Once the stream state has failed, you cannot easily reset it. If your program needs to handle
bad input, you should use the getline method and then manually process the input.

◼ The getline method reads an entire line of input.

string inputLine;

getline(cin, inputLine);

01/06/2024

6

Pointers 1/2

© 2023 Κλεάνθης Θραμπουλίδης Διαφάνεια 11C++ for Java Developers

◼ In C++, a variable that can refer to an object is called a pointer. If T is any type, then T* is a
pointer to an object of type T.

◼ a pointer variable can be initialized with a) NULL, b) a call to new, c) another pointer variable.

Producer* p1 = NULL;

Producer * p2 = new Producer(buf);

Producer * p3 = p2;

◼ a pointer variable can also be initialized with the address of another object, by using the &
operator.

Producer producer1(buf);

Producer * producer2 = & producer1;

◼ This is usually not a good idea. As a rule of thumb, C++ pointers should only refer to objects
allocated with new.

Pointers 2/2

© 2023 Κλεάνθης Θραμπουλίδης Διαφάνεια 12C++ for Java Developers

◼ You must apply the * operator to access the object to which a pointer points. If p is a pointer
to an Employee object, then *p refers to that object.

Employee* p = . . .;

Employee boss = *p;

(*p).setSalary(91000); // invokes the setSalary method on the object *p

p->setSalary(91000); // invokes the setSalary method on the object *p

◼ In C++, it is the responsibility of the programmer to manage memory.

◼ Object variables are automatically reclaimed when they go out of scope. However, objects
created with new must be reclaimed manually with the delete operator.

Employee* p = new Employee("Hacker, Harry", 38000);

. . .

delete p; /* no longer need this object */

01/06/2024

7

Inheritance 1/2

© 2023 Κλεάνθης Θραμπουλίδης Διαφάνεια 13C++ for Java Developers

◼ In C++, you use : public instead of extends to denote inheritance.

◼ By default, functions are not dynamically bound in C++. If you want which
dynamic binding for a particular function, you must declare it as virtual.

class Manager : public Employee {

public:

Manager(string name, double salary, string dept);

virtualvoid print() const;

private:

string department;

};

Inheritance 2/2

© 2023 Κλεάνθης Θραμπουλίδης Διαφάνεια 14C++ for Java Developers

◼ call the superclass constructor outside the body of the subclass constructor.

Manager::Manager(string name, double salary, string

dept)

: Employee(name, salary) /* call superclass constructor */

{ department = dept; }

◼ To call the superclass method use the name of the superclass and the ::
operator.

Employee::print(); /* call superclass method */

◼ A C++ object variable holds objects of a specific type. To exploit
polymorphism in C++, you need pointers. A T* pointer can point to objects of
type T or any subclass of T.

01/06/2024

8

java to c++ transition tutorial

© 2023 Κλεάνθης Θραμπουλίδης Διαφάνεια 15C++ for Java Developers

cs123: Java to C++ Transition Tutorial
https://cs.brown.edu/courses/cs149/handouts/javatoc.shtml

https://cs.brown.edu/courses/cs149/handouts/javatoc.shtml

	Slide 1
	Slide 2: Moving from Java to C++
	Slide 3: Data Types and Variables
	Slide 4: Variables and Constants
	Slide 5: Classes
	Slide 6: Instances 1/2
	Slide 7: Instances 2/2
	Slide 8: Functions
	Slide 9: Input and Output 1/2
	Slide 10: Input and Output 2/2
	Slide 11: Pointers 1/2
	Slide 12: Pointers 2/2
	Slide 13: Inheritance 1/2
	Slide 14: Inheritance 2/2
	Slide 15: java to c++ transition tutorial

