
1

Μεταγλωττιστές για
Ενσωματωμένα Συστήματα

Χειμερινό Εξάμηνο 2023-24
«OpenMP - III»

Παναγιώτης Χατζηδούκας

Outline
• Introduction

• nested loop parallelism
• functional parallelism

• OpenMP tasking model
• how to use
• how it works
• examples

3

Nested Parallelism
• OMP_NESTED: if the environment variable is set to TRUE,

nested parallelism is enabled.
• In this case, each parallel directive creates a new team of

threads.

#include <stdio.h>
#include <omp.h>
void nesting()
{
 #pragma omp parallel
 {
 int tid1 = omp_get_thread_num();
 #pragma omp parallel
 {
 int tid2 = omp_get_thread_num();
 #pragma omp critical
 printf("tid1 = %d, tid2 = %d\n", tid1, tid2);
 }
 }
}

nested parallelism can easily lead to
processor oversubscription:

#threads > #cores

4

Nested Loop Parallelization - I
void work(int i, int j);

void nesting(int n)
{
 #pragma omp parallel
 {
 #pragma omp for
 for (int i=0; i<n; i++) {
 #pragma omp parallel
 {
 #pragma omp for
 for (int j=0; j<n; j++) {
 work(i, j);
 }
 }
 }
 }
} several implicit barriers

5

Nested Loop Parallelization - II
void work(int i, int j);

void nesting(int n)
{
 #pragma omp parallel for
 for (int i=0; i<n; i++) {
 #pragma omp parallel for
 for (int j=0; j<n; j++) {
 work(i, j);
 }
 }
}

we avoided some implicit barriers

nested parallel regions

6

Nested Loop Parallelization - III
void work(int i, int j);

void nesting(int n)
{
 #pragma omp parallel for
 for (int k=0; k<n*n; k++) {
 int i = k / n;
 int j = k % n;
 work(i, j);
 }
}

loop fusion: we avoided nested parallelism

Basic loop transformations
- interchange: inner loops are exchanged with outer loops (see exercise 01)
- unrolling: the body of the loop is duplicated multiple times
- fusion: multiple loops are replaced with a single one (see above)
- fission: a single loop is broken into multiple loops over the same index range

7

Nested Loop Parallelization - IV
void work(int i, int j);

void nesting(int n)
{
 #pragma omp parallel for collapse(2)
 for (int i=0; i<n; i++) {
 for (int j=0; j<n; j++) {
 work(i, j);
 }
 }
}

collapse clause: let the
OpenMP compiler do it for us

8

Functional parallelism

V = alpha();
W = beta();
X = gamma(V, W);
Y = delta();
F = epsilon(X,Y))

• Parallelize the following sequential code
• what is the total execution time if each function takes

one second?

total time = 5s

9

Functional parallelism - Solution 1
#pragma omp parallel num_threads(3)
#pragma omp sections
{

#pragma omp section
V = alpha();

#pragma omp section
W = beta();

#pragma omp section
Y = delta();

}
X = gamma(V, W);
printf(“%f\n”, epsilon(X,Y));

no sense to use more threads

total time = 3s

10

Functional parallelism - Solution 2
#pragma omp parallel num_threads(2)
{
 #pragma omp sections
 {
 #pragma omp section
 V = alpha();

 #pragma omp section
 W = beta();
 }
 #pragma omp sections
 {
 #pragma omp section
 X = gamma(V, W);

 #pragma omp section
 Y = delta();
 }
}
printf(“%f\n”, epsilon(X,Y));

no sense to use more threads

implicit barrier

total time = 3s
but with fewer threads

11

Functional Parallelism I

void XAXIS();
void YAXIS();
void ZAXIS();

void a9()
{
 #pragma omp parallel
 {
 #pragma omp section
 XAXIS();
 #pragma omp section
 YAXIS();
 #pragma omp section
 ZAXIS();
 }
}

• Implement an equivalent version of the following
code without using parallel sections

12

Functional Parallelism II

void XAXIS();
void YAXIS();
void ZAXIS();

void a9()
{
 #pragma omp parallel for
 for (int i = 0; i < 3; i++)

if (i == 0) XAXIS();
if (i == 1) YAXIS();
if (i == 2) YAXIS();

 }
}

void XAXIS();
void YAXIS();
void ZAXIS();

void a9()
{
 #pragma omp parallel
 {
 #pragma omp single nowait
 XAXIS();

 #pragma omp single nowait
 YAXIS();

 #pragma omp single nowait
 ZAXIS();
 }
}

13

Functional Parallelism III

Tasks in OpenMP (3.0)
• We have seen a few ways to parallelize a block

• #pragma omp parallel

• #pragma omp sections

• #pragma omp parallel for

• “parallel for” is great for for-loops, but what about
unstructured data?
• Traversal through lists and trees?
• while loops?

• Spawning threads dynamically is expensive
• Tasks are more lightweight:

• new tasks get put onto a task queue
• idle threads pull tasks from the queue

14

OpenMP Tasks
• Parallelization of irregular problems

• Loop with dynamic bounds
• Recursive algorithms
• Producer-consumer execution schemes

• Work units that are executed asynchronously
• They can be executed immediately after their creation

• Tasks consist of:
• Code
• Data environment: initialized at creation time
• Internal control variables (ICVs)

15

Example: Fibonacci sequence

#include <iostream>

int fibonacci(int n)
{

int i, j;
if (n<2)

return n;
else {

i = fibonacci(n-1);
j = fibonacci(n-2);
return i + j;

}
}

int main()
{

int n;
std::cin >> n;
std::cout << fibonacci(n) << std::endl;

}

• Parallelize recursive function Fn = Fn-1+ Fn-2

• The sequential code first

16

Example: Fibonacci sequence

#include <iostream>

int fibonacci(int n)
{

int i, j;
if (n<2)

return n;
else {

#pragma omp parallel sections shared (i,j)
{

#pragma omp section
i = fibonacci(n-1);
#pragma omp section
j = fibonacci(n-2);

}
return i + j;

}
}

• Parallelize recursive function Fn = Fn-1+ Fn-2

• First attempt using sections

int main()
{

int n;
std::cin >> n;
std::cout << fibonacci(n) << std::endl;

}

Problem: uncontrolled spawning of expensive threads

Requirement: export OMP_NESTED=TRUE

17

The task directive

• Spawns tasks and puts them into a queue for the
threads to work on:
#pragma omp task [clause …]\

if (scalar_expression) Only parallelize if the expression is true. Can be used to stop
parallelization if the work is too little

private (list) The specified variables are thread-private

shared (list) The specified variables are shared among all threads

default (shared | none) Unspecified variables are shared or not

firstprivate (list) Initialize private variables from the master thread

mergeable If specified allows the task to be merged with others

untied

If specified allows the task to be resumed by other threads after
suspension. Helps prevent starvation but has unusual memory
semantics: after moving to a new thread all private variables are that of
the new thread

final (scalar_expression) If the expression is true this has to be the final task. All dependent tasks
are included into it

18

Data Environment
• Possible options

• shared(list)
• private(list)
• firstprivate(list)

• The values of variables at task creation
• default(shared|none)

• If not specified, the default rules apply:
• Global variables are shared
• Otherwise

• firstprivate

• shared, if defined lexically as such

19

Example: Data Environment

int a ;
void foo() {
 int b,c ;
 #pragma omp parallel shared(c) private(b)
 {

int d, b ;
#pragma omp task
{

int e ;
a = shared
b = firstprivate
c = shared
d = firstprivate
e = private

}
 }
}

20

Example: Fibonacci sequence

#include <iostream>

int fibonacci(int n)
{

int i, j;
if (n<2)

return n;
else {

#pragma omp task shared(i) firstprivate(n)
i = fibonacci(n-1);

#pragma omp task shared(j) firstprivate(n)
j = fibonacci(n-2);

return i + j;
}

}

• Parallelize recursive function Fn = Fn-1+ Fn-2

• First attempt using tasks

int main()
{

int n;
std::cin >> n;
std::cout << fibonacci(n) << std::endl;

}

Problem 1: no parallel region

21

Example: Fibonacci sequence

#include <iostream>

int fibonacci(int n)
{

int i, j;
if (n<2)

return n;
else {

#pragma omp task shared(i) firstprivate(n)
i = fibonacci(n-1);

#pragma omp task shared(j) firstprivate(n)
j = fibonacci(n-2);

return i + j;
}

}

• Parallelize recursive function Fn = Fn-1+ Fn-2

• Second attempt using tasks

int main()
{

int n;
std::cin >> n;

#pragma omp parallel shared(n)
{

std::cout << fibonacci(n) << std::endl;
}

}

Problem 2: now we have too
many calls to fibonacci(n)

22

Example: Fibonacci sequence

#include <iostream>

int fibonacci(int n)
{

int i, j;
if (n<2)

return n;
else {

#pragma omp task shared(i) firstprivate(n)
i = fibonacci(n-1);

#pragma omp task shared(j) firstprivate(n)
j = fibonacci(n-2);

return i + j;
}

}

• Parallelize recursive function Fn = Fn-1+ Fn-2

• Third attempt using tasks

int main()
{

int n;
std::cin >> n;

#pragma omp parallel shared(n)
{
 #pragma omp single

std::cout << fibonacci(n) << std::endl;
}

}

Problem 3: i and j get added before the tasks are done
Problem 4: when i and j are written, the variables no longer exist

23

Example: Fibonacci sequence

#include <iostream>

int fibonacci(int n)
{

int i, j;
if (n<2)

return n;
else {

#pragma omp task shared(i) firstprivate(n)
i = fibonacci(n-1);

#pragma omp task shared(j) firstprivate(n)
j = fibonacci(n-2);

#pragma omp taskwait
return i + j;

}
}

• Parallelize recursive function Fn = Fn-1+ Fn-2

• Fourth attempt using tasks

int main()
{

int n;
std::cin >> n;

#pragma omp parallel shared(n)
{
 #pragma omp single

std::cout << fibonacci(n) << std::endl;
}

}

Now it works 24

Using the final clause

#include <iostream>

int fibonacci(int n)
{

int i, j;
if (n<2)

return n;
else {

#pragma omp task shared(i) firstprivate(n) untied final(n<=5)
i = fibonacci(n-1);

#pragma omp task shared(j) firstprivate(n) untied final(n<=5)
j = fibonacci(n-2);

#pragma omp taskwait
return i + j;

}
}

• Parallelize recursive function Fn = Fn-1+ Fn-2

• Fifth attempt using tasks

Now it will not spawn tasks for n<=5
25

if and final clauses
• Used for optimization, e.g. avoid creation of small tasks
• If the expression of an if clause on a Task evaluates to false

• The encountering Task is suspended
• The new Task is executed immediately
• The parent Task resumes when the new Task finishes

• If the expression of a final clause on a Task evaluates to true
• All child tasks will be final and included, that means they will

be executed sequentially in the task region, immediately by
the encountering thread

Source: Christian Terboven. OpenMP Performance Tuning.
26

Refinement I

• Parallelize recursive function Fn = Fn-1+ Fn-2

• Final refinement

Avoid the extra (implicit) barrier.
Are we done?

int main()
{

int n;
std::cin >> n;

#pragma omp parallel shared(n)
{
 #pragma omp single

std::cout << fibonacci(n) << std::endl;
}

}

nowait

27

Refinement II

#include <iostream>

int fibonacci(int n)
{

int i, j;
if (n<2)

return n;
else {

#pragma omp task shared(i) firstprivate(n) untied final(n<=5)
i = fibonacci(n-1);

#pragma omp task shared(j) firstprivate(n) untied final(n<=5)
j = fibonacci(n-2);

#pragma omp taskwait
return i + j;

}
}

• Parallelize recursive function Fn = Fn-1+ Fn-2

• Final refinement

28

Task-related directives and functions

• Wait for all dependent tasks:
#pragma omp taskwait

• Yield the thread to another task
#pragma omp taskyield

• Check at runtime whether this is a final task

int omp_in_final() Returns true if the task is a final task

29

Example: Tree Traversal

void traverse(Tree *tree)
{

if (tree->left)
 traverse(tree->left) ;

if (tree->right)
 traverse(tree->right);

process(tree) ;
}

Source: Christian Terboven. OpenMP Performance Tuning.
30

Example: Tree Traversal

void traverse(Tree * tree)
{

#pragma omp parallel sections
{

#pragma omp section
if (tree->left)

 traverse(tree->left);

#pragma omp section
if (tree->right)

traverse(tree->right);
}
process(tree);

}

31

Example: Tree Traversal

void traverse(Tree* tree)
{

#pragma omp task
if (tree->left)

 traverse(tree->left);

#pragma omp task
if (tree->right)

traverse(tree->right);

process(tree);
}

Assume a Parallel region to
exist outside
the scope of this routine

32

Example: List Traversal

void traverse_list(List l)
{
 Element e ;

 #pragma omp parallel private(e)
 for (e=l->first; e; e=e->next)

#pragma omp single nowait
process(e);

}

33

Example: List Traversal

void traverse_list(List l)
{
 Element e ;

 for (e=l->first; e; e=e->next)
#pragma omp task
process(e); /* firstprivate */

 /* ... */
}

34

Example: List Traversal

void traverse_list(List l)
{
 Element e;

 for (e=l->first; e; e=e->next)
#pragma omp task
process(e);

 #pragma omp taskwait
 /* ... */
}

35

Example: List Traversal

List l;

#pragma omp parallel

 traverse_list(l);

/* !!! */

36

Example: List Traversal

List l;

#pragma omp parallel

#pragma omp single nowait

 traverse_list(l);

37

Example: Multiple Lists

List l[N];

#pragma omp parallel

#pragma omp for nowait

for (i = 0; i < N; i++)

 traverse_list(l[i]);

38

Task Scheduling

• Scheduling and synchronization points
• #pragma omp taskwait

• The encountering task suspends its execution until all the
child tasks complete their execution

• Only the tasks the parent created, not their child tasks!
• Barriers (implicit / explicit)

• All the tasks created by any thread of the current team will be
completed after the barrier

39

Execution Model

• An explicit task is executed by a thread of the team that
belongs to
• It can be executed immediately by the thread that creates it

• Parallel regions correspond to task spawning!
• An implicit task for each thread of the team
• All task-related operations are meaningful within a parallel region

• Threads can suspend the execution of a task and start or
resume another one

40

Tied and Untied Tasks

• By default, tasks are spawned as tied
• Tied tasks

• Executed only by the same task
• Have scheduling restrictions
• Can affect performance

• Untied tasks are more flexible, but special care is needed

41

Tied and Untied Tasks

• They can migrate between threads at any time, thread
specific data structures can lead to unexpected results

• Untied tasks should not be combined with:
• threadprivate variables
• thread numbers (ids)

• Careful use of critical sections and locks is also required

42

Data Scope

• Data in the stack of the parent task may be unavailable
when new tasks try to access them

• Solutions
• Use of firstprivate whenever this is possible
• Memory allocation from the heap and not the stack

• Not always easy
• Memory deallocation is required

• Synchronization
• May affect degree of parallelism

43

Examples

• Single + OpenMP tasks
• Avoiding Extra Tasks
• Tasks vs For
• Tasks & Reductions

44

Single and OpenMP tasks

#pragma omp parallel

{
 #pragma omp single nowait
 {
 /* this is the initial root task */

 #pragma omp task
 {
 /* this is first child task */
 }

 #pragma omp task
 {
 /* this is second child task */
 }
 }

}

45

Avoiding Extra Tasks

void foo ()

{
 A();
 B();
}

void foo ()
{
 #pragma omp task
 A();

 /*#pragma omp task*/
 B();
}

46

Tasks vs For

/* An OpenMP worksharing for loop */

#pragma omp for
for (i=0; i<n; i++) {
 foo(i);
}

/* The above loop converted to use tasks */

#pragma omp single nowait
{
 for (i=0; i<n; i++) {
 #pragma omp task firstprivate(i)
 foo(i);

 }
}

47

Tasks and Reductions (I)

int count_good (item_t *item) {

 int n = 0;
 while (item) {
 if (is_good(item))
 n++;
 item = item->next;

 }
 return n;
}

48

Tasks and Reductions (II)

int count_good (item_t *item) {
 int n = 0;
 #pragma omp parallel
 {
 #pragma omp single nowait
 {
 while (item) {
 #pragma omp task firstprivate(item)
 {
 if (is_good(item)) {
 #pragma omp atomic
 n++;
 }
 }
 item = item->next;
 }
 }
 }
 return n;
}

49

Tasks and Reductions (III)

int count_good (item_t *item) {
 int n = 0, pn[P]; /* P is the number of threads used. */
 #pragma omp parallel
 {
 pn[omp_get_thread_num()] = 0;
 #pragma omp single /*nowait*/
 {
 while (item) {
 #pragma omp task firstprivate(item)
 {
 if (is_good(item)) {
 pn[omp_get_thread_num()]++;
 }
 }
 item = item->next;
 }
 }
 #pragma omp atomic
 n += pn[omp_get_thread_num()];
 }
 return n;
} 50

Bug hunting: with or without nowait?

One More Example

void task(double *x, double *y) {

*y = x[0]+x[1];
}

int main(int argc, char *argv[]) {
double result[100];

for (int i=0; i<100; i++) {
double d[2];
d[0] = drand48();
d[1] = drand48();

task(d, &result[i]);
}

 /* print results */
 return 0;

}

51

OpenMP Code

void task(double *x, double *y) { *y = x[0] + x[1]; }

int main(int argc, char *argv[]) {
double result[100];

#pragma omp parallel
#pragma omp single nowait
{

for (int i=0; i<100; i++) {
double d[2];
d[0] = drand48();
d[1] = drand48();
#pragma omp task firstprivate(d, i) shared(result)
{
 task(d, &result[i]);
}

}
#pragma omp taskwait
/* print results */

}
 return 0;
}

OpenMP Specifications:
Data-Sharing Attribute Clauses, firstprivate clause

“For variables of non-array type, the initialization occurs by
copy assignment. For an array of elements of non-array type,
each element is initialized as if by assignment from an
element of the original array to the corresponding element of
the new array”

52

Translated OpenMP Code

/* (l13) #pragma omp single nowait */
if (ort_mysingle(1))
{
 for ((*i) = 0; (*i) < 5; (*i)++)
 {
 double d[2];
 d[0] = (*i);
 d[1] = 100 + (*i);

 /* (l19) #pragma omp task firstprivate(d, i) shared(result) */
 struct __taskenv__ {
 double (* result)[5];
 int i;
 double d[2];
 };
 struct __taskenv__ * _tenv;

 _tenv = (struct __taskenv__ *)ort_taskenv_alloc(sizeof(struct __taskenv__), _taskFunc0_);
 /* byref variables */
 _tenv->result = &(*result);
 /* byvalue variables */
 _tenv->i = (*i);
 memcpy((void *) _tenv->d, (void *) d, sizeof(d));
 ort_new_task(_taskFunc0_, (void *) _tenv, 0, 0);
 }
 /* (l27) #pragma omp taskwait */
 ort_taskwait(0);
}
ort_leaving_single();

53

Management of Pointers

• firstprivate does not perform copy of values
accessed through pointers

• Solutions
• Explicit copy of values
• Copy to intermediate array and passing of it with

firstprivate

54

OpenMP Code (incorrect)

void task(double *x, double *y) { *y = x[0] + x[1]; }

void old_main(double *d) {
double result[100];

#pragma omp parallel
#pragma omp single nowait
{

for (int i=0; i<100; i++) {
d[0] = drand48();
d[1] = drand48();
#pragma omp task firstprivate(d, i) shared(result)
{
 task(d, &result[i]);
}

}
#pragma omp taskwait

}
}

int main(int argc, char *argv[]) {
 double d[2];
 old_main(d);
 return 0;
} 55

Exam Question I

56

Exam Question II

57

Exam Question II

58

Resources

• OpenMP Specifications & Quick Reference Card
• www.openmp.org

• The Barcelona OpenMP Task Suite (BOTS) Project
• https://pm.bsc.es/gitlab/benchmarks/bots

59

http://www.openmp.org
https://pm.bsc.es/gitlab/benchmarks/bots

