MeTayAwTTIOTECG VIO
Evowpatwpeva 2votnipata

Xelpepvo E¢apunvo 2023-24
«OpenMP - llI»

[Tavayiwtng Xatlnoovkog

Outline

* Introduction
- nested loop parallelism
- functional parallelism
* OpenMP tasking model
- how to use
* how it works
« examples

Nested Parallelism

e OMP NESTED: if the environment variable is set to TRUE,

nested parallelism is enabled.

* In this case, each parallel directive creates a new team of

threads.

#include <stdio.h>
#include <omp.h>
void nesting()
{
#pragma omp parallel
{
int tidl = omp get thread num();
#pragma omp parallel
{
int tid2 = omp get thread num();
#pragma omp critical

nested parallelism can easily lead to
processor oversubscription:
#threads > #cores

printf("tidl = %d, tid2 = %d\n", tidl, tid2);

}
}
}

Nested Loop Parallelization - |

void work(int i, int j);

void nesting(int n)

{
#pragma omp parallel

{
#pragma omp for
for (int i=0; i<n; i++) {
#pragma omp parallel
{
#pragma omp for
for (int j=0; j<n; J++) {
work(i, J);

several implicit barriers

Nested Loop Parallelization - |l

void work(int i, int j);

void nesting(int n)

{
#pragma omp parallel for
for (int 1i=0; i<n; i++) {
#pragma omp parallel for nested parallel regions
for (int j=0; j<n; j++) {
work(i, J);

}
t we avoided some implicit barriers

Nested Loop Parallelization - |l

void work(int i, int j);

void nesting(int n)

{
#pragma omp parallel for |pop fusion: we avoided nested parallelism
for (int k=0; k<n*n; k++) {
int 1 = k / n;
int J = k % n;
work(i, J);
}
}

Basic loop transformations
- interchange: inner loops are exchanged with outer loops (see exercise 01)
- unrolling: the body of the loop is duplicated multiple times
- fusion: multiple loops are replaced with a single one (see above)
- fission: a single loop is broken into multiple loops over the same index range

6

Nested Loop Parallelization - |V

void work(int i, int j);

void nesting(int n)
{ #pragma omp parallel for collapse(2) collapse clause: let the
for (int i=0; i<n; i++) { OpenMP compiler do it for us
for (int j=0; j<n; j++) {
work(i, J);
}
}

Functional parallelism

- Parallelize the following sequential code

H KX

- what is the total execution time if each function takes
one second?

alpha();

beta();

gamma(Vv, W);

delta();

epsilon(X,Y)) total time = 5s

Functional parallelism - Solution 1

#pragma omp parallel num_threads(3) no sense to use more threads
#pragma omp sections
{

#pragma omp section

V = alpha();

#pragma omp section
W = beta();

#pragma omp section
Y = delta();
}
X = gamma(V, W);
printf(“%f\n”, epsilon(X,Y)); total time = 3s

Functional parallelism - Solution 2

#pragma omp parallel num_threads(2) no sense to use more threads
{

#pragma omp sections

{
#pragma omp section
V = alpha();
#pragma omp section
W = beta();
} implicit barrier
#pragma omp sections
{
#pragma omp section
X = gamma(V, W);
#pragma omp section
Y = delta();
}
} total time = 3s

printf(“%f\n”, epsilon(X,Y)); but with fewer threadsto

Functional Parallelism |

- Implement an equivalent version of the following

code without using parallel sections

void XAXIS();
void YAXIS();
void ZAXIS();

void a9 ()

{
#pragma omp parallel

{

#pragma omp section
XAXIS();
#pragma omp section
YAXIS();
#pragma omp section
ZAXIS();

11

Functional Parallelism ||

void XAXIS();
void YAXIS();
void ZAXIS();

void a9 ()
{
#pragma omp parallel for
for (int i = 0; 1 < 3; 1i++)
if (i == 0) XAXIS();
if (i == 1) YAXIS();
if (i == 2) YAXIS();

}

12

Functional Parallelism Il

void XAXIS();
void YAXIS();
void ZAXIS();

void a9()

{

#pragma omp parallel

{

#pragma omp single
XAXIS();

#pragma omp single
YAXIS();

#pragma omp single
ZAXIS();

nowait

nowait

nowait

13

Tasks in OpenMP (3.0)

We have seen a few ways to parallelize a block
e #pragma omp parallel
e #pragma omp sections

e #pragma omp parallel for

“parallel for” is great for for-loops, but what about
unstructured data?

- Traversal through lists and trees?

+ while loops?
Spawning threads dynamically is expensive
Tasks are more lightweight:

* new tasks get put onto a task queue

- idle threads pull tasks from the queue

14

OpenMP Tasks

- Parallelization of irregular problems

* Loop with dynamic bounds

* Recursive algorithms

* Producer-consumer execution schemes
- Work units that are executed asynchronously

- They can be executed immediately after their creation
- Tasks consist of:

- Code

- Data environment: initialized at creation time

+ Internal control variables (ICVs)

15

Example: Fibonacci sequence

e Parallelize recursive function Fn = Fn-1+ Fn-2

e The sequential code first

#include <iostream>

int fibonacci(int n)

{
int i, J;
if (n<2)
return n;
else {
i = fibonacci(n-1);
j = fibonacci(n-2);
return i + Jj;
}
}
int main()
{
int n;

std::cin >> n;
std::cout << fibonacci(n) << std::endl;

}

Example: Fibonacci sequence

e Parallelize recursive function Fn = Fn-1+ Fn-2

e F[irst attempt using sections

#include <iostream> int main()
{
int fibonacci(int n) int nj;
{ std::cin >> n;
int i, 3J; std::cout << fibonacci(n) << std::endl;
if (n<2) }
return n;
else {
#pragma omp parallel sections shared (i,3j)
{

#pragma omp section

i = fibonacci(n-1);

#pragma omp section

j = fibonacci(n-2);
}

return i + j;

}

}
Requirement: export OMP NESTED=TRUE

Problem: uncontrolled spawning of expensive threads 17

The task directive

e Spawns tasks and puts them into a queue for the
threads to work on:

#pragma omp task [clause ..]\

Only parallelize if the expression is true. Can be used to stop

if (scalar_expression) parallelization if the work is too little

private (list) The specified variables are thread-private

shared (list) The specified variables are shared among all threads
default (shared | none) Unspecified variables are shared or not

firstprivate (list) Initialize private variables from the master thread
mergeable If specified allows the task to be merged with others

If specified allows the task to be resumed by other threads after
suspension. Helps prevent starvation but has unusual memory
semantics: after moving to a new thread all private variables are that of
the new thread

untied

If the expression is true this has to be the final task. All dependent tasks

final lar_expression) X)
al (scalar_expression) are included into it

18

Data Environment

e Possible options
e shared(list)
e private(list)
e firstprivate(list)
e The values of variables at task creation
e default(shared|none)
e |f not specified, the default rules apply:
e (lobal variables are shared
e (Otherwise
e firstprivate
e shared, if defined lexically as such

19

int a ;

Example: Data Environment

void foo() {
int b,c ;
#pragma omp parallel shared(c) private(b)

{

int d, b ;
#pragma omp task

{

int e ;

a = shared

b = firstprivate
c = shared

d = firstprivate
e = private

20

Example: Fibonacci sequence

e Parallelize recursive function Fn = Fn-1+ Fn-2

e F[irst attempt using tasks

#include <iostream> int main()
{
int fibonacci(int n) int nj;
{ std::cin >> n;
int i, J; std::cout << fibonacci(n) << std::endl;
if (n<2) }
return n;
else {
#pragma omp task shared(i) firstprivate(n)
i = fibonacci(n-1);

Problem 1: no parallel region
#pragma omp task shared(j) firstprivate(n)
j = fibonacci(n-2);

return i + j;

21

Example: Fibonacci sequence

e Parallelize recursive function Fn = Fn-1+ Fn-2

e Second attempt using tasks

#include <iostream>

int fibonacci(int n)
{
int i, J;
if (n<2)
return n;
else {
#pragma omp task shared(i) firstprivate(n)
i = fibonacci(n-1);

#pragma omp task shared(j) firstprivate(n)
j = fibonacci(n-2);

return i + j;

int main()

{

}

int n;
std::cin >> n;

#pragma omp parallel shared(n)
{

}

std::cout << fibonacci(n) << std::endl;

Problem 2: now we have too
many calls to fibonacci(n)

22

Example: Fibonacci sequence

e Parallelize recursive function Fn = Fn-1+ Fn-2

e Third attempt using tasks

#include <iostream>

int fibonacci(int n)
{
int i, 3J;
if (n<2)
return n;
else {
#pragma omp task shared(i) firstprivate(n)
i = fibonacci(n-1);

#pragma omp task shared(j) firstprivate(n)
j = fibonacci(n-2);

return i + j;

int main()

{
int n;
std::cin >> n;

#pragma omp parallel shared(n)
{
#pragma omp single
std::cout << fibonacci(n) << std

}

Problem 3: i and j get added before the tasks are done
Problem 4: when i and j are written, the variables no longer exist

::endl;

23

#include <iostream>

int fibonacci(int n)

{

Example: Fibonacci sequence

e Parallelize recursive function Fn = Fn-1+ Fn-2

e Fourth attempt using tasks

int i, J;
if (n<2)

return n;
else {

#pragma omp task shared(i)

i = fibonacci(n-1);

#pragma omp task shared(j)

j = fibonacci(n-2);

#pragma omp taskwait

return i + Jj;

Now it works

firstprivate(n)

firstprivate(n)

int main()

int n;
std::cin >> n;

#pragma omp parallel shared(n)
{

#pragma omp single

std::cout << fibonacci(n) << std::endl;

}
}

24

Using the final clause

e Parallelize recursive function Fn = Fn-1+ Fn-2

e F[ifth attempt using tasks

#include <iostream>

int fibonacci(int n)

{
int i, J;
if (n<2)
return n;
else {
#pragma omp task shared(i) firstprivate(n) untied final(n<=5)
i = fibonacci(n-1);
#pragma omp task shared(j) firstprivate(n) untied final(n<=5)
j = fibonacci(n-2);
#pragma omp taskwait
return i + Jj;
}
}

Now it will not spawn tasks for n<=5

25

If and final clauses

- Used for optimization, e.g. avoid creation of small tasks

- If the expression of an if clause on a Task evaluates to false
The encountering Task is suspended
The new Task is executed immediately
The parent Task resumes when the new Task finishes

- If the expression of a final clause on a Task evaluates to true

All child tasks will be final and included, that means they will
be executed sequentially in the task region, immediately by
the encountering thread

26
Source: Christian Terboven. OpenMP Performance Tuning.

Refinement |

e Parallelize recursive function Fn = Fn-1+ Fn-2

e [inal refinement

int main()

{
int n;
std::cin >> n;

#pragma omp parallel shared(n)
{
#pragma omp single nowait
std::cout << fibonacci(n) << std::endl;
}
}

Avoid the extra (implicit) barrier.
Are we done?

27

Refinement |

e Parallelize recursive function Fn = Fn-1+ Fn-2

e [inal refinement

#include <iostream>

int fibonacci(int n)

{
int i, J;
if (n<2)
return n;
else {
#pragma omp task shared(i) firstprivate(n) untied final(n<=5)
i = fibonacci(n-1);
j = fibonacci(n-2);
#pragma omp taskwait
return i + Jj;
}
}

28

Task-related directives and functions

e \Vait for all dependent tasks:

#pragma omp taskwait

e Yield the thread to another task

#pragma omp taskyield

e (Check at runtime whether this is a final task

int omp_in_final()

Returns true if the task is a final task

29

Example: Tree Traversal

void traverse(Tree *tree)

{
if (tree->left)
traverse(tree->left) ;
if (tree->right)
traverse(tree->right);
process(tree) ;
}

Source: Christian Terboven. OpenMP Performance Tuning.

30

Example: Tree Traversal

void traverse(Tree * tree)

{

#pragma omp parallel sections

{

#pragma omp section
1if (tree->left)

traverse(tree->left);

#pragma omp section
if (tree->right)
traverse(tree->right);

}

process(tree);

31

Example: Tree Traversal

void traverse(Tree* tree)

{ Assume a Parallel region to
exist outside
#pragma omp task the scope of this routine

1if (tree->left)
traverse(tree->left);

#pragma omp task
if (tree->right)

traverse(tree->right);

process(tree);

32

Example: List Traversal

void traverse list(List 1)

{

Element e

°
4

#pragma omp parallel private(e)

for (e=1l->first; e; e=e->next)
#pragma omp single nowait
process(e);

33

Example: List Traversal

void traverse list(List 1)

{

Element e ;

for (e=1->first; e; e=e->next)
#pragma omp task
process(e); /* firstprivate */

/* .. */

34

Example: List Traversal

void traverse list(List 1)

{

Element e;

for (e=1->first; e; e=e->next)
#pragma omp task
process(e);

#pragma omp taskwait
[* .. ¥/
}

35

Example

List 1;

#pragma omp parallel

traverse list(1l);

[* L1l %/

: List Traversal

36

Example: List Traversal

List 1;

#pragma omp parallel
#pragma omp single nowait

traverse list(1l);

37

Example: Multiple Lists

List 1[N];

#pragma omp parallel
#pragma omp for nowait
for (1 = 0; 1 < N; i++)

traverse list(1l[i]);

38

Task Scheduling

e Scheduling and synchronization points
e #pragma omp taskwait

e The encountering task suspends its execution until all the
child tasks complete their execution

e Only the tasks the parent created, not their child tasks!
e Barriers (implicit / explicit)

e All the tasks created by any thread of the current team will be
completed after the barrier

39

Execution Model

e An explicit task is executed by a thread of the team that
belongs to

e [t can be executed immediately by the thread that creates it
e Parallel regions correspond to task spawning!

e An implicit task for each thread of the team

o All task-related operations are meaningful within a parallel region

e [hreads can suspend the execution of a task and start or
resume another one

40

Tied and Untied Tasks

e By default, tasks are spawned as tied
e T[ied tasks

e [Executed only by the same task
e Have scheduling restrictions

e (an affect performance

e Untied tasks are more flexible, but special care is needed

41

Tied and Untied Tasks

e [hey can migrate between threads at any time, thread
specific data structures can lead to unexpected results

e Untied tasks should not be combined with:
e threadprivate variables
e thread numbers (ids)

e (Careful use of critical sections and locks is also required

42

Data Scope

Data in the stack of the parent task may lbe unavailable
when new tasks try to access them

Solutions
e Use of firstprivate whenever this is possible
e Memory allocation from the heap and not the stack
e Not always easy
e Memory deallocation is required
e Synchronization

e May affect degree of parallelism

43

Examples

Single + OpenMP tasks
Avoiding Extra Tasks
Tasks vs For

Tasks & Reductions

44

Single and OpenMP tasks

#pragma omp parallel
{

#pragma omp single nowait

{

/* this is the initial root task */

#pragma omp task

{
/* this is first child task */

#pragma omp task
{

/* this is second child task */

45

Avoiding Extra Tasks

void foo ()

{
A();
B();
}

void foo ()

{
#pragma omp task

A();

/*#pragma omp task*/
B();
}

46

Tasks vs For

/* An OpenMP worksharing for loop */
#pragma omp for
for (i=0; i<n; i++) {

foo(i);

/* The above loop converted to use tasks */
#pragma omp single nowait
{
for (i=0; i<n; i++) {
#pragma omp task firstprivate(i)
foo(1i);

47

Tasks and Reductions ()

int count good (item t *item) {
int n = 0;
while (item) {
if (is_good(item))
n++;
item = item->next;
}

return n;

}

48

Tasks and Reductions (ll)

int count good (item t *item) ({

int n = 0;
#pragma omp parallel

{
#pragma omp single nowait
{
while (item) {
#pragma omp task firstprivate(item)
{
if (is_good(item)) {
#pragma omp atomic
n++;
}
}
item = item->next;
}
}
}
return n;

49

Tasks and Reductions (lll)

int count good (item t *item) {
int n = 0, pn[P]; /* P is the number of threads used. */
#pragma omp parallel

{
pnfomp_get_thread num()] = 0; Bug hunting: with or without nowait?
#pragma omp single /*nowait*/
{
while (item) {
#pragma omp task firstprivate(item)
{
if (is_good(item)) {
pn[omp _get_ thread num()]++;

}

item = item->next;

}
#pragma omp atomic
n += pn[omp_get_ thread num()];

}

return n;

One More Example

void task(double *x, double *y) {
*y = x[0]+x[1];

int main(int argc, char *argv[]) {
double result[100];

for (int 1i=0; 1<100; 1i++) {
double d[2];
d[0] = drand48();
d[1l] = drand48();
task(d, &result[i]);

/* print results */

return 0;

OpenMP Code

void task(double *x, double *y) { *y = x[0] + x[1]; }

int main(int argc, char *argv[]) {
double result[100];

OpenMP Specifications:
j:p ragma omp p ?rallel) Data-Sharing Attribute Clauses, firstprivate clause
pragma omp single nowait
{ “For variables of non-array type, the initialization occurs by
. . . . copy assignment. For an array of elements of non-array type,
for (int 1=0; 1<100; i++) { each element is initialized as if by assignment from an
double d[2 1; element of the original array to the corresponding element of
the new array”
d[0] = drand48(); ¢

d[1l] = drand48();
#pragma omp task firstprivate(d, i) shared(result)
{
task(d, &result[i]);
}
}

#pragma omp taskwait
/* print results */

}

return 0;

52

Translated OpenMP Code

/* (1l13) #pragma omp single nowait */
if (ort mysingle(1l))

{
for ((*i) = 0; (*1i) < 5; (*i)++)
{
double d[2];
d[o] = (*1i);
d[1l] = 100 + (*i);

/* (119) #pragma omp task firstprivate(d, i) shared(result) */
struct _ taskenv {

double (* result)[5];

int i;

double d[2];
}i

struct = taskenv_ * tenv;

_tenv = (struct _ taskenv _ *)ort taskenv_alloc(sizeof(struct _ taskenv_), taskFuncO);
/* byref variables */
_tenv->result = &(*result);
/* byvalue variables */
_tenv->i = (*1i);
memcpy ((void *) _tenv->d, (void *) d, sizeof(d));
ort new task(_taskFunc0O , (void *) _tenv, 0, 0);
}
/* (127) #pragma omp taskwait */
ort taskwait(0);
}

ort_ leaving single(); 53

Management of Pointers

e firstprivate does not perform copy of values
accessed through pointers
e Solutions

e Explicit copy of values

e (Copy to intermediate array and passing of it with
firstprivate

54

OpenMP Code (incorrect)

void task(double *x, double *y) { *y = x[0] + x[1]; }
void old main(double *d) {
double result[100];

#pragma omp parallel
#pragma omp single nowait
{
for (int i=0; i<100; i++) {
d[0] = drand48();
d[1l] drand48();
#pragma omp task firstprivate(d, i) shared(result)

{

task(d, &result[i]);
}
}

#pragma omp taskwait

}

int main(int argc, char *argv[]) {
double d[2];
old main(d);
return 0;

Exam Question |

Identify and explain any issues in the following OpenMP code. Propose a solution.

int a[20], s;
#pragma omp parallel num threads(10)

{

for (int i = 0; i < 20; i++)

{

#pragma omp task

0 N O Otk W N

a[i] = func();

©
-

=
()

}

s = al0];
for (int j = 1; j < 20; j++) s += a[j];

= e
W N =

[y
'S
—

Exam Question Il

The following code snippet includes two nested loops that cannot be collapsed
and have been parallelized with OpenMP.

// A: matrix of size NxN

// nested parallelism is enabled
#pragma omp parallel for
for (int i = 0; i < N; i++)
{
// code here

© 0 N O U s W N e

// TODO: use OpenMP tasks for this loop
int chunksize = 10;
#pragma omp parallel for schedule (dynamic, chunksize)
for (int j = 0; Jj < N; Jj++)
{

o e e
w N = O

Il

fary
N

A[i][]J] func (i, Jj);

}

=
o ot

// code here

=
o =
e

a) Provide an equivalent parallel implementation of the above code using OpenMP
tasks for the innermost loop.

b) Discuss which parallelization approach (original or task-based one) is more
efficient and explain why. 57

© 00 N O Ut = W N =

N N o e e e e e e
= O © W ~J O Ut = W N = O

Exam Question Il

#pragma omp parallel for
for (int i = 0; i <N; i++)

{

// #pragma omp parallel for schedule(dynamic,10)
int ntasks = N / 10;

for (int t = 0; t < ntasks; t++)

{

#pragma omp task shared(a, N) firstprivate (i,

{
int jJO =t %x10;
int jl (t + 1) = 10;
if (j1 N) j1 = N;

Vol

for (int j = jO0; j < jl; j++4)
ali][i] = func(i, j);

}

#pragma omp taskwait

58

Resources

- OpenMP Specifications & Quick Reference Card

* WWW.Openmp.org

- The Barcelona OpenMP Task Suite (BOTS) Project
- https://pm.bsc.es/qgitlab/benchmarks/bots

59

http://www.openmp.org
https://pm.bsc.es/gitlab/benchmarks/bots

