
1

Μεταγλωττιστές για
Ενσωματωμένα Συστήματα

Χειμερινό Εξάμηνο 2023-24
«OpenMP - I»

Παναγιώτης Χατζηδούκας

2

Outline
• Introduction to OpenMP
• Parallel regions
• Worksharing constructs

• loops, sections. single
• Combined parallel worksharing
• Data environment
• Synchronization

• critical, atomic, barrier, master
• Library routines
• Environment variables
• Examples

3

OpenMP
• OpenMP: An Application Program Interface (API)

for writing multithreaded applications
- simple, portable, widely supported standard
- facilitates the development of multithreaded code in

Fortran, C and C++
- suitable for shared memory platforms

• Three primary components
- compiler directives - instruct the compiler to generate

multithreaded code
- library calls
- environment variables

4

Evolution of OpenMP

http://computing.llnl.gov/tutorials/openMP/

• OpenMP specifications at www.openmp.org
- OpenMP 3.1 (2011): C/C++, Fortran and Examples
- OpenMP 4.0 (2013): Examples in a separate PDF file

http://www.openmp.org

5

Syntax Format
• Compiler directives

• C/C++
• #pragma omp construct [clause [clause] …]

• Fortran
• C$OMP construct [clause [clause] …]
• !$OMP construct [clause [clause] …]
• *$OMP construct [clause [clause] …]

• Since we use directives, no changes need to be
made to a program for a compiler that does not
support OpenMP

6

OpenMP Directive
• Program executes serially until it encounters a

parallel directive
#pragma omp parallel [clause list]

/* structured block of code */

• Clause list is used to specify conditions
- Conditional parallelism: if (cond)
- Degree of concurrency: num_threads(int)
- Data handling: private(vlist),

firstprivate(vlist), shared(vlist)

7

Programming Model
• Fork-join type of parallelism:

– The master thread spawns teams of threads according to
the user / application requirements

– Parallelism is added incrementally
• the sequential code is transformed to parallel

http://computing.llnl.gov/tutorials/openMP/

8

Typical Usage

void main()
{
 double Res[1000];

 for (int i=0;i<1000;i++) {
 do_huge_comp(Res[i]);
 }
}

Sequential code

void main()
{
 double Res[1000];
 #pragma omp parallel for
 for (int i=0;i<1000;i++) {
 do_huge_comp(Res[i]);
 }
}

Parallel code

• OpenMP is generally used for loop parallelization
– Find the most time-consuming loops
– Distribute the loop iterations to the threads

Assign this loop to different threads

But OpenMP is not just that!

9

Using OpenMP
• Some compilers can automatically place directives

with option
- -qsmp=auto (IBM xlc)
- some loops may speed up, some may slow down

• Compiler option required when you use directives
- -fopenmp (GNU compilers)
- -openmp (Intel compilers)
- -qsmp=omp (IBM)

• Scoping variables can be sometimes the hard part!
- shared variables, thread private variables

10

Hello World!
#include <omp.h>
#include <stdio.h>

int main() {
 #pragma omp parallel
 {

int me = omp_get_thread_num();
int nthr = omp_get_num_threads();

 printf("Hello world from thread %d of %d\n", me, nthr);
 }
return 0;

}

• Compilation with the GNU GCC and Intel compilers
$ gcc -fopenmp -o hello hello.c
$ icc -openmp -o hello hello.c

OpenMP include file

Parallel region with default
number of threads

End of parallel region

Library calls

MacOS: brew install gcc

11

• Execution
$ export OMP_NUM_THREADS=4
$./hello
Hello world from thread 0 of 4
Hello world from thread 2 of 4
Hello world from thread 1 of 4

Hello world from thread 3 of 4
$ export OMP_NUM_THREADS=1
$./hello
Hello world from thread 0 of 1

Usage

Environment variable

12

Thread Interaction
• OpenMP is a shared-memory programming model

– Threads communicate through shared variables
• Data sharing can lead to race conditions

– the output of some code can change due to thread
scheduling, e.g. their order of execution

• Synchronization at the right places can eliminate
race conditions
• However, synchronization is expensive
• the way data is stored might need to change to minimize

the need for synchronization

13

OpenMP Directives
• 5 categories

• Parallel Regions
• Worksharing
• Data Environment
• Synchronization
• Runtime functions & environment variables

• Basically the same between C/C++ and Fortran

14

Parallel Regions
• Create threads with omp parallel
• The following code will create a parallel region of 4 threads:

double A[1000];
omp_set_num_threads(4);
#pragma omp parallel
{
 int ID = omp_get_thread_num();
 pooh(ID,A);
}

• Threads share A (default behavior)
• Master thread creates the threads
• Threads all start at same time then synchronize at a barrier at

the end to continue with code
• Each threads calls pooh for its own ID (0 to 3)

15

Parallel Regions
•Each threads runs the same code
•All threads share A
•Execution continues when all
threads have finished their work
(barrier)

double A[1000];
omp_set_num_threads(4);
#pragma omp parallel
{
 int ID = omp_get_thread_num();
 pooh(ID,A);
}
printf("all done\n");

16

Parallel Regions - Syntax

#pragma omp parallel [clause ...] newline

 structured_block

if (scalar_expression)
num_threads (integer-expression)
private (list)
shared (list)
firstprivate (list)
default (shared | none)
reduction (operator: list)
copyin (list)

Clauses

17

Structured Blocks
• Most OpenMP directives are applied to structured

blocks of code
– Structured block: piece of code with a single entry point

at the beginning and a single exit point at the end.

#pragma omp parallel
{
 int id =omp_get_thread_num();
 res[id] = work(id);

}
printf("after parallel\n");

Structured block

#pragma omp parallel
{
 int id = omp_get_thread_num();
 res[id] = work(id);
 if (res[id] == 0) goto out;
}
out: printf("after parallel\n");

Unstructured block

18

Clauses for omp parallel

if (scalar_expression) Only parallelize if the expression is true. Can be
used to stop parallelization if the work is too little

num_threads (integer-expression) Set the number of threads

private (list) The specified variables are thread-private

shared (list) The specified variables are shared among all
threads

firstprivate (list) The specified variables are thread-private and
initialized from the master thread

reduction (operator: list) Perform a reduction on the thread-local variables
and assign it to the master thread

default (shared | none) Unspecified variables are shared or not

#pragma omp parallel private(i) shared(n) if(n > 10)
{

//…
}

19

Actual Number of Threads
• The number of threads in a parallel region is

determined by the following factors, in order of
precedence:
1. Evaluation of the if clause
2. Setting of the num_threads clause
3. Use of the omp_set_num_threads() library function
4. Setting of the OMP_NUM_THREADS environment variable
5. Implementation default - usually the number of CPUs on

a node, though it could be dynamic.

• Reminder: threads are numbered from 0 (master
thread) to N-1

20

Static and Dynamic modes
• Dynamic mode (default):

– The number of threads can differ between parallel
regions of the same program

– The specified number of threads actually defines the
maximum number - the actual number of threads can be
smaller

• Static mode:
– The number of threads is fixed and exactly equal to the

number specified by the programmer
• OpenMP supports nested parallel regions but…

– The compiler is allowed to serialize all the inner levels
– This means that it uses a single OpenMP thread for those

parallel regions

21

Worksharing Constructs
• the for construct splits up loop iterations

#pragma omp parallel
{
#pragma omp for
for (i=0; i<N; ++i){
 do_work(i);
}
}

• By default, there is a barrier at the end of the omp
for.

• Use the nowait clause to turn off the barrier.

parallel region

worksharing

end of omp forcan be
omitted

22

Rule

• In order to be made parallel, a loop must have
canonical “shape”

for (index=start; index end;)

<
<=
>=
>

index++;
++index;
index--;
--index;
index += inc;
index -= inc;
index = index + inc;
index = inc + index;
index = index – inc;

23

Sections construct
• The sections construct gives a different structured block

to each thread
#pragma omp parallel
#pragma omp sections
{
#pragma omp section

x_calculation();
#pragma omp section

y_calculation();
#pragma omp section

z_calculation();
}

• By default there is a barrier at the end. The nowait
clause turns it off

parallel region
worksharing

end of omp sections

each section gets assigned
to a different thread

24

Single construct
• The structured block is executed only by one of the threads
• An implicit barrier exists at the end of single
• Can be considered as a synchronization construct

#pragma omp parallel
{
 do_many_things();
 #pragma omp single
 {
 exchange_boundaries();
 }
 do_many_other_things();
}

implicit barrier here

and here, end of parallel region

25

Combined Directives
• Parallel regions can be combined with the for and
sections worksharing constructs

• omp parallel + omp for → omp parallel for

#pragma omp parallel for
for (i=0; i<N; i++){
 do_work(i);
}

26

Combined Directives

• omp parallel + omp sections →
omp parallel sections

#pragma omp parallel sections
{
#pragma omp section

x_calculation();
#pragma omp section

y_calculation();
#pragma omp section

z_calculation();
}

27

Directive Scoping
• OpenMP directives can be extended in multiple files
• Orphan directives: appear outside a parallel region

//foo.c

#pragma omp parallel
{
 whoami();
}

//bar.c
void whoami()
{
 int iam = omp_get_thread_num();
 #pragma omp critical
 {
 printf("Hello from %d"\n, iam);
 }
 return;
}

• foo.c: Static (lexical) extent of parallel region
• bar.c: Dynamic extent of parallel region

synchronization

28

Data Scoping
• OpenMP is a shared memory programming model

• most variables are shared by default
• Global variables are shared
• But not everything is shared

• loop index variables
• stack variables in called functions from parallel region

29

Storage Attributes
• The programmer can change the storage attributes of

variables with the following clauses
– shared
– private
– firstprivate
– threadprivate

• The value of a private variable used in a parallel loop can be
exported as global value with the clause:
– lastprivate

• The default behavior can be changed using:
– default(private | shared | none)

• The data clauses are applied to the parallel region and
worksharing constructs - however, shared is only valid for
parallel regions

• Data scoping clauses are valid only in the lexical extent of the
OpenMP directive

30

Data Environment
• Example of private and firstprivate

int A, B, C;
A = B = C = 1;
#pragma omp parallel private(B) firstprivate(C)
{
 // ...
}

• Within the parallel region :
– “A” is shared between threads and equal to 1
– Both “B” and “C” are private for each thread

• B has undefined initial value
• C has initial value equal to 1

• After the parallel region:
– Both B and C have the same value as before the parallel region

31

private
• private(var) creates a private copy of var in each

thread
– The value of the copy is not initialized
– The private copy is not related to the original variable

with respect to the memory location

int is = 0;
#pragma omp parallel for private(is)
for (int j=1; j<=1000; j++)

is = is + j;

printf("%d\n", is);

• IS has not been initialized inside the loop

32

firstprivate
• firstprivate: special case of private

– The private copy of each thread is initialized with the
value of the original variable, which belongs to the
master thread

int is = 0;
#pragma omp parallel for firstprivate(is)
for (int j=1; j<=1000; j++)

is = is + j;

printf("%d\n", is);

• Each thread has a private copy of IS with initial value 0

33

lastprivate
• Copies the value of the private variable, as

assigned by the last loop iteration, to the original
(global) variable

int is = 0;
#pragma omp parallel for firstprivate(is) \

lastprivate(is)
for (int j=1; j<=1000; j++)

is = is + j;

printf("%d\n", is);

• Each thread has a private copy of IS with initial value 0
• IS has the value it was assigned by the last loop iteration

(i.e. for j=1000)

continue to
 the next line

34

Synchronization
• OpenMP supports several synchronization

constructs:
– critical section
– atomic
– barrier
– master (in fact, not a synchronization construction)
– ordered
– flush

not studied
not studied

35

Synchronization – critical
• No two threads will simultaneously be in the critical

section
• Critical sections can be named

• omp critical (name)

#pragma omp parallel for private(b) shared(res)
for (i=0; i<niters; i++) {
 b = doit(i);
 #pragma omp critical
 {
 update(b, &res);
 }
}

lock mutex

unlock mutex

res: initialized before the parallel region

36

Synchronization – atomic
• Special case of critical section that can be used

only for simple instructions.
• Can be applied only when a single memory location

(variable) is updated

#pragma omp parallel private(b)
{

int i = omp_get_thread_num();

b = doit(i);
#pragma omp atomic

res = res + b;
}

use of some
hardware-supported

atomic operation

res: initialized before the parallel region

37

Synchronization – barrier
• Barrier: all threads wait until each thread has reached the

barrier

#pragma omp parallel shared (A, B) private(id)

{

 id=omp_get_thread_num();

 A[id] = big_calc1(id);

 #pragma omp barrier

 #pragma omp for

 for(int i=0; i<N; i++){

 B[i]=big_calc2(i,A);

 }

}

initialization of A

these computations
depend on A

necessary synchronization

38

Synchronization – master
• The structured block is executed only by the master thread

- the other threads of the team ignore it
• There is no barrier at the end of master

#pragma omp parallel
{
 do_many_things();
 #pragma omp master
 {
 exchange_boundaries();
 }
 #pragma barrier
 do_many_other_things();
}

nothing more than
if (omp_get_thread_num()==0)

39

Synchronization – ordered
• Enforces the sequential order of execution of some

code

#pragma omp parallel private (res)
{
 #pragma omp for ordered
 for (i=0; i<N; i++){
 res = do_work(i);

 #pragma ordered
 printf(“res = %d\n”, res);
 }
}

40

Synchronization - Implicit Barriers
• A barrier is implicitly called at the end of the

following constructs:
– parallel

– for (except when nowait is used)
– sections (except when nowait is used)
– single (except when nowait is used)

– for, sections and single accept the nowait clause

int nthreads;

#pragma omp parallel
#pragma omp single nowait
nthreads = omp_get_num_threads();

41

Reductions
• The reduction clause modifies the way variables are

“shared”:
– reduction (op : list)

• Variables included in list must be shared in the
parallel region where the reduction clause exists

• Allowed reduction operations: +,-,*,&,^,|,&&,||,min, max
• Within a parallel region or a worksharing construct:

– A local copy for each variable in the list is created and
initialized accordingly to the reduction operation

– 0 for “+”
– The values of the local copies are combined (reduced) to a

single value that is stored to the original variable after the
end of the construct

42

Reduction - Example
#include <omp.h>
#define NUM_THREADS 2

double func(int i);

void main ()
{
 int i;
 double ZZ, res=0.0;
 omp_set_num_threads(NUM_THREADS);
#pragma omp parallel for reduction(+:res) private(ZZ)
 for (i=0; i< 1000; i++){
 ZZ = func(i);
 res = res + ZZ;
 }
}

• Usage: #pragma omp parallel for <schedule clause>
– schedule (static | dynamic | guided [, chunk])
– schedule (runtime)

• static [,chunk]
– Loop iterations are divided into segments of size chunk and

distributed cyclically to the threads of the parallel region
– If chunk is not specified, it is equal to N/P and each thread executes a

single chunk of iterations
• dynamic [,chunk]

– Loop iterations are divided into segments of size chunk
– An idle thread gets dynamically the next available chunk of iterations

• guided [,chunk]
– Similar to dynamic but the chunk size decreases exponentially.
– chunk specifies the minimum segment size

• runtime
– decide at runtime depending on the OMP_SCHEDULE environment

variable
• auto

– decided by the compiler and/or the underlying OpenMP runtime library
43

Loop Scheduling

#pragma omp parallel for num_threads(4) schedule(*)
for (int i = 0; i < 500; i++) do_work(i);

Example

Multiple chunks*=

*=

*=

44More details in the next lecture and the exercises

45

Library Calls
• OpenMP locks

– omp_init_lock(), omp_set_lock(), omp_unset_lock(),
omp_test_lock()

• Functions that control the runtime environment:
– Number of threads

• omp_set_num_threads(), omp_get_num_threads(),
omp_get_thread_num(), omp_get_max_threads()

– Dynamic mode and nested parallelism
• omp_set_dynamic(), omp_set_nested(),
• omp_get_dynamic(), omp_get_nested()

– Check if code is in a parallel region
• omp_in_parallel()

– Number of processors / cores
• omp_get_num_procs()

• Wall-clock time measurement (in seconds)
– omp_get_wtime() ex01: get_wtime()

46

OpenMP Locks

omp_lock_t lck;
omp_init_lock(&lck);
#pragma omp parallel
{

int id = omp_get_thread_num();
int tmp = do_lots_of_work(id);

omp_set_lock(&lck);
printf(＂%d %d\n＂, id, tmp);
omp_unset_lock(&lck);

}

omp_destroy_lock(&lck);

lock variable
initialization

destruction

47

Libraries Calls
• Dynamic mode is disabled and then the number of threads is

specified. This ensures that the parallel region will have 4
threads.

 #include <omp.h>
 void main()
 {
 omp_set_dynamic(0);
 omp_set_num_threads(4);
 #pragma omp parallel
 {
 int id=omp_get_thread_num();
 do_lots_of_stuff(id);
 }
 }

48

• Default number of threads
– OMP_NUM_THREADS int_literal

• Control of dynamic mode
– OMP_DYNAMIC TRUE || FALSE

• Control of nested parallelism
– OMP_NESTED TRUE || FALSE

• Control of loop scheduling if the programmer has
used omp for schedule(RUNTIME)
– OMP_SCHEDULE “schedule[, chunk_size]”

• Control of threads binding
– OMP_PROC_BIND TRUE || FALSE

Environment Variables

"Use Cases"

49

50

Case 1: Loop & Parallel Region
• Parallelize the following sequential code with

• parallel regions
• worksharing

#define N 1024
for(int i=0; i<N; i++) { a[i] = a[i] + b[i];}

• OpenMP parallel region

#pragma omp parallel
{
 int id = omp_get_thread_num();
 int Nthrds = omp_get_num_threads();
 int istart = id * N / Nthrds;
 int iend = (id+1) * N / Nthrds;
 if (id == omp_get_num_threads()-1) iend = N;
 for(int i=istart; i<iend; i++) {a[i] = a[i] + b[i];}
}

adjustment for
the last thread

51

Loop & Worksharing
• Sequential code
#define N 1024
for(int i=0; i<N; i++) { a[i] = a[i] + b[i];}

• OpenMP parallel region with worksharing
#pragma omp parallel
{
 #pragma omp for schedule(static)
 for(int i=0; i<N; i++) { a[i] = a[i] + b[i];}
}

#pragma omp parallel for
for(int i=0; i<N; i++) { a[i] = a[i] + b[i];}

or simply:

default scheduling

52

Case 2: Functional parallelism

V = alpha();
W = beta();
X = gamma(V, W);
Y = delta();
printf(“%f\n”, epsilon(X,Y));

• Parallelize the following sequential code
• what is the total execution time if each function takes

one second?

total time = 5s

53

Functional parallelism - Solution 1
#pragma omp parallel num_threads(3)
#pragma omg sections
{

#pragma omp section
V = alpha();

#pragma omp section
W = beta();

#pragma omp section
Y = delta();

}
X = gamma(V, W);
printf(“%f\n”, epsilon(X,Y));

no sense to use more threads

total time = 3s

54

Functional parallelism - Solution 2
#pragma omp parallel num_threads(2)
{
 #pragma omp sections
 {
 #pragma omp section
 V = alpha();

 #pragma omp section
 W = beta();
 }
 #pragma omp sections
 {
 #pragma omp section
 X = gamma(V, W);

 #pragma omp section
 Y = delta();
 }
}
printf(“%f\n”, epsilon(X,Y));

no sense to use more threads

implicit barrier

total time = 3s
but with fewer threads

55

Case 3 - Reductions

long num_steps = 100000;
double step;

void main ()
{
double x, pi, sum = 0.0;
step = 1.0/(double) num_steps;

for (int i=0; i< num_steps; i++){
x = (i+0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}
pi = step * sum;

printf("Pi is %lf\n", pi);
}

• Parallelize the following sequential code

56

Using the reduction clause
long num_steps = 100000;
double step;

void main ()
{
double x, pi, sum = 0.0;
step = 1.0/(double) num_steps;

#pragma omp parallel for reduction(+:sum) private(x)
for (long i=0; i<num_steps; i++){
x = (i+0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}
pi = step * sum;

printf("Pi is %lf\n", pi);
}

57

References
• OpenMP Specifications & Quick Reference Card

• www.openmp.org
• OpenMP tutorial at LLNL, Blaise Barney

• https://computing.llnl.gov/tutorials/openMP/
• An Overview of OpenMP, Ruud van der Pas – Sun

Microsystems
• http://www.openmp.org/wp-content/uploads/ntu-

vanderpas.pdf

http://www.openmp.org
https://computing.llnl.gov/tutorials/openMP/
http://www.openmp.org/wp-content/uploads/ntu-vanderpas.pdf
http://www.openmp.org/wp-content/uploads/ntu-vanderpas.pdf

