MeTayAwTTIOTEG yIQ
Evowpatwpeva 2votnuata

Xelpepvo E€¢apunvo 2023-24
«OpenMP - I»

[Tavayiwtng Xatlnoovkog

Outline

Introduction to OpenMP
Parallel regions
Worksharing constructs

* loops, sections. single
Combined parallel worksharing
Data environment
Synchronization

- critical, atomic, barrier, master
Library routines

Environment variables
Examples

OpenMP

« OpenMP: An Application Program Interface (API)
for writing multithreaded applications
- simple, portable, widely supported standard

- facilitates the development of multithreaded code in
Fortran, C and C++

- suitable for shared memory platforms

* Three primary components

- compiler directives - instruct the compiler to generate
multithreaded code

- library calls
- environment variables

Evolution of OpenMP

Date Version
Oct 1997 Fortran 1.0
Oct 1998 C/C++ 1.0
Nov 1999 Fortran 1.1
Nov 2000 Fortran 2.0
Mar 2002 C/C++ 2.0
May 2005 OpenMP 2.5
May 2008 OpenMP 3.0
Jul 2011 OpenMP 3.1
Jul 2013 OpenMP 4.0
Nov 2015 OpenMP 4.5

http://computing.linl.gov/tutorials/openMP/

- OpenMP specifications at www.openmp.org
- OpenMP 3.1 (2011): C/C++, Fortran and Examples
- OpenMP 4.0 (2013): Examples in a separate PDF file

http://www.openmp.org

Syntax Format

- Compiler directives
« C/C++

e #pragma omp construct [clause [clause] ..]

- Fortran
e CSOMP construct [clause [clause] ..]
e ISOMP construct [clause [clause] ..]
e *SOMP construct [clause [clause] ..]

« Since we use directives, no changes need to be
made to a program for a compiler that does not
support OpenMP

OpenMP Directive

* Program executes serially until it encounters a
parallel directive

#pragma omp parallel [clause list]
/* structured block of code */

- Clause list is used to specify conditions
- Conditional parallelism: if (cond)
- Degree of concurrency: num_threads (int)

- Data handling: private(vlist),
firstprivate(vlist), shared(vlist)

Programming Model

* Fork-join type of parallelism:

— The master thread spawns teams of threads according to
the user / application requirements

— Parallelism is added incrementally
- the sequential code is transformed to parallel

\‘ . - “ 77777 & . h '."E. - threads N
. threads - E
. threads .
parallel region parallel region parallel region

http://computing.linl.gov/tutorials/openMP/

Typical Usage

« OpenMP is generally used for loop parallelization
— Find the most time-consuming loops
— Distribute the loop iterations to the threads

Assign this loop to different threads

void main() void main()
{ {
double Res[1000]; double Res[1000];
#pragma omp parallel for
for (int i=0;i<1000;i++) { for (int i=0;i<1000;i++) {
do huge comp(Res[i]); do huge comp(Res[i]);
} }
} }
Sequential code Parallel code

But OpenMP is not just that! 8

Using OpenMP

- Some compilers can automatically place directives
with option
- —gsmp=auto (IBM xlc)
- some loops may speed up, some may slow down

- Compiler option required when you use directives

- —fopenmp (GNU compilers)
- —openmp (Intel compilers)
— —gsmp=omp (IBM)

+ Scoping variables can be sometimes the hard part!
- shared variables, thread private variables

Hello World!

#include <omp.h>
#include <stdio.h>

OpenMP include file

int main() {
#pragma omp parallel Parallel region with default
{ number of threads
int me = omp get thread num(); |
int nthr = omp get num threads(); Library calls

printf("Hello world from thread %d of %d\n", me, nthr);
}
return 0; End of parallel region

}

- Compilation with the GNU GCC and Intel compilers
S gcc —-fopenmp -o hello hello.c
S icc -openmp -o hello hello.c

MacQOS: brew install gcc 10

Usage

 Execution

$ export OMP NUM THREADS=4

$./hello

Hello world from
Hello world from
Hello world from
Hello world from
$ export OMP_ NUM
$./hello

Hello world from

thread 0 of
thread 2 of
thread 1 of
thread 3 of
THREADS=1

thread 0 of

R L

Environment variable

11

Thread Interaction

* OpenMP is a shared-memory programming model
— Threads communicate through shared variables
- Data sharing can lead to race conditions

— the output of some code can change due to thread
scheduling, e.g. their order of execution

- Synchronization at the right places can eliminate
race conditions
However, synchronization is expensive

- the way data is stored might need to change to minimize
the need for synchronization

12

OpenMP Directives

- 5 categories
Parallel Regions
- Worksharing
Data Environment
+ Synchronization
Runtime functions & environment variables

- Basically the same between C/C++ and Fortran

13

Parallel Regions

« Create threads with omp parallel
« The following code will create a parallel region of 4 threads:

double A[1000];
omp set num threads(4);
#pragma omp parallel

{
int ID = omp get thread num();

pooh(ID,A);

- Threads share A (default behavior)
 Master thread creates the threads

- Threads all start at same time then synchronize at a barrier at
the end to continue with code

- Each threads calls pooh for its own ID (0 to 3)

14

Parallel Regions

‘Each threads runs the same code double A[1000];

omp set num threads(4);
Al threads share A toraeme omp parailel |
-Execution continues when all {
threads have finished their work int ID = omp get thread num();
(barrier) pooh (ID,A);
}

printf("all done\n");

double A[1000];

omp_set num_threads(4)

pooh(0,A) pooh(1,A) pooh(2,A) pooh(3,A)

=

-

printf(“all done\n”); 15

Parallel Regions - Syntax

#pragma omp parallel [clause ...] newline

structured block

Clauses

1f (scalar expression)

num_ threads (integer-expression)
private (list)

shared (list)

firstprivate (list)

default (shared | none)
reduction (operator: list)
copyin (list)

16

Structured Blocks

- Most OpenMP directives are applied to structured

blocks of code

— Structured block: piece of code with a single entry point
at the beginning and a single exit point at the end.

#pragma omp parallel
{

int id =omp get thread num();
res[id] = work(id);

}
printf("after parallel\n");

Structured block

#pragma omp parallel

{
int id = omp get thread num();
res[id] = work(id);
if (res[id] == 0) goto out;

}

out: printf("after parallel\n");

Unstructured block

17

Clauses for omp parallel

if (scalar expression)

Only parallelize if the expression is true. Can be
used to stop parallelization if the work is too little

num threads (integer-expression)

Set the number of threads

private (list)

The specified variables are thread-private

shared (1list)

The specified variables are shared among all
threads

firstprivate (list)

The specified variables are thread-private and
initialized from the master thread

reduction (operator: list)

Perform a reduction on the thread-local variables
and assign it to the master thread

default (shared | none)

Unspecified variables are shared or not

#pragma omp parallel private(i) shared(n) if(n > 10)

{
//..

18

Actual Number of Threads

- The number of threads in a parallel region is
determined by the following factors, in order of

precedence:

1. Evaluation of the if clause

2. Setting of the num_threads clause

3. Use of the omp _set num_threads () library function
4. Setting of the OMP_NUM_THREADS environment variable

5. Implementation default - usually the number of CPUs on
a node, though it could be dynamic.

- Reminder: threads are numbered from 0 (master
thread) to N-1

19

Static and Dynamic modes

- Dynamic mode (default):

— The number of threads can differ between parallel
regions of the same program

— The specified number of threads actually defines the
maximum number - the actual number of threads can be
smaller

- Static mode:

— The number of threads is fixed and exactly equal to the
number specified by the programmer

- OpenMP supports nested parallel regions but...
— The compiler is allowed to serialize all the inner levels

— This means that it uses a single OpenMP thread for those
parallel regions

20

Worksharing Constructs

- the for construct splits up loop iterations

#pragma omp parallel parallel region
{

#pragma omp for
for (i=0; i<N; ++i){
do work(i); end of omp for

worksharing

can be

omitted)

}

By default, there is a barrier at the end of the omp
for.

 Use the nowait clause to turn off the barrier.

21

Rule

* |In order to be made parallel, a loop must have

canonical “shape”

for (index=start; index

V VAN A

end;

index++;

++index;

index--;

--index;

index += inc;

index -= inc;

index = index + inc;
index = inc + index;
index = index — inc;

22

Sections construct

- The sections construct gives a different structured block
to each thread

#pragma omp parallel parallel region
#pragma omp sections worksharing
{

#pragma omp section

x_calculation(); each section gets assigned

#pragma omp section to a different thread
y calculation();

#pragma omp section
z calculation();

} end of omp sections

- By default there is a barrier at the end. The nowait
clause turns it off

23

Single construct

- The structured block is executed only by one of the threads
- An implicit barrier exists at the end of single

- Can be considered as a synchronization construct

#pragma omp parallel

{
do many things();
#pragma omp single
{
exchange boundaries();
} implicit barrier here
do many other things();
}

and here, end of parallel region

24

Combined Directives

- Parallel regions can be combined with the for and
sections worksharing constructs

* omp parallel + omp for — omp parallel for
#pragma omp parallel for

for (1=0; 1i<N; 1i++){

do work(1i);

25

Combined Directives

e omp parallel + omp sections —
omp parallel sections

tpragma omp parallel sections

{

#pragma omp section
X _calculation();
#pragma omp section
y calculation();
#pragma omp section
z calculation();

26

Directive Scoping

- OpenMP directives can be extended in multiple files
- Orphan directives: appear outside a parallel region

//foo.c //bar.c
void whoami ()
#pragma omp parallel {
{ int iam = omp get thread num();
} whoami () ; tPragma omp critical o, hronization
printf("Hello from %d"\n, iam);
}
return;

- foo.c: Static (lexical) extent of parallel region
 bar.c: Dynamic extent of parallel region

27

Data Scoping

* OpenMP is a shared memory programming model
- most variables are shared by default

« (Global variables are shared

- But not everything is shared
loop index variables
- stack variables in called functions from parallel region

28

Storage Attributes

The programmer can change the storage attributes of
variables with the following clauses

— shared

— private

— firstprivate

— threadprivate

The value of a private variable used in a parallel loop can be
exported as global value with the clause:

— lastprivate

The default behavior can be changed using:
— default(private | shared | none)
The data clauses are applied to the parallel region and

worksharing constructs - however, shared is only valid for
parallel regions

Data scoping clauses are valid only in the lexical extent of the
OpenMP directive

29

Data Environment

- Example of private and firstprivate

int A, B, C;
A=B=¢C-=1;
#pragma omp parallel private(B) firstprivate(C)
{
//

}

* Within the parallel region :
— “A” is shared between threads and equal to 1
— Both “B” and “C” are private for each thread
« B has undefined initial value
* C has initial value equal to 1
- After the parallel region:

— Both B and C have the same value as before the parallel region
30

private

e private(var) creates a private copy of var in each
thread

— The value of the copy is not initialized

— The private copy is not related to the original variable
with respect to the memory location

int is = 0;
#pragma omp parallel for private(is)
for (int j=1; j<=1000; j++)

is = is + 7J;

printf("%d\n", is);

- |S has not been initialized inside the loop

31

firstprivate

e firstprivate: special case of private

— The private copy of each thread is initialized with the
value of the original variable, which belongs to the
master thread

int is = 0;
#pragma omp parallel for firstprivate(is)
for (int j=1; j<=1000; j++)

is = 1is + J;

printf("%d\n", is);

- Each thread has a private copy of IS with initial value O

32

lastprivate

- Copies the value of the private variable, as
assigned by the last loop iteration, to the original
(global) variable
_ . continue to
int 1s = 0; the next line
#pragma omp parallel for firstprivate(is) \
lastprivate(is)
for (int j=1; j<=1000; Jj++)
is = is + 7J;

printf("%d\n", is);

- Each thread has a private copy of IS with initial value O

* IS has the value it was assigned by the last loop iteration
(i.e. for j=1000)

33

Synchronization

* OpenMP supports several synchronization
constructs:
— critical section
— atomic
— barrier
— master (in fact, not a synchronization construction)

— ordered not studied

— flush not studied

34

Synchronization — critical

* No two threads will simultaneously be in the critical
section

« Critical sections can be named

e omp critical (name)

#pragma omp parallel for private(b) shared(res)
for (i=0; i<niters; i++) {
b = doit(i);
#pragma omp critical
{ lock mutex
update(b, &res);

unlock mutex

res: initialized before the parallel region 35

Synchronization — atomic

- Special case of critical section that can be used
only for simple instructions.

- Can be applied only when a single memory location
(variable) is updated

#pragma omp parallel private(b)

{
int 1 = omp get thread num();
b = doit(i);
#pragma omp atomic use of some
res = res + b; hardware-supported
} atomic operation

res: initialized before the parallel region y

Synchronization — barrier

- Barrier: all threads wait until each thread has reached the

barrier

#pragma omp parallel shared (A, B) private(id)

{

id=omp get thread num();

A[id] = big calcl(id); initialization of A

#pragma omp barrier necessary synchronization

#pragma omp for
these computations

for(int i=0; i<N; i++){ depend on A

B[i]=big calc2(i,A);

37

Synchronization — master

- The structured block is executed only by the master thread
- the other threads of the team ignore it

 There is no barrier at the end of master

#pragma omp parallel

{
do many things();
#pragma omp master

{

nothing more than
if (omp_get_thread_num()==0)

exchange boundaries();

}

#pragma barrier
do many other things();

38

Synchronization — ordered

- Enforces the sequential order of execution of some
code

#pragma omp parallel private (res)

{

#pragma omp for ordered
for (1=0; i<N; i++){
res = do work(1i);

#pragma ordered
printf(“res = %d\n”, res);

39

Synchronization - Implicit Barriers

- A barrier is implicitly called at the end of the
following constructs:

— parallel

— for (except when nowait is used)

— sections (except when nowait is used)
— single (except when nowait is used)

— for, sections and single accept the nowait clause
int nthreads;
#pragma omp parallel

#pragma omp single nowait

nthreads = omp get num threads(); 40

Reductions

The reduction clause modifies the way variables are
“shared”:

— reduction (op : list)

Variables included in 1ist must be shared in the
parallel region where the reduction clause exists

Allowed reduction operations: +,-,*,&,",|,&&,| | ,min, max

Within a parallel region or a worksharing construct:
— Alocal copy for each variable in the list is created and
initialized accordingly to the reduction operation
— 0 for “+”

— The values of the local copies are combined (reduced) to a
single value that is stored to the original variable after the
end of the construct

41

Reduction - Example

#include <omp.h>
#define NUM THREADS 2

double func(int 1);

void main ()
{
int i;
double 727, res=0.0;
omp set num threads(NUM THREADS) ;
#pragma omp parallel for reduction(+:res) private(2Z2Z)
for (i=0; i< 1000; i++){
ZzZ = func(1i);
res = res + 27Z;

42

Loop Scheduling

Usage: #pragma omp parallel for <schedule clause>
— schedule (static | dynamic | guided [, chunk])
— schedule (runtime)

static [,chunk]
— Loop iterations are divided into segments of size chunk and
distributed cyclically to the threads of the parallel region
— If chunk is not specified, it is equal to N/P and each thread executes a
single chunk of iterations
dynamic [,chunk]
— Loop iterations are divided into segments of size chunk
— An idle thread gets dynamically the next available chunk of iterations
guided [,chunk]
— Similar to dynamic but the chunk size decreases exponentially.
— chunk specifies the minimum segment size
runtime
— decide at runtime depending on the OMP_SCHEDULE environment
variable
auto
— decided by the compiler and/or the underlying OpenMP runtime library

43

Example

#pragma omp parallel for num_threads(4) schedule(*)
for (int i = 0; i < 500; i++) do work(i);

500 iterations on 4 threads

3 . M Muttiptechunks
, "=guided. 5 O 1
1
0
3

o

-2

=

8 1

-

c 0

3
2
1 T T
A e

SB 163 1é0 263 2éC 360 3é0 468 4%0 SéC
Iteration Number

More details in the next lecture and the exercises *

Library Calls

« OpenMP locks

— omp_init lock(), omp set lock(), omp unset lock(),
omp test lock()

* Functions that control the runtime environment:

— Number of threads

e omp set num threads(), omp get num threads(),
omp get thread num(), omp get max threads()

— Dynamic mode and nested parallelism
e omp set dynamic(), omp set nested(),
e omp get dynamic(), omp get nested()
— Check if code is in a parallel region
eomp in parallel()

— Number of processors / cores
e omp get num procs()

- Wall-clock time measurement (in seconds)

— omp_get wtime() ex01: get_wtime() 45

OpenMP Locks

omp lock t lck;

lock variable

omp_init_lock(&lck); initialization
#pragma omp parallel
{

int id = omp get thread num();

int tmp = do lots of work(id);

omp set lock(&lck);

printf(" %d %d\n", id, tmp);

omp unset lock(&lck);
}

omp destroy lock(&lck); destruction

46

Libraries Calls

- Dynamic mode is disabled and then the number of threads is
specified. This ensures that the parallel region will have 4
threads.

#include <omp.h>
volid main()
{
omp set dynamic(0);
omp set num threads(4);
#pragma omp parallel
{
int id=omp get thread num();
do lots of stuff(id);

47

Environment Variables

Default number of threads
— OMP_NUM_ THREADS int literal

Control of dynamic mode
— OMP_DYNAMIC TRUE || FALSE

Control of nested parallelism
— OMP_NESTED TRUE || FALSE

Control of loop scheduling if the programmer has
used omp for schedule(RUNTIME)
— OMP_SCHEDULE “schedule[, chunk size]”

Control of threads binding
— OMP_PROC_BIND TRUE || FALSE

48

"Use Cases"

49

Case 1: Loop & Parallel Region

- Parallelize the following sequential code with
- parallel regions
 worksharing

#define N 1024
for(int i=0; i<N; i++) { a[i] = a[i] + b[i];}

« OpenMP parallel region

#pragma omp parallel

{
int id = omp get thread num();
int Nthrds = omp get num threads();
int istart = id * N / Nthrds;

int iend = (id+1) * N / Nthrds; adjustment for
if (id == omp get num threads()-1) iend = N; the last thread
for(int i=istart; i<iend; i++) {a[i] = a[i] + b[i];}

} 50

Loop & Worksharing

- Seqguential code

#define N 1024
for(int i=0; i<N; i++) { a[i]

afi] + b[1];}

* OpenMP parallel region with worksharing

#pragma omp parallel

{
#pragma omp for schedule(static) default scheduling
for(int i=0; i<N; i++) { a[i] = a[i] + b[i];}

}

or simply:

#pragma omp parallel for
for(int i=0; i<N; i++) { a[i] = a[i] + b[i];}

51

Case 2: Functional parallelism

- Parallelize the following sequential code

- what is the total execution time if each function takes
one second?

alpha();

beta();

gamma(V, W);

delta();

printf(“%£f\n”, epsilon(X,Y)); total time = 5s

KX =2 S

52

Functional parallelism - Solution 1

#pragma omp parallel num_threads(3) no sense to use more threads
#pragma omg sections

{

#pragma omp section
V = alpha();

#pragma omp section
W = beta();

#pragma omp section
Y = delta();

}
X = gamma(V, W);
printf(“%£f\n”, epsilon(X,Y)); total time = 3s

53

Functional parallelism - Solution 2

#pragma omp parallel num_threads(2) no sense to use more threads
{

#pragma omp sections

{
#pragma omp section
V = alpha();
#pragma omp section
W = beta();
} implicit barrier
#pragma omp sections
{
#pragma omp section
X = gamma(V, W);
#pragma omp section
Y = delta();
}
} total time = 3s

printf(“%f\n”, epsilon(X,Y)); but with fewer threadss4

Case 3 - Reductions

- Parallelize the following sequential code

long num steps = 100000;
double step;

void main ()

{

double x, pi, sum = 0.0;
step = 1.0/(double) num steps;

for (int i=0; i< num steps; i++){
X = (1+0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}

pli = step * sum;

printf("Pi is %1f\n", pi);

Using the reduction clause

long num steps = 100000;
double step;

void main ()

{

double x, pi, sum = 0.0;
step = 1.0/ (double) num steps;

#pragma omp parallel for reduction(+:sum) private(x)
for (long 1i=0; i<num steps; i++){

X = (1+0.5)*step;

sum = sum + 4.0/(1l.0+x*x);
}
pi = step * sum;

printf("Pi is %1f\n", pi);

56

References

- OpenMP Specifications & Quick Reference Card
* WWW.0penmp.org

- OpenMP tutorial at LLNL, Blaise Barney
- https://computing.linl.gov/tutorials/openMP/

« An Overview of OpenMP, Ruud van der Pas — Sun
Microsystems

- http://www.openmp.org/wp-content/uploads/ntu-
vanderpas.pdf

57

http://www.openmp.org
https://computing.llnl.gov/tutorials/openMP/
http://www.openmp.org/wp-content/uploads/ntu-vanderpas.pdf
http://www.openmp.org/wp-content/uploads/ntu-vanderpas.pdf

