MeTayAwTTIOTEC YIa
Evowpatwpueva 2votnuata

Xelpepvo E€¢apunvo 2023-24
«Dense Linear Algebra»

[Tavayiwtng Xatlnoovkog

Basic Linear Algebra Subprograms (BLAS)

- BLAS is the de-facto standard API for any dense vector and
matrix operations, first published in 1979

- A reference implementation is available on netlib.org:
http://www.netlib.org/blas/ for the original Fortran version
http://www.netlib.org/clapack/ for an f2c translated C version

- BLAS is the building block of many other libraries and
programs. These libraries rely on an optimized BLAS library
for optimal performance

LAPACK and LINPACK
NAG (commercial)

IMSL (commercial)
Matlab

Python (numpy and scipy)

Basic Linear Algebra Subprograms (BLAS)

Open-source and optimized implementations:
« openBLAS (https://www.openblas.net/)

« ATLAS (https://netlib.org/atlas/): self-tuned BLAS, included with many Linux
distributions

Optimized versions exist from many hardware vendors:
» Apple: part of the Accelerate framework (-framework veclib)

« IBM: part of the ESSL (Engineering and Scientific Subroutine Library)
« Cray: part of libsci library

From CPU manufacturers
* Intel MKL library

https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html

« AMD ACML and AOCL libraries
https://en.wikipedia.orag/wiki/AMD Core Math Library
https://developer.amd.com/amd-aocl/

GPU implementations are also available

https://www.openblas.net/
https://netlib.org/atlas/
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html
https://en.wikipedia.org/wiki/AMD_Core_Math_Library
https://developer.amd.com/amd-aocl/

BLAS levels 1, 2 and 3

The BLAS functions are split into three groups (or levels)
BLAS level 1

« scalar and vector operations, such as dot product and vector
addition (y « ax + y)

« scale as O(1) or O(N)
BLAS level 2

* matrix-vector operations, such as matrix-vector multiplication
(y < aAx + by)

« scale as O(N?)

BLAS level 3

« matrix-matrix operations, such as matrix-matrix multiplication
(C < aAB + bC)

« scale worse than O(N?), often O(N?)

Calling BLAS functions

- BLAS is a Fortran library. It can be called from any
language, but you must learn some facts about Fortran and
calling Fortran functions.

- Function names and arguments:

* The function names are all lowercase independent of what is written
in (case insensitive) Fortran code

* Function names on most machines add a trailing _ compared to
C/C++ functions.

« Parameter types are not mangled into the function name:
use extern “C” in the function declaration

« all arguments are passed by address (or equivalently reference in
C++). The best convention is to
pass scalar arguments by reference
pass C-style arrays as pointers
« Be careful about how integer types relate. This can depend on

compiler options. Typically, a Fortran integer is a C/C++ int, but it
can be a long.

Example: DDOT

« The Fortran DDOT function

DOUBLE PRECISION FUNCTION DDOT(N,DX, INCX,DY,INCY)
INTEGER INCX,INCY,N
DOUBLE PRECISION DX(%),DY (%)

DDOT forms the dot product of two vectors.
uses unrolled loops for increments equal to one.

* ¥ ¥ ¥

- Has the following C++ prototype

extern “C” double ddot_(int& n, double *x, int& incx, double xy, int& incy);

* And can be easily called

int main()

{
std::vector<double> x(10, 1.); // intialize a vector with ten 1s
std::vector<double> y(10, 2.); // intialize a vector with ten 2s

// calculate the inner product

int n=x.size();

int one = 1;

double d = ddot_(n,&x[0],0one,&y[0],0ne);
std:: cout << d << "\n"; // should be 20

- Do not forget to link against the BLAS library

Array storage

- Fortran indices by default start at 1, while C/C++ starts at O

 Fortran stores arrays in column-major order, while C/C++
uses row-major order

column-major (Fortran) row-major (C/C++)
>

o|5|10]15]20 oA 243 A
1526 117621 516171819
272302 (ol il RN

S o7 el o Bl 1556/ 17:l851Eg
vl4al9]14]|19]|24 biod WX @ HbR Pl OV

- Consequence:

* matrices are typically transposed
« AJi][j] in C/C++ is A(j+1,i+1) in Fortran

Another look at DDOT: increments

The DDOT dot product function takes two pointers and two
Increments

DOUBLE PRECISION FUNCTION DDOT(N,DX,INCX,DY,INCY)
INTEGER INCX,INCY,N
DOUBLE PRECISION DX(x),DY (x)

DDOT forms the dot product of two vectors.
uses unrolled loops for increments equal to one.

* X ¥ %

In arrays the increments is typically 1

The increments exist as arguments to be able to treat
columns and rows in matrices as vectors

o|s5 |10]15]20
116 |1 [16]|2 DX = start of storage + 2
- 3 [\r12 17 22‘ INCX = 5

| 8 |13 18 231
41911411924

BLAS naming conventions

- BLAS functions always have one (or two) prefix indicating
the type of the arguments and optional return value

I int

float

double

std::complex<float>

N[O| O] ®

std::complex<double>

- Example: dot product

generic name _DOT
float SDOT

double DDOT
std::complex<float> CDOT
std::complex<double> ZDOT

BLAS 1: vector operations

Reduction operations:
S X-y inner product __DOT_
s <« max{|xl|} pivot search I_ AMAX
s 1 x||2 norm of a vector _NRM2
s — > xl sum of abs _ASUM
Vector to vector transformations:

y X copy x intoy _COPY

X < y swap _SWAP

y - X scale x SCAL

y <+ «a-X+Yy saxpy _AXPY

Generate and apply Givens rotations:

Compute rotation:

) s | I cssr=va2+b _ROTG
—s C | b | 0 |
Apply rotation:
X . (c s) X ROT
| Y —S Cc)Ly |

BLAS matrix types and naming conventions

- BLAS 2 and BLAS 3 support various matrix types, given as
two letters after the prefix

GE general dense matrix

GB banded matrix, stored packed

SY symmetric, stored like a general dense matrix

SP symmetric, stored packed

SB symmetric banded, stored packed

HE hermitian, stored like a general dense matrix

HP hermitian, stored packed

HB hermitian banded, stored packed

TR upper or lower triangular, stored like a general dense matrix
TP upper or lower triangular, stored packed

B upper or lower triangular band matrix, stored packed

- Example: DGEMV is matrix-vector multiplication for a
general matrix of doubles

Packed storage formats

« Banded matrices:

Dense storage of matrix Packed storage as a packed matrix
e * G12 G623 G34 Q45
on Gn 0 ail @2 @33 Gas a5
@31 G32 433 G34 @21 @32 Q43 Gsq *
G42 Q43 Geq4 Q45 @31 G @53 ¢ ¥
as3 G54 ass

 For triangular matrices, depending on the UPLO parameter:

UPLO Dense storage of matrix Packed storage as array

[an a1y a1y aig)
a2 a3 G214
U a1l @12 Gy Q13 G3 Gg3 @14 24 O34 Q44
Gz3 @G34 —— S——— S ~ -
\ Gq4
/ an \
L az a2 ap Gz a3 G4 G2 G332 043 G33 Q43 G4y
az azy asy i3 x

\ Gy @4 @43 G4)

- Symmetric and hermitian packed formats store only one triangle

Dense matrix storage

- |t’s a bit more complicated than you thought
* Fortran-77 and earlier did not allow dynamical allocation

* One might want to operate just on a submatrix

- Matrix operations accept three size arguments:
* matrix size: rows and columns of the matrix

« leading dimension: increment between columns

0-5-10 15 | 20
1-6-11.16 21
2.7.12.17 22
3 8I13 Toelers
419 |714119 (24

number of rows: 3
number of columns: 3
leading dimension: 5

BLAS-2: matrix-vector operations

X

+— «aAx+ By

Matrix times Vector
general _GEMV
general ba'_“? -GBMV Rank one and rank two updates:

general hermitian _HEMV R o axy! + A general GER
hermi.ti.an banded _HBMV A axx* + A general hermitian _HER
hermitian packed _HPMV hermitian packed _HPR
general symmetric SYMV A «— alxy*+yx*)+A gen. Hermitian _HER2
symmetric banded _SBMV hermitian packed _HPR2
symmetric packed _SPMV A «+ axxT + A general symmetric _SYR

triangular _TRMV symmetric packed _SPR
triangular banded _TBMV A « alxyT+yx")+A gen. symmetric _SYR2
triangular packed _TPMV symmetric packed _SPR2

Triangular solve:

A 1lx

triangular
triangular banded
triangular packed

_TRSV
_TBSV
_TPSV

BLAS-3: matrix-matrix operations

Matrix product:

C <« aA- B+ pBC general _GEMM
symmetric _SYMM
hermitian _HEMM

B <+ aA- B triangular _TRMM

Rank k update:

C «+ aA- Al +3C SYRK

C « aA- AP + 5C _HERK

C « ofA-BT+B-AT)+3C SYRK?2

C « ofA-BP+B-AH)+5C _HERK?2

Triangular solve for multiple r.h.s.:
B <« aA~. B triangular _TRSM

Transpose arguments

- _GEMV, _GBMV, _T_MV, and _T_SV take arguments
indicating whether the matrix should be transposed

Real matrix Complex matrix
TRANS S, D C,Z
'N'or'n’ no transpose no transpose
T or 't transposed transposed
'C'or'c transposed transposec_l and
complex conjugated

- Similarly, some of the BLAS-3 calls take one or two
transpose arguments:
« _GEMM,_TRMM
« _SYRK, _HERK, _SY2RK,
- _TRSM

C/C++ interface

« Available in cblas.h

typedef enum CBLAS ORDER {CblasRowMajor=101, CblasColMajor=102} CBLAS_ ORDER;

typedef enum CBLAS TRANSPOSE {CblasNoTrans=111, CblasTrans=112, CblasConjTrans=113,
CblasConjNoTrans=114} CBLAS TRANSPOSE;

typedef enum CBLAS UPLO {CblasUpper=121, CblasLower=122} CBLAS_ UPLO;

typedef int blasint;
#define OPENBLAS_ CONST const
#define CBLAS_INDEX size t

float cblas_ sdot(const int n, const float *x, const int incx,
const float *y, const int incy);

double cblas ddot(const int n, const double *x, const int incx,
const double *y, const int incy);

void cblas_saxpy(const int n, const float alpha, const float *x, const int incx,
float *y, const int incy);

void cblas_ sgemv(const enum CBLAS ORDER order, const enum CBLAS TRANSPOSE trans,
const int m, const int n,
const float alpha, const float *a, const int lda,
const float *x, const int incx,
const float beta, float *y, const int incy);

Optimizing linear algebra operations

- BLAS-1 is best optimized by SIMD vectorization
examples: _DOT and _SCAL

- BLAS-2 and BLAS-3 build on top of BLAS-1

reuse all optimizations done for BLAS-1
potential for further optimization by multithreading
examples: _GEMV and _GEMM

+ Other libraries, like LAPACK, are built on top of BLAS

reuse all optimizations done for BLAS-1, 2 and 3
further parallelization may be possible
example: Gaussian elimination (_ GEFA)

Paralleling _GEMV

- We have two loops in _GEMV over i and j
Vi = 2 Ajjx;
J
- Four versions

« Loop ordercanbei,jorj,i
 either the inner or the outer loop can be parallelized

« Two more versions:

« split the matrix into blocks and use a single-threaded BLAS _GEMV
for each block

* hope for a parallel BLAS and just call _GEMV

Case 1:1,j, parallelizing outer loop

Parallelize the outer loop over i

void dgemv_ompl(int m, int n, int lda, const double* A, const double* x, double* y)

{
#pragma omp parallel for
for (int i = 0; i < m; ++i) {
y[il = 0;
for (int j = 0; Jj < n; ++3j)
y[il += A[i * 1lda + j] * x[]J];

Colors indicate splitting of
the matrix over threads for
the case of 4 threads

Case 2: i,j, parallelizing inner loop

Parallelize the inner loop over |

void dgemv_omp2(int m, int n, int lda, const double* A, const double* x, double* y)
{
for (int i = 0; i < m; ++i) {
double tmp = 0.0;
#pragma omp parallel for reduction(+:tmp)
for (int j = 0; Jj < n; ++3j)
tmp += A[i * 1lda + Jj] * x[J];

y[i] = tmp;

}
}

Colors indicate splitting of
the matrix over threads for
the case of 4 threads

Case 3. j,i parallelizing outer loop

- Parallelize the outer loop over j, followed by vector reduction

void dgemv_omp3(int m, int n, int lda, const double* A, const double* x, double* y)
{
memset(y, 0, m*sizeof(double));
#pragma omp parallel
{
double z[m];
memset(z, 0, m*sizeof(double));
#pragma omp for
for (int j = 0; Jj < n; ++3j)
for (int i = 0; i < m; ++1i)
z[1i] += A[i * 1da + J] * x[J];

#pragma omp critical
for (int i = 0; i < m; ++i) y[i] += z[i];

Colors indicate splitting of
the matrix over threads for
the case of 4 threads

Case 4. j,i parallelizing inner loop

Parallelize the inner loop over i

void dgemv_omp4(int m, int n, int lda, const double* A, const double* x, double* y)

{

for (int i = 0; i < m; ++i) y[i] = 0;

for (int j = 0; j < n; ++3)
#pragma omp parallel for
for (int i = 0; i < m; ++1i) {
y[il += A[i * 1lda + j] * x[]J];
}

Colors indicate splitting of
the matrix over threads for
the case of 4 threads

Case 5: calling BLAS from every thread

void dgemv_omp5(int m, int n, int lda, const double* A, const double* x, double* y)

{

openblas set num threads(1l);

#pragma omp parallel

{
int i = omp get thread num();
int p = omp get num threads();
int chunk = (m + p - 1)/p;
int m0 = chunk;
int ml = min(m0, m-i*m0);
//int lda = m;

cblas dgemv(CblasRowMajor, CblasNoTrans, ml, n,
lda, x,

1.0, 0.0, &y[i*m0], 1);

1.0, &A[i*m0],

Colors indicate splitting of
the matrix over threads for

the case of 4 threads

Indicative performance results

minmac:dgemv phadjido$ export OMP_ NUM THREADS=4
minmac:dgemv phadjido$./dgemvl

dgemv_naive [n=1024] time= 1.738 ms -> 1.207 GFLOPs
dgemv_ompl [n=1024] time= 0.707 ms -> 2.968 GFLOPs
dgemv_omp2 [n=1024] time=42.262 ms -> 0.050 GFLOPs
dgemv_omp3 [n=1024] time= 3.532 ms -> 0.594 GFLOPs
dgemv_omp4 [n=1024] time=46.589 ms -> 0.045 GFLOPs
dgemv_omp5 [n=1024] time= 0.603 ms -> 3.479 GFLOPs
dgemv_blas [n=1024] time= 0.593 ms -> 3.537 GFLOPs

References

* Prof. M. Troyer, HPCSE |, ETH Zurich

