
1

Μεταγλωττιστές για
Ενσωματωμένα Συστήματα

Χειμερινό Εξάμηνο 2023-24
«Dense Linear Algebra»

Παναγιώτης Χατζηδούκας

Basic Linear Algebra Subprograms (BLAS)
• BLAS is the de-facto standard API for any dense vector and

matrix operations, first published in 1979
• A reference implementation is available on netlib.org:

• http://www.netlib.org/blas/ for the original Fortran version
• http://www.netlib.org/clapack/ for an f2c translated C version

• BLAS is the building block of many other libraries and
programs. These libraries rely on an optimized BLAS library
for optimal performance
• LAPACK and LINPACK
• NAG (commercial)
• IMSL (commercial)
• Matlab
• Python (numpy and scipy)

Basic Linear Algebra Subprograms (BLAS)
• Open-source and optimized implementations:

• openBLAS (https://www.openblas.net/)
• ATLAS (https://netlib.org/atlas/): self-tuned BLAS, included with many Linux

distributions

• Optimized versions exist from many hardware vendors:
• Apple: part of the Accelerate framework (-framework veclib)
• IBM: part of the ESSL (Engineering and Scientific Subroutine Library)
• Cray: part of libsci library

• From CPU manufacturers
• Intel MKL library

• https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html

• AMD ACML and AOCL libraries
• https://en.wikipedia.org/wiki/AMD_Core_Math_Library
• https://developer.amd.com/amd-aocl/

• GPU implementations are also available

https://www.openblas.net/
https://netlib.org/atlas/
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html
https://en.wikipedia.org/wiki/AMD_Core_Math_Library
https://developer.amd.com/amd-aocl/

BLAS levels 1, 2 and 3
• The BLAS functions are split into three groups (or levels)
• BLAS level 1

• scalar and vector operations, such as dot product and vector
addition (𝒚 ← 𝑎𝒙 + 𝒚)

• scale as O(1) or O(N)
• BLAS level 2

• matrix-vector operations, such as matrix-vector multiplication
(𝒚 ← 𝑎𝐴𝒙 + 𝑏𝒚)

• scale as O(N2)
• BLAS level 3

• matrix-matrix operations, such as matrix-matrix multiplication
(C ← 𝑎𝐴𝐵 + 𝑏𝐶)

• scale worse than O(N2), often O(N3)

Calling BLAS functions
• BLAS is a Fortran library. It can be called from any

language, but you must learn some facts about Fortran and
calling Fortran functions.

• Function names and arguments:
• The function names are all lowercase independent of what is written

in (case insensitive) Fortran code
• Function names on most machines add a trailing _ compared to

C/C++ functions.
• Parameter types are not mangled into the function name:

use extern “C” in the function declaration
• all arguments are passed by address (or equivalently reference in

C++). The best convention is to
• pass scalar arguments by reference
• pass C-style arrays as pointers

• Be careful about how integer types relate. This can depend on
compiler options. Typically, a Fortran integer is a C/C++ int, but it
can be a long.

Example: DDOT
• The Fortran DDOT function

• Has the following C++ prototype

• And can be easily called

• Do not forget to link against the BLAS library

Array storage
• Fortran indices by default start at 1, while C/C++ starts at 0
• Fortran stores arrays in column-major order, while C/C++

uses row-major order

• Consequence:
• matrices are typically transposed
• A[i][j] in C/C++ is A(j+1,i+1) in Fortran

Another look at DDOT: increments
• The DDOT dot product function takes two pointers and two

increments

• In arrays the increments is typically 1
• The increments exist as arguments to be able to treat

columns and rows in matrices as vectors

DX = start of storage + 2
INCX = 5

• BLAS functions always have one (or two) prefix indicating
the type of the arguments and optional return value

• Example: dot product

BLAS naming conventions

I int

S float

D double

C std::complex<float>

Z std::complex<double>

generic name _DOT

float SDOT

double DDOT

std::complex<float> CDOT

std::complex<double> ZDOT

BLAS 1: vector operations

• BLAS 2 and BLAS 3 support various matrix types, given as
two letters after the prefix

• Example: DGEMV is matrix-vector multiplication for a
general matrix of doubles

BLAS matrix types and naming conventions

GE general dense matrix

GB banded matrix, stored packed

SY symmetric, stored like a general dense matrix

SP symmetric, stored packed

SB symmetric banded, stored packed

HE hermitian, stored like a general dense matrix

HP hermitian, stored packed

HB hermitian banded, stored packed

TR upper or lower triangular, stored like a general dense matrix

TP upper or lower triangular, stored packed

TB upper or lower triangular band matrix, stored packed

• Banded matrices:

• For triangular matrices, depending on the UPLO parameter:

• Symmetric and hermitian packed formats store only one triangle

Packed storage formats

• It’s a bit more complicated than you thought
• Fortran-77 and earlier did not allow dynamical allocation
• One might want to operate just on a submatrix

• Matrix operations accept three size arguments:
• matrix size: rows and columns of the matrix
• leading dimension: increment between columns

Dense matrix storage

number of rows: 3
number of columns: 3
leading dimension: 5

BLAS-2: matrix-vector operations

BLAS-3: matrix-matrix operations

• _GEMV, _GBMV, _T_MV, and _T_SV take arguments
indicating whether the matrix should be transposed

• Similarly, some of the BLAS-3 calls take one or two
transpose arguments:
• _GEMM,_TRMM
• _SYRK, _HERK, _SY2RK,
• _TRSM

Transpose arguments

TRANS Real matrix
S, D

Complex matrix
C, Z

'N' or 'n' no transpose no transpose

'T' or 't' transposed transposed

'C' or 'c' transposed transposed and
complex conjugated

• Available in cblas.h

C/C++ interface

typedef enum CBLAS_ORDER {CblasRowMajor=101, CblasColMajor=102} CBLAS_ORDER;
typedef enum CBLAS_TRANSPOSE {CblasNoTrans=111, CblasTrans=112, CblasConjTrans=113,

CblasConjNoTrans=114} CBLAS_TRANSPOSE;
typedef enum CBLAS_UPLO {CblasUpper=121, CblasLower=122} CBLAS_UPLO;

typedef int blasint;
#define OPENBLAS_CONST const
#define CBLAS_INDEX size_t

float cblas_sdot(const int n, const float *x, const int incx,
const float *y, const int incy);

double cblas_ddot(const int n, const double *x, const int incx,
const double *y, const int incy);

void cblas_saxpy(const int n, const float alpha, const float *x, const int incx,
float *y, const int incy);

void cblas_sgemv(const enum CBLAS_ORDER order, const enum CBLAS_TRANSPOSE trans,
const int m, const int n,
const float alpha, const float *a, const int lda,
const float *x, const int incx,
const float beta, float *y, const int incy);

• BLAS-1 is best optimized by SIMD vectorization
• examples: _DOT and _SCAL

• BLAS-2 and BLAS-3 build on top of BLAS-1
• reuse all optimizations done for BLAS-1
• potential for further optimization by multithreading
• examples: _GEMV and _GEMM

• Other libraries, like LAPACK, are built on top of BLAS
• reuse all optimizations done for BLAS-1, 2 and 3
• further parallelization may be possible
• example: Gaussian elimination (_GEFA)

Optimizing linear algebra operations

• We have two loops in _GEMV over i and j

𝑦! =#
"

𝐴!"𝑥"

• Four versions
• Loop order can be i, j or j, i
• either the inner or the outer loop can be parallelized

• Two more versions:
• split the matrix into blocks and use a single-threaded BLAS _GEMV

for each block
• hope for a parallel BLAS and just call _GEMV

Paralleling _GEMV

• Parallelize the outer loop over i

Case 1: i,j, parallelizing outer loop

void dgemv_omp1(int m, int n, int lda, const double* A, const double* x, double* y)
{

#pragma omp parallel for
for (int i = 0; i < m; ++i) {

y[i] = 0;
for (int j = 0; j < n; ++j)

y[i] += A[i * lda + j] * x[j];
}

}

Colors indicate splitting of
the matrix over threads for
the case of 4 threads

• Parallelize the inner loop over j

Case 2: i,j, parallelizing inner loop

Colors indicate splitting of
the matrix over threads for
the case of 4 threads

void dgemv_omp2(int m, int n, int lda, const double* A, const double* x, double* y)
{

for (int i = 0; i < m; ++i) {
double tmp = 0.0;
#pragma omp parallel for reduction(+:tmp)
for (int j = 0; j < n; ++j)

tmp += A[i * lda + j] * x[j];

y[i] = tmp;
}

}

• Parallelize the outer loop over j, followed by vector reduction

Case 3: j,i parallelizing outer loop

Colors indicate splitting of
the matrix over threads for
the case of 4 threads

void dgemv_omp3(int m, int n, int lda, const double* A, const double* x, double* y)
{

memset(y, 0, m*sizeof(double));
#pragma omp parallel
{

double z[m];
memset(z, 0, m*sizeof(double));
#pragma omp for
for (int j = 0; j < n; ++j)

for (int i = 0; i < m; ++i)
z[i] += A[i * lda + j] * x[j];

#pragma omp critical
for (int i = 0; i < m; ++i) y[i] += z[i];

}
}

• Parallelize the inner loop over i

Case 4: j,i parallelizing inner loop

Colors indicate splitting of
the matrix over threads for
the case of 4 threads

void dgemv_omp4(int m, int n, int lda, const double* A, const double* x, double* y)
{

for (int i = 0; i < m; ++i) y[i] = 0;

for (int j = 0; j < n; ++j)
#pragma omp parallel for
for (int i = 0; i < m; ++i) {

y[i] += A[i * lda + j] * x[j];
}

}

Case 5: calling BLAS from every thread

void dgemv_omp5(int m, int n, int lda, const double* A, const double* x, double* y)
{

openblas_set_num_threads(1);

#pragma omp parallel
{

int i = omp_get_thread_num();
int p = omp_get_num_threads();
int chunk = (m + p - 1)/p;
int m0 = chunk;
int m1 = min(m0, m-i*m0);
//int lda = m;

cblas_dgemv(CblasRowMajor, CblasNoTrans, m1, n, 1.0, &A[i*m0],
lda, x, 1.0, 0.0, &y[i*m0], 1);

}
}

Colors indicate splitting of
the matrix over threads for
the case of 4 threads

Indicative performance results

minmac:dgemv phadjido$ export OMP_NUM_THREADS=4
minmac:dgemv phadjido$./dgemv1
dgemv_naive [n=1024] time= 1.738 ms -> 1.207 GFLOPs
dgemv_omp1 [n=1024] time= 0.707 ms -> 2.968 GFLOPs
dgemv_omp2 [n=1024] time=42.262 ms -> 0.050 GFLOPs
dgemv_omp3 [n=1024] time= 3.532 ms -> 0.594 GFLOPs
dgemv_omp4 [n=1024] time=46.589 ms -> 0.045 GFLOPs
dgemv_omp5 [n=1024] time= 0.603 ms -> 3.479 GFLOPs
dgemv_blas [n=1024] time= 0.593 ms -> 3.537 GFLOPs

References
• Prof. M. Troyer, HPCSE I, ETH Zurich

