MeTayAwTTIOTEC YIa
Evowpatwpueva 2votnuata

Xelpepvo E€¢apunvo 2023-24
«SIMD Vectorization»

[Tavayiwtng Xatlnoovkog

SIMD (vector instructions)

* Recall SIMD: Single Instruction Multiple Data
* we perform the same operation on many values at once.
« This was pioneered by the vector supercomputers
* Cray XMP
« Since 1999 part of all Intel CPUs
« SSE (Streaming SIMD Extensions)
« AVX (Advanced Vector Extensions)

« The easiest way of getting parallel
speedup

SIMD reqisters and operations

255 128

- SIMD units contain vector registers e Vb
- 128-bit registers XMMO - XMM15 for SSE on: o
. 256-bit registers YMMO-YMM15 for AVX, o —
overlapping the XMM registers i —
- The SSE XMM registers can store -
* XMM register xmm
« 2 doubles x1 X2
* 4 floats y1 y2 y3 y4
* 2 64-bit integer i1 i2
* 4 32-bit integers j1 j2 i3 4
° 8 16-bit integer k1 k2 k3 k4 k5 k6 k7 k8
* 16 bytes

- AVXregister can store 8 float or 4 double, integers since AVX2
« AVX-512 doubles that again

SIMD vector operations

- SIMD vector operations act on all values in the vector at once
- Example: adding four floats with one “packed floating point” instruction

x0 x1 X2 x3
+
y0 y1 y2 y3
x0+y0 x1+y1 X2+y2 x3+y3

- Advantages:
* One instruction instead of 4
Memory access can be optimized
* An easy way to gain speed for almost any code

SSE/AVX versions

Intel and AMD have introduced more and more SIMD instructions with
every new processor generation. The history is complex, and only
roughly summarized below

Generation Year First Intel CPU Main features
SSE 1999 Pentium IlI
SSE2 2001 Pentium 4 SSE registers can be used together with
scalar floating-point registers

SSE3 2004 Pentium 4 - Prescott more instructions, and conversions
between floating-point and integer

SSE4 2006 Core 2 More instructions

AVX 2011 Sandy Bridge floating point 256 bit registers

AVX2 2013 Haswell integer 256 bit registers

AVX-512 2017 Skylake 512 bit registers

SSE/AVX documentation

The best documentation tool is by Intel, at

« https://software.intel.com/sites/landingpage/IntrinsicsGuide/
An excellent documentation tool

« lists all functions with clear explanation and documentation

» allows to search for functions

(in/t;D Intrinsics Guide ?

Technologies void _mm_2intersect_epi32 (__m128i a, __m128i b, __mmask8* k1, __mmask8* k2)

O MMX void _mm256_2intersect_epi32 (__m256i a, __m256i b, __mmask8x k1, __mmask8* k2)

O SSE void _mm512_2intersect_epi32 (__m512i a, __m512i b, __mmasklé* k1, __mmask1éx k2)

O SSE2 void _mm_2intersect_epié4 (__m128i a, __m128i b, __mmask8* k1, __mmask8* k2)

0 SSE3 void _mm256_2intersect_epié4 (__m256i a, __m256i b, __mmask8* k1, __mmask8* k2)

O SSSE3 void _mm512_2intersect_epié4 (__m512i a, __m512i b, __mmask8x k1, __mmask8* k2)

0 SSE4.1 __m512i _mm512_4dpwssd_epi32 (__m512i src, __m512i a0, __m512i al, __m512i a2, __m512i a3,

O SSE4.2 __m128i * b)

O AVX __m512i _mm512_mask_4dpwssd_epi32 (__m512i src, __mmask1é k, __m512i a@, __m512i al, __m512i a2,

0O AVX2 __m512i a3, __m128i * b)

oA __m512i _mm512_maskz_4dpwssd_epi32 (__mmask1é k, __m512i src, __m512i a@, __m512i al, __m512i a2,
O Avxs12 __m512i a3, __m128i * b)

O KNC __m512@ _mm512_4dpwssds_epi32 (__m512i src, __m512i a0, __m512i al, __m512i a2, __m512i a3,

__m128i * b)

O AMX __m512i _mm512_mask_4dpwssds_epi32 (__m512i src, __mmasklé k, __m512i a@, __m512i al, __m512i
Boswe |33, nsi2i a3, __mi2si * b)

O Other __m512i _mm512_maskz_4dpwssds_epi32 (__mmask16 k, __m512i src, __m512i a0, __m512i al, __m512i

a2, __m512i a3, __ml128i % b)

Categories __m512 _mm512_4fmadd_ps (__m512 src, __m512 a0, __m512 al, __m512 a2, __m512 a3, __ml28 * b)
O Application-Targeted

)) __m512 _mm512_mask_4fmadd_ps (__m512 src, __mmask1é k, __m512 a0, __m512 al, __m512 a2, __m512
82!’"*‘"‘?‘") a3, __mi28 x b)

it Mar __m512 _mm512_maskz_4fmadd_ps (__mmask16 k, __m512 src, __m512 a@, __m512 al, __m512 a2, __m512
O Cast a3, __m128 x b)
O Compare —
O Convert __m128 _mm_4fmadd_ss (__m128 src, __m128 a0, __m128 al, __m128 a2, __ml128 a3, __m128 * b)
O Cryptography __m128 _mm_mask_4fmadd_ss (__m128 src, __mmask8 k, __m128 a0, __m128 al, __m128 a2, __m128 a3,
O Elementary Math __m128 * b)
Functions __m128 _mm_maskz_4fmadd_ss (__mmask8 k, __m128 src, __m128 a0, __m128 al, __ml28 a2, __m128 a3,
O General Support __m128 * b)
O Load __m512 _mm512_4fnmadd_ps (__m512 src, __m512 a0, __m512 al, __m512 a2, __m512 a3, __m128 * b)
O Logical __m512 _mm512_mask_4fnmadd_ps (__m512 src, __mmask1é k, __m512 a0, __m512 al, __m512 a2, __m512
O Mask a3, __m128 x b)
O Miscellaneous __m512 _mm512_maskz_4fnmadd_ps (__mmask1é k, __m512 src, __m512 a@, __m512 al, __m512 a2, __m512
O Move a3, __mi28 x b)
O OS-Targeted __m128 _mm_4fnmadd_ss (__m128 src, __m128 a@, __m128 al, __ml128 a2, __m128 a3, __m128 * b)
O Probability/Statistics __m128 _mm_mask_4fnmadd_ss (__m128 src, __mmask8 k, __m128 a@, __m128 al, __mi28 a2, __mi28 a3,
O Random __m128 * b)
g;e:n __m128 _mm_maskz_4fnmadd_ss (__mmask8 k, __m128 src, __m128 a0, __m128 al, __ml28 a2, __ml28 a3,

4 __ml128 * b)
gz:’ec'a”"a‘“ Functions __m128i _mm_abs_epil6 (__mi28i a)

ore n s 3 5
O String Compare ,,m128} ,mm,mask,abs,epgé (__m128i src, ,,mmaslfs k, __m128i a)
O Swizzle __m128i _mm_maskz_abs_epilé (__mmask8 k, __m128i a)
O Trigonometry __m2561 _mm256_abs_epilé (__m256i a)

__m256i _mm256_mask_abs_epilé (__m256i src, __mmask1lé k, __m256i a)

Legal Statement __m256i _mm256_maskz_abs_epilé (__mmask1é k, __m256i a)

m512i mm512 abs epilé (m512i a)

https://software.intel.com/sites/landingpage/IntrinsicsGuide/

Review: Caches

Memory access speed did not keep up with Moore’s law

Are added to speed up memory access
« Many GByte of slow but cheap DRAM
« 2-20 MByte of fast L3-Cache
« 256-512 kByte of faster L2-Cache per core

« 2x32 - 2x64 kByte of fastest L1-Cache per core
(instruction and data cache)

Data that is read is stored in the caches and kept there until it needs to
be evicted because new data is loaded

Data written to memory is written to the cache and only further to
memory if it needs to be evicted (or if we need to synchronize memory
access between cores)

Problems reusing memory will run faster!

Comparison of memory/cache speeds

Data for Intel Sandy Bridge CPU

Size Access Time in cycles
L1 cache 2x32 KB 4-5
L2 cache 256 KB 12-19
L3 cache 3-20 MB 30-50
Memory Many GB ~ 300

How does a cache work?

CPU requests a word (e.g. 4 bytes) from memory

« A full “cache line” (howadays typically: 64 bytes) is read from memory and
stored in the cache

* The first word is sent to the CPU
CPU requests another word from memory

« Cache checks whether it has already read that part as part of the previous
cache line

« If yes, the word is sent quickly from cache to CPU
* |f not, a new cache line is read

Once the cache is full, the oldest data is overwritten
Locality of memory references are important for speed

Data alignment

To achieve optimal speed data should be aligned on cache line
boundaries.

Consider what happens if we load one value that is not at the start of a
cache line (on an old machine with 16 byte cache lines):

cachellne 1 cachellne 2

| |
load VI X
Y Y
AD|A1| A2| A3 A3| A4| A5| A6

what we get what we wanted

Alignment

- SSE registers are 16 bytes and need 16-byte alignment

- AVXregisters are 32 bytes and need 32-byte alignment

It is even better to align on cache line boundaries: 64/128
bytes on modern Intel CPUs

Allocating aligned data

- Aligned memory can be allocated
« on POSIX (Linux, Unix) systems by calling posix memalign
* On Windows systems by calling by calling aligned malloc

- Easiest using an alignment specifier in the declaration
float @ attribute ((aligned(32))) sse[8];

Memory layout

Array of Structures (AoS) vs Structure of Arrays (SoA)

#define N (128%1024%1024)

typedef struct {
double x;
double y;

} point_t ;

point t points[N];

for (int i = 0; i < N ; ++ 1) {
points[i].x drand48();
points[i].y drand48();

}

The points are stored in a array of

structures (AoS)

Typical object-based approach
Data access is performed through
objects

#define N (128+%1024%1024)

struct {
double x[N];
double y[N];
} points;

for (int i = 0; i < N ; ++ i) {
points.x[1i] drand48¢();
points.y[i] = drand48();

The points are stored a structure of
arrays (SoA)

No object abstraction but focus on
the data of the points

Access to the individual information
of the points

A0S vs SOA

#pragma omp parallel for reduction(+:result) #pragma omp parallel for reduction(+:result)
for (int i = 0; i < N; ++1i) { for (int i = 0; i < N ; ++i) {

result += (points[i].x); // RoS result += (points.x[i]); // SoA
} }

- Ease of programming and performance
« A0S can cause unecessary memory traffic
* Pollutes the cache with unused data

« AoS not suitable for SIMD vectorization
« Data transformation from AoS to SoA must be performed

When can a loop be vectorized?

- Aloop can only be vectorized (or parallelized by threads) if there are no
dependencies between the iterations:

« Alinear congruential generator cannot be vectorized since one iteration
depends on the previous one. We must wait for it to finish.

for (int i=1 ; i<N; ++i)
rnd[i] = a* rnd[i-1] + c;

« adding vectors by saxpy can be vectorized (no dependencies)

for (int i=0 ; i<N; ++1i)
x[1] = a*x[1] + y[i];

* alagged Fibonacci generator can be vectorized for vector lengths up to
min(p,q). Dependencies only beyond a distance min(p,q)
for (int i=std::max(p,q) ; i<N; ++i)
rnd[i] = rnd[i-p] + rnd[i-qg];
- Vector supercomputers had vector lengths up to 1024 elements.

- SSE has at most 16 bytes and AVX at most 32 bytes
* the lagged Fibonacci is easier to vectorize

Detecting dependencies

Look at every variable in the loop and check whether it might be written
or read by another loop iteration. If so there is a dependency.

Some dependencies can be removed by introducing additional variables

for (int i=0; i<N-1; i++) { for (int i=0; i<N-1; i++)
x = (b[i] + c[i])/2; a2[i] = a[i+1];
a[i] = a[i+l] + x;
} for (int 1i=0; i<N-1; i++) {
x = (b[i] + c[1])/2;
a[i] = a2[i] + x;

}

now both loops can be safely vectorized or parallelized

Another special case are reductions:

double s=0;
for (int i=0; i<N; i++)
s += x[i]*y[i];

reductions can be vectorized, but it needs special care
in OpenMP parallelization there is the reduction clause

Using SIMD instructions

SIMD instructions can be used through assembly language.
Complicated!

Compilers offer support through intrinsics. Special types and functions
that will be mapped directly to registers and SIMD instructions.

Include the appropriate header MMX <mmintrin.h>
or use the header <x86intrin.h> SSE <Xmm'_”"{”-h>
that is available with some compilers SSE2 <emmintrin.n>
. . SSE3 <pmmintrin.h>

to load all headers available depending —
SSSES3 <tmmintrin.h>
on the target platform SSE4 1 <smmintrin.h>
SSE4.2 <nmmintrin.h>
SSE4A <ammintrin.h>
AES <wmmintrin.h>
AVX <immintrin.h>

Enable code generation for SSE or AVX with the right compiler switches

With gcc one option is to use the -msse3, -msse4 or -maxv to enable
SSE3, SSE4 or AVX support

Intrinsics: register data types

- The intrinsics headers define a few datatypes that map directly to SSE
or AVX registers. The compiler will place such variables in the registers.

« Note: these start with two underscores!

__m128 4 floats

__m128d 2 doubles

__m128i Integers of any size

__m256 8 floats

__m256d 4 doubles

__m256i integers of any size, AVX2
__m512 16 floats

__m512d 8 doubles

__m512i integers of any size, AVX-512

Intrinsics: naming of operations

SSE and AVX instructions have a certain naming scheme

SSE operations: _mm_name_type

AVX operations: _mm256_name_type
operations on types shorter than a full register will not modify the higher bits

type length in bits description
ss 32 a single float
ps 128,256 or 512 4, 8, or 16 floats
sd 64 a single double
pd 128,256 or 512 2, 4, or 8 doubles
si64 64 any integers
si128 128 any integers
si256 256 any integers
pi8 64 8 8-bit integers
pi16 64 4 16-bit integers
pi32 64 2 32-bit integers
epi8 128,256 or 512 16, 32 or 64 8-bit integers
epi16 128,256 or 512 8, 16 or 32 16-bit integers
epid2 128,256 or 512 4, 8 or 16 32-bit integers
epi64 128,256 or 512 2, 4 or 8 64-bit integers

A first example: sscal

Multiply a vector by a scalar, assuming aligned data and a vector length
that is a multiple of 4

void sscal(int n, float a, float* Xx)

{

// load the scale factor four times into a register

~ ml128 x0 = mm setl ps(a);

// loop over chunks of 4 values

for (int i=0; i<n/4; ++i) {
~ ml28 x1 = mm load ps(x+4*1i);
~ ml28 x2 = mm mul ps(x0,x1);
_mm_store ps(x+4*i,x2);

}

}

We are using four instructions: two loads, a multiplication and a store

// aligned (fast) load

// multiply
// store back aligned

A first example: sscal

Multiply a vector by a scalar, assuming aligned data, but now arbitrary
vector length. We need to do the remaining values by hand

void sscal(int n, float a, float* Xx)

{

// load the scale factor four times into a register
~ ml128 x0 = mm setl ps(a);

int ndiv4 = n/4;
// loop over chunks of 4 values
for (int i=0; i<ndiv4; ++i) {

~ ml28 x1 = mm load ps(x+4*i); // aligned (fast) load
~ ml28 x2 = mm mul ps(x0,x1l); // multiply
_mm_store ps(x+4*i,x2); // store back aligned

}

// do the remaining entries
for (int i=ndiv4*4 ; i< n ; ++i)
X[1] *= a;

A first example: sscal

Multiply a vector by a scalar, assuming aligned data, but now arbitrary
vector length. We need to do the remaining values by hand

void sscal(int n, float a, float* Xx)

{
// load the scale factor four times into a register
~ ml128 x0 = mm setl ps(a);
int ndiv4 = n/4;

// loop over chunks of 4 values
for (int i=0; i<ndiv4; ++i) {

~ ml28 x1 = mm load ps(x+4*i); // aligned (fast) load
~ ml28 x2 = mm mul ps(x0,xl); // multiply
_mm_store ps(x+4*i,x2); // store back aligned

}

// do the remaining entries
int i = ndivd*4;
switch (n-1i) {
case 3: x[1i+t2] *= a;
case 2: x[1i+tl] *= a;
case 1l: x[1i] *= a;
}
}

Load /store

- An incomplete summary of load/store instruction

Instruction Types Explanation
set1 all sets all elements to a given value
set all set each element to a different value
setr all set in reverse order
setzero pd, ps, si64,si128,si256 set to zero
load1 pd,ps load a single value into each element of the register
broadcast pd,ps same as load1 but much faster (AVX only)
load pd, ps, Ss, sd, si128,si256 | load values from memory into a register
loadr pd,ps load values in reverse order
loadu pd, ps, ss, sd, si128,si256 | load unaligned values from memory (slow!)
streamload si128 load integer values bypassing the cache
store pd, ps, ss, sd, si128,si256 | store values from register into memory
storeu pd, ps, ss, sd, si128,si256 | store values from register into unaligned memory (slow!)
stream pd, ps, pi,si128,si256 store values into memory bypassing the cache

- The streaming loads and stores bypass the cache. This reduces cache
eviction, but it is hard to see a difference in many codes

Prefetch

Prefetch instruction can be used to hint that some data will be used
later and should already be fetched into the cache since they will soon
be used

void mm prefetch (char const *p, int hint)

Hint meaning
_MM_HINT_TO prefetch into L1 (and L2 and L3) cache. Use for integer data.
_MM_HINT_T1 prefetch into L2 (an L3) cache. Use for floating point data.
_MM_HINT_T2 prefetch into L3 cache. Use if the cache line is not reused much.
_MM_HINT_NTA prefetch into L2 but not L3 cache. Use if the data is needed only once.

Example:

// loop over chunks of 4 values
for (int i=0; i<ndiv4; ++i) {

_mm_prefetch((char*) y+4*i+8, MM HINT NTA); // prefetch data for two iterations later
~ ml128 x1 = mm load ps(x+4*i); // aligned (fast) load

~ ml28 x2 = mm mul ps(x0,x1l); // multiply

_mm_store ps(x+4*i,x2); // store back aligned

}

Arithmetic floating-point instructions

* An incomplete summary of arithmetic instructions

Instruction Explanation
add, sub +, -
addsub - on even, + on odd elements
mul, div *
ceil ceil, round up
floor floor, round down
round round, allows specification of rounding policy
min min
max max
rcp reciprocal (inverse)
sqrt sqrt
rsqrt reciprocal (inverse) square root
and andnot bitwise &, &!
or Xxor bitwise |, A

Arithmetic integer instructions

* An incomplete summary of arithmetic instructions

Instruction Explanation
add, adds +, adds is saturated add: assigns maximum/minimum if overflow or underflow
sub, subs -, subs is saturated sub: assigns maximum/minimum if overflow or underflow
avg rounded average of x and y: (x+y+1)/2
mul *, multiplies low words into result of twice the size - ignores every second input value
mullo *, low word of product (result has twice the number of bits)
mulhi *, high word of product (result has twice the number of bits)
sign transfers sign of one integer to another and sets it to zero if “sign” is 0
min, max min, max
and andnot &, &!
or xor [, A
sll, slli <<, the version ending in i needs an integer constant shift
srl,slri >> for unsigned integers, shifting in 0 bits

Comparisons

An incomplete summary of important comparison instructions

Instruction Types Explanation
cmpeq, cmpneq all x==y , Xl=y
cmpgt, cmpge all X>Y, X>=X
cmplt, cmple all X<y, X<=y
cmpngt, cmpnge floating point | !(x>y), !(x>=x)
cmpnlt, cmpnle floating point | !(x<y), !(x<=y)

cmpord, cmpunord

floating point

tests whether the number are ordererd or unordered (e.g. if NaN)

test_all_ones

i128

test if all bits are 1

test_all_zeros

i128

test if all bits are 0

test_mix_ones_zeros

i128

test if either all are 0 or all are 1

_axpy operations

- Alignment is trickier with operations involving two vectors
. E)fampLe _ixpy:
y=ax+y
* We need both arrays aligned in the same way
« Two solutions:

either always require alignment
or code a slow version to use if not aligned

x[0]

x{1] § ylo]
LI Ny 0
syl

x[3]

x[n-1]

/

y[n-1]

X-array
Y-array

saxpy

a vectorized saxpy implementation assuming alignment

void saxpy(int n, float a, float* x, float* y)

{
// load the scale factor four times into a register
~ ml128 x0 = mm setl ps(a);

int ndiv4 = n/4;

// loop over chunks of 4 values

for (int i=0; i<ndiv4; ++i) {
~ ml28 x1 = mm load ps(x+4*i); // aligned (fast) load
_ ml28 x2 = mm load ps(y+4*i); // aligned (fast) load
~ ml128 x3 = mm mul ps(x0,x1l); // multiply
~ ml28 x4 = mm add ps(x2,x3); // add
_mm store ps(yt4*i,x4); // store back aligned

}

// do the remaining entries
for (int i=ndiv4*4; i< n; ++i)
yli] += a*x[i];

sdot

a vectorized dot product assuming alignment

we have to manually do the reduction

float sdot(int n, float* x, float* y)

{
// set the total sum to 0, one sum per vector element
~ ml28 x0 = mm setl ps(0.);

// loop over chunks of 4 values

int ndiv4 = n/4;

for (int 1i=0; i<ndiv4; ++i) {
_ ml28 x1 ~mm load ps(x+4*i); // aligned (fast) load
_ ml28 x2 ~mm load ps(y+4*i); // aligned (fast) load
~ ml28 %3 = mm mul ps(xl,x2); // multiply
x0 = mm add ps(x0,x3); // add

nn-

}

// store the 4 partial sums back to aligned memory
float _ attribute ((aligned(32))) tmp[4];
_mm store ps(tmp,x0);

// do the reduction over the vector elements by hand
float sum = tmp[0]+tmp[l]+tmp[2]+tmp[3];

// do the remaining entries

for (int i=ndiv4*4 ; i< n ; ++i)
sum += X[1]*y[1];

return sum; https://godbolt.org/z/nbaj7zse3

https://godbolt.org/z/nbaj7zse3

Matrix-vector multiplication

Given that x, y are appropriately aligned and n % 8 ==

#include <string.h>
#include <immintrin.h>

void mxv(int m, int n, float * restrict A, float * restrict x,
float * restrict y)

{
_ m256 AA, XX, YVYi

int simd width = 8;

memset(y, 0, m * sizeof(float));
for (int i=0; i<m; ++i) {
yy = mm256_ set ps(0, 0, O, O, O, O, O, 0);

for (int j=0; j<n; Jj+=simd width) {

AA = mm256 load ps(A+i*n+j);

XX ~mm256_ load ps(x+j);

yy = mm256 fmadd ps(AA, xx, yy); // yy = AA*xx + yy
}

y[i] yY[OI+yy[1]1+yy[21+yy[31+yy[4]1+yy[5]1+yyl[61+yy[7]1;

https://godbolt.org/z/vVW5K4seT1

https://godbolt.org/z/vW5K4seT1

Automatic vectorization with gcc

- Modern compilers try to automatically vectorize loops. This can save
you time but will sometimes not be as good as vectorization by hand.

- Compiler options for gcc/g++
* Turn vectorization on: -ftree-vectorize
» Generate vectorization reports: -Om -ftree-vectorizer-verbose=n

Description

No output at all.

Report vectorized loops.

Also report unvectorized "well-formed" loops and respective reason.

Also report alignment information (for "well-formed" loops).

Like level 3 + report for non-well-formed inner-loops.

a|lh|j|O|IDN|—=]|]O]|>S

Like level 3 + report for all loops.

6 Print all vectorizer dump information.

* Further reading
* GNU documentation
http://gcc.gnu.org/projects/tree-ssa/vectorization.html
« Critical analysis of what autovectorization in gcc can and cannot do:
« http://locklessinc.com/articles/vectorize/

http://gcc.gnu.org/projects/tree-ssa/vectorization.html
http://locklessinc.com/articles/vectorize/

Aliasing prevents optimization

Consider the saxpy operation:

void saxpy(int n, float a, float* x, float* y)

{
for (int i=0; i<n; ++1i)
y[i] += a*x[i];
}
Naively it seems this can be vectorized since there are no

dependencies: each iteration accesses different elements
Now consider the following call:

float x[10007;
saxpy (999, 1., x, x+1)

Problem: now y=x+1 and we have an “aliasing” problem. The loop
becomes

for (int i=0; i<n; ++1i)
X[1i+l] += a*x[1];

We have potential dependencies! No optimization or vectorization is
actually possible unless we prevent aliasing.

restrict

Fortran-77 can optimize aggressively since aliasing is forbidden

Fortran-90 and later, C, C++, ... have pointers and with pointers aliasing
becomes a potential problem and prevents many optimizations.

Solution in C: restrict keyword to declare that pointers are not aliased.

void saxpy(int n, float a, float* restrict x, float* restrict y)

{
for (int 1i=0; i<n; ++1i)
yl[i] += a*x[1i];

The compiler now assumes no aliasing.

Note that the compiler does not check for aliasing. The caller must be
careful!

Declaring alignment

In our manually vectorized code we assumed the absence or presence
of alignment. We can also tell this to the compiler:

gcc/g++ have the following extension
__builtin assume aligned(variable,alignment);

void saxpy(int n, float a, float* restrict x, float* restrict y)

{
__builtin assume aligned(x,32);
__builtin assume aligned(y,32);
for (int i=0; i<n; ++1i)
y[i] += a*x[1i];

Vectorization with OpenMP

« The simd construct (OpenMP 4.0+)

#pragma omp simd: declares that a loop will be utilizing SIMD
float a[8], b[8];

#pragma omp simd
for (int n=0; n<8; ++n) a[n] += b[n];

#pragma omp declare simd: indicates a function or procedure that is
explicitly designed to take advantage of SIMD parallelism.

The compiler may create multiple versions of the same function for different CPU
capabilities for SIMD processing

* aligned attribute: hints the compiler that each element listed is aligned to the
given number of bytes.

#pragma omp declare simd aligned(a,b:16)
void add arrays(float *__restrict__ a, float *__restrict__ b)

{
#pragma omp simd aligned(a,b:16)
for (int n=0; n<8; ++n) a[n] += b[n];

}

The compiler attempts to vectorize regardless of the OpenMP simd
directives

Vectorization with OpenMP

collapse clause: can be added to bind the vectorization into multiple
nested loops

#pragma omp simd collapse(2)
for (int i=0; i<4; ++1i)
for (int j=0; j<4; ++j)
a[j*4+i] += b[i*4+]];

reduction clause: can be used with SIMD just like with parallel loops

int sum=0;
#pragma omp simd reduction(+:sum)
for (int n=0; n<1000; ++n) sum += table[n];

Vectorization with OpenMP

- The for simd construct: for and simd can be combined
« divide the execution of a loop into multiple threads
« execute the loop slices in parallel using SIMD

float sum(float* table)

{
float result=0;

#pragma omp parallel for simd reduction(+:result)
for (int n=0; n<1000; ++n)
result += table[n];

return result;

}

References

Prof. M. Troyer, HPCSE |, ETH Zurich
https://en.wikipedia.org/wiki/Fast inverse square root

https://www.mathworks.com/help/simulink/ref extras/hdlreciprocal.html

https://en.wikipedia.org/wiki/Fast_inverse_square_root
https://www.mathworks.com/help/simulink/ref_extras/hdlreciprocal.html

