
1

Μεταγλωττιστές για
Ενσωματωμένα Συστήματα

Χειμερινό Εξάμηνο 2023-24
«SIMD Vectorization»

Παναγιώτης Χατζηδούκας

SIMD (vector instructions)
• Recall SIMD: Single Instruction Multiple Data

• we perform the same operation on many values at once.
• This was pioneered by the vector supercomputers

• Cray X/MP
• Since 1999 part of all Intel CPUs

• SSE (Streaming SIMD Extensions)
• AVX (Advanced Vector Extensions)

• The easiest way of getting parallel
speedup

SIMD registers and operations
• SIMD units contain vector registers

• 128-bit registers XMM0 - XMM15 for SSE
• 256-bit registers YMM0-YMM15 for AVX,

overlapping the XMM registers

• The SSE XMM registers can store
• XMM register
• 2 doubles
• 4 floats
• 2 64-bit integer
• 4 32-bit integers
• 8 16-bit integer
• 16 bytes

• AVX register can store 8 float or 4 double, integers since AVX2
• AVX-512 doubles that again

xmm

x1 x2

y1 y2 y3 y4

i1 i2

j1 j2 j3 j4

k1 k2 k3 k4 k5 k6 k7 k8

SIMD vector operations
• SIMD vector operations act on all values in the vector at once
• Example: adding four floats with one “packed floating point” instruction

• Advantages:
• One instruction instead of 4
• Memory access can be optimized
• An easy way to gain speed for almost any code

x0 x1 x2 x3

+

y0 y1 y2 y3

=

x0+y0 x1+y1 x2+y2 x3+y3

SSE/AVX versions
• Intel and AMD have introduced more and more SIMD instructions with

every new processor generation. The history is complex, and only
roughly summarized below

Generation Year First Intel CPU Main features

SSE 1999 Pentium III

SSE2 2001 Pentium 4 SSE registers can be used together with
scalar floating-point registers

SSE3 2004 Pentium 4 - Prescott more instructions, and conversions
between floating-point and integer

SSE4 2006 Core 2 More instructions

AVX 2011 Sandy Bridge floating point 256 bit registers

AVX2 2013 Haswell integer 256 bit registers

AVX-512 2017 Skylake 512 bit registers

SSE/AVX documentation
• The best documentation tool is by Intel, at

• https://software.intel.com/sites/landingpage/IntrinsicsGuide/
• An excellent documentation tool

• lists all functions with clear explanation and documentation
• allows to search for functions

https://software.intel.com/sites/landingpage/IntrinsicsGuide/

Review: Caches
• Memory access speed did not keep up with Moore’s law
• Are added to speed up memory access

• Many GByte of slow but cheap DRAM
• 2-20 MByte of fast L3-Cache
• 256-512 kByte of faster L2-Cache per core
• 2x32 - 2x64 kByte of fastest L1-Cache per core

(instruction and data cache)
• Data that is read is stored in the caches and kept there until it needs to

be evicted because new data is loaded
• Data written to memory is written to the cache and only further to

memory if it needs to be evicted (or if we need to synchronize memory
access between cores)

• Problems reusing memory will run faster!

Comparison of memory/cache speeds
• Data for Intel Sandy Bridge CPU

Size Access Time in cycles

L1 cache 2x32 KB 4-5

L2 cache 256 KB 12-19

L3 cache 3-20 MB 30-50

Memory Many GB ~ 300

How does a cache work?
• CPU requests a word (e.g. 4 bytes) from memory

• A full “cache line” (nowadays typically: 64 bytes) is read from memory and
stored in the cache

• The first word is sent to the CPU
• CPU requests another word from memory

• Cache checks whether it has already read that part as part of the previous
cache line

• If yes, the word is sent quickly from cache to CPU
• If not, a new cache line is read

• Once the cache is full, the oldest data is overwritten
• Locality of memory references are important for speed

Data alignment
• To achieve optimal speed data should be aligned on cache line

boundaries.
• Consider what happens if we load one value that is not at the start of a

cache line (on an old machine with 16 byte cache lines):

• SSE registers are 16 bytes and need 16-byte alignment
• AVX registers are 32 bytes and need 32-byte alignment
• It is even better to align on cache line boundaries: 64/128

bytes on modern Intel CPUs

Alignment

• Aligned memory can be allocated
• on POSIX (Linux, Unix) systems by calling posix_memalign
• On Windows systems by calling by calling _aligned_malloc

• Easiest using an alignment specifier in the declaration
float __attribute__((aligned(32))) sse[8];

Allocating aligned data

• Array of Structures (AoS) vs Structure of Arrays (SoA)

Memory layout

#define N (128*1024*1024)

typedef struct {
double x;
double y;

} point_t ;

point_t points[N];

for (int i = 0; i < N ; ++ i) {
points[i].x = drand48();
points[i].y = drand48();

}

#define N (128*1024*1024)

struct {
double x[N];
double y[N];

} points;

for (int i = 0; i < N ; ++ i) {
points.x[i] = drand48();
points.y[i] = drand48();

}

- The points are stored in a array of
structures (AoS)

- Typical object-based approach
- Data access is performed through

objects

- The points are stored a structure of
arrays (SoA)

- No object abstraction but focus on
the data of the points

- Access to the individual information
of the points

• Ease of programming and performance
• AoS can cause unecessary memory traffic

• Pollutes the cache with unused data
• AoS not suitable for SIMD vectorization

• Data transformation from AoS to SoA must be performed

AoS vs SoA

#pragma omp parallel for reduction(+:result)
for (int i = 0; i < N; ++i) {

result += (points[i].x); // AoS
}

#pragma omp parallel for reduction(+:result)
for (int i = 0; i < N ; ++i) {

result += (points.x[i]); // SoA
}

• A loop can only be vectorized (or parallelized by threads) if there are no
dependencies between the iterations:
• A linear congruential generator cannot be vectorized since one iteration

depends on the previous one. We must wait for it to finish.

• adding vectors by saxpy can be vectorized (no dependencies)

• a lagged Fibonacci generator can be vectorized for vector lengths up to
min(p,q). Dependencies only beyond a distance min(p,q)

• Vector supercomputers had vector lengths up to 1024 elements.
• SSE has at most 16 bytes and AVX at most 32 bytes

• the lagged Fibonacci is easier to vectorize

When can a loop be vectorized?

for (int i=1 ; i<N; ++i)
rnd[i] = a* rnd[i-1] + c;

for (int i=0 ; i<N; ++i)
x[i] = a*x[i] + y[i];

for (int i=std::max(p,q) ; i<N; ++i)
rnd[i] = rnd[i-p] + rnd[i-q];

• Look at every variable in the loop and check whether it might be written
or read by another loop iteration. If so there is a dependency.

• Some dependencies can be removed by introducing additional variables

• now both loops can be safely vectorized or parallelized
• Another special case are reductions:

• reductions can be vectorized, but it needs special care
• in OpenMP parallelization there is the reduction clause

Detecting dependencies

for (int i=0; i<N-1; i++) {
x = (b[i] + c[i])/2;
a[i] = a[i+1] + x;

}

for (int i=0; i<N-1; i++)
a2[i] = a[i+1];

for (int i=0; i<N-1; i++) {
x = (b[i] + c[i])/2;
a[i] = a2[i] + x;

}

double s=0;
for (int i=0; i<N; i++)
s += x[i]*y[i];

• SIMD instructions can be used through assembly language.
Complicated!

• Compilers offer support through intrinsics. Special types and functions
that will be mapped directly to registers and SIMD instructions.

• Include the appropriate header
or use the header <x86intrin.h>
that is available with some compilers
to load all headers available depending
on the target platform

• Enable code generation for SSE or AVX with the right compiler switches
• With gcc one option is to use the -msse3, -msse4 or -maxv to enable

SSE3, SSE4 or AVX support

Using SIMD instructions

MMX <mmintrin.h>

SSE <xmmintrin.h>

SSE2 <emmintrin.h>

SSE3 <pmmintrin.h>

SSSE3 <tmmintrin.h>

SSE4.1 <smmintrin.h>

SSE4.2 <nmmintrin.h>

SSE4A <ammintrin.h>

AES <wmmintrin.h>

AVX <immintrin.h>

Intrinsics: register data types
• The intrinsics headers define a few datatypes that map directly to SSE

or AVX registers. The compiler will place such variables in the registers.
• Note: these start with two underscores!

__m128 4 floats

__m128d 2 doubles

__m128i Integers of any size

__m256 8 floats

__m256d 4 doubles

__m256i integers of any size, AVX2

__m512 16 floats

__m512d 8 doubles

__m512i integers of any size, AVX-512

Intrinsics: naming of operations
• SSE and AVX instructions have a certain naming scheme

• SSE operations: _mm_name_type
• AVX operations: _mm256_name_type
• operations on types shorter than a full register will not modify the higher bits

type length in bits description

ss 32 a single float

ps 128,256 or 512 4, 8, or 16 floats

sd 64 a single double

pd 128,256 or 512 2, 4, or 8 doubles

si64 64 any integers

si128 128 any integers

si256 256 any integers

pi8 64 8 8-bit integers

pi16 64 4 16-bit integers

pi32 64 2 32-bit integers

epi8 128,256 or 512 16, 32 or 64 8-bit integers

epi16 128,256 or 512 8, 16 or 32 16-bit integers

epi32 128,256 or 512 4, 8 or 16 32-bit integers

epi64 128,256 or 512 2, 4 or 8 64-bit integers

• Multiply a vector by a scalar, assuming aligned data and a vector length
that is a multiple of 4

• We are using four instructions: two loads, a multiplication and a store

A first example: sscal

void sscal(int n, float a, float* x)
{
// load the scale factor four times into a register
__m128 x0 = _mm_set1_ps(a);
// loop over chunks of 4 values
for (int i=0; i<n/4; ++i) {
__m128 x1 = _mm_load_ps(x+4*i); // aligned (fast) load
__m128 x2 = _mm_mul_ps(x0,x1); // multiply
_mm_store_ps(x+4*i,x2); // store back aligned

}
}

• Multiply a vector by a scalar, assuming aligned data, but now arbitrary
vector length. We need to do the remaining values by hand

A first example: sscal

void sscal(int n, float a, float* x)
{
// load the scale factor four times into a register
__m128 x0 = _mm_set1_ps(a);

int ndiv4 = n/4;
// loop over chunks of 4 values
for (int i=0; i<ndiv4; ++i) {
__m128 x1 = _mm_load_ps(x+4*i); // aligned (fast) load
__m128 x2 = _mm_mul_ps(x0,x1); // multiply
_mm_store_ps(x+4*i,x2); // store back aligned

}

// do the remaining entries
for (int i=ndiv4*4 ; i< n ; ++i)
x[i] *= a;

}

• Multiply a vector by a scalar, assuming aligned data, but now arbitrary
vector length. We need to do the remaining values by hand

A first example: sscal

void sscal(int n, float a, float* x)
{
// load the scale factor four times into a register
__m128 x0 = _mm_set1_ps(a);

int ndiv4 = n/4;
// loop over chunks of 4 values
for (int i=0; i<ndiv4; ++i) {
__m128 x1 = _mm_load_ps(x+4*i); // aligned (fast) load
__m128 x2 = _mm_mul_ps(x0,x1); // multiply
_mm_store_ps(x+4*i,x2); // store back aligned

}

// do the remaining entries
int i = ndiv4*4;
switch (n-i) {
case 3: x[i+2] *= a;
case 2: x[i+1] *= a;
case 1: x[i] *= a;

}
}

Load /store
• An incomplete summary of load/store instruction

• The streaming loads and stores bypass the cache. This reduces cache
eviction, but it is hard to see a difference in many codes

Instruction Types Explanation

set1 all sets all elements to a given value

set all set each element to a different value

setr all set in reverse order

setzero pd, ps, si64,si128,si256 set to zero

load1 pd,ps load a single value into each element of the register

broadcast pd,ps same as load1 but much faster (AVX only)

load pd, ps, ss, sd, si128,si256 load values from memory into a register

loadr pd,ps load values in reverse order

loadu pd, ps, ss, sd, si128,si256 load unaligned values from memory (slow!)

streamload si128 load integer values bypassing the cache

store pd, ps, ss, sd, si128,si256 store values from register into memory

storeu pd, ps, ss, sd, si128,si256 store values from register into unaligned memory (slow!)

stream pd, ps, pi,si128,si256 store values into memory bypassing the cache

Prefetch
• Prefetch instruction can be used to hint that some data will be used

later and should already be fetched into the cache since they will soon
be used

• Example:

void _mm_prefetch (char const *p, int hint)

// loop over chunks of 4 values
for (int i=0; i<ndiv4; ++i) {

_mm_prefetch((char*) y+4*i+8,_MM_HINT_NTA); // prefetch data for two iterations later
__m128 x1 = _mm_load_ps(x+4*i); // aligned (fast) load
__m128 x2 = _mm_mul_ps(x0,x1); // multiply
_mm_store_ps(x+4*i,x2); // store back aligned

}

Hint meaning

_MM_HINT_T0 prefetch into L1 (and L2 and L3) cache. Use for integer data.

_MM_HINT_T1 prefetch into L2 (an L3) cache. Use for floating point data.

_MM_HINT_T2 prefetch into L3 cache. Use if the cache line is not reused much.

_MM_HINT_NTA prefetch into L2 but not L3 cache. Use if the data is needed only once.

Arithmetic floating-point instructions
• An incomplete summary of arithmetic instructions

Instruction Explanation

add, sub +, -

addsub - on even, + on odd elements

mul, div *, /

ceil ceil, round up

floor floor, round down

round round, allows specification of rounding policy

min min

max max

rcp reciprocal (inverse)

sqrt sqrt

rsqrt reciprocal (inverse) square root

and andnot bitwise &, &!

or xor bitwise |, ^

Arithmetic integer instructions
• An incomplete summary of arithmetic instructions

Instruction Explanation

add, adds +, adds is saturated add: assigns maximum/minimum if overflow or underflow

sub, subs -, subs is saturated sub: assigns maximum/minimum if overflow or underflow

avg rounded average of x and y: (x+y+1)/2

mul *, multiplies low words into result of twice the size - ignores every second input value

mullo *, low word of product (result has twice the number of bits)

mulhi *, high word of product (result has twice the number of bits)

sign transfers sign of one integer to another and sets it to zero if “sign” is 0

min, max min, max

and andnot &, &!

or xor |, ^

sll, slli <<, the version ending in i needs an integer constant shift

srl,slri >> for unsigned integers, shifting in 0 bits

Comparisons
• An incomplete summary of important comparison instructions

Instruction Types Explanation

cmpeq, cmpneq all x==y , x!=y

cmpgt, cmpge all x>y, x>=x

cmplt, cmple all x<y, x<=y

cmpngt, cmpnge floating point !(x>y), !(x>=x)

cmpnlt, cmpnle floating point !(x<y), !(x<=y)

cmpord, cmpunord floating point tests whether the number are ordererd or unordered (e.g. if NaN)

test_all_ones i128 test if all bits are 1

test_all_zeros i128 test if all bits are 0

test_mix_ones_zeros i128 test if either all are 0 or all are 1

_axpy operations
• Alignment is trickier with operations involving two vectors

• Example _axpy:
𝑦⃗ = a 𝑥⃗ + 𝑦⃗

• We need both arrays aligned in the same way
• Two solutions:

• either always require alignment
• or code a slow version to use if not aligned

saxpy
• a vectorized saxpy implementation assuming alignment

void saxpy(int n, float a, float* x, float* y)
{
// load the scale factor four times into a register
__m128 x0 = _mm_set1_ps(a);

int ndiv4 = n/4;
// loop over chunks of 4 values
for (int i=0; i<ndiv4; ++i) {
__m128 x1 = _mm_load_ps(x+4*i); // aligned (fast) load
__m128 x2 = _mm_load_ps(y+4*i); // aligned (fast) load
__m128 x3 = _mm_mul_ps(x0,x1); // multiply
__m128 x4 = _mm_add_ps(x2,x3); // add
_mm_store_ps(y+4*i,x4); // store back aligned

}

// do the remaining entries
for (int i=ndiv4*4; i< n; ++i)
y[i] += a*x[i];

}

sdot
• a vectorized dot product assuming alignment
• we have to manually do the reduction

float sdot(int n, float* x, float* y)
{
// set the total sum to 0, one sum per vector element
__m128 x0 = _mm_set1_ps(0.);

// loop over chunks of 4 values
int ndiv4 = n/4;
for (int i=0; i<ndiv4; ++i) {
__m128 x1 = _mm_load_ps(x+4*i); // aligned (fast) load
__m128 x2 = _mm_load_ps(y+4*i); // aligned (fast) load
__m128 x3 = _mm_mul_ps(x1,x2); // multiply
x0 = _mm_add_ps(x0,x3); // add

}

// store the 4 partial sums back to aligned memory
float __attribute__((aligned(32))) tmp[4];
_mm_store_ps(tmp,x0);

// do the reduction over the vector elements by hand
float sum = tmp[0]+tmp[1]+tmp[2]+tmp[3];

// do the remaining entries
for (int i=ndiv4*4 ; i< n ; ++i)
sum += x[i]*y[i];

return sum;
}

https://godbolt.org/z/nbaj7zse3

https://godbolt.org/z/nbaj7zse3

Matrix-vector multiplication
• Given that x, y are appropriately aligned and n % 8 == 0

#include <string.h>
#include <immintrin.h>

void mxv(int m, int n, float * restrict A, float * restrict x,
float * restrict y)

{
__m256 AA, xx, yy;
int simd_width = 8;

memset(y, 0, m * sizeof(float));
for (int i=0; i<m; ++i) {
yy = _mm256_set_ps(0, 0, 0, 0, 0, 0, 0, 0);

for (int j=0; j<n; j+=simd_width) {
AA = _mm256_load_ps(A+i*n+j);
xx = _mm256_load_ps(x+j);
yy = _mm256_fmadd_ps(AA, xx, yy); // yy = AA*xx + yy

}

y[i] = yy[0]+yy[1]+yy[2]+yy[3]+yy[4]+yy[5]+yy[6]+yy[7];
}

}
https://godbolt.org/z/vW5K4seT1

https://godbolt.org/z/vW5K4seT1

Automatic vectorization with gcc
• Modern compilers try to automatically vectorize loops. This can save

you time but will sometimes not be as good as vectorization by hand.
• Compiler options for gcc/g++

• Turn vectorization on: -ftree-vectorize
• Generate vectorization reports: -Om -ftree-vectorizer-verbose=n

• Further reading
• GNU documentation

• http://gcc.gnu.org/projects/tree-ssa/vectorization.html

• Critical analysis of what autovectorization in gcc can and cannot do:
• http://locklessinc.com/articles/vectorize/

n Description

0 No output at all.

1 Report vectorized loops.

2 Also report unvectorized "well-formed" loops and respective reason.

3 Also report alignment information (for "well-formed" loops).

4 Like level 3 + report for non-well-formed inner-loops.

5 Like level 3 + report for all loops.

6 Print all vectorizer dump information.

http://gcc.gnu.org/projects/tree-ssa/vectorization.html
http://locklessinc.com/articles/vectorize/

Aliasing prevents optimization
• Consider the saxpy operation:

• Naïvely it seems this can be vectorized since there are no
dependencies: each iteration accesses different elements

• Now consider the following call:

• Problem: now y=x+1 and we have an “aliasing” problem. The loop
becomes

• We have potential dependencies! No optimization or vectorization is
actually possible unless we prevent aliasing.

void saxpy(int n, float a, float* x, float* y)
{
for (int i=0; i<n; ++i)
y[i] += a*x[i];

}

float x[1000];
saxpy(999, 1., x, x+1)

for (int i=0; i<n; ++i)
x[i+1] += a*x[i];

restrict
• Fortran-77 can optimize aggressively since aliasing is forbidden
• Fortran-90 and later, C, C++, ... have pointers and with pointers aliasing

becomes a potential problem and prevents many optimizations.
• Solution in C: restrict keyword to declare that pointers are not aliased.

• The compiler now assumes no aliasing.
• Note that the compiler does not check for aliasing. The caller must be

careful!

void saxpy(int n, float a, float* restrict x, float* restrict y)
{
for (int i=0; i<n; ++i)
y[i] += a*x[i];

}

Declaring alignment
• In our manually vectorized code we assumed the absence or presence

of alignment. We can also tell this to the compiler:
• gcc/g++ have the following extension

__builtin_assume_aligned(variable,alignment);

void saxpy(int n, float a, float* restrict x, float* restrict y)
{
__builtin_assume_aligned(x,32);
__builtin_assume_aligned(y,32);
for (int i=0; i<n; ++i)
y[i] += a*x[i];

}

Vectorization with OpenMP
• The simd construct (OpenMP 4.0+)

• #pragma omp simd: declares that a loop will be utilizing SIMD

• #pragma omp declare simd: indicates a function or procedure that is
explicitly designed to take advantage of SIMD parallelism.
• The compiler may create multiple versions of the same function for different CPU

capabilities for SIMD processing
• aligned attribute: hints the compiler that each element listed is aligned to the

given number of bytes.

• The compiler attempts to vectorize regardless of the OpenMP simd
directives

float a[8], b[8];
...
#pragma omp simd
for (int n=0; n<8; ++n) a[n] += b[n];

#pragma omp declare simd aligned(a,b:16)
void add_arrays(float *__restrict__ a, float *__restrict__ b)
{
#pragma omp simd aligned(a,b:16)
for (int n=0; n<8; ++n) a[n] += b[n];

}

Vectorization with OpenMP
• collapse clause: can be added to bind the vectorization into multiple

nested loops

• reduction clause: can be used with SIMD just like with parallel loops

#pragma omp simd collapse(2)
for (int i=0; i<4; ++i)
for (int j=0; j<4; ++j)
a[j*4+i] += b[i*4+j];

int sum=0;
#pragma omp simd reduction(+:sum)
for (int n=0; n<1000; ++n) sum += table[n];

Vectorization with OpenMP
• The for simd construct: for and simd can be combined

• divide the execution of a loop into multiple threads
• execute the loop slices in parallel using SIMD

float sum(float* table)
{
float result=0;
#pragma omp parallel for simd reduction(+:result)
for (int n=0; n<1000; ++n)
result += table[n];

return result;
}

References
• Prof. M. Troyer, HPCSE I, ETH Zurich
• https://en.wikipedia.org/wiki/Fast_inverse_square_root
• https://www.mathworks.com/help/simulink/ref_extras/hdlreciprocal.html

https://en.wikipedia.org/wiki/Fast_inverse_square_root
https://www.mathworks.com/help/simulink/ref_extras/hdlreciprocal.html

