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Outline
• Data and control dependencies
• Data dependencies in loops
• Advanced code transformations

• Loop merge (fusion)
• Loop distribution (fission)
• Loop reversal
• Loop peeling
• Loop bump
• Array copy transformation
• Software prefetching
• Loop tiling/blocking



• Data dependencies
• statement S3 cannot be moved before either 

S1 or S2 without producing incorrect values

• Control dependencies
• statement S2 cannot be executed before S1 in 

a correctly transformed program, because the 
execution of S2 is conditional upon the 
execution of the branch in S1

• Statement S3 cannot be executed before S2

S1: PI=3.14;
S2: R=5.0;
S3: AREA=2 * PI * R

S1: if (temp==0)
S2:    a=5.0;
S3: a=3.0;

Dependencies in programs (1)



• Definition: There is a data dependence from statement S1 to 
statement S2 (statement S2 depends on statement S1) if 
and only if
• both statements access the same memory location and at least
• one of them stores into it and
• there is a feasible run-time execution path from S1 to S2.

Dependencies in programs (2)



• Data dependencies reside into 3 categories
• Read after Write (RAW) or true dependence
• Write after Read (WAR) or anti-dependence
• Write after Write (WAW) or output dependence

S1: PI=3.14; 

S2: R=2;

S3: S=2 x PI x R //S3 cannot be executed before S1, S2 – true dependence

S1: T1=R1; 

S2: R2=PI-T1; 

S3: R1=PI+S;

T=…
…=T

…=T 
T=…

T=… 
T=…

S1: T1=R1; 
S2: R2=PI-T1; 
S3: R3=PI+S;

S1: T1=R1; 
S2: T1=R2+5;

S1: T1=R1; 
S2: T2=R2+5;

WAW dependence is 
eliminated by applying 

register renaming

A:

B:

C:

//S3 cannot be executed before or in parallel with S1 – anti-
//dependence. But it can be eliminated by applying register
//renaming – this is why it is called ‘anti’ dependence

Data Dependencies – classification



• Data dependencies
• Read after Write (RAW) or true dependence

• Write after Read (WAR) or anti-dependence

• Write after Write (WAW) or output dependence

• The convention for graphically displaying dependence is to 
depict the edge as flowing from the statement that executes 
first (the source) to the one that executes later (the sink).
• Here S2 depends on S1

δ

S1 S2
δ-1

Data Dependencies – Terminology

δ1
S2 OR S1 S2S1

S2
δ0

S1



Data Dependencies

Loop-Dependent Loop-Independent

True Anti Output True Anti Output

Data Dependencies – classification



• Loop dependent dependencies
• the statement S1 on any loop iteration 

depends on the instance of itself from the 
previous iteration.

• A true dependence occurs for each 
different colour

• The program writes in iteration i and reads 
in iteration i+1

• The iterations cannot be executed in 
parallel

for (i = 1; i<N i++)
S1: A(i+1) = A(i) + B(i)

i=1 : A[2] = A[1] + B[1]
i=2 : A[3] = A[2] + B[1]
i=3 : A[4] = A[3] + B[3]
i=4 : A[5] = A[4] + B[4]
i=5 : A[6] = A[5] + B[5]

…

Data Dependencies in loops



• On the right, there is a loop-dependent 
true dependence for (i = 1; i<N i++) 

S1: A(i+1) = A(i) + B(i)

i=1 : A[2] = A[1] + B[1]
i=2 : A[3] = A[2] + B[1]
i=3 : A[4] = A[3] + B[3]
i=4 : A[5] = A[4] + B[4]
i=5 : A[6] = A[5] + B[5]

…

S1 S11δ 1

δn
1, -1, 0

True, Anti, Output

Nesting level value for loop-dependent dependencies or 
‘∞’ for loop-independent dependencies

Loop dependent dependencies: terminology



• Now, the distance of the dependence is 2
• Therefore i=1 and i=2 can be executed in 

parallel – no dependence exists

• No dependence exists 
between 2 iterations

• they can be executed in 
parallel or vectorized

S1: for (i = 1; i<N i++) 
S2: A(i+2) = A(i) + B(i)

i=1 : A[3] = A[1] + B[1]
i=2 : A[4] = A[2] + B[1]
i=3 : A[5] = A[3] + B[3]
i=4 : A[6] = A[4] + B[4]
i=5 : A[7] = A[5] + B[5]
i=6 : A[8] = A[6] + B[5]

…

S2 S21δ 1

Loop dependent dependencies: example



• It is convenient to characterize dependences by the 
distance between the source and sink of a dependence in 
the iteration space

• We express this in terms of distance vectors and direction 
vectors

• Distance Vector
• Suppose that there is a dependence from S1 on iteration i (of a loop 

nest of n loops) to S2 on iteration j, then the dependence distance 
vector d(i,j) is defined as a vector of length n such that d(i,j)k = jk – ik

• Direction Vector: is defined as a vector of length n such that

Distance Vector & Direction Vector



Data Dependencies: example

• Distance vector: d(i, j, k, n) = (0, 2, 0, -1)

• Direction vector: D(i, j, k, n) = (=, <, =, >)
• The dependence is always given by the leftmost non ‘=’ 

symbol

for (i = 1; i<10; i++) 
  for (j = 0; j<20; j++)
    for (k = 0; k<100; k++) 
      for (n = 2; n<80; n++)
S1:    A(i, j+2, k, n) = A(i, j, k, n+1) + temp;

S1 S1
1δ2

1δ2



• Loop Merge is a transformation that combines 2 
independent loop kernels that have the same loop bounds 
and number of iterations

• This transformation is not always safe
• data dependencies must be preserved

for (i=1; i<N; i++)
A[ i ] = B[ i ];

for (i=1; i<N; i++) 
B[ i ] = A[ i-1 ];

for (i=1; i<N; i++){ 
A[ i ] = B[ i ];
B[ i ] = A[ i-1 ];

}

Loop Merge / Loop Fusion (1)



• Benefits
• Reduces the number of arithmetical instructions

• Remember each loop is transformed into an add, compare and 
jump assembly instruction

• May improve data reuse
• May enable other loop transformations

• Drawbacks:
• May increase register pressure
• May hurt data locality (extra cache misses)
• May hurt instruction cache performance

Loop Merge / Loop Fusion (2)

for (i=1; i<N; i++)
A[ i ] = B[ i ];

for (i=1; i<N; i++) 
B[ i ] = A[ i-1 ];

for (i=1; i<N; i++){ 
A[ i ] = B[ i ];
B[ i ] = A[ i-1 ];

}



• Consider the case where the arrays are 
bigger than the L1 data cache, then
• In the first case, both arrays are accessed 

from L2 and/or main memory twice
• By merging the two loop kernels into one, 

the arrays are loaded once, and data 
locality is achieved

Main memory

L1 I-cache

L2 unified cache

L1 D-cache

RF

CPU
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Loop Merge / Loop Fusion (3)
for (i=1; i<N; i++)
A[ i ] = B[ i ];

for (i=1; i<N; i++) 
B[ i ] = A[ i-1 ];

for (i=1; i<N; i++){ 
A[ i ] = B[ i ];
B[ i ] = A[ i-1 ];

}



• Is the following transformation correct?
• NO – Data dependencies are not preserved

for (i=1; i<N; i++) 
A[ i ] = B[ i ];

for (i=1; i<N; i++) 
B[ i ] = A[ i+1 ];

for (i=1; i<N; i++){ 
A[ i ] = B[ i ];
B[ i ] = A[ i+1 ];
}

i=1: A[1] = B[1]
i=2: A[2] = B[2]
i=3: A[3] = B[3]

…

i=1: B[1] = A[2]
i=2: B[2] = A[3]
i=3: B[3] = A[4]

…

i=1: A[1] = B[1]
B[1] = A[2]

i=2: A[2] = B[2]
B[2] = A[3]

i=3:
…

On the left,
we write in A [ ] and
then read from A[ ]

On the right,
we read from A [ ]
and then write to A[ ] (wrong)

Loop Merge not always safe



• The following transformation is not correct
• Data dependencies are not preserved

• How to be sure
• The top subscript must be larger or equal to the bottom subscript
• Here, i >= i+1 is not true, thus loop merge is not safe

for (i=1; i<N; i++) 
A[ i ] = B[ i ];

for (i=1; i<N; i++)
B[ i ] = A[ i+1 ];

Loop Merge not always safe



• Loop Distribution is a transformation where a loop kernel is 
broken into multiple loop kernels over the same index range 
with each taking only a part of the original loop's body

• This transformation is not always safe
• data dependencies must be preserved
• The top subscript must be larger or equal to the bottom subscript

Loop Distribution / Loop Fission (1)

for (i=1; i<N; i++)
  A[ i ] = B[ i ];

for (i=1; i<N; i++)
B[ i ] = A[ i-1 ];

for (i=1; i<N; i++){
  A[ i ] = B[ i ];
  B[ i ] = A[ i-1 ];
}



• Benefits:
• May enable partial/full parallelization
• This optimization is most efficient in multi/many core processors 

that can split a task into multiple tasks for each processor
• May reduce register pressure
• May improve data locality (cache misses)
• May enable other loop transformations

• Drawbacks:
• Increases the number of arithmetical instructions
• May hurt data locality

for (i=1; i<N; i++)
  A[ i ] = B[ i ];

for (i=1; i<N; i++)
B[ i ] = A[ i-1 ];

for (i=1; i<N; i++){
  A[ i ] = B[ i ];
  B[ i ] = A[ i-1 ];
}

Loop Distribution / Loop Fission (2)



Activity
• Should we apply loop merge or not?

// A
for (i = 0; i < N; i++) 

for (j = 0; j < N; j++)

y[i] = y[i] + beta * A[i][j] * x[j];

for (i = 0; i < N; i++) 
for (j = 0; j < N; j++)

w[i] = w[i] + alpha * A[i][j] ;

//B

for (i = 0; i < N; i++) 

for (j = 0; j < N; j++)

y[i]+=A[i][j] * x[j]

for (i = 0; i < N; i++) 

for (j = 0; j < N; j++)

y2[i]+=A2[i][j] * x2[j]



• Loop reversal is a transformation that reverses the order of 
the iterations of a given loop

• It is not always safe
• Remember, in the direction vector, the leftmost non ‘=‘ symbol has 

to be the same as before
• Loop reversal has no effect on a loop-independent dependence.

for (i=start; i<=end; i++) 
A[i] = … ;

for (i=end; i>=start; i--)
A[i] = … ;
OR

for (i=start; i<=end; i++) 
A[end - (i - start)] = … ;

Loop Reversal (1)



• Loop reversal cannot be applied to i loop
• In this case D(i, j) = (>, >) and therefore the leftmost non ‘=‘ symbol 

changes, violating data dependencies
• Loop reversal can be applied to j loop though

• In this case D(i, j) = (<, <) and therefore the leftmost non ‘=‘ symbol 
does not change

for (i=0; i<N; i++)
for (j=0; j<P; j++)

A[j][i] = A[j+1][i-1] + temp;

d(i, j) = (1, -1)
D(i, j) = (<, >)

Dependence

Loop Reversal (2)



Loop Reversal (3)
• Main Benefits
• Increase parallelism

• In loop nests, loop reversal is used to uncover parallelism and 
move it to the outermost iterator possible

• Enable other transformations



• Problem: The array is accessed column-wise; this gives
• Low performance
• High energy consumption

• Potential Solution: Apply loop interchange
• However, loop interchange gives D(j, i) = (>, <), violating data 

dependencies
• Solution: apply loop reversal to the j loop which gives 

D(i, j) = (<, <)
• Then, loop interchange is valid as it gives D(j, i) = (<, <)

for (i=0; i<N; i++) 
for (j=0; j<P; j++)

A[j][i] = A[j+1][i-1] + temp;
D(i, j) = (<, >)

Dependence

Loop Reversal: example 1
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for (i=0; i<N; i++) 
for (j=0; j<P; j++)

A[j][i] = A[j+1][i-1] + temp;

Dependence
loop

D(i, j) = (<, >) reversal for (i=0; i<N; i++)
for (j=P-1; j>=0; j--)

A[j][i] = A[j+1][i-1] + temp;
loop 

interchange

D(i, j) = (<, <)

Dependence

Dependence

D(j, i) = (<, <)
for (j=P-1; j>=0; j--) 

for (i=0; i<N; i++)
A[j][i] = A[j+1][i-1] + temp;

row-wise array accesses (efficient)

column-wise array accesses (inefficient)

Loop Reversal: example 1



for (i=0; i<=N; i++) 
B[i] = A[i] + …;

for (i=0; i<=N; i++)
  C[i] = B[N-i] - …;

Loop merge not possible 
i >= N - i, not true

for (i=0; i<=N; i++) 
B[i] = A[i] + …;

for (i=0; i<=N; i++)
  C[N-i] = B[N-(N-i)] - …;

Apply loop reversal 
to the 2nd loop kernel

for (i=0; i<=N; i++) {
B[i] = A[i] + …;

  C[N-i] = B[i] - …;
}

Loop merge is now possible
as i >= i

Loop Reversal: example 2



Loop Peeling
• Separate special cases at either end
• Always safe

for (i=0; i<100; i++) 
A[i] = A[0] + B[i];

A[0] = A[0] + B[0];

for (i=1; i<100; i++)
A[i] = A[0] + B[i];

Loop carried dependence - The 
compiler cannot parallelize it No dependence - The compiler

can parallelize it or vectorise it



Loop Peeling: example

for (i=2; i<=N; i++)
B[i] = A[i] + temp;

for (i=3; i<=N; i++) 
C[i] = A[i] + D[i];

Loop merge not possible

Apply loop peeling to 
the 1st loop kernel

If (N>=2)
B[2] = A[2] + temp;

for (i=3; i<=N; i++)
B[i] = A[i] + temp;

for (i=3; i<=N; i++)
C[i] = A[i] + D[i];

Loop merge is now
possible

If (N>=2)
B[2] = A[2] + temp;

for (i=3; i<N; i++) { 
B[i] = A[i] + temp;
C[i] = A[i] + D[i];
}



• Changes the loop bounds
• It is always safe

• Benefits:
• It can enable other transformations
• It can increase parallelism

for (i=start; i<end; i++)
A[i] = …

for (i=start + N; i<end + N; i++)
A[i - N] = …

Loop Bump



Loop Bump: example 1

for (i=2; i<N; i++)
B[i] = A[i] + …;

for (i=0; i<N-2; i++) 
C[i] = B[i+2] + …;

Loop merge not possible i >= 
i+2, not true

Apply loop bump to 
the 2nd loop kernel

for (i=2; i<N; i++)
B[i] = A[i] + …;

for (i=0+2; i<N-2+2; i++) 
C[i-2] = B[i+2-2] + …;

Loop merge is now possible
as i >= i

for (i=2; i<N; i++) {
B[i] = A[i] + …;
C[i-2] = B[i] + …;
}



• Copies the array’s elements into a new array before 
computation
• The new array’s elements will be written in consecutive main 

memory locations
• Always safe but incurs high cost

for (i=0;i!=N;i++) 
  for (j=0;j!=N;j++)
    for (k=0;k!=N;k++)
      C[i][j]+=A[i][k] * B[k][j];

//array copying 
for (i=0;i!=N;i++) 
for (j=0;j!=N;j++)
  B_transpose[i][j]=B[j][i];

for (i=0;i!=N;i++) 
  for (j=0;j!=N;j++)
  for (k=0;k!=N;k++)

C[i][j]+=A[i][k] * B_transpose[j][k];

Array copying transformation (1)

Vectorization is extremely pure

Vectorization can be applied effectively



• When should we apply array copying?
• When the number of cache misses is high and multi-dimensional 

arrays exist
• In vectorization, as vectorization needs consecutive memory 

locations

Array copying transformation (2)

for (i=0;i!=N;i++) 
  for (j=0;j!=N;j++)
    for (k=0;k!=N;k++)
      C[i][j]+=A[i][k] * B[k][j];

//array copying 
for (i=0;i!=N;i++) 
for (j=0;j!=N;j++)
  B_transpose[i][j]=B[j][i];

for (i=0;i!=N;i++) 
  for (j=0;j!=N;j++)
  for (k=0;k!=N;k++)

C[i][j]+=A[i][k] * B_transpose[j][k];



• This is an advanced topic and it is not going to be studied
• The SSE/AVX x86-64 intrinsics include prefetch instructions.
• Example of a software prefetch instruction:

_mm_prefetch(&C[i][j], _MM_HINT_T0);
• The instruction above pre-fetches the cache line containing C[i][j] 

from DDR. 
• No value is written back to a register and we do not have to wait for 

the instruction to complete. 
• The cache line is loaded in the background.

Software Prefetching



for ( i=0; i<6; i++) 
for ( j=0; j<6; j++) 
S1[i][j]=…;

for ( ii=0; ii<6; ii+=2)
for ( jj=0; jj<6; jj+=2)

for ( i=ii; i<ii+2; i++) 
for ( j=jj; j<jj+2; j++) 
S1[i][j]=…;

Iteration space

Loop Tiling / blocking (1)



• Loop tiling partitions a loop's iteration space into smaller 
chunks or blocks, to help data remain in the cache (data 
reuse)

• The partitioning of loop iteration space leads to the 
partitioning of large arrays into smaller blocks (tiles), thus 
fitting accessed array elements into the cache, enhancing 
cache reuse, and reducing cache misses

• Loop tiling can be applied to each iterator multiple times, 
e.g., it is applied to the j and I iterators in the previous 
example

• Loop tiling is one of the most performance-critical 
transformations for data-dominant algorithms

Loop Tiling / blocking (2)



• In data dominant algorithms, loop tiling is applied to exploit 
data locality in each memory, including register file

• Register blocking can be considered as loop tiling for the 
register file memory

• By applying loop tiling to Li cache memory, the number of Li
cache misses is reduced

• The number of Li cache misses is equal to the number of 
Li+1 accesses

Loop Tiling / blocking (3)



• Loop tiling reduces the number of cache misses
• This doesn’t always entail performance improvement

• Performance depends on other parameters too, e.g., the number of 
instructions

• Key problems:
• Selection of the tile size
• Loops/iterators to be applied to
• How many levels of tiling to apply (multi-level cache hierarchy)

• Pros: may increase locality (reduce cache misses)
• Cons: increases the number of instructions (adds extra loop)

Loop Tiling / blocking (4)



float C[2048][2048], A[2048][2048], B[2048][2048];

for (i=0; i<2048; i++) 
for (j=0; j<2048; j++)
for (k=0; k<2048; k++)
C[i][j] += A[i][k] * B[k][j];

C B

= x

A
…

…

Main memory
A[][], B[][], C[][]

L1 I-cache

L2 unified cache

L1 D-cache 
8 Kbytes

RF

CPU

The size of each row of A is 8 kbytes

Loop tiling: MMM Problem



• Each row of A is multiplied by all the columns of B, 
thus:
• Each row of A is loaded from memory 2048 times
• If the row of A cannot remain in L1D, it will be loaded 

2048 times from L2
• If the row of A cannot remain in L2, it will be loaded 

2048 times from the main memory
• The whole B array is multiplied by each row of A, 

thus:
• B array is loaded 2048 times from memory
• If B cannot remain in L1D, it will be loaded 2048 times 

from L2
• If B cannot remain in L2, it will be loaded 2048 times 

from main memory

C A
…

B

= x …

Main memory

L1 I-cache

L2 unified cache

RF

CPU

L1 D-cache 
8 Kbytes

j loop

i loop i loop

j loop k loop

k loop

Loop tiling: MMM Problem



• Consider a single level of cache.
• A is loaded 2048 times from main memory, 

20483 loads
• B is loaded 2048 times from main memory, 

20483 loads
• C is stored just once, 20482 stores

C A
…

B

= x …

L1 I-cache

Main memory

RF

CPU

L1 D-cache 
8 Kbytes

j loop

i loop i loop

j loop k loop

k loop

Loop tiling: MMM Problem



C A B

Main memory

L1 instruction
cache

RF

CPU

L1 data cache 
8 Kbytes

for (ii=0; ii<2048; ii+=T) 
for (jj=0; jj<2048; jj+=T)
for (kk=0; kk<2048; kk+=T)

for (i=ii; i<ii+T; i++) 
for (j=jj; j<jj+T; j++)
for (k=0; k<kk+T; k++) 
C[i][j] += A[i][k] * B[k][j];

for (i=0; i<2048; i++) 
for (j=0; j<2048; j++)
for (k=0; k<2048; k++)
C[i][j] += A[i][k] * B[k][j];

T
=

T

xT

TT

T

These loops specify which 
elements inside the tile to 
multiply

These loops specify 
which tiles to multiply

j loopj loop

i loop i loop k loop

k loop

Loop tiling & MMM – 1 level of cache (1)



C A B

Main memory

L1 instruction
cache

RF

CPU

L1 data cache 
8 Kbytes

T
=

T

xT

TT

T

j loopj loop

i loop i loop k loop

k loop

Loop tiling & MMM – 1 level of cache (2)

• The matrices are partitioned into smaller sub-
matrices (TxT)

• Instead of multiplying A[][] by B[][], their tiles 
are multiplied
• The tiles are small enough to fit in the cache
• A is loaded 2048/T times from the main memory
• B is loaded 2048/T times from the main memory
• C is loaded and stored 2048/T times from/to the 

main memory



Main memory

L1 instruction
cache

RF

CPU

L1 data cache 
8 Kbytes

Loop tiling & MMM – 1 level of cache (3)
• Before applying loop tiling

• A: 2048 x (2048x2048) loads from main memory
• B: 2048 x (2048x2048) loads from main memory
• C: 1 x (2048x2048) stores to main memory
• In total, 2*20483 + 20482 main memory accesses

• After applying loop tiling
• A: 2048/T x (2048x2048) loads from main memory
• B: 2048/T x (2048x2048) loads from main memory
• C: 2048/T x (2048x2048) stores to main memory
• In total, 3*20483/T main memory accesses

• By increasing T, performance is increased
• However, T is bound to the cache hardware details



• Square Tile sizes are used Ti=Tj=Tk=T

18.00

13.15

30.24

18.33 18.00
16.80

5.81
4.14 3.93 3.83 3.93

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

4 8 16 32 64 128

Tile Size
256 512 1024 2048 No tiling

G
FL

O
Ps

MMM (N=2048)

MMM – Loop Tiling Performance Evaluation (1)



• Roofline analysis for T=16

MMM – Loop Tiling Performance Evaluation (2)



• Optimizing compilers for modern architectures: a 
dependence-based approach
• https://dl.acm.org/doi/10.5555/502981

• Options That Control Optimization
• https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

• V. Kelefouras, Compilers for Embedded Systems
• https://eclass.upatras.gr/modules/document/?course=EE738
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