MeTayAwTTIOTEG YIQ
Evowpatwpeva 2votnuata

Xelpepvo E¢apunvo 2023-24
«Code Optimizations - |I»

[Tavayiwtng Xatlnoovkog

Outline

- Data and control dependencies
- Data dependencies in loops
- Advanced code transformations

Loop merge (fusion)

Loop distribution (fission)
Loop reversal

Loop peeling

Loop bump

Array copy transformation
Software prefetching
Loop tiling/blocking

Dependencies in programs (1)

- Data dependencies S1: PI=3.14:

« statement S3 cannot be moved before either S2: R=5.0;
S1 or S2 without producing incorrect values S3:AREA=2*PI *R

. ntrol |
Control dependencies S1: if (temp==0)

* statement S2 cannot be executed before S1in g5. =5 0:
a correctly transformed program, because the g3. ;=3
execution of S2 is conditional upon the ’
execution of the branch in S1

e Statement S3 cannot be executed before S2

Dependencies in programs (2)

- Definition: There is a data dependence from statement S1 to
statement S2 (statement S2 depends on statement S1) if
and only if

both statements access the same memory location and at least
one of them stores into it and
there is a feasible run-time execution path from S1 to S2.

Data Dependencies — classification

- Data dependencies reside into 3 categories

« Read after Write (RAW) or true dependence T_:'I.'
« Write after Read (WAR) or anti-dependence ... '
- Write after Write (WAW) or output dependence ™. .
~~~~~~~~~~~~~~~~ s oee=T
~~~~~~~~~ T=
A: S1: PI=3.04; T=
$2: R=2; “T:‘
$3: $=2xPIxR //S3 cannot be executed before S1, S2 — true dependence
B: . T1=R1:
ST: TI=RI; //S3 cannot be executed before or in parallel with ST — anti-
52: R2=PI-T1; //dependence. But it can be eliminated by applying register
$3: R1=PI+S; //renaming — this is why it is called ‘anti’ dependence
I S vV

C:SS]i T1=R1; E:> S1: T1=R1;

$2: R2=PI-T1; - . :
$3: RI=PI4S; 5% TI=R2¥5; © 5% T2ER2+S; register renaming

eliminated by applying

Data Dependencies — Terminology

- Data dependencies

Read after Write (RAV\Q or true dependence
1
S1 ° S2 OR S1 S2

Writ% ?fter Read (WAR) or anti-dependence
S1 S2
Write after Write (WAW) or output dependence

50
S1 S2

- The convention for graphically displaying dependence is to
depict the edge as flowing from the statement that executes
first (the source) to the one that executes later (the sink).

Here S2 depends on S1

Data Dependencies — classification

Data Dependencies

Loop-Dependent Loop-Independent

Output Output

Data Dependencies in loops

- Loop dependent dependencies

the statement S1 on any loop iteration
depends on the instance of itself from the for (i = 1: i<N j++)

previous Iteration. S1: A(i+1) = A(i) + B(i)
* A true dependence occurs for each

different colour @

The program writes in iteration i and reads

in iteration i+1 j=1 - A[Z] =A[1] + 5[1]
The iterations cannot be executed in i=2 : A[3] = A[2] + B[1]
parallel i=3 : A[4] = A[3] + B[3]

i=4 : A[5] = A[4] + B[4]
i=5 : A[6] = A[5] + B[5]

Loop dependent dependencies: terminology

- On the right, there is a loop-dependent
true dependence for (i=1; i<N i++)
5, S1:. A(i+1) = A(i) + B(i)

S1 S1

True, Anti, Output
A i=1:A[2] =A[1] + B[1]

oA i=2 : A[3] = A[2] + B[1]
81, 1,0 i=3: A[4] = A[3] + B[3]
o0 i=4 : A[5] = A[4] + B[4]

i=5 : A[6] = A[5] + B[5]
Nesting level value for loop-dependent dependencies or L
‘oo’ for loop-independent dependencies

Loop dependent dependencies: example

S1:for (i=1;I<N i++)
Now, the distance of the dependence is 2 S2: A(i+2) = A(i) + B(i)
Therefore i=1 and i=2 can be executed in
parallel — no dependence exists 5,1 ﬂ

S2 S2

- A[3] = A[1] + B[1]
- A[4] = A[2] + B[1]
:A[5] = A[3] + B3]
- A[6] = A[4] + B[4]
- A[7] = A[5] + B[5]
- A[8] = A[6] + BJ5]

*
*
*
*
*
*
*
*
*
.
.
.
*
*
*
“
*

*
.
* A
¢¢¢¢
tttt
““““
. .s®

n L]
[- -
— — —, ", ~—

they can be executed in
parallel or vectorized

TR TR
DN WN

"
L}
—

Distance Vector & Direction Vector

It is convenient to characterize dependences by the
distance between the source and sink of a dependence in
the iteration space

We express this in terms of distance vectors and direction
vectors

Distance Vector

Suppose that there is a dependence from S1 on iteration i (of a loop
nest of n loops) to S2 on iteration j, then the dependence distance
vector d(i,j) is defined as a vector of length n such that d(i,j), = Jx = ik

Direction Vector: is defined as a vector of length n such that
“<itd(ij) =0
D(ijyp= “="ifd(ij);=0
“="atd(ij); <0

Data Dependencies: example

for (i=1;i<10; j++)
for (j = 0; j<20; j++) 1
for (k = 0; k<100; k++) s1 %2 sq
for (n = 2; n<80; n++)
S1: A(l, j+2, k, n) =A(l, j, k, n+1) + temp;

Distance vector: d(i, j, k, n) = (0, 2, 0, -1)
5!

Direction vector: D(, j, k, n) = (=, <, =, >)
- The dependence is always given by the leftmost non ‘=’
symbol

Loop Merge / Loop Fusion (1)

- Loop Merge is a transformation that combines 2
iIndependent loop kernels that have the same loop bounds

and number of iterations

+ This transformation is not always safe
« data dependencies must be preserved

for (i=1; i<Nj; i++) for (i=1- i<N- i
T RN i
for (i=1; I<N; j++) }B[I] SALET)

Bli]=Ali-1];

Loop Merge / Loop Fusion (2)

- Benefits

 Reduces the number of arithmetical instructions
- Remember each loop is transformed into an add, compare and
jump assembly instruction

- May improve data reuse
- May enable other loop transformations

- Drawbacks:
* May increase register pressure
« May hurt data locality (extra cache misses)
« May hurt instruction cache performance

for (i=1; i<N; i++) for (i=1; i<N; i++){
Ali]=B[i]; => Ali]=B[i]
Bi]=A[i-1];

}

for (i=1; i<N; i++)
Bli]=A[I-1]

Loop Merge / Loop Fusion (3)

for (i=1; i<N; j++)

Al1]=B[1];

for (i=1; i<N; j++)

Bli]=Ali-1]; /

for (i=1; i<N; j++){
Ali]=B[i]
Bl[i]=A[i-1]

Main memory

- Consider the case where the arrays are
bigger than the L1 data cache, then

In the first case, both arrays are accessed
from L2 and/or main memory twice

By merging the two loop kernels into one,
the arrays are loaded once, and data
locality is achieved

L2 unified cache

L1 D-cache

L1 I-cache

| RF]

[CPU

J

Faster and smaller

Loop Merge not always safe

- |s the following transformation correct?
NO - Data dependencies are not preserved

i=1: A[1] = B[1] ..
i=2: A[2] = B[2] "™ for (i=1; i<N: j++)
I=3:A[BI=B[3] Arj1=B[i];

=
for (i=1; i<N; i++)
i=1:B[1]=A[2] =~ B[i]=A[i+1]; .
i=2: B[2] = A[3] B[2] = A[3]
i=3: B[3] = A[4] i=3:
On the left, On the right,
we writein A[] and we read from A []

then read from A[] and then write to A[] (wrong)

Loop Merge not always safe

- The following transformation is not correct
« Data dependencies are not preserved
- How to be sure

« The top subscript must be larger or equal to the bottom subscript
* Here, i >=i+1 is not true, thus loop merge is not safe

for (j=1,4<N;T++) i
Ali]=B[i] -7

for (i=1; i<N; i++4~ ”
Bli]=A[i+1]:

Loop Distribution / Loop Fission (1)

- Loop Distribution is a transformation where a loop kernel is
broken into multiple loop kernels over the same index range

with each taking only a part of the original loop's body

+ This transformation is not always safe

data dependencies must be preserved
The top subscript must be larger or equal to the bottom subscript

for (i=1; I<N; i++){ for (i=1; I<N; i++)
Ali]=B[i] =) AlI]=Bl1]
Bl[i]=A[i-1]

} for (i=1; I<N; i++)

B[i]=Ali-1]:

Loop Distribution / Loop Fission (2)

- Benefits:
* May enable partial/full parallelization

* This optimization is most efficient in multi/many core processors
that can split a task into multiple tasks for each processor

« May reduce register pressure
« May improve data locality (cache misses)
« May enable other loop transformations

* Drawbacks:

* |ncreases the number of arithmetical instructions
* May hurt data locality

for (i=1; I<N; i++){ for (i=1; I<N; i++)
Ali]=B[i] =) AlI]=Bl1]
Bl[i]=A[i-1]

} for (i=1; I<N; i++)

B[i]=Ali-1]:

Activity

- Should we apply loop merge or not?

// A //B
for (i=0;i<N, i++) for (i=0;i<N;it++)
for (j=0;j< N; j++) for (j =0;] <N;jt++)
y[i] = y[i] + beta * A[i][j] * x[j]; yl[i]+=A[i1[j] * x[j]
for(i=0;i<N, i++) for (i =0;i <N; it++)
for(j=0;j<N;j++) for (j = 0;j <N;jt+)

w(i] = w[i] + alpha * Ali][j] ; y2[i]+=A2[i][j] * x2[f]

Loop Reversal (1)

for (i=end; i>=start; i--)

for (i=start; i<=end; i++) Alll=...;
Alil = ...; OR

% for (i=start; i<=end; i++)

Alend - (i - start)] = ... ;

- Loop reversal is a transformation that reverses the order of
the iterations of a given loop
- It is not always safe

Remember, in the direction vector, the leftmost non ‘=* symbol has
to be the same as before

* Loop reversal has no effect on a loop-independent dependence.

Loop Reversal (2)

for (i=0; i<N; j++)

=0; | " d(l, ./) = (11 -1)
for (j=0; j<P; j++) b=
AT = Alji+1][i-1] + temp; D(i, j) = (T, >)
Dependence

- Loop reversal cannot be applied to i loop

In this case D(, j) = (>, >) and therefore the leftmost non ‘= symbol
changes, violating data dependencies

* Loop reversal can be applied to j loop though

In this case D(i, j) = (<, <) and therefore the leftmost non ‘= symbol
does not change

Loop Reversal (3)

 Main Benefits

* Increase parallelism

 In loop nests, loop reversal is used to uncover parallelism and
move it to the outermost iterator possible

 Enable other transformations

Loop Reversal: example 1

for (i=0,' i<N,' i++) Dependence

for (j=0; j<P; j++) D(i, j) = (<, >)
Aljllil = Alj+1]fi-1] + temp;

- Problem: The array is accessed column-wise; this gives
Low performance
High energy consumption

- Potential Solution: Apply loop interchange

However, loop interchange gives D(j, i) = (>, <), violating data
dependencies

» Solution: apply loop reversal to the j loop which gives
D, j) = (<, <)

Then, loop interchange is valid as it gives D, i) = (<, <)

Loop Reversal: example 1

Dependenlce Dependence
for (i=0; I<N; j++) | oop N

for 0:0]<Pj++) D(i, j) = (<, >) rever al for (I .?’ I<IY’. It+)_ . D(i,j) =(<, <

AT = A1 T1] + tormp: for (j=P-1, j>=0; j--)

[l = Alj+1]ji-1] + temp; Aljllil = Af+1][i-1] + temp:
‘ . loop

column-wise array accesses (inefficient) interchange
@ Dependence
D, i) = (£, <)

for (j=P-1; j>=0; j--)
for (i=0; i<N; j++)
Allli] = A[j+1][i-1] + temp;

Y

row-wise array accesses (efficient)

Loop Reversal: example 2

for (i=0; i<=N; i++) Apply loop reversal for (i=0; i<=N; i++)

Bli]=Ali] + ... to the 2nd loop kernel B[i]=A[i] + ...;
X
for (i=0; {<=N; i++) :> for (i=0; i<=N; i++)
C[i] = B[N-i] - ..., C[N-i] = B[N-(N-i)] - ...;

Loop merge not possible

i >= N - i, not true Loop merge is now possible

asi>=i

{

for (i=0; i<=N; i++) {
Bli]=A[i] + ...;
C[N-i] = B[i] - ...,

}

Loop Peeling

- Separate special cases at either end
» Always safe

for (i=0; i<100; i++) ALOT=ALD]+ B0

Ali] = A[0] + BJi]; :> for (i=1; i<100; j++)
¢ Ali]l = A[0] + BJi];

4

!
!
Loop carried dependence - The !

) - . !
compiler cannot parallelize it No dependence - The compiler

can parallelize it or vectorise it

Loop Peeling: example

If (N>=2)
for (i= 2 I<=N; i++ = -
() Apply loop peeling to Bl2] = Al2] + temp;
Bli] = A[/] + temp,
: the 1%t loop kernel N
v | for (i=3; i<=Nj; i++)
for (i=3; i<=N; i++) | > B[i] = Afi] + temp;
Cli] = Ali] + D[if;
Loop merge not possible for (i=3; i<=N; j++)
Cli] = Ali] + D[i];
If (N>=2)

Loop merge is now
possible

B[2] = A[2] + temp;

for (i=3; I<N; i++) {
Bli] = Ali] + temp;
Cli] = Ali] + D[if;

}

Loop Bump

for (i=start; i<end; i++) for (i=start + N; i<end + N; i++)
Alil = ...) Ali-Nj = ...

- Changes the loop bounds
- It is always safe

- Benefits:
It can enable other transformations
It can increase parallelism

Loop Bump: example 1

for (i=2; i<N; j++) ooy 1060 b , for (i=2; i<N; j++)
0 AL . pply loop bump to a A .
Bl =Alll* .. the 2" loop kernel B[=All* ...
for (i=0; iI<N-2; j++) |:> for (i=0+2; i<N-2+2; j++)
Cli]=B[i+2] + ..., Cli-2] = B[i+2-2] + ...;

Loop merge not possible i >=

i+2, not true Loop merge is now possible

asi>=i

U

for (i=2; i<N; i++) {
Bli]=A[i] + ...,
Cli-2] =B[i] + ...;
}

Array copying transformation (1)

- Copies the array’s elements into a new array before
computation
« The new array’s elements will be written in consecutive main
memory locations

- Always safe but incurs high cost

//array copying
o _ for (i=0;i!=N;i++)
for (I=0,'I.I=N,'I++) fOI’ (jzo,'j-’:N,'j""")
for (j=0;!=N;j++)) B_transpose[il[j]=Blj[il;

for (k=0;k!=N,k++)

Clilljj+=A[i][k] * BIK]Ljl; for (i=0;i!=N;i++)

for (j=0;j!=N,j++)
for (k=0;k!=N;k++)
Clilljl+=Alil[k] * B_transpose[j][k];

Vectorization is extremely pure

Vectorization can be applied effectively

Array copying transformation (2)

- When should we apply array copying?

When the number of cache misses is high and multi-dimensional
arrays exist

In vectorization, as vectorization needs consecutive memory

locations
//array copying
for (i=0;i!=N;i++)
for (i=0;i!=N;i++) for (j=0;j!=N;j++)
for (j=03j!=N;j++) —> B_transposeli][j]=BLjjlil;
for (k=0;k!=N;k++)
ClilLj1+=ALil[k] * BIKIL]; for (i=0;il=N;i++)

for (j=0;j!=N,j++)
for (k=0;k!=N,k++)
Clil[j]+=A[i][k] * B_transpose[j][k];

Software Prefetching

- This is an advanced topic and it is not going to be studied
- The SSE/AVX x86-64 intrinsics include prefetch instructions.

- Example of a software prefetch instruction:
_mm_prefetch(&C[i][i], _MM_HINT_TO);

The instruction above pre-fetches the cache line containing CJi]j]
from DDR.

No value is written back to a register and we do not have to wait for
the instruction to complete.

The cache line is loaded in the background.

Loop Tiling / blocking (1)

Iteration space

~
\\‘

for (i=0; i<6; i++)
for (j=0; j<6; j++)
S1[illjI=...;

=)

I A

for (ii=0; ii<6; ii+=2)
for (Jj=0; jj<6; jj+=2)

for (i=ii; i<ii+2; i++)

for (jlzjj; J<j+2; j++)
S1[i[j]=...;

Loop Tiling / blocking (2)

Loop tiling partitions a loop's iteration space into smaller
chunks or blocks, to help data remain in the cache (data

reuse)

The partitioning of loop iteration space leads to the
partitioning of large arrays into smaller blocks (tiles), thus
fitting accessed array elements into the cache, enhancing
cache reuse, and reducing cache misses

Loop tiling can be applied to each iterator multiple times,
e.g., it is applied to the j and | iterators in the previous
example

Loop tiling is one of the most performance-critical
transformations for data-dominant algorithms

Loop Tiling / blocking (3)

In data dominant algorithms, loop tiling is applied to exploit
data locality in each memory, including register file

Register blocking can be considered as loop tiling for the
register file memory

By applying loop tiling to L, cache memory, the number of L,
cache misses is reduced

The number of Li cache misses is equal to the number of
;.1 accesses

Loop Tiling / blocking (4)

Loop tiling reduces the number of cache misses

« This doesn’t always entail performance improvement

Performance depends on other parameters too, e.g., the number of
instructions

Key problems:
« Selection of the tile size
* Loops/iterators to be applied to
 How many levels of tiling to apply (multi-level cache hierarchy)

Pros: may increase locality (reduce cache misses)
Cons: increases the number of instructions (adds extra loop)

Loop tiling: MMM Problem

C A B
° 000000 _0000
<

Main memory

The size /of each row of A is 8 kbytes
A[l[1, B[1[1, €[]

float C[2048][2048], A[2048][2048], B[2048][§048]; L2 unified cache

for (i=0; i<2048; i++)
for (I.:O’. j <2 048’. -I ++) L1 D-cache L1 I-cache
for (k=0; k<2048, k++) 8 Kbytes

CLilT += AliJ[K] * BIKI[];

RF

S

Loop tiling: MMM Problem

C j loop A kloop

B j loop

X

i laop i logop k fpop

Each row of A is multiplied by all the columns of B,

Main memory

thus:
 Each row of A is loaded from memory 2048 times
* |f the row of A cannot remain in L1D, it will be loaded
2048 times from L2
* |f the row of A cannot remain in L2, it will be loaded
2048 times from the main memory

The whole B array is multiplied by each row of A,
thus:

« B array is loaded 2048 times from memory

« If B cannot remain in L1D, it will be loaded 2048 times

from L2
* |f B cannot remain in L2, it will be loaded 2048 times

from main memory

L2 unified cache

L1 D-cache L1 I-cache
8 Kbytes
| RF |

N

Loop tiling: MMM Problem

C j loop A kloop

i laop i loop

Consider a single level of cache.

A is loaded 2048 times from main memory,
2048° loads

B is loaded 2048 times from main memory,
2048° loads

C is stored just once, 20482 stores

B

Jloop

Main memory

L1 D-cache
8 Kbytes

L1 l-cache

RF

=N

__Loop tiling & MMM — 1 level of cache (1) _

jloop

T C j loop

i loop

These loops specify
which tiles to multiply

for (i=0; i<2048; i++)
for (j=0; j<2048; j++)
for (k=0; k<2048; k++)
Cliffij] += Alil[k] * BIKI[T;

These loops specify which -~

elements inside the tile to
multiply

o000
TAI

\\\\ i[qop

k loop

x T

klpop

for (ii=0; u<2048 fi+= T)

for (jj=0; jj<2048; = T)

for (kk=0; kk<2048;- kk+ T)

\\ LJvdata cache
8 Kbytes

for (i=ii: i<ii+T;: i++)
for (j=jf; j<ij+T, j*++)

for (k=0; k<kk+T; k++)
CLIlT += Ali[k] ™ BIKI[T;

Main memory

L1 instruction

cache

RF

CPU J

Loop tiling & MMM — 1 level of cache (2)
T C j loop T A k loop T B j loop
® o000 :
T - T . 8 xT;__l‘._
i Ioop i loop k foop |

The matrices are partltloned into smaller sub-
matrices (TxT)

~
~
S
[]

\

\

|

|

|

1

\

Se \
|

\ |

Instead of multiplying A[][] by B|][| thelr tlles .
are multiplied

Main memory

The tiles are small enough to fit in the cache

A is loaded 2048/T times from the main memory

N \‘L‘1vdata cached | L1 instruction
: . 4 8 Kbyt cache
* B isloaded 2048/T times from the main memory yes
 Cisloaded and stored 2048/T times from/to the
main memory

| RF]|

N

Loop tiling & MMM — 1 level of cache (3)

- Before applying loop tiling

« A:2048 x (2048x2048) loads from main memory

« B:2048 x (2048x2048) loads from main memory

* (C:1x(2048x2048) stores to main memory

* |n total, 2¥20483 + 20482 main memory accesses
- After applying loop tiling

* A:2048/T x (2048x2048) loads from main memory

* B:2048/T x (2048x2048) loads from main memory Main memory

« (C:2048/T x (2048x2048) stores to main memory

° * 3 .
In total, 3*20483/T main memory accesses L1 data cachd

8 Kbytes

L1 instruction
cache

- By increasing T, performance is increased [RF]

« However, T is bound to the cache hardware details [CPU]

MMM — Loop Tiling Performance Evaluation (1)

- Square Tile sizes are used Ti=Tj=Tk=T

GFLOPs

35.00

30.00

25.00

20.00

15.00

10.00

5.00

0.00

18.00

30.24

18.33

32

MMM (N=2048)

18.00

64

16.80

5.81
I 4.14 3.93
256 512 1024

128
Tile Size

3.83

2048

3.93

No tiling

MMM — Loop Tiling Performance Evaluation (2

* Roofline analysis for T=16

Y Y5 dUNVEy&KOOrune T Kennement Kepores

ome target modules do not contain debug information
iggestion: enable debug information for relevant modules.

Q « v |Cores:19 I |Y Default: FLOAT ~ | |4z Compare +

| A Guidance «

Sd0149

SP Vector FMA Peak: 114.04

100
70

Scalar Add Pe:ak: 7.08

14
Bound by compute

? o
Memory bound” and memory roofs” omput

Comp
FLOP/Byte: (Arith
T

T T T N T T T T
0.04 0.07 0.1 0.4 07 1 4 7
Physical Cores: 4 @ App Threads: 1 ® Self Elapsed Time: 0.560 s Total Elapsed Time: 0.560 s

op Down CodeAnalytics Assembly ‘@ Recommendations @ WhyNo Vectorization?

| Advisor cannot show source code of the selected function/loop.

Make sure that the Source Searchlocations in the
Project Propertiesdialog contain correct location(s)
of your application’s source files.

References

- Optimizing compilers for modern architectures: a
dependence-based approach
* https://dl.acm.org/doi/10.5555/502981

« Options That Control Optimization
e https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

- V. Kelefouras, Compilers for Embedded Systems
e https://eclass.upatras.gr/modules/document/?course=EE738

https://dl.acm.org/doi/10.5555/502981
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://eclass.upatras.gr/modules/document/?course=EE738

