
1

Μεταγλωττιστές για
Ενσωματωμένα Συστήματα

Χειμερινό Εξάμηνο 2023-24
«Code Optimizations»

Παναγιώτης Χατζηδούκας

2

Outline
• Code optimization: key problems
• Some basic/simple code optimizations/transformations and manually

applied techniques:
• Use the available Compiler Options
• Use the appropriate precision
• Choose a better algorithm
• Reduce complex operations
• Loop-based strength reduction
• Dead code elimination
• Common subexpression elimination
• Loop invariant code motion
• Use table lookups
• Function Inline
• Loop unswitching
• Loop unroll
• Scalar replacement

• More advanced code transformations
• Loop merge/distribution, loop tiling, register blocking, array copying, etc

3

Optimize What?
• Optimization in terms of

• Execution time
• Energy consumption
• Space (Memory size)

• Reduce code size
• Reduce data size

4

How to optimize ?
• Optimizing the easy way

• Use a faster programming language, e.g., C instead of Python
• Use a better compiler
• Manually enable specific compiler’s options
• Normally, the optimization gain is limited
• No expertise is needed

• Optimizing the hard way
• use a profiler to identify performance bottlenecks, normally loop

kernels
• Manually apply code optimizations
• Re-write parts of the code from scratch
• Needs expertise: Optimization gain is high

5

Introduction
• Loops represent the most computationally intensive part of

a program.
• Improvements to loops will produce the most significant

effect
• Loop optimization

• 90% / 10% rule
• Normally, “90% of a program’s execution time is spent in executing

10% of the code”
• larger payoff to optimize the code within a loop

6

Which Compiler Options to use and when?
• Compilers offer several code transformation and

optimization options
• This is a complex longstanding and unsolved problem for

decades
• Which compiler optimization/transformation to use?
• Which parameters to use? Several optimizations include different

parameters
• In which order to apply them?

7

Software Optimization Problem
• The key to optimizing software is the correct choice, order,

and parameters
of code optimizations

• But why optimizing software is so hard?
• Normally, the efficient optimizations for a specific code are

not efficient for
• another code
• another processor
• different hardware architecture details, e.g., cache line size
• or even for a different input size

• The compilers cannot find the optimum choice, order, and
parameters of optimizations

8

Why compilers fail
• Compilers are not smart enough to take into account

• most of the hardware architecture details (e.g., cache size and
associativity)

• custom algorithm characteristics (e.g., data access patterns, data
reuse, algorithm symmetries)

• Even experienced programmers
• Do not understand how software runs on the target hardware
• Treat threads as black boxes
• Blindly apply loop transformations

• Peak performance demands going low-level
• Understand the hardware, compilers, instruction set

9

Why compilers fail
• The compilation sub-problems depend on each other

which makes the problem extremely difficult
• these dependencies require that all the problems should be

optimized together as one problem and not separately
• Toward this much research has been done

• Iterative compilation techniques
• Methodologies that simultaneously optimize only two

problems
• Searching and empirical methods
• Heuristics

• But …
• They are partially applicable
• They cannot give the best solution

10

Why compilers fail
• The exploration space (all different

implementations/binaries) is so big that it cannot be
searched; researchers try to decrease the space by using
• machine learning compilation techniques
• genetic algorithms
• statistical techniques
• exploration prediction models focusing on beneficial areas of

optimization
• search space

• However, the search space is still so big that it cannot be
searched, even by using modern supercomputers

11

Data handling techniques
• Use Variables of the Same Type for Processing
• Use of Unsigned Type
• Float and Double
• Data Declaration - Constant
• Data Declaration - Volatile
• Data Initialization at Declaration
• Data Definition - Arrangement and Packing
• Passing Reference as Parameters
• Return Value
• Better Data Structure and Representation
• Array and Structure Initialization

12

Data handling techniques
• Use Variables of the Same Type for Processing

• Programmers should plan to use the same type of variables for
processing. Type conversion must be avoided.

• Otherwise, precious cycles will be wasted to convert one type to
another (Unsigned and signed variables are considered as different
types).

• Use of Unsigned Type
• All variables must be defined as “unsigned” unless mathematical

calculation for the signed bit is necessary. The “signed-bit” may
create complication, unwanted failure, slower processing and extra
ROM size.

• Float and Double
• Maximum value of Float = 0x7F7F FFFF
• Maximum value of Double = 0x7F7F FFFF FFFF FFFF
• To avoid unnecessary type conversion or confusion, programmers

can assign the letter “f” following the numeric value.
• x = y + 0.2f;

13

Data handling techniques
• Data Declaration - Constant

• The “const” keyword is to define the data as a constant, which will allocate
it in the ROM space (section C). Otherwise, a RAM space will also be
reserved for this data. This is unnecessary as the constant data is supposed
to be read-only.

• Data Declaration - Volatile
• “Volatile” keyword will forbid the compiler from performing any optimization

on the variable. This is usually used on IO registers and variables that will be
altered by interrupts. This is necessary as the value of these variables can
be asynchronously accessed.

• Data Initialization at Declaration
• Data should be initialized at declaration.

int a = 1;
void main(void)
{
…

int a;
void main(void)
{ a = 1;
…

Data handling techniques
• Data Definition - Arrangement and Packing

• The declaration of the components in a structure will determine how
the components are being stored.

• Due to the memory alignment, it is possible to have dummy area
within the structure. It is advised to place all similar size variables in
the same group.

Example for a specific embedded system where sizeof(int)=2

Data handling techniques
• Data Definition - Arrangement and Packing

• As the structure is packed, integer b will not be aligned. This will
improve the RAM size but operational speed will be degraded, as
the access of ‘b’ will take up two cycles.

Example for a specific embedded system where sizeof(int)=2

Data handling techniques
• Passing Reference as Parameters

• Larger numbers of parameters may be costly due to the number of
pushing and popping actions on each function call.

• It is more efficient to pass structure reference as parameters to reduce
this overhead

• Return Value
• The return value of a function will be stored in a register. If this return

data has no intended usage, time and space are wasted in storing this
information.

• Programmer should define the function as “void” to minimize the extra
handling in the function.

Data handling techniques
• Better Data Structure and Representation

• Proper data structure consideration can improve the program.
• Example: Use computation to regenerate a large junk of data (compression,

technique), this will reduce the space usage. However, the computation
process may slow down the operation.
• An array of [0,0,0,0,0,0,1,1,2,2,2,3,3,3,3…], this can be replaced with [6, 2, 3, 4…], which

signifies 6x’0’, 2x’1’, 3x’2’, 4x’3’…

• Array and Structure Initialization
• A simple illustration of implementation:

18

Other handling techniques
• Lookup Table and Calculation
• Fixed-point and Floating-point Arithmetic
• Horner’s Rule of Polynomial Evaluation
• Factorization
• Modula
• Division and Multiplication
• Constant in Shift Operations
• Use Formula
• Simplify Condition
• Absolute Value

Other handling techniques
• Lookup Table and Calculation

• In lower operation frequency of MCU, lookup table may be faster than
recalculation methods. However, programmers must make their
judgment on the complexity and speed requirement.

• Example:
• A function like y = ax + bx2 will already take up significant CPU processing time.
• However, the function y = 2x can be implemented with a shift instruction (2 cycles).

Thus this function is preferred to be implemented with re-calculation method than a
lookup table method.

• Fixed-point and Floating-point Arithmetic
• It takes up much processing power to perform floating-point arithmetic

in a non-floating-point processor.
• If accuracy is not a requirement, programmers should use fixed-point

calculation instead. Otherwise, the calculation can be re-implemented
in a cheaper means.

• Example:
• 123.45 + 678.89 is equivalent to (12345 + 67889) with a decimal point placed at the

correct place.

Other handling techniques
• Horner’s Rule of Polynomial Evaluation

• The rules state that a polynomial can be rewritten as a nested
factorization. The reduced arithmetic operations will have better
ROM efficiency and execution speed.

• Factorization
• The compiler may be able to perform better when the formula

• Use Finite Differences to Avoid Multiplies

Other handling techniques
• Modula

• Division and Multiplication

• Constant in Shift Operations

• Use Formula

Other handling techniques
• Simplify Condition

• Absolute Value

23

Basic code improvement techniques
• Use the available Compiler Options
• Dead code elimination
• Common subexpression elimination
• Use table lookups
• Use the appropriate precision
• Choose a better algorithm
• Reduce complex operations
• Loop unrolling
• Scalar replacement
• Loop-based strength reduction
• Loop invariant code motion
• Function Inline
• Loop unswitching
• Loop interchange
• Register Blocking

24

Use the available compiler options
• The most used optimization flags/options are the following

• -O0: disables all optimizations, but the compilation time is very low
• -O1: enables basic optimizations
• -O2: enables more optimizations
• -O3: turns on all optimizations specified by -O2 and enables more

aggressive loop transformations such as register blocking, loop
interchange etc

• -Ofast: it is not always safe for codes using floating point arithmetic
• -Osize: optimizes for code size

25

Dead code elimination
• Compiler optimization that removes dead code (code that

does not affect the program results).
• Benefits:

• it shrinks program size, an important consideration in some contexts
• it allows the running program to avoid executing irrelevant

operations, which reduces its running time

int foo(void) {
int a = 24;
int b = 25; /* Assignment to dead variable */
int c;
c = a * 4;
return c;
b = 24; /* Unreachable code */
return 0;

}

26

Common subexpression elimination
• Common expression should be calculated once or earlier

• A parameter can be calculated at earlier stages, such as the power-
up initialization stage instead of the actual execution stage.

• This will help to speed up the processing.

27

Use LookUp Table (LUT)
• A LUT is an initialized array that contains precalculated

information.
• They are typically used to avoid performing complex (and

hence time-consuming) calculations.
• Example

• In a data transmission system, a Packet Error Checking (PEC) byte
can be appended at the end of each transaction as an error-
detecting code. The PEC byte is calculated based on a CRC-8 byte
represented by the polynomial C(X) = X8 + X2 + X1 + 1.

• It is well known that the speed of CRC calculations may be
significantly increased by the use of a lookup table.

• A suitable lookup table for computing the CRC (or PEC) used in
System Management Bus (SMBUS) protocol calculations is shown
next.

28

LUT Example

• Interesting points
• The use of static: to avoid the allocation in the stack
• The use of const: to avoid writing to the lookup table
• The use of __flash: to force the array to be kept in flash memory (for

embedded systems)
• The use of a size-specific data type such as unsigned char: to

reduce memory consumption
• Avoidance of incomplete array declarations: explicitly declared array

size to avoid errors due to missing values
• Range Checking: useful but not necessary in this case

unsigned char pec_Update(unsigned char pec)
{

static const unsigned char lookup[256] =
{

0x00U, 0x07U, 0x0EU, 0x09U, 0x1CU, 0x1BU, 0x12U, 0x15U,
...
0xE6U, 0xE1U, 0xE8U, 0xEFU, 0xFAU, 0xFDU, 0xF4U, 0xF3U

};

pec = lookup[pec];
return pec;

}

29

Use the appropriate precision / data type
• The use of correct data type is important in a recursive

calculation or large array processing. The extra size, which
is not required, is taking up much space and processing
time.

• Example
• Speed concern:

• Byte multiplication - MULXU .B R1L,R2L - take up 12 cycles
• Word multiplication - MULXU.W R1,ER2 - take up 20 cycles

• Size concern:
• char data_collect[100];
• long data_collect[100]; -take up 4 times more spaces

30

Choose a better algorithm
• An example for data sorting algorithms

31

Reduce complex operations (1)
• Division is expensive

• On most CPUs the division operator is significantly more expensive
(i.e. takes many more clock cycles) than all other operators. When
possible, refactor your code to not use division.

• Use multiplication instead
• For example, change ‘ / 5.0 ‘ to ‘ * 0.2 ‘

• Use shift operations instead of multiplication and division
• Only for multiplications and division with powers of 2
• Compilers will do that for you though

32

Reduce complex operations (2)
• Functions such as pow(), sqrt() etc are expensive, so avoid

them when possible
• E.g., avoid calling functions such as strlen() all the time, call it once

(x=strlen()) and then x++ or x-- when you add or remove a character.

• Avoid Standard Library Functions
• Many of them are expensive only because they try to handle all

possible cases
• Think of writing your simplified version of a function, if possible,

tailored to your application
• E.g., pow(a, b) function where b is an integer and b=[1,10]

33

Loop unrolling
• Creates additional copies of the loop body
• Always safe to apply

• Pros:
• Reduces the number of instructions
• Increases instruction parallelism

• Cons:
• Increases code size
• Increases register pressure

//C-code2
for (i=0; i < 100; i+=4) {

A[i] = B[i];
A[i+1] = B[i+1];
A[i+2] = B[i+2];
A[i+3] = B[i+3];

}

//C-code1
for (i=0; i < 100; i++) A[i]

= B[i];

34

Loop unrolling
• The number of arithmetical instructions is reduced

• Less add instructions for i, i.e., i=i+4 instead of i=i+1
• Less compare instructions, i.e., i==100 ?
• Less jump instructions

//C-code2
for (i=0; i < 100; i+=4) {

A[i] = B[i];
A[i+1] = B[i+1];
A[i+2] = B[i+2];
A[i+3] = B[i+3];

}

//C-code1
for (i=0; i < 100; i++) A[i]

= B[i];

add ip, r1, #800
.L2:
ldrd r2, [r1], #8
strd r2, [r0], #8
cmp r1, ip
bne .L2

add ip, r1, #800
.L5:
ldrd r2, [r1]
strd r2, [r0]
ldrd r2, [r1, #8]
strd r2, [r0, #8]
ldrd r2, [r1, #16]
strd r2, [r0, #16]
ldrd r2, [r1, #24]
strd r2, [r0, #24]
adds r1, r1, #32
adds r0, r0, #32
cmp r1, ip
bne .L5https://godbolt.org/z/K9WEbrv7W

https://godbolt.org/z/K9WEbrv7W

35

Limit in Loop unrolling
• A larger loop unrolling factor does not mean more efficient code

• When the code2 size becomes larger
than L1 instruction cache size,
code2 is no longer efficient

//C-code2
N=1000000;
for (i=0; i < N; i+=10000){

A[i] = B[i];
A[i+1] = B[i+1];
A[i+2] = B[i+2];
A[i+3] = B[i+3];
…
A[i+99999] = B[i+9999];

}

//C-code1
N=1000000;
for (i=0; i < N; i++)

A[i] = B[i];

Main memory

L2 unified cache

L1 D-cache

RF

CPU

L1 I-cache

36

Scalar replacement transformation
• Converts array reference to scalar reference

• Most compilers will do this for you automatically by specifying the
-O2 option

• Always safe
• Reduces the number of L/S instructions
• Reduces the number of memory accesses

//Code-1
for (i=0; i < 100; i++){
A[i] = … + B[i];
C[i] = … + B[i];
D[i] = … + B[i];

}

//Code-2
for (i=0; i < 100; i++){
t=B[i];
A[i] = … + t;
C[i] = … + t;
D[i] = … + t;

}

37

Scalar replacement: example

• Y[i] is not affected by the j loop
• For every j, Y[i] is redundantly loaded/stored from/to memory
• A load/store instruction needs 1-3 CPU cycles
• The transformed code has fewer load/stores and L1 data accesses

// C-code2
for (i=0; i<300; i++) {

tmp=Y[i];
for (j=0; j<300; j++) {

tmp+= A[i][j] * X[j];
}
Y[i] += tmp;

}

// C-code1
for (i=0; i<300; i++)

for (j=0; j<300; j++)
Y[i]+= A[i][j] * X[j];

Main memory

L1 I-cache

L2 unified cache

RF

CPU

L1 D-cache
Y[0]

Y[0]

Y[0]

38

Strength Reduction
• Strength reduction is the replacement of an expression by a

different expression that yields the same value but is cheaper to
compute

• Most compilers will do this for you automatically by specifying
the ‘-O1’ optimization flag

• Normally, addition needs fewer CPU cycles than multiplication
• In each iteration, c is added to T

//Code-1
for (i=0; i < n; i++){
A[i] = A[i] + c*i;

}

//Code-2
T = 0;
for (i=0; i < n; i++){
 A[i] = A[i] + T;
T = T + c;

}

39

Loop-Invariant Code Motion
• Any part of a computation that does not depend on the loop

variable and which is not subject to side effects can be moved
out of the loop entirely

• Most compilers will do this for you automatically by specifying
the ‘-O1’ optimization flag

• The value of sqrt(x) is not affected by the loop
• Therefore, its value is computed just once, outside of the loop
• If n<1, the loop is not executed and therefore C must not be

assigned with the sqrt(x) value

//Code-1
for (i=0; i < n; i++){
A[i] = A[i] + sqrt(x);

}

//Code-2
if (n>=0) C = sqrt(x);
for (i=0; i < n; i++){
 A[i] = A[i] + C;
}

40

Function Inline
• Replace a function call with the body of the function
• It can be applied in many ways

• Either manually or automatically
• ‘-O1’ applies function inline
• In C, a good option is to use macros instead (if possible)

• Pros
• It speeds up your program by avoiding function-calling overhead
• It saves the overhead of pushing/popping on the stack
• It saves the overhead of a return call from a function
• It increases the locality of reference by utilizing the instruction cache

• Cons
• The main drawback is that it increases the code size

41

Function Inline
• The technique will cause the compiler to replace all calls to

the function, with a copy of the function’s code.
• This will eliminate the runtime overhead associated with the function

call.
• This is most effective if the function is called frequently but contains

only a few lines of code.

42

Loop Unswitching
• A loop containing a loop-invariant IF statement can be transformed into

an IF statement containing two loops.
• After unswitching, the IF expression is only executed once, thus

improving run-time performance.
• After unswitching, the loop body does not contain an IF condition and

therefore it can be better optimized by the compiler.
• Most compilers will do this for you automatically by specifying the ‘-O3’

optimization flag

//Code-1
for (i = 0; i < N; i++) {

if (x<0)
a[i] = 0;

else
b[i] = 0;

}

//Code-2
if (x<0)

for (i = 0; i < N; i++) {
a[i] = 0;

}
else

for (i = 0; i < N; i++) {
b[i] = 0;

}

Loop Interchange
• The loop interchange transformation switches the order of the loops in

order to improve data locality or increase parallelism
• Not always safe, only when data dependencies allow it
• In C/C++, accessing arrays column wise is inefficient (see next)

….
int i, j, N=1000;
int A[N][N];

for (j=0; j<N; j++)
for (i=0; i<N; i++)
A[i][j] = i+j;

….

….
int i, j, N=1000;
int A[N][N];

for (i=0; i<N; i++)
for (j=0; j<N; j++)
A[i][j] = i+j;

….

Column-wise (bad) Row-wise (good)

Loop interchange
• The following example is more complicated
• Which one is more efficient and why?

for (j=0; j<N; j++)
for (i=0; i<N; i++)
total [i] = total [i] + A [i] [j];

for (i=0; i<N; i++)
for (j=0; j<N; j++)
total [i] = total [i] + A [i] [j];loop

interchange

Loop interchange

for (j=0; j<N; j++)
for (i=0; i<N; i++)
total [i] = total [i] + A [i] [j];

for (i=0; i<N; i++)
for (j=0; j<N; j++)
total [i] = total [i] + A [i] [j];loop

interchange

• total [] is loaded and stored N2 times
• all the intermediate results are loaded/stored from/to dL1

• total[i] is invariant with respect to the inner loop and therefore it can be replaced by a
register, yielding better data locality

• This can be applied either manually or automatically by compiling with ‘-O3’

for (i=0; i<N; i++) {
t = total [i];
for (j=0; j<N; j++) {
 t = t + A [i] [j];
}
total [i] = t;

}

Scalar replacement

• A[][] is accessed column-wise

• A[][] is accessed row-wise

Register Blocking (1)
• Also known as “Loop unroll and jam”
• Register blocking is primarily intended to

• increase register exploitation (data reuse)
• reduce the number of L/S instructions
• reduce the number of memory accesses

• Register blocking involves two transformations
• Loop unroll
• Scalar replacement

• Register blocking is included in ‘-O3’ optimization option
• In gcc you must enable this option : -floop-unroll-and-jam
• However, an experienced developer can achieve better results

Register Blocking: Key Point
• The number of the variables in the loop kernel must be

lower or equal to the number of the available registers
• Otherwise, some of the variables cannot remain in the

registers and they are loaded many times from L1 data
cache (dL1), degrading performance

• This is also known as register spills

Main memory

L2 unified cache

L1 D-cache

RF

CPU

Main memory

RF

CPU Register spills

L1 I-cache

Two steps of Register Blocking
• One or more loops (not the innermost) are partially unrolled and as a

consequence common array references are exposed in the loop body
(data reuse)

• Then, the array references are replaced by variables (scalar replacement
transformation) and thus the number of L/S instructions is reduced

Step1
// C code of MMM
for (i=0; i<N; i++)
for (j=0; j<N; j+=2) {

for (k=0; k<N; k++) {
C[i][j]

C[i][j+1]
+=
+=

A[i][k]
A[i][k]

* B[k][j];
* B[k][j+1];

}
}

Step2
// C code of MMM
for (i=0; i<N; i++)
for (j=0; j<N; j+=2) {
c0=C[i][j];
c1=C[i][j+1];

for (k=0; k<N; k++) {
a0=A[i][k];
c0 += a0 * B[k][j];

 c1 += a0 * B[k][j+1];
}
C[i][j]=c0;
C[i][j+1]=c1;

}

// C code of MMM
for (i=0; i<N; i++)
for (j=0; j<N; j++)

for (k=0; k<N; k++)
C[i][j] += A[i][k] * B[k][j];

Common reference,
use a register

C[i][j] does not
depend on the
innermost loop.
Get it out and
use register

Step1
// C code of MMM
for (i=0; i<N; i++)
for (j=0; j<N; j+=4) {
for (k=0; k<N; k++) {

C[i][j] += A[i][k] * B[k][j];
C[i][j+1] += A[i][k] * B[k][j+1];
C[i][j+2] += A[i][k] * B[k][j+2];
C[i][j+3] += A[i][k] * B[k][j+3];

} }

// C code of MMM
for (i=0; i<N; i++)
 for (j=0; j<N; j++)

for (k=0; k<N; k++)
C[i][j] += A[i][k] * B[k][j];

Step2

for (i=0; i<N; i++)
for (j=0; j<N; j+=4) {
c0=C[i][j];
c1=C[i][j+1];
c2=C[i][j+2];
c3=C[i][j+3];

for (k=0; k<N; k++) {
a0=A[i][k];
c0 += a0 * B[k][j];

 c1 += a0 * B[k][j+1];
 c2 += a0 * B[k][j+2];
c3 += a0 * B[k][j+3];

}
C[i][j]=c0;
C[i][j+1]=c1;
C[i][j+2]=c2;
C[i][j+3]=c3; }

• A[i][k] is loaded and then
used 4 times (data reuse)

• Therefore, A[i][k] is loaded
4 times less than before

• Every load from dL1 costs
1-3 cycles

// C code of MMM
• In the first case, C[i][j] is loaded/stored N3

times: (N times for k loop x N times for j x
N times for i loop)

• Now, registers are used to hold the
intermediate results and therefore they are
loaded/stored from/to registers not dL1

• Using registers is much faster
• Now, C array references are outside k loop

and therefore it is loaded/stored N2 times
only

Register Blocking: example

Step1
// C code of MMM
for (i=0; i<N; i++)
for (j=0; j<N; j+=4) {
for (k=0; k<N; k++) {

C[i][j] += A[i][k] * B[k][j];
C[i][j+1] += A[i][k] * B[k][j+1];
C[i][j+2] += A[i][k] * B[k][j+2];
C[i][j+3] += A[i][k] * B[k][j+3];

} }

// C code of MMM
for (i=0; i<N; i++)
 for (j=0; j<N; j++)

for (k=0; k<N; k++)
C[i][j] += A[i][k] * B[k][j];

Step2

for (i=0; i<N; i++)
for (j=0; j<N; j+=4) {
c0=C[i][j];
c1=C[i][j+1];
c2=C[i][j+2];
c3=C[i][j+3];

for (k=0; k<N; k++) {
a0=A[i][k];
c0 += a0 * B[k][j];

 c1 += a0 * B[k][j+1];
 c2 += a0 * B[k][j+2];
c3 += a0 * B[k][j+3];

}
C[i][j]=c0;
C[i][j+1]=c1;
C[i][j+2]=c2;
C[i][j+3]=c3; }

// C code of MMM

Register Blocking: example
• The number of L/S instructions is reduced and as a

consequence the number of memory accesses
• The number of arithmetical instructions is reduced too

as there are fewer address computations for C[i][j] and
A[i][k]
• In the first case a different memory address is used for

each load/store of A[][]
• Now, registers are used instead and therefore less

memory addresses are computed

Register Blocking: Activity

// C code of MMM
for (i=0; i<N; i+=2)
 for (j=0; j<N; j+=2) {

for (k=0; k<N; k++) {
…
}

}

// C code of MMM
for (i=0; i<N; i++)
 for (j=0; j<N; j++)

for (k=0; k<N; k++)
 C[i][j] += A[i][k] * B[k][j];

References
• V. Kelefouras, Compilers for Embedded Systems

• https://eclass.upatras.gr/modules/document/?course=EE738
• Renesas Electronics Corporation, Embedded C

Programming III – Optimization
• https://www.renesas.com/us/en/document/apn/embedded-

programming-iii-ecprogramiiiopt

https://eclass.upatras.gr/modules/document/?course=EE738
https://www.renesas.com/us/en/document/apn/embedded-programming-iii-ecprogramiiiopt
https://www.renesas.com/us/en/document/apn/embedded-programming-iii-ecprogramiiiopt

