MeTayAwTTIOTEG YIQ
Evowpatwpeva 2votnuata

Xelpepvo E¢apunvo 2023-24
«Code Optimizations»

[Tavayiwtng Xatlnoovkog

Outline

- Code optimization: key problems
- Some basic/simple code optimizations/transformations and manually
applied techniques:

» Use the available Compiler Options

* Use the appropriate precision

« Choose a better algorithm

* Reduce complex operations

* Loop-based strength reduction

* Dead code elimination

« Common subexpression elimination

* Loop invariant code motion

* Use table lookups

* Function Inline

* Loop unswitching

* Loop unroall

» Scalar replacement

- More advanced code transformations
» Loop merge/distribution, loop tiling, register blocking, array copying, etc

Optimize What?

« Optimization in terms of
« Execution time
* Energy consumption
« Space (Memory size)
* Reduce code size
* Reduce data size

How to optimize ?

* Optimizing the easy way

Use a faster programming language, e.g., C instead of Python
Use a better compiler

Manually enable specific compiler’s options

Normally, the optimization gain is limited

No expertise is needed

» Optimizing the hard way

use a profiler to identify performance bottlenecks, normally loop
kernels

Manually apply code optimizations
Re-write parts of the code from scratch
Needs expertise: Optimization gain is high

Introduction

Loops represent the most computationally intensive part of
a program.
Improvements to loops will produce the most significant
effect

Loop optimization

* 90% /10% rule

« Normally, “90% of a program’s execution time is spent in executing
10% of the code”

 larger payoff to optimize the code within a loop

Which Compiler Options to use and when?

- Compilers offer several code transformation and
optimization options

- This is a complex longstanding and unsolved problem for
decades

Which compiler optimization/transformation to use?

Which parameters to use? Several optimizations include different
parameters

In which order to apply them?

Software Optimization Problem

The key to optimizing software is the correct choice, order,
and parameters
of code optimizations

But why optimizing software is so hard?

Normally, the efficient optimizations for a specific code are
not efficient for

another code

another processor

different hardware architecture details, e.g., cache line size
or even for a different input size

The compilers cannot find the optimum choice, order, and
parameters of optimizations

Why compilers falil

- Compilers are not smart enough to take into account

« most of the hardware architecture details (e.g., cache size and
associativity)

« custom algorithm characteristics (e.g., data access patterns, data
reuse, algorithm symmetries)

- Even experienced programmers
* Do not understand how software runs on the target hardware
» Treat threads as black boxes
- Blindly apply loop transformations
- Peak performance demands going low-level
* Understand the hardware, compilers, instruction set

Why compilers falil

* The compilation sub-problems depend on each other
which makes the problem extremely difficult

* these dependencies require that all the problems should be
optimized together as one problem and not separately

 Toward this much research has been done
 Iterative compilation technigques

* Methodologies that simultaneously optimize only two
problems

« Searching and empirical methods
» Heuristics

 But ...

« They are partially applicable
* They cannot give the best solution

Why compilers falil

- The exploration space (all different
implementations/binaries) is so big that it cannot be
searched; researchers try to decrease the space by using

* machine learning compilation techniques
* genetic algorithms
« statistical techniques

« exploration prediction models focusing on beneficial areas of
optimization

e search space

- However, the search space is still so big that it cannot be
searched, even by using modern supercomputers

10

Data handling technigues

Use Variables of the Same Type for Processing
Use of Unsigned Type

Float and Double

Data Declaration - Constant

Data Declaration - Volatile

Data Initialization at Declaration

Data Definition - Arrangement and Packing
Passing Reference as Parameters

Return Value

Better Data Structure and Representation
Array and Structure Initialization

11

Data handling technigues

- Use Variables of the Same Type for Processing
* Programmers should plan to use the same type of variables for
processing. Type conversion must be avoided.
« Otherwise, precious cycles will be wasted to convert one type to
another (Unsigned and signed variables are considered as different

types).
- Use of Unsigned Type
« All variables must be defined as “unsigned” unless mathematical
calculation for the signed bit is necessary. The “signed-bit” may
create complication, unwanted failure, slower processing and extra
ROM size.

- Float and Double
* Maximum value of Float = Ox7F7F FFFF
« Maximum value of Double = Ox7F7F FFFF FFFF FFFF

« To avoid unnecessary type conversion or confusion, programmers
can assign the letter “f” following the numeric value.
- x=Yy+ 0.2f;

12

Data handling technigues

- Data Declaration - Constant

The “const” keyword is to define the data as a constant, which will allocate
it in the ROM space (section C). Otherwise, a RAM space will also be

reserved for this data. This is unnecessary as the constant data is supposed
to be read-only.

- Data Declaration - Volatile

“Volatile” keyword will forbid the compiler from performing any optimization
on the variable. This is usually used on IO registers and variables that will be

altered by interrupts. This is necessary as the value of these variables can
be asynchronously accessed.

« Data Initialization at Declaration
 Data should be initialized at declaration.

int a; inta=1;
void main(void) void main(void)

{a=1; =) {

13

Data handling technigues

- Data Definition - Arrangement and Packing
* The declaration of the components in a structure will determine how

the components are being stored.

* Due to the memory alignment, it is possible to have dummy area
within the structure. It is advised to place all similar size variables in
the same group.

char a;
int b;
charc;
short d;

<

2Bytess —p

char a;
char c;
int b;
short d;

b

d

Example for a specific embedded system where sizeof(int)=2

Data handling technigues

- Data Definition - Arrangement and Packing

* As the structure is packed, integer b will not be aligned. This will
improve the RAM size but operational speed will be degraded, as
the access of ‘b’ will take up two cycles.

struct S1{char a: #pragma pack 1
mnt b; ———Pp| struct S1{char a:
char c: it b;
} char c:
j
<«—2Byes «—2Bys —_»
a | a b

Example for a specific embedded system where sizeof(int)=2

Data handling technigues

- Passing Reference as Parameters

« Larger numbers of parameters may be costly due to the number of
pushing and popping actions on each function call.

« It is more efficient to pass structure reference as parameters to reduce
this overhead

struct sum{
total (long a, long b, long ¢, long d); —— | long a;
long b;
long c;
long d;
tall;

total (&all);

 Return Value

* The return value of a function will be stored in a register. If this return

data has no intended usage, time and space are wasted in storing this
information.

« Programmer should define the function as “void” to minimize the extra
handling in the function.

Data handling technigues

- Better Data Structure and Representation

Proper data structure consideration can improve the program.

Example: Use computation to regenerate a large junk of data (compression,
technique), this will reduce the space usage. However, the computation
process may slow down the operation.

An array of [0,0,0,0,0,0,1,1,2,2,2,3,3,3,3...], this can be replaced with [6, 2, 3, 4...], which
signifies 6x’0’°, 2x’1’, 3x’2’, 4x’3’...

- Array and Structure Initialization

A simple illustration of implementation:

int a[3][3][3]:

int b[3][3][3]; typedef struct {
int element[3][3][3]:
for(i=0;1<3:1++) } Three3DType;

for(3=0;)<3;++)

for(k=0:k<3:k++) Three3DType a.b;
bi][j][k] = af1][7][k]:
for(1=0;1<3:1++) b =a;
for(j=0:;)<3;++)
for(k=0:k<3:k++) memset(a,0,s1zeof(a));

afi][][k] = 0;

for(x=0;x<100:x++)
printf("%d\n",(int)(sqrt(x)));

Other handling techniques

Lookup Table and Calculation
Fixed-point and Floating-point Arithmetic
Horner’s Rule of Polynomial Evaluation
Factorization

Modula

Division and Multiplication

- Constant in Shift Operations

Use Formula

- Simplify Condition
- Absolute Value

18

Other handling techniques

- Lookup Table and Calculation

In lower operation frequency of MCU, lookup table may be faster than
recalculation methods. However, programmers must make their
judgment on the complexity and speed requirement.

Example:

A function like y = ax + bx2 will already take up significant CPU processing time.

However, the function y = 2x can be implemented with a shift instruction (2 cycles).
Thus this function is preferred to be implemented with re-calculation method than a
lookup table method.

- Fixed-point and Floating-point Arithmetic

It takes up much processing power to perform floating-point arithmetic
in a non-floating-point processor.

If accuracy is not a requirement, programmers should use fixed-point
calculation instead. Otherwise, the calculation can be re-implemented
in a cheaper means.

Example:

123.45 + 678.89 is equivalent to (12345 + 67889) with a decimal point placed at the
correct place.

Other handling techniques

- Horner’s Rule of Polynomial Evaluation

* The rules state that a polynomial can be rewritten as a nested
factorization. The reduced arithmetic operations will have better
ROM efficiency and execution speed.

AX’+Bx'+Cx’ + DX’ + Ex +F L B ((Ax+B)*x+C)*x+D)*x+E)*x+F

- Factorization
« The compiler may be able to perform better when the formula

Z=X*A+X*B+X*C+X*D P Z=X*(A+B+C+D)

- Use Finite Differences to Avoid Multiplies

for 1=0:1<10: i++) for (i=0:1<100; i+=10)
printf(* %d\n”, 1*10); ———p printf(“ %d\n”. 1);

Other handling techniques

Modula

x=y%32;

) x=y&31:

Division and Multiplication

x=y*8:
x=y/8:

—»

X =y <<3:
X =y >>3;

Constant in Shift Operations

int shift=8:

data = data <<shift;

Use Formula

n=100:
for (x=0, y=1: y<=n; y++)
X +=y:

R A

#define SHIFT 8

data = data << SHIFT;

n=100:
x=n* (n>>1): /n’ /2

Other handling techniques

- Simplify Condition

If (a==b && c=—d && e==f) If(((a-b) | (c-d) | (e-£)) ==0)
(. —» (.

if(x>=0 && x<8 && y>=0 &&y<8) if(((unsigned)(x|y))<8)
——»
{...} {..}
if((x==1) || (x==2) || (x==4) || (x==8) 1f(x&(x-1)=—=0 &&x!=0)
[|...)

« Absolute Value

static long abs(long x)

{ longy:

#define abs(x) (((x)=0)?(x):-(x)) ——> y=x>>31: /* Not portable */
return (x\y)-y:

}

Basic code improvement techniques

Use the available Compiler Options
Dead code elimination

Common subexpression elimination
Use table lookups

Use the appropriate precision
Choose a better algorithm

Reduce complex operations

Loop unrolling

Scalar replacement

Loop-based strength reduction
Loop invariant code motion
Function Inline

Loop unswitching

Loop interchange

Register Blocking

23

Use the available compiler options

- The most used optimization flags/options are the following

-O0: disables all optimizations, but the compilation time is very low
-O1: enables basic optimizations
-02: enables more optimizations

-0O3: turns on all optimizations specified by -O2 and enables more
aggressive loop transformations such as register blocking, loop
interchange etc

-Ofast: it is not always safe for codes using floating point arithmetic
-Osize: optimizes for code size

24

Dead code elimination

- Compiler optimization that removes dead code (code that
does not affect the program results).

- Benefits:

* it shrinks program size, an important consideration in some contexts

it allows the running program to avoid executing irrelevant
operations, which reduces its running time

int foo(void) {
int a 24;
int b = 25; /* Assignment to dead variable */
int c;
c =a * 4;
return c;
b = 24; /* Unreachable code */
return 0;

25

Common subexpression elimination

- Common expression should be calculated once or earlier

* A parameter can be calculated at earlier stages, such as the power-
up initialization stage instead of the actual execution stage.

« This will help to speed up the processing.

for 1=0:1<end; i++) ¢ =sqrt(a_type, b_type):
= sqrt(a_type, b_type); _ _ _
{ 3:?5?_nm -pe) Pl for (1=0;1<end; 1++)

{ d=c+1;

j

26

Use LookUp Table (LUT)

- A LUT is an initialized array that contains precalculated
information.

- They are typically used to avoid performing complex (and
hence time-consuming) calculations.

- Example

* In a data transmission system, a Packet Error Checking (PEC) byte
can be appended at the end of each transaction as an error-
detecting code. The PEC byte is calculated based on a CRC-8 byte
represented by the polynomial C(X) = X8 + X2 + X1 + 1.

« Itis well known that the speed of CRC calculations may be
significantly increased by the use of a lookup table.

* A suitable lookup table for computing the CRC (or PEC) used in
System Management Bus (SMBUS) protocol calculations is shown
next.

27

LUT Example

unsigned char pec_Update(unsigned char pec)

{

static const unsigned char lookup[256] =

{

Ox00U, Ox07U, OxOEU, ©x09U, ©Ox1CU, ©x1BU, ©x12U, 0©x15U,

OXE6U, OXE1U, OXESU, OxEFU, OxFAU, OxFDU, OxF4U, OxF3U

}s

pec

lookup[pec];

return pec;

}

* Interesting points

The use of static: to avoid the allocation in the stack

The use of const: to avoid writing to the lookup table

The use of __flash: to force the array to be kept in flash memory (for
embedded systems)

The use of a size-specific data type such as unsigned char: to
reduce memory consumption

Avoidance of incomplete array declarations: explicitly declared array
size to avoid errors due to missing values

Range Checking: useful but not necessary in this case

28

Use the appropriate precision / data type

The use of correct data type is important in a recursive
calculation or large array processing. The extra size, which
IS not required, is taking up much space and processing
time.

Example

Speed concern:
- Byte multiplication - MULXU .B R1L,R2L - take up 12 cycles
* Word multiplication - MULXU.W R1,ER2 - take up 20 cycles
Size concern:
« char data_collect[100];
* long data_collect[100]; -take up 4 times more spaces

29

Choose a better algorithm

- An example for data sorting algorithms

Time Complexity Space Complexity
Sorting Algorithms Best Case Average Case Worst Case Worst Case

Bubble Sort Q(N) O(N*2) O(N*2) 0(1)
Selection Sort Q(NA2) O(N*2) O(N*2) 0(1)
Insertion Sort Q(N) O(N*2) O(N*2) 0o(1)
Quick Sort Q(N log N) O(N log N) O(N*2) O(N)
Merge Sort Q(N log N) O(N log N) O(N log N) O(N)
Heap Sort Q(N log N) O(N log N) O(N log N) 0o(1)

30

Reduce complex operations (1)

 Division is expensive

« On most CPUs the division operator is significantly more expensive
(i.e. takes many more clock cycles) than all other operators. When
possible, refactor your code to not use division.

« Use multiplication instead
* For example, change */5.0 ‘to ** 0.2 °

- Use shift operations instead of multiplication and division
« Only for multiplications and division with powers of 2
« Compilers will do that for you though

31

Reduce complex operations (2)

- Functions such as pow(), sgrt() etc are expensive, so avoid

them when possible

- E.g., avoid calling functions such as strlen() all the time, call it once
(x=strlen()) and then x++ or x-- when you add or remove a character.

- Avoid Standard Library Functions
* Many of them are expensive only because they try to handle all
possible cases
« Think of writing your simplified version of a function, if possible,
tailored to your application
* E.g., pow(a, b) function where b is an integer and b=[1,10]

32

Loop unrolling

Creates additional copies of the loop body
Always safe to apply

//C-codel //C-code2
for (i=0; i < 100; i++) A[i] for (i=0; i < 100; i+=4) {
= B[il; =) Ali] = BIi;
Ali+1] = B[i+1];
Ali+2] = B[i+2];
Ali+3] = B[i+3];
}
Pros:

* Reduces the number of instructions
* Increases instruction parallelism
Cons:

* Increases code size
* Increases register pressure

33

Loop unrolling

The number of arithmetical instructions is reduced
 Less add instructions for i, i.e., i=i+4 instead of i=i+1
* Less compare instructions, i.e., i==100 ?

* Less jump instructions

//C-codel
for (i=0; i < 100; i++) A[i]
= Bli];

//C-code2

for (i=0; i < 100; i+=4) {
Ali] = B[i];
Ali+1] = B[i+1];
Ali+2] = B[i+2];
A[i+3] = B[i+3];

}

https://godbolt.org/z/KOWEbrv7W

add ip, rl, #8600
.L2:

ldrd r2, [r1], #8
strd r2, [ro], #8
cmp rl, ip

bne .L2

add ip, rl, #8600
.L5:

ldrd r2, [ri1]

strd r2, [ro]

ldrd r2, [r1, #8]
strd r2, [ro, #8]
ldrd r2, [rl1, #16]
strd r2, [ro, #16]
ldrd r2, [r1, #24]
strd r2, [ro, #24]
adds rl1, ril, #32
adds ro, ro, #32
cmp rl, ip

bne .L5 34

https://godbolt.org/z/K9WEbrv7W

Limit in Loop unrolling

- Alarger loop unrolling factor does not mean more efficient code

//C-codel //C-code2

N=1000000; = N=1000000;

for (i=0; i < N; i++) for (i=0; i < N; i+=10000){
Ali] = B[il; A[i] = BJ[i];

Ali+1] = B[i+1];
Ali+2] = B[i+2];
Ali+3] = B[i+3];

A[i+99999] = B[i+9999];

}

When the codeZ2 size becomes larger
than L1 instruction cache size,
codeZ2 is no longer efficient

Main memory

L2 unified cache

I

L1 D-cache

L1 lI-cache

| _RF_|

[CPU

]

Scalar replacement transformation

- Converts array reference to scalar reference

Most compilers will do this for you automatically by specifying the
-02 option

Always safe

Reduces the number of L/S instructions

Reduces the number of memory accesses

//Code-1 //Code-2

for (i=0; i < 100; i++){ for (i=0; i < 100; i++){
Ali] = ... + BJi]; —> t=BJ[i];
C[i] = ... + B[i]; Ali]=..+1;
D[i] = ... + B[i]; Cli]=..+t;

} D[i]=..+t
}

36

Scalar replacement: example

// C-codel Y[0] Main memory

for (i=0; i<300; i++) LI LLLLLL
for (j=0; j<300; j++))
Y[i]+= A[il[j] * X[j]; L2 ur!ified cache

U

|
|
/ / C-code2 L1 D-cache lv

for (i=0; i<300; i++) { _,‘_u.n.),
tmp=Y[i]; ’—‘l—‘
RF

for (j=0; j<300; j++) { Y[0]
tmp+= ALil[j] * Xl [cPu]

L1 I-cache

}
Y[i] += tmp;

}
Y[i] is not affected by the j loop
For every |, Y][i] is redundantly loaded/stored from/to memory
A load/store instruction needs 1-3 CPU cycles

The transformed code has fewer load/stores and L1 data accesses
37

Strength Reduction

Strength reduction is the replacement of an expression by a
different expression that yields the same value but is cheaper to
compute

Most compilers will do this for you automatically by specifying
the -O1’ optimization flag

//Code-1 //Code-2
for (i=0; i < n; i++){ T=0;
Ali] = A[i] + c*i; for (i=0; i < n; i++){
} Ali] = Ali] +T;
T=T+c;

}

Normally, addition needs fewer CPU cycles than multiplication
In each iteration, cisaddedto T

38

Loop-Invariant Code Motion

Any part of a computation that does not depend on the loop

variable and which is not subject to side effects can be moved
out of the loop entirely

Most compilers will do this for you automatically by specifying
the ‘-O1’ optimization flag

//Code-1 //Code-2

for (i=0; i < n; i++){ if (n>=0) C = sqrt(x);
Ali] = A[i] + sgrt(x); for (i=0; i < n; i++){

} Ali] = A[i] + C;

}

The value of sgrt(x) is not affected by the loop
Therefore, its value is computed just once, outside of the loop

If n<1, the loop is not executed and therefore C must not be
assigned with the sqgrt(x) value

39

Function Inline

Replace a function call with the body of the function

It can be applied in many ways
« Either manually or automatically
« ‘-O1’ applies function inline
* In C, a good option is to use macros instead (if possible)
Pros
* It speeds up your program by avoiding function-calling overhead
|t saves the overhead of pushing/popping on the stack
* It saves the overhead of a return call from a function
« It increases the locality of reference by utilizing the instruction cache

Cons
« The main drawback is that it increases the code size

40

Function Inline

- The technique will cause the compiler to replace all calls to
the function, with a copy of the function’s code.

 This will eliminate the runtime overhead associated with the function
call.

« This is most effective if the function is called frequently but contains
only a few lines of code.

#pragma inline (sum)

int sum(int a, int b)
{ return (a+b):

h

fé.utine()
{

total = sum (x.y);

sub total = sum (cost a, cost b)

41

Loop Unswitching

A loop containing a loop-invariant IF statement can be transformed into
an IF statement containing two loops.

After unswitching, the IF expression is only executed once, thus
improving run-time performance.

After unswitching, the loop body does not contain an IF condition and
therefore it can be better optimized by the compiler.

Most compilers will do this for you automatically by specifying the *-O3’
optimization flag

//Code-2
//Code-1 if (x<0)
for(i=0;i<N;i++){ for(i=0;i<N;i++){
if (x<0) ali] = 0;
ali] = 0; }
else else
b[i] = 0; for(i=0;i<N;i++){
} b[i] = 0O;

} 42

Loop Interchange

The loop interchange transformation switches the order of the loops in
order to improve data locality or increase parallelism

Not always safe, only when data dependencies allow it
In C/C++, accessing arrays column wise is inefficient (see next)

Column-wise (bad) Row-wise (good) Row-major order
int i, j, N=1000; int i, j, N=1000;
int A[NJ[NJ;: int A[NJ[NJ;
for (j=0; j<N: j++) |:> for (i=0; i<N; i++)
for (i=0; i<N; j++) for (j=0; j<N; j++)

Ali][j] =it Ali][]]=i+;

Loop interchange

- The following example is more complicated
- Which one is more efficient and why?

for (j=0; j<N; j++)
for (i=0; i<N; j++)
total [i]=total [i]+A[i][j]:

for (i=0; I<N; i++)
m) | for (=0; j<N; j++)
loop total [i]=total [i] +A[i][]]:

interchange

Loop interchange

« total []is loaded and stored N2 times

e all the intermediate results are loaded/stored from/to dL1
A

« totalli] is invariant with respect to the inner loop and therefore it can be replaced by a

register, yielding better data locality
« This can be applied either manually or automatically by compiling with ‘-O3’

for (j=0; j<N; j++) for (i=0; I<N; i++)
for (i=0; i<N: i++) mm) | for (j=0; j<N; j++)
total [i]=total [i]+A[i][j]: loop total [i]=total [iJ+A[i][]]
: interchange
R g @ Scalar replacement
+ All[]is accessed column-wise " for (i=0; i<N; i++) {

,,,,,,, t=total [i];
for (j=0; j<N; j++) {
« A[][]is accessed row-wise «” t=t+A[i][j]

/
total [i] =1;

e
-
-’
e
-

/

Register Blocking (1)

Also known as “Loop unroll and jam”

Register blocking is primarily intended to
* increase register exploitation (data reuse)
* reduce the number of L/S instructions
* reduce the number of memory accesses

Register blocking involves two transformations
* Loop unroll
« Scalar replacement

Register blocking is included in ‘-O3’ optimization option
* In gcc you must enable this option : -floop-unroll-and-jam
 However, an experienced developer can achieve better results

Register Blocking: Key Point

« The number of the variables in the loop kernel must be
lower or equal to the number of the available registers

- Otherwise, some of the variables cannot remain in the
registers and they are loaded many times from L1 data
cache (dL1), degrading performance

- This is also known as register spills

Main memory

Main memory

I ‘\\

~
~
~
~
~
RI h

[CPU J

L2 unified cache

e

Two steps of Register Blocking

« One or more loops (not the innermost) are partially unrolled and as a
consequence common array references are exposed in the loop body

(data reuse)

- Then, the array references are replaced by variables (scalar replacement
transformation) and thus the number of L/S instructions is reduced

// C code of MMM

for (i=0; i<N; i++)

for (j=0; j<N; j++) :>
for (k=0; k<N; k++)

CLil[1 += Ali][k] * BIK][1;

Cli][j] does not
depend on the

innermost loop.

Get it out and
use register

Stepl
// C code of MMM
for (i=0; i<N; i++)
for (j=0; j<N; j+=2) {
for (k=0; k<N; k++) {

Clill] [+=|Alik]} * BLKI[];
Cli][j+1])+=|ALil[k] * BIkI[+1];

} Common reference,
use a register

}

=)

Step2
// C code of MMM
for (i=0; i<N; i++)
for (j=0; j<N; j+=2) {
cO=C[i][j];
c1=Cl[i][j+1];

for (k=0; k<N; k++) {
a0=A[i][k];
cO +=a0 * B[k][j];
cl +=a0 * B[k][j+1];

}

C[i][j]=cO0;

Cli][j+1]=c1;

}

Register Blocking: example

Alil[k] is loaded and then
used 4 times (data reuse)
Therefore, Alil[k] is loaded
4 times less than before

Every load from
1-3 cycles

~——
~—~—
~—~—
~—~——
~—~
~—~——
~——

// C code of MMM
for (i=0; i<N; i++)
for (j=0; j<N; j++)
for (k=0; k<N; k++)
Cli][j] += Ali][k] *

dL1 costs

=)

BLKI[I;

~~—

In the first case, C[i][j] is loaded/stored N3

Step2

times: (N times for k loop x N times for jx [/ C code of MMM

N times for i loop)

Now, registers are used to hold the
intermediate results and therefore they are
loaded/stored from/to registers not dL1
Using registers is much faster

~
-~

only

Stepl
// C code of MMM
for (i=0; i<N; i++)
for (j=0; j<N; j+=4) {
for (k=0; k<N; k++) {

Cli][j] += Alil[k] * BIK][];

Clil[j+1] += Ali][k] * B[K][j+1];
Clil{i+2] += Ali][k] * B[k][j+2];
Clil[j+3] += Ali][k] * BLk][j+3];

b}

=3
~~—
~~—
~~—n
~~—n
~—~
~~~~~
~~~~~
~~—e
~~—e
~—
~—
~~~~~

for (i=0; i<N; i++)
for (j=0; j<N; j+=4) {

cO=C[i][jl;

c1=Cl[i][j+1];
c2=C[i][j+2];
c3=C[i][j+3];

for (k=0; k<N; k++) {

“-a0=A[i[K];
“c0 += a0 * B[K][j];

cl +=a0 * B[k][j+1];
c2 +=a0 * B[k][j+2];
c3 += a0 * B[K][j+3];
}
C[i][j]=c0;
C[i][j+1]=c1;
C[i][j+2]=c2;
C[i][j+3]=c3;}



Register Blocking: example

- The number of L/S instructions is reduced and as a
consequence the number of memory accesses

- The number of arithmetical instructions is reduced too  step2
as there are fewer address computations for CJi][j] and  // € code of MMM

A[i][k] for (i=0; i<N; i++)
: : : for (j=0; j<N; j+=4) {
« Inthe first case a different memory address is used for cO=C[il[jl;
each load/store of A[][] C1=Clil[+1];
* Now, registers are used instead and therefore less c2=C[i][j+2];
memory addresses are computed c3=C[i][j+3];

for (k=0; k<N; k++) {
Stepl a0=A[i][k];
// C code of MMM // C code of MMM cO += a0 * B[K][j];
cl += a0 * B[K][j+1];

for (i=0; i<N; i++) for (i=0; i<N; i++) :
for (j=0; j<N; j++) |:> for (j=0; j<N; j+=4) { I:> c2 += a0 * BIK][j+2];

for (k=0; k<N; k++) for (k=0; k<N; k++) { c3 +=a0 * B[k][j+3];
C[i][j] += Alil[k] * B[K][j]; C[i][j] += A[il[k] * B[K][j]; }
Cli][j+1] += A[i][k] * B[K][j+1]; C[i][j]=cO;
C[i][j+2] += A[i][k] * B[k][j+2]; C[i][j+1]=c1;
Cli][j+3] += A[i][k] * B[k][j+3]; Clil[j+2]=c2;

) Cli][j+3]=c3;}



Register Blocking: Activity

// C code of MMM

for (i=0; i<N; i++) {/ C.c_odt.e of I.VIMM
for (j=0; j<N; j++) or (|-.O, |<.N, |+._2)
for (j=0; j<N; j+=2) {

for (k=0; k<N; k++)

C[il[j] += Alil[k] * B[K][j]; for (k=0; k<N; k++) {

}
}



References

- V. Kelefouras, Compilers for Embedded Systems
« https://eclass.upatras.gr/modules/document/?course=EE738

- Renesas Electronics Corporation, Embedded C
Programming lll — Optimization

 https://www.renesas.com/us/en/document/apn/embedded-
programming-iii-ecprogramiiiopt



https://eclass.upatras.gr/modules/document/?course=EE738
https://www.renesas.com/us/en/document/apn/embedded-programming-iii-ecprogramiiiopt
https://www.renesas.com/us/en/document/apn/embedded-programming-iii-ecprogramiiiopt

