MeTayAwTTIOTEG YA
Evowpatwpeva 2votnuata

Xelpepvo E¢apunvo 2023-24
«Debugging and Profiling»

[Tavayiwtng Xatlnoovkog

Outline

- GDB

Measuring execution time

- GNU gprof

Perf

+ Valgrind and Cachegrind

PAPI

gdb (GNU Debugger)

- “GNU Debugger”

- A debugger for several languages, including C and
C++

- It allows you to inspect what the program is doing at
a certain point during execution.

- Errors like segmentation faults may be easier to find
with the help of gdb.

gdb (GNU Debugger)

- Debuggers are programs which allow you to
execute your program in a controlled manner, so
you can look inside your program to find a bug.

- gdb Is a reasonably sophisticated text based
debugger. It can let you:

« Start your program, specifying anything that might
affect its behavior.

« Make your program stop on specified conditions.

 Examine what has happened, when your program has
stopped.

« Change things in your program, so you can experiment
with correcting the effects of one bug and go on to learn
about another.

« SYNOPSIS
gdb [prog] [core|procID]

gdb

- GDB is invoked with the shell command gdb.

« Once started,it reads commands from the terminal
until you tell it to exit with the GDB command quit.
* The most usual way to start GDB is with one argument

or two, specifying an executable program as the
argument:

$ gdb program
* You can also start with both an executable program and
a core file specified:
$ gdb program core
* You can, instead, specify a process ID as a second
argument, if you want to debug a running process:
$ gdb program 1234

would attach GDB to process 1234

Compiling with the —g Option

» To use gdb best, compile your program with:
gcc —g —¢c my_math.c
gcc —g —Cc sample.c
gcc —o0 sample my_math.o sample.o
or:
gcc —o0 sample -g my_math.c sample.c

- That is, you should make sure that —g option is
used to generate the .o files.

* This option tells the compiler to insert more information
about data types, etc., so the debugger gets a better
understanding of it.

Common Commands for gdb

- Here are some of the most frequently needed GDB

commands:

b(reak) [file:]function
r(un) [arglist]
bt or where

print expr
C

n(ext)

s(tep)

help [name]

q(uit)
|(ist)

Set a breakpoint at function (in file).
Start program (with arglist, if specified).

Backtrace: display the program stack; especially
useful to find where your program crashed or
dumped core.

Display the value of an expression.

Continue running your program (after
stopping, e.g. at a breakpoint).

Execute next program line (after

stopping); step over any function calls in

the line.

Execute next program line (after

stopping); step into any function calls in the line.
Show information about GDB command name,
or general information about using GDB.

Exit from GDB.

print the source code

Starting up gdb

 Just try “gdb” or “gdb prog1.x.” You’ll get a prompt
that looks like this:

* (gdb)

- If you didn’t specify a program to debug, you’ll have
to load it in now:

* (gdb) file prog1.x

* Here, prog1.x is the program you want to load, and
“file” is the command to load it.

Getting help

gdb has an interactive shell, much like the one you
use as soon as you log into the linux grace
machines. It can recall history with the arrow keys,
auto-complete words (most of the time) with the
TAB key, and has other nice features.

If you’re ever confused about a command or just
want more information, use the “help” command,
with or without an argument:

(gdb) help [command]

You should get a nice description and maybe some
more useful hints

Running

To run the program, just use:
(gdb) run

This runs the program.

* |f it has no serious problems (i.e. the normal program
didn’t get a segmentation fault, etc.), the program should
run fine here too.

* |f the program had issues, then you (should) get some
useful information like the line number where it crashed,
and the parameters passed to the function that caused
the error.

Program received signal SIGSEGV, Segmentation fault.
0x0000000000400524 in sum array region
(arr=0x7f£f£fc902a270, rl=2, cl=5, r2=4, c2=6) at sum-
array-region2.c:12

Presence of bugs

- Okay, so you’ve run it successfully. But you don't
need gdb for that. What if the program isn’t
working?

- Basic idea:

« Chances are if this is the case, you don’t want to run the
program without any stopping, breaking, etc. Otherwise,
you’ll just rush past the error and never find the root of

the issue. So, you’ll want to step through your code a bit
at a time, until you arrive upon the error.

- This brings us to the next set of commands. . .

Setting breakpoints

- Breakpoints can be used to stop the program run in the
middle, at a designated point. The simplest way is the
command “break.” This sets a breakpoint at a specified
file-line pair:

(gdb) break file1.c:6

- This sets a breakpoint at line 6, of file1.c. Now, if the
program ever reaches that location when running, the
program will pause and prompt you for another
command.

* You can set as many breakpoints as you want, and the
program should stop execution if it reaches any of
them.

Breakpoints

* You can also tell gdb to break at a particular
function. Suppose you have a function my func:

int my func(int a, char *b);

- You can break anytime this function is called:
(gdb) break my func

continue and step

- Once you've set a breakpoint, you can try using the run

command again. This time, it should stop where you tell
it to (unless a fatal error occurs before reaching that
point).

* You can proceed onto the next breakpoint by typing

“continue” (Typing run again would restart the program
from the beginning, which isn’t very useful.)

(gdb) continue

- You can single-step (execute just the next line of code)
by typing “step.” This gives you really fine-grained
control over how the program proceeds. You can do
this a lot...

(gdb) step

Next command

Similar to “step,” the “next” command single-steps
as well, except this one doesn’t execute each line of
a sub-routine, it just treats it as one instruction.

(gdb) next

Typing “step” or “next” a lot of times can be tedious.
If you just press ENTER, gdb will repeat the same
command you just gave it.

You can do this a bunch of times

Querying other aspects of the program

- So far you’ve learned how to interrupt program flow
at fixed, specified points, and how to continue
stepping line-by-line. However, sooner or later
you’re going to want to see things like the values of
variables, etc. This might be useful in debugging.

- The print command prints the value of the variable
specified, and print/x prints the value in
hexadecimal:

(gdb) print my var
(gdb) print/x my var

Setting watchpoints

- Whereas breakpoints interrupt the program at a
particular line or function, watchpoints act on
variables. They pause the program whenever a
watched variable’s value is modified. For example,
the following watch command:

(gdb) watch my_var

- Now, whenever my_var’s value is modified, the

program will interrupt and print out the old and new
values.

Other useful commands

- backtrace - produces a stack trace of the function
calls that lead to a seg fault

- where - same as backtrace; you can think of this
version as working even when you're still in the
middle of the program

 finish - runs until the current function is finished

- delete - deletes a specified breakpoint

- info breakpoints - shows information about all
declared breakpoints

Remote debugging

« Remote debugging is the process of debugging a
program running on a different system (called
target) from a different system (called host).

« a debugger running on host machine connects to a
program which is running on the target via network.

* The debugger in the host can then control the execution
of the program on the remote system and retrieve
information about its state.

- Remote debugging is often useful in case of

embedded applications where the resources are
limited.

GNU gdbserver

» We need the following two utilities to perform a
remote debugging.
 gdbserver — Run this on your target system

« GDB - Execute this on your host system to connect to
your target system

Target Host
$ gdbserver localhost:2000 my prg $ gdb my prg (gdb)
Process program created; pid = 2045 (gdb) target remote 192.168.1.10:2000

Listening on port 2000

How useful are debuggers?

Debuggers can be great for seeing how small programs execute

Great for certain types of problems
* ldentifying the line on which the program crashes
« Seeing state of procedure stack at crash

Less useful for non-crashing programs

Disadvantages of debuggers
* Not available on some systems
« System-dependent user interface
« Too many low-level details
« Try debugging linked lists
« Clicking over statements is tedious
* Deal poorly with large amounts of data
 Difficult to find intermittent bugs

Debuggers are an important tool, but not the only, or even most
important one for debugging programs

How useful are debuggers?

Often more useful to dump information to screen
« Easy to scan large amount of data
* Only output relevant data
* Debugging code can be left in program
Use #ifdef’s and #defines to comment it out
« Or just plain if statements, if you trust the compiler
Debugging sessions are transient

Difficult bugs to find are ones where the program works for most of
the input data, but some small part causes problems

Bug may depend on combination of conditions
Looking at a screen-full of data can allow you to reason backward

Backward Reasoning

Debugging is the process of reasoning backwards from the
undesired behavior (bad output, spectacular crash, running
forever) to the cause of the behavior

Debugging is backward reasoning
Like solving murder mysteries
We have a dead body. How were they killed?

Bugs show us a gap between how we think the program
behaves and how it behaves

Once we have identified the reason for the problem, fixing it
IS usually relatively easy
But sometimes bugs reveal fundamental flaws in our whole design

Some debugging tips

+ Look for familiar patterns
 intn;
scanf(“%d”, n);

 if(x=y)
 doubled=3.14159265357;
inti=1;

printf(“%d %f”, d, i);

* You will make these and similar mistakes time and time again

Some debugging tips

- Examine the most recent changes

You should write your program incrementally
If a bug appears, it should be because of a recent change
Finding older bugs is very difficult

You should never write a big bunch of code and then try to
debug it into workingness.

Need to test your program continuously as you develop it.

- Aside:

Extreme programming (XP) is a technique for small groups
developing software

One aspect of XP is developing test cases in parallel with the
code, and extending the code incrementally to pass more and
new test cases

Continuous retesting as part of the process
+ Basically just (un)common sense

Some debugging tips

Don’t make the same mistake twice
« After you fix a bug, ask whether you made the same mistake elsewhere
« Many bugs arise from a misunderstanding of how the program behaves

Debug it now, not later
« Tempting to press ahead if a bug seems unimportant
- But old bugs are the hardest to find
* May never find bug until after the software is delivered

Mars Pathfinder

« Spacecraft’s computers reset every day

* Bug tracked down to something seen in testing

« Engineers had been too busy working on something else
« Fixing bugs over a radio link to Mars is more difficult

Also very important for embedded software

« Usually recalling large numbers of consumer devices because of
software bugs is not practical

Some debugging tips

- Get a stack trace
« Debuggers can be tedious to work with

« But stack traces are the most useful debugging information when a
program crashes spectacularly

- Read and think before typing

« Debugging is fundamentally about understanding the difference
between what you think you asked the computer to do and what
you actually asked it to do

* Get a cup of coffee
- EXxplain your code to someone else

« Often end up explaining bug to yourself
« Consider using cardboard cutout

Difficult Bugs

- Make the bug reproducible
* Most difficult bugs to fix are those that are difficult to repeat
« Big reason why concurrent programming is so difficult

* Find input and parameter settings that cause the bug to
appear every time

« Will need to reproduce bug again and again
 |f bug cannot be made reproducible, that is also information

- Divide and conquer
* Reduce the size of the input required to trigger bug
* Make test case as small as possible

* Use binary search
« Throw away half the input
- See which half of the input causes the bug
- Repeat

Difficult Bugs

» Check real numbers
* Round numbers in programs rarely appear randomly

* E.g. program dropping characters apparently at random
- Discovered one character every 1023 bytes
« 1023 is suspiciously close to 1024, a very round number
- Check the program for appearances of constant 1023 or 1024
- Found 1024-byte buffer
- The last character being overwritten by \O’ character
 This bug would be almost impossible to find with a
debugger

* Always be suspicious of round numbers

Difficult Bugs

Display output

« Write key information to the screen

* Use %p for pointers

« Watch out for pointer values that don’t look like addresses
- Small values

« Odd numbers for non-char pointer
« Addresses usually fall within a few ranges

« Write out when program reaches key places

* Use indentation to make output easier to read

« Make sure all debugging information goes to stderr
- stdout is buffered

« Consider writing a log file
 or just redirect stderr to a file
* myprogram 2> logfile

Difficult Bugs

- Write self-checking code

If you believe something is true, test that it is true

Use C’s assert feature
* #include <assert.h>
- assert(p != NULL);

Consider writing your own functions to test more
complicated conditions

Don’t throw away all debugging code after the bug is
fixed

assert can be turned off without removing code

- pass -DNDEBUG to compiler

 but consider leaving assertions or other debugging code even in
production versions

Difficult Bugs

- Draw a picture
- Especially useful for debugging linked data structures
« Can dump pointer values to the screen

» Histograms can show statistical anomalies in data
+ Crude ones with ASCII art

« Use tools

« Use grep, diff, etc to look through large volumes of
debugging output.

Performance Analysis

When analyzing the performance of a program, there
are some aspects that can be measured/considered:

* Execution time

« CPU utilization
 Memory usage

» Disk usage

- Bandwidth

* Power consumption

Execution Time

Even a simple aspect such as the execution time of a
program can be difficult to measure or even define.

By execution time are we measuring:
- Wall clock time: total elapsed time.

- CPU time (or process time): the amount of time that
the CPU spends executing that program.

What if we want to measure the execution of only one
part of the program?

Measuring Execution Time

There are various approaches for measuring
execution time in a program:

Bash time:

Stime ./myprogram
real OmO0.00s
user OmO0.00s

SYS OmO.00s

Measuring Execution Time

Programs to profile:

Row Major

// Memory allocation
unsigned int *p = new unsigned int [N*N];
// Initialization
for(int y = 0; y < N; y++) {
for(int x = 0; x < N; x++) {

ply*N + x] = x*y;

}
// Initialization
unsigned int total = 0;
for(int yv = 0; y < N; y++) {
for(int x = 0; x < N; x++) {
total += p[y*N + x];

}

cout << "Total is: " << total << endl;
delete[] p:;

Column Major

// Memory allocation
unsigned int *p = new unsigned int [N*N];
// Initialization
for(int x = 0; x < N; x++) {
for(int yv = 0; y < N; y++) {
ply*N + x] = x*y;

}
// Initialization
unsigned int total = 0;
for(int x = 0; x < N; x++) {
for(int yv = 0; y < N; y++) {
total += p[y*N + x];

}

cout << "Total is: " << total << endl;
delete[] p:;

Measuring Execution Time

Row Major (N=1024) Column Major (N=1024)

S g++ row-major.cpp —-O row-major $ g++ col-major.cpp -0 col-major
$ time ./row-major $ time ./col-major

Total is: 3758368528 Total is: 3758368528

real Om0.015s real Om0.033s

user Om0.008s user Om0.026s

SYyS Om0.004s SYyS Om0.004s

S g++ row-major.cpp —-o row-major -03 S g++ col-major.cpp -o col-major -03

$ time ./row-major $ time ./col-major

Total is: 3758368528 Total is: 3758368528

real Om0.009s real Om0.025s
user Om0.003s user Om0.019s

SYyS Om0.004s SYyS Om0.004s

Measuring Execution Time

Row Major (N=8192)

S g++ row-major.cpp —-O row-major

$ time ./row-major
Total is: 16777216
real Om0.601s
user Om0.465s
SYyS Om0.134s

S g++ row-major.cpp —-o row-major -03

$ time ./row-major
Total is: 16777216
real Om0.281s
user Om0.139s

SYyS Om0.140s

Column Major (N=8192)

S g++ col-major.cpp -0 col-major

$ time ./col-major
Total is: 16777216
real Om7.579s
user Om7.435s
SYyS Om0.140s

S g++ col-major.cpp -o col-major -03

$ time ./col-major
Total is: 16777216
real Om2.200s
user Om2.051s
SYS Om0.147s

Measuring Execution Time

The wall clock or real time is the actual elapsed time
of your program.

System time is the time spent doing system services.

User time is the time your program was actually
running.

Real Time = System Time + User Time

Measuring Execution Time

The time utility on csh or tcsh gives somewhat more
information:

% time foo
I49u 144 0:19 83% 4+1060K 27+86ic 47pf+0w

' | L Number of swaps
‘ Page faults

' - Number of block output operations
Number of block input operations

i — Average amount of unshared data space in KB
Average amount of shared memory in KB

I Percent utilization
Elapsed time
Seconds of system time devoted to process
Seconds of user time dsvoted to process

Measuring Execution Time

Row Major (N=8192) Column Major (N=8192)

S g++ row-major.cpp —-o row-major -03 S g++ col-major.cpp -o col-major -03
$ time ./row-major $ time ./col-major

Total is: 16777216 Total is: 16777216

0.135u 0.140s 0:00.27 100.0% 2.05u 0.137s 0:02.18 100.0%

0+0k 0+0io 1pf+0w 0+0k 0+0io 1pf+0w

Measuring Time in Code

Execution time can be measured inside code, usually
by recording the beginning and end of a code
segment and taking the difference.

#include <ctime>

int main() {

clock t start = clock();

clock t end = clock();
cout << (end - start) / (double)CLOCKS PER SEC << endl;

}

$./row-major
Total is: 16777216
0.26442

Measuring Time in Code

Could also use time_t and time. Limited to the
number of elapsed seconds.

#include <ctime>

int main () {
time t start, end;

time (&start) ;

time (&end) ;
cout << difftime(start, end) << endl;

}

$./row-major
Total is: 16777216
0

Measuring Time in Code

gettimeofday sets a timeval which contains the
current time in tv_sec (seconds) and tv_usec
(microseconds).

#include <sys/time.h>

int main () {
timeval start, end;

gettimeofday (&start);

gettimeofday (&end) ;
cout << (end.tv_sec - start.tv sec) +
(end.tv _usec - start.tv usec)/1000000.0 << endl;
}

$./row-major
Total is: 16777216
0.262752

Profiling

While manually timing code execution is often useful,
there are several profiling tools that can give us more

information if we are looking to optimize our
programs

Helpful for identifying where our program is spending
most of its time to make sure we are actually

optimizing the right part of the program.

Hardware Performance Counters

For many years, hardware engineers have designed specialized
registers to measure the performance of various aspects of a
MICroprocessor.

HW performance counters provide application developers with
valuable information about code sections that can be improved.
Hardware performance counters can provide insight into:

* Whole program timing

« (Cache behaviors

« Branch behaviors

Memory and resource contention and access patterns

* Pipeline stalls

» Floating point efficiency

* Instructions per cycle

« Subroutine resolution

* Process or thread attribution

46

GNU gprof

* Profilers may show the time elapsed in each
function and its descendants

« number of calls, call-graph (some)

- gprof is an instrumenting profiler for every UNIX-
like system

47

Using gprof

« Compile and link your program with profiling
enabled
gcc -g -c myprog.c utils.c -pg
gcc -0 myprog myprog.o utils.o -pg

» EXxecute your program to generate a profile data file

* Program will run normally (but slower) and will write the
profile data into a file called gmon.out just before exiting

« Program should exit using exit() function

* Run gprof to analyze the profile data
« gprof a.out

48

Example Program

#include <iostream>

#include <math.h>

#define NUM1 10000

vold doit() { double x=0; for (int i=0;i<NUM1;i++) x+=sin{i);}

void f(){ for{int 1=0;1<1000;1i++) doit({);}

void g{){ for{int 1=0;1<5000;1i++) doit({);}

int main () {
double s=0; for(int 1=0;i< 1000*NUM1; i++) s+=sqrt(i):
T();

g();
std: :cout<<"Done'"<<std::endl;

exit (0);}

49

Understanding Flat Profile

- The flat profile shows the total amount of time your
program spent executing each function.

- If a function was not compiled for profiling, and
didn't run long enough to show up on the program

counter histogram, it will be indistinguishable from
a function that was never called

50

Flat profile : 9%time

Each sample counts as 0.01 seconds.
%ocumulative self self total
time seconds seconds calls s/call s/call name
30, /9 4.64 4.64 6000 0.00 0.00 doit()
0.0 0.7 1 0.71 9.39 main
0.00 1 0.00 0.00 global constructors keyed

to Z4do1tv
0.00 .30 0.00 0.00 0.77 f()
0.00 5.35 0.0 0.00 3.87 g)
0,00 9,99 0,00 Percentage of the total execution lization_a

time your program spent in this function.

d_destruction 0(1int, 1int) These should all add up to 100%.

Flat profile: Cumulative seconds

Each sample counts as 0.01 seconds.
This 1s the cumulative total number of

. .
% Cumulative —self seconds spent in this function, plus the
time © seconds Seconds calls time spent in all the functions above this one

86. 73 4,64 4.64 6000
13.27 2.09) (.71 1
0.00 J.00 0.00 1

0.00

0.00

0.00 : .00 _ static initialization a
int, int)

52

Flat profile: Self seconds

Each sample counts as 0.01 seconds.
| The number of seconds accounted

% cumulative SSSeLT ‘ for this function alone
time seconds | Seconds calls §/cql]l oEEG—_————

86.73 4.64 4,64 6000 0.00

13.27 5.9 0. i 0.7 .35 main

0.00 .30 N0 1 0.00 .00 global constructors keyed
to Z4doitv

0.00 0.00 17 ()

0.00 0.00 87 ()

0.00 0.00 .00 _ static initialization ar
d_destruction O(int, int)

53

Flat profile: Calls
Each sample counts as 0.01 seconds. Number of G
_ t
% cumulative self elf tfofal

time seconds seconds <calls %/call s/call name

86. /3 4.64 4.64 6000 0.00 0.00 doit()
13.27 2.0 0.0 1 0.71 5.d5 main

0.00 2.0 0.00 1 0.00 0.00 global constructors keyed
to Z4doitv

0.00 2,30 0.00 0.00 0.77

0.00 2,30 0.00 0.00 3.87 g¢()

0.00 0,30 0.00 0.00 0.00 _static initialization a
d_destruction O(1int, int)

Flat profile: Self seconds per call

Average number of sec per call

Each sample counts as 0.01 seconds. o .
Spent in this function alone

% cumulative self self fots

time seconds seconds calls s/Carl nae

86,79 4,64 4.64 6000 _Gmii doit()

13.27 2.0 0.71 1 0.71 main

0.00 9.0 0.00 1 0.00 global constructors keyed

to Z4doitv

0.00 5,30 0.00 0.00

0.00 5.3 0.00 0.00 0()

0.00 0,30 0.00 0.00 __static_initialization a
d_destruction 0(1nt, 1int)

Flat profile: Total seconds per call

Average number of seconds spent

in this function and its descendents
per call self total

time seconds seconds calls s/call “<§fcall “rame
86,73 4,64 4.64 6000 0,00 0,00 doit()
13.27 9,99 0.71 1 0.71 9,09 MAin

0.00 : 0.00 1 0.00 0.00 global constructors keyed
to Z4doltv

0.00 5.3 0.00 0.00 0.77 f()

0.00 5.3 0.00 0.00 3.87 gl

0.00 5,30 0.00 0.00 0.00 _static initialization a
d_destruction O(1nt, 1nt)

56

Call Graph: call tree of the program

index % time children called name
4.64 1/1 _start [2]
[1] 100.0 . .64 main [1]
.87 1/1 a() [4]
() [5]

<spontaneous>
_start [2]

1000 /6000 fO) [5]
5000 /6000 g() [4]
doit() [3]

main [1]

[4]
doit() [3]

main [1]
[5] Descendants:

doit() [3] doit ()

__do_global _ctors_aux [22]

g()

Call Graph: understanding each line

index 2% time self children called name

0.71 4.64 1/1 _start [2]
[1] 100.0 .71 4.64 main [1]
.00 3.87 1/1 gi() [4]
- e () [5]

was called

ma L I_ 1 J

1000 /6000 T() [5]
5000 /6000 g() [4]

doit() [3] Function:

g()

L 2]
doit() [3]

main [1]
[5]
doit() [3]
Percentage of the “total* | total amount of
time spent in this function time spent in
and its children. this function

__do_global_ctors_aux [22]

Call Graph: parents numbers

selT
0.71
0.71

index % time

[11 100.0

Time that was propagated
directly from the function
into this parent

children
4.64
4.64

called

1000/6000
5000 /6000

name
_start [2]
main [1]

Number of times this parent
called the function ’/’

total number of times the
function was called

T{) [3]

g() [4]
doit() [3]

Current
Function:

g()

| *]

doit() [3]
main [1]
[5]

doit() [3]

__do_global_ctors_aux [22]

Call Graph : “children” numbers

index % time
. .64
[1] 100.0 . .64

children

called name
1/1 _start [2]
1 main [1]
1/1 g() [4]
5]
Number of times this function

called the child ¢/’

total number of times this &
child was called (1]

taneous>

1000 /6000 () [5]
5000 /6000 g() [4]
doit() [3]

Amount of time that was
propagated directly
from the child into function

Current
Function:

g()

| 13

doit() [3]

main [1]

[5]
doit() [3]

_do_global_ctors_aux [22]

How gprof works

Instruments program to count calls
Watches the program running, samples the PC every 0.01
sec

« Statistical inaccuracy: fast function may take 0 or 1 samples

« The execution time should be long enough compared with the
sampling period

The output from gprof does not indicate parts of the
program that are limited by I/O or swapping bandwidth.

« This is because samples of the program counter are taken at fixed
intervals of run time

number-of-calls figures are derived by counting, not
sampling. They are completely accurate and will not vary
from run to run if your program is deterministic

« Profiling with inlining and other optimizations needs care

61

Valgrind

Multi-purpose Linux x86 profiling toolkit

Memcheck is memory debugger
* detects memory-management problems

Cachegrind is a cache profiler

« performs detailed simulation of the 11, D1 and L2 caches
in your CPU

Massif is a heap profiler

» performs detailed heap profiling by taking regular
snapshots of a program's heap

Helgrind is a thread debugger

 finds data races in multithreaded programs

62

Memcheck Features

When a program is run under Memcheck's supervision, all
reads and writes of memory are checked, and calls to
malloc/new/free/delete are intercepted

Memcheck can detect:
« Use of uninitialized memory
« Reading/writing memory after it has been free'd
« Reading/writing off the end of malloc'd blocks
* Reading/writing inappropriate areas on the stack
 Memory leaks -- where pointers to malloc'd blocks are lost forever

« Passing of uninitialized and/or not addressible memory to system
calls

« Mismatched use of malloc/new/new [] vs free/delete/delete []
* Qverlapping src and dst pointers in memcpy() and related functions
« Some misuses of the POSIX pthreads API

63

Memcheck Example

Hinclude <iostream>
har * () { char *cp=new char[17]; return cp; }

ffdefine MM 100000

int main() {
int *p= new int[10];
p[10] = 6;

int 1,j;
j= 1+3;

if {(1»0) std::cout<<"Hi';

T
free (p);
return 0;

Memcheck Example (Cont.)

- Compile the program with —g flag:

« g++ -ca.cc -g -0 a.out -
©

- Execute valgrind :

« valgrind --tool=memcheck --leak-check=yes a.out >& log.txt

- View log -

65

Memcheck report

Invalid write of size 4
at Ox80486CA: main (a.cc:8)

Address 0x1B92A050 is 0 bytes after a block of size 40 alloc'd
at Ox1B904E35: operator new[]{unsigned) (vg_replace malloc.c:139)
by 0x80486BD: main {a.cc:7)

Conditional jump or move depends on uninitialised value(s)
at 0x80486DD: main (a.cc:12)

Mismatched free() / delete / delete []
at Ox1BO04FA1: £ Tree vy _replace malloc.c:153)
by 0x8048703: mailn (a.cc:15)
Address 0x1B92A028 is 0 tytes inside a block of size 40 alloc'd
at Ox1B904E35: operator new[]{unsigned) (vg_replace malloc.c:139)
by 0x80486BD: main (a.cc:7)

Memcheck report (cont.) Leaks detected:

ERROR SUMMARY: 2 errors from 3 contoxts {sunnrossed: 15 from 1)
malloc/free: in use at exit: 17 bytes in 1 blocks.

malloc /free: 2 allocs, 1 frees, 57 bytes allocated.

For counts of detected errors, rerun with: -v

searching for pointers to 1 not-freed blocks.

checked 2250336 bytes.

17 bytes in 1 blocks are definitely lost in loss record 1 of 1
at Ox1BY904E35: operator new[](unsigned) (vg_replace_malloc.c:139)
by 0x8048697: f() (a.cc:3)
by Ox80486F8: main {(a.cc:14)

LEAK SUMMARY :
definitely lost: 17 bytes in 1 blocks.

Cachegrind

Detailed cache profiling can be very useful for improving the
performance of the program

* On a modern x86 machine, an L1 miss will cost around 10
cycles, and an L2 miss can cost as much as 200 cycles

Cachegrind performs detailed simulation of the |1, D1 and
L2 caches in your CPU

Can accurately pinpoint the sources of cache misses in the
code

Identifies the number of cache misses, memory references,
and instructions executed for each line of source code, with
per-function, per-module and whole-program summaries

Cachegrind runs programs about 20--100x slower than
normal

68

How to run

* Run valgrind --tool=cachegrind in front of the
normal command line invocation

* Example : valgrind --tool=cachegrind Is -l

- When the program finishes, Cachegrind will print
summary cache statistics. It also collects line-by-
line information in a file cachegrind.out.pid

- Execute cg_annotate to get annotated source file:
Source files

cg_annotate cachegrind.out.7618 a.cc > a.cc.annotated

l 69

Valgrind

This will output the cache statistics for each line of
our program:

Ir
Hmr
12mr

Dr
Dimr
D2mr
Dw
Dimw
D2mw

| cache reads (instructions executed)
|1 cache read misses (instruction wasn't in |1 cache but was in L2)
L2 cache instruction read misses (instruction wasn't in I1 or L2 cache,
had to be fetched from memory)
D cache reads (memory reads)
D1 cache read misses (data location not in D1 cache, but in L2)
L2 cache data read misses (location not in D1 or L2)
D cache writes (memory writes)
D1 cache write misses (location not in D1 cache, but in L2)
L2 cache data write misses (location not in D1 or L2)

Cachegrind Summary output

Ilnr Iémr Dr Dimr DZmr Dw D1rmw Dme/
[snip] ! .

.) e : . void init_hash_table(char *file namwe, Word Node *table[])
feeemem === 1 u] 0 {

FILE *file ptr;

Word Info *data;

1 1 1 int line = 1, 1i;
3 u} u} data = (Word Info *) create(sizeof(Word Info)):
9985 for (i = 0; i < TABLE SIZE; i++)

997 table[i] = NULL;

/* Open file, check it. */
4 u} u} file ptr = fopen(file_ name, "r");
N .) if (!{file_ptr)) |
fprintf(stderr, "Couldn't open '%s'.\n", file name):

exit (EXIT FAILURE):
}
165,062 1 1 73,360 u] 0 91,700 u] u] while {({line = get_word(data, line, file ptr)) != EOF)
146,712 0 0 73,356 u} 0 73,356 u} u} insert {data-»>;word, data->line, table):;
4 u} 0 1 u} u} 2 u} u} free(data);
4 u] 0 1 0 0 2 u] 0 fclose(file ptr):
3 u] 0 2 0 0 . . .}

71

Cachegrind Summary output

Ir Ilrr IZrwr D Dimr D2mr

[snip]

. void init_hash table(char *file name, Word Node *table[])
3 1 1 “ . . . _---17 0 0

\ -

1
r
[
1
1
1
1
1
1
1
\
\

FILE *file ptr;
Word_Info *data;

1 1 int line = 1, 1i;
5 u} u} 0 data = (Word Info *) create(sizeof(Word_ Info)):
4,991 u] u] u] for (i = 0; i < TABLE _SIZE; i++)
3,988 1 - table[i] = NULL;
. /* Open file, check it. */
6 u} u} u} file ptr = fopen(file name, "r"):
2 u] if (!({file_ptr)) {
. fprintf(stderr, "Couldn't open '%s'.\n", file name);
1 1 1))) exit (EXIT_FAILURE):

[y
-]
(]
~
(]
(=1
o .
o
o .
iul
[y
-~
s
]
o .
o
o

165,062 1 while ((line = get_word(data, line, file ptr)] != EOF)

146,712 u} 0 73,356 u} 0 73,356 u} u} insert (data->;word, data->line, table);
4 u} u} 1 u} u} 2 u} u} free (data);
4 u} u} 1 u} 0 2 u} 0 fclose (file ptr):
3 u] u] 2 u] u] . . .}

72

Cachegrind Summary output

\
Ir Ilmr IZ2pr Dr
\\
[snip] AN
\\\
3 1 1 TS
1 u} o
5 0 u} .
4,991] 0 1,995
3,988 1 1 1,994
] u} u] 1
2 0 u} 1
1 1 1
165,062 1 1 73,360
146,712 u} 0 73,356
4 u} o 1
4 n} u] 1
3 u} o 2

Profiling Tools

Dimr

oo -

o000 -

DZ2rnr

o

o000 -

Dw

73,356

o

oo -

1
D 1raw DZraly
1

1
1
1
1
1
1
1
\

0
0

o

void init_hash table(

{

FILE *file ptr:
Word Info *data;
int line = 1, 1i;

data = (Word Info *) create(sizeof (Word_ Info)):

for (i = 0; i < TABLE_SIZE: i++)
table[i] = NULL:

/% Open file, check it. */

file ptr = fopen(file name, "r"):

if (!{file_ptr)) {
fprintf(stderr, "Couldn't open '%s3'.\n", file_ name);
exit (EXIT_FAILURE);

while ({line = get_wordidata, line, file ptr)) != EOF)
insert (data->;word, data->line, table):

free (data) ;
fclose(file ptr):

73

Cachegrind Accuracy

- Valgrind's cache profiling has some shortcomings:

|t doesn't account for kernel activity -- the effect of
system calls on the cache contents is ignored

|t doesn't account for other process activity (although
this is probably desirable when considering a single
program)

* It doesn't account for virtual-to-physical address
mappings; hence the entire simulation is not a true
representation of what's happening in the cache

74

Massif tool

Massif is a heap profiler - it measures how much heap
memory programs use. It can give information about:

* Heap blocks
* Heap administration blocks
« Stack sizes
Help to reduce the amount of memory the program uses
* smaller program interact better with caches, avoid
pPaging
Detect leaks that aren't detected by traditional leak-
checkers, such as Memcheck

* That's because the memory isn't ever actually lost - a
pointer remains to it - but it's not in use anymore

Run valgrind --tool=massif prog

75

Massif tool

Command: ./mmul 256
Massif arguments: ——time—-unit=B
ms_print arguments: massif.out.454927

MB
1.5124 ##
| TH#
I @Q:# :
| @ #
| HHCEEE -
| - 1@ # iz
| @: 3@ B&7 BBBRE
| HH(C L R
| SHEE (@ e A HH R R BHHEHEH
| HHEHHNCE 1@ # iziioiiziiiii:
| @@:: :: @: 1@ # i oriiiiii:
| 1:1@ @ X @: 1@ # i oriiiiii:
| 1@ : ! @: 1@ # rriiioriiiiiiioniii:
| 1@ : ! @: P@ # rriiioziiiiiiioriiii:
| 1@ : ! @: 1@ # rriiiorriiiiiioriiiiii:
| HHHH N ! @: 1@ # rriiioziiiiiiioziiiiio
| 1@ : ! @: 1@ # rriiioriiiiiiioziiiiio
| - 1@ : ! @: T@ # rriiiorriiiiiioriiiiiiioriii:
| @@: 1@ : ! @: P@ # rriiioriiiiiiioziiiiiiioriiiii:
| 1@ : 1@ : ! @: 1@ # rriiioriiiiiiioriiiiiiioriiiiii:
0 + >MB
0 3.010

Number of snapshots: 57
Detailed snapshots: [3, 12, 17, 22, 24 (peak), 56]

the time unit is bytes, due to the use of --time-unit=B.

76

Massif tool

n time(B) total(B) useful-heap(B) extra-heap(B) stacks(B)
4 269,336 269,336 268,288 1,048 0
5 335,128 335,128 333,824 1,304 0
6 400,920 400,920 399,360 1,560 0
7 466,712 466,712 464,896 1,816 0
8 532,504 532,504 530,432 2,072 0
9 598,296 598,296 595,968 2,328 0
10 664,088 664,088 661,504 2,584 0
11 729,880 729,880 727,040 2,840 0
12 820,344 820,344 817,152 3,192 0
99.61% (817,152B) (heap allocation functions) malloc/new/new[], —--alloc-fns, etc.

->99,11% (813,056B) 0x400978: alloc_matrix (mmul.c:53)

| —=>63.91% (524,288B) 0x40074C: main (mmul.c:20)

| —>35.20% (288,768B) 0x400756: main (mmul.c:21)

->00.50% (4,096B) in 1+ places, all below ms_print's threshold (01.00%)

n: number of snapshot
time(B): the time unit is bytes, due to the use of --time-unit=B.
total(B): the total memory consumption at that point.

useful-heap(B): the number of useful heap bytes allocated at that point.
extra-heap(B): the number of extra heap bytes allocated at that point.

stacks(B): the size of the stack(s). By default, stack profiling is off as it
slows Massif down greatly.

77

Valgrind — how it works

- Valgrind is compiled into a shared object, valgrind.so. The

shell script valgrind sets the LD_PRELOAD environment
variable to point to valgrind.so. This causes the .so to be
loaded as an extra library to any subsequently executed
dynamically linked ELF binary

- The dynamic linker allows each .so in the process image to

have an initialization function which is run before main(). It
also allows each .so to have a finalization function run after
main() exits

* When valgrind.so’s initialization function is called by the

dynamic linker, the synthetic CPU starts up. The real CPU
remains locked in valgrind.so until the end of the run

- System calls are intercepted; Signal handlers are monitored

78

Valgrind Summary

- Valgrind will save hours of debugging time
 Valgrind can help speed up your programs

- Valgrind runs on x86-Linux

- Valgrind works with programs written in any language

» Valgrind is actively maintained

- Valgrind can be used with other tools (gdb)
- Valgrind is easy to use

* uses dynamic binary translation, so no need to modify,
recompile, or re-link applications. Just prefix the
command line with valgrind and everything works

- Valgrind is not a toy

« Used by large projects : 25 millions lines of code

- Valgrind is free

79

PAPI

Library that provides a consistent interface (and
methodology) for hardware performance counters, found

across the system:

CPUs, GPUs, on-chip and off-chip Memory, Interconnects, I/0O
system, File System, Energy/Power, etc.

PAPI (Performance Application Programming Interface)
enables software engineers to see, in near real-time, the
relation between SW performance and HW events across

the entire system

Supported Architectures: AMD, ARM, IBM, Intel, NVIDIA
https://github.com/icl-utk-edu/papi

80

PAPI| Hardware Events

Countable events are defined in two ways:
* Platform-neutral Preset Events (e.g., PAPI_TOT_INS)
* Platform-dependent Native Events (e.g., L3_CACHE_MISS)

Preset Events can be derived from multiple Native Events

 PAPI_L1_TCM might be the sum of L1 Data Misses and L1
Instruction Misses on a given platform

papi_avail to see what preset events are available on a given
platform

* Any event countable by the CPU, GPU, network card, parallel file
system or others

papi_native_avail utility to see all available native events

81

PAPI High-Level API

PAPI_hl_region_begin (const char *region)

* Read events at the beginning of a region (also start counting the
events)

PAPI_hl_region_end (const char *region)

« Read events at the end of a region and store the difference from the
beginning

PAPI_hl_read (const char *region)

« Read events inside a region and store the difference from the
beginning

PAPI_hl_stop ()

« Stop a running high level event set (optional)

Environment variable to control events
- export PAPI_EVENTS="PAPI_DP_OPS,PAPI L1 DCM,PAPI_ L1 DCA"

82

PAPI High-Level APl Example

% export PAPI_EVENTS="PAPI TOT INS,PAPI TOT CYC”

#include "papi.h"
int main ()

{

Automatic performance report.

int retval;
retval= PAPI_hl region_begin ("computation");
if (retvall!= PAPI OK)

"computation":{
handle error(1l);

"region_count":"1",
"cycles":"2080863768",

/* Do some computation here */ "PAPI_TOT_INS":"2917520595",
retval= PAPI_hl region_end ("computation"); "PAPI_TOT_CYC"."2064112930" }
if (retvall!= PAPI OK) Yy

handle error(1l);

&3

Perf

- Perf is a profiler tool for Linux 2.6+ based systems that
abstracts away CPU hardware differences in Linux
performance measurements and presents a simple
command-line interface.

- Perf is based on the perf_events interface exported by
recent versions of the Linux kernel.

- The perf tool offers a rich set of commands to collect and
analyze performance and trace data.
* itimplements a set of commands: stat, record, report, [...]

S perf
usage: perf [--version] [--help] [OPTIONS] COMMAND [ARGS]

The most commonly used perf commands are:

84

Events

- The perf tool supports a list of measurable events. The tool
and underlying kernel interface can measure events coming
from different sources.

- For instance, some events are pure kernel counters, in this
case, they are called software events.

« Examples: context-switches, minor-faults.
« Another source of events is the processor itself and its

Performance Monitoring Unit (PMU). It provides a list of
events to measure micro-architectural events

« Examples: number of cycles, instructions retired, L1 cache misses,
and so on. Those events are called PMU hardware events or

hardware events for short. They vary with each processor type and
model.

S perf list List of pre-defined events (to be used in -e):

85

Workflow

- When profiling a CPU with the perf command, the
typical workflow is to use:

perf list: find events.

perf stat: count the events.

perf record: write events to a file.

perf report: browse the recorded file.

perf script: dump events after processing.

ok Ob-H

- The outputs differ based on the system and locally
available resources.

86

perf list

- The output lists all supported events, regardless of
type.

[[phadjido@falcon perf]$ perf list

List of pre-defined events (to be used in -e):

branch-instructions OR branches

branch-misses

cache-misses

cache-references

cpu-cycles OR cycles

instructions

stalled-cycles-backend OR idle-cycles-backend
stalled-cycles-frontend OR idle-cycles-frontend

alignment-faults
bpf-output
cgroup-switches
context-switches OR cs
cpu-clock
cpu-migrations OR migrations
dummy

emulation-faults
major-faults
minor-faults
page-faults OR faults
task-clock

[Hardware
[Hardware
[Hardware
[Hardware
[Hardware
[Hardware
[Hardware
[Hardware

[Software
[Software
[Software
[Software
[Software
[Software
[Software
[Software
[Software
[Software
[Software
[Software

87

perf stat <command>

- CPU performance statistics for a specific
command.

[phadjido@falcon perf]$ perf stat ./mmul 1024

Performance counter stats for './mmul 1024':

1206.82 msec task-clock

2

0

6207
3593668326
172768047
14483402
8626016116

1114755193
1230078

context-switches
cpu-migrations
page-faults

cycles
stalled-cycles-frontend
stalled-cycles-backend
instructions

branches
branch-misses

1.207226604 seconds time elapsed

1.198067000 seconds user
0.009000000 seconds sys

HHEHRHHFRIETHRHERR

(o)
N
owWeNSeSBA~ANUISRRK

CPUs utilized

/sec

/sec

K/sec

GHz

frontend cycles idle
backend cycles idle
insn per cycle
stalled cycles per insn
M/sec

of all branches

(66.69%)
(66.90%)
(67.09%)

(66.93%)
(66.22%)
(66.17%)

88

perf record & report

- $ perf record ./mmul 1024
- $ perf report --stdio -v

Samples: 4K of event 'cycles'
Event count (approx.): 3554239921

Overhead Command Shared Object

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
Q.

/home/phadjido/week@3/perf/mmul
/home/phadjido/week@3/perf/mmul
/usr/1ib64/1ibc-2.28.s0
/usr/1ib64/1ibc-2.28.s0
[unknown]
/usr/1ib64/1ibc-2.28.s0
/usr/1ib64/1ibc-2.28.s0
[unknown]

[unknown]

[unknown]

[unknown]

[unknown]

[unknown]

[unknown]

@x7cb
0xal9
@x51f79
0x52117

Oxffffffffa9fe9237 !

0x52438
Oxcf34b

Oxffffffffaa201c80 !
Oxffffffffaa201150 !
Oxffffffffa98dblaa !
Oxffffffffaa201153 !
Oxffffffffa98aafad !
Oxffffffffa9737f57 !
Oxffffffffa98fal97 !

matrix_rand_init
__random
__random_r
Oxffffffffa9fe9237
rand

__memset_avx2_unaligned_erms

Oxffffffffaa201c80
Oxffffffffaa201150
Oxffffffffa98dblaa
Oxffffffffaa201153
Oxffffffffa98aafad
Oxffffffffa9737f57
Oxffffffffa98fal97

89

