
1

Μεταγλωττιστές για
Ενσωματωμένα Συστήματα

Χειμερινό Εξάμηνο 2023-24
«Debugging and Profiling»

Παναγιώτης Χατζηδούκας

Outline
• GDB
• Measuring execution time
• GNU gprof
• Perf
• Valgrind and Cachegrind
• PAPI

2

gdb (GNU Debugger)
• “GNU Debugger”
• A debugger for several languages, including C and

C++
• It allows you to inspect what the program is doing at

a certain point during execution.
• Errors like segmentation faults may be easier to find

with the help of gdb.

gdb (GNU Debugger)
• Debuggers are programs which allow you to

execute your program in a controlled manner, so
you can look inside your program to find a bug.

• gdb is a reasonably sophisticated text based
debugger. It can let you:
• Start your program, specifying anything that might

affect its behavior.
• Make your program stop on specified conditions.
• Examine what has happened, when your program has

stopped.
• Change things in your program, so you can experiment

with correcting the effects of one bug and go on to learn
about another.

• SYNOPSIS
gdb [prog] [core|procID]

gdb
• GDB is invoked with the shell command gdb.
• Once started,it reads commands from the terminal

until you tell it to exit with the GDB command quit.
• The most usual way to start GDB is with one argument

or two, specifying an executable program as the
argument:

$ gdb program
• You can also start with both an executable program and

a core file specified:
$ gdb program core

• You can, instead, specify a process ID as a second
argument, if you want to debug a running process:

$ gdb program 1234
would attach GDB to process 1234

Compiling with the –g Option
• To use gdb best, compile your program with:

gcc –g –c my_math.c
gcc –g –c sample.c
gcc –o sample my_math.o sample.o
or:
gcc –o sample -g my_math.c sample.c

• That is, you should make sure that –g option is
used to generate the .o files.
• This option tells the compiler to insert more information

about data types, etc., so the debugger gets a better
understanding of it.

Common Commands for gdb
• Here are some of the most frequently needed GDB

commands:
b(reak) [file:]function Set a breakpoint at function (in file).
r(un) [arglist] Start program (with arglist, if specified).
bt or where Backtrace: display the program stack; especially

useful to find where your program crashed or
dumped core.

print expr Display the value of an expression.
c Continue running your program (after

stopping, e.g. at a breakpoint).
n(ext) Execute next program line (after

stopping); step over any function calls in
the line.

s(tep) Execute next program line (after
stopping); step into any function calls in the line.

help [name] Show information about GDB command name,
or general information about using GDB.

q(uit) Exit from GDB.
l(ist) print the source code

Starting up gdb
• Just try “gdb” or “gdb prog1.x.” You’ll get a prompt

that looks like this:
• (gdb)
• If you didn’t specify a program to debug, you’ll have

to load it in now:
• (gdb) file prog1.x
• Here, prog1.x is the program you want to load, and

“file” is the command to load it.

Getting help
• gdb has an interactive shell, much like the one you

use as soon as you log into the linux grace
machines. It can recall history with the arrow keys,
auto-complete words (most of the time) with the
TAB key, and has other nice features.

• If you’re ever confused about a command or just
want more information, use the “help” command,
with or without an argument:

• (gdb) help [command]
• You should get a nice description and maybe some

more useful hints

Running
• To run the program, just use:
• (gdb) run
• This runs the program.
• If it has no serious problems (i.e. the normal program

didn’t get a segmentation fault, etc.), the program should
run fine here too.

• If the program had issues, then you (should) get some
useful information like the line number where it crashed,
and the parameters passed to the function that caused
the error.

• Program received signal SIGSEGV, Segmentation fault.
0x0000000000400524 in sum array region
(arr=0x7fffc902a270, r1=2, c1=5, r2=4, c2=6) at sum-
array-region2.c:12GDB

Presence of bugs
• Okay, so you’ve run it successfully. But you don’t

need gdb for that. What if the program isn’t
working?

• Basic idea:
• Chances are if this is the case, you don’t want to run the

program without any stopping, breaking, etc. Otherwise,
you’ll just rush past the error and never find the root of
the issue. So, you’ll want to step through your code a bit
at a time, until you arrive upon the error.

• This brings us to the next set of commands. . .

Setting breakpoints
• Breakpoints can be used to stop the program run in the

middle, at a designated point. The simplest way is the
command “break.” This sets a breakpoint at a specified
file-line pair:

(gdb) break file1.c:6

• This sets a breakpoint at line 6, of file1.c. Now, if the
program ever reaches that location when running, the
program will pause and prompt you for another
command.

• You can set as many breakpoints as you want, and the
program should stop execution if it reaches any of
them.

Breakpoints
• You can also tell gdb to break at a particular

function. Suppose you have a function my func:

int my func(int a, char *b);

• You can break anytime this function is called:
(gdb) break my func

GDB

continue and step
• Once you’ve set a breakpoint, you can try using the run

command again. This time, it should stop where you tell
it to (unless a fatal error occurs before reaching that
point).

• You can proceed onto the next breakpoint by typing
“continue” (Typing run again would restart the program
from the beginning, which isn’t very useful.)

(gdb) continue

• You can single-step (execute just the next line of code)
by typing “step.” This gives you really fine-grained
control over how the program proceeds. You can do
this a lot...

(gdb) step

Next command
• Similar to “step,” the “next” command single-steps

as well, except this one doesn’t execute each line of
a sub-routine, it just treats it as one instruction.

• (gdb) next

• Typing “step” or “next” a lot of times can be tedious.
If you just press ENTER, gdb will repeat the same
command you just gave it.

• You can do this a bunch of times

Querying other aspects of the program
• So far you’ve learned how to interrupt program flow

at fixed, specified points, and how to continue
stepping line-by-line. However, sooner or later
you’re going to want to see things like the values of
variables, etc. This might be useful in debugging.

• The print command prints the value of the variable
specified, and print/x prints the value in
hexadecimal:

(gdb) print my var
(gdb) print/x my var

GDB

Setting watchpoints
• Whereas breakpoints interrupt the program at a

particular line or function, watchpoints act on
variables. They pause the program whenever a
watched variable’s value is modified. For example,
the following watch command:

(gdb) watch my_var

• Now, whenever my_var’s value is modified, the
program will interrupt and print out the old and new
values.

Other useful commands
• backtrace - produces a stack trace of the function

calls that lead to a seg fault
• where - same as backtrace; you can think of this

version as working even when you’re still in the
middle of the program

• finish - runs until the current function is finished
• delete - deletes a specified breakpoint
• info breakpoints - shows information about all

declared breakpoints

Remote debugging
• Remote debugging is the process of debugging a

program running on a different system (called
target) from a different system (called host).
• a debugger running on host machine connects to a

program which is running on the target via network.
• The debugger in the host can then control the execution

of the program on the remote system and retrieve
information about its state.

• Remote debugging is often useful in case of
embedded applications where the resources are
limited.

GNU gdbserver
• We need the following two utilities to perform a

remote debugging.
• gdbserver – Run this on your target system
• GDB – Execute this on your host system to connect to

your target system

Target Host
$ gdbserver localhost:2000 my_prg
Process program created; pid = 2045
Listening on port 2000

$ gdb my_prg (gdb)
(gdb) target remote 192.168.1.10:2000

How useful are debuggers?
• Debuggers can be great for seeing how small programs execute
• Great for certain types of problems

• Identifying the line on which the program crashes
• Seeing state of procedure stack at crash

• Less useful for non-crashing programs
• Disadvantages of debuggers

• Not available on some systems
• System-dependent user interface
• Too many low-level details

• Try debugging linked lists
• Clicking over statements is tedious
• Deal poorly with large amounts of data
• Difficult to find intermittent bugs

• Debuggers are an important tool, but not the only, or even most
important one for debugging programs

How useful are debuggers?
• Often more useful to dump information to screen

• Easy to scan large amount of data
• Only output relevant data
• Debugging code can be left in program

• Use #ifdef’s and #defines to comment it out
• Or just plain if statements, if you trust the compiler
• Debugging sessions are transient

• Difficult bugs to find are ones where the program works for most of
the input data, but some small part causes problems

• Bug may depend on combination of conditions
• Looking at a screen-full of data can allow you to reason backward

Backward Reasoning
• Debugging is the process of reasoning backwards from the

undesired behavior (bad output, spectacular crash, running
forever) to the cause of the behavior

• Debugging is backward reasoning
• Like solving murder mysteries

• We have a dead body. How were they killed?
• Bugs show us a gap between how we think the program

behaves and how it behaves
• Once we have identified the reason for the problem, fixing it

is usually relatively easy
• But sometimes bugs reveal fundamental flaws in our whole design

Some debugging tips
• Look for familiar patterns

• int n;
scanf(“%d”, n);

• if (x = y)

• double d = 3.14159265357;
int i = 1;
printf(“%d %f”, d, i);

• You will make these and similar mistakes time and time again

Some debugging tips
• Examine the most recent changes

• You should write your program incrementally
• If a bug appears, it should be because of a recent change
• Finding older bugs is very difficult
• You should never write a big bunch of code and then try to

debug it into workingness.
• Need to test your program continuously as you develop it.

• Aside:
• Extreme programming (XP) is a technique for small groups

developing software
• One aspect of XP is developing test cases in parallel with the

code, and extending the code incrementally to pass more and
new test cases

• Continuous retesting as part of the process
• Basically just (un)common sense

Some debugging tips
• Don’t make the same mistake twice

• After you fix a bug, ask whether you made the same mistake elsewhere
• Many bugs arise from a misunderstanding of how the program behaves

• Debug it now, not later
• Tempting to press ahead if a bug seems unimportant
• But old bugs are the hardest to find
• May never find bug until after the software is delivered

• Mars Pathfinder
• Spacecraft’s computers reset every day
• Bug tracked down to something seen in testing
• Engineers had been too busy working on something else
• Fixing bugs over a radio link to Mars is more difficult

• Also very important for embedded software
• Usually recalling large numbers of consumer devices because of

software bugs is not practical

Some debugging tips
• Get a stack trace

• Debuggers can be tedious to work with
• But stack traces are the most useful debugging information when a

program crashes spectacularly
• Read and think before typing

• Debugging is fundamentally about understanding the difference
between what you think you asked the computer to do and what
you actually asked it to do

• Get a cup of coffee
• Explain your code to someone else

• Often end up explaining bug to yourself
• Consider using cardboard cutout

Difficult Bugs
• Make the bug reproducible

• Most difficult bugs to fix are those that are difficult to repeat
• Big reason why concurrent programming is so difficult

• Find input and parameter settings that cause the bug to
appear every time

• Will need to reproduce bug again and again
• If bug cannot be made reproducible, that is also information

• Divide and conquer
• Reduce the size of the input required to trigger bug
• Make test case as small as possible
• Use binary search

• Throw away half the input
• See which half of the input causes the bug
• Repeat

Difficult Bugs
• Check real numbers
• Round numbers in programs rarely appear randomly
• E.g. program dropping characters apparently at random

• Discovered one character every 1023 bytes
• 1023 is suspiciously close to 1024, a very round number
• Check the program for appearances of constant 1023 or 1024
• Found 1024-byte buffer
• The last character being overwritten by ‘\0’ character

• This bug would be almost impossible to find with a
debugger

• Always be suspicious of round numbers

Difficult Bugs
• Display output

• Write key information to the screen
• Use %p for pointers
• Watch out for pointer values that don’t look like addresses

• Small values
• Odd numbers for non-char pointer
• Addresses usually fall within a few ranges

• Write out when program reaches key places
• Use indentation to make output easier to read
• Make sure all debugging information goes to stderr

• stdout is buffered
• Consider writing a log file

• or just redirect stderr to a file
• myprogram 2> logfile

Difficult Bugs
• Write self-checking code
• If you believe something is true, test that it is true
• Use C’s assert feature

• #include <assert.h>
• assert(p != NULL);

• Consider writing your own functions to test more
complicated conditions

• Don’t throw away all debugging code after the bug is
fixed

• assert can be turned off without removing code
• pass –DNDEBUG to compiler
• but consider leaving assertions or other debugging code even in

production versions

Difficult Bugs
• Draw a picture
• Especially useful for debugging linked data structures
• Can dump pointer values to the screen
• Histograms can show statistical anomalies in data

• Crude ones with ASCII art

• Use tools
• Use grep, diff, etc to look through large volumes of

debugging output.

Performance Analysis
When analyzing the performance of a program, there
are some aspects that can be measured/considered:
• Execution time
• CPU utilization
• Memory usage
• Disk usage
• Bandwidth
• Power consumption

Execution Time
Even a simple aspect such as the execution time of a
program can be difficult to measure or even define.

By execution time are we measuring:
• Wall clock time: total elapsed time.
• CPU time (or process time): the amount of time that

the CPU spends executing that program.

What if we want to measure the execution of only one
part of the program?

Measuring Execution Time
There are various approaches for measuring
execution time in a program:

Bash time:

$time ./myprogram

real 0m0.00s

user 0m0.00s

sys 0m0.00s

Measuring Execution Time
Programs to profile:

Row	Major
// Memory allocation
unsigned int *p = new unsigned int[N*N];
// Initialization

for(int y = 0; y < N; y++) {
for(int x = 0; x < N; x++) {

p[y*N + x] = x*y;

}
}
// Initialization
unsigned int total = 0;

for(int y = 0; y < N; y++) {
for(int x = 0; x < N; x++) {

total += p[y*N + x];

}
}
cout << "Total is: " << total << endl;
delete[] p;

Column	Major
// Memory allocation
unsigned int *p = new unsigned int[N*N];
// Initialization

for(int x = 0; x < N; x++) {
for(int y = 0; y < N; y++) {

p[y*N + x] = x*y;

}
}
// Initialization
unsigned int total = 0;

for(int x = 0; x < N; x++) {
for(int y = 0; y < N; y++) {

total += p[y*N + x];

}
}
cout << "Total is: " << total << endl;
delete[] p;

Measuring Execution Time

Row	Major	(N=1024)

$ g++ row-major.cpp –o row-major

$ time ./row-major

Total is: 3758368528

real 0m0.015s
user 0m0.008s

sys 0m0.004s

$ g++ row-major.cpp –o row-major –O3
$ time ./row-major

Total is: 3758368528

real 0m0.009s
user 0m0.003s
sys 0m0.004s

Column	Major	(N=1024)

$ g++ col-major.cpp –o col-major

$ time ./col-major

Total is: 3758368528

real 0m0.033s
user 0m0.026s

sys 0m0.004s

$ g++ col-major.cpp –o col-major –O3
$ time ./col-major

Total is: 3758368528

real 0m0.025s
user 0m0.019s
sys 0m0.004s

Measuring Execution Time

Row	Major	(N=8192)

$ g++ row-major.cpp –o row-major

$ time ./row-major

Total is: 16777216

real 0m0.601s
user 0m0.465s

sys 0m0.134s

$ g++ row-major.cpp –o row-major –O3
$ time ./row-major

Total is: 16777216

real 0m0.281s
user 0m0.139s
sys 0m0.140s

Column	Major	(N=8192)

$ g++ col-major.cpp –o col-major

$ time ./col-major

Total is: 16777216

real 0m7.579s
user 0m7.435s

sys 0m0.140s

$ g++ col-major.cpp –o col-major –O3
$ time ./col-major

Total is: 16777216

real 0m2.200s
user 0m2.051s
sys 0m0.147s

Measuring Execution Time
The wall clock or real time is the actual elapsed time
of your program.

System time is the time spent doing system services.

User time is the time your program was actually
running.

Real Time ≈ System Time + User Time

Measuring Execution Time
The time utility on csh or tcsh gives somewhat more
information:

Measuring Execution Time

Row	Major	(N=8192)

$ g++ row-major.cpp –o row-major –O3

$ time ./row-major

Total is: 16777216

0.135u 0.140s 0:00.27 100.0%
0+0k 0+0io 1pf+0w

Column	Major	(N=8192)

$ g++ col-major.cpp –o col-major –O3

$ time ./col-major

Total is: 16777216

2.05u 0.137s 0:02.18 100.0%
0+0k 0+0io 1pf+0w

Measuring Time in Code
Execution time can be measured inside code, usually
by recording the beginning and end of a code
segment and taking the difference.
#include <ctime>

int main() {

clock_t start = clock();

...

clock_t end = clock();

cout << (end - start) / (double)CLOCKS_PER_SEC << endl;

}

$./row-major

Total is: 16777216

0.26442

Measuring Time in Code
Could also use time_t and time. Limited to the
number of elapsed seconds.
#include <ctime>

int main() {

time_t start, end;

time(&start);

...

time(&end);

cout << difftime(start, end) << endl;

}

$./row-major

Total is: 16777216

0

Measuring Time in Code
gettimeofday sets a timeval which contains the
current time in tv_sec (seconds) and tv_usec
(microseconds).
#include <sys/time.h>

int main() {

timeval start, end;

gettimeofday(&start);

...

gettimeofday(&end);

cout << (end.tv_sec – start.tv_sec) +

(end.tv_usec – start.tv_usec)/1000000.0 << endl;

}

$./row-major

Total is: 16777216

0.262752

Profiling
While manually timing code execution is often useful,
there are several profiling tools that can give us more
information if we are looking to optimize our
programs

Helpful for identifying where our program is spending
most of its time to make sure we are actually
optimizing the right part of the program.

Hardware Performance Counters
• For many years, hardware engineers have designed specialized

registers to measure the performance of various aspects of a
microprocessor.

• HW performance counters provide application developers with
valuable information about code sections that can be improved.

• Hardware performance counters can provide insight into:
• Whole program timing
• Cache behaviors
• Branch behaviors
• Memory and resource contention and access patterns
• Pipeline stalls
• Floating point efficiency
• Instructions per cycle
• Subroutine resolution
• Process or thread attribution

46

GNU gprof
• Profilers may show the time elapsed in each

function and its descendants
• number of calls, call-graph (some)

• gprof is an instrumenting profiler for every UNIX-
like system

47

Using gprof
• Compile and link your program with profiling

enabled
gcc -g -c myprog.c utils.c -pg
gcc -o myprog myprog.o utils.o -pg

• Execute your program to generate a profile data file
• Program will run normally (but slower) and will write the

profile data into a file called gmon.out just before exiting
• Program should exit using exit() function

• Run gprof to analyze the profile data
• gprof a.out

48

Example Program

49

Understanding Flat Profile
• The flat profile shows the total amount of time your

program spent executing each function.
• If a function was not compiled for profiling, and

didn't run long enough to show up on the program
counter histogram, it will be indistinguishable from
a function that was never called

50

Flat profile : %time

Percentage of the total execution
time your program spent in this function.

These should all add up to 100%.

51

Flat profile: Cumulative seconds

This is the cumulative total number of
seconds spent in this function, plus the

time spent in all the functions above this one

52

Flat profile: Self seconds

The number of seconds accounted
for this function alone

53

Flat profile: Calls

Number of times
was invoked

54

Flat profile: Self seconds per call

Average number of sec per call
Spent in this function alone

55

Flat profile: Total seconds per call

Average number of seconds spent
in this function and its descendents

per call

56

Call Graph: call tree of the program

Current
Function:

g()

Called by :
main ()

Descendants:
doit ()

57

Call Graph: understanding each line

Current
Function:

g()

Unique
index of this

function

Percentage of the `total‘
time spent in this function

and its children.

Total time propagated
into this function by its

children

total amount of
time spent in
this function

Number of times
was called

58

Call Graph: parents numbers

Call Graph : understanding each line
Current

Function:
g()

Time that was propagated
from the function's children

into this parent

Time that was propagated
directly from the function

into this parent

Number of times this parent
called the function ’/’

total number of times the
function was called

59

Call Graph : “children” numbers

Current
Function:

g()

Amount of time that was propagated
from the child's children to the function

Amount of time that was
propagated directly

from the child into function

Number of times this function
called the child ‘/’

total number of times this
child was called

60

How gprof works
• Instruments program to count calls
• Watches the program running, samples the PC every 0.01

sec
• Statistical inaccuracy: fast function may take 0 or 1 samples
• The execution time should be long enough compared with the

sampling period

• The output from gprof does not indicate parts of the
program that are limited by I/O or swapping bandwidth.
• This is because samples of the program counter are taken at fixed

intervals of run time

• number-of-calls figures are derived by counting, not
sampling. They are completely accurate and will not vary
from run to run if your program is deterministic
• Profiling with inlining and other optimizations needs care

61

Valgrind
• Multi-purpose Linux x86 profiling toolkit

• Memcheck is memory debugger
• detects memory-management problems

• Cachegrind is a cache profiler
• performs detailed simulation of the I1, D1 and L2 caches

in your CPU
• Massif is a heap profiler
• performs detailed heap profiling by taking regular

snapshots of a program's heap
• Helgrind is a thread debugger
• finds data races in multithreaded programs

62

Memcheck Features
• When a program is run under Memcheck's supervision, all

reads and writes of memory are checked, and calls to
malloc/new/free/delete are intercepted

• Memcheck can detect:
• Use of uninitialized memory
• Reading/writing memory after it has been free'd
• Reading/writing off the end of malloc'd blocks
• Reading/writing inappropriate areas on the stack
• Memory leaks -- where pointers to malloc'd blocks are lost forever
• Passing of uninitialized and/or not addressible memory to system

calls
• Mismatched use of malloc/new/new [] vs free/delete/delete []
• Overlapping src and dst pointers in memcpy() and related functions
• Some misuses of the POSIX pthreads API

63

Memcheck Example

Using non-
initialized

value

Using “free” of
memory allocated

by “new”

Access of
unallocated

memory

Memory
leak

64

Memcheck Example (Cont.)

• Compile the program with –g flag:
• g++ -c a.cc –g –o a.out

• Execute valgrind :
• valgrind --tool=memcheck --leak-check=yes a.out >& log.txt

• View log

Debug
leaks

Executable
name

65

Memcheck report

66

Memcheck report (cont.) Leaks detected:

S
T
A
C
K

67

Cachegrind
• Detailed cache profiling can be very useful for improving the

performance of the program
• On a modern x86 machine, an L1 miss will cost around 10

cycles, and an L2 miss can cost as much as 200 cycles
• Cachegrind performs detailed simulation of the I1, D1 and

L2 caches in your CPU
• Can accurately pinpoint the sources of cache misses in the

code
• Identifies the number of cache misses, memory references,

and instructions executed for each line of source code, with
per-function, per-module and whole-program summaries

• Cachegrind runs programs about 20--100x slower than
normal

68

How to run
• Run valgrind --tool=cachegrind in front of the

normal command line invocation
• Example : valgrind --tool=cachegrind ls -l

• When the program finishes, Cachegrind will print
summary cache statistics. It also collects line-by-
line information in a file cachegrind.out.pid

• Execute cg_annotate to get annotated source file:

cg_annotate cachegrind.out.7618 a.cc > a.cc.annotated
PID

Source files

69

Valgrind
This will output the cache statistics for each line of
our program:
Ir I cache reads (instructions executed)
I1mr I1 cache read misses (instruction wasn't in I1 cache but was in L2)
I2mr L2 cache instruction read misses (instruction wasn't in I1 or L2 cache,

had to be fetched from memory)
Dr D cache reads (memory reads)
D1mr D1 cache read misses (data location not in D1 cache, but in L2)
D2mr L2 cache data read misses (location not in D1 or L2)
Dw D cache writes (memory writes)
D1mw D1 cache write misses (location not in D1 cache, but in L2)
D2mw L2 cache data write misses (location not in D1 or L2)

Cachegrind Summary output

I-cache reads
(instructions executed) I1 cache read misses

L2-cache instruction
read misses

Instruction caches
performance

71

Cachegrind Summary output

D-cache reads
(memory reads)

L2-cache data
read misses

Data caches
READ performanceD1 cache read misses

72

Cachegrind Summary output

Profiling Tools

D-cache writes
(memory writes)

D1 cache write
misses

L2-cache data
write misses

Data caches
WRITE performance

73

Cachegrind Accuracy
• Valgrind's cache profiling has some shortcomings:
• It doesn't account for kernel activity -- the effect of

system calls on the cache contents is ignored
• It doesn't account for other process activity (although

this is probably desirable when considering a single
program)

• It doesn't account for virtual-to-physical address
mappings; hence the entire simulation is not a true
representation of what's happening in the cache

74

Massif tool
• Massif is a heap profiler - it measures how much heap

memory programs use. It can give information about:
• Heap blocks
• Heap administration blocks
• Stack sizes

• Help to reduce the amount of memory the program uses
• smaller program interact better with caches, avoid

paging
• Detect leaks that aren't detected by traditional leak-

checkers, such as Memcheck
• That's because the memory isn't ever actually lost - a

pointer remains to it - but it's not in use anymore

• Run valgrind --tool=massif prog

75

Massif tool

76the time unit is bytes, due to the use of --time-unit=B.

Massif tool

77

• n: number of snapshot
• time(B): the time unit is bytes, due to the use of --time-unit=B.
• total(B): the total memory consumption at that point.
• useful-heap(B): the number of useful heap bytes allocated at that point.
• extra-heap(B): the number of extra heap bytes allocated at that point.
• stacks(B): the size of the stack(s). By default, stack profiling is off as it

slows Massif down greatly.

Valgrind – how it works
• Valgrind is compiled into a shared object, valgrind.so. The

shell script valgrind sets the LD_PRELOAD environment
variable to point to valgrind.so. This causes the .so to be
loaded as an extra library to any subsequently executed
dynamically linked ELF binary

• The dynamic linker allows each .so in the process image to
have an initialization function which is run before main(). It
also allows each .so to have a finalization function run after
main() exits

• When valgrind.so’s initialization function is called by the
dynamic linker, the synthetic CPU starts up. The real CPU
remains locked in valgrind.so until the end of the run

• System calls are intercepted; Signal handlers are monitored

78

Valgrind Summary
• Valgrind will save hours of debugging time
• Valgrind can help speed up your programs
• Valgrind runs on x86-Linux
• Valgrind works with programs written in any language
• Valgrind is actively maintained

• Valgrind can be used with other tools (gdb)
• Valgrind is easy to use
• uses dynamic binary translation, so no need to modify,

recompile, or re-link applications. Just prefix the
command line with valgrind and everything works

• Valgrind is not a toy
• Used by large projects : 25 millions lines of code

• Valgrind is free

79

PAPI
• Library that provides a consistent interface (and

methodology) for hardware performance counters, found
across the system:
• CPUs, GPUs, on-chip and off-chip Memory, Interconnects, I/O

system, File System, Energy/Power, etc.

• PAPI (Performance Application Programming Interface)
enables software engineers to see, in near real-time, the
relation between SW performance and HW events across
the entire system

• Supported Architectures: AMD, ARM, IBM, Intel, NVIDIA
• https://github.com/icl-utk-edu/papi

80

PAPI Hardware Events
• Countable events are defined in two ways:

• Platform-neutral Preset Events (e.g., PAPI_TOT_INS)
• Platform-dependent Native Events (e.g., L3_CACHE_MISS)

• Preset Events can be derived from multiple Native Events
• PAPI_L1_TCM might be the sum of L1 Data Misses and L1

Instruction Misses on a given platform

• papi_avail to see what preset events are available on a given
platform
• Any event countable by the CPU, GPU, network card, parallel file

system or others
• papi_native_avail utility to see all available native events

81

PAPI High-Level API
• PAPI_hl_region_begin (const char *region)

• Read events at the beginning of a region (also start counting the
events)

• PAPI_hl_region_end (const char *region)
• Read events at the end of a region and store the difference from the

beginning
• PAPI_hl_read (const char *region)

• Read events inside a region and store the difference from the
beginning

• PAPI_hl_stop ()
• Stop a running high level event set (optional)

• Environment variable to control events
• export PAPI_EVENTS="PAPI_DP_OPS,PAPI_L1_DCM,PAPI_L1_DCA"

82

PAPI High-Level API Example
• % export PAPI_EVENTS="PAPI_TOT_INS,PAPI_TOT_CYC”

83

#include "papi.h"
int main()
{
int retval;
retval= PAPI_hl_region_begin("computation");
if (retval!= PAPI_OK)
handle_error(1);

/* Do some computation here */
retval= PAPI_hl_region_end("computation");
if (retval!= PAPI_OK)
handle_error(1);

}

{
"computation":{
"region_count":"1",
"cycles":"2080863768",
"PAPI_TOT_INS":"2917520595",
"PAPI_TOT_CYC":"2064112930" }
}

Automatic performance report.

Perf
• Perf is a profiler tool for Linux 2.6+ based systems that

abstracts away CPU hardware differences in Linux
performance measurements and presents a simple
command-line interface.

• Perf is based on the perf_events interface exported by
recent versions of the Linux kernel.

• The perf tool offers a rich set of commands to collect and
analyze performance and trace data.
• it implements a set of commands: stat, record, report, [...]

84

$ perf
usage: perf [--version] [--help] [OPTIONS] COMMAND [ARGS]
The most commonly used perf commands are:
…

Events
• The perf tool supports a list of measurable events. The tool

and underlying kernel interface can measure events coming
from different sources.

• For instance, some events are pure kernel counters, in this
case, they are called software events.
• Examples: context-switches, minor-faults.

• Another source of events is the processor itself and its
Performance Monitoring Unit (PMU). It provides a list of
events to measure micro-architectural events
• Examples: number of cycles, instructions retired, L1 cache misses,

and so on. Those events are called PMU hardware events or
hardware events for short. They vary with each processor type and
model.

85

$ perf list List of pre-defined events (to be used in -e):
…

Workflow
• When profiling a CPU with the perf command, the

typical workflow is to use:
1. perf list: find events.
2. perf stat: count the events.
3. perf record: write events to a file.
4. perf report: browse the recorded file.
5. perf script: dump events after processing.

• The outputs differ based on the system and locally
available resources.

86

perf list
• The output lists all supported events, regardless of

type.

87

perf stat <command>
• CPU performance statistics for a specific

command.

88

perf record & report
• $ perf record ./mmul 1024
• $ perf report --stdio -v

89

