MeTayAwTTIOTEG YA
Evowpatwpeva 2votnuata

Xelpepvo E€¢apunvo 2023-24
«Memory and Roofline Model»

[Tavayiwtng Xatlnoovkog

Outline

- Memory
* Roofline Model

- Hands-on
* Peak performance
« Memory bandwidth
« Memory layout (struct of arrays vs array of structures)
« Matrix multiplication

Memory

Locality

|dea: have near you only what you need

Temporal locality: if an item is referenced, it will need to be
referenced again soon
* Loops: instructions and data accessed repeatedly

Spatial locality: if an item ferenced, items whose
addresses are close by, will tend to be referenced soon

« Data access: sequential access to elements of array

>

Register and Caches

_ E What a memory access looks like
Register

Memory

What really happens

Register E
J WO cycles latency

Cache I

T T 200+ cycles latency
Memory -
—

Cache Line

Spatial Locality

cer W]
N

Cache m
Memory -

Better spatial locality!

Register w2
‘*\

Cache

T T Cache line only read once!

Memory -

Locality Example 1

sum = 0;
for (1 = 0; 1 < n; 1i++)

sum += a[i];

return sum;

« Data:

« Temporal: sum referenced in each iteration
« Spatial: array a[] accessed consecutively

* Instructions:
« Temporal: loops cycle through the same instructions
« Spatial: instructions referenced in sequence

- Being able to assess the locality of code is a crucial skill for a
performance programmer

Locality Example 2

double sum array rows(double a[M][N])

{
int i, Jj;
double sum = 0;
for (1 = 0; i < M; i++)
for (J = 0; j < N; j++)

sum += a[i][J];

return sum;

Locality Example 3

double sum array 3d(double a[K][M][N])
{

int 1, j, k;
double sum = 0;

for (i = 0; 1 < M; 1i++)
for (J = 0; j < N; j++)
for (k = 0; k < K; k++)

sum += a[k][1][]];

return sum;

Memory Hierarchy

- Multiple levels of memory with different speeds and sizes.

: : Processor
Register 1000s of bits 20 ps Datapath

SRAM ~10 KB-10 MB 1-10 ns Memory
DRAM ~10 GB 80 ns Hierarchy

Flash* ~100 GB 100 us /O
Hard disk* ~| TB 10 ms subsystem

* non-volatile (retains contents when powered off)

ns

MS

ms

Latency and Bandwidth

10°°

10°®

107

1075

1075

1074

102

1072

107"

T }—— L1cache
— L2/L3 cache
Main memory
HPC networks
Gigabit Ethemet
|——1 Solid state disk
N] Local hard disk
Internet
Latency

[sec]

1011

_{ L
1010
1 109 GB/s
- | 10®
| L o7
Bandwidth
[bytes/sec] 1

Characterization of Memory Hierarchies

- Peak Performance for 1 core of Intel Core2 Q6850 (DP):
« 3 GHz * (2 Flops (DP-Add) + 2 Flops (DP-Mult)) = 12 GFlops/s

Serial performance
real*8 A(ARRAY).....; ARRAY=2:4: A(L:N)=B(L:N+C(L:N)*D(1:N)

40(X) |||||I'I| 1 Ll llllllI LI IIIIIII I IllIIlII 1 Ll IllllII Ll 1 |||||l‘| LILLLBLLLL
Intel Core2 Extreme Q6850 (3 GHz) Performance decreases if
- ifort 9.1.045 (64-bit) ’ data set exceeds cache size
— — No compiler options (Default: -O2)
3000 — .03 N
— .03 xT

MFlops/s
S
S
|
]

| —_
1000 -
B 7 -xT : Enables vectorization & improves in-
cache performance: Packed SSE
0 instructions
1 2 3 4 5 6 7
10 10 10 10 10 10 10

N (loop length) 12

Cache: Terminology

Block/Line: minimum unit of information that can be
present or not present in a cache

Hit: data request by the processor, encountered in some
block in the upper (closer to processor) level of memory
hierarchy. If the data is not found, it is a miss. Then a lower
(further from processor) level is accessed to retrieve the
data.

Hit rate: fraction of memory accesses found in the upper
level.

Hit time: time to access upper level including time to
determine if it is a hit or a miss.

Miss penalty: time to replace a block in the upper level with
the corresponding block from the lower level.

13

Effective Access Time (EAT)

« Suppose that
cache access time = 10ns
main memory access time = 200ns
cache hit rate =99%

- What is the EAT for non-overlapped access?

EAT = 0.99(10ns) + 0.01(10ns + 200s) = 9.9ns + 2.1ns = 12ns

14

Caches and Multiprocessors

e BUS: a shared communication link, which uses
one set of wires to connect multiple subsystems.

e Used for communication between memory, 1/0
and processors.

. . since we have a single
connection scheme, new devices can be
added

. : single set of wires is shared in

multiple ways

« communication bottleneck: limiting the 1/0
throughput as all information passes a single
wire

Processor-Memory Bus: bus that connects processor
and memory, and that is short, high speed and matched
to the memory system so as to maximize memory-
processor bandwidth.

Multi-core Processor

N\ 2 N\
Core Core Core
1 2 3

Core
4

~

Individual
Memory

Individu:

d
Mei

mol
L

| Shared Memory

‘ Bus Interface

(Off-Chip Components

Chip Boundary

\

7
CPU Core CPU Core

and and
L1 Caches L1 Caches

|

Back side

Bus Interface
and
L2 Caches

Front side

BUS

15

Machine (16GB)

Portable Hardware Locality (hwloc

Socket P#0
I L3 (8192KB) I
| L2 (2048KB) | | L2 (2048KB) | | L2 (2048KB) | | L2 (2048KB) |
| L1 (16KB) | | L1 (16KB) | | L1(16KB) | I L1 (16KB) | | L1 (16KB) | | L1(16KB) | | L1(16KB) | I L1 (16KB) |
Core P#0 Core P#1 Core P#2 Core P#3 Core P#4 Core P#5 Core P#6 Core P#7
I PUP#0 I I PU P#1 | | PUP#2 | I PUP#3 I I PUP#4 I I PUP#5 | | PUP#6 | I PUP#7 I
O u PCI 1002:6718
—{J—— Pcl10ec8168
p4pl
L] PCI 197b:2362
L] PCI 197b:2362

PCI 1002:4391

0

PCl 10de:1080

——{}——— PCI 10de:1022

PCI 8086:1503

em0

PCI 1b4b:9125

0

Machine (16GB)
Socket P#0
L3 (8192KB)
L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB)
L1 (32KB) L1 (32KB) L1 (32KB) L1 (32KB)
Core P#0 Core P#1 Core P#2 Core P#3
PU P#0 PUP#2 PU P#4 PUP#6
PUP#1 PUP#3 PU P#5 PUP#7

0

PCl 11ab:6121

PCI 8086:1c02

Host: bulldozer.inf.ethz.ch

Host: cyrus.ethz.ch

http://www.open-mpi.org/projects/hwloc/

16

Euler Compute Node (text format

Machine (256GB)
m L#0 (P#0 128GB) + Socket L#0 + L3 L#0 (30MB)
L2 L#0 (256KB) + L1d L#0 (32KB) + L1i L¥0 (32KB) + Core L#0 + PU L0 (P#0)
L2 L#1 (256KB) + L1d L#1 (32KB) + L1i L#1 (32KB) + Core L#1 + PU L#1 (P#1)
L2 L#2 (256KB) + L1d L#2 (32KB) + L1i L#2 (32KB) + Core L#2 + PU L#2 (P#2)
L2 L#3 (256KB) + L1d L#3 (32KB) + L1i L#3 (32KB) + Core L#3 + PU L#3 (P#3)
L2 L#4 (256KB) + L1d L#4 (32KB) + L1i L#4 (32KB) + Core L#4 + PU L#4 (P#4) 1 St N U MA N O D E
L2 L#5 (256KB) + L1d L#5 (32KB) + L1i L#5 (32KB) + Core L#5 + PU L#5 (P#5)
L2 L#6 (256KB) + L1d L#6 (32KB) + L1i L#6 (32KB) + Core L#6 + PU L#6 (P#6)
L2 L#7 (256KB) + L1d L#7 (32KB) + L1i L#7 (32KB) + Core L#7 + PU L#7 (P#7)
L2 L#8 (256KB) + L1d L#8 (32KB) + L1i L#8 (32KB) + Core L#8 + PU L#8 (P#8)

L2 L#9 (256KB) + L1d L#9 (32KB) + L1i L#9 (32KB) + Core L#9 + PU L#9 (P#9) - Com pute node:
L2 L#10 (256KB) + L1d L#10 (32KB) + L1i L#10 (32KB) + Core L#10 + PU L#10 (P#10)
L2 L#11 (256KB) + L1d L#11 (32KB) + L1i L#11 (32KB) + Core L#11 + PU L#11 (P#11) e 256 GB RAM

HostBridge L#0

“PCiBridee. « 2 NUMA Nodes

PCl 14e4:168e

Net L#0 "eth0" « NUMA Node

PCl 14e4:168e

Net L#1 "eth1" ® 1 28G B RAM

PCl 103¢:323b « 1 Socket

Block L#2 "sda"

PCiBridge + 30MB L3 Cache

PCI 15b3:1003

Net L#3 "ib0" « 12 Cores

Net L#4 "ib1"

OpenFabrics L#5 "mix4_0" ° COre
PCIBridge

“pC1 10250533 « 256KB L2 Cache

NUMANode L#1 (P#1 128GB) + Socket L#1 + L3 L#1 (30MB)

L2 L#12 (256KB) + L1d L#12 (32KB) + L1i L#12 (32KB) + Core L#12 + PU L#12 (P#12) - 32KB L1 Data Cache
L2 L#13 (256KB) + L1d L#13 (32KB) + L1i L#13 (32KB) + Core L#13 + PU L#13 (P#13) .
L2 L#14 (256KB) + L1d L#14 (32KB) + L1i L#14 (32KB) + Core L#14 + PU L#14 (P#14) « 32KB L1 Instruction Cache

L2 L#15 (256KB) + L1d L#15 (32KB) + L1i L#15 (32KB) + Core L#15 + PU L#15 (P#15)

L2 L#16 (256KB) + L1d L#16 (32KB) + L1i L#16 (32KB) + Core L#16 + PU L#16 (P#16)

L2 L#17 (256KB) + L1d L#17 (32KB) + L1i L#17 (32KB) + Core L#17 + PU L#17 (P#17)

L2 L#18 (256KB) + L1d L#18 (32KB) + L1i L#18 (32KB) + Core L#18 + PU L#18 (P#18) 2 N d N U MA N O D E

L2 L#19 (256KB) + L1d L#19 (32KB) + L1i L#19 (32KB) + Core L#19 + PU L#19 (P#19)

L2 L#20 (256KB) + L1d L#20 (32KB) + L1i L#20 (32KB) + Core L#20 + PU L#20 (P#20)

L2 L#21 (256KB) + L1d L#21 (32KB) + L1i L#21 (32KB) + Core L#21 + PU L#21 (P#21)

L2 L#22 (256KB) + L1d L#22 (32KB) + L1i L#22 (32KB) + Core L#22 + PU L#22 (P#22) 17
L2 L#23 (256KB) + L1d L#23 (32KB) + L1i L#23 (32KB) + Core L#23 + PU L#23 (P#23)

Parallelism and Memory Hierarchies

Multicore multiprocessor:
* Processors (most likely) share a common physical address space

Caching shared data: view of memory for each processor through their
individual caches so it differs if changes are made.

CAREFUL: 2 different processors can have 2 different values for the
same location -> cache coherence problem

CPU @

main memory o '

18

Cache Coherency

- A memory system is coherent if:

A read by processor P to location X, that follows a write by P to X,
with no writes to X by another processor occurring between the
write and read by P, always returns the value written by P.

A read by a processor to location X that follows a write by another
processor to X returns the written value if the read and write are
sufficiently separated in time and no other writes to X occurs
between the 2 accesses. = needs controller

Writes to the same location are serialized: that is 2 writes to the

same location by any 2 processors are seen in the same order by all
Processors.

19

Enforcing Coherence

* Protocols are maintained for cache coherence by tracking
the state of any sharing of a data block.

* Example -> Snooping protocols: every cache with a copy of the
data from a block of physical memory, also has a copy of the
sharing status of the block, but no centralized state is kept.

» The caches are all accessible via some broadcast medium (bus or
network) and all cache controllers monitor (snoop) on the medium to
determine whether they have a copy of a block that is requested on
a bus or switch access.

20

Memory Usage: Remarks

- Software for improved memory usage, assisted by
compilers to transform programs.

reorganize program to enhance its spatial and temporal locality
(loop-oriented programs, using large arrays as the major data
structure; e.g. large linear algebra problems) by restructuring the
loops (to improve locality and obtain) better cache performance

prefetching: a block of data is brought to cache before it is
referenced. Hardware to predict accesses that may not be detected
by software.

cache-aware instructions to optimize memory transfer.

21

Effect of Data prefetching on BG/Q
- Single BG/Q node, 64 threads

N
~

70%
24
o 60% 21
g 18
< 0
E ~
S g15
S 50% 7
i o 12
© £
e F 9
X 40% 6
3
30% 0

Peak Performance Time-to-Solution

con: L1P_stream_confirmed
opt: L1P_stream_optimistic
dis: L1P_stream_disable 2

The roofline model

The Roofline Model

- Proposed by Williams, Waterman and Patterson [1]:
* Crucial in performance predictions
« Helpful for software optimization

- “Bound-and-bottleneck” analysis:
* Provides valuable performance insight

« Focuses on the primary performance factors
« Main system bottleneck is highlighted and quantified

[I7 Roofline: an insightful visual performance model for multicore architectures, Williams and Waterman and Patterson, Communication to ACM, 2009

24

Computation-Transfer overlap

On CPUs:

« Superscalar execution (multiple instructions per cycle)
* In principle: automatic overlap (balanced instructions)
* In practice: enforced through software prefetching

25

The Roofline Model

- Main assumptions/issues:

« The memory bandwidth is the constraining resource
(Off-chip system memory)

* Transfer-computation overlap

« Memory footprint does not fit in the cache
- We want a model that relates:

« Computing performance [GFLOP/s]

« Off-chip memory traffic [GB/s]

- New concept: the operational intensity [FLOP/Byte]

26

Operational Intensity

- Operations per byte of DRAM traffic

* It measures the traffic between the DRAM and the Last
Level Cache (further away from processor)

- It excludes the bytes filtered by the cache hierarchy

Off-chip
memory

Cache
hierarchy

Processing
element

Operational Intensity

- Not equivalent to arithmetic intensity [1], machine balance[2]
* which refer to traffic between the processor and the cache

- Not forcedly bound to FLOP/Bytes (e.g. Comparison/Byte)

4)

Off-chip
memory

Cache
hierarchy

Processing
element

[1] Harris, M. Mapping Computational Concepts To Gpus. In ACM SIGGRAPH Courses, 2005.
[2] Callahan, D., Cocke, J., Kennedy, K. Estimating Interlock and Improving Balance For Pipelined Machines (1988)

28

Abstraction

GFLOP/s FLOP/B

GB/s Operational Intensity:
FLOP-to-byte of off-chip memory transfers

29

The Roofline Model

* The roofline is a log-log plot

- It relates:
« Performance f [FLOP/s] with
« Operational intensity 1" [FLOP/Byte]

- Two theoretical regimes for a kernel k:

* Performance of k is limited by the DRAM bandwidth:

o f(rk) = Tk bpeak:

« Performance of k is limited by the compute power:

=) f(rk> — fpeak

30

The Roofline Model

100.0 e
L’
Sl
b:\ .’

7)) 1 00 = 4

g L 3 GFLOP/s
i [-M;Xi-m:m-a:hi-ev:lbl-e By C++ microbenchmark
Q) performance! o

0.010 1.000 10.000 100.000

% 0-1
Operational Intensity

9 4x Quad-Core AMD Opteron 8380 @ 2.5GHz - 1 Thread - C++

31

Nominal Performance

- How to estimate nominal Jfpeak and bpeak?
- From the hardware specifications of the platform

- Examples

Processor Vector size instructions per clock,
Clock/sec ((SSE, AVX,..) FMAs

PP: 2.5 [Ghz] * 4 [SIMD-width] * 2 [issued FLOP/clock] * 16 [cores] = 320 [GFLOP/s]

No. of cores

Cl\l/IOeCrE/oSré/C Channel size No. channels bits/Byte
PB: 1.3 [Ghz] * 64 [bits] * 2 [channels] / 8 [bits/Byte] = 21.3 [GB/s]

Performance=min(OI*PB,PP)

32

Measured Performance

« Microbenchmarks:

« STREAM benchmark or similar

« Nominal peak or vectorized
- https://github.com/Mysticial/Flops

- Expected discrepancy from nominal quantities:
 FLOP/s: 90-100% of nominal performance

« GByte/s : 50-70% of nominal performance

- Discrepancies reveal:
* Programming skills in extracting system performance
» Best case scenario for more complex kernels

33

https://github.com/Mysticial/Flops

The Roofline Model

* Run once per platform, not once per kernel

- Estimation of operational intensities (Flops/byte) can be
tricky

- What happens if you compute them wrong?

add scale triad
Zi=Xi+yi Z; = aX; zi=axi+yi
1 2readxy 1 tread¥ 2 2read ()
Intel Xeon W3520 12 1r\?v?ite)zz))/ 8 1$|?te ();) 12 1 write (2)
NOTE:
4P AMD Opteron 8380 1 3 read (x,y,2) L 2 read (x,2) 2 3 read (xy.z) Cache Dependent
16 "1 write () 12 4 write () 16 1 write (2) Numbers
1 1 2
2P AMD Opteron 2435 . 8 5
NVIDIA Tesla S1070 11—2 2—3 %

|

34

Operational Intensity: Example

« Given

for (int ix=1; 1ix<N-1; 1ix++)

out[ix] = in[ix-1]-2*in[ix]+in[ix+1]

- where in and out are float arrays of size N

1. What is the number of floating-point operations?

2. What is the number of memory accesses from main memory
If:
a) there is no caching

b) there is a perfect cache of infinite size

35

Operational Intensity: Example

for (int ix=1; ix<N-1; 1ix++)
out[ix] = in[ix-1]-2.*in[ix]+in[ix+1]

- Floating point operations: 3*(N-2) FLOP
- Memory accesses (no caching): 4*(N-2) floats accessed
every data accessed is counted

- Memory accesses (perfect caching): 2*N-2 floats accessed
data is read only once and written only once

36

Example: 2D Heat Equation

2D heat equation:
dq 5 point stencill

q: singe precision (4 Bytes)

Algorithm

1. Laplace Operator
RHS; ; = C1(q41,; + @1, + @41 + a1 j—1 — 447 ;)
2. Forward Euler Operator:

"t =g, + 6t - RHS;

37

A-Priori Performance Analysis

RHS; ; = Cl(qf?—l—l,j T qun—l,j + q2j+1 T q:irfj—l — 46123')
* Floating point operations per point: 4 ADD + 2 MUL

- Memory accesses per point:
Worst case: 5 read + 1 write
Best case: 1 read + 1 write

 Operational Intensity:
Worst case: 6 FLOP / (6"4 B) = 0.25 FLOP/B
Best case: 6 FLOP / (2*4 B) = 0.75 FLOP/B

38

A-Priori Performance Analysis

qZ;-H = qZ’j + o0t - RHS; ;

Floating point operations per point: 1 ADD + 1 MUL

Memory accesses per point:
Worst case: 2 read + 1 write
Best case: 2 read + 1 write

Operational Intensity:
Worst case: 2 FLOP / (3*4 B) = 0.17 FLOP/B
Best case: 2 FLOP / (3*4 B) = 0.17 FLOP/B

39

GFLOP/s

Roofline

o

BN BN BN BN By BN BN EN |

1.00

FLOP/B

10.00 100.00

40

A More Accurate Analysis

- We have locality!

- Memory accesses per point:
e 3read + 1 write

 Operational Intensity:
- 6 FLOP/(4*4 B) = 0.375 FLOP/B

n+1
q7’7.7 41

Roofline

L

-----‘---

¢
4
4

-----*--------

72 GFLO)?J§

{)
al
o
|
LL
Q)
0.01 .7 | *hoo 10.00 100.00

FLOP/B

42

Optimization

1. Locality
2. Communication
3. Computation

1000 -
| |
|
| |

100 . ﬁ
i
|

10

GFLOP/s

D

©
»*

0.01 0.1 1 10 100
FLOP/Byte

Ceilings on Brutus (single precision)

1000.0
2
o 100.0
—1
L
O,
8 10.0
-
®
£ —
g p 1.0 Plain serial C+4+
O
(ol
0.01 0.10 1.00 10.00 100.00
0.1

Operational Intensity [FLOP/B]

44

Ceilings on Brutus (single precision)

1000.0

100.0

Multithreading

Plain serial C+4

Performance [GFLOP/s]

0.01 0.10 1.00 10.00 100.00

0.1
Operational Intensity [FLOP/B]

45

Performance [GFLOP/s]

Ceilings on Brutus (single precision)

1000.0

SIMD

Multithreading

Plain serial C+4

0.01

0.10 1.00 10.00 100.00

0.1
Operational Intensity [FLOP/B]

46

Performance [GFLOP/s]

Ceilings on Brutus (single precision)

Balanced MUL-ADD

1000.0
p g © 06 ¢ 06 06 0 0 0 0 0 o S o”\o/lD
e S Multithreading
. °10.0
1.0 Plain serial C+4+
0.01 0.10 1.00 10.00 100.00
0.1

Operational Intensity [FLOP/B]

47

Performance [GFLOP/s]

Ceilings on Brutus (single precision)

1000.0 Balanced I\/IUL—:A\.DD
p e © 0006 0 0 0 0_0% o S o”\o/lD
100.0 o e o o o000 e 0ed’ee I\./IL.JI’.[it.hI.’e.a.di.ng

Plain serial C+4

0.10 1.00 10.00 100.00

0.1
Operational Intensity [FLOP/B]

48

Improving Locality

=F] |
EE Z(Z|Z|Z

Linear Blocked Blocking Hierarchy

Z|

Morton or Z-Order Peano

The Ridge Point

- Ridge point characterizes the overall machine performance

* Ridge point “to the left”: it is relatively easy to get peak
performance

* Ridge point “to the right”: it is difficult to get peak performance

GFLOP/s

0.010 7100 1.000 10.000 100.000
0.1

Operational Intensity
What does it mean “a ridge point to the right” anyway? 50

Production Software

- Assumption: production-ready software

- Limited set of algorithms
* Fixed set of kernels } Best hardware solution?

* Fixed operational intensities

100.0
% 10.0
S Best platform
-~
LL
Q)
0.01 1.000 10.000 100.000

FLOP/Byte

51

Is Moore worth?

|t depends:
* On the ridge point
« On the operational intensity of the considered kernels

128
Opteron X4
64
" 32
E Opteron X2
S 16 -
6 -
2 8 -
n -
)
4
&
2
1
1/2
1/4 1/2 1 2 4 8 16

52

The Roofline Model: Summary

- |t visually relates hardware with software
« Performance = min(PB x Ol, PP)
- Ridge point characterizes the model

1000

100

)

Hardware (GFLOP/s)

-

1/10 100

Software (FLOP/B)

53

Conclusions

+ When is the roofline model useless?
« When you discuss performance in terms to time-to-solution.

- When is the roofline model crucial?
« When you want to optimize your code (data reuse, ceilings)
« To predict maximum achievable performance (roofline, ridge point)
* To systematically assess your performance (roofline, op. int.)

- What do you do if all your kernels have a bad op. int.?

* Either live with it

* Go back to equations, pick better discretization schemes/algorithms
(leading to a higher op. int.)

« Wanted: less simulation steps, but more costly (high order schemes)

54

Hands-on

Peak performance

Memory bandwidth

Memory layout (struct of arrays vs array of structures)
Matrix multiplication

55

