METAYAWTTLOTEC VLA

Evowpatwueva Zvotnuata
Xewpeptvo E€apnvo 2023-24
“Eloaywyn”

MNavaywwtng Xatlnéoukog

Course description

https://hsis.upatras.gr/?page id=133

METOUYAWTTLOTEC

TEXVIKEC LETAYAWTTLOTWYV yLa BeATIoTOOLlNON TOXUTNTOC
EVOWMOTWUEVWY UTIOAOYLOTWV
BeAtiotomoinon amodoonc AoyLlouLKoU
Metaoxnuotiopotl Bpoxwv

E¢€aptnon debopevwy

Texvikec OSLaxelplonc HvNUNG
Emitaxuvon xpovou eKTEAEONC
MNapaAAnALopOC eTedOU EVTOAWVY
ALOVUOUOTIKOL UTTOAOYLOTEC

EpyaAeia petpnong anodoong

https://hsis.upatras.gr/?page_id=133

Embedded systems programming

" Development of software for embedded systems, which are
computer systems that are integrated into other devices or products.

" These systems
= are designed to perform specific functions
= often have limited resources
" jncluding memory, processing power, and energy.

" This software is typically written in low-level languages such as C and
assembly language and is optimized for the specific hardware and
application requirements of the system

Importance

Embedded systems are used in a wide range of products

" e.g., automobiles, medical devices, consumer electronics, industrial
equipment.

These systems must be reliable, efficient, and cost-effective

Programming plays a critical role in achieving these goals.

By optimizing software for the specific hardware and application

requirements of the system, developers can

" improve system performance

" reduce energy consumption
" minimize costs.

Programming Languages

= Some of the most commonly used programming languages for

embedded systems programming include:

" C:CProgramming is a widely used programming language for embedded

systems programming. It provides direct access to system resources and is
well-suited for systems with limited resources.

" Assembly language: Assembly language is a low-level programming
language that provides direct access to system resources. It is often used for
systems with very limited resources or for performance-critical applications.

" C++: C++is a high-level programming language that is often used for
embedded systems programming. It provides object-oriented programming
features and can be used to develop complex systems.

Best Practices

= Writing Efficient Code
= Writing efficient code is critical for embedded systems, as these systems
often have limited resources. Developers should focus on writing code that
is optimized for the specific hardware and application requirements of the
system and should avoid using unnecessary resources.

" Debugging Techniques
" Debugging techniques are critical for identifying and fixing errors in
software. Developers should use a range of debugging techniques, including
stepping through code, setting breakpoints, and examining variables and
memory.

= Testing and Validation
" Testing and validation are critical for ensuring that software is reliable and

efficient. Developers should use a range of testing and validation
techniques, including unit testing, integration testing, and system testing.

Course Schedule (tentative)

Introduction: architectures, performance
Memory hierarchy and Roofline mode,
Debugging, Profiling

Compiler and code optimizations |
Compiler and code optimizations |
Vectorization

BLAS for Embedded Optimization
OpenMP basics

. OpenMP optimization

10 OpenMP tasks

11.Recap

MBSOl G Rl e SR I

Use cases
" Matrix operations (Al related)
= |mage processing

02.10 -1
09.10 -
16.10 -
23.10 -2
30.10 -3
06.11 -4
13.11 -5
20.11 -6
2711 -7
04.12 -8
11.12 -9
18.12 -10
25.12
01.01
08.01 — 11

Evaluation (TBD)

e 2-3 programming assignments (70%)
* Written or oral exam (30%)

Class Website

https://eclass.upatras.gr/courses/CEID1418/

Computer layout (in a nutshell)

e CPU

e does the computations

e contains multiple cores (usually)

e each core works mostly independently,
copy of a single core with global coordination

BT e i o P
zgi ¢t Shared L3 Cache & |

e contains several levels of caches to 1t o) it
speed up reading/writing to memory R E e

(very relevant for high performance computing) picture source: legitreviews

e Memory

e stores data for computations

e shared among the cores of the CPU (or multiple CPUs in a compute node)

e Network: connect compute nodes and connect to outer world

e |nput/Output: displays, hard-drives, etc

Massively Parallel Computing

Sequoia IBM BlueGene/Q supercomputer (at Lawrence Livermore National Laboratory)

System - Sequoia
Rack 96 racks
2 midplanes 20 PF/s
1,2 or 4 |/O drawers
209.7 TF/s

t
{
l

Midplane
16 node cards
104.9 TF/s 1/0 Drawer
T e 8 I/O cards
| 8PCle Gen2 slots
il

<
ol
" bt
. Z

, —
Node Card
. 32 compute cards, optical modules,

(AR AAN RREN

4

11113

Compute Card link chips, 5D torus
Module 1 chip module 6.6 TF/s
y single chip 16 GB DDR3 memory
e ,:,',’,‘ Jlyirl, (14440, 204.8 GF/s
““““ ‘_’;‘ ' o) M ST Hy Chlp
: f’;ﬁ/ i S, R 16 cores

| “'vow (' e YRR TR R

EEEITEY B dldddty st shna, oy PRYTTRRY Fmrenee Suuwnnwe SPrnwee Trararey swpeeee - ¥ AR sasasre®

source:computing.linl.gov

Components of a Supercomputer (roughly)
e Processors (CPUs) <= note that those already contain multiple cores
e Compute Node: collection of CPUs with a shared memory
* nodes may also have “accelerators” like graphical processing units (GPU)

e Cluster: collection of nodes connected with a (very fast) network

10 !) ! !
106 -"“m“m“mum“w“m“m“m“m“mé .. -
100 [R e
4 ?
10 | A-Ag -,
. A A
T — 1
. L L, ee
10% [A o
= ™ vy
101 I S - ______ Yv Y
re v v YvWY wvvw
0 e v)4 5 ; z
10 --‘---9 ------------ D e iR R L SR s ~
| i i N
1970 1980 1990 2000 2010

Revolution In Processors

40 Years of Microprocessor Trend Data

Year

Transistors
(thousands)

Single-Thread
Performance
(SpecINT x 10°)

Frequency (MHz)
Typical Power

(Watts)

Number of
Logical Cores

2020

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten

New plot and data collected for 2010-2015 by K. Rupp

Clock speed is not

Number of processor cores may double instead
Power is under control, no longer growing

The TOP500 Project

Listing the 500 most powerful computers in
the world

Yardstick: performance (Rmax) of Linpack

Solve Ax=b, dense problem, matrix is random
Dominated by dense matrix-matrix multiply

Updated twice a year:

ISC’xy in June in Germany
SCxy in November in the U.S.

TOP500 web site at: www.top500.0rg

http://www.top500.org

Rank

10

System

Supercomputer Fugaku - Supercomputer Fugaku, A64FX
48C 2.2GHz, Tofu interconnect D, Fujitsu

RIKEN Center for Computational Science

Japan

Summit - IBM Power System AC%22, IBM POWER®Y? 22C
3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR
Infiniband, IBM

DOE/SC/Oak Ridge National Laboratory

United States

Sierra - IBM Power System AC?222, IBM POWER? 22C
3.1GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR
Infiniband, IBM / NVIDIA / Mellanox
DOE/NNSA/LLNL

United States

Sunway TaihulLight - Sunway MPP, Sunway SW26010 260C
1.45GHz, Sunway, NRCPC

National Supercomputing Center in Wuxi

China

Selene - NVIDIA DGX A100, AMD EPYC 7742 64C 2.25GHz,
NVIDIA A100, Mellanox HDR Infiniband, Nvidia

NVIDIA Corporation

United States

Tianhe-2A - TH-IVB-FEP Cluster, Intel Xeon E5-2692v2 12C

2.2GHz, TH Express-2, Matrix-2000, NUDT
National Super Computer Center in Guangzhou
China

JUWELS Booster Module - Bull Sequana XH2000 , AMD
EPYC 7402 24C 2.8GHz, NVIDIA A100, Mellanox HDR
InfiniBand/ParTec ParaStation ClusterSuite, Atos
Forschungszentrum Juelich [FZJ)

Germany

HPCS5 - PowerEdge C4140, Xeon Gold 6252 24C 2.1GHz,
NVIDIA Tesla V100, Mellanox HDR Infiniband, Dell EMC
Eni S.p.A.

Italy

Frontera - Dell C6420, Xeon Platinum 8280 28C 2.7GHz,
Mellanox InfiniBand HDR, Dell EMC

Texas Advanced Computing Center/Univ. of Texas
United States

Dammam-7 - Cray CS-Storm, Xeon Gold 6248 20C 2.5GHz,
NVIDIA Tesla V100 SXM2, InfiniBand HDR 100, HPE

Saudi Aramco

Saudi Arabia

Cores

7.630.,848

2,414,592

1,572,480

10,649,600

555,520

4,981,760

449,280

669,760

4L4LB . 4L48

672,520

Rmax
(TFlop/s)

442,010.0

148,600.0

94,640.0

?3.014.6

63,460.0

61,4445

44,120.0

35,450.0

23,516.4

22,400.0

Rpeak
(TFlop/s)

537.212.0

200,794.9

125,712.0

125,435.9

72.215.0

100,678.7

70,980.0

51,720.8

38,745.9

55,423.6

Power
(kW)

29.899

10,096

7.438

15,371

2,646

18,482

1,764

2,252

Units of Measure

High Performance Computing (HPC) units are:
Flop: floating point operation, usually double precision unless noted
Flop/s: floating point operations per second
Bytes: size of data (a double precision floating point number is 8 bytes)

Typical sizes are millions, billions, trillions...
Mega MFlop/s = 10”76 flop/sec MByte = 2220 ~ 1076 bytes
Giga GFlop/s = 1079 flop/sec GByte = 2230 ~ 1079 bytes
Tera TFlop/s = 1072 flop/sec TByte = 240 ~ 10712 bytes
Peta PFlop/s = 10715 flop/sec PByte = 2750 ~ 10715 bytes
Exa EFlop/s = 10718 flop/sec EByte = 2260 ~ 10718 bytes
Zetta ZFlop/s = 10721 flop/sec ZByte = 2770 ~ 10721 bytes

Current fastest (public) machine: ~ 537 PFlop/s, 7.6M cores

How Rpeak is computed

Rpeak = Nominal Peak Performance (PP)

PP [Flop/s] = f [Hz = cycles/s] x ¢ [Flop/cycle] x v [-] X n [-]
f : core frequency in CPU cycles per second

¢ : how many Flops per cycle These features
i 4 ; S y can be found at
v : SIMD width in number of doubles (or floats) the hardware
specifications
N : # cores

Example: IBM BGQ chip (one compute node)
f=1.6 GHz, ¢ = 2 (supports FMA), v=4,n =16 FMA (fused multiply-add):
PP=16""2"*4~16 GFlop/s = 204.8 GFlop/s

BGQ Rack (1024 nodes): 1024204.8 = 209715.2 GFlop/s = 209.7 TFlop/s

IBM Sequoia @ LLNL (96 racks): 96 * 209.7 TFlop/s = 20.13 PFlop/s

a*b+c in one step

How Rmax is computed

Application Performance
How many FP operations the application performs
Execution time (in seconds)
Fraction of the peak = Attained/Nominal performance

In many cases, FP operations can be replaced with INT operations,
Interactions, transactions, etc. (per second)

Rmax Rpeak Power Rmax/Rpeak (%)
Rank Site System Cores (TFlop/s) (TFlop/s) (kW)
1 National Supercompu Sunway TaihulLight inway MPI 10,649,600 93,014.6 125,435.9 15,371 74.1%
China NRCPC
2 National Super ' Tianhe-2 [MilkyWay-2] Vi El 3,120,000 33,862.7 54,902.4 17,808 61.7%
China
NUDT
3 o ,/0ak Rid Nationa Titan -ay XK7 , Opteron 6274 1 560,640 17,590.0 27,112.5 8,209 64.9%
United States :
Cray Inc.
4 1,572,864 17,173.2 20,132.7 7,890 85.3%

United States ‘
IBM

Performance GAP

108
N HARDWARE
|
10° — —v
10° * e
— PERF.
- o Efficienc
é‘ 10 rPea!cr g:]\:r?trs o = Top5 average |0|39 . GAP
A ui ,>* i
g - €q ity e : Linpack peak (Rmax) il B ;i
£ > i Real application
N, SOFTWARE
10’
jlune June June June June June June June June June June

1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013

- ~99% of SOFTWARE uses <10 % of HARDWARE

Cameron et al, IEEE Computer 2005

Some terminology

Paral Iel iS m i n H ard Ware : Processor Processor
Core Core Core Core Core Core Core Core
m u I.tl ple cores and memory Cache Memories (L1, L2, L3) Cache Memories (L1, L2, L3)
I |
Parallelism in Software: Svstei"

System Memory

process. executed program (has

it’'s own memory space etc), can
contain multiple threads, can run
In parallel, can communicate
with other processes

s 7 I VSt y——~—

lint al[1000];

lint main(int argc, charsx argv)

i {
thread: can run in parallel and all | {27005 250! & < 10000 dev) ofi] = 1.
threads of the same process | return o;

share the application data
(memory)

Sequential Code

int main(int argc, charxx argv)
{

// vector size
const int N = 1600000;

// initialize vectors
std::vector<float> x(N,-1.2), y(N,3.4), z(N);

// do the sum z = x + y
for(int i = @; 1 < N; i++) z[i] = x[i] + y[il;

return 0;

SIMD

int main(int argc, charkxkx argv)

{

// vector size
const int N = 1600000;

// initialize vectors (assume correct memory alignment)
std::vector<float> x(N,-1.2), y(N,3.4), z(N);

// DO THE SUM z = x + y with SSE (width=4)
foeG inYid-=-05 i < Nisii 9= 4)

{
filezifa =iy [
~_m128 xx = _mm_load_ps(&xI[i]);
~m128 yy = _mm_load_ps(&y[i]);
~ m128 zz = _mm_add_ps(xx, yy);
_mm_store_ps(&zI[il, zz);

}

return 0;

POSIX Threads

int main(int argc, charkxkx argv)

struct arg_t {
{ // vector size
float xx; const int N = 1600000;
float xy;
float *z; // initialize vectors
int t; std::vector<float> x(N,-1.2), y(N,3.4), z(N);
int chunk;
¥
// DO THE SUM z = x + y using 4 threads
. ; int num_threads = 4;
void xwork(void xargument) int chunk = N / num threads;
(&
struct arg_t *xargs = (struct arg_t x)argument; struct arg_t args[num_threads];
pthread_t threads[num_threads];
float *x = args—>x;
float xy = args—>y; for (int t = @; t < num_threads; t++)
float *z = args—>z; {
int t = args—>t; args[tl.x = &xI[0];
int chunk = args—>chunk; args[tl.y = &y[0];
T _ _ args[tl.z = &z[0];
for (int i = txkchunk; i < (t+1)xchunk; i++) args[t].t = t;
z[i] = x[i] + yl[il; args[t].chunk = chunk;
: return NULL; pthread_create(&threads[t], NULL, add, &argsl[t]);
¥
for (int t = 0; t < num_threads; ++t)
pthread_join(threads[t], NULL);
return 0;

OpenMP

int main(int argc, charkxkx argv)
{

// vector size

const int N = 1600000;

// initialize vectors
std::vector<float> x(N,-1.2), y(N,3.4), z(N);

// do the sum z = x + y
#pragma omp parallel for
for (int i = 0; i < N; i++) z[i] = xI[i] + ylil;

return 0;

Code Optimization 1

/l Faster Speed // Smaller Size
main() main()
{ — {
XXXX call_routine():

call_routine();

YYYY call_routine();
e call_routine();
YYYY

77777 }

void call_routine(void)
XXXX {

YYYY XXXX

27777 YYYY

Code Optimization 2

int factorial(int n) { int factorial(int n) {
if (n == 0) { int result = 1;
return 1; while (n > 0) {
} else { result *= n;
return n * factorial(n - 1); n--;
} }
} return result;
}
int main() {
IntEni=s52 int main() {
int result = factorial(n); int n = 5;
printf("Factorial of %d is %d\n", n, result); int result = factorial(n);
return 0; printf("Factorial of %d is %d\n", n, result);
} return 0;

Code Optimization 3

#define NUM_SINE_VALUES 256
const float sine_table[NUM_SINE_VALUES] = {
0, 0.0245, 0.0491, 0.0736, // ...and so on

b

float sine(float angle) {
int index = (int) (angle / (2 * PI) * NUM_SINE_VALUES) % NUM_SINE_VALUES;
return sine_table[index];

}

