
Μεταγλωττιστές για
Ενσωματωμένα Συστήματα

Χειμερινό Εξάμηνο 2023-24
“Εισαγωγή”

Παναγιώτης Χατζηδούκας

Course description
https://hsis.upatras.gr/?page_id=133

• Μεταγλωττιστές
• Τεχνικές μεταγλωττιστών για βελτιστοποίηση ταχύτητας

ενσωματωμένων υπολογιστών
• Βελτιστοποίηση απόδοσης λογισμικού
• Μετασχηματισμοί βρόχων
• Εξάρτηση δεδομένων
• Τεχνικές διαχείρισης μνήμης
• Επιτάχυνση χρόνου εκτέλεσης
• Παραλληλισμός επιπέδου εντολών
• Διανυσματικοί υπολογιστές
• Εργαλεία μέτρησης απόδοσης

https://hsis.upatras.gr/?page_id=133

Embedded systems programming
§ Development of software for embedded systems, which are

computer systems that are integrated into other devices or products.
§ These systems

§ are designed to perform specific functions
§ often have limited resources

§ including memory, processing power, and energy.

§ This software is typically written in low-level languages such as C and
assembly language and is optimized for the specific hardware and
application requirements of the system

Importance
§ Embedded systems are used in a wide range of products

§ e.g., automobiles, medical devices, consumer electronics, industrial
equipment.

§ These systems must be reliable, efficient, and cost-effective
§ Programming plays a critical role in achieving these goals.
§ By optimizing software for the specific hardware and application

requirements of the system, developers can
§ improve system performance
§ reduce energy consumption
§ minimize costs.

Programming Languages
§ Some of the most commonly used programming languages for

embedded systems programming include:
§ C: C Programming is a widely used programming language for embedded

systems programming. It provides direct access to system resources and is
well-suited for systems with limited resources.

§ Assembly language: Assembly language is a low-level programming
language that provides direct access to system resources. It is often used for
systems with very limited resources or for performance-critical applications.

§ C++: C++ is a high-level programming language that is often used for
embedded systems programming. It provides object-oriented programming
features and can be used to develop complex systems.

Best Practices
§ Writing Efficient Code

§ Writing efficient code is critical for embedded systems, as these systems
often have limited resources. Developers should focus on writing code that
is optimized for the specific hardware and application requirements of the
system and should avoid using unnecessary resources.

§ Debugging Techniques
§ Debugging techniques are critical for identifying and fixing errors in

software. Developers should use a range of debugging techniques, including
stepping through code, setting breakpoints, and examining variables and
memory.

§ Testing and Validation
§ Testing and validation are critical for ensuring that software is reliable and

efficient. Developers should use a range of testing and validation
techniques, including unit testing, integration testing, and system testing.

Course Schedule (tentative)
1. Introduction: architectures, performance
2. Memory hierarchy and Roofline mode,
3. Debugging, Profiling
4. Compiler and code optimizations I
5. Compiler and code optimizations II
6. Vectorization
7. BLAS for Embedded Optimization
8. OpenMP basics
9. OpenMP optimization
10.OpenMP tasks
11.Recap

Use cases
§ Matrix operations (AI related)
§ Image processing

02.10 – 1
09.10 –
16.10 –
23.10 – 2
30.10 – 3
06.11 – 4
13.11 – 5
20.11 – 6
27.11 – 7
04.12 – 8
11.12 – 9
18.12 – 10
25.12
01.01
08.01 – 11

Evaluation (TBD)
• 2-3 programming assignments (70%)
• Written or oral exam (30%)

https://eclass.upatras.gr/courses/CEID1418/

Class Website

Computer layout (in a nutshell)
• CPU

• does the computations

• contains multiple cores (usually)

• each core works mostly independently,
copy of a single core with global coordination

• contains several levels of caches to
speed up reading/writing to memory
(very relevant for high performance computing)

• Memory

• stores data for computations

• shared among the cores of the CPU (or multiple CPUs in a compute node)

• Network: connect compute nodes and connect to outer world

• Input/Output: displays, hard-drives, etc

Intel Core i7 CPU

picture source: legitreviews

Massively Parallel Computing
Sequoia IBM BlueGene/Q supercomputer (at Lawrence Livermore National Laboratory)

source:computing.llnl.gov

Components of a Supercomputer (roughly)

• Processors (CPUs) <= note that those already contain multiple cores

• Compute Node: collection of CPUs with a shared memory

• nodes may also have “accelerators” like graphical processing units (GPU)

• Cluster: collection of nodes connected with a (very fast) network

Revolution in Processors

Chip density is continuing increase ~2x every 2 years
Clock speed is not
Number of processor cores may double instead
Power is under control, no longer growing

The TOP500 Project
Listing the 500 most powerful computers in
the world

Yardstick: performance (Rmax) of Linpack
Solve Ax=b, dense problem, matrix is random
Dominated by dense matrix-matrix multiply

Updated twice a year:
ISC’xy in June in Germany
SCxy in November in the U.S.

TOP500 web site at: www.top500.org

http://www.top500.org

TOP500 - June 2020

Units of Measure
High Performance Computing (HPC) units are:

Flop: floating point operation, usually double precision unless noted
Flop/s: floating point operations per second
Bytes: size of data (a double precision floating point number is 8 bytes)

Typical sizes are millions, billions, trillions…
Mega MFlop/s = 10^6 flop/sec MByte = 2^20 ~ 10^6 bytes
Giga GFlop/s = 10^9 flop/sec GByte = 2^30 ~ 10^9 bytes
Tera TFlop/s = 10^12 flop/sec TByte = 2^40 ~ 10^12 bytes
Peta PFlop/s = 10^15 flop/sec PByte = 2^50 ~ 10^15 bytes
Exa EFlop/s = 10^18 flop/sec EByte = 2^60 ~ 10^18 bytes
Zetta ZFlop/s = 10^21 flop/sec ZByte = 2^70 ~ 10^21 bytes

Current fastest (public) machine: ~ 537 PFlop/s, 7.6M cores

How Rpeak is computed
Rpeak = Nominal Peak Performance (PP)

PP [Flop/s] = f [Hz = cycles/s] x c [Flop/cycle] x v [-] x n [-]
f : core frequency in CPU cycles per second
c : how many Flops per cycle
v : SIMD width in number of doubles (or floats)
n : # cores

Example: IBM BGQ chip (one compute node)

f = 1.6 GHz, c = 2 (supports FMA), v = 4, n = 16

PP = 1.6 * 2 * 4 * 16 GFlop/s = 204.8 GFlop/s

 BGQ Rack (1024 nodes): 1024*204.8 = 209715.2 GFlop/s = 209.7 TFlop/s

IBM Sequoia @ LLNL (96 racks): 96 * 209.7 TFlop/s = 20.13 PFlop/s

These features
can be found at
the hardware
specifications

FMA (fused multiply-add):
a*b+c in one step

Application Performance
How many FP operations the application performs
Execution time (in seconds)
Fraction of the peak = Attained/Nominal performance

In many cases, FP operations can be replaced with INT operations,
interactions, transactions, etc. (per second)

How Rmax is computed

61.7%

74.1%

Rmax/Rpeak (%)

64.9%

85.3%

Performance GAP

~99% of SOFTWARE uses < 10 % of HARDWARE

C
am

er
on

 e
t a

l,
IE

EE
 C

om
pu

te
r 2

00
5

107

108

HARDWARE

SOFTWARE

June
2011

June
2013

….

PERF.
GAP

Some terminology

Parallelism in Hardware:

multiple cores and memory

Parallelism in Software:

process: executed program (has
it’s own memory space etc), can
contain multiple threads, can run
in parallel, can communicate
with other processes

thread: can run in parallel and all
threads of the same process
share the application data
(memory)

int a[1000];

int main(int argc, char** argv)
{
 for(int i = 0; i < 500; i++) a[i] = 0;
 for(int i = 500; i < 1000; i++) a[i] = 1;

 return 0;
}

System Memory

System Bus

Processor
CoreCore Core Core

Cache Memories (L1, L2, L3)

Processor
CoreCore Core Core

Cache Memories (L1, L2, L3)

Sequential Code
int main(int argc, char** argv)
{
 // vector size
 const int N = 1600000;

 // initialize vectors
 std::vector<float> x(N,-1.2), y(N,3.4), z(N);

 // do the sum z = x + y
 for(int i = 0; i < N; i++) z[i] = x[i] + y[i];

 return 0;
}

SIMD
int main(int argc, char** argv)
{
 // vector size
 const int N = 1600000;

 // initialize vectors (assume correct memory alignment)
 std::vector<float> x(N,-1.2), y(N,3.4), z(N);

 // DO THE SUM z = x + y with SSE (width=4)
 for(int i = 0; i < N; i += 4)
 {
 // z[i] = x[i] + y[i];
 __m128 xx = _mm_load_ps(&x[i]);
 __m128 yy = _mm_load_ps(&y[i]);
 __m128 zz = _mm_add_ps(xx, yy);
 _mm_store_ps(&z[i], zz);
 }

 return 0;
}

POSIX Threads
struct arg_t
{
 float *x;
 float *y;
 float *z;
 int t;
 int chunk;
};

void *work(void *argument)
{
 struct arg_t *args = (struct arg_t *)argument;

 float *x = args->x;
 float *y = args->y;
 float *z = args->z;
 int t = args->t;
 int chunk = args->chunk;

 for (int i = t*chunk; i < (t+1)*chunk; i++)
 z[i] = x[i] + y[i];

 return NULL;
}

int main(int argc, char** argv)
{
 // vector size
 const int N = 1600000;

 // initialize vectors
 std::vector<float> x(N,-1.2), y(N,3.4), z(N);

 // DO THE SUM z = x + y using 4 threads
 int num_threads = 4;
 int chunk = N / num_threads;

 struct arg_t args[num_threads];
 pthread_t threads[num_threads];

 for (int t = 0; t < num_threads; t++)
 {
 args[t].x = &x[0];
 args[t].y = &y[0];
 args[t].z = &z[0];
 args[t].t = t;
 args[t].chunk = chunk;

 pthread_create(&threads[t], NULL, add, &args[t]);
 }

 for (int t = 0; t < num_threads; ++t)
 pthread_join(threads[t], NULL);

 return 0;

}

OpenMP
int main(int argc, char** argv)
{
 // vector size
 const int N = 1600000;

 // initialize vectors
 std::vector<float> x(N,-1.2), y(N,3.4), z(N);

 // do the sum z = x + y
 #pragma omp parallel for
 for (int i = 0; i < N; i++) z[i] = x[i] + y[i];

 return 0;
}

Code Optimization 1

Code Optimization 2
int factorial(int n) {

if (n == 0) {
return 1;

} else {
return n * factorial(n - 1);

}
}

int main() {
int n = 5;
int result = factorial(n);
printf("Factorial of %d is %d\n", n, result);
return 0;

}

int factorial(int n) {
int result = 1;
while (n > 0) {

result *= n;
n--;

}
return result;

}

int main() {
int n = 5;
int result = factorial(n);
printf("Factorial of %d is %d\n", n, result);
return 0;

}

Code Optimization 3

#define NUM_SINE_VALUES 256
const float sine_table[NUM_SINE_VALUES] = {
0, 0.0245, 0.0491, 0.0736, // ...and so on
};

float sine(float angle) {
int index = (int) (angle / (2 * PI) * NUM_SINE_VALUES) % NUM_SINE_VALUES;
return sine_table[index];

}

