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Η Κληρονομιά των Αρχαίων
Ελλήνων στα Μαθηματικά





Προελληνικά και Ελληνικά Μαθηματικά

1 Προελληνικά και Ελληνικά Μαθηματικά

1.1 Εισαγωγή στον κανόνα της αλυσίδας για τροχιές
Υπάρχει ένας αριθμός από διαφορετικούς κανόνες αλυσίδας, καθώς υπάρχει ένα διαφορετικό
πλήθος τρόπων με τους οποίους μπορούμε να συνθέσουμε συναρτήσεις πολλών μεταβλητών. Θα
μελετήσουμε στο σημείο αυτό έναν συγκεκριμένο τρόπο σύνθεσης, καθώς με αφορμή αυτόν θα
εισαγάγουμε μια σημαντική εφαρμογή του διανύσματος της κλίσης, την οποία θα χρειαστούμε
αργότερα στην παρούσα ενότητα όταν θα εργαζόμαστε με τις παραγώγους κατά κατεύθυνση.

Θα χρησιμοποιούμε τον κανόνα της αλυσίδας για τροχιές όταν μας δίνεται μια συνάρτηση f
κατά μήκος μιας παραμετρικής τροχιάς που ορίζεται από τις x(t) και y(t) στο επίπεδο ή από
τις x(t), y(t) και z(t) στον τρισδιάστατο χώρο. Για λόγους απλότητας του συμβολισμού, θα
υποθέσουμε ότι η r(t) παριστάνει τόσο το διάνυσμα ⟨x(t),y(t)⟩ όσο και το σημείο (x(t),y(t)),
οπότε στην πρώτη από τις περιπτώσεις θεωρούμε ότι η τροχιά διαγράφεται από τα άκρα των
διανυσμάτων ενώ στη δεύτερη από τα σημεία. Ακολουθούμε παρόμοια σύμβαση στον συμβολισμό
με τις συναρτήσεις x(t), y(t) και z(t) στον τρισδιάστατο χώρο. Μια συνάρτηση f η οποία
ορίζεται κατά μήκος μιας τροχιάς r(t) είναι το αποτέλεσμα της σύνθεσης f (r(t)). Ο κανόνας
της αλυσίδας για τις τροχιές χρησιμοποιείται για να προσδιορίσουμε την παράγωγο αυτών των
σύνθετων συναρτήσεων.
Ως παράδειγμα, υποθέστε ότι η T (x,y) είναι
η θερμοκρασία στη θέση (x,y). Φανταστείτε
τώρα ότι η Αλεξία κινείται με ένα ποδήλατο
κατά μήκος της τροχιάς r(t), όπως φαίνεται στο
Σχήμα 1.1. Υποθέτουμε επιπλέον ότι η Αλεξία
μεταφέρει μαζί της ένα θερμόμετρο, το οποίο ελέγχει
καθώς ποδηλατεί. Η θέση της τη χρονική στιγμή
t είναι η r(t), επομένως η θερμοκρασία που θα
καταγράψει το θερμόμετρο τη χρονική στιγμή t θα
είναι η σύνθετη συνάρτηση

T (r(t)) = Θερμοκρασία που καταγράφει το
θερμόμετρο της Αλεξίας τη χρονική στιγμή t .

Σχήμα 1.1 Η θερμοκρασία στο θερμόμετρο που με-
ταφέρει μαζί της η Αλεξία αλλάζει με ρυθμό ∇Tr(t) · r′(t)

Οι ενδείξεις του θερμομέτρου μεταβάλλονται καθώς η θέση της Αλεξίας αλλάζει και ο ρυθμός με
τον οποίο μεταβάλλονται είναι η παράγωγος
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8 Προελληνικά και Ελληνικά Μαθηματικά

d
dt

T (r(t))

Ο κανόνας της αλυσίδας για τις τροχιές αναφέρει ότι η παράγωγος αυτή είναι το εσωτερικό
γινόμενο της κλίσης της θερμοκρασίας ∇T , υπολογισμένης στη θέση r(t) και του διανύσματος
της ταχύτητας r′(t) της Αλεξίας.

Θεώρημα 1.1.1 Κανόνας της αλυσίδας για τις τροχιές
Αν οι συναρτήσεις f και r(t) είναι διαφορίσιμες, τότε

d
dt

f (r(t)) = ∇ fr(t) · r′(t)

Στις περιπτώσεις των συναρτήσεων με δύο και τρεις μεταβλητές, με τις οποίες θα ασχοληθούμε,
αυτή η μορφή του κανόνα της αλυσίδας «υλοποιείται» ως εξής:

d
dt

f
(
r(t)
)
=

〈
∂ f
∂x

,
∂ f
∂y

〉
·
〈
x′(t), y′(t)

〉
=

∂ f
∂x

dx
dt

+
∂ f
∂y

dy
dt

d
dt

f
(
r(t)
)
=

〈
∂ f
∂x

,
∂ f
∂y

,
∂ f
∂ z

〉
·
〈
x′(t), y′(t), z′(t)

〉
=

∂ f
∂x

dx
dt

+
∂ f
∂y

dy
dt

+
∂ f
∂ z

dz
dt

Παράδειγμα 1.1.2
Υπολογίστε την

d
dt

f (r(t))
∣∣
t=π/2

όπου

f (x,y,z) = xy+ z2 και r(t) = ⟨cos t,sin t, t⟩

Λύση. Έχουμε

r
(π

2

)
= ⟨cos

π
2
,sin

π
2
,
π
2
⟩= ⟨0,1, π

2
⟩.

Η κλίση της συνάρτησης υπολογίζεται ως εξής:

∇ f =
〈

∂ f
∂x

,
∂ f
∂y

,
∂ f
∂ z

〉
= ⟨y, x, 2z⟩, ∇ fr(π/2) = ∇ f

(
0,1,

π
2

)
= ⟨1,0,π⟩.

Στη συνέχεια, υπολογίζουμε το εφαπτόμενο διάνυσμα:

r′(t) = ⟨−sin t,cos t,1⟩, r′
(π

2

)
= ⟨−sin

π
2
,cos

π
2
,1⟩= ⟨−1,0,1⟩.

Από τον κανόνα της αλυσίδας προκύπτει:

d
dt

f (r(t))
∣∣∣
t=π/2

= ∇ fr(π/2) · r′
(π

2

)
= ⟨1,0,π⟩ · ⟨−1,0,1⟩= π −1.
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Σημείωση 1.1.3 Δεν θα πρέπει να συγχέετε τον κανόνα της αλυσίδας για τις τροχιές με τον
κανόνα της αλυσίδας για τις κλίσεις, όπως διατυπώθηκε στο Θεώρημα ?? που προηγήθηκε.
Πρόκειται για διαφορετικούς κανόνες που αναφέρονται σε διαφορετικά είδη συνθέσεων.

Παράδειγμα 1.1.4
Η θερμοκρασία στη θέση (x,y) δίνεται από τη συνάρτηση

T (x,y) = 20+10e−0.3(x2+y2)

σε C◦. Ένα έντομο ακολουθεί τη διαδρομή

r(t) = ⟨cos(t −2),sin(2t)⟩

(το t σε s), η οποία απεικονίζεται στο Σχήμα 1.2. Ποιος είναι ο ρυθμός με τον οποίο μεταβάλλεται
η θερμοκρασία, ως προς τον χρόνο, την οποία βιώνει το έντομο τη χρονική στιγμή t = 0.6 s;

Λύση. Τη χρονική στιγμή t = 0.6 s το έντομο βρίσκεται στη θέση

r(0.6) = ⟨cos(−1.4),sin(1.2)⟩ ≈ ⟨0.170,0.932⟩

Σύμφωνα με τον κανόνα της αλυσίδας για τις τροχιές, ο ρυθμός μεταβολής της θερμοκρασίας
είναι το εσωτερικό γινόμενο

dT
dt

∣∣∣∣
t=0.6

= ∇Tr(0.6) · r′(0.6)

∇T = ⟨−6xe−0.3(x2+y2),−6ye−0.3(x2+y2)⟩

r′(t) = ⟨−sin(t −2), 2cos(2t)⟩

και να τα εκτιμήσουμε στη θέση r(0.6) =
⟨0.170,0.932⟩:

∇Tr(0.6) ≈ ⟨−0.779,−4.272⟩

r′(0.6)≈ ⟨0.985, 0.725⟩ Σχήμα 1.2 Το διάνυσμα curlF(P) σχετίζεται με την
περιστροφή ενός ρευστού.

Έτσι, τελικά, ο ζητούμενος ρυθμός μεταβολής προκύπτει να είναι:

dT
dt

∣∣∣∣
t=0.6

= ∇Tr(0.6) · r′(t)≈ ⟨−0.779,−4.272⟩ · ⟨0.985, 0.725⟩ ≈ −3.87 ◦C/s
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1.2 Παράγωγοι κατά κατεύθυνση

Είμαστε τώρα σε θέση να παρουσιάσουμε τις
μεθόδους που θα μας βοηθήσουν να υπολογίσουμε
τους ρυθμούς μεταβολής μιας συνάρτησης f (x,y)
σε κατευθύνσεις διαφορετικές από τις θετικές
κατευθύνσεις των αξόνων x και y.
Θεωρήστε, για παράδειγμα, την ευθεία γραμμή
που διέρχεται από το σημείο P = (a,b) στην
κατεύθυνση του μοναδιαίου διανύσματος u = ⟨h,k⟩
(βλ. Σχήμα 1.3), η οποία περιγράφεται από την:

r(t) = ⟨a+ th, b+ tk⟩ Σχήμα 1.3 Η παράγωγος κατά κατεύθυνση Du f (a,b)
δείχνει τον ρυθμό μεταβολής της συνάρτησης f κατά
μήκος της ευθείας που διέρχεται από το σημείο P έχοντας
διάνυσμα κατεύθυνσης u.

Η παράγωγος ως προς t της f (r(t)), για t = 0, είναι γνωστή με την ονομασία παράγωγος κατά
κατεύθυνση της f ως προς την κατεύθυνσηu στο σημείοP και συμβολίζεται ωςDu f (P) ήDu f (a,b):

Du f (a,b) =
d
dt

f (r(t))
∣∣∣∣
t=0

= lim
t→0

f (a+ th, b+ tk)− f (a,b)
t

Οι παράγωγοι κατά κατεύθυνση των συναρτήσεων με τρεις ή περισσότερες μεταβλητές ορίζονται
με παρόμοιο τρόπο.

Θεώρημα 1.2.1 παράγωγος κατά κατεύθυνσηΗπαράγωγος κατά κατεύθυνση της συνάρτησης f
στο σημείο P = (a,b) και στην κατεύθυνση του μοναδιαίου διανύσματος u = ⟨h,k⟩ είναι το
όριο (υποθέτοντας ότι υπάρχει):

Du f (P) = Du f (a,b) = lim
t→0

f (a+ th, b+ tk)− f (a,b)
t

Σημείωση 1.2.2 Εναλλακτική Η παράγωγος
κατά κατεύθυνση Du f (P) είναι ο ρυθμός
μεταβολής της συνάρτησης f ανά μονάδα
μεταβολής που συντελείται στην οριζόντια
κατεύθυνση u στο σημείο P = (a,b), όπως
φαίνεται στο Σχήμα 1.4. Πρόκειται για την
κλίση της εφαπτόμενης ευθείας γραμμής στο
σημείο Q = (a,b, f (a,b)) και στην καμπύλη-
ίχνος που προκύπτει όταν τμήσουμε το γράφημα
με το κατακόρυφο επίπεδο που διέρχεται από
το P στην κατεύθυνση u. Αν u = ⟨h,k⟩, το
διάνυσμα v = ⟨h,k,Du f (P)⟩ κατευθύνεται κατά
μήκος αυτής της ευθείας έχοντας ως αφετηρία το
σημείο Q.

Σχήμα 1.4 Η παράγωγος κατά κατεύθυνση Du f (a,b)
είναι η κλίση της εφαπτόμενης ευθείας στην καμπύλη-ίχνος
στο σημείο Q στο κατακόρυφο επίπεδο που διέρχεται από
το σημείο P στην κατεύθυνση του διανύσματος u. Το
διάνυσμα v = ⟨h,k,Du f (P)⟩ είναι παράλληλο σε αυτή
την εφαπτόμενη ευθεία.
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Σχόλιο 1.2.3 Παρατηρούμε ότι οι μερικές παράγωγοι είναι οι παράγωγοι κατά κατεύθυνση ως
προς τα θεμελιώδη μοναδιαία διανύσματα i = ⟨1,0⟩ και j = ⟨0,1⟩. Για παράδειγμα,

Di f (a,b) = lim
t→0

f (a+ t 1, b+ t 0)− f (a,b)
t

= lim
t→0

f (a+ t, b)− f (a,b)
t

= fx(a,b)

Επομένως, θα ισχύει:

fx(a,b) = Di f (a,b), fy(a,b) = Dj f (a,b)

Σχόλιο 1.2.4 Γιατί το διάνυσμα v = ⟨h,k,Du f (P)⟩ έχει τρίτη συντεταγμένη Du f (P)

Έστω ότι δίνεται μια επιφάνεια

z = f (x,y),

και ένα σημείο

P = (a,b, f (a,b)).

Θεωρούμε μια οριζόντια διεύθυνση

u = ⟨h,k⟩.

Παραμετροποίηση της καμπύλης τομής.
Παίρνουμε το κατακόρυφο επίπεδο που περνά από το σημείο P και είναι παράλληλο προς τη
διεύθυνση u. Το ίχνος της επιφάνειας στο επίπεδο αυτό είναι μια χωρική καμπύλη, την οποία
μπορούμε να παραμετροποιήσουμε ως εξής:

r(t) =
(
a+ht, b+ kt, f (a+ht, b+ kt)

)
.

Το εφαπτόμενο διάνυσμα της καμπύλης.
Το εφαπτόμενο διάνυσμα δίνεται από την παράγωγο:

r′(t) =
〈

h, k,
d
dt

f (a+ht, b+ kt)
〉
.

Με τον κανόνα αλυσίδας:

d
dt

f (a+ht,b+ kt) = fx(a+ht,b+ kt)h+ fy(a+ht,b+ kt)k.

Στο σημείο t = 0 (δηλαδή στο σημείο P) έχουμε:

r′(0) = ⟨h, k, fx(a,b)h+ fy(a,b)k⟩ .

Ορισμός της παραγώγου κατά διεύθυνση

Η παράγωγος κατά διεύθυνση της f στο σημείο P προς τη διεύθυνση u είναι:

Du f (P) = fx(a,b)h+ fy(a,b)k = Du f (P) = ∇ fP ·u.
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Άρα η τρίτη συνιστώσα του εφαπτόμενου διανύσματος είναι

d
dt

f (a+ht,b+ kt)
∣∣∣
t=0

= Du f (P).

Συνεπώς, το εφαπτόμενο διάνυσμα στο σημείο P της καμπύλης τομής είναι

v = r′(0) = ⟨h, k, Du f (P)⟩.

Η τρίτη συντεταγμένη είναι το Du f (P) επειδή εκφράζει τον ρυθμό μεταβολής του ύψους z
της επιφάνειας όταν το σημείο κινείται, πάνω στο επίπεδο z = f (x,y), προς τη διεύθυνση u.

Ο τυπικός τρόπος υπολογισμού των παραγώγων κατά κατεύθυνση δεν είναι βέβαια ο ορισμός.
Για διαφορίσιμες συναρτήσεις, το ακόλουθο θεώρημα παρέχει μια πολύ πιο βολική προσέγγιση
με τη χρήση του διανύσματος της κλίσης. Το θεώρημα αποδεικνύεται με τη βοήθεια του κανόνα
της αλυσίδας για τις τροχιές.

Θεώρημα 1.2.5Αν η συνάρτηση f είναι διαφορίσιμη στο σημείοP και τοu είναι ένα μοναδιαίο
διάνυσμα, τότε η παράγωγος κατά κατεύθυνση στην κατεύθυνση του u υπολογίζεται ως:

Du f (P) = ∇ fP ·u

Για μια συνάρτηση f (x,y) και για το μοναδιαίο διάνυσμα u = ⟨h,k⟩, ο υπολογισμός του εσωτε-
ρικού γινομένου που σημειώνεται στην εξίσωση του θεωρήματος μπορεί να αναπτυχθεί, οπότε
προκύπτει ότι:

Du f (a,b) = ∇ f(a,b) ·u = fx(a,b)h+ fy(a,b)k

ΤοΘεώρημα 1.2.5 ισχύει για συναρτήσεις με οποιοδήποτε πλήθος μεταβλητών. Πιο συγκεκρι-
μένα, για τη συνάρτηση f (x,y,z) και για το μοναδιαίο διάνυσμα u = ⟨h,k,m⟩ θα ισχύει:

Du f (a,b,c) = ∇ f(a,b,c) ·u = fx(a,b,c)h+ fy(a,b,c)k+ fz(a,b,c)m

Du f (a,b,c) = ∇ f(a,b,c) ·u = fx(a,b,c)h+ fy(a,b,c)k+ fz(a,b,c)m

Παράδειγμα 1.2.6
Έστω η συνάρτηση f (x,y) = xey, το σημείοP= (2,−1) και το διάνυσμα v= ⟨2,3⟩. Υπολο-
γίστε την παράγωγο κατά κατεύθυνση της συνάρτησης f στο σημείο P και στην κατεύθυνση
του διανύσματος v.

Λύση. Αρχικά θα πρέπει να παρατηρήσετε ότι το διάνυσμα v δεν είναι μοναδιαίο. Έτσι, λοιπόν,
θα το αντικαταστήσουμε με το διάνυσμα

u =
v

∥v∥
=

⟨2,3⟩√
13

=

〈
2√
13

,
3√
13

〉
Στη συνέχεια, θα υπολογίσουμε την κλίση της συνάρτησης στο σημείο P = (2,−1):

∇ f =
〈

∂ f
∂x

,
∂ f
∂y

〉
= ⟨ey, xey⟩ ⇒ ∇ fP = ∇ f(2,−1) = ⟨e−1, 2e−1⟩
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Τέλος, από το Θεώρημα 1.2.5 προκύπτει:

Du f (P) = ∇ fP ·u = ⟨e−1, 2e−1⟩ ·
〈

2√
13

,
3√
13

〉
=

8e−1
√

13
≈ 0.82

Το αποτέλεσμα αυτό ερμηνεύεται ως εξής: Αν φανταστούμε ότι η συγκεκριμένη συνάρτηση
παριστάνει το περίγραμμα ενός βουνού, τότε στη θέση που ορίζεται από τις συντεταγμένες (x,y)=
(2,−1) περιμένουμε ότι για μετατόπιση μιας μονάδας στην κατεύθυνση του διανύσματος v, θα
πρέπει να ανέβουμε στην κατακόρυφη κατεύθυνση περίπου κατά 0.82 μονάδες.

Παράδειγμα 1.2.7
Προσδιορίστε τον ρυθμό μεταβολής της πίεσης σε ένα σημείο Q = (1,2,1) και στην κατεύθυ-
νση του διανύσματος v = ⟨0,1,1⟩, υποθέτοντας ότι η πίεση (σε millibars) δίνεται από τη
συνάρτηση

f (x,y,z) = 1000+0.01(yz2 + x2z− xy2), (x,y,z σε km).

Λύση. Θα υπολογίσουμε αρχικά την κλίση στο σημείο Q = (1,2,1):

∇ f = 0.01⟨2xz−y2, z2−2xy, 2yz+x2⟩ ⇒ ∇ fQ = ∇ f(1,2,1) = ⟨−0.02,−0.03, 0.05⟩

Στη συνέχεια, θα υπολογίσουμε το μοναδιαίο διάνυσμα u στην κατεύθυνση του v:

u =
v

∥v∥
=

⟨0,1,1⟩√
2

=

〈
0,

1√
2
,

1√
2

〉
Τέλος, θα έχουμε:

Du f (Q) = ∇ fQ ·u = ⟨−0.02,−0.03, 0.05⟩ ·
〈

0,
1√
2
,

1√
2

〉
≈ 0.014 millibars/km

Αυτό σημαίνει ότι καθώς θα κινούμαστε στην κατεύθυνση του διανύσματος v, ξεκινώντας από
το σημείο Q, η πίεση θα αυξάνεται περίπου κατά 0.014 millibars/km.

Σημείωση 1.2.8 Εμβάθυνση στα σχήματα
Με δεδομένη μια συνάρτηση f (x,y) που είναι διαφορίσιμη στο P = (a,b), το Θεώρημα 1.2.5
μας εγγυάται ότι το εφαπτόμενο επίπεδο στο γράφημα της f στο σημείοQ = (a,b, f (a,b)) θα
είναι εφαπτόμενο στο γράφημα σε όλες τις κατευθύνσεις και όχι μόνο στις κατευθύνσεις εκείνες
που ορίζονται από τις μερικές παραγώγους. Θυμηθείτε ότι το επίπεδο που προσδιορίζεται από
τις fx και fy ορίζεται ως εκείνο το επίπεδο που διέρχεται από το σημείο Q και προσδιορίζεται
από τα διανύσματα v1 = ⟨1,0, fx(a,b)⟩ και v2 = ⟨0,1, fy(a,b)⟩. Με δεδομένο ένα μοναδιαίο
διάνυσμαu= ⟨h,k⟩, το διάνυσμα v= ⟨h,k,Du f (P)⟩, με αρχή το σημείοQ, είναι εφαπτόμενο
στο γράφημα όπως φαίνεται στο Σχήμα 1.4 και εξηγήσαμε στο αντίστοιχο ένθετο της Εναλ-
λακτικής. Γενικά, δεν μπορούμε να είμαστε σίγουροι ότι το v βρίσκεται στο επίπεδο που
προσδιορίζουν οι fx και fy. Αν όμως η f είναι διαφορίσιμη στο (a,b), τότε μπορούμε να
δείξουμε ότι αυτό πράγματι συμβαίνει. Αρχικά, χρησιμοποιώντας τοΘεώρημα 1.2.5 και υποθέτο-
ντας ότι η f είναι διαφορίσιμη στο (a,b), μπορούμε να δείξουμε ότι:

v = hv1 + kv2 : v = ⟨h,k,Du f (a,b)⟩=
⟨h,k,h fx(a,b)+ k fy(a,b)⟩ (από το Θεώρημα 3)
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v = h⟨1,0, fx(a,b)⟩+ k⟨0,1, fy(a,b)⟩= hv1 + kv2

Αφού v= hv1+kv2, το v αποτελεί γραμμικό συνδυασμό των v1 και v2, γεγονός που συνεπάγε-
ται ότι όλα αυτά τα διανύσματα, με αρχή το σημείο Q, κείτονται στο ίδιο επίπεδο. Όταν
λοιπόν η f είναι διαφορίσιμη στο (a,b), το εφαπτόμενο επίπεδο εφάπτεται στο γράφη- μα
της συνάρτησης σε όλες τις κατευθύνσεις, γεγονός που δικαιολογεί την ονομασία του.

1.3 Ιδιότητες της κλίσης
Στο σημείο αυτό θα μελετήσουμε ορισμένες από τις ιδιότητες του διανύσματος της κλίσης. Πιο
συγκεκριμένα, θα δείξουμε τον τρόπο με τον οποίο το συγκεκριμένο διάνυσμα μας παρέχει σημα-
ντικές πληροφορίες σχετικά με τη συμπεριφορά των συναρτήσεων, αλλά και το πώς αναδύεται,
με φυσιολογικό τρόπο, κατά τη μελέτη διαφορετικών μαθηματικών μοντέλων. Θα υποθέσουμε
αρχικά ότι ∇ fP ̸= 0 και ότι το u είναι ένα μοναδιαίο διάνυσμα (βλ. Σχήμα 1.5). Σύμφωνα με
τις ιδιότητες του εσωτερικού γινομένου, αλλά και με βάση το γεγονός ότι το u είναι μοναδιαίο
διάνυσμα, θα ισχύει:

Du f (P) = ∇ fP ·u = ∥∇ fP∥∥u∥cosθ = ∥∇ fP∥cosθ

όπου θ η γωνία μεταξύ των διανυσμάτων ∇ fP και u. Με άλλα λόγια, ο ρυθμός μεταβολής σε μια
ορισμένη κατεύθυνση μεταβάλλεται με το συνημίτονο της γωνίας θ που σχηματίζεται μεταξύ των
διανυσμάτων της κλίσης και της εν λόγω κατεύθυνσης.

−∥∇ fP∥ ≤ Du f (P)≤ ∥∇ fP∥

Επειδή cos0 = 1, η μέγιστη τιμή του
διανύσματος Du f (P) παρατηρείται για θ = 0 –
όταν δηλαδή το διάνυσμα u έχει την ίδια κατεύθυνση
με το ∇ fP. Με άλλα λόγια, το διάνυσμα της κλίσης
έχει την κατεύθυνση του μέγιστου ρυθμού αύξησης, το
μέτρο του οποίου είναι ίσο με ∥∇ fP∥. Παρομοίως,
η συνάρτηση f μειώνεται ταχύτερα στην αντίθετη
κατεύθυνση, δηλαδή στην κατεύ- θυνση −∇ fP,
επειδή cosθ =−1 για θ = π .

Σχήμα 1.5 Du f (P) = ∥∇ fP∥cosθ

Ορυθμός της ταχύτερης μείωσης, λοιπόν, είναι ίσος με−∥∇ fP∥. Η παράγωγος κατά κατεύθυνση

είναι ίση με το μηδέν στις κατευθύνσεις που είναι ορθογώνιες στην κλίση, καθώς cos
π
2
= 0.
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Μια ακόμα βασική ιδιότητα είναι
ότι τα διανύσματα της κλίσης είναι
κάθετα στις ισοσταθμικές καμπύλες
(βλ. Σχήμα 1.6). Για να αποδείξουμε
την ιδιότητα αυτή, θα υποθέσουμε ότι
ένα σημείο P βρίσκεται πάνω στην
ισοσταθμική καμπύλη f (x,y) = k. Θα
παραμετρήσουμε αυτή την ισοσταθμική
καμπύλη με τη βοήθεια μιας τροχιάς r(t)
τέτοιας ώστε r(0) = P και r′(0) ̸= 0
(παραμετρική αναπαράσταση που είναι
εφικτή κάθε φορά που ∇ fP ̸= 0). Τότε θα
ισχύει f (r(t)) = k για όλες τις τιμές της
παραμέτρου t , οπότε από τον κανόνα της
αλυσίδας θα έχουμε:

∇ fP · r′(0) =
d
dt

f (r(t))
∣∣∣
t=0

=
d
dt

k = 0

Σχήμα 1.6 Ισοσταθμικός χάρτης μιας
συνάρτησης f (x,y). Η κλίση της συνάρτησης στο
σημείο P είναι ορθογώνια στην ισοσταθμική καμπύλη που
διέρχεται από το P και «δείχνει» προς την κατεύθυνση
της μέγιστης αύξησης της f (x,y).

Το αποτέλεσμα αυτό αποδεικνύει ότι το διάνυσμα ∇ fP είναι ορθογώνιο με το r′(0), και αφού
το r′(0) είναι εφαπτόμενο στην ισοσταθμική καμπύλη, συμπεραίνουμε ότι το ∇ fP είναι κάθετο
στην ισοσταθμική καμπύλη, όπως φαίνεται στο Σχήμα 1.6. Όλες αυτές οι παρατηρήσεις συνοψίζο-
νται στο ακόλουθο θεώρημα.

Θεώρημα 1.3.1 Ερμηνεία της κλίσης Υποθέστε ότι ∇ fP ̸= 0, ενώ u είναι ένα μοναδιαίο
διάνυσμα που σχηματίζει γωνία θ με το ∇ fP. Τότε

Du f (P) = ∥∇ fP∥cosθ

• Το διάνυσμα ∇ fP έχει την κατεύθυνση προς την οποία ο ρυθμός αύξησης της συνάρτη-
σης f στο σημείο P είναι μέγιστος και ίσος με ∥∇ fP∥.

• Το διάνυσμα−∇ fP έχει την κατεύθυνση προς την οποία ο ρυθμός μείωσης της συνάρτη-
σης f στο σημείο P

Παράδειγμα 1.3.2
Έστω η συνάρτηση f (x,y) = x4y−2 και το σημείο P = (2,1). Προσδιορίστε το μοναδιαίο
διάνυσμα που ορίζει την κατεύθυνση του μέγιστου ρυθμού αύξησης της συνάρτησης στο ση-
μείο P και προσδιορίστε το μέτρο αυτού του μέγιστου ρυθμού.

Λύση. Η κλίση ορίζει την κατεύθυνση προς την οποία η συνάρτηση εμφανίζει τον μέγιστο ρυθμό
αύξησης, επομένως θα υπολογίσουμε την κλίση στο σημείο P:

∇ f = ⟨4x3y−2,−2x4y−3⟩, ∇ f(2,1) = ⟨32,−32⟩

Το μοναδιαίο διάνυσμα σε αυτή την κατεύθυνση είναι το:

u =
⟨32,−32⟩

∥⟨32,−32⟩∥
=

⟨32,−32⟩
32
√

2
=

〈√
2

2
,−

√
2

2

〉

Ο μέγιστος ρυθμός αύξησης, που είναι ο ρυθμός σε αυτή την κατεύθυνση, είναι ίσος με:
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∥∇ f(2,1)∥=
√

322 +(−32)2 = 32
√

2

Παράδειγμα 1.3.3
Το ύψος ενός βουνού στο (x,y) δίνεται από τη
συνάρτηση:

f (x,y) = 2500+100(x+ y2)e−0.3y2

όπου τα x και y εκφράζονται σε μονάδες των 100
m.

1. Υπολογίστε την παράγωγο κατά κατεύθυνση
της f στο σημείο P = (−1,−1) και στην
κατεύθυνση του μοναδιαίου διανύσματος u
που σχηματίζει γωνία θ =

π
4
με την κλίση

(βλ. Σχήμα 1.7).

2. Πώς ερμηνεύεται η παράγωγος που
υπολογίσατε στο προηγούμενο ερώτημα;

Σχήμα 1.7 Ισοσταθμικός χάρτης της συνάρτησης
f (x,y) του Παραδείγματος 1.3.3.

Λύση.
Θα υπολογίσουμε αρχικά το μέτρο ∥∇ fP∥:

fx(x,y) = 100e−0.3y2
, fy(x,y) = 100y(2−0.6x−0.6y2)e−0.3y2

fx(−1,−1) = 100e−0.3 ≈ 74, fy(−1,−1) =−200e−0.3 ≈−148

Επομένως, ∇ fP ≈ ⟨74,−148⟩, οπότε

∥∇ fP∥ ≈
√

742 +(−148)2 ≈ 165.5

Επομένως για θ =
π
4
έχουμε:

Du f (P) = ∥∇ fP∥cosθ ≈ 165.5

(√
2

2

)
≈ 116.7

Θυμηθείτε ότι τα x και y εκφράζονται σε μονάδες των 100 m. Αυτό σημαίνει ότι μπορούμε
να ερμηνεύσουμε το αποτέλεσμα ως εξής: Αν είστε σε ένα βουνό, σε σημείο που βρίσκεται
πάνω στο (−1,−1) και ξεκινήσετε να σκαρφαλώνετε με τρόπο ώστε η οριζόντια μετατόπισή
σας να είναι κατά μήκος του διανύσματος u, τότε το ύψος σας πάνω στο βουνό θα αυξάνεται με
ρυθμό 116.7 m ανά 100 m οριζόντιας απόστασης, ή διαφορετικά 1.167 m ανά 1 m οριζόντιας
μετατόπισης.

1.3.1 Εξίσωση επιπέδου με γνωστή κάθετη διεύθυνση

Έστω ότι η επιφάνεια ορίζεται εμμέσως από την εξίσωση

F(x,y,z) = 0.

Τότε η κλίση της συνάρτησης F στο σημείο (a,b,c) είναι:

∇F(a,b,c) = ⟨Fx(a,b,c), Fy(a,b,c), Fz(a,b,c)⟩.
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Το διάνυσμα αυτό είναι κάθετο στην επιφάνεια F(x,y,z) = 0 στο σημείο (a,b,c). Πράγματι,
καθώς κινούμαστε πάνω στην επιφάνεια, η τιμή της F παραμένει σταθερή, δηλαδή

F(x(t),y(t),z(t)) = 0.

Παραγωγίζουμε ως προς t χρησιμοποιώντας τον κανόνα της αλυσίδας:

d
dt

F(x(t),y(t),z(t))

= Fx(x(t),y(t),z(t))x′(t)+Fy(x(t),y(t),z(t))y′(t)+Fz(x(t),y(t),z(t))z′(t).

Επειδή F(x(t),y(t),z(t)) = 0 για όλα τα t , το παραπάνω είναι ίσο με 0:

Fx x′(t)+Fy y′(t)+Fz z′(t) = 0.

Αυτό γράφεται ως εσωτερικό γινόμενο:

∇F · ⟨x′(t),y′(t),z′(t)⟩= 0.

Το διάνυσμα ⟨x′(t),y′(t),z′(t)⟩ είναι εφαπτόμενο διάνυσμα μιας καμπύλης που βρίσκεται πάνω
στην επιφάνεια.
Αφού το εσωτερικό γινόμενο είναι μηδέν, τότε:

∇F(a,b,c)⊥ ⟨x′(t),y′(t),z′(t)⟩.

Επειδή κάθε τέτοιο εφαπτόμενο διάνυσμα ανήκει στο εφαπτόμενο επίπεδο της επιφάνειας στο
σημείο (a,b,c), συμπεραίνουμε ότι το διάνυσμα∇F(a,b,c) είναι κάθετο σε όλο το εφαπτόμενο
επίπεδο. Άρα το διάνυσμα ∇F(a,b,c) είναι κάθετο στην επιφάνεια F(x,y,z) = 0.

Θεώρημα 1.3.4 Η κλίση ως κάθετο διάνυσμα
Έστω ένα σημείο P = (a,b,c) πάνω στην
επιφάνεια που περιγράφεται από την F(x,y,z) =
k. Υποθέτουμε ακόμη ότι ∇FP ̸= 0. Τότε
το ∇FP είναι ένα διάνυσμα κάθετο στο επίπεδο
που είναι εφαπτόμενο στην επιφάνεια στο σημείοP.
Επιπλέον, το εφαπτόμενο επίπεδο στην επιφάνεια
στο σημείο P έχει εξίσωση

Fx(a,b,c)(x−a)+Fy(a,b,c)(y−b)+
Fz(a,b,c)(z− c) = 0. Σχήμα 1.8 Το διάνυσμα ∇FP είναι κάθετο στην

επιφάνεια F(x,y,z) = k στο σημείο P.

Ασκήσεις 1.3.5

1. Να περιγράψετε τις δύο βασικές γεωμετρικές ιδιότητες του διανύσματος της κλίσης ∇ f .

2. Ποιος είναι ο ρυθμός μεταβολής της συνάρτησης f (x,y) στο (0,0) σε μια κατεύθυνση
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που σχηματίζει γωνία 45◦ με τον άξονα των x, αν ∇ f (0,0) = ⟨2,4⟩;

3. Δίνεται η συνάρτηση και η τροχιά

f (x,y) = exy, r(t) = ⟨t3, 1+ t⟩.

(a) Υπολογίστε την κλίση ∇ f της συνάρτησης και την παράγωγο r′(t).

(b) Χρησιμοποιήστε τον κανόνα της αλυσίδας για τροχιές για να υπολογίσετε την παρά-

γωγο
d
dt

f (r(t)).

4. Έστω η συνάρτηση f (x,y) = xy2 και r(t) = ⟨1
2t2, t3⟩.

(a) Υπολογίστε την κλίση ∇ f της συνάρτησης και την παράγωγο r′(t).

(b) Χρησιμοποιήστε τον κανόνα της αλυσίδας για τις τροχιές για να υπολογίσετε την

παράγωγο
d
dt

f (r(t)) για t = 1 και t =−1.

5. Έστω η συνάρτηση f (x,y) = x2 + y2 και r(t) = ⟨cos t, sin t⟩.
(a) Υπολογίστε την παράγωγο

d
dt

f (r(t)) χωρίς να κάνετε κάποιον υπολογισμό.
Εξηγήστε την απάντησή σας.

(b) Επιβεβαιώστε το αποτέλεσμα στο οποίο καταλήξατε στο ερώτημα (a) χρησιμοποιώ-
ντας τον κανόνα της αλυσίδας.

Στις Ασκήσεις 6-11 να χρησιμοποιήσετε τον κανόνα της αλυσίδας για να υπολογίσετε την

παράγωγο
d
dt

f (r(t)) για την τιμή του t που σημειώνεται σε κάθε περίπτωση.

6. f (x,y) = x2 −3xy, r(t) = ⟨cos t,sin t⟩, t = 0

7. f (x,y) = x2 −3xy, r(t) = ⟨cos t,sin t⟩, t =
π
2

8. f (x,y) = sin(xy), r(t) = ⟨e2t ,e3t⟩, t = 0

9. f (x,y) = cos(y− x), r(t) = ⟨et ,e2t⟩, t = ln3

10. f (x,y) = x− xy, r(t) = ⟨t2, t2 −4t⟩, t = 4

11. f (x,y) = 3xe−y, r(t) = ⟨2t2, t2 −2t⟩, t = 0

Στις Ασκήσεις 12-17 να υπολογίσετε την παράγωγο κατά κατεύθυνση στην κατεύθυνση του
διανύσματος v στο σημείο που υποδεικνύεται κάθε φορά. Θυμηθείτε να χρησιμοποιήσετε
ένα μοναδιαίο διάνυσμα κατά τον υπολογισμό της παραγώγου κατά κατεύθυνση.

12. f (x,y) = x2y3, v = i+ j, P =

(
1
6
,3
)

13. f (x,y) = sin(x− y), v = ⟨1,1⟩, P =
(π

2
,
π
6

)



19 Προελληνικά και Ελληνικά Μαθηματικά

14. f (x,y) = tan−1(xy), v = ⟨1,1⟩, P = (3,4)

15. f (x,y) = exy−y2
, v = ⟨12,−5⟩, P = (2,2)

16. f (x,y) = ln(x2 + y2), v = 3i−2j, P = (1,0)

17. g(x,y,z) = z2 − xy+2y2, v = ⟨1,−2,2⟩, P = (2,1,−3)

18. Δίνεται η συνάρτηση

g(x,y,z) = z2 − xy+2y2

και το διάνυσμα v = ⟨1,−2,2⟩ στο σημείο P = (2,1,−3). Να υπολογιστεί η κατευθυ-
νόμενη παράγωγος του g στο σημείο P προς την κατεύθυνση του v.

Στις Ασκήσεις 19 - 22 να προσδιορίσετε μια εξίσωση για το εφαπτόμενο επίπεδο στην
επιφάνεια και στο σημείο που υποδεικνύεται σε κάθε περίπτωση.

19. x2 +3y2 +4z2 = 20, P = (2,2,1)

20. xz+2x2y+ y2z3 = 11, P = (2,1,1)

21. x2 + z2ey−x = 13, P =

(
2,3,

3√
e

)
22. ln(1+4x2 +9y4)−0.1z2 = 0, P = (3,1,6.1876)

23 Έστω η συνάρτηση f (x,y) = (xy)1/3.
(a) Χρησιμοποιήστε τον ορισμό με το όριο για να δείξετε ότι fx(0,0) = fy(0,0) = 0.

(b) Χρησιμοποιήστε τον ορισμό με το όριο για να δείξετε ότι η παράγωγος κατά κατεύ-
θυνση Du f (0,0) δεν υπάρχει για οποιοδήποτε άλλο μοναδιαίο διάνυσμα u εκτός
από i και j.

(c) Είναι διαφορίσιμη η συνάρτηση f (x,y) στο (0,0);
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Λύση.

1. Οι δύο θεμελιώδεις γεωμετρικές ιδιότητες του διανύσματος της κλίσης ∇ f είναι οι εξής:
(a) Κατεύθυνση μέγιστης αύξησης: Το διάνυσμα ∇ fP δείχνει προς την κατεύθυνση κατά

την οποία η συνάρτηση f αυξάνεται με τον μέγιστο ρυθμό. Ο ρυθμός αυτός είναι
ίσος με το μέτρο ∥∇ fP∥.

(b) Κάθετο στις ισοσταθμικές καμπύλες (ή επιφάνειες): Το διάνυσμα ∇ fP είναι κάθετο σε
κάθε ισοσταθμική καμπύλη (ή επιφάνεια) f (x,y) = k που διέρχεται από το σημείο P.
Δηλαδή, αν r(t) είναι παραμετρική εξίσωση αυτής της καμπύλης, τότε

∇ fP · r′(0) = 0.

2. Ο ρυθμός μεταβολής της f στην κατεύθυνση του μοναδιαίου διανύσματος u δίνεται από
την παράγωγο κατά κατεύθυνση:

Du f (0,0) = ∇ f (0,0) ·u.

Η κατεύθυνση σχηματίζει γωνία 45◦ με τον άξονα x, επομένως το μοναδιαίο διάνυσμα
είναι

u = ⟨cos45◦,sin45◦⟩=
〈√

2
2 ,

√
2

2

〉
.

Άρα:

Du f (0,0) = ⟨2,4⟩ ·
〈√

2
2 ,

√
2

2

〉
= 2 ·

√
2

2 +4 ·
√

2
2 = 3

√
2.

Συμπέρασμα: Ο ρυθμός μεταβολής της f στο σημείο (0,0) προς τη δοθείσα κατεύθυνση
είναι 3

√
2.

3. Έστω f (x,y) = xy2 και r(t) = ⟨1
2t2, t3⟩.

(a)

∇ f (x,y) =
〈∂ f

∂x
,

∂ f
∂y

〉
= ⟨y2, 2xy⟩, r′(t) =

〈 d
dt

(1
2t2), d

dt
(t3)
〉
= ⟨t, 3t2⟩.

(b) Κατά τον κανόνα της αλυσίδας για τροχιές,

d
dt

f (r(t)) = ∇ f (r(t)) · r′(t).

Επειδή r(t) = (x(t),y(t)) = ⟨1
2

t2, t3⟩, έχουμε

∇ f (r(t)) = ⟨y(t)2, 2x(t)y(t)⟩= ⟨t6, t5⟩, οπότε
d
dt

f (r(t)) =

⟨t6, t5⟩ · ⟨t, 3t2⟩= t7 +3t7 = 4t7.

Άρα

d
dt

f (r(t))
∣∣∣
t=1

= 4,
d
dt

f (r(t))
∣∣∣
t=−1

=−4.
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4. Δίνεται f (x,y) = exy και r(t) = ⟨t3, 1+ t⟩.

(a)

∇ f (x,y) =
〈∂ f

∂x
,

∂ f
∂y

〉
= ⟨yexy, xexy⟩, r′(t) =

〈 d
dt
(t3),

d
dt
(1+ t)

〉
=

⟨3t2, 1⟩.

(b) Κατά τον κανόνα της αλυσίδας για τροχιές,

d
dt

f (r(t)) = ∇ f (r(t)) · r′(t).

Επειδή r(t) = (x(t),y(t)) = ⟨t3, 1+ t⟩, έχουμε

∇ f (r(t)) = ⟨(1+ t)et3+t4
, t3 et3+t4⟩,

οπότε

d
dt

f (r(t)) = ⟨(1+ t)et3+t4
, t3et3+t4⟩ · ⟨3t2, 1⟩= et3+t4(

3t2(1+ t)+ t3)=
et3+t4

t2(3+4t).

5. Έστω

f (x,y) = x2 + y2, r(t) = ⟨cos t, sin t⟩.

(a) Η συνάρτηση f (x,y) = x2 + y2 δίνει το τετράγωνο της απόστασης από το (0,0). Η
τροχιά r(t) κινείται στον μοναδιαίο κύκλο cos2 t + sin2 t = 1, άρα

f (r(t)) = cos2 t + sin2 t = 1

είναι σταθερή. Επομένως

d
dt

f (r(t)) = 0.

(b) Επιβεβαίωση με τον κανόνα της αλυσίδας.

∇ f (x,y) = ⟨2x, 2y⟩, r′(t) = ⟨−sin t, cos t⟩.

Άρα

∇ fr(t) = ⟨2cos t, 2sin t⟩, d
dt

f (r(t)) = ∇ fr(t) · r′(t) =
2cos t(−sin t)+2sin t(cos t) = 0.

6. Έχουμε f (x,y) = x2 −3xy και r(t) = ⟨cos t,sin t⟩. Υπολογίζουμε πρώτα την κλίση:

∇ f = ⟨ fx, fy⟩= ⟨2x−3y,−3x⟩

οπότε
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∇ f (r(t)) = ⟨2cos t −3sin t,−3cos t⟩.

Επίσης,

r′(t) = ⟨−sin t,cos t⟩.

Με βάση τον κανόνα της αλυσίδας:

d
dt

f (r(t)) = ∇ f (r(t)) · r′(t) = (2cos t −3sin t)(−sin t)+(−3cos t)(cos t).

Απλοποιούμε:

d
dt

f (r(t)) =−2cos t sin t +3sin2 t −3cos2 t.

Για t =
π
2
έχουμε cos t = 0, sin t = 1, άρα:

d
dt

f (r(t))
∣∣∣
t=

π
2

=−2(0)(1)+3(1)2 −3(0)2 = 3.

d
dt

f (r(t)) = 3

9. Έχουμε f (x,y) = cos(y− x) και r(t) = ⟨et ,e2t⟩.
Υπολογίζουμε την κλίση:

∇ f = ⟨ fx, fy⟩= ⟨sin(y− x),−sin(y− x)⟩.

Άρα

∇ f (r(t)) = ⟨sin(e2t − et),−sin(e2t − et)⟩.

Επίσης,

r′(t) = ⟨et , 2e2t⟩.

Εφαρμόζοντας τον κανόνα της αλυσίδας:

d
dt

f (r(t)) = ∇ f (r(t)) · r′(t) = sin(e2t − et)(et −2e2t).

Για t = ln3 έχουμε et = 3 και e2t = 9, άρα:

d
dt

f (r(t))
∣∣∣
t=ln3

= sin(9−3)(3−18) =−15 sin(6).

d
dt

f (r(t)) =−15 sin(6).
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13. Έχουμε f (x,y) = sin(x− y), v = ⟨1,1⟩ και P =
(π

2
,
π
6

)
.

∇ f (x,y) = ⟨cos(x− y),−cos(x− y)⟩.

Στο σημείο P:

∇ f (P) = ⟨cos(
π
2
− π

6
),−cos(

π
2
− π

6
)⟩= ⟨cos(

π
3
),−cos(

π
3
)⟩=

〈1
2
,−1

2

〉
.

Το διάνυσμα v = ⟨1,1⟩ δεν είναι μοναδιαίο· επομένως το κανονικοποιούμε:

u =
v

∥v∥
=

⟨1,1⟩√
12 +12

=
〈 1√

2
,

1√
2

〉
.

Η παράγωγος κατά κατεύθυνση είναι:

Du f (P) = ∇ f (P) ·u =
〈1

2
,−1

2

〉
·
〈 1√

2
,

1√
2

〉
=

1
2
√

2
− 1

2
√

2
= 0.

Du f (P) = 0.

15. Έχουμε f (x,y) = exy−y2
.

fx = yexy−y2
, fy = (x−2y)exy−y2

.

Στο σημείο P(2,2):

∇ f (2,2) = ⟨2e0, (2−4)e0⟩= ⟨2,−2⟩.

Το διάνυσμα v = ⟨12,−5⟩ έχει μέτρο:

∥v∥=
√

122 +(−5)2 =
√

144+25 =
√

169 = 13.

Το μοναδιαίο διάνυσμα είναι:

u = v
∥v∥ =

1
13

⟨12,−5⟩.

Άρα η παράγωγος κατά κατεύθυνση είναι:

Du f (2,2) = ∇ f (2,2) ·u = ⟨2,−2⟩ · 1
13

⟨12,−5⟩= 1
13

(24+10) =
34
13

.

Du f (2,2) =
34
13

.

17. Έχουμε g(x,y,z) = z2 − xy+2y2.

gx =−y, gy =−x+4y, gz = 2z.

Στο σημείο P(2,1,−3):
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∇g(2,1,−3) = ⟨−1,−2+4,−6⟩= ⟨−1, 2,−6⟩.

Το διάνυσμα v = ⟨1,−2,2⟩ έχει μέτρο:

∥v∥=
√

12 +(−2)2 +22 =
√

9 = 3, u = v
∥v∥ =

1
3
⟨1,−2,2⟩.

Η παράγωγος κατά κατεύθυνση είναι:

Dug(2,1,−3) = ∇g(2,1,−3) ·u = ⟨−1,2,−6⟩ · 1
3
⟨1,−2,2⟩=

1
3
(−1 ·1+2 · (−2)+(−6) ·2) = −17

3
.

Dug(2,1,−3) =−17
3
.

18.
gx =−y, gy =−x+4y, gz = 2z.

Στο σημείο P(2,1,−3) έχουμε:

∇g(2,1,−3) = ⟨−1,−2+4,−6⟩= ⟨−1, 2,−6⟩.

Το διάνυσμα v = ⟨1,−2,2⟩ έχει μέτρο:

∥v∥=
√

12 +(−2)2 +22 =
√

9 = 3, u =
1
3
⟨1,−2,2⟩.

Η παράγωγος κατά κατεύθυνση είναι:

Dug(2,1,−3) = ∇g(2,1,−3) ·u = ⟨−1,2,−6⟩ · 1
3
⟨1,−2,2⟩=

1
3
(−1 ·1+2 · (−2)+(−6) ·2) = −17

3
.

Dug(2,1,−3) =−17
3
.

21.
F(x,y,z) = x2 + z2ey−x −13 = 0,

Fx = 2x− z2ey−x, Fy = z2ey−x, Fz = 2zey−x.

P =

(
2, 3,

3√
e

)
, ey−x∣∣

P = e1 = e,

z2ey−x∣∣
P =

(
3√
e

)2

e = 9.
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Fx(P) =−5, Fy(P) = 9, Fz(P) = 6
√

e.

−5(x−2)+9(y−3)+6
√

e
(

z− 3√
e

)
= 0.

ισοδύναμα: −5x+9y+6
√

ez−35 = 0 (ή 5x−9y−6
√

ez+35 = 0).

23 Θέτουμε f (x,y) = (xy)1/3 και f (0,0) = 0.
(a) Με τον ορισμό:

fx(0,0) = lim
h→0

f (h,0)− f (0,0)
h

= lim
h→0

(h ·0)1/3 −0
h

= 0.

Ανάλογα,

fy(0,0) = lim
k→0

f (0,k)− f (0,0)
k

= lim
k→0

(0 · k)1/3 −0
k

= 0.

(b) Έστω μοναδιαίο u = (h,k) με h2 + k2 = 1. Με τον ορισμό της παραγώγου κατά
κατεύθυνση:

Du f (0,0) = lim
t→0

f (th, tk)− f (0,0)
t

= lim
t→0

(
t2hk

)1/3

t
= lim

t→0
t−1/3 (hk)1/3.

Αν hk ̸= 0 (δηλ. u δεν είναι παράλληλο σε i ή j), τότε t−1/3 →+∞ όταν t → 0 και
το γινόμενο τείνει σε ±∞ (ή δεν υπάρχει ως πεπερασμένο όριο). Άρα το Du f (0,0)
δεν υπάρχει για καμία διεύθυνση πλην των αξόνων. Αντιθέτως, για u = i ή j έχουμε
hk = 0 και από τα (α)–(β) προκύπτει Di f (0,0) = fx(0,0) = 0 και Dj f (0,0) =
fy(0,0) = 0.

(c) Αν ήταν διαφορίσιμη στο (0,0), θα ίσχυε

f (h,k) = f (0,0)+∇ f (0,0) · (h,k)+o
(√

h2 + k2
)
= o
(√

h2 + k2
)
,

επειδή fx(0,0) = fy(0,0) = 0. Παίρνοντας την πορεία h = k = t έχουμε

f (t, t) = (t2)1/3 = |t|2/3,
| f (t, t)|√

t2 + t2
=

|t|2/3
√

2 |t|
=

1√
2
|t|−1/3 −−→

t→0
+∞,

που δεν είναι o
(√

h2 + k2
)
. Άτοπο. Επομένως, η f δεν είναι διαφορίσιμη στο (0,0).

1.4 Απόκλιση

Οι δράσεις του τελεστή∇ πάνω σε ένα διανυσματικό πεδίοF εκφράζονται είτε μέσω του εσωτερι-
κού γινόμενου (οδηγώντας στον ορισμό της απόκλισης) είτε μέσω του εξωτερικού γινομένου
(οδηγώντας στον ορισμό του στροβιλισμού). Σε αυτό το σημείο θα εισαγάγουμε την απόκλιση.
Για ένα διανυσματικό πεδίο F = ⟨F1, F2, F3⟩ ορίζουμε την απόκλιση της F, την οποία συμβολί-
ζουμε div(F), ως εξής:
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Ορισμός 1.4.1Η απόκλιση ενός διανυσματικού πεδίου F = ⟨F1,F2,F3⟩ είναι η βαθμωτή συνά-
ρτηση που δίνεται ως

div(F) = ∇·F =
∂F1

∂x
+

∂F2

∂y
+

∂F3

∂ z
.

Παράδειγμα 1.4.2
Να υπολογίσετε την απόκλιση του διανυσματικού πεδίου F = ⟨exy, xy, z4⟩ στο σημείο P =

(1,0,2).

Λύση.

div(F) =
∂
∂x

exy +
∂
∂y

(xy)+
∂
∂ z

z4 = yexy + x+4z3.

div(F)(P) = div(F)(1,0,2) = 0 · e0 +1+4 ·23 = 33.

Σημείωση 1.4.3 Σε πρώτο χρόνο, θα επιχειρήσουμε να διερευνήσουμε σε συντομία το νόημα
της απόκλισης στο πλαίσιο μιας εφαρμογής της στη φυσική. Φανταστείτε ένα αέριο με το
διανυσματικό πεδίο των ταχυτήτων να περιγράφεται από την F.

Όταν ισχύει div(F) > 0 σε κάποιο σημείο P του αερίου, έχουμε μια κίνηση προς τα έξω
κοντά σε αυτό το σημείο. Με άλλα λόγια, το αέριο διαστέλλεται γύρω από αυτό το σημείο, όπως
ακριβώς θα συνέβαινε αν το αέριο θερμαινόταν. Όταν ισχύει div(F)< 0 σε κάποιο σημείο P
του αερίου, τότε το αέριο συμπιέζεται προς το σημείο P, όπως ακριβώς θα συνέβαινε στην
περίπτωση που το αέριο ψυχόταν. Όταν ισχύει div(F) = 0, τότε το αέριο ούτε συμπιέζεται
ούτε διαστέλλεται κοντά στο σημείο P.

Για παράδειγμα, η απόκλιση του διανυσματικού πεδίουF= ⟨x,y,z⟩, το οποίο απεικονίζεται
στο Σχήμα 1.9(α), έχει παντού την τιμή div(F) = 3. Θεωρώντας ότι το προηγούμενο διανυσμα-
τικό πεδίο είναι το πεδίο των ταχυτήτων ενός αερίου, το προηγούμενο αποτέλεσμα σημαίνει
ότι το αέριο διαστέλλεται σε κάθε σημείο του. Το γεγονός αυτό είναι πολύ εμφανές στην αρχή
των αξόνων, αλλά και σε όλα τα υπόλοιπα σημεία το αέριο διαστέλλεται, υπό την έννοια ότι
περισσότερα άτομα αερίου κινούνται απομακρυνόμενα από το υπό εξέταση σημείο σε σχέση
με αυτά που το προσεγγίζουν. Σε μια τέτοια περίπτωση θα λέμε ότι καθένα από αυτά τα σημεία
είναι μια πηγή.

Αντιθέτως, στην περίπτωση του διανυσματικού πεδίουF= ⟨−x,−y,−z⟩, το οποίο απεικο-
νίζεται στο Σχήμα 1.9(β), έχουμε div(F) =−3 για όλα τα σημεία P, γεγονός που σημαίνει ότι
το αέριο συμπιέζεται σε κάθε σημείο του. Στην περίπτωση αυτή θα λέμε ότι κάθε σημείο είναι
καταβόθρα.

Στην περίπτωση του διανυσματικού πεδίουF= ⟨0,1,0⟩, το οποίο απεικονίζεται στο Σχήμα-
1.9(γ), ισχύει div(F) = 0. Αυτό σημαίνει ότι σε κάθε σημείο το αέριο ούτε διαστέλλεται ούτε
συστέλλεται, αλλά απλώς μετατοπίζεται κατά μήκος της θετικής κατεύθυνσης του άξονα y. Σε
μια τέτοια περίπτωση δεν υπάρχουν σημεία που να είναι πηγές ή καταβόθρες, οπότε λέμε ότι
το διανυσματικό πεδίο είναι ασυμπίεστο. Υπάρχουν επίσης περιπτώσεις διανυσματικών πεδίων
στα οποία ορισμένα σημεία μπορεί να είναι πηγές, άλλα καταβόθρες, και κάποια σημεία που
να μην είναι τίποτε από τα δύο.
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Σχήμα 1.9

1.5 Στροβιλισμός

Οι δράσεις του τελεστή∇ μέσω του εξωτερικού γινομένου οδηγεί στον ορισμό του στροβιλισμού.
Συγκεκριμένα:

Ορισμός 1.5.1 Στροβιλισμός διανυσματικού πεδίου Έστω F = ⟨F1,F2,F3⟩ ένα διανυσματικό
πεδίο Ο στροβιλισμός του F, που συμβολίζεται ως curl(F) ορίζεται μέσω του εξωτερικού
γινομένου ως εξής:

curl(F) = ∇×F =

∣∣∣∣∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂ z

F1 F2 F3

∣∣∣∣∣∣∣∣∣∣
ή αναλυτικά,

curl(F) =
(

∂F3

∂y
− ∂F2

∂ z

)
i−
(

∂F3

∂x
− ∂F1

∂ z

)
j+
(

∂F2

∂x
− ∂F1

∂y

)
k.

Ισοδύναμα, μπορούμε να γράψουμε:

curl(F) =
〈

∂F3

∂y
− ∂F2

∂ z
,

∂F1

∂ z
− ∂F3

∂x
,

∂F2

∂x
− ∂F1

∂y

〉
.

Παράδειγμα 1.5.2
Υπολογισμός του στροβιλισμού Υπολογίστε τον στροβιλισμό του διανυσματικού πεδίου F =

⟨xy,ex,y+ z⟩.

Λύση. Θα υπολογίσουμε τον στροβιλισμό με τη βοήθεια της ορίζουσας:
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curl(F) =

∣∣∣∣∣∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂ z

xy ex y+ z

∣∣∣∣∣∣∣∣∣∣∣
curl(F) =

(
∂
∂y

(y+ z)− ∂
∂ z

ex
)

i−
(

∂
∂x

(y+ z)− ∂
∂ z

(xy)
)

j+
(

∂
∂x

ex − ∂
∂y

(xy)
)

k.

Υπολογίζοντας τις παραγώγους:

∂
∂y

(y+ z) = 1,
∂
∂ z

ex = 0,
∂
∂x

(y+ z) = 0,
∂
∂ z

(xy) = 0,
∂
∂x

ex = ex,
∂
∂y

(xy) = x.

Άρα

curl(F) = (1−0)i− (0−0)j+(ex − x)k = i+(ex − x)k.

Το μέτρο του διανύσματος curl(F)(P) αποτελεί
μέτρο του κατά πόσο γρήγορα το διανυσματικό
πεδίο F, εφόσον θεωρηθεί ότι αντιπροσωπεύει
το πεδίο ταχυτήτων μιας ροής κάποιου ρευστού,
θα στρέψει μια φτερωτή η οποία θα τοποθετηθεί
στο σημείο P του ρευστού, όπως φαίνεται στο
Σχήμα 1.10. Η κατεύθυνση του διανύσματος
curl(F)(P) είναι η κατεύθυνση του άξονα της
φτερωτής που τοποθετείται στο σημείο P, ώστε
να έχουμε τον μέγιστο ρυθμό περιστροφής. Το
μέτρο του διανύσματος curl(F)(P) είναι αυτός ο
μέγιστος ρυθμός περιστροφής. Στην περίπτωση που
curl(F)(P) = 0, τότε το διανυσματικό πεδίο F θα
λέγεται αστρόβιλο.

Σχήμα 1.10 Το διάνυσμα curlF(P) σχετίζεται με την
περιστροφή ενός ρευστού.

1.6 Συνάρτηση δυναμικού και συντηρητικά πεδία

Τα διανυσματικά πεδία αποτελούν θεμελιώδη εργαλεία στηΜαθηματικήΑνάλυση και στηΦυσική,
καθώς περιγράφουν κατανομές δυνάμεων, ταχυτήτων ή ροών στο χώρο. Μια ιδιαίτερα σημαντική
κατηγορία είναι τα συντηρητικά διανυσματικά πεδία, δηλαδή εκείνα που μπορούν να εκφραστούν
ως το βαθμωτό πεδίο μιας συνάρτησης δυναμικού. Η συνάρτηση δυναμικού (ή βαθμωτό δυναμικό)
ενός διανυσματικού πεδίου F(x,y,z) είναι μια διαφορίσιμη συνάρτηση f (x,y,z) τέτοια ώστε:

F = ∇ f =
〈

∂ f
∂x

,
∂ f
∂y

,
∂ f
∂ z

〉
Δηλαδή, το διανυσματικό πεδίο F μπορεί να εκφραστεί ως η κλίση μιας βαθμωτής συνάρτησης.

Ορισμός 1.6.1 Ένα διανυσματικό πεδίο F ονομάζεται συντηρητικό αν υπάρχει μια διαφορίσιμη
συνάρτηση f (x,y,z) τέτοια ώστε F = ∇ f
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Σε συντηρητικά πεδία, το έργο μιας δύναμης δεν εξαρτάται από τη διαδρομή αλλά μόνο από
τα άκρα της, γεγονός που τα συνδέει άμεσα με τη φυσική έννοια της διατήρησης ενέργειας. Η
ύπαρξη μιας συνάρτησης δυναμικού επιτρέπει την απλούστευση πολλών υπολογισμών και την
εννοιολογική ενοποίηση μεταξύ ανάλυσης, γεωμετρίας και φυσικής.

Η ίδια ορολογία που χρησιμοποιείται στην περίπτωση
των δύο μεταβλητών χρησιμοποιείται και στη
γενικότερη περίπτωση των n μεταβλητών. Θυμηθείτε
ότι τα διανύσματα της κλίσης είναι ορθογώνια
στις ισοσταθμικές καμπύλες· επομένως, σε ένα
συντηρητικό διανυσματικό πεδίο το διάνυσμα της
κλίσης σε κάθε σημείο P είναι ορθογώνιο προς την
ισοσταθμική καμπύλη του δυναμικού που διέρχεται
από το σημείο P, όπως φαίνεται στο Σχήμα 1.11.
Τα συντηρητικά διανυσματικά πεδία έχουν κάποιες
σημαντικές ιδιότητες. Για παράδειγμα, το έργο που
παράγεται από ένα συντηρητικό διανυσματικό πεδίο
καθώς ένα σωματίδιο κινείται από ένα σημείο σε
κάποιο άλλο είναι ανεξάρτητο από τη διαδρομή
που ακολουθεί. Στη φυσική, τα συντηρητικά
διανυσματικά πεδία εμφανίζονται με φυσικό τρόπο
ως πεδία δυνάμεων που αντιστοιχούν σε φυσικά
συστήματα στα οποία διατηρείται η ενέργεια.

Σχήμα 1.11 Ένα συντηρητικό διανυσματικό πεδίο
προκύπτει από την κλίση μιας βαθμωτής συνάρτησης
δυναμικού και επομένως θα είναι ορθογώνιο προς τις

ισοσταθμικές καμπύλες αυτής της συνάρτησης.

Παράδειγμα 1.6.2
Επιβεβαιώστε ότι η συνάρτηση f (x,y,z) = xy+ yz2 είναι μια συνάρτηση δυναμικού για το
διανυσματικό πεδίο F = ⟨y, x+ z2, 2yz⟩.

Λύση.Θα υπολογίσουμε την κλίση της συνάρτησης f :

∂ f
∂x

= y,
∂ f
∂y

= x+ z2,
∂ f
∂ z

= 2yz

Παρατηρούμε ότι

∇ f = ⟨y, x+ z2, 2yz⟩= F,

όπως απαιτούνταν να αποδείξουμε.

Θεώρημα 1.6.3 Στροβιλισμός ενός συντηρητικού διανυσματικού πεδίου
1. Στον χώρο R2, αν το διανυσματικό πεδίο F = ⟨F1,F2⟩ είναι συντηρητικό, τότε:

∂F1

∂y
=

∂F2

∂x

2. Στον χώρο R3, αν το διανυσματικό πεδίο F = ⟨F1,F2,F3⟩ είναι συντηρητικό, τότε:

curl(F) = 0 ή ισοδύναμα,
∂F1

∂y
=

∂F2

∂x
,

∂F2

∂ z
=

∂F3

∂y
,

∂F3

∂x
=

∂F1

∂ z



30 Προελληνικά και Ελληνικά Μαθηματικά

Παράδειγμα 1.6.4

Δείξτε ότι το διανυσματικό πεδίο F = ⟨xy,
x2

2
,zy⟩ δεν είναι συντηρητικό.

Λύση. Αφού το F είναι διανυσματικό πεδίο του χώρουR3, θα πρέπει να αποδείξουμε ότι τουλάχι-
στον μία από τις τρεις συνθήκες ισότητας των μικτών μερικών παραγώγων της δεύτερης πρότασης
του Θεωρήματος 1.6.3 δεν ικανοποιείται.
Η πρώτη από αυτές τις ισότητες ικανοποιείται καθώς

∂F1

∂y
=

∂F2

∂x
= x.

Ελέγχοντας τη δεύτερη, διαπιστώνουμε ότι:

∂F2

∂ z
=

∂
∂ z

(
x2

2

)
= 0,

∂F3

∂y
=

∂
∂y

(zy) = z.

Επομένως,

∂F2

∂ z
̸= ∂F3

∂y
,

που σημαίνει ότι, σύμφωνα με το Θεώρημα 1.6.3, το F δεν είναι συντηρητικό.

Στο προηγούμενο παράδειγμα αυτό που απαιτούνταν προκειμένου να αποδειχθεί ότι το διανυσμα-
τικό πεδίο F δεν είναι συντηρητικό ήταν να δείξουμε ότι τουλάχιστον μία από τις ισότητες με τις
μικτές παραγώγους δεν ικανοποιείται. Έτσι, παρόλο που οι δύο από τις εξισώσεις με τις μικτές
παραγώγους πράγματι ικανοποιούνταν για το προηγούμενο πεδίο F, δείχνοντας ότι

∂F2

∂ z
̸= ∂F3

∂y

ήταν αρκετό για να τεκμηριώσουμε το γεγονός ότι το πεδίο F δεν είναι συντηρητικό.

Περίληψη 1.6.5

• Ένα διανυσματικό πεδίο αντιστοιχίζει ένα διάνυσμα σε κάθε σημείο ενός χωρίου. Ένα
διανυσματικό πεδίο στον χώρο R3 αναπαρίσταται από μια τριάδα συναρτήσεων F =
⟨F1,F2,F3⟩. Ένα διανυσματικό πεδίο στον χώρο R2 αναπαρίσταται από ένα ζεύγος
συναρτήσεων F = ⟨F1,F2⟩. Σε όλες τις περιπτώσεις υποθέτουμε ότι οι συνιστώσες Fj
είναι λείες συναρτήσεις στα πεδία ορισμού τους.

• Ο τελεστής ανάδελτα ορίζεται

∇ =

〈
∂
∂x

,
∂
∂y

,
∂
∂ z

〉
και χρησιμοποιείται για τον ορισμό της κλίσης (∇ f ), της απόκλισης (∇ · F) και του
στροβιλισμού (∇×F).
Λέμε ότι το διανυσματικό πεδίο
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F = F1i+F2 j+F3k

απορρέει από βαθμωτό δυναμικό, όταν είναι δυνατόν να βρεθεί μία βαθμωτή συνάρτηση

f (x,y,z)

τέτοια ώστε

F = ∇ f ή
∂ f
∂x

= F1,
∂ f
∂y

= F2,
∂ f
∂ z

= F3.

Αν F = ∇ f , τότε το διανυσματικό πεδίο F αποκαλείται συντηρητικό και η f ονομάζεται
συνάρτηση δυναμικού για το πεδίο F.

• Ικανή και αναγκαία συνθήκη προκειμένου το πεδίο F να απορρέει από δυναμικό είναι

curlF = 0

όπου F : Ω → R3 και Ω = R3 ή Ω κυρτό, και το δυναμικό δίνεται από τη σχέση

f (x,y,z) =
∫ x

a
P(t,y,z)dt +

∫ y

b
Q(a, t,z)dt +

∫ z

c
R(a,b, t)dt.

όπου (a,b,c) σημείο του πεδίου ορισμού της F.

• Η απόκλιση ενός διανυσματικού πεδίου F = ⟨F1,F2,F3⟩ είναι η βαθμωτή συνάρτηση
που δίνεται ως

div(F) = ∇ ·F =
∂F1

∂x
+

∂F2

∂y
+

∂F3

∂ z
.

Το διανυσματικό πεδίο F ονομάζεται σωληνοειδές, όταν σε κάθε σημείο του ισχύει

div(F) = 0.

• Ο στροβιλισμός ενός διανυσματικού πεδίουF= ⟨F1,F2,F3⟩ είναι το διανυσματικό πεδίο
που δίνεται ως

curl(F) = ∇×F =

(
∂F3

∂y
− ∂F2

∂ z

)
i−
(

∂F3

∂x
− ∂F1

∂ z

)
j+
(

∂F2

∂x
− ∂F1

∂y

)
k.

• Αν η συνάρτηση f (x,y,z) είναι συνάρτηση δυναμικού του πεδίου F, τότε το έργο της
κατά τη μετατόπιση ενός υλικού σημείου από τη θέση A στη θέση B είναι

WA→B = f (B)− f (A).

Στην Κλασική Μηχανική η σχέση που συνδέει την δύναμη F με την δυναμική ενέργεια
f (x,y,z) είναι

F =−∇ f

και συνεπώς το έργο από τη θέση A στη θέση B είναι
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WA→B = f (A)− f (B).

• Δύο οποιεσδήποτε συναρτήσεις δυναμικού ενός συντηρητικού διανυσματικού πεδίου
μπορούν να διαφέρουν κατά μια σταθερά (σε ένα ανοικτό, συνεκτικό χωρίο).

• Ένα συντηρητικό διανυσματικό πεδίο F = ⟨F1,F2,F3⟩ ικανοποιεί τη συνθήκη

curl(F) = 0, ή ισοδύναμα,
∂F1

∂y
=

∂F2

∂x
,

∂F2

∂ z
=

∂F3

∂y
,

∂F3

∂x
=

∂F1

∂ z
.

• Κάθε διανυσματική συνάρτηση f που ικανοποιεί τη σχέση

F = curl f

ονομάζεται διανυσματικό δυναμικό.

• Μια σχέση εύρεσης του διανυσματικού δυναμικού είναι

f (x,y,z) =
(∫ z

c
F1(x,y, t)dt,

∫ x

a
F2(t,y,c)dt −

∫ z

c
F3(x,y, t)dt, 0

)
.

όπου (a,b,c) σημείο του πεδίου ορισμού της F.

• Το ακτινικό μοναδιαίο διανυσματικό πεδίο και το διανυσματικό πεδίο αντιστρόφου τετρα-
γώνου είναι συντηρητικά:

er =
〈x

r
,

y
r
,

z
r

〉
= ∇r,

er

r2 =
〈 x

r3 ,
y
r3 ,

z
r3

〉
= ∇(−r−1),

όπου

r =
√

x2 + y2 + z2.

Ασκήσεις 1.6.6

1. Ποιο από τα ακόλουθα είναι ένα μοναδιαίο διανυσματικό πεδίο στο επίπεδο;

(a) F = ⟨y, x⟩

(b) F =

〈
y√

x2 + y2
,

x√
x2 + y2

〉

(c) F =

〈
y

x2 + y2 ,
x

x2 + y2

〉
2. Να σχεδιάσετε ένα παράδειγμα ενός μη σταθερού διανυσματικού πεδίου του επιπέδου,

στο οποίο κάθε διάνυσμα να είναι παράλληλο με το διάνυσμα ⟨1, 1⟩.

3. Να υπολογίσετε και στη συνέχεια να σχεδιάσετε τα διανύσματα που αντιστοιχίζονται στα
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σημεία P = (1,2) και Q = (−1,−1) από το διανυσματικό πεδίο F = ⟨x2, x⟩.

4. Να υπολογίσετε και στη συνέχεια να σχεδιάσετε τα διανύσματα που αντιστοιχίζονται στα
σημεία P = (1,2) και Q = (−1,−1) από το διανυσματικό πεδίο F = ⟨−y, x⟩.

Στις Ασκήσεις 5 –7 να υπολογίσετε για κάθε διανυσματικό πεδίο F την απόκλιση div(F)
και τον στροβιλισμό curl(F).

5. F =

〈
y
x
,

y
z
,

z
x

〉
6. F = ⟨ey, sinx, cosx⟩

7. F =

〈
x

x2 + y2 ,
y

x2 + y2 , 0
〉

ΣτιςΑσκήσεις 8–10 να αποδείξετε τις ζητούμενες ταυτότητες υποθέτοντας ότι οι εμπλεκό-
μενες μερικές παράγωγοι υπάρχουν και είναι συνεχείς.

8. Αν η f είναι μια βαθμωτή συνάρτηση, τότε

div( f F) = f div(F)+F ·∇ f

9.
curl( f F) = f curl(F)+(∇ f )×F

10.
div(∇ f ×∇g) = 0

Στις Ασκήσεις 11–14 να αντιστοιχίσετε κάθε
διανυσματικό πεδίο του επιπέδου με τις
αναπαραστάσεις του Σχήματος 1.12.

11. F = ⟨2, x⟩

12. F = ⟨2x+2, y⟩

13. F = ⟨y, cosx⟩

14. F = ⟨x+ y, x− y⟩
Σχήμα 1.12
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Στις Ασκήσεις 15–18 να αντιστοιχίσετε κάθε
διανυσματικό πεδίο του επιπέδου με τις
αναπαραστάσεις του Σχήματος 1.13.

15. F = ⟨1, 1, 1⟩

16. F = ⟨x, 0, z⟩

17. F = ⟨x, y, z⟩

18. F = er
Σχήμα 1.13

Στις Ασκήσεις 19– 22 να βρείτε μια συνάρτηση δυναμικού για το διανυσματικό πεδίο F
που δίνεται ή να αποδείξετε ότι μια τέτοια συνάρτηση δεν υπάρχει.

19. F = ⟨2xyz, x2z, x2yz⟩

20. F = ⟨yz2, xz2, 2xyz⟩

21. F = ⟨2xzex2
, 0, ex2⟩

22. F = ⟨yzcos(xyz), xzcos(xyz), xycos(xyz)⟩

23. Έστω φ = lnr, όπου r =
√

x2 + y2. Να εκφράσετε την κλίση ∇φ με τη βοήθεια του
μοναδιαίου ακτινικού διανύσματος er στον χώρο R2.

24. Για το σημείο P = (a,b) ορίζουμε το μοναδιαίο ακτινικό διάνυσμα με αρχή το σημείο
P:

eP =
⟨x−a, y−b⟩√

(x−a)2 +(y−b)2

(a) Επιβεβαιώστε ότι το eP είναι ένα μοναδιαίο διανυσματικό πεδίο.

(b) Υπολογίστε το eP(1,1) για P = (3,2).

(c) Βρείτε μια συνάρτηση δυναμικού για το πεδίο eP.
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25. Στην άσκηση αυτή μπορείτε να αποδείξετε ότι
το διανυσματικό πεδίο του Σχήματος 1.14 δεν
είναι συντηρητικό, αιτιολογώντας την ισχύ των
ακόλουθων προτάσεων.
(a) Αν υπάρχει μια συνάρτηση δυναμικού f για

το πεδίο F, τότε οι ισοσταθμικές καμπύλες
της f θα πρέπει να είναι κατακόρυφες ευθείες
γραμμές.

(b) Αν υπάρχει μια συνάρτηση δυναμικού f για
το πεδίοF, τότε οι ισοσταθμικές καμπύλες της
f θα πρέπει να απομακρύνονται μεταξύ τους
καθώς το y αυξάνεται.

(c) Εξηγήστε γιατί τα (α) και (β) είναι
ασυμβίβαστα μεταξύ τους και επομένως
δεν μπορεί να υπάρχει μια συνάρτηση
δυναμικού f .

Σχήμα 1.14

1.7 Βαθμωτό και Διανυσματικό Δυναμικό
Λέμε ότι το διανυσματικό πεδίο

F = F1i+F2 j+F3k

απορρέει από βαθμωτό δυναμικό, όταν είναι δυνατόν να βρεθεί μία βαθμωτή συνάρτηση

f (x,y,z)

τέτοια ώστε

F = ∇ f ή
∂ f
∂x

= F1,
∂ f
∂y

= F2, ;
∂ f
∂ z

= F3.

Η συνάρτηση f(x,y,z) ονομάζεται δυναμική συνάρτηση (δυναμικό) του πεδίου F και το έργο
της κατά τη μετατόπιση ενός υλικού σημείου από τη θέση A στη θέση B είναι

WA→B = f (B)− f (A).

Στην Κλασική Μηχανική η σχέση που συνδέει την δύναμη F με την δυναμική ενέργεια f (x,y,z)
είναι

F =−∇ f

και συνεπώς το έργο από τη θέση A στη θέση B είναι

WA→B = f (A)− f (B).

Ορισμός 1.7.1 Το διανυσματικό πεδίο F ονομάζεται σωληνοειδές, όταν σε κάθε σημείο του
ισχύει

divF = 0.

Κάθε διανυσματική συνάρτηση f που ικανοποιεί τη σχέση
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F = curl f

ονομάζεται διανυσματικό δυναμικό.

Σχόλιο 1.7.2

Παράγωγος κατα κατεύθυνση

Όταν το u είναι συγγραμμικό της κλίσης ∇ f |P, τότε η παράγωγος κατα κατεύθυνση γίνεται
μέγιστη, δηλαδή

u =
∇ f |P
∥∇ f |P∥

,

και η τιμή της είναι

Du(P) = ∥∇ f |P∥.

Βαθμωτό δυναμικό

Έστω διανυσματικό πεδίο F(x,y,z) = (F1,F2,F3). Λέμε ότι το πεδίο F είναι συντηρητικό αν
υπάρχει βαθμωτή συνάρτηση f τέτοια ώστε

F = ∇ f

δηλαδή

fx = F1, fy = F2, fz = F3.

Η συνάρτηση f ονομάζεται βαθμωτό δυναμικό του F.
Ικανή και αναγκαία συνθήκη ύπαρξης βαθμωτού δυναμικού σε απλό συνεκτικό ή κυρτό χωρίο
είναι

curlF = 0.
Σε αυτή την περίπτωση το δυναμικό f δίνεται από οποιοδήποτε ολοκλήρωμα γραμμής

f (x,y,z) =
∫

γ
F ·dr,

το οποίο δεν εξαρτάται από τη διαδρομή.
Εφαρμογές του βαθμωτού δυναμικού:
• ηλεκτροστατικά πεδία (E =−∇ϕ),

• βαρυτικό δυναμικό,

• potential flows στη ρευστομηχανική,

• υπολογισμός έργου μέσω ολοκληρωμάτων γραμμής,

• μοντέλα θερμοκρασίας και πίεσης.
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Διανυσματικό δυναμικό
Ένα διανυσματικό πεδίο F λέγεται ότι έχει διανυσματικό δυναμικό A αν

F = curlA.
Η συνθήκη ύπαρξης διανυσματικού δυναμικού είναι

divF = 0
σε απλό συνεκτικό χωρίο.
Το διανυσματικό δυναμικό δεν είναι μοναδικό: αν A είναι ένα τέτοιο δυναμικό, τότε και το

A+∇ψ

παράγει το ίδιο F (gauge freedom).
Εφαρμογές του διανυσματικού δυναμικού:
• μαγνητικό πεδίο (B = curlA),

• εξισώσεις Maxwell στην ηλεκτροδυναμική,

• ροές ρευστών σε 2D μέσω stream functions,

• numerical FEM/CFD για ηλεκτρομαγνητικά προβλήματα,

• κβαντομηχανική (Aharonov–Bohm effect),

• διαφορική γεωμετρία και gauge theory.

Πρόταση 1.7.3 Έστω το διανυσματικό πεδίο F = (P,Q,R) με τις P,Q,R να έχουν μερικές
παραγώγους δευτέρας τάξης συνεχείς στο Ω ⊆ R3. Τότε

curl(∇ f ) = 0.

Λύση.Η κλίση της f είναι

∇ f = ( fx, fy, fz).

Αν F = (P,Q,R), τότε ο στροβιλισμός δίνεται από

curlF = (Ry −Qz, Pz −Rx, Qx −Py).

Εφαρμόζουμε τον τύπο στο F = ∇ f :

curl(∇ f ) = ( fzy − fyz, fxz − fzx, fyx − fxy).

Επειδή η f έχει συνεχείς δεύτερες μερικές παραγώγους, από το θεώρημα συμμετρίας των
μικτών παραγώγων ισχύει

fzy = fyz, fxz = fzx, fyx = fxy.

Άρα κάθε συνιστώσα του curl(∇ f ) μηδενίζεται και επομένως

curl(∇ f ) = 0.

Η πρόταση αποδείχθηκε.
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Πρόταση 1.7.4 Έστω το διανυσματικό πεδίο F = (P,Q,R) με τις P,Q,R να έχουν μερικές
παραγώγους δευτέρας τάξης συνεχείς στο Ω ⊆ R3. Τότε

div(curlF) = 0.

Λύση.Ο στροβιλισμός του F είναι

curlF = (Ry −Qz, Pz −Rx, Qx −Py).

Υπολογίζουμε τώρα τη διασπορά του:

div(curlF) = (Ry −Qz)x +(Pz −Rx)y +(Qx −Py)z.

Αναπτύσσοντας, παίρνουμε

Ryx −Qzx +Pzy −Rxy +Qxz −Pyz.

Επειδή όλες οι δεύτερες μερικές παράγωγοι είναι συνεχείς, ισχύουν οι ισότητες

Ryx = Rxy, Qzx = Qxz, Pzy = Pyz,

οπότε κάθε όρος ακυρώνει τον αντίστοιχό του. Έτσι

div(curlF) = 0.

Η πρόταση αποδείχθηκε.

Πρόταση 1.7.5 Αν η συνάρτηση f (x,y,z) έχει μερικές παραγώγους μέχρι και δευτέρας τάξης
συνεχείς στο Ω ⊆ R3, τότε

curl(∇ f ) = 0.

Λύση.Έχουμε

∇ f = ( fx, fy, fz).

Ο στροβιλισμός της κλίσης είναι

curl(∇ f ) = ( fzy − fyz, fxz − fzx, fyx − fxy).

Μεδεδομένο ότι όλες οι δεύτερες μερικές παράγωγοι είναι συνεχείς, από το θεώρημα συμμετρίας
των μικτών παραγώγων προκύπτει

fzy = fyz, fxz = fzx, fyx = fxy.

Άρα κάθε συνιστώσα του στροβιλισμού μηδενίζεται, επομένως

curl(∇ f ) = 0.

Η πρόταση αποδείχθηκε.

Ορισμός 1.7.6 Αν η f (x,y,z) έχει μερικές παραγώγους δευτέρας τάξης συνεχείς, τότε:

∇(∇ f ) = div(∇ f ) =
∂ 2 f
∂x2 +

∂ 2 f
∂y2 +

∂ 2 f
∂ z2 .
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Ορίζουμε τον τελεστή ∆:

∆ ≡ ∇∇ =
∂ 2

∂x2 +
∂ 2

∂y2 +
∂ 2

∂ z2 .

Η διαφορική εξίσωση του Laplace για την f (x,y,z) είναι

∂ 2 f
∂x2 +

∂ 2 f
∂y2 +

∂ 2 f
∂ z2 = 0.
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Επαναληπτικές ασκήσεις κεφαλαίου 1.7.7

1. Έστω η συνάρτηση f (x,y,z) = ex + e−2y + e−3z. Να βρεθεί η παράγωγος της f στο
σημείο (0,0,0) κατά την κατεύθυνση του διανύσματος (1,1,1), καθώς και η κατεύθυνση
κατά την οποία η παράγωγος λαμβάνει τη μέγιστη τιμή στο σημείο αυτό.

2. Αν η f έχει μερικές παραγώγους δεύτερης τάξης συνεχείς, να αποδειχθεί ότι curl(∇ f ) =
0.

3. Βρείτε τη μέγιστη τιμή της κατά κατεύθυνση παραγώγου της συνάρτησης f (x,y) =√
x2 + y2 στο σημείο (3,4), καθώς επίσης και την κατεύθυνση για την οποία επιτυγχάνε-

ται αυτή η μέγιστη τιμή.

4. Για το σημείο P = (a,b) ορίζουμε το μοναδιαίο ακτινικό διάνυσμα με αρχή το σημείο
P:

eP =
⟨x−a,y−b⟩√

(x−a)2 +(y−b)2

(a) Επιβεβαιώστε ότι το eP είναι ένα μοναδιαίο διανυσματικό πεδίο.

(b) Υπολογίστε το eP(1,1) για P = (3,2).

(c) Βρείτε μια συνάρτηση δυναμικού για το πεδίο eP.

5. Δίνεται το διανυσματικό πεδίο

F(x,y,z) =
〈

2x f
z−2

,− y f
2(z−2)

,
y2 −4x2

2(z−2)
f
〉
.

Να προσδιοριστεί η συνάρτηση f = f (z) ώστε το πιο πάνω διανυσματικό πεδίο να είναι
αστρόβιλο, δηλαδή curlF = 0.

6. (a) Να βρεθεί η παράγωγος της f (x,y,z) = xy2 + yz στο σημείο (1,1,2) κατά την

κατεύθυνση του διανύσματος d
(

2
3
,−1

3
,
2
3

)
.

(b) Αν f (x,y) =
xy

x2 + y2 , f (0,0) = 0, να εξεταστεί αν η f (x,y) έχει παραγώγους

κατά κατεύθυνση στην αρχή των αξόνων.

7. (a) Δίνεται η f (x,y,z) = x2yz3 και το σημείο M(1,−2,3). Να βρεθεί η κατεύθυνση
του διανύσματος u(u1,u2,u3) έτσι ώστε η Du(1,−2,3) να γίνεται μέγιστη.

(b) Δίνεται η συνάρτηση

f (x,y) =

{
x2 + y2, xy = 0,

1, xy ̸= 0.

Βρείτε, αν υπάρχουν, τις μερικές παραγώγους
∂ f
∂x

(0,0),
∂ f
∂y

(0,0) και στη συνέχεια
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την Du(0,0), όπου u(u1,u2) είναι τέτοιο ώστε u1u2 ̸= 0 και u2
1 +u2

2 = 1. Από
τις μερικές παραγώγους και την κατευθυνόμενη παράγωγο να εξαχθεί συμπέρασμα
για την ύπαρξή τους.

8. (a) Ανφ,F είναι αντίστοιχα βαθμωτή και διανυσματική συνάρτηση στοR3, αποδείξτε
τη σχέση div(φF) = φ divF+F ·∇φ .

(b) Έστω F(x,y,z) = xy i+y j+zk. Υπάρχει συνάρτηση f τέτοια ώστε F = ∇ f και
γιατί;

9. Δίνεται το διανυσματικό πεδίο F = (siny2 + z3, 2xycosy2 −2, 3xz2 +4).
(a) Δείξτε ότι το F είναι συντηρητικό πεδίο.

(b) Βρείτε την δυναμική ενέργεια.

(c) Υπολογίστε το έργο κατά την κίνηση ενός υλικού σημείου από το A(2,0,−1) στο
B(1,

√
π/2,1).

Λύση.

1. Η συνάρτηση f είναι συνεχής, καθώς και οι fx, fy, fz. Άρα

Du f (x,y,z) = ∇ f(x,y,z) ·u = fx(x,y,z)h+ fy(x,y,z)k+ fz(x,y,z)l.

Αλλά ∇ f (x,y,z) =
(
ex,−2e−2y,−3e−3z

)
και ∇ f (0,0,0) = (1,−2,−3), οπότε

Du f (0,0,0) = (1,−2,−3)
1√
3
(1,1,1) =− 4√

3

Η κατεύθυνση για την οποία η κατά κατεύθυνση παράγωγος είναι μέγιστη είναι η ίδια με

την κατεύθυνση του ∇ f (0,0,0), δηλαδή u =
1√
14

(1,−2,−3).

2.

rot(∇ f ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

i j k

∂
∂x

∂
∂y

∂
∂ z

∂ f
∂x

∂ f
∂y

∂ f
∂ z

∣∣∣∣∣∣∣∣∣∣∣∣∣
⇒

rot(∇ f ) = k
(

∂ 2 f
∂x∂y

− ∂ 2 f
∂y∂x

)
− j
(

∂ 2 f
∂x∂ z

− ∂ 2 f
∂ z∂x

)
+ i
(

∂ 2 f
∂y∂ z

− ∂ 2 f
∂ z∂y

)
= 0

διότι αν οι δεύτερες παράγωγοι είναι συνεχείς έχουμε
∂ 2 f

∂x∂y
=

∂ 2 f
∂y∂x

κλπ.

3. Έχουμε
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∇ f =

(
x√

x2 + y2
,

y√
x2 + y2

)
η οποία στο σημείο (3,4) είναι

∇ f (3,4) =
(

3
5
,
4
5

)
Επειδή οι fx, fy είναι συνεχείς στο (3,4), η κατεύθυνση για την οποία μεγιστοποιείται η
κατά κατεύθυνση παράγωγος είναι

u =

(
3
5
,
4
5

)
√

32

52 +
42

52

=

(
3
5
,
4
5

)

και η τιμή της είναι

|∇ f |=
(

3
5

)2

+

(
4
5

)2

= 1

4. (a) Επιβεβαίωση ότι το eP είναι μοναδιαίο διανυσματικό πεδίο

Το μέτρο του διανύσματος |eP| πρέπει να είναι 1.

|eP|=

∣∣∣∣∣ ⟨x−a,y−b⟩√
(x−a)2 +(y−b)2

∣∣∣∣∣= |⟨x−a,y−b⟩|√
(x−a)2 +(y−b)2

=

√
(x−a)2 +(y−b)2√
(x−a)2 +(y−b)2

= 1

Εφόσον |eP|= 1, το πεδίο είναι μοναδιαίο.

(b) Υπολογισμός του eP(1,1) για P = (3,2)

Αντικαθιστούμε a = 3,b = 2 και x = 1,y = 1.

eP(1,1) =
⟨1−3,1−2⟩√

(1−3)2 +(1−2)2
=

⟨−2,−1⟩√
(−2)2 +(−1)2

=
⟨−2,−1⟩√

5

=

〈
− 2√

5
,− 1√

5

〉

(c) Εύρεση συνάρτησης δυναμικού f (x,y)

Ολοκληρώνοντας την συνιστώσα F1 =
∂ϕ
∂x

ως προς x:
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f (x,y) =
∫ x−a√

(x−a)2 +(y−b)2
dx =

√
(x−a)2 +(y−b)2 +g(y)

Συγκρίνοντας την
∂ f
∂y

με την συνιστώσα F2 =
∂ f
∂y

του πεδίου, προκύπτει g′(y) = 0.

Μια συνάρτηση δυναμικού είναι:

f (x,y) =
√
(x−a)2 +(y−b)2 +K

όπου K σταθερά.

5.

rotF = 0 ⇐⇒

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

i j k

∂
∂x

∂
∂y

∂
∂ z

2x
z−2

f − y
2(z−2)

f
y2 −4x2

2(z−2)
f

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

⇐⇒ i

[
∂
∂y

(y2 −4x2

2(z−2)
f
)
− ∂

∂ z

(
− y

2(z−2)
f
)]

− j

[
∂
∂x

(y2 −4x2

2(z−2)
f
)
− ∂

∂ z

( 2x
z−2

f
)]

+k

[
∂
∂x

(
− y

2(z−2)
f
)
− ∂

∂y

( 2x
z−2

f
)]

= 0

⇐⇒



y f
z−2

+
y f ′(z−2)− y f

2(z−2)2 = 0,

− 4x f
z−2

−2x
f ′(z−2)− f
(z−2)2 = 0,

0 = 0,

⇐⇒


y(z−2) f ′(z)+ y(2z−5) f (z) = 0,

x(z−2) f ′(z)+ x(2z−5) f (z) = 0,
(y ̸= 0, x ̸= 0)
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(z−2) f ′(z)+(2z−5) f (z) = 0 ⇐⇒ f ′(z)
f (z)

=− 2z−5
z−2

⇐⇒

∫ f ′(z)
f (z)

dz =−
∫ 2z−5

z−2
dz+ c1 ⇐⇒

ln f (z) =−
∫ (

2− 1
z−2

)
dz+ c1 =−2z+ ln |z−2|+ c1 ⇐⇒

f (z) = ce−2z (z−2)

6. (a) Η κλίση της f , ∇ f = (y2, 2xy+ z, y), για P0(1,1,2) είναι

∇ f
∣∣
P0
= (1,4,1).

Το διάνυσμα d είναι όντως μοναδιαίο, διότι

∥d∥=
√

4
9
+

1
9
+

4
9
= 1

και επειδή οι fx, fy, fz είναι συνεχείς παντού έχουμε

Dd(P0) = (1,4,1)·
(

2
3
,−1

3
,
2
3

)
= 0

Επομένως το διάνυσμα της κλίσης στο σημείο P0 είναι κάθετο στο d.

(b) Δίνεται η f (x,y) δίπλα στο (0,0) και ζητείται να εξετάσουμε την ύπαρξη παραγώγων
κατά κατεύθυνση στο (0,0). Αν u = (h,k) με h2 + k2 = 1, τότε έχουμε:

Du(0,0) = lim
t→0

f (th, tk)− f (0,0)
t

= lim
t→0

t2hk
t2(h2 + k2)

·0 = lim
λ→0

hk
t
.

Από τη σχέση αυτή συμπεραίνουμε ότι όταν h = 0 ή k = 0 ⇒ Du(0,0) = 0 ενώ
όταν hk ̸= 0 η Du(0,0) δεν υπάρχει.

7. (a) Από το πρόβλημα έχουμε ότι

u =
∇ fM

∥∇ fM∥
,

όπου

∇ fM = (2xyz3,x2z3,3x2yz2)M = (−108,27,−54).

∥∇ fM∥=
√

1082 +272 +542 = 27
√

21.

Άρα
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u⃗ =
1√
21

(−4,1,−2).

(b)
∂ f
∂x

(0,0) = lim
x→0

f (x,0)− f (0,0)
x−0

= lim
x→0

x2 −0
x

= 0.

∂ f
∂y

(0,0) = lim
y→0

f (0,y)− f (0,0)
y−0

= lim
y→0

y2 −0
y

= 0.

Από τον ορισμό της κατευθυνόμενης παραγώγου έχουμε

Du(0,0) = lim
t→0

f (th, tk)− f (0,0)
t

= lim
t→0

1−0
t

που δεν υπάρχει. Συμπεραίνουμε ότι μπορεί να μην υπάρχει η παράγωγος κατά κατεύθυνση
στο (0,0), ενώ υπάρχουν οι μερικές παράγωγοι.

8. (a) Αν F(P,Q,R) είναι μία διανυσματική συνάρτηση στο R3, τότε θα έχουμε

div(φF) =
∂
∂x

(φP)+
∂
∂y

(φQ)+
∂
∂ z

(φR)

=
∂φ
∂x

P+φ
∂P
∂x

+
∂φ
∂y

Q+φ
∂Q
∂y

+
∂φ
∂ z

R+φ
∂R
∂ z

= φ
(

∂P
∂x

+
∂Q
∂y

+
∂R
∂ z

)
+

(
∂φ
∂x

P+
∂φ
∂y

Q+
∂φ
∂ z

R
)

= φ divF +F ·∇φ

(b) Αν υπάρχει συνάρτηση f τέτοια ώστε F = ∇ f , τότε θα πρέπει

fx = xy, fy = y, fz = z.

Όμως

fxy = x και fyx = 0.

Και επειδή οι

fx, fy, fxy, fyx

είναι συνεχείς συναρτήσεις, θα πρέπει fxy = fyx, δηλαδή x = 0.
Συνεπώς δεν υπάρχει τέτοια f .

9. (a) Για να είναι το πεδίο F συντηρητικό θα πρέπει rotF = 0.

Όμως
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rotF =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

i j k

∂
∂x

∂
∂y

∂
∂ z

siny2 + z3 2xycosy2 −2 3xz2 +4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= k(2ycosy2 −2ycosy2)− j(3z2 −3z2)+ i(0) = 0

Άρα το πεδίο είναι συντηρητικό.

(b) Αν f (x,y,z) είναι η συνάρτηση δυναμικής ενέργειας, τότε αυτή υπολογίζεται από τον
τύπο

f (x,y,z) =
∫ x

a
F1(t,y,z)dt +

∫ y

b
F2(a, t,z)dt +

∫ z

c
R(a,b, t)dt

όπου F = (F1,F2,F3) και (a,b,c) σημείο του πεδίου ορισμού της F. Παίρνουμε
(a,b,c) = (0,0,0) και έχουμε

f (x,y,z) =
∫ x

0
(siny2 + z3)dt +

∫ y

0
(−2)dt +

∫ z

0
4dt ⇒

f (x,y,z) = xsiny2 + xz3 −2y+4z

(c) Ως γνωστόν, το έργο είναι

WA→B = f (B)− f (A) = f (1,
√

π/2,1)− f (2,0,−1)

= sin
π
2
+1−2

√
π

2
+4 = 12−2

√
π

2

1.8 Επικαμπύλια ολοκληρώματα
Στην ενότητα αυτή θα εισαγάγουμε δύο είδη ολοκληρωμάτων τα οποία υπολογίζονται πάνω σε
καμπύλες: ολοκληρώματα συναρτήσεων και ολοκληρώματα διανυσματικών πεδίων. Τα ολοκληρώ-
ματα αυτού του τύπου παραδοσιακά ονομάζονται επικαμπύλια ολοκληρώματα, ενώ μερικές φορές
απαντώνται και με τον όρο ολοκληρώματα τροχιάς. Ξεκινώντας, θα θυμηθούμε μερικές έννοιες
που θα χρησιμοποιήσουμε σε αυτή την ενότητα.

1.8.1 Μήκος τόξου μέσω συνάρτησης μίας μεταβλητής
Σε αυτή την ενότητα θα υπενθυμίσουμε πώς προκύπτει ο κλασικός τύπος για το μήκος τόξου
καμπύλης όταν αυτή δίνεται ως γραφική παράσταση συνάρτησης μίας μεταβλητής. Η διαδικασία
αυτή θα αποτελέσει το θεμέλιο για τη γενίκευση που θα ακολουθήσει, όπου το μήκος τόξου θα
προκύψει από παραμετροποιήσεις τροχιών στο επίπεδο και στον χώρο, στο πλαίσιο συναρτήσεων
δύο μεταβλητών.
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Ξεκινάμε από τη βασική ιδέα: προσεγγίζουμε την καμπύλη με μια διαδρομή που αποτελείται
από ευθύγραμμα τμήματα τα οποία ενώνουν διαδοχικά σημεία της. Το συνολικό μήκος αυτής της
τεθλασμένης είναι εύκολο να υπολογιστεί, και βελτιώνουμε την προσέγγιση χρησιμοποιώντας
περισσότερα και μικρότερα τμήματα. Καθώς ο αριθμός των τμημάτων αυξάνεται χωρίς όριο και
το μήκος κάθε τμήματος μικραίνει, το άθροισμα των μηκών συγκλίνει στο πραγματικό μήκος της
καμπύλης. Αυτό το πέρασμα στο όριο οδηγεί τελικά στον γνωστό τύπο του μήκους τόξου για
συναρτήσεις μίας μεταβλητής.

Για να είμαστε ακριβείς, θεωρήστε τη γραφική παράσταση της y = f (x) στο διάστημα [a,b].
Επιλέξτε μια διαμέριση P της [a,b] σε N υποδιαστήματα με άκρα

P : a = x0 < x1 < · · ·< xN = b.

Θυμηθείτε ότι η νόρμα ∥P∥ της διαμέρισης είναι το μήκος του μεγαλύτερου υποδιαστήματος της
διαμέρισης. Δηλαδή είναι η μεγαλύτερη από τις αποστάσεις xi−xi−1. Έστω Pi = (xi, f (xi)) το
σημείο στη γραφική παράσταση που αντιστοιχεί στο xi και ενώστε τα σημεία Pi−1 και Pi με ένα
ευθύγραμμο τμήμα Li.

Η καμπύλη L που αποτελείται από τα
τμήματα Li ονομάζεται πολυγωνική
προσέγγιση (Σχήμα 1). Το μήκος της L,
το οποίο συμβολίζουμε με |L|, είναι το
άθροισμα των μηκών |Li| των τμημάτων:

|L|= |L1|+ |L2|+ · · ·+ |LN|=
N

∑
i=1

|Li|

Σχήμα 1.15 Μια πολυγωνική προσέγγιση L της
y = f (x).

Σχήμα 1.16 Οι πολυγωνικές προσεγγίσεις βελτιώνονται καθώς μειώνεται η νόρμα της διαμέρισης.

Όπως ίσως είναι αναμενόμενο, οι πολυγωνικές προσεγγίσειςL προσεγγίζουν την καμπύλη όλο και
πιο κοντά καθώς η νόρμα της διαμέρισηςP μειώνεται, όπως φαίνεται στο Σχήμα 1.17. Βασιζόμενοι
σε αυτή την ιδέα ορίζουμε το μήκος τόξου s της γραφικής παράστασης να είναι το όριο των μηκών
των πολυγωνικών προσεγγίσεων |L| καθώς ∥P∥→ 0:

μήκος τόξου s = lim
∥P∥→0

N

∑
i=1

|Li|
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Για να υπολογίσουμε το μήκος τόξου s εκφράζουμε
το όριο των πολυγωνικών προσεγγίσεων ως ένα
ολοκλήρωμα. Το Σχήμα 1.17 δείχνει ότι το τμήμα
Li είναι η υποτείνουσα ενός ορθογωνίου τριγώνου
βάσης ∆xi = xi − xi−1 και ύψους | f (xi)− f (xi−1)|.
Από το πυθαγόρειο θεώρημα

|Li|=
√

(∆xi)2 +
(

f (xi)− f (xi−1)
)2
.

Σχήμα 1.17
Θα υποθέσουμε ότι υπάρχει η f ′ και είναι συνεχής. Τότε από το θεώρημα μέσης τιμής υπάρχει

μια τιμή ci στο [xi−1,xi] τέτοια ώστε

f (xi)− f (xi−1) = f ′(ci)(xi − xi−1) = f ′(ci)∆xi

και επομένως

|Li|=
√

(∆xi)2 +
(

f ′(ci)∆xi
)2

=
√

(∆xi)2
(
1+ f ′(ci)2

)
=
√

1+ f ′(ci)2 ∆xi.

Διαπιστώνουμε ότι το μήκος |L| είναι ένα άθροισμα Riemann για την
√

1+ f ′(x)2:

|L|= |L1|+ |L2|+ · · ·+ |LN|= ∑N
i=1

√
1+ f ′(ci)2 ∆xi

Αυτή η συνάρτηση είναι συνεχής και επομένως ολοκληρώσιμη, οπότε τα αθροίσματα Rie-
mann τείνουν στο ∫ b

a

√
1+ f ′(x)2 dx

καθώς το N τείνει στο άπειρο.

Θεώρημα 1.8.1 Τύπος για το μήκος τόξου Υποθέστε ότι υπάρχει η f ′ και είναι συνεχής στο
διάστημα [a,b]. Τότε το μήκος τόξου s της y = f (x) στο [a,b] είναι ίσο με

s =
∫ b

a

√
1+ f ′(x)2 dx

1.8.2 Επικαμπύλια ολοκληρώματα βαθμωτών συναρτήσεων
Θα ξεκινήσουμε τη μελέτη των ολοκληρωμάτων αυτού του είδους ορίζοντας το επικαμπύλιο
ολοκλήρωμα μιας βαθμωτής συνάρτησης f (x,y,z) πάνω σε μια καμπύλη C, που σημειώνεται
συνήθως με ∫

C
f (x,y,z)ds.

Στη συνέχεια, θα μελετήσουμε τον τρόπο με τον οποίο τα ολοκληρώματα αυτού του τύπου μπορούν
να αναπαραστήσουν φυσικά μεγέθη όπως η συνολική μάζα ή το συνολικό φορτίο, καθώς και το
πώς μπορούν να χρησιμοποιηθούν για τον προσδιορισμό του ηλεκτρικού δυναμικού. Όπως όλα
τα ολοκληρώματα, έτσι και το επικαμπύλιο ολοκλήρωμα αυτού του τύπου ορίζεται μέσω μιας
διαδικασίας που περιλαμβάνει τη διαίρεση, την άθροιση και τον υπολογισμό ενός ορίου. Πιο
συγκεκριμένα, αρχικά χωρίζουμε την καμπύλη C σε N διαδοχικά τόξα C1,C2, . . . ,CN (όπως
φαίνεται στο Σχήμα 1.18). Στη συνέχεια, επιλέγουμε ένα τυχαίο σημείο Pi από κάθε τόξο i και
σχηματίζουμε το ακόλουθο άθροισμα Riemann:
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N

∑
i=1

f (Pi)μήκος(Ci) =
N

∑
i=1

f (Pi)∆si,

όπου ∆si είναι το μήκος του τόξου της διαμέρισηςCi.

Σχήμα 1.18

Το επικαμπύλιο ολοκλήρωμα της συνάρτησης f πάνω στην καμπύλη C είναι το όριο (εφόσον
υπάρχει) αυτών των αθροισμάτων Riemann, καθώς το μέγιστο των μηκών ∆si των τόξων της
διαμέρισης προσεγγίζει το μηδέν, δηλαδή:

∫
C

f (x,y,z)ds = lim
{∆si}→0

N

∑
i=1

f (Pi)∆si

Αξίζει να σημειωθεί ότι ο προηγούμενος ορισμός μπορεί να εφαρμοστεί και στην περίπτωση
συναρτήσεων δύο μεταβλητών f (x,y), οι οποίες ολοκληρώνονται πάνω σε καμπύλες του χώρου
R2.
Παρατηρήστε ότι το επικαμπύλιο ολοκλήρωμα της βαθμωτής συνάρτησης f (x,y,z) = 1 είναι
απλώς το μήκος της καμπύληςC, καθώς στην περίπτωση αυτή όλα τα αθροίσματα Riemann έχουν
την ίδια τιμή:

N

∑
i=1

1∆si =
N

∑
i=1

μήκος(Ci) = μήκος(C)

και επομένως ∫
C

1ds = μήκος(C)

Πρακτικά, τα επικαμπύλια ολοκληρώματα αυτού του τύπου υπολογίζονται με τη χρήση παραμε-
τρήσεων. Υποθέστε ότι η r(t), για a ≤ t ≤ b, αποτελεί μια παραμετρηση που διαγράφει μία
φορά την καμπύληC και έχει συνεχή παράγωγο r′(t). Τότε έχουμε

r(t) = ⟨x(t), y(t), z(t)⟩, t ∈ [a,b].

Η παράγωγος είναι το εφαπτόμενο διάνυσμα

r′(t) = ⟨x′(t), y′(t), z′(t)⟩

Το μήκος του απειροστά μικρού τόξου της καμπύλης είναι

ds = ∥r′(t)∥dt,
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όπου

∥r′(t)∥=
√(

x′(t)
)2

+
(
y′(t)

)2
+
(
z′(t)

)2
.

Σχόλιο 1.8.2 Η παραμετρική καμπύλη δίνεται από το διάνυσμα θέσης

r(t) = (x(t),y(t),z(t)),

το οποίο περιγράφει πού βρίσκεται το σημείο της καμπύλης για κάθε τιμή του t . Το r(t)
εκφράζει θέση και δεν μπορεί να δώσει πληροφορία για το πώς αλλάζει το μήκος της καμπύλης.

Αν όμως το t μεταβληθεί κατά ένα πολύ μικρό ποσό dt , τότε το διάνυσμα θέσης αλλάζει
κατά

dr = r(t +dt)− r(t).

Για πολύ μικρά dt έχουμε

dr ≈ r′(t)dt,

όπου το r′(t) είναι η παράγωγος του διανύσματος θέσης και εκφράζει τον ρυθμό αλλαγής του,
δηλαδή την κατεύθυνση και το μέτρο της ταχύτητας κατά μήκος της καμπύλης.

Το στοιχειώδες μήκος της καμπύλης προκύπτει από το μέτρο του dr:

ds = ∥dr∥= ∥r′(t)dt∥= ∥r′(t)∥dt.
Συνεπώς, το r(t) δίνει τη θέση του σημείου, ενώ το r′(t) δίνει τη μεταβολή της θέσης και
επομένως καθορίζει το στοιχειώδες μήκος τόξου:

ds = ∥r′(t)∥dt.

Χωρίζουμε αρχικά την καμπύλη C σε N διαδοχικά τόξα C1, . . . ,CN που αντιστοιχούν σε μια
διαμέριση

a = t0 < t1 < · · ·< tN−1 < tN = b.

του διαστήματος [a,b], όπου κάθε
μικρότερο τόξο Ci παραμετρείται από
την r(t) για ti−1 ≤ t ≤ ti, όπως φαίνεται
στο Σχήμα 1.19. Στη συνέχεια, επιλέγουμε
τυχαία σημεία Pi = r(t∗i ), όπου το t∗i
ανήκει στο διάστημα [ti−1, ti]. Σύμφωνα
με τον τύπο που δίνει το μήκος ενός τόξου,
θα ισχύει:

μήκος(Ci) = ∆si =
∫ ti

ti−1

∥r′(t)∥dt.
Σχήμα 1.19 Διαμέριση της παραμετρικής καμπύλης

r(t).
Επειδή η r′(t) είναι συνεχής, η συνάρτηση ∥r′(t)∥ είναι σχεδόν σταθερή στο διάστημα [ti−1, ti]
εφόσον το μήκος ∆ti = ti − ti−1 είναι αρκετά μικρό, επομένως θα έχουμε∫ ti

ti−1

∥r′(t)∥dt ≈ ∥r′(t∗i )∥∆ti,
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όπου το t∗i είναι ένα οποιοδήποτε σημείο μέσα στο διάστημα

t∗i ∈ [ ti−1, ti ].

Έτσι, καταλήγουμε στην προσέγγιση:

N

∑
i=1

f (Pi)∆si ≈
N

∑
i=1

f (r(t∗i ))∥r′(t∗i )∥∆ti

Το άθροισμα που εμφανίζεται στο δεξιό μέλος της προηγούμενης σχέσης είναι ένα άθροισμα
Riemann το οποίο συγκλίνει στο ολοκλήρωμα∫ b

a
f (r(t))∥r′(t)∥dt

καθώς η μέγιστη τιμή των μηκών ∆ti τείνει στο μηδέν. Με τον τρόπο αυτόν καταλήγουμε στο
ακόλουθο θεώρημα που αφορά το επικαμπύλιο ολοκλήρωμα μιας βαθμωτής συνάρτησης.

Θεώρημα 1.8.3 Υπολογισμός του επικαμπύλιου ολοκληρώματος μιας βαθμωτής συνάρτησης
Έστω r(t) μια παραμετρηση που διατρέχει μία μόνο φορά την καμπύλη C για a ≤ t ≤ b. Αν
οι συναρτήσεις f (x,y,z) και r′(t) είναι συνεχείς, τότε:∫

C
f (x,y,z)ds =

∫ b

a
f (r(t))∥r′(t)∥dt

Το σύμβολο ds χρησιμοποιείται για να δηλώσει το μήκος τόξου
s και συχνά αναφέρεται ως γραμμικό στοιχείο ή διαφορικό
μήκους τόξου. Το διαφορικό του μήκους τόξου συνδέεται με
το διαφορικό dt της παραμέτρου μέσω της σχέσης:

ds = ∥r′(t)∥ dt με

∥r′(t)∥=
√

x′(t)2 + y′(t)2 + z′(t)2

Παρατηρήστε ότι το ολοκλήρωμα που εμφανίζεται στο δεξιό
μέλος της εξίσωσης του προηγούμενου θεωρήματος είναι ένα
ολοκλήρωμα μιας συνάρτησης με μία μεταβλητή, επομένως
μπορεί κανείς να επιχειρήσει να το υπολογίσει με τα εργαλεία
και τις τεχνικές που αναπτύχθηκαν στα προηγούμενα κεφάλαια
του παρόντος βιβλίου.

Αφού το μήκος τόξου μιας
καμπύλης δίνεται από το
ολοκλήρωμα

s(t) =
∫ t

a
∥r′(t)∥dt

σύμφωνα με το θεμελιώδες
θεώρημα του Λογισμού θα
πρέπει

ds
dt

= ∥r′(t)∥.

Επομένως, έχει νόημα να
αποκαλούμε το

ds =
ds
dt

dt = ∥r′(t)∥dt

ως διαφορικό του μήκους τόξου.

Παράδειγμα 1.8.4
Ολοκλήρωση κατά μήκος μιας έλικας Υπολογίστε το επικαμπύλιο ολοκλήρωμα

∫
C
(x+ y+ z)ds
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όπουC είναι η έλικα r(t) = ⟨cos t, sin t, t⟩ για 0 ≤ t ≤ 3π (βλ. Σχήμα 1.20).

Λύση.
Βήμα 1 Υπολογίστε το ds.

r′(t) = ⟨−sin t, cos t, 1⟩

∥r′(t)∥=
√

(−sin t)2 + cos2 t +1 =√
2

ds = ∥r′(t)∥dt =
√

2dt

Βήμα 2 Γράψτε αναλυτικά την
ολοκληρωτέα ποσότητα και ολοκληρώστε.

Καθώς f (x,y,z) = x+ y+ z, θα έχουμε
Σχήμα 1.20 Διαμέριση της παραμετρικής καμπύλης

r(t).

f (r(t)) = f (cos t, sin t, t) = cos t + sin t + t

f (x,y,z)ds = f (r(t))∥r′(t)∥dt = (cos t + sin t + t)
√

2dt

Επομένως, θα έχουμε∫
C

f (x,y,z)ds =
∫ 3π

0
f (r(t))∥r′(t)∥dt =

∫ 3π

0
(cos t + sin t + t)

√
2dt

=
√

2
(

sin t − cos t +
1
2

t2
)∣∣∣3π

0

=
√

2
(

0+1+
1
2
(3π)2

)
−

√
2(0−1+0) = 2

√
2+

9
√

2
2

π2

Παράδειγμα 1.8.5

Υπολογίστε το επικαμπύλιο ολοκλήρωμα
∫

C
1ds για την έλικα r(t) = ⟨cos t, sin t, t⟩ του

προηγούμενου παραδείγματος που ορίζεται για 0≤ t ≤ 3π . Τι αντιπροσωπεύει το ολοκλήρωμα
αυτό;

Λύση. Στο προηγούμενο παράδειγμα δείξαμε ότι ds =
√

2dt , επομένως∫
C

1ds =
∫ 3π

0

√
2dt = 3π

√
2

που είναι το μήκος της έλικας για 0 ≤ t ≤ 3π .
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1.9 Εφαρμογές του επικαμπύλιου ολοκληρώματος των βαθμωτών
συναρτήσεων

Στις εφαρμογές του επικαμπύλιου ολοκληρώματος βασική θέση κατέχει η έννοια της πυκνότητας
ενός μεγέθους που κατανέμεται κατά μήκος μιας καμπύλης. Όπως στον Λογισμό μίας μεταβλητής
η συνολική ποσότητα ενός μεγέθους προκύπτει από το ολοκλήρωμα της πυκνότητάς του πάνω σε
ένα διάστημα, έτσι και στην περίπτωση κατανομών κατά μήκος μιας καμπύλης C, η συνολική
ποσότητα εκφράζεται μέσω του επικαμπύλιου ολοκληρώματος (Σχήμα 1.21).
Πιο συγκεκριμένα, ας θεωρήσου- με,
για παράδειγμα, ότι η καμπύλη C
αντιπροσωπεύει ένα καλώδιο με συνεχή
πυκνότητα μάζας ρ(x,y,z) εκφρασμένη
σε μονάδες μάζας ανά μονάδα μήκους.
Στην περίπτωση αυτή, η συνολική μάζα
υπολογίζεται από το ολοκλήρωμα της
πυκνότητας της μάζας ως εξής:

ολική μάζα τηςC =
∫

C
ρ(x,y,z)ds.

Σχήμα 1.21

Παράδειγμα 1.9.1
Υπολογισμός συνολικής μάζας με ένα επικαμπύλιο ολοκλήρωμα Προσδιορίστε τη συνολική
μάζα ενός σύρματος που έχει τη μορφή της παραβολής y = x2 για 1 ≤ x ≤ 4 (σε cm), με
πυκνότητα μάζας που δίνεται από τη σχέση ρ(x,y) =

y
x
g/cm.

Λύση.Το τόξο της παραβολής που αντιστοιχεί στο σύρμα παραμετράται ως ⟨r(t)⟩ = ⟨t, t2⟩ για
1 ≤ t ≤ 4.

Βήμα 1. Υπολογίζουμε το ds.

r′(t) = ⟨1, 2t⟩

ds = ∥r′(t)∥dt =
√

1+4t2 dt

Βήμα 2 Γράψτε αναλυτικά την ολοκληρωτέα ποσότητα και ολοκληρώστε.
Έχουμε ότι

ρ(r(t)) = ρ(t, t2) =
t2

t
= t,

επομένως

ρ(x,y)ds = ρ(r(t))
√

1+4t2 dt = t
√

1+4t2 dt.

Μπορούμε να υπολογίσουμε το επικαμπύλιο ολοκλήρωμα της πυκνότητας μάζας χρησιμοποιώ-
ντας την αντικατάστασηu= 1+4t2, οπότε du= 8t dt , με τα όρια της ολοκλήρωσης να αλλάζουν
από τις τιμές 1 και 4 στις u(1) = 5 και u(4) = 65 αντίστοιχα. Δηλαδή:
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∫
C

ρ(x,y)ds =
∫ 4

1
ρ(r(t))∥r′(t)∥dt =

∫ 4

1
t
√

1+4t2 dt

=
1
8

∫ 65

5

√
udu =

1
12

u3/2
∣∣∣65

5

=
1

12
(653/2 −53/2)≈ 42.74.

Επομένως, η συνολική μάζα του σύρματος είναι κατά προσέγγιση 42.74g.

Τα επικαμπύλια ολοκληρώματα των βαθμωτών συναρτήσεων χρησιμοποιούνται επίσης για τον
προσδιορισμό των συναρτήσεων του ηλεκτρικού δυναμικού. Όταν μια ποσότητα ηλεκτρικού
φορτίου είναι κατανεμημένη με συνεχή τρόπο πάνωσε μια καμπύληC του χώρουR3, με πυκνότητα
φορτίου ρ(x,y,z), τότε αυτή η κατανομή δημιουργεί ένα ηλεκτροστατικό πεδίο E που είναι ένα
συντηρητικό διανυσματικό πεδίο. Σύμφωνα με τον νόμο του Coulomb θα πρέπει να ισχύει

V (P) = k
∫

C

ρ(x,y,z)
DP(x,y,z)

ds

Στο προηγούμενο ολοκλήρωμα, η ποσότητα DP(x,y,z) αντιπροσωπεύει την απόσταση από το
σημείο (x,y,z) μέχρι το σημείο P, ενώ η σταθερά k έχει την τιμή k = 8.99× 109N·m2/C2.
Σε μια κατάσταση όπως αυτή που περιγράψαμε προηγουμένως, χρησιμοποιούμε το V για να
συμβολίσουμε τη συνάρτηση που είναι γνωστή ως ηλεκτρικό δυναμικό. Πρόκειται για μια συνά-
ρτηση που ορίζεται για όλα τα σημεία P που δεν βρίσκονται πάνω στην καμπύλη C και έχει
μονάδα το volt (1 volt ισούται με 1 N·m/C).

Σχόλιο 1.9.2 Εξ ορισμού, η ένταση του ηλεκτρικού πεδίου E είναι το διανυσματικό πεδίο που
έχει την ιδιότητα να δίνει την ηλεκτροστατική δύναμη που ασκείται σε ένα σημειακό φορτίο q
το οποίο βρίσκεται τοποθετημένο στο σημείο P = (x,y,z) ως το διάνυσμα qE(x,y,z). Η
σταθερά k γράφεται συνήθως ως

k =
1

4πε0

όπου ε0 είναι η ηλεκτρική διαπερατότητα του κενού.

Παράδειγμα 1.9.3
Ηλεκτρικό δυναμικό Ένα φορτισμένο ημικύκλιο ακτίνας R με κέντρο την αρχή των αξόνων
εκτείνεται στο επίπεδο xy, όπως φαίνεται στο Σχήμα 1.22, και φέρει φορτίο που είναι κατανεμη-
μένο σε όλο του το μήκος με πυκνότητα

ρ(x,y,0) = 10−8
(
2− x

R

)
C/m

Υπολογίστε το ηλεκτρικό δυναμικό στο σημείο P = (0,0,a) αν R = 0.1m.
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Λύση. Προκειμένου να υπολογίσουμε το
επικαμπύλιο ολοκλήρωμα από το οποίο
δίνεται η συνάρτηση του ηλεκτρικού
δυναμικού, θα χρησιμοποιήσουμε την
⟨r(t)⟩ = ⟨Rcos t, Rsin t, 0⟩ για να
παραμετρήσουμε το φορτισμένο ημικύκλιο,
με την παράμετρο t να παίρνει τιμές στο
διάστημα−π/2 ≤ t ≤ π/2:

∥r′(t)∥= ∥⟨−Rsin t, Rcos t, 0⟩∥=√
R2 sin2 t +R2 cos2 t +0 = R

ds = ∥r′(t)∥dt = Rdt Σχήμα 1.22

ρ(r(t)) = ρ(Rcos t, Rsin t, 0) = 10−8
(

2− Rcos t
R

)
= 10−8(2− cos t)

Στην περίπτωσή μας, η απόσταση DP μεταξύ του σημείου P και ενός σημείου (x,y,0) πάνω στο
ημικύκλιο έχει σταθερή τιμή

DP =
√

R2 +a2,

όπως φαίνεται στο Σχήμα 1.22. Επομένως:

V (P) = k
∫

C

ρ(x,y,z)
DP

ds = k
∫

C

10−8(2− cos t)R√
R2 +a2

dt =
10−8kR√
R2 +a2

∫ π/2

−π/2
(2− cos t)dt =

10−8kR√
R2 +a2

(2π −2).

Για R = 0.1m και k = 8.99×109 N ·m2/C2, προκύπτει 10−8kR(2π −2)≈ 38.5, οπότε

V (P)≈ 38.5√
0.01+a2

V.

1.10 Επικαμπύλια ολοκληρώματα διανυσματικών πεδίων

Καθώς ανεβαίνετε την πλαγιά ενός βουνού έχοντας ένα σακίδιο στην πλάτη σας, εκτελείτε έργο
ενάντια στο γήινο βαρυτικό πεδίο. Αυτό το έργο, ή η δαπανώμενη ενέργεια, αποτελεί παράδειγμα
μιας ποσότητας που μπορεί να αναπαρασταθεί με τη βοήθεια του επικαμπύλιου ολοκληρώματος
ενός διανυσματικού πεδίου. Μια σημαντική διαφορά μεταξύ των επικαμπυλίων ολοκληρωμάτων
των διανυσματικών πεδίων και των αντίστοιχων ολοκληρωμάτων των βαθμωτών συναρτήσεων
είναι το γεγονός ότι τα πρώτα εξαρτώνται από την κατεύθυνση ως προς την οποία διανύεται
η καμπύλη πάνω στην οποία λαμβάνει χώρα η ολοκλήρωση. Αυτό είναι απολύτως λογικό αν
θεωρήσουμε το επικαμπύλιο ολοκλήρωμα ως έργο, αφού το έργο που παράγουμε καθώς κατεβαί-
νουμε το βουνό είναι αντίθετο του έργου που παράγουμε όταν ανεβαίνουμε το βουνό.
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Σχήμα 1.23

Μια προκαθορισμένη κατεύθυνση κατά μήκος μιας καμπύλης C αποκαλείται προσανατολισμός
(βλ. Σχήμα 1.23), οπότε μαζί με αυτόν τον προσανατολισμό η καμπύληC είναι γνωστήως προσανα-
τολισμένη καμπύλη. Θα αναφέρουμε αυτήν την προκαθορισμένη κατεύθυνση ως τη θετική κατεύ-
θυνση κατά μήκος της καμπύληςC, ενώ η αντίθετη κατεύθυνση θα είναι η αρνητική κατεύθυνση.
Αν στο Σχήμα 1.23 αντιστρέφουμε τον προσανατολισμό της καμπύλης, τότε η θετική κατεύθυνση
θα γίνει αυτή από το σημείο Q στο P.

Το επικαμπύλιο ολοκλήρωμα ενός διανυσματικού πεδίου F
πάνω σε μια προσανατολισμένη καμπύλη C ορίζεται ως το
επικαμπύλιο ολοκλήρωμα της εφαπτομενικής στην καμπύλη
συνιστώσας του πεδίου F. Ακριβέστερα, ας υποθέσουμε
ότι με T = T(P) συμβολίζουμε το μοναδιαίο εφαπτόμενο
διάνυσμα στο σημείοP της καμπύληςC, το οποίο έχει τη θετική
κατεύθυνση. Η εφαπτομενική συνιστώσα του διανυσματικού
πεδίουF στο σημείοP (προβολή του διανύσματοςF πάνω στην
εφαπτομένη της καμπύλης στο σημείο P) είναι το εσωτερικό
γινόμενο (βλ. Σχήμα 1.24).

Το μοναδιαίο εφαπτόμενο
διάνυσμα T μεταβάλλεται
από σημείο σε σημείο καθώς
κινούμαστε κατά μήκος
της καμπύλης. Όταν είναι
απαραίτητο να τονίσουμε αυτή
την εξάρτηση, θα γράφουμε
T(P).

F(P) ·T(P) = ∥F(P)∥∥T(P)∥cosθ =
∥F(P)∥cosθ

όπου θ είναι η γωνία μεταξύ των
διανυσμάτων F(P) και T(P). Το
επικαμπύλιο ολοκλήρωμα του πεδίου
F είναι το επικαμπύλιο ολοκλήρωμα
της βαθμωτής συνάρτησης F(P) · T(P).
Υποθέτουμε ότι η καμπύλη C είναι κατά
τμήματα λεία (αποτελείται δηλαδή από
πεπερασμένο πλήθος λείων καμπυλών
που πιθανόν να ενώνονται μεταξύ τους με
γωνίες).

Σχήμα 1.24 Το επικαμπύλιο ολοκλήρωμα του πεδίου F
κατά μήκος της καμπύληςC είναι ίσο με το επικαμπύλιο
ολοκλήρωμα της εφαπτομενικής συνιστώσας του πεδίου

F πάνω στην καμπύλη. .

Θεώρημα 1.10.1Επικαμπύλιο ολοκλήρωμα διανυσματικού πεδίου Το επικαμπύλιο ολοκλήρωμα
ενός διανυσματικού πεδίουF κατά μήκος μιας προσανατολισμένης καμπύληςC είναι το ολοκλή-
ρωμα της εφαπτομενικής συνιστώσας του πεδίου F:∫

C
(F ·T)ds

Ένας εναλλακτικός συμβολισμός για ένα τέτοιο επικαμπύλιο ολοκλήρωμα προκύπτει εκφράζοντας
το γινόμενο του μοναδιαίου εφαπτόμενου διανύσματος T και του διαφορικού του μήκους του
τόξου ds, ως το διανυσματικό διαφορικό dr = T, οπότε προκύπτει η έκφραση:
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∫
C
(F ·T)ds =

∫
C

F ·dr

Για τον υπολογισμό των επικαμπυλίων ολοκληρωμάτων των διανυσματικών πεδίων χρησιμοποι-
ούμε παραμετρήσεις, αλλά υπάρχει μια σημαντική διαφορά σε σχέση με την περίπτωση των
βαθμωτών συναρτήσεων. Αυτή έγκειται στο γεγονός ότι η παραμέτρηση r(t) πρέπει να είναι
θετικά προσανατολισμένη, δηλαδή η r(t) πρέπει να διανύει την καμπύληC στη θετική κατεύθυνση.
Υποθέτουμε, επιπλέον, ότι η παραμέτρηση r(t) είναι κανονική, ισχύει δηλαδή r′(t) ̸= 0 για
a ≤ t ≤ b. Αυτό σημαίνει ότι το διάνυσμα r′(t) είναι ένα μη μηδενικό εφαπτόμενο διάνυσμα
που έχει τη θετική κατεύθυνση και ισχύει:

T = r′(t)
∥r′(t)∥

Χρησιμοποιώντας το διαφορικό του μήκους τόξου ds = ∥r′(t)∥dt έχουμε:

(F ·T)ds =
(

F(r(t)) · r′(t)
∥r′(t)∥

)
∥r′(t)∥dt = F(r(t)) · r′(t)dt

Με τον τρόπο αυτόν καταλήγουμε στο ακόλουθο θεώρημα.

Θεώρημα 1.10.2 Υπολογισμός του επικαμπύλιου ολοκληρώματος ενός διανυσματικού πεδίου
Αν η r(t) είναι μια θετικά προσανατολισμένη κανονική παραμέτρηση της προσανατολισμένης
καμπύληςC για a ≤ t ≤ b, τότε∫

C
F ·dr =

∫
C

F ·Tds =
∫ b

a
F(r(t)) · r′(t)dt

Το διανυσματικό διαφορικό dr συνδέεται με το διαφορικό της παραμέτρησης dt μέσω της σχέσης:

dr = r′(t)dt = ⟨x′(t), y′(t), z′(t)⟩dt

Η εξίσωση του θεωρήματος 1.10.2 μας λέει ότι για
να υπολογίσουμε το επικαμπύλιο ολοκλήρωμα ενός
διανυσματικού πεδίου μπορούμε να αντικαταστήσουμε την
ολοκληρωτέα ποσότητα F · dr με την F(r(t)) · r′(t)dt
και στη συνέχεια να ολοκληρώσουμε ως προς την
παράμετρο στο διάστημα a ≤ t ≤ b. Με τον τρόπο αυτόν
μπορούμε να μετατρέψουμε το επικαμπύλιο ολοκλήρωμα
ενός διανυσματικού πεδίου σε ένα απλό ολοκλήρωμα
μιας συνάρτησης με μία μεταβλητή, ακριβώς όπως στην
περίπτωση των επικαμπυλίων ολοκληρωμάτων των βαθμωτών
συναρτήσεων.

Τα επικαμπύλια ολοκληρώματα
των διανυσματικών πεδίων
υπολογίζονται συνήθως
πιο εύκολα σε σχέση με τα
αντίστοιχα ολοκληρώματα των
βαθμωτών συναρτήσεων, επειδή
το ∥r′(t)∥, το οποίο εμπλέκει
μια τετραγωνική ρίζα, δεν
εμφανίζεται στην ολοκληρωτέα
έκφραση.

Παράδειγμα 1.10.3

Υπολογίστε το επικαμπύλιο ολοκλήρωμα
∫

C
F ·dr, όπου F = ⟨z, y2, x⟩, με την καμπύληC να

παραμετρείται (στη θετική κατεύθυνση) από την r(t) = ⟨t +1, et , t2⟩ για 0 ≤ t ≤ 2.

Λύση. Το ζητούμενο επικαμπύλιο ολοκλήρωμα μπορεί να υπολογιστεί σε δύο βήματα.

Βήμα 1 Υπολογίζουμε την ολοκληρωτέα ποσότητα.
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r(t) = ⟨t +1, et , t2⟩

F(r(t)) = ⟨t2, e2t , t +1⟩

r′(t) = ⟨1, et , 2t⟩

Επομένως, η ολοκληρωτέα ποσότητα (με τη μορφή διαφορικού) είναι το εσωτερικό γινόμενο:

F(r(t)) · r′(t)dt = ⟨t2, e2t , t +1⟩ · ⟨1, et , 2t⟩dt = (e3t +3t2 +2t)dt

Βήμα 2 Υπολογίζουμε το επικαμπύλιο ολοκλήρωμα.

∫
C

F ·dr =
∫ 2

0
F(r(t)) · r′(t)dt

=
∫ 2

0
(e3t +3t2 +2t)dt

=

(
1
3

e3t + t3 + t2
)∣∣∣2

0

=

(
1
3

e6 +8+4
)
− 1

3
=

1
3
(e6 +35)

Ένας άλλος συνήθης συμβολισμός για το διανυσματικό επικαμπύλιο ολοκλήρωμα
∫

C
F ·dr είναι

∫
C
(F1 dx+F2 dy+F3 dz)

Με αυτόν τον συμβολισμό εκφράζουμε το διανυσματικό διαφορικό ως

dr = ⟨dx, dy, dz⟩.

Επομένως, θα ισχύει

F ·dr = ⟨F1, F2, F3⟩ · ⟨dx, dy, dz⟩= F1 dx+F2 dy+F3 dz.

Με τη βοήθεια της παραμέτρησης r(t) = ⟨x(t), y(t), z(t)⟩ έχουμε:

dr =
〈

dx
dt

,
dy
dt

,
dz
dt

〉
dt.
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F ·dr =
(

F1(r(t))
dx
dt

+F2(r(t))
dy
dt

+F3(r(t))
dz
dt

)
dt.

Καταλήγουμε, έτσι, στην ακόλουθη σχέση:

∫
C
(F1 dx+F2 dy+F3 dz) =

∫ b

a

(
F1(r(t))

dx
dt

+F2(r(t))
dy
dt

+F3(r(t))
dz
dt

)
dt

Εμβάθυνση στα σχήματα Το αποτέλεσμα από τον υπολογισμό του επικαμπυλίου
ολοκληρώματος ενός διανυσματικού πεδίου (ή ακόμα το πρόσημο του ολοκληρώματος)
εξαρτάται από τις γωνίες που σχηματίζουν τα διανύσματα F και T καθώς κινούμαστε κατά
μήκος της καμπύλης. Ας θεωρήσουμε, για παράδειγμα, το επικαμπύλιο ολοκλήρωμα του
διανυσματικού πεδίου F κατά μήκος των καμπυλών C1 και C2 οι οποίες φαίνονται στο
Σχήμα 1.25(a).

• Κατά μήκος της καμπύλης C1 οι γωνίες θ μεταξύ των διανυσμάτων F και T είναι
κατά κύριο λόγο αμβλείες. Αυτό σημαίνει ότι γενικά θα ισχύει F ·T ≤ 0, συνεπώς το
επικαμπύλιο ολοκλήρωμα θα έχει αρνητική τιμή αφού κινούμαστε κυρίως αντίθετα
από το διανυσματικό πεδίο καθώς ιχνηλατούμε την καμπύλη.

• Αντιθέτως, κατά μήκος της καμπύλης C2, οι γωνίες θ είναι κυρίως οξείες. Αυτό
σημαίνει ότι θα ισχύειF ·T≥ 0, συνεπώς το επικαμπύλιο ολοκλήρωμα θα έχει θετική
τιμή αφού κινούμαστε κυρίως στην ίδια κατεύθυνση με το διανυσματικό πεδίο καθώς
ιχνηλατούμε την καμπύλη.

(a) (b) Το πεδίο δίνης (ή πεδίο καταβόθρα)

Σχήμα 1.25

Ένα διανυσματικό πεδίο με ενδιαφέρουσες ιδιότητες είναι αυτό που απεικονίζεται στο Σχήμα 1.25(b),
το οποίο είναι γνωστό ως πεδίο δίνης (ή πεδίο καταβόθρα), και περιγράφεται ως:

F =

〈
−y

x2 + y2 ,
x

x2 + y2

〉
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Θα μελετήσουμε ορισμένες από τις ιδιότητες αυτού του πεδίου στο παρόν κεφάλαιο και στο
επόμενο. Θα ξεκινήσουμε αποδεικνύοντας ότι το ολοκλήρωμα αυτού του διανυσματικού πεδίου
κατά μήκος ενός οποιουδήποτε κύκλου με κέντρο την αρχή των αξόνων και ο οποίος διανύεται
με φορά αντίθετη από αυτήν της περιστροφής των δεικτών του ρολογιού είναι 2π .

Παράδειγμα 1.10.4
Αποδείξτε ότι αν C είναι ο κύκλος με ακτίνα R που έχει ως κέντρο την αρχή των αξόνων και
είναι προσανατολισμένος στην αντι-ωρολογιακή κατεύθυνση τότε:∫

C
F ·dr =

∫
C

−y
x2 + y2 dx+

x
x2 + y2 dy = 2π

Λύση. Ο κύκλος παραμετράται με r(t) = ⟨Rcos t, Rsin t⟩ για 0 ≤ t ≤ 2π , οπότε θα έχουμε:

dx
dt

=−Rsin t,
dy
dt

= Rcos t.

Η ολοκληρωτέα ποσότητα του επικαμπύλιου ολοκληρώματος είναι:(
−y

x2 + y2

)
dx+

(
x

x2 + y2

)
dy

=

(
−Rsin t

R2

)
(−Rsin t)dt +

(
Rcos t

R2

)
(Rcos t)dt

= (sin2 t + cos2 t)dt

∫
C

F ·dr =
∫ 2π

0
1dt = 2π.

Θα δούμε τώρα ορισμένες βασικές ιδιότητες των
επικαμπύλιων ολοκληρωμάτων των διανυσματικών
πεδίων. Καταρχάς, αν C είναι μια δεδομένη
προσανατολισμένη καμπύλη, με −C θα συμβολί-
ζουμε την καμπύλη C που έχει τον αντίθετο
προσανατολισμό (βλ. Σχήμα 1.26). Το μοναδιαίο
εφαπτόμενο διάνυσμα αλλάζει πρόσημο από T σε
−T όταν αλλάζει ο προσανατολισμός της καμπύλης,
έτσι τόσο η εφαπτομενική συνιστώσα του πεδίου
F όσο και το επικαμπύλιο ολοκλήρωμα αλλάζουν
επίσης πρόσημο, δηλαδή:∫

−C
F ·dr =−

∫
C

F ·dr
Σχήμα 1.26 Η καμπύλη μεταξύ των σημείων P και Q

μπορεί να προσανατολιστεί με δύο διαφορετικούς
τρόπους

Κατόπιν, αν δίνονται n προσανατολισμένες καμπύλεςC1, . . . ,Cn γράφουμε

C =C1 + · · ·+Cn
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προκειμένου να συμβολίσουμε την ένωσή τους, ενώ ορίζουμε το επικαμπύλιο ολοκλήρωμα πάνω
στην καμπύληC ως το άθροισμα των ολοκληρωμάτων στις επιμέρους καμπύλες, δηλαδή:∫

C
F ·dr =

∫
C1

F ·dr+ · · ·+
∫

Cn

F ·dr

Μπορούμε να χρησιμοποιήσουμε αυτή τη
σχέση προκειμένου να ορίσουμε το επικαμπύλιο
ολοκλήρωμα όταν η καμπύλη C είναι κατά τμήματα
λεία, γεγονός που σημαίνει ότι ηC είναι η ένωση των
λείων καμπυλών C1, . . . ,Cn. Έτσι, για παράδειγμα,
το τρίγωνο του Σχήματος 1.27 είναι κατά τμήματα
λείο αλλά όχι λείο.
Το θεώρημα που ακολουθεί συνοψίζει τις βασικές
ιδιότητες των επικαμπύλιων ολοκληρωμάτων των
διανυσματικών πεδίων.

Σχήμα 1.27 Το τρίγωνο είναι κατά τμήματα
λείο: Είναι η ένωση των τριών πλευρών του, κά-
θε μία από τις οποίες είναι λεία

Θεώρημα 1.10.5 Ιδιότητες των επικαμπύλιων ολοκληρωμάτων των διανυσματικών πεδίων
Έστω C μια λεία προσανατολισμένη καμπύλη, ενώ F και G είναι δύο διανυσματικά πεδία.
Τότε ’εχουμε τις κάτωθι ιδιότητες:
(i) Γραμμικότητα: ∫

C
(F+G) ·dr =

∫
C

F ·dr+
∫

C
G ·dr

∫
C

kF ·dr = k
∫

C
F ·dr (όπου k σταθερά)

(ii) Αντιστροφή προσανατολισμού:∫
−C

F ·dr =−
∫

C
F ·dr

(iii) Προσθετικότητα: ΑνC είναι η ένωση n λείων καμπυλώνC1, . . . ,Cn, τότε∫
C

F ·dr =
∫

C1

F ·dr+ · · ·+
∫

Cn

F ·dr

Υπενθύμιση 1.10.6
(1) Κάθε σημείο ενός ευθύγραμμου τμήματος AB μπορεί να γραφεί ως γραμμικός συνδυασμός
των A και B με μη αρνητικά βάρη που αθροίζονται στο 1, δηλαδή
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r(t) = (1− t)A+ tB, 0 ≤ t ≤ 1.

(2) Η ευθεία που διέρχεται από το σημείο P = (a,b) και έχει κλίση m περιγράφεται από την
καρτεσιανή εξίσωση

y−b = m(x−a).

(1) Από την εξίσωση της ευθείας στην παραμετροποίηση. Θέτουμε ως παράμετρο

t = x−a ⇐⇒ x = a+ t.

Αντικαθιστούμε στην εξίσωση της ευθείας:

y = b+m(x−a) = b+mt.

Άρα κάθε σημείο της ευθείας γράφεται ως

x = a+ t, y = b+mt, −∞ < t < ∞.

(2) Αντιστροφή: η παραμετροποίηση δίνει πράγματι την ευθεία. Έστω τώρα t ∈R και το αντίστοιχο
σημείο

(x,y) = (a+ t, b+mt).

Τότε

y−b = (b+mt)−b = mt = m(a+ t −a) = m(x−a).

Άρα το (x,y) ικανοποιεί την εξίσωση της ευθείας

y−b = m(x−a),

οπότε ανήκει στην ευθεία που περνά από το (a,b) με κλίση m.
Συνεπώς, οι εξισώσεις

x = a+ t, y = b+mt

παραμετροποιούν ακριβώς την ευθεία αυτή.

Παράδειγμα 1.10.7

Υπολογίστε το επικαμπύλιο ολοκλήρωμα
∫

C
F · dr, όπου F = ⟨ez, ey, x + y⟩ και C είναι

το τρίγωνο με κορυφές τα σημεία (1,0,0), (0,1,0) και (0,0,1) προσανατολισμένο αντι-
ωρολογιακά όταν το βλέπουμε από επάνω, όπως φαίνεται στο Σχήμα 1.27.

Λύση.Το ζητούμενο επικαμπύλιο ολοκλήρωμα είναι ίσο με το άθροισμα των επικαμπύλιων ολοκληρωμάτων
πάνω στις πλευρές του τριγώνου, δηλαδή:∫

C
F ·dr =

∫
AB

F ·dr+
∫

BC
F ·dr+

∫
CA

F ·dr.

Κάθε σημείο ενός ευθύγραμμου τμήματος AB μπορεί να γραφεί ως γραμμικός συνδυασμός των
A και B με μη αρνητικά βάρη που αθροίζονται στο 1, δηλαδή

r(t) = (1− t)A+ tB, 0 ≤ t ≤ 1.

Υπολογίζουμε τον συνδυασμό:
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r(t) = (1− t)(1,0,0)+ t(0,1,0) = (1− t, t, 0).

Για t = 0 έχουμε r(0) = A, για t = 1 έχουμε r(1) = B, και για 0 < t < 1 το r(t) βρίσκεται
μεταξύ των A και B. Άρα η παραμετροποίηση

r(t) = ⟨1− t, t, 0⟩, 0 ≤ t ≤ 1

περιγράφει ακριβώς το ευθύγραμμο τμήμα AB.

Τότε:

F(r(t)) · r′(t) = ⟨e0, et , 1⟩ · ⟨−1, 1, 0⟩=−1+ et

∫
AB

F ·dr =
∫ 1

0
(et −1)dt =

(
et − t

)∣∣∣1
0
= (e−1)−1 = e−2

Παρομοίως, για το ευθύγραμμο τμήμα BC, με παραμετροποίηση r(t) = ⟨0, 1− t, t⟩, 0 ≤
t ≤ 1:

F(r(t)) · r′(t) = ⟨et , e1−t , 1− t⟩ · ⟨0,−1, 1⟩=−e1−t +1− t

∫
BC

F ·dr =
∫ 1

0
(−e1−t +1− t)dt =

(
e1−t + t − 1

2t2)∣∣∣1
0
=

3
2
− e

Τέλος, το ευθύγραμμο τμήμαCA παραμετρείται από r(t) = ⟨t, 0, 1− t⟩ για 0 ≤ t ≤ 1. Τότε:

F(r(t)) · r′(t) = ⟨e1−t , 1, t⟩ · ⟨1, 0,−1⟩= e1−t − t

∫
CA

F ·dr =
∫ 1

0

(
e1−t − t

)
dt =

(
−e1−t − 1

2
t2
)∣∣∣1

0
=−3

2
+ e

Επομένως, το τελικό επικαμπύλιο ολοκλήρωμα είναι:∫
C

F ·dr = (e−2)+
(

3
2
− e
)
+

(
−3

2
+ e
)
= e−2

1.11 Εφαρμογές των επικαμπύλιων ολοκληρωμάτων των διανυσματι-
κών πεδίων

Θυμηθείτε ότι στη φυσική το «ἔργο» αναφέρεται στην ἐνέργεια που δαπανάται όταν μια δύναμη
εφαρμόζεται σε ένα αντικείμενο καθώς αυτό κινείται κατά μήκος μιας τροχιάς. Ἐξ ορισμού, το
ἔργο W που παράγεται κατά μήκος ενός ευθύγραμμου τμήματος μεταξύ των σημείων P και Q
από μια σταθερή δύναμηF που σχηματίζει γωνία θ με την τροχιά, όπως φαίνεται στο Σχήμα 1.28,
είναι:

W = (εφαπτομενική συνιστώσα της F)×απόσταση= (∥F∥cosθ)×∥−→PQ∥
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Σχήμα 1.28

Πολύ συχνά ενδιαφερόμαστε να υπολογίσουμε το έργο που απαιτείται προκειμένου να μετακινή-
σουμε ένα αντικείμενο κατά μήκος μιας τροχιάς παρουσία ενός πεδίου δυνάμεων F (που μπορεί,
για παράδειγμα, να είναι ένα ηλεκτρικό ή ένα βαρυτό πεδίο). Στην περίπτωση αυτή, καθώς το
πεδίοF δρα στο σώμα, θα πρέπει να παράγουμε έργο ενάντια στη δύναμη του πεδίου προκειμένου
να κινήσουμε το αντικείμενο. Το έργο που απαιτείται είναι το αντίθετο του επικαμπύλιου ολοκλη-
ρώματος που εμφανίζεται στην επόμενη εξίσωση, δηλαδή:

έργο παραγόμενο ενάντια στην F =−
∫

C
F ·dr

Παράδειγμα 1.11.1
Υπολογισμός έργου Υπολογίστε το έργο που εκτελείται ενάντια στη δύναμηF κατά την κίνηση
ενός σωματιδίου από το σημείοP = (1,1,1) στοQ = (4,8,2) κατά μήκος της τροχιάς r(t) =
⟨t2, t3, t⟩ σε m για 1 ≤ t ≤ 2, παρουσία ενός πεδίου δυνάμεων

F = ⟨x2,−z,−yz−1⟩ (σε newtons).

Λύση. Ισχύει ότι

F(r(t)) = F(t2, t3, t) = ⟨t4,−t,−t2⟩ και r′(t) = ⟨2t, 3t2, 1⟩

F ·dr = F(r(t)) · r′(t)dt = ⟨t4,−t,−t2⟩ · ⟨2t,3t2,1⟩dt = (2t5 −3t3 − t2)dt

Το έργο που παράγεται ενάντια στο εφαρμοζόμενο πεδίο δυνάμεων σε joules είναι:

W =−
∫

C
F ·dr =−

∫ 2

1

(
2t5 −3t3 − t2

)
dt =

89
12
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Τα επικαμπύλια ολοκληρώματα χρησιμοποιούνται
επίσης για να ορίσουν αυτό που είναι γνωστό ως η ροή
ενός διανυσματικού πεδίου που διασχίζει εγκάρσια
μια επίπεδη καμπύλη. Αντί να ολοκληρώνουμε την
εφαπτομενική συνιστώσα του διανυσματικού πεδίου,
η εγκάρσια ροή μιας επίπεδης καμπύλης ορίζεται
ως το ολοκλήρωμα της κάθετης συνιστώσας του
διανυσματικού πεδίου στην καμπύλη. Με δεδομένη
μια προσανατολισμένη καμπύλη C του επιπέδου,
ορίζουμε τη θετική κατεύθυνση εγκάρσια στη C να
είναι η κατεύθυνση από τα αριστερά προς τα δεξιά σε
σχέση με τη θετική κατεύθυνση κατά μήκος τηςC, με
την τελευταία να ορίζεται από τον προσανατολισμό
της. Αξίζει να σημειωθεί ότι η προηγούμενη επιλογή
έχει έννοια για μία καμπύλη που ανήκει στο επίπεδο,
αλλά στον χώρο R3 δεν υπάρχει μία «αβίαστη»,
φυσική επιλογή που να ορίζει τη θετική κατεύθυνση
εγκάρσια στην καμπύλη (στον χώρο R3 η ροή
υπολογίζεται δια μέσου επιφανειών).

Σχήμα 1.29 Η καμπύλη μεταξύ των σημείων P και Q
μπορεί να προσανατολιστεί με δύο διαφορετικούς

τρόπους

Ας υποθέσουμε ότι συμβολίζουμε με n ένα μοναδιαίο κάθετο διάνυσμα στη θετική κατεύθυνση
εγκάρσια στην καμπύληC (βλ. Σχήμα 1.29). Τότε, ορίζουμε τη ροή του πεδίου F εγκάρσια στην
καμπύληC ως το ολοκλήρωμα

∫
C
(F ·n)ds.

Για να υπολογίσουμε μια ροή τέτοιου είδους θα υποθέσουμε ότι η r(t), με a ≤ t ≤ b, είναι μια
θετικά προσανατολισμένη παραμέτρηση μιας προσανατολισμένης καμπύληςC. Το διάνυσμα της
παραγώγου

r′(t) = ⟨x′(t), y′(t)⟩

είναι εφαπτόμενο στην καμπύλη, δείχνοντας προς τη θετική κατεύθυνση κατά μήκος τηςC.

Το διάνυσμα

N(t) = ⟨y′(t),−x′(t)⟩

είναι ορθογώνιο στο r′(t), με κατεύθυνση προς τα δεξιά.
Ας υποθέσουμε ότι το n(t) είναι ένα μοναδιαίο διάνυσμα στην
κατεύθυνση του N(t). Αυτά τα κάθετα διανύσματα δείχνουν
προς τη θετική κατεύθυνση, εγκάρσια στην καμπύληC.

Με δεδομένο ένα μη μηδενικό
διάνυσμα v = ⟨p, q⟩, τα
διανύσματα ⟨q,−p⟩ και
⟨−q, p⟩ είναι και τα δύο
ορθογώνια στο διάνυσμα v,
με το πρώτο από αυτά να
κατευθύνεται προς τα δεξιά
του v και το δεύτερο προς τα
αριστερά του.
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Παρατηρήστε τώρα ότι αφού τα διανύσματα N(t) και r′(t)
έχουν το ίδιο μέτρο, θα πρέπει να ισχύει

n(t) =
N(t)
∥N(t)∥

=
N(t)
∥r′(t)∥

Η ροή εγκάρσια της καμπύληςC μπορεί να υπολογιστεί ως∫
C
(F ·n)ds =

∫ b

a
F(r(t)) · N(t)

∥r′(t)∥
∥r′(t)∥dt

=
∫ b

a
F(r(t)) ·N(t)dt

Στις προηγούμενες ενότητες
το N ήταν το πρωτεύον
μοναδιαίο κάθετο διάνυσμα
μιας καμπύλης στον χώρο. Εδώ,
το N αναπαριστά ένα κάθετο
διάνυσμα, όχι απαραίτητως
μοναδιαίο, σε μια καμπύλη του
επιπέδου, ενώ το n αναπαριστά
το αντίστοιχο μοναδιαίο κάθετο
διάνυσμα. Αυτή η επιλογή
ακολουθείται στα περισσότερα
εγχειρίδια.

Παράδειγμα 1.11.2
Ροή που διασχίζει μια καμπύλη Υπολογίστε τη ροή του διανυσματικού πεδίου των ταχυτήτων
v = ⟨3+2y− y2/3, 0⟩ (σε cm/s) που διασχίζει το ένα τέταρτο της έλλειψης r(t) = ⟨3cos t,
6sin t⟩ για 0 ≤ t ≤ π/2 (βλ. Σχήμα 1.30).

Λύση. Παρατηρήστε ότι το διανυσματικό πεδίο
διασχίζει την καμπύλη από αριστερά προς τα δεξιά
σε σχέση με τον προσανατολισμό της καμπύλης.
Επομένως, περιμένουμε ότι η προκύπτουσα ροή θα
είναι θετική. Το διανυσματικό πεδίο κατά μήκος της
τροχιάς είναι

v(r(t)) =
〈

3+2(6sin t)− (6sin t)2

3
, 0
〉
=〈

3+12sin t −12sin2 t, 0
〉
.

Το εφαπτόμενο διάνυσμα είναι

r′(t) = ⟨−3sin t, 6cos t⟩

και συνεπώς το κάθετο διάνυσμα είναι

N(t) = ⟨6cos t, 3sin t⟩.
Σχήμα 1.30

Ολοκληρώνουμε το εσωτερικό γινόμενο:

v(r(t)) ·N(t) =
〈
3+12sin t −12sin2 t, 0

〉
· ⟨6cos t, 3sin t⟩

= (3+12sin t −12sin2 t)(6cos t)

= 18cos t +72sin t cos t −72sin2 t cos t.

προκειμένου να υπολογίσουμε τη ροή, δηλαδή:∫ b

a
v(r(t)) ·N(t)dt =

∫ π/2

0

(
18cos t +72sin t cos t −72sin2 t cos t

)
dt
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= 18+36−24 = 30 cm2/s

Όπως ήδη έχουμε αναφέρει, στον χώρο R3 η ροή ενός διανυσματικού πεδίου υπολογίζεται
εγκάρσια σε μία επιφάνεια, αντί για μία καμπύλη. Θα ορίσουμε τα ολοκληρώματα αυτού του
τύπου στην επόμενη ενότητα.

Περίληψη 1.11.3

1. Μια προσανατολισμένη καμπύληC είναι μια καμπύλη στην οποία έχει επιλεγεί μία από τις
δύο πιθανές κατευθύνσεις κατά μήκος τηςC (η οποία αποκαλείται θετική κατεύθυνση).

2. Επικαμπύλιο ολοκλήρωμα πάνω σε μια καμπύλη που παραμετράται από την r(t) για
a ≤ t ≤ b:

• Διαφορικό μήκους τόξου:

ds = ∥r′(t)∥dt.

Επικαμπύλιο ολοκλήρωμα βαθμωτής συνάρτησης:∫
C

f (x,y,z)ds =
∫ b

a
f (r(t))∥r′(t)∥dt

• Διανυσματικό διαφορικό:

dr = T ds = r′(t)dt.

Επικαμπύλιο ολοκλήρωμα διανυσματικής συνάρτησης:∫
C

F ·dr =
∫

C
(F ·T )ds =

∫ b

a
F(r(t)) · r′(t)dt

Στις τρεις διαστάσεις: ∫
C

F1 dx + F2 dy + F3 dz

3. Το επικαμπύλιο ολοκλήρωμα μιας βαθμωτής συνάρτησης αλλά και ενός διανυσματικού
πεδίου εξαρτάται από τον προσανατολισμό της καμπύληςC. Η παραμέτρηση r(t) πρέπει
να είναι κανονική (να ισχύει r′(t) ̸= 0), ενώ θα πρέπει επίσης να ιχνηλατεί την καμπύλη
C στη θετική κατεύθυνση.

4. Γράφουμε−C προκειμένου να δηλώσουμε την καμπύλη με τον αντίθετο προσανατολισμό.
Επομένως: ∫

−C
F ·dr =−

∫
C

F ·dr

5. Αν ρ(x,y,z) είναι η πυκνότητα μάζας ή φορτίου κατά μήκος μιας καμπύλης C, τότε η
συνολική μάζα, ή αντιστοίχως το συνολικό φορτίο, είναι ίση με το επικαμπύλιο ολοκλήρωμα∫

C
ρ(x,y,z)ds.
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6. Το επικαμπύλιο ολοκλήρωμα των διανυσματικών πεδίων χρησιμοποιείται, εκτός των
άλλων, για τον υπολογισμό του έργου W που παράγεται από μια δύναμη που δρα πάνω
σε ένα αντικείμενο το οποίο κινείται κατά μήκος μιας καμπύληςC:

W =
∫

C
F ·dr

Το έργο που παράγεται ενάντια στο πεδίο των δυνάμεων F είναι η ποσότητα−
∫

C
F ·dr.

7. Για μια καμπύλη C στον χώρο R2 η ροή που διασχίζει εγκάρσια την C δίνεται από το
επικαμπύλιο ολοκλήρωμα∫

C
(F ·n)ds =

∫ b

a
F(r(t)) ·N(t)dt,

όπου N(t) = ⟨y′(t),−x′(t)⟩.

Ασκήσεις 1.11.4

1. Ποιες από τις επόμενες βαθμωτές συναρτήσεις και διανυσματικά πεδία έχουν μηδενικό
επικαμπύλιο ολοκλήρωμα πάνω στο κατακόρυφο ευθύγραμμο τμήμα που ξεκινά από το
σημείο (0,0) και καταλήγει στο (0,1);

α) f (x,y) = x β) f (x,y) = y γ) F = ⟨x,0⟩ δ) F = ⟨y,0⟩ ε) F = ⟨0,x⟩

2. Να χαρακτηρίσετε καθεμία από τις ακόλουθες προτάσεις ως σωστή ή λάθος. Στην περίπτω-
ση που η πρόταση είναι λανθασμένη, να δώσετε τη σωστή διατύπωση.
(a) Το επικαμπύλιο ολοκλήρωμα μιας βαθμωτής συνάρτησης δεν εξαρτάται από τον

τρόπο παραμέτρησης της καμπύλης.

(b) Αν αντιστρέψουμε τον προσανατολισμό μιας καμπύλης, δεν αλλάζει τιμή ούτε το
επικαμπύλιο ολοκλήρωμα ενός διανυσματικού πεδίου, ούτε και το επικαμπύλιο
ολοκλήρωμα μιας βαθμωτής συνάρτησης.

3. Έστω το διανυσματικό πεδίο F = ⟨y2, x2⟩ καιC η καμπύλη y = x−1 για 1 ≤ x ≤ 2, που
είναι προσανατολισμένη από τα αριστερά προς τα δεξιά.
(a) Υπολογίστε την F(r(t)) και το διαφορικό dr = r′(t)dt για την παραμετροποίηση

τηςC

r(t) = ⟨t, t−1⟩.

(b) Προσδιορίστε το F(r(t)) · r′(t)dt και υπολογίστε το επικαμπύλιο ολοκλήρωμα∫
C F ·dr

.

4. Έστω F(x,y,z) = ⟨z2, x, y⟩ καιC η καμπύλη που δίνεται από την

r(t) = ⟨3+5t2, 3− t2, t⟩, 0 ≤ t ≤ 2.

(a) Υπολογίστε την F(r(t)) και το διαφο-ρικό dr = r′(t)dt .
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(b) Προσδιορίστε το εσωτερικό γινόμενοF(r(t)) ·r′(t)dt και υπολογίστε το επικαμπύ-
λιο ολοκλήρωμα ∫

C F ·dr
.

Στις Ασκήσεις 5-7 να υπολογίσετε το επικαμπύλιο ολοκλήρωμα της βαθμωτής συνάρτησης
ή του διανυσματικού πεδίου που δίνεται σε κάθε περίπτωση πάνω στην καμπύλη

r(t) = ⟨cos t,sin t, t⟩, 0 ≤ t ≤ π.

5. f (x,y,z) = x2 + y2 + z2

6. f (x,y,z) = xy+ z

7. F(x,y,z) = ⟨x,y,z2⟩

Στις Ασκήσεις 8–10 να υπολογίσετε το επικαμπύλιο ολοκλήρωμα∫
C

f ds

για τη βαθμωτή συνάρτηση f και την καμπύληC που δίνεται σε κάθε περίπτωση.

8. f (x,y) =
√

1+9xy, y = x3 για 0 ≤ x ≤ 2

9. f (x,y,z) = z2, r(t) = ⟨2t, 3t, 4t⟩ για 0 ≤ t ≤ 2

10. f (x,y,z) = 3x−2y+ z, r(t) = ⟨2+ t, 2− t, 2t⟩ για−2 ≤ t ≤ 1

11. Υπολογίστε το επικαμπύλιο ολοκλήρωμα∫
C

1ds,

όπου η καμπύλη C παραμετράται από την r(t) = ⟨4t,−3t, 12t⟩ για 2 ≤ t ≤ 5. Τι
αντιπροσωπεύει αυτό το ολοκλήρωμα;

12. Υπολογίστε το επικαμπύλιο ολοκλήρωμα∫
C

1ds,

όπου η καμπύληC παραμετράται από την r(t) = ⟨et ,
√

2 t, e−t⟩ για 0 ≤ t ≤ 2.

Στις Ασκήσεις 13–18 να υπολογίσετε το επικαμπύλιο ολοκλήρωμα∫
C

F ·dr

για το διανυσματικό πεδίο F⃗ και την προσανατολισμένη καμπύλη C που δίνονται σε κάθε
περίπτωση.

13. F(x,y) = ⟨1+ x2, xy2⟩, πάνω στο ευθύγραμμο τμήμα που ξεκινά από το σημείο (0,0)
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και καταλήγει στο (1,3).

14. F(x,y) = ⟨−2, y⟩, πάνω στο ημικύκλιο

x2 + y2 = 1

, με y ≥ 0, που είναι προσανατολισμένο αντιωρολογιακά.

15. F(x,y) = ⟨x2, xy⟩, πάνω στο τμήμα του κύκλου

x2 + y2 = 9

, με x ≤ 0, y ≥ 0.

16. F(x,y,z) = ⟨3zy−1, 4x,−y⟩, πάνω στην r(t) = ⟨et , et , t⟩, με−1 ≤ t ≤ 1.

17. F(x,y) =
〈

−y
(x2 + y2)2 ,

x
(x2 + y2)2

〉
, πάνω σε κύκλο ακτίναςR με το κέντρο του στην

αρχή των αξόνων και αντιωρολογιακό προσανατολισμό.

18. F(x,y,z) =
〈

1
y3 +1

,
1

z+1
, 1
〉
, πάνω στην r(t) = ⟨t3, 2, t2⟩, με 0 ≤ t ≤ 1.

Στις Ασκήσεις 19–23 να υπολογίσετε το επικαμπύλιο ολοκλήρωμα που σημειώνεται σε κάθε
περίπτωση.

19. ∫
C

xdx,

πάνω στην y = x3 για 0 ≤ x ≤ 3.

20. ∫
C
(x− y)dx+(y− z)dy+ zdz,

πάνω στο ευθύγραμμο τμήμα που ξεκινά από το σημείο (0,0,0) και καταλήγει στο
σημείο (1,4,4).

21. ∫
C

zdx+ x2 dy+ ydz,

πάνω στην r(t) = ⟨cos t, tan t, t⟩ για 0 ≤ t ≤ π
4
.

22. Έστω η συνάρτηση f (x,y,z) = x−1yz και C η καμπύλη που παραμετράται από την
r(t)= ⟨ln t, t, t2⟩ για2≤ t ≤ 4. Χρησιμοποιήστε έναΥπολογιστικό ΣύστημαΆλγεβρας
για να υπολογίσετε το επικαμπύλιο ολοκλήρωμα∫

C
f (x,y,z)ds
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με ακρίβεια τεσσάρων δεκαδικών ψηφίων.

23. Χρησιμοποιήστε έναΥπολογιστικό ΣύστημαΆλγεβρας για να υπολογίσετε το επικαμπύλιο
ολοκλήρωμα ∫

C
⟨ex−y, ex+y⟩ ·dr

με ακρίβεια τεσσάρων δεκαδικών ψηφίων, ανC είναι η καμπύλη y= sinx, με 0≤ x≤ π ,
η οποία είναι προσανατολισμένη από αριστερά προς τα δεξιά.

Στις Ασκήσεις 24 και 25 να υπολογίσετε το επικαμπύλιο ολοκλήρωμα του πεδίου.

F(x,y,z) = ⟨ez, ex−y, ey⟩

πάνω στη διαδρομή που δίνεται σε κάθε περίπτωση.

24. Στη διαδρομή που σημειώνεται με μπλε
χρώμα, από το σημείο P στο σημείο Q του
Σχήματος 1.32.

Σχήμα 1.32

25. Στην κλειστή διαδρομή ABCA του
Σχήματος 1.33.

Σχήμα 1.33

Στις Ασκήσεις 26 και 27C είναι η διαδρομή
από το σημείοP στο σημείοQ του Σχήματος
1.34 που απαρτίζεται από τιςC1,C2 καιC3
με τον προσανατολισμό που φαίνεται, ενώ
F⃗ είναι ένα διανυσματικό πεδίο τέτοιο ώστε∫

C
F⃗ · d⃗r = 5,

∫
C1

F⃗ · d⃗r = 8,

∫
C3

F⃗ · d⃗r = 8.
Σχήμα 1.34

26. Προσδιορίστε τα ακόλουθα επικαμπύλια ολοκληρώματα:

(a)
∫
−C3

F ·dr (b)
∫

C2

F ·dr (c)
∫
−C1−C3

F ·dr.

27. Υπολογίστε την τιμή του επικαμπύλιου ολοκληρώματος∫
C′

F ·dr,

όπου C′ είναι η διαδρομή που ιχνηλατεί τον βρόχο 2 τέσσερις φορές σε ωρολογιακή
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κατεύθυνση.

Στις Ασκήσεις 28–29 να χρησιμοποιήσετε την Εξίσωση

V (P) = k
∫

C

ρ(x,y,z)
DP(x,y,z)

ds

για να υπολογίσετε το ηλεκτρικό δυναμικόV (P) σε ένα σημείο P, εξαιτίας της πυκνότητας
φορτίου που δίνεται σε κάθε περίπτωση (εκφρασμένη σε μονάδες 10−6 C/cm).

28. Υπολογίστε το δυναμικόV (P) στην αρχή των αξόνωνP=(0,0), αν το αρνητικό ηλεκτρικό
φορτίο είναι κατανεμημένο κατά μήκος της καμπύλης y= x2, για 1≤ x≤ 2, με πυκνότητα

ρ(x,y) =−y
√

x2 +1.

29. Υπολογίστε το δυναμικό V (P) στην αρχή των αξόνων P = (0,0), αν το ηλεκτρικό

φορτίο είναι κατανεμημένο κατά μήκος της καμπύλης y = x−1, για
1
2
≤ x ≤ 2, με

πυκνότητα ρ(x,y) = x3y.

Στις Ασκήσεις 30–31 να υπολογίσετε το έργο που παράγεται από το πεδίο F όταν το αντικεί-
μενο κινείται κατά μήκος της διαδρομής που περιγράφεται σε κάθε περίπτωση από το
αρχικό στο τελικό σημείο.

30. F(x,y,z) = ⟨x,y,z⟩, r(t) = ⟨cos t,sin t, t⟩ για 0 ≤ t ≤ 3π

31. F(x,y,z) = ⟨ex,ey,xyz⟩, r(t) = ⟨t2, t, t/2⟩ για 0 ≤ t ≤ 1.

Στις Ασκήσεις 32–35 να χρησιμοποιήσετε την Εξίσωση∫
C
(F⃗ ·n)ds =

∫ b

a
F(r(t)) · N(t)

∥r′(t)∥
∥r′(t)∥dt =

∫ b

a
F(r(t)) ·N(t)dt.

για να υπολογίσετε τη ροή του διανυσματικού πεδίου που δίνεται σε κάθε περίπτωση και
διασχίζει εγκάρσια την καμπύλη που περιγράφεται.

32. F(x,y) = ⟨−y, x⟩, από το πάνω ήμισυ του μοναδιαίου κύκλου, που είναι προσανατολι-
σμένος ωρολογιακά.

33. F(x,y) = ⟨x2, y2⟩, από το ευθύγραμμο τμήμα που ξεκινά από το σημείο (3,0) και
καταλήγει στο (0,3), με προσανατολισμό προς τα επάνω.

34. F(x,y) =
〈

x+1
(x+1)2 + y2 ,

y
(x+1)2 + y2

〉
, από το ευθύγραμμο τμήμα κατά μήκος του

άξονα y, για 1 ≤ y ≤ 4, με προσανατολισμό προς τα επάνω.

35. F(x,y) = ⟨ey, 2x−1⟩, από την παραβολή y = x2 με 0 ≤ x ≤ 1, που είναι προσανατολι-
σμένη από αριστερά προς τα δεξιά.
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Στις Ασκήσεις 36-39 να υπολογίσετε το έργο που παράγεται από το πεδίοF όταν το αντικείμενο
κινείται κατά μήκος της διαδρομής που περιγράφεται σε κάθε περίπτωση από το αρχικό στο
τελικό σημείο.

36. F(x,y,z) = ⟨x,y,z⟩, r = ⟨cos t,sin t, t⟩για 0 ≤ t ≤ 3π.

37. F(x,y,z) = ⟨xy,yz,xz⟩, r = ⟨t, t2, t3⟩για 0 ≤ t ≤ 1.

38. F(x,y,z) = ⟨ex,ey,xyz⟩, r = ⟨t2, t, t/2⟩για 0 ≤ t ≤ 1.

39. Στο Σχήμα 1.35 απεικονίζεται ένα
διανυσματικό πεδίο δυνάμεων F.
(a) Πάνω σε ποια από τις δύο διαδρομές,

ADC ήABC, παράγει λιγότερο έργο
το πεδίο F;

(b) Αν πρέπει να παραχθεί έργο ενάντια
στο πεδίο F προκειμένου το
αντικείμενο να μετακινηθεί από το
σημείο C στο σημείο A, ποια από
τις διαδρομές CBA ή CDA απαιτεί
τη δαπάνη της λιγότερης ενέργειας;

Σχήμα 1.35

Στις Ασκήσεις 40-43 να χρησιμοποιήσετε την Εξίσωση∫
C
(F⃗ ·n)ds =

∫ b

a
F(r(t)) · N(t)

∥r′(t)∥
∥r′(t)∥dt =

∫ b

a
F(r(t)) ·N(t)dt.

για να υπολογίσετε τη ροή του διανυσματικού πεδίου που δίνεται σε κάθε περίπτωση και
διασχίζει εγκάρσια την καμπύλη που περιγράφεται.

40. F(x,y)= ⟨−y,x⟩, από το πάνω ήμισυ του μοναδιαίου κύκλου που είναι προσανατολισμέ-
νος ωρολογιακά.

41. F(x,y) = ⟨x2,y2⟩, από το ευθύγραμμο τμήμα που ξεκινά από το σημείο (3,0) και
καταλήγει στο (0,3), με προσανατολισμό προς τα επάνω.

42. F(x,y) =
〈

x+1
(x+1)2 + y2 ,

y
(x+1)2 + y2

〉
, από το ευθύγραμμο τμήμα κατά μήκος του

άξονα y για 1 ≤ y ≤ 4, με προσανατολισμό προς τα επάνω.

43. F(x,y) = ⟨ey,2x−1⟩, από την παραβολή y = x2 με 0 ≤ x ≤ 1, που είναι προσανατολι-
σμένη από αριστερά προς τα δεξιά.

1.12 Συντηρητικά διανυσματικά πεδία

Στην παρούσα ενότητα θα μελετήσουμε σε περισσότερο βάθος
τα συντηρητικά διανυσματικά πεδία. Μια σημαντική ιδιότητα
αυτών των πεδίων είναι ότι το επικαμπύλιο ολοκλήρωμα ενός
συντηρητικού διανυσματικού πεδίου κατά μήκος μιας κλειστής
διαδρομής είναι μηδέν.

• Ένα διανυσματικό πεδίο F
είναι συντηρητικό αν F = ∇ f
για κάποια συνάρτηση f (x,y,z).

• Η συνάρτηση f είναι γνωστή
ως συνάρτηση δυναμικού.

Όταν μια καμπύληC είναι κλειστή, τότε πολύ συχνά αναφερόμαστε στο επικαμπύλιο ολοκλήρωμα
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ενός οποιουδήποτε διανυσματικού πεδίου F πάνω στην καμπύλη C ως την κυκλοφορία του F
πάνω στη C (βλ. Σχήμα 1.36(a)), ενώ χρησιμοποιούμε το σύμβολο

∮
για να δηλώσουμε ένα

τέτοιο ολοκλήρωμα, γράφουμε δηλαδή: ∮
C

F ·dr

Στην πραγματικότητα, δεν έχει σημασία ποιο σημείο θα θεωρήσουμε ως αρχή, αφού η καμπύλη
είναι κλειστή.

Υποθέστε τώρα ότι ταA καιB είναι δύο σημεία πάνω σε μια κλειστή καμπύλη. Αν ξεκινήσουμε
από το σημείο A, τότε η κυκλοφορία καθώς κινούμαστε κατά μήκος της καμπύλης επιστρέφοντας
προς το A θα είναι το άθροισμα του επικαμπύλιου ολοκληρώματος από το A στο B και του
επικαμπύλιου ολοκληρώματος από το B μέχρι να επιστρέψουμε στο A. Αλλάζοντας τη σειρά
άθροισης αυτών των δύο επικαμπύλιων ολοκληρωμάτων θα προκύψει η κυκλοφορία με αφετηρία
το σημείο B και επιστροφή σε αυτό, δίνοντας έτσι το ίδιο αποτέλεσμα.

Το πρώτο μας αποτέλεσμα αναφέρεται στη θεμελιώδη ιδιότητα της ανεξαρτησίας από τη
διαδρομή του επικαμπύλιου ολοκληρώματος των συντηρητικών διανυσματικών πεδίων. Πιο συγ-
κεκριμένα, σύμφωνα με το θεώρημα που ακολουθεί, το επικαμπύλιο ολοκλήρωμα του διανυσμα-
τικού πεδίου F κατά μήκος μιας διαδρομής με αφετηρία το σημείο P και τερματικό σημείο το Q
εξαρτάται μόνο από τα άκρα της διαδρομής, δηλαδή τα σημεία P και Q, και όχι από τη διαδρομή
που ακολουθήσαμε για να μεταβούμε από το P στο Q, όπως φαίνεται στο Σχήμα 1.36(b).

(a) Η κυκλοφορία κατά μήκος μιας κλειστής διαδρομής

συμβολίζεται ως
∮

C
F ·dr

(b) Ανεξαρτησία από τη διαδρομή: Αν το πεδίο F είναι
συντηρητικό, τότε τα επικαμπύλια ολοκληρώματα του
πεδίου αυτού πάνω στις διαδρομές r1 και r2 είναι ίσα.

Σχήμα 1.36

Θεώρημα 1.12.1 Θεμελιώδες θεώρημα για τα συντηρητικά διανυσματικά πεδία Υποθέστε ότι
ισχύει F = ∇ f σε ένα χωρίο D.

1. Αν r είναι μια διαδρομή κατά μήκος της καμπύλης C που ξεκινά από το σημείο P και
καταλήγει στο Q εντός του χωρίου D, τότε:∫

C
F ·dr = f (Q)− f (P)

Αυτό σημαίνει ότι το επικαμπύλιο ολοκλήρωμα του διανυσματικού πεδίουF είναι ανεξά-
ρτητο της διαδρομής.

2. Η κυκλοφορία πάνω σε μια κλειστή καμπύλη C (σε μια καμπύλη δηλαδή για την οποία
ισχύει ότι P = Q) είναι μηδέν, δηλαδή:∮

C
F ·dr = 0
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Λύση. Απόδειξη. Ας υποθέσουμε ότι η r(t) είναι μια διαδρομή κατά μήκος της καμπύληςC στο
χωρίο D για a ≤ t ≤ b με r(a) = P και r(b) = Q. Τότε:∫

C
F ·dr =

∫
C

∇ f ·dr =
∫ b

a
∇ f (r(t)) · r′(t)dt

Σύμφωνα όμως με τον κανόνα της αλυσίδας για τις τροχιές, θα ισχύει:

d
dt

f (r(t)) = ∇ f (r(t)) · r′(t).

Από το θεμελιώδες θεώρημα του Λογισμού έχουμε:∫
C

F ·dr =
∫ b

a

d
dt

f (r(t))dt = f (r(t))
∣∣∣b
a
= f (r(b))− f (r(a)) = f (Q)− f (P).

Με τον τρόπο αυτόν αποδεικνύεται η Εξίσωση (1). Ταυτόχρονα όμως αποδείξαμε και την
ανεξαρτησία από τη διαδρομή καθώς η ποσότητα f (Q)− f (P) εξαρτάται μόνο από τα ακραία
σημεία αλλά όχι από την ίδια τη διαδρομή r. Στην περίπτωση που η διαδρομή r είναι κλειστή,
τότε θα ισχύει P = Q και f (Q)− f (P) = 0.

Παράδειγμα 1.12.2
Έστω το διανυσματικό πεδίο F(x,y,z) = ⟨2xy+ z, x2, x⟩.
1. Να επιβεβαιώσετε ότι η f (x,y,z) = x2y+xz αποτελεί μια συνάρτηση δυναμικού για το

F.
2. Υπολογίστε το επικαμπύλιο ολοκλήρωμα∫

C
F ·dr

όπουC είναι μια καμπύλη που ξεκινά από το σημείο P = (1,−1,2) και καταλήγει στο
Q = (2,2,3).

Λύση. (a) Οι μερικές παράγωγοι της συνάρτησης
f (x,y,z) = x2y+ xz πρέπει να είναι οι συνιστώσες
του F. Πράγματι:

∂ f
∂x

= 2xy+ z,
∂ f
∂y

= x2,
∂ f
∂ z

= x.

Επομένως,

∇ f = ⟨2xy+ z, x2, x⟩= F,

γεγονός που σημαίνει ότι πράγματι η f είναι μια
συνάρτηση δυναμικού του F.

Σχήμα 1.37 Μια τυχαία διαδρομή από το σημείο
(1,−1,2) στο (2,2,3)

(b) Σύμφωνα με τοΘεώρημα 1.12.1, το ζητούμενο επικαμπύλιο ολοκλήρωμα πάνωσε οποιαδήποτε
διαδρομή r(t) που συνδέει τα σημεία P = (1,−1,2) και Q = (2,2,3) (βλ. Σχήμα 1.37) θα έχει
την τιμή:
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∫
C

F ·dr = f (Q)− f (P) = f (2,2,3)− f (1,−1,2) =(
22(2)+2(3)

)
−
(
12(−1)+1(2)

)
= 13

Παράδειγμα 1.12.3
Βρείτε μια συνάρτηση δυναμικού για το διανυσματικό πεδίο F = ⟨2x+ y, x⟩ την οποία στη
συνέχεια να χρησιμοποιήσετε προκειμένου να υπολογίσετε το επικαμπύλιο ολοκλήρωμα∫

C
F ·dr

όπου r είναι οποιαδήποτε διαδρομή (βλ. Σχήμα 1.38) που ξεκινά από το σημείο (1,2) και
καταλήγει στο σημείο (5,7).

Λύση. Στη συνέχεια της παρούσας ενότητας
θα αναπτύξουμε μια γενική μέθοδο για τον
προσδιορισμό των συναρτήσεων δυναμικού
ενός συντηρητικού διανυσματικού πεδίου. Στο
σημείο όμως που βρισκόμαστε, μπορούμε να
παρατηρήσουμε ότι η συνάρτηση f (x,y) = x2 + xy
ικανοποιεί τη συνθήκη ∇ f = F καθώς ισχύει:
∂ f
∂x

=
∂
∂x

(x2 + xy) = 2x+ y,
∂ f
∂y

=
∂
∂y

(x2 +

xy) = x.
Επομένως, για κάθε διαδρομή r με αρχή το σημείο
(1,2) και πέρας το (5,7) θα ισχύει:∫

C
F ·dr = f (5,7)− f (1,2)

=
(
52 +5(7)

)
−
(
12 +1(2)

)
= 57

Σχήμα 1.38 Διαφορετικές διαδρομές από το (1,2) στο
(5,7)

Παράδειγμα 1.12.4
Επικαμπύλιο ολοκλήρωμα σε μια κλειστή

διαδρομή Έστω η συνάρτηση f (x,y,z) =
xysin(yz). Υπολογίστε το επικαμπύλιο

ολοκλήρωμα
∮

C
∇ f · dr, όπου C είναι η κλειστή

καμπύλη του Σχήματος 1.39.

Λύση. Σύμφωνα με το Θεώρημα 1.12.1, το
ολοκλήρωμα ενός διανυσματικού πεδίου που
προέρχεται από την κλίση μιας βαθμωτής
συνάρτησης πάνω σε οποιαδήποτε κλειστή διαδρομή
είναι μηδέν. Δηλαδή∮

C
∇ f ·dr = 0

Σχήμα 1.39 Το επικαμπύλιο ολοκλήρωμα ενός
συντηρητικού διανυσματικού πεδίου σε μια κλειστή
διαδρομή είναι μηδέν
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Θεώρημα 1.12.5Ένα διανυσματικό πεδίοF σε ένα ανοικτό και συνεκτικό χωρίοD έχει επικαμπύ-
λιο ολοκλήρωμα που είναι ανεξάρτητο της διαδρομής αν και μόνο αν είναι συντηρητικό.

1.13 Προσδιορισμός των συναρτήσεων δυναμικού

Μέχρι στιγμής δεν διαθέτουμε μια γρήγορη και αποτελεσματική μέθοδο για να ελέγξουμε αν
ένα δεδομένο διανυσματικό πεδίο είναι συντηρητικό ή όχι. Σύμφωνα με το Θεώρημα 1.12.1 της
Ενότητας 1.12, κάθε συντηρητικό πεδίο στον χώρο R3 ικανοποιεί τη συνθήκη:

curl(F) = 0, ή ισοδύναμα,
∂F1

∂y
=

∂F2

∂x
,

∂F2

∂ z
=

∂F3

∂y
,

∂F3

∂x
=

∂F1

∂ z

Εγγυάται όμως η συνθήκη αυτή ότι το πεδίο F είναι συντηρητικό; Η απάντηση είναι ναι, υπό
συνθήκες. Πιο συγκεκριμένα, η συνθήκη της ισότητας των μικτών μερικών παραγώγων εγγυάται
τη συντηρητικότητα του πεδίουF μόνο σε χωρίαD που διαθέτουν την ιδιότητα της απλής συνεκτι-
κότητας.

Γενικά, ένα χωρίο D του επιπέδου είναι απλά συνεκτικό αν είναι συνεκτικό χωρίς να φέρει
οποιαδήποτε «οππή», όπως φαίνεται στο Σχήμα 1.40.

Σχήμα 1.40 Οι απλά συνεκτικές περιοχές δεν έχουν οπές

Αν θέλουμε να είμαστε ακριβέστεροι, το χωρίο D είναι απλά συνεκτικό αν κάθε βρόχος του D
μπορεί να συρρικνωθεί φτάνοντας να γίνει ένα σημείο, μένοντας συνεχώς εντός του χωρίου D,
όπως φαίνεται στο Σχήμα 1.41(α). Παραδείγματα απλά συνεκτικών χωρίων στο επίπεδοR2 είναι
οι δίσκοι, τα ορθογώνια, καθώς και ολόκληρο το επίπεδο R2. Αντιθέτως, ο δίσκος του Σχήματος
1.40(β) από τον οποίο έχει αφαιρεθεί ένα σημείο δεν είναι απλά συνεκτικό χωρίο, καθώς ο βρόχος
που φαίνεται στο σχήμα δεν μπορεί να συρρικνωθεί φτάνοντας να γίνει σημείο χωρίς να περάσει
από το σημείο που έχει αφαιρεθεί. Στον χώρο R3 οι εσωτερικές περιοχές μιας σφαίρας αλλά και
ενός κουτιού είναι απλά συνεκτικές, όπως επίσης και ολόκληρος ο χώρος R3.
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Σχήμα 1.41

Θεώρημα 1.13.1Ύπαρξη συνάρτησης δυναμικούἜστωF ένα διανυσματικό πεδίο σε ένα απλά
συνεκτικό χωρίο D. Αν το πεδίο F ικανοποιεί τη συνθήκη της ισότητας των μικτών μερικών
παραγώγων, τότε το F είναι συντηρητικό.

Παράδειγμα 1.13.2
Προσδιορισμός συνάρτησης δυναμικού Να αποδείξετε ότι το διανυσματικό πεδίο

F = ⟨2xy+ y3, x2 +3xy2 +2y⟩

είναι συντηρητικό και να προσδιορίσετε μια συνάρτηση δυναμικού για το πεδίο αυτό.

Λύση. Αρχικά, παρατηρούμε ότι οι χιαστί μερικές παράγωγοι είναι ίσες, καθώς ισχύει:

∂F1

∂y
=

∂
∂y

(2xy+ y3) = 2x+3y2

∂F2

∂x
=

∂
∂x

(x2 +3xy2 +2y) = 2x+3y2

Επιπλέον, το πεδίοF είναι ορισμένο σε ολόκληρο τον χώροR2, που είναι ένα απλά συνεκτικό
χωρίο. Επομένως, σύμφωνα με το Θεώρημα 1.13.1 θα υπάρχει μια συνάρτηση δυναμικού.

Αυτή η συνάρτηση δυναμικού f θα πρέπει να ικανοποιεί τη συνθήκη

∂ f
∂x

= F1(x,y) = 2xy+ y3.

Ολοκληρώνουμε ως προς x:

f (x,y) =
∫
(2xy+ y3)dx = x2y+ xy3 +g(y),

όπου το g(y) είναι άγνωστη συνάρτηση του y.
Τώρα χρησιμοποιούμε τη δεύτερη συνθήκη:

∂ f
∂y

= x2 +3xy2 +g′(y) !
= F2(x,y) = x2 +3xy2 +2y.

Άρα:
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g′(y) = 2y ⇒ g(y) = y2.

Τελική συνάρτηση δυναμικού:

f (x,y) = x2y+ xy3 + y2.

Η σχέση αυτή μας δείχνει ότι η συνάρτηση f είναι μια αντιπαράγωγος της F1(x,y), εφόσον
αυτή θεωρηθεί ως συνάρτηση της μεταβλητής x, δηλαδή

f (x,y) =
∫

F1(x,y)dx =
∫
(2xy+ y3)dx = x2y+ xy3 +g(y)

όπου g(y) είναι μια σταθερά (ως προς τη μεταβλητή x) της ολοκλήρωσης. Παρομοίως, τώρα
θα έχουμε:

f (x,y) =
∫

F2(x,y)dy =
∫
(x2 +3xy2 +2y)dy = x2y+ xy3 + y2 +h(x)

Οι δύο προηγούμενες εκφράσεις για την f (x,y) θα πρέπει να συμπίπτουν, δηλαδή

x2y+ xy3 +g(y) = x2y+ xy3 + y2 +h(x)

από την οποία προκύπτει ότι g(y) = y2 και h(x) = 0, πέραν της ύπαρξης μιας αυθαίρετης
σταθεράςC. Έτσι, καταλήγουμε στη γενική συνάρτηση δυναμικού για το συγκεκριμένο διανυσματικό
πεδίο:

f (x,y) = x2y+ xy3 + y2 +C

Σχόλιο 1.13.3 Ως συνήθως, όταν βρίσκουμε την αντιπαράγωγο, θα πρέπει να εισάγουμε μια
σταθερά ολοκλήρωσης, έναν όρο του οποίου η παράγωγος ως προς τη μεταβλητή ολοκλήρωσης
είναι μηδέν. Όταν προσδιορίζουμε την αντιπαράγωγο ως προς τη μεταβλητή x, η σταθερά
ολοκλήρωσης μπορεί να εξαρτάται από τις υπόλοιπες μεταβλητές της συνάρτησης. Στην περί-
πτωση του Παραδείγματος 1.13.2, η σταθερά της ολοκλήρωσης εξαρτάται από τη μεταβλητή
y.

Στο παράδειγμα που ακολουθεί θα αποδείξουμε ότι η προσέγγιση που χρησιμοποιήσαμε στο
Παράδειγμα 1.13.2 μπορεί να γενικευθεί ώστε να χρησιμοποιηθεί για τον προσδιορισμό μιας συνά-
ρτησης δυναμικού και για την περίπτωση των διανυσματικών πεδίων του χώρου R3.

Παράδειγμα 1.13.4
Προσδιορίστε μια συνάρτηση δυναμικού για το διανυσματικό πεδίο

F = ⟨2xyz−1, z+ x2z−1, y− x2yz−2⟩

Λύση.Αν υπάρχει η συνάρτηση δυναμικού f , τότε αυτή θα πρέπει να ικανοποιεί τις σχέσεις:

f (x,y,z) =
∫

2xyz−1 dx = x2yz−1 +ϕ(y,z)

f (x,y,z) =
∫ (

z+ x2z−1) dy = zy+ x2z−1y+g(x,z)
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f (x,y,z) =
∫ (

y− x2yz−2) dz = yz+ x2yz−1 +h(x,y)

Αυτές οι τρεις εκφράσεις της συνάρτησης f (x,y,z) θα πρέπει να είναι ίσες μεταξύ τους, δηλαδή:

x2yz−1 +ϕ(y,z) = zy+ x2z−1y+g(x,z) = yz+ x2yz−1 +h(x,y)

Οι προηγούμενες ισότητες ισχύουν αν ϕ(y,z) = yz, g(x,z) = 0 και h(x,y) = 0. Επομένως,
το διανυσματικό πεδίοF είναι συντηρητικό και για οποιαδήποτε αριθμητική σταθεράC η συνάρτηση
δυναμικού του θα είναι η

f (x,y,z) = x2yz−1 + yz+C

Σχόλιο 1.13.5ΣτοΠαράδειγμα 1.13.4 το διανυσματικό πεδίοF ορίζεται μόνο αν z ̸= 0, επομένως
το πεδίο ορισμού αποτελείται από δύο «μισά» για z > 0 και z < 0. Μπορούμε να επιλέξουμε
διαφορετικές σταθερέςC στα δύο αυτά «μισά» του πεδίου ορισμού, εφόσον το επιθυμούμε.

1.13.1 Η σημασία των υποθέσεων

Δεν θα πρέπει να περιμένουμε ότι η προηγούμενη μέθοδος προσδιορισμού της συνάρτησης δυνα-
μικού θα μπορεί να εφαρμοστεί αν το διανυσματικό πεδίο F δεν ικανοποιεί τη συνθήκη ισότητας
των μικτών μερικών παραγώγων (καθώς σε αυτή την περίπτωση δεν θα υπάρχει συνάρτηση
δυναμικού). Πού θα εμφανιστεί τότε το πρόβλημα; Ας θεωρήσουμε το διανυσματικό πεδίο F =
⟨y, 0⟩. Αν επιχειρήσουμε να προσδιορίσουμε τη συνάρτηση δυναμικού αυτού του πεδίου θα
διαπιστώσουμε ότι θα πρέπει να ισχύει:

f (x,y) =
∫

ydx = xy+g(y) και f (x,y) =
∫

0dy = 0+h(x)

Όμως δεν υπάρχει καμία επιλογή για τις συναρτήσεις g(y) και h(x) ώστε xy+g(y) = h(x).
Αν υπήρχε αυτή η δυνατότητα και παραγώγιζαμε δύο φορές την ισότητα, μία ως προς τη μεταβλητή
x και μία ως προς τη μεταβλητή y, θα καταλήγαμε στην αντίφαση 1= 0. Η προηγούμενη μέθοδος,
λοιπόν, αποτυγχάνει σε αυτή την περίπτωση καθώς το διανυσματικό πεδίο F δεν ικανοποιεί τη
συνθήκη ισότητας των μικτών μερικών παραγώγων, επομένως δεν πρόκειται για συντηρητικό
πεδίο.

1.13.2 Το πεδίο δίνη (καταβόθρα)

Ποιος είναι ο λόγος για τον οποίο το Θεώρημα 1.13.1 απαιτεί να είναι το πεδίο ορισμού του
διανυσματικού πεδίου απλά συνεκτικό; Πρόκειται για μια ενδιαφέρουσα ερώτηση η οποία μπορεί
να απαντηθεί μελετώντας το πεδίο δίνη που εισαγάγαμε στην προηγούμενη ενότητα:

F =

〈
−y

x2 + y2 ,
x

x2 + y2

〉

Παράδειγμα 1.13.6
Δείξτε ότι το πεδίο δίνη ικανοποιεί τη συνθήκη ισότητας των μικτών μερικών παραγώγων αλλά
δεν είναι συντηρητικό. Αντιτάσσει το συμπέρασμα αυτό με το Θεώρημα 1.13.1;

Λύση. Αρχικά, θα ελέγξουμε τη συνθήκη ισότητας των μικτών μερικών παραγώγων:
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∂
∂x

(
x

x2 + y2

)
=

(x2 + y2)− x(∂/∂x)(x2 + y2)

(x2 + y2)2 =
y2 − x2

(x2 + y2)2

∂
∂y

(
−y

(x2 + y2)

)
=

−(x2 + y2)+ y(∂/∂y)(x2 + y2)

(x2 + y2)2 =
y2 − x2

(x2 + y2)2

Στο Παράδειγμα 1.13.2 αποδείξαμε ότι
∮

C
F · dr = 2π ̸= 0 για κάθε κύκλο C με κέντρο την

αρχή των αξόνων. Αν το πεδίο F ήταν συντηρητικό, η κυκλοφορία του κατά μήκος οποιασδήποτε
καμπύλης θα ήταν μηδέν σύμφωνα με το Θεώρημα 1.12.1. Επομένως, το συγκεκριμένο πεδίο F
δεν μπορεί να είναι συντηρητικό, παρά το γεγονός ότι η συνθήκη ισότητας των μικτών μερικών
παραγώγων ικανοποιείται. Το αποτέλεσμα αυτό δεν αντιτάσσεται με το συμπέρασμα του Θεωρή-
ματος 1.13.1 καθώς το πεδίο ορισμού τουF δεν ικανοποιεί τη συνθήκη της απλής συνεκτικότητας.
Επειδή το διανυσματικό πεδίο F δεν ορίζεται στην αρχή των αξόνων (x,y) = (0,0), το πεδίο
ορισμού είναι το D = {(x,y) ̸= (0,0)} και το χωρίο αυτό δεν είναι απλά συνεκτικό, όπως
φαίνεται στο Σχήμα 1.42(a).

(a) Το πεδίο ορισμού D του πεδίου δίνηF είναι το επίπεδο
από το οποίο έχει αφαιρεθεί η αρχή των αξόνων. Το χωρίο
αυτό δεν είναι απλά συνεκτικό.

(b) Για το διανυσματικό πεδίο F υπάρχει μια συνάρτηση
δυναμικού στο χωρίο D∗.

Σχήμα 1.42

Σχόλιο 1.13.7 Ακόμα και στην περίπτωση που ένα απλά συνεκτικό χωρίο D∗ έχει ακανόνιστο
σχήμα, όπως το χωρίο του Σχήματος 1.42(b), μπορούμε να προσδιορίσουμε μια συνάρτηση
δυναμικού για το πεδίο F, αν και η συνάρτηση αυτή μπορεί να μην εκφράζεται με έναν τόσο
απλό τρόπο όσο οι προηγούμενες συναρτήσεις f και g σταθερό σημείο (x0,y0) ∈ D∗ και για
κάθε άλλο σημείο (x,y) ∈ D∗ επιλέγουμε μια τροχιάC(x,y) στο D∗ που ξεκινά από το σημείο
(x0,y0) και καταλήγει στο (x,y). Μπορεί να αποδειχθεί ότι η συνάρτηση

h(x,y) =
∫

C(x,y)
F ·dr

ορίζεται ανεξάρτητα από την τροχιά που επιλέχτηκε και είναι μια συνάρτηση δυναμικού για το
διανυσματικό πεδίο F στο D∗.

Περίληψη 1.13.8

• Ένα διανυσματικό πεδίο F με πεδίο ορισμού το D είναι συντηρητικό αν υπάρχει μια
συνάρτηση f τέτοια ώστε ∇ f = F στο D. Η συνάρτηση f ονομάζεται συνάρτηση
δυναμικού του πεδίου F.



82 Προελληνικά και Ελληνικά Μαθηματικά

• Ένα διανυσματικό πεδίοF με πεδίο ορισμού τοD λέμε ότι είναι ανεξάρτητο της διαδρομής
αν για δύο οποιαδήποτε σημεία P,Q ∈ D ισχύει ότι∫

C1

F ·dr =
∫

C2

F ·dr

για οποιεσδήποτε δύο καμπύλες C1 και C2 στο χωρίο D που συνδέουν τα σημεία P και
Q.

• Θεμελιώδες θεώρημα για τα συντηρητικά διανυσματικά πεδία: Αν F = ∇ f , τότε∫
C

F ·dr = f (Q)− f (P)

για οποιαδήποτε διαδρομή C από το P στο Q εντός του πεδίου ορισμού του F. Το
θεώρημα αυτό δείχνει ότι τα συντηρητικά διανυσματικά πεδία είναι ανεξάρτητα της δια-
δρομής. Ειδικότερα, αν ηC είναι μια κλειστή διαδρομή (δηλαδή P = Q), τότε∮

C
F ·dr = 0

• Το αντίστροφο επίσης αληθεύει: Σε ένα ανοικτό, συνεκτικό χωρίο, κάθε διανυσματικό
πεδίο που είναι ανεξάρτητο της διαδρομής είναι συντηρητικό.

• Τα συντηρητικά διανυσματικά πεδία ικανοποιούν τη συνθήκη ισότητας των μικτών μερι-
κών παραγώγων, δηλαδή:

∂F1

∂y
=

∂F2

∂x
,

∂F2

∂ z
=

∂F3

∂y
,

∂F3

∂x
=

∂F1

∂ z
.

• Η συνθήκη της ισότητας των μικτών μερικών παραγώγων εγγυάται ότι το διανυσματικό
πεδίο F είναι συντηρητικό αν το χωρίοD είναι απλά συνεκτικό, δηλαδή κάθε βρόχος στο
D μπορεί να συρρικνωθεί σε ένα σημείο εντός του D.

Ασκήσεις 1.13.9

1. Ποιες από τις ακόλουθες προτάσεις είναι αληθείς για όλα τα διανυσματικά πεδία και
ποιες είναι αληθείς μόνο για τα συντηρητικά;

(a) Το επικαμπύλιο ολοκλήρωμα κατά μήκος μιας διαδρομής από το σημείο P στο
σημείο Q δεν εξαρτάται από τη διαδρομή που επιλέγουμε για να υπολογίσουμε
το ολοκλήρωμα.

(b) Το επικαμπύλιο ολοκλήρωμα πάνω σε μια προσανατολισμένη καμπύληC δεν εξαρ-
τάται από τον τρόπο παραμετρησής της.

(c) Το επικαμπύλιο ολοκλήρωμα πάνω σε μια κλειστή καμπύλη είναι μηδέν.

(d) Το επικαμπύλιο ολοκλήρωμα αλλάζει πρόσημο αν αντιστρέψουμε τον προσανατολι-
σμό της καμπύλης.

(e) Το επικαμπύλιο ολοκλήρωμα είναι ίσο με τη διαφορά των τιμών της συνάρτησης
δυναμικού στα άκρα της διαδρομής.
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(f) Το επικαμπύλιο ολοκλήρωμα είναι ίσο με το ολοκλήρωμα της εφαπτομενικής συνι-
στώσας του πεδίου κατά μήκος της καμπύλης.

(g) Οι μικτές μερικές παράγωγοι των συνιστωσών του πεδίου είναι ίσες.

2. Ἔστω F ἕνα διανυσματικό πεδίο ποὺ εἶναι ὁρισμένο σὲ ἕνα ἀνοικτὸ συνεκτικὸ χωρίο
D μὲ συνεχείς δεύτερες μερικὲς παραγώγους. Ποιες ἀπὸ τὶς ἀκόλουθες προτάσεις εἶναι
πάντα ἀληθεῖς καὶ ποιες εἶναι ἀληθεῖς κάτω ἀπὸ ἐπιπλέον προϋποθέσεις γιὰ τὸ χωρίο D;

(a) Ἀν τὸ πεδίο F διαθέτει μία συνάρτηση δυναμικοῦ, τότε τὸ F εἶναι συντηρητικό.

(b) Ἀν τὸ πεδίο F εἶναι συντηρητικό, τότε οἱ μικτὲς μερικὲς παράγωγοι τοῦ F εἶναι
ἴσες.

(c) Ἀν οἱ μικτὲς μερικὲς παράγωγοι τοῦ πεδίουF εἶναι ἴσες, τότε τὸF εἶναι συντηρητικό.

3. Ας υποθέσουμε ότι C, D και E είναι οι προσανατολισμένες καμπύλες του Σχήματος
1.43, ενώ F = ∇ f είναι ένα διανυσματικό πεδίο που προκύπτει από την κλίση μιας

συνάρτησης και είναι τέτοιο ώστε
∫

C
F · dr = 4. Ποιες είναι οι τιμές των ακόλουθων

ολοκληρωμάτων;

(a)
∫

D
F ·dr, (b)

∫
E

F ·dr.

Σχήμα 1.43

4. Έστω η συνάρτηση f (x,y,z) = xysin(yz) και F = ∇ f . Υπολογίστε το επικαμπύλιο
ολοκλήρωμα

∫
C F ·dr, όπου C είναι μια οποιαδήποτε διαδρομή με αφετηρία το σημείο

(0,0,0) και πέρας το σημείο (1,1,π).

5. Έστω το διανυσματικό πεδίο

F(x,y,z) = ⟨x−1z, y−1z, ln(xy)⟩

(a) Επιβεβαιώστε ότι F = ∇ f , όπου

f (x,y,z) = z ln(xy)
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(b) Να υπολογίσετε το επικαμπύλιο ολοκλήρωμα
∫

C F ·dr, όπου

r(t) = ⟨et , e2t , t2⟩, 1 ≤ t ≤ 3.

(c) Υπολογίστε το επικαμπύλιο ολοκλήρωμα
∫

C
F ·dr πάνω σε οποιαδήποτε καμπύλη

C από το σημείο P =
(1

2 ,4,2
)
στο Q = (2,2,3) που βρίσκεται στο χωρίο x >

0, y > 0.

(d) Στο ερώτημα (γ) γιατί ήταν απαραίτητο να διευκρινιστεί ότι η διαδρομή της ολοκλή-
ρωσης κείται εξ ολοκλήρου στο χωρίο για το οποίο οι συντεταγμένες x και y είναι
θετικές;

Στις Ασκήσεις 6-7 να επιβεβαιώσετε ότιF=∇ f και να υπολογίσετε το επικαμπύλιο ολοκλή-
ρωμα του πεδίου F στη διαδρομή που δίνεται σε κάθε περίπτωση.

6. F(x,y) = ⟨3, 6y⟩, f (x,y) = 3x+ 3y2, r(t) = ⟨t, 2t−1⟩ στο διάστημα 1 ≤
t ≤ 4.

7.
F(x,y,z) = yez i+ xez j+ xyez k, f (x,y,z) = xyez, r(t) =

⟨t2, t3, t −1⟩ για 1 ≤ t ≤ 2.

Στις Ασκήσεις 8-11 να προσδιορίσετε μια συνάρτηση δυναμικού για το διανυσματικό πεδίο
F ή να καταλήξετε στο συμπέρασμα ότι δεν είναι συντηρητικό.

8. F = y2i+(2xy+ ez)j+ yezk

9. F = ⟨y, x, z3⟩

10. F = ⟨cos(xz), sin(yz), xysinz⟩

11. F = ⟨cosz, 2y, −xsinz⟩

12. Υπολογίστε το επικαμπύλιο ολοκλήρωμα∫
C

2xyzdx+ x2zdy+ x2ydz

πάνω στη διαδρομή

r(t) =
(
t2, sin(πt/4), e t2−2t

)
.

13. Υπολογίστε το επικαμπύλιο ολοκλήρωμα∮
C

sinxdx+ zcosydy+ sinydz

όπουC είναι η έλλειψη 4x2 +9y2 = 36 με ωρολογιακό προσανατολισμό.

14. Να ελέγξετε αν το διανυσματικό πεδίο
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F(x,y) =
〈

x2

x2+y2 ,
y2

x2+y2

〉
διαθέτει συνάρτηση δυναμικού.

15. Το διανυσματικό πεδίο

F(x,y) =
〈

x
x2+y2 ,

y
x2+y2

〉
ορίζεται στο χωρίο D = {(x,y) ̸= (0,0)}.

(a) Είναι το χωρίο D απλά συνεκτικό;

(b) Να αποδείξετε ότι το διανυσματικό πεδίο F ικανοποιεί τη συνθήκη ισότητας των
μικτών μερικών παραγώγων. Εγγυάται το γεγονός αυτό τη συντηρητικότητα του
πεδίου F;

(c) Δείξτε ότι το πεδίο F είναι πράγματι συντηρητικό στο χωρίο D προσδιορίζοντας
μια συνάρτηση δυναμικού.

(d) Αντιφάσκει το αποτέλεσμα αυτό με το συμπέρασμα του Θεωρήματος 1.13.1;

1.14 Επιφανειακά ολοκληρώματα των βαθμωτών συναρτήσεων

Η βασική ιδέα ενός ολοκληρώματος έχει εμφανιστεί μέχρι τώρα πίσω από μια σειρά από πολλούς
διαφορετικούς «μανδύες». Έτσι, έχουμε ορίσει απλά, διπλά και τριπλά ολοκληρώματα, ενώ στην
αμέσως προηγούμενη ενότητα ορίσαμε τα επικαμπύλια ολοκληρώματα. Θα αναλύσουμε τώρα
ένα τελευταίο είδος ολοκληρώματος, το ολοκλήρωμα πάνω σε μια επιφάνεια. Πιο συγκεκριμένα,
στην παρούσα ενότητα θα μελετήσουμε τα επιφανειακά ολοκληρώματα των βαθμωτών συναρτή-
σεων, ενώ στην ενότητα που ακολουθεί, που είναι και η τελευταία του παρόντος κεφαλαίου, θα
καταπιαστούμε με τα επιφανειακά ολοκληρώματα των διανυσματικών πεδίων.
Ακριβώς όπως οι παραμετρημένες καμπύλες είναι το
σημείο-κλειδί για τον ορισμό και την ανάλυση των
επικαμπύλιων ολοκληρωμάτων, έτσι και ο ορισμός
των επιφανειακών ολοκληρωμάτων απαιτεί την ιδέα
μιας παραμετρημένης επιφάνειας — δηλαδή μιας
επιφάνειας S του χώρου R3 τα σημεία της οποίας
περιγράφονται με τη βοήθεια της

G(u,v) =
(
x(u,v), y(u,v), z(u,v)

)
.

Οι μεταβλητές u και v (που αποκαλούνται
παράμετροι) παίρνουν τιμές σε μια περιοχή D
του επιπέδου uv που είναι γνωστή ως πεδίο ορισμού
των παραμέτρων.

Στη G(u,v) στον χώρο R3 μπορούμε να
αποδώσουμε δύο ερμηνείες, η πρώτη ως ένα
σημείο και η δεύτερη ως ένα διάνυσμα. Το
ποια από τις δύο αυτές ερμηνείες εμφανίζεται
σε κάθε περίπτωση θα είναι ξεκάθαρο
από τα συμφραζόμενα αλλά και από τον
συμβολισμό που χρησιμοποιείται. Συνήθως,
για μια παραμέτρηση θεωρούμε ότι η G(u,v)
αντιπροσωπεύει σημεία της επιφάνειας και
τα

∂G
∂u

(u,v),
∂G
∂v

(u,v)

αντιστοιχούν σε διανύσματα εφαπτόμενα στην
επιφάνεια.

Για την παραμέτρηση μιας επιφάνειας είναι απαραίτητες δύο παράμετροι u και v, καθώς κάθε
επιφάνεια έχει δύο διαστάσεις.

Στο Σχήμα 1.44 απεικονίζεται μια επιφάνεια S του χώρου R3 που παραμετράται από τη
G(u,v) η οποία ορίζεται για τα ζεύγη (u,v) στο χωρίο D του επιπέδου uv.
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Σχήμα 1.44

Υπενθύμιση 1.14.1
Κυλινδρικές συντεταγμένες Στις κυλινδρικές συντεταγμένες, αντικαθιστούμε τις συντεταγμένες
x και y ενός σημείουP= (x,y,z) με τις γνωστές μας πολικές συντεταγμένες. Αυτό σημαίνει ότι
οι κυλινδρικές συντεταγμένες του σημείου P θα είναι οι (r,θ ,z), όπου (r,θ) είναι οι πολικές
συντεταγμένες του σημείου Q = (x,y,0) που είναι η προβολή του P πάνω στο επίπεδο xy
(βλ. Σχήμα 1.45). Παρατηρήστε ότι τα σημεία που βρίσκονται σε σταθερή απόσταση r από τον
άξονα z σχηματίζουν έναν κύλινδρο, ιδιότητα από την οποία προκύπτει και το όνομα κυλινδρικές
συντεταγμένες.
Μπορούμε να μετασχηματίσουμε τις ορθογώνιες συντεταγμένες σε κυλινδρικές χρησιμοποιώ-
ντας τις σχέσεις μεταξύ ορθογώνιων και πολικών συντεταγμένων. Στις κυλινδρικές συντεταγμέ-
νες συνήθως υποθέτουμε ότι r ≥ 0.

Κυλινδρικές σε
ορθογώνιες

Ορθογώνιες σε
κυλινδρικές

x = r cosθ r =
√

x2 + y2

y = r sinθ tanθ =
y
x

z = z z = z Σχήμα 1.45 Το σημείο P έχει κυλινδρικές
συντεταγμένες (r, θ , z)

Παράδειγμα 1.14.2
Βρείτε μια παραμέτρηση για τον κύλινδρο x2 + y2 = 1.

Λύση.Ο κύλινδρος με ακτίνα 1 και εξίσωση x2 + y2 = 1 μπορεί να παραμετρηθεί πιο εύκολα
στις κυλινδρικές συντεταγμένες (βλ. Σχήμα 1.46). Τα σημεία του κυλίνδρου έχουν κυλινδρικές
συντεταγμένες της μορφής (1,θ ,z), επομένως μπορούμε να χρησιμοποιήσουμε ως παραμέτρους
τις συντεταγμένες θ και z. Έτσι, θα έχουμε:

G(θ ,z) = (cosθ , sinθ , z), 0 ≤ θ < 2π, −∞ < z < ∞.
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Σχήμα 1.46 Η παραμέτρηση ενός κυλίνδρου με τη βοήθεια των κυλινδρικών συντεταγμένων συνίσταται στο «τύλιγμα» ενός
ορθογωνίου γύρω από έναν κύλινδρο.

Υπενθύμιση 1.14.3
Σφαιρικές συντεταγμένες Οι σφαιρικές συντεταγμένες βασίζονται στο γεγονός ότι ένα σημείοP,
που βρίσκεται πάνω σε μια σφαίρα ακτίνας ρ , προσδιορίζεται από δύο γωνιακές συντεταγμένες
θ και ϕ , όπως φαίνεται στο Σχήμα 1.47:

• Η θ είναι η πολική γωνία του σημείου Q, που είναι η προβολή του σημείου P στο xy
επίπεδο.

• Η ϕ είναι η γωνία απόκλισης, η οποία μετρά το κατά πόσο αποκλίνει από την κατακόρυφο
η ημιευθεία που διέρχεται από το σημείο P.

Το σημείοP, λοιπόν, προσδιορίζεται από την τριάδα των αριθμών (ρ, θ , ϕ) που αποκαλούνται
σφαιρικές συντεταγμένες. Συνήθως, επιλέγουμε να περιορίσουμε τις σφαιρικές συντεταγμένες
έτσι ώστε να ισχύει ρ ≥ 0 και 0 ≤ ϕ ≤ π .

Έστω ότι το σημείο P έχει ορθογώνιες συντεταγμένες (x,y,z). Αφού ρ είναι η απόσταση από
το σημείο P μέχρι την αρχή των αξόνων O, θα ισχύει:

ρ =
√

x2 + y2 + z2

Σύμφωνα με το Σχήμα 1.47, θα έχουμε

Σφαιρικές σε
ορθογώνιες

Ορθογώνιες σε
σφαιρικές

x = ρ sinϕ cosθ ρ =
√

x2 + y2 + z2

y = ρ sinϕ sinθ tanθ = y
x

z = ρ cosϕ cosϕ = z
ρ
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Σχήμα 1.47 Οι σφαιρικές συντεταγμένες (ρ, θ , ϕ)

tanθ =
y
x
, cosϕ =

z
ρ
.

Η ακτινική συνιστώσα όμως r του σημείου Q = (x,y,0) δίνεται από τη σχέση r = ρ sinϕ ,
οπότε

x = r cosθ = ρ sinϕ cosθ , y = r sinθ = ρ sinϕ sinθ , z = ρ cosϕ

Παράδειγμα 1.14.4
Βρείτε μια παραμέτρηση για μια σφαίρα ακτίνας 2
με κέντρο την αρχή των αξόνων.

Λύση. Η σφαίρα με ακτίνα 2 και κέντρο στην αρχή
των αξόνων μπορεί να παραμετρηθεί πιο εύκολα με
τη βοήθεια των σφαιρικών συντεταγμένων (ρ,θ ,ϕ)
με ρ = 2 και καθεμία από τις συντεταγμένες x,y,z να
εκφράζεται (βλ. Σχήμα 1.48) ως:

G(θ ,ϕ) =
(
2cosθ sinϕ , 2sinθ sinϕ , 2cosϕ

)
,

0 ≤ θ < 2π, 0 ≤ ϕ ≤ π.
Σχήμα 1.48 Σφαιρικές συντεταγμένες για τα σημεία

μιας σφαίρας ακτίνας R

Όπως φαίνεται στο Σχήμα 1.49, η G αντιστοιχίζει κάθε οριζόντιο ευθύγραμμο τμήμα ϕ = c (0 <
c< π) σε έναν παράλληλο κύκλο (έναν κύκλο δηλαδή που είναι παράλληλος προς τον Ισημερινό)
και κάθε κατακόρυφο ευθύγραμμο τμήμα θ = c σε ένα μεσημβρινό τόξο που εκτείνεται μεταξύ
βορείου και νοτίου πόλου.
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Σχήμα 1.49 Η παραμέτρηση με τη βοήθεια των σφαιρικών συντεταγμένων συνίσταται στο «τύλιγμα» του ορθογωνίου πάνω
στη σφαίρα. Η πάνω και η κάτω πλευρά του ορθογωνίου «καταρρέουν» σε ένα σημείο καθώς αντιστοιχούνται στον βόρειο και

νότιο πόλο της σφαίρας αντιστοίχως.

Μια απλή επιλογή για την παραμέτρηση μιας
επιφάνειας, εφόσον η επιφάνεια είναι το γράφημα
της συνάρτησης z = f (x,y), είναι η ακόλουθη (βλ.
Σχήμα 1.50):

Παραμέτρηση ενός γραφήματος

G(x,y) = (x,y, f (x,y))

Σχήμα 1.50 Ο τρόπος παραμέτρησης του γραφήματος
μιας συνάρτησης.

Στην περίπτωση αυτή οι παράμετροι είναι οι μεταβλητές x και y.

Παράδειγμα 1.14.5
Προσδιορίστε μια παραμέτρηση για την παραβολoειδή επιφάνεια που περιγράφεται από το
γράφημα της συνάρτησης f (x,y) = x2 + y2.

Λύση.Μπορούμε αμέσως να ορίσουμε τηG(x,y) = (x,y,x2+y2) η οποία απεικονίζει το επίπεδο
xy στο παραβολοειδές. Οι περισσότερες από τις επιφάνειες οι οποίες θα μας απασχολήσουν δεν
εκφράζονται ως γραφήματα συναρτήσεων. Στην περίπτωση μιας τέτοιας επιφάνειας θα πρέπει να
βρούμε έναν άλλον τρόπο για να επιτύχουμε την παραμέτρησή της.

1.15 Πλεγµατικές καµπύλες, κάθετα διανύσματα και το εφαπτόµενο
επίπεδο

Έστω ότι µια επιφάνεια S παραµετρείται από την

G(u,v) =
(
x(u,v), y(u,v), z(u,v)

)
που είναι ένα προς ένα σε ένα χωρίοD. Θα υποθέτουµε πάντα ότι ηG είναι συνεχώς διαφορίσιμη,
εννοώντας ότι οι συναρτήσεις x(u,v), y(u,v) και z(u,v) έχουν συνεχείς µερικές παραγώγους.
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Στο επίπεδο uv μπορούμε να σχηματίσουμε ένα
πλέγμα από γραμμές που είναι παράλληλες στους
άξονες των συντεταγμένων. Αυτές οι πλεγµατικές
γραμμές αντιστοιχούν υπό την απεικόνιση G σε
ένα σύστηµα από πλεγµατικές καµπύλες πάνω
στην επιφάνεια, όπως φαίνεται στο Σχήµα 1.51.
Ακριβέστερα, η οριζόντια και η κατακόρυφη
γραµµή που διέρχεται από το σηµείο (u0,v0)
στο πεδίο ορισµού των παραµέτρων αντιστοιχούν
στις πλεγµατικές καµπύλες G(u,v0) και G(u0,v)
της επιφάνειας οι οποίες τέµνονται στο σηµείο
P = G(u0,v0).

Μια παραμέτρηση αντιστοιχίζει σε κάθε
σημείο P της επιφάνειας S ένα μοναδικό
ζεύγος τιμών (u0,v0) στο πεδίο ορισμού των
παραμέτρων. Μπορούμε να αντιμετωπίσουμε
το ζεύγος τιμών (u0,v0)ως τις συντεταγμένες
του σημείου P οι οποίες προσδιορίζονται
από την παραμέτρηση. Πολλές φορές
αναφέρονται δε και ως καμπυλόγραμμες
συντεταγμένες.

Σχήμα 1.51 Πλεγματικές καμπύλες.

Με τη G(u,v0) να αναπαριστά μια καμπύλη που διέρχεται από το σημείο P, είναι βολικό να

σκεφτόμαστε την
∂G
∂u

(u0,v0) ως ένα διάνυσμα εφαπτόμενο σε αυτή την καμπύλη (επομένως και

στην επιφάνεια S) στο σημείο P. Με παρόμοιο τρόπο θα αντιμετωπίσουμε την
∂G
∂v

(u0,v0) ως
ένα εφαπτόμενο διάνυσμα στο σημείο P. Αυτό σημαίνει ότι έχουμε τα ακόλουθα εφαπτόμενα
διανύσματα (βλ. Σχήμα 1.52):

Για την καμπύλη G(u,v0):

Tu(P) =
∂G
∂u

(u0,v0) =
〈∂x

∂u
(u0,v0),

∂y
∂u

(u0,v0),
∂ z
∂u

(u0,v0)
〉

Για την καμπύλη G(u0,v):

Tv(P) =
∂G
∂v

(u0,v0) =
〈∂x

∂v
(u0,v0),

∂y
∂v

(u0,v0),
∂ z
∂v

(u0,v0)
〉

Η παραμέτρηση G θα αποκαλείται κανονική στο σημείο P εφόσον το ακόλουθο εξωτερικό
γινόμενο δεν είναι ίσο με μηδέν:

N(P) = N(u0,v0) = Tu(P)×Tv(P)
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Σε αυτή την περίπτωση τα διανύσματα Tu και Tv σχηματίζουν το εφαπτόμενο επίπεδο της
επιφάνειας S στο σημείοP, ενώ τοN(P) είναι το κάθετο διάνυσμα σε αυτό το εφαπτόμενο επίπεδο.
Θα αποκαλούμε το N(P) κάθετο στην επιφάνεια S.

Σχήμα 1.52 Τα διανύσματα Tu και Tv είναι εφαπτόμενα στις πλεγµατικές καµπύλες που διέρχονται από το P = G(u0,v0).

Πολύ συχνά θα γράφουμε N αντί για N(P) ή
N(u,v), αλλά αυτό που θα πρέπει να έχετε πάντα
κατά νου είναι ότι το διάνυσμα N αλλάζει από
σημείο σε σημείο καθώς κινούμαστε πάνω στην
επιφάνεια. Παρομοίως, πολύ συχνά θα σημειώνουμε
τα εφαπτόμενα διανύσματα με Tu και Tv. Αξίζει να
σημειωθεί ότι τα διανύσματα Tu, Tv και N δεν είναι

Σε κάθε σημείο μιας επιφάνειας το κάθετο
διάνυσμα κατευθύνεται σε μία από τις
δύο αντίθετες πιθανές κατευθύνσεις. Αν
αλλάξουμε την παραμέτρηση, το μήκος του
διανύσματος N μπορεί να αλλάξει, ενώ και η
κατεύθυνσή του μπορεί να αντιστραφεί.

απαραίτητο να είναι μοναδιαία (όπως χρησιμοποιήσαμε σε προηγούμενη ενότητα, όπου το N
ήταν ένα μοναδιαίο διάνυσμα).

Παράδειγμα 1.15.1
Θεωρήστε την παραμέτρηση G(θ ,z) = (2cosθ ,2sinθ ,z) του κυλίνδρου x2 + y2 = 4.

1. Περιγράψτε τις πλεγµατικές καµπύλες.

2. Υπολογίστε τα διανύσµατα Tθ , Tz και N(θ ,z).

3. Βρείτε µια εξίσωση για το εφαπτόµενο επίπεδο στο σηµείο P = G(
π
4
,5).

Λύση.
(a) Οι πλεγµατικές καµπύλες του κυλίνδρου που διέρχονται από το σημείο P = (θ0,z0), όπως

φαίνεται στο Σχήμα 1.53, είναι οι ακόλουθες:

θ -πλεγµατική καµπύλη: G(θ ,z0) = (2cosθ ,2sinθ ,z0)
(κύκλος ακτίνας 2 σε ύψος z = z0)

z-πλεγµατική καµπύλη: G(θ0,z) = (2cosθ0,2sinθ0,z)
(κατακόρυφη ευθεία που διέρχεται από το P με θ = θ0)

(b) Οι μερικές παράγωγοι της παραμέτρησης G(θ ,z) = (2cosθ ,2sinθ ,z) μας δίνουν τα
εφαπτόμενα διανύσματα στο P:
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θ -πλεγµατική καµπύλη:

Tθ =
∂G
∂θ

=
∂

∂θ
(2cosθ ,2sinθ ,z) = ⟨−2sinθ ,2cosθ ,0⟩

z-πλεγµατική καµπύλη:

Tz =
∂G
∂ z

=
∂
∂ z

(2cosθ ,2sinθ ,z) = ⟨0,0,1⟩

Αξίζει να παρατηρήσετε ότι στο Σχήμα 1.53 το διάνυσμα Tθ είναι εφαπτόμενο στη θ -
πλεγµατική καμπύλη, ενώ το διάνυσμα Tz είναι εφαπτόμενο στη z-πλεγµατική καμπύλη.
Το κάθετο διάνυσμα προκύπτει ως:

N(θ ,z) = Tθ ×Tz =

∣∣∣∣∣∣∣∣∣∣
i j k

−2sin 2cos 0

0 0 1

∣∣∣∣∣∣∣∣∣∣
= 2cosθ i+2sinθ j.

Αφού ο συντελεστής κατά μήκος του μοναδιαίου διανύσματος k είναι μηδέν, το διάνυσμα
N θα έχει οριζόντια κατεύθυνση και θα εξέρχεται από τον κύλινδρο.

Σχήμα 1.53 Πλεγματικές καμπύλες του κυλίνδρου.

(c) Για θ =
π
4
, z = 5 ισχύει:

P = G
(π

4
, 5
)
= (

√
2,
√

2, 5), N = N
(π

4
, 5
)
= ⟨

√
2,
√

2, 0⟩.

Το εφαπτόμενο επίπεδο που διέρχεται από το
σημείο P έχει ως κάθετο διάνυσμα το N και
επομένως περιγράφεται από την εξίσωση:

⟨x−
√

2, y−
√

2, z−5⟩ · ⟨
√

2,
√

2, 0⟩= 0

Η τελευταία εξίσωση μπορεί να πάρει τη μορφή

Υπενθύμιση 1.15.2
Μια εξίσωση που παριστάνει ένα
επίπεδο που διέρχεται από το σημείο
P = (x0,y0,z0) έχοντας ως κάθετο
διάνυσμα το N είναι η

⟨x− x0, y− y0, z− z0⟩ ·N = 0

√
2(x−

√
2)+

√
2(y−

√
2) = 0 ή x+ y = 2

√
2.

Το εφαπτόμενο επίπεδο είναι κατακόρυφο, αφού η συντεταγμένη z δεν εμφανίζεται στην
τελική εξίσωση.
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1.16 Εμβαδόν επιφάνειας

Το μέτρο ∥N∥ του κάθετου διανύσματος μιας παραμέτρησης έχει μια πολύ σημαντική ερμηνεία σε
σχέση με το εμβαδόν της επιφάνειας. Ας υποθέσουμε, για απλότητα, ότι τοD είναι ένα ορθογώνιο
(αν και το επιχείρημα που θα αναπτύξουμε ισχύει και για πιο γενικά χωρία). Διαιρούμε το D με
τη βοήθεια ενός πλέγματος σε μικρότερα ορθογώνια Ri j επιφάνειας ∆u×∆v, όπως φαίνεται στο
Σχήμα 1.54, και συγκρίνουμε το εμβαδόν της επιφάνειας του Ri j με το εμβαδόν της εικόνας του
υπό την απεικόνιση G. Αυτή η εικόνα είναι ένα καμπυλωμένο παραλληλόγραμμο Si j = G(Ri j).
Υποθέτουμε, επιπλέον, ότι τα σημεία P0,Q0 και S0 είναι οι κορυφές του ορθογωνίου Ri j, που
φαίνεται στο Σχήμα 1.54, ενώ P,R και S είναι τα αντίστοιχα σημεία του Si j.

Σχήμα 1.54

Καταρχάς, μπορούμε να παρατηρήσουμε ότι αν τα∆u και∆v του Σχήματος 1.54 είναι μικρά, τότε
το καμπυλωμένο παραλληλόγραμμο Si j έχει, κατά προσέγγιση, το ίδιο εμβαδόν με το παραλληλό-
γραμμο που έχει ως πλευρές τα διανύσματα

−→
PQ και

−→
PS. Θυμηθείτε τώρα, από την Ενότητα 12.4,

ότι το εμβαδόν του παραλληλογράμμου που σχηματίζεται από δύο διανύσματα είναι ίσο με το
μέτρο του εξωτερικού τους γινομένου, δηλαδή:

εμβαδόν(Si j)≈
∥∥−→PQ×−→

PS
∥∥

Θα χρησιμοποιήσουμε στη συνέχεια τη γραμμική προσέγγιση προκειμένου να εκτιμήσουμε τα
διανύσματα

−→
PQ και

−→
PS:

−→
PQ = G(ui j +∆u, vi j)−G(ui j, vi j)≈

∂G
∂u

(ui j,vi j)∆u = Tu ∆u

−→
PS = G(ui j, vi j +∆v)−G(ui j, vi j)≈

∂G
∂v

(ui j,vi j)∆v = Tv ∆v

Επομένως, θα έχουμε:

εμβαδόν(Si j)≈
∥∥Tu∆u×Tv∆v

∥∥= ∥∥Tu ×Tv
∥∥∆u∆v

Αφού N(ui j,vi j) = Tu ×Tv και εμβαδόν(Ri j) = ∆u∆v, καταλήγουμε στη σχέση:



94 Προελληνικά και Ελληνικά Μαθηματικά

εμβαδόν(Si j)≈
∥∥N(ui j,vi j)

∥∥ εμβαδόν(Ri j)

Η προσεγγιστική σχέση (3) ισχύει για οποιαδήποτε μικρή περιοχή στο επίπεδο uv, δηλαδή:

εμβαδόν(S)≈
∥∥N(u0,v0)

∥∥ εμβαδόν(R)

όπου S = G(R) και (u0,v0) είναι ένα τυχαίο σημείο στο R. Στη συγκεκριμένη περίπτωση
«μικρό» σημαίνει να περιέχεται σε έναν μικρό δίσκο. Δεν επιτρέπουμε στο R να είναι πολύ
λεπτό και πλατύ.

Το συμπέρασμα στο οποίο καταλήγουμε, λοιπόν, μπορεί να διατυπωθεί ως εξής: Το ∥N∥ είναι
ένας παράγοντας κλίμακας που μετρά πόσο αλλάζει το εμβαδόν ενός μικρού ορθογωνίου Ri j υπό
την απεικόνιση G.

Προκειμένου να υπολογίσουμε το εμβαδόν της
επιφάνειας S, θα υποθέσουμε ότι η απεικόνιση G
είναι ένα προς ένα και κανονική, εκτός πιθανόν από
το σύνορο του χωρίου D. Θυμηθείτε ότι ο όρος
«κανονική» σημαίνει ότι το διάνυσμα N(u,v) είναι
διάφορο του μηδενός.

Η μόνη απαίτηση που υπάρχει
είναι η απεικόνιση G να είναι
ένα προς ένα στο εσωτερικό του
χωρίου D. Πολλές από τις ευρέως
χρησιμοποιούμενες παραμετρήσεις
(όπως οι παραμετρήσεις με
κυλινδρικές και σφαιρικές
συντεταγμένες) δεν είναι ένα
προς ένα στο σύνολο των χωρίων.

Η επιφάνεια S είναι η ένωση μικρότερων επιμέρους επιφανειών Si j, για καθεμία από τις οποίες
μπορούμε να εφαρμόσουμε την προσέγγιση έτσι ώστε το συνολικό εμβαδόν να είναι:

εμβαδόν(S) = ∑i, j εμβαδόν(Si j)≈ ∑i, j
∥∥N(ui j,vi j)

∥∥∆u∆v

Το άθροισμα που εμφανίζεται στο δεξιό μέλος της παραπάνω σχέσης είναι ένα άθροισμα Riemann
για το διπλό ολοκλήρωμα του ∥N(u,v)∥ στο πεδίο ορισμού των παραμέτρων D. Καθώς τα ∆u
και ∆v τείνουν στο μηδέν, αυτά τα αθροίσματα Riemann συγκλίνουν σε ένα διπλό ολοκλήρωμα
το οποίο μπορούμε να θεωρήσουμε ότι αποτελεί τον ορισμό του εμβαδού της επιφάνειας, δηλαδή:

εμβαδόν(S) =
∫∫

D
∥N(u,v)∥dudv

εμβαδόν(S) =
∫∫

D
∥N(u,v)∥dudv

1.17 Επιφανειακό ολοκλήρωμα
Μπορούμε τώρα να προχωρήσουμε στον ορισμό του επιφανειακού ολοκληρώματος μιας συνάρτησης
f (x,y,z) πάνω σε μια επιφάνεια S, το οποίο συμβολίζουμε ως:∫∫

S
f (x,y,z)dS
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Πρόκειται για έναν ορισμό που είναι παρόμοιος με τον ορισμό του επικαμπύλιου ολοκληρώματος
μιας συνάρτησης κατά μήκος μιας διαδρομής. Επιλέγουμε ένα τυχαίο σημείο Pi j = G(ui j,vi j)
από κάθε μικρότερη επιφάνεια Si j και σχηματίζουμε το άθροισμα:

∑i, j f (Pi j)εμβαδόν(Si j)

Το όριο αυτών των αθροισμάτων (εφόσον υπάρχει) καθώς τα ∆u και ∆v τείνουν στο μηδέν
είναι το επιφανειακό ολοκλήρωμα της συνάρτησης, δηλαδή:∫∫

S
f (x,y,z)dS = lim

∆u,∆v→0
∑
i, j

f (Pi j)εμβαδόν(Si j)

Για να υπολογίσουμε ένα τέτοιο επιφανειακό ολοκλήρωμα μπορούμε να χρησιμοποιήσουμε
την Εξίσωση

εμβαδόν(Si j)≈ ∥N(ui j,vi j)∥εμβαδόν(Ri j)

για να γράψουμε:

∑
i, j

f (Pi j)εμβαδόν(Si j)≈ ∑
i, j

f (G(ui j,vi j))∥N(ui j,vi j)∥∆u∆v (∗)

Στο δεξί μέλος της τελευταίας σχέσης εμφανίζεται ένα άθροισμαRiemann για το διπλό ολοκλήρωμα
του

f (G(u,v))∥N(u,v)∥

πάνωστο πεδίο ορισμού των παραμέτρωνD. Υπό την προϋπόθεση ότι ηG είναι συνεχώς διαφορίσιμη,
μπορούμε να αποδείξουμε ότι τα αθροίσματα που εμφανίζονται στην Εξίσωση (∗) τείνουν στο
ίδιο όριο. Με τον τρόπο αυτόν καταλήγουμε στο ακόλουθο θεώρημα.

Θεώρημα 1.17.1 Επιφανειακό ολοκλήρωμα και εμβαδόν επιφάνειας Ας υποθέσουμε ότι η
G(u,v) είναι μια παραμέτρηση της επιφάνειας S με πεδίο ορισμού των παραμέτρων το χωρίο
D. Υποθέ- τουμε ακόμη ότι η G είναι συνεχώς διαφορίσιμη, ένα-προς-ένα και κανονική (εκτός
ίσως από το σύνορο του χωρίου D). Τότε:∫∫

S
f (x,y,z)dS =

∫∫
D

f (G(u,v))∥N(u,v)∥dudv.

Για τη σταθερή συνάρτηση f (x,y,z) = 1 προκύπτει το εμβαδόν της επιφάνειας S:

Εμβαδόν(S) =
∫∫

D
∥N(u,v)∥dudv.

Από την εξίσωση του ολοκληρώματος στοΘεώρημα 1.17.1 προκύπτει η ακόλουθη πολύ σημαντική
σχέση μεταξύ του διαφορικού της επιφάνειας dS και των διαφορικών των παραμέτρων du και dv,
η οποία μας επιτρέπει να υπολογίζουμε τα επιφανειακά ολοκληρώματαως διαδοχικά ολοκληρώμα-
τα:

dS = ∥N(u,v)∥dudv.
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Αξίζει να τονιστεί ότι η εξίσωση του ολοκληρώματος στο Θεώρημα 1.17.1 περιλαμβάνει τον
τύπο αλλαγής μεταβλητών για τα διπλά ολοκληρώματα ως ειδική περίπτωση. Αν η επιφάνεια
S είναι ένα χωρίο του επιπέδου xy, [με άλλα λόγια z(u,v) = 0], τότε το ολοκλήρωμα
στην επιφάνεια S ανάγεται στο διπλό ολοκλήρωμα της συνάρτησης f (x,y,0). Μπορούμε να
αντιμετωπίσουμε τη G(u,v) ως μια απεικόνιση από το επίπεδο uv στο επίπεδο xy, οπότε το
∥N(u,v)∥ είναι η Ιακωβιανή ορίζουσα αυτής της απεικόνισης.

Σχόλιο 1.17.2 Η τυπική εξίσωση ενός ορθού κυκλικού κώνου (του κλασικού κώνου στη Διανυ-
σματική Ανάλυση) δίνεται από τη σχέση:

x2 + y2 = z2, z ≥ 0

Αυτός είναι ο “45◦ κώνος”, όπου η γεννήτρια σχηματίζει γωνία 45◦ με τον άξονα.

Με x = t cosθ , y = t sinθ :

t2 = z2 =⇒ t = z (t ≥ 0)

Αυτή είναι η πιο χρήσιμη μορφή για επιφανειακά ολοκληρώματα.

Παράδειγμα 1.17.3
Υπολογίστε το εμβαδόν του τμήματος της
επιφάνειας S του κώνου x2 + y2 = z2 που
βρίσκεται στο τμήμα x2+y2 ≤ 4 (βλ. Σχήμα 1.55).
Στη συνέχεια, υπολογίστε το ολοκλήρωμα∫∫

S
x2zdS

.

Λύση. Θα χρησιμοποιήσουμε τις μεταβλητές θ και t
για να παραμετρήσουμε την επιφάνεια S ως: Σχήμα 1.55 Το τμήμα S του κώνου x2 + y2 = z2

που βρίσκεται πάνω από τον δίσκο x2 + y2 ≤ 4.

G(θ , t) = (t cosθ , t sinθ , t), 0 ≤ t ≤ 2, 0 ≤ θ < 2π.

Βήμα 1 Υπολογίζουμε τα εφαπτόμενα διανύσματα και το κάθετο διάνυσμα.

Tθ =
∂G
∂θ

= ⟨−t sinθ , t cosθ , 0⟩, Tt =
∂G
∂ t

= ⟨cosθ , sinθ , 1⟩

N = Tθ ×Tt =

∣∣∣∣∣∣∣∣∣∣
i j k

−t sinθ t cosθ 0

cosθ sinθ 1

∣∣∣∣∣∣∣∣∣∣
= t cosθ i+ t sinθ j− t k.

Το κάθετο διάνυσμα έχει μήκος:
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∥N∥=
√

t2 cos2 θ + t2 sin2 θ +(−t)2 =
√

2t2 =
√

2 |t|.

Επομένως,

dS =
√

2 |t|dθ dt.

Αφού t ≥ 0 για το χωρίο μας, μπορούμε να παραλείψουμε την απόλυτη τιμή.

Βήμα 1 Υπολογίζουμε το εμβαδόν της επιφάνειας.

εμβαδόν(S) =
∫∫

D
∥N∥dθ dt =

∫ 2

0

∫ 2π

0

√
2 t dθ dt =

√
2πt2

∣∣∣2
0
= 4

√
2π.

Βήμα 3 Υπολογίζουμε το επιφανειακό ολοκλήρωμα. Θα εκφράσουμε τη συνάρτηση f (x,y,z) =
x2z με τη βοήθεια των παραμέτρων t και θ και θα υπολογίσουμε το επιφανειακό ολοκλήρωμα:

f (G(θ , t)) = f (t cosθ , t sinθ , t) = (t cosθ)2 t = t3 cos2 θ .

∫∫
S

f (x,y,z)dS =
∫ 2

t=0

∫ 2π

θ=0
f (G(θ , t))∥N(θ , t)∥dθ dt

=
∫ 2

t=0

∫ 2π

θ=0
(t3 cos2 θ)(

√
2t)dθ dt

=
√

2
∫ 2

0

∫ 2π

0
t4 cos2 θ dθ dt

=
√

2
∫ 2

0
πt4 dt =

√
2π
(

32
5

)
=

32
√

2π
5

Σχόλιο 1.17.4 Όταν ένα γράφημα z = g(x,y) παραμετράται από τη

G(x,y) = (x,y,g(x,y)),

τότε το εφαπτόμενο και το κάθετο διάνυσμα είναι τα

Tx = (1,0,gx) καί Ty = (0,1,gy).

N = Tx ×Ty =

∣∣∣∣∣∣∣
i j k
1 0 gx

0 1 gy

∣∣∣∣∣∣∣=−gxi−gyj+k, ∥N∥=
√

1+g2
x +g2

y.

Το επιφανειακό ολοκλήρωμα της συνάρτησης f (x,y,z) πάνω στο τμήμα του γραφήματος που
βρίσκεται πάνω από ένα χωρίο D στο επίπεδο xy είναι:
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Επιφανειακό ολοκλήρωμα πάνω σε ένα γράφημα

=
∫∫

D
f (x,y,g(x,y))

√
1+g2

x +g2
y dx dy

Παράδειγμα 1.17.5
Υπολογίστε το επιφανειακό ολοκλήρωμα

∫∫
S
(z− x)dS,

όπουS είναι το τμήμα του γραφήματος της z= x+y2 για0≤ x≤ y, 0≤ y≤ 1 (βλ. Σχήμα 1.56).

Λύση. Έστω z = g(x,y) = x+ y2. Τότε gx = 1 και
gy = 2y, επομένως

dS =
√

1+g2
x +g2

y dxdy =
√

1+1+4y2 dxdy

=
√

2+4y2 dxdy

Για την επιφάνεια S ισχύει z = x+ y2, επομένως:

f (x,y,z) = z− x = (x+ y2)− x = y2

επομένως:

f (x,y,z) = z− x = (x+ y2)− x = y2

Σύμφωνα με την εξίσωση του επιφανειακού
ολοκληρώματος πάνω σε ένα γράφημα έχουμε:

Σχήμα 1.56 Η επιφάνεια z = x + y2 που βρίσκεται
πάνω από το χωρίο που ορίζεται από τις ανισώσεις 0 ≤
x ≤ y και 0 ≤ y ≤ 1.

∫∫
S

f (x,y,z)dS =
∫ 1

y=0

∫ y

x=0
y2
√

2+4y2 dxdy =
∫ 1

y=0

(
y2
√

2+4y2
)

x
∣∣∣x=y

x=0
dy

=
∫ 1

0
y3
√

2+4y2 dy

Χρησιμοποιώντας την αντικατάσταση u = 2+4y2 προκύπτει du = 8ydy. Έτσι y2 =
1
4
(u−2),

οπότε: ∫ 1

0
y3
√

2+4y2 dy =
1
8

∫ 6

2

1
4
(u−2)

√
udu =

1
32

∫ 6

2
(u3/2 −2u1/2)du
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=
1

32

(
2
5

u5/2 − 4
3

u3/2
)∣∣∣∣∣

6

2

=
1
30

(
6
√

6+
√

2
)
≈ 0.54

Περίληψη 1.17.6

• Μια παραμετριμένη επιφάνεια είναι μια επιφάνεια S της οποίας τα σημεία περιγράφονται
από την

G(u,v) = (x(u,v), y(u,v), z(u,v))

όπου οι παράμετροι u και v παίρνουν τιμές εντός ενός χωρίου D στο επίπεδο uv.

• Εφαπτόμενα και κάθετο διάνυσμα:

Tu =
∂G
∂u

= ⟨∂x
∂u

,
∂y
∂u

,
∂ z
∂u

⟩

Tv =
∂G
∂v

= ⟨∂x
∂v

,
∂y
∂v

,
∂ z
∂v

⟩

N = N(u,v) = Tu ×Tv

Η παραμέτρηση είναι κανονική στο (u,v) αν N(u,v) ̸= 0.

• Η ποσότητα ∥N∥ είναι ένας παράγοντας κλίμακας του εμβαδού. Αν D είναι μια μικρή
περιοχή στο επίπεδο uv και S = G(D), τότε:

εμβαδόν(S)≈ ∥N(u0,v0)∥ εμβαδόν(D)

όπου (u0,v0) είναι ένα τυχαίο σημείο της περιοχής D.

• Επιφανειακά ολοκληρώματα και εμβαδόν μιας επιφάνειας:∫∫
S

f (x,y,z)dS =
∫∫

D
f (G(u,v))∥N(u,v)∥dudv

εμβαδόν(S) =
∫∫

D
∥N(u,v)∥dudv

• Ορισμένες συνήθεις παραμετρήσεις:

– Κύλινδρος ακτίνας R (με κεντρικό άξονα τον άξονα z):

G(θ ,z) = (Rcosθ , Rsinθ , z)

Κάθετο διάνυσμα με κατεύθυνση προς το εξωτερικό του κυλίνδρου:

N = Tθ ×Tz = R⟨cosθ , sinθ , 0⟩

dS = ∥N∥dθ dz = Rdθ dz
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– Σφαίρα ακτίνας R με κέντρο την αρχή των αξόνων:

G(θ ,ϕ) = (Rcosθ sinϕ , Rsinθ sinϕ , Rcosϕ)

Μοναδιαίο ακτινικό διάνυσμα:

er = ⟨cosθ sinϕ , sinθ sinϕ , cosϕ⟩

Κάθετο διάνυσμα με κατεύθυνση προς το εξωτερικό της σφαίρας:

N = Tϕ ×Tθ = (R2 sinϕ)er

dS = ∥N∥dϕ dθ = R2 sinϕ dϕ dθ

– Γράφημα της συνάρτησης z = g(x,y):

G(x,y) = (x, y, g(x,y))

N = Tx ×Ty = ⟨−gx, −gy, 1⟩

dS = ∥N∥dxdy =
√

1+g2
x +g2

y dxdy

Ασκήσεις 1.17.7

1. Να αποδείξετε ότι η

G(u,v) = (2u+1, u− v, 3u+ v)

παραμετρά το επίπεδο 2x− y− z = 2 και:

(a) Υπολογίστε τα διανύσματα Tu, Tv, N(u,v).

(b) Προσδιορίστε το εμβαδόν του S = G(D), όπου

D = {(u,v) : 0 ≤ u ≤ 2, 0 ≤ v ≤ 1}.

(c) Εκφράστε τη συνάρτηση f (x,y,z) = yz με τη βοήθεια των παραμέτρων u και v
και υπολογίστε το ∫∫

S
f (x,y,z)dS.

2. Έστω G(x,y) = (x, y, xy).

(a) Υπολογίστε τα διανύσματα Tx, Ty, N(x,y).

(b) Έστω S το τμήμα της επιφάνειας με πεδίο ορισμού των παραμέτρων το χωρίο
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D = {(x,y) : x2 + y2 ≤ 1, x ≥ 0, y ≥ 0}.

Επιβεβαιώστε την ακόλουθη σχέση και στη συνέχεια υπολογίστε το επιφανειακό
ολοκλήρωμα που σημειώνεται σε αυτή χρησιμοποιώντας πολικές συντεταγμένες:∫∫

S
1dS =

∫∫
D

√
1+ x2 + y2 dxdy

Στις Ασκήσεις 3- 5 να υπολογίσετε τα διανύσματα Tu, Tv και N(u,v) για τις παραμετρημέ-
νες επιφάνειες στο σημείο που υποδεικνύεται σε κάθε περίπτωση. Στη συνέχεια, να προσδιο-
ρίσετε την εξίσωση του εφαπτόμενου επιπέδου της επιφάνειας στο συγκεκριμένο σημείο.

3. G(u,v) = (2u+ v, u−4v, 3u), u = 1, v = 4

4. G(u,v) = (u2 − v2, u+ v, u− v), u = 2, v = 3.

5. G(θ ,ϕ) = (cosθ sinϕ , sinθ sinϕ , cosϕ), θ =
π
2
, ϕ =

π
4
.

Στις Ασκήσεις 6- 9 να υπολογίσετε το επιφανειακό ολοκλήρωμα∫∫
S

f (x,y,z)dS

για τη συνάρτηση και την επιφάνεια που δίνονται σε κάθε περίπτωση.

6.
G(r,θ) = (r cosθ , r sinθ , θ), 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π,

f (x,y,z) =
√

x2 + y2

7.
x2 + y2 = 4, 0 ≤ z ≤ 4, f (x,y,z) = e−z

8.
G(u,v) = (u, v3, u+ v), 0 ≤ u ≤ 1, 0 ≤ v ≤ 1, f (x,y,z) = y.

9. Τμήμα του επιπέδου x+ y+ z = 1, όπου x,y,z ≥ 0, f(x,y,z) = z.

10. Μια επιφάνεια S παραμετράται από τη G(u,v) με πεδίο ορισμού το ορθογώνιο

0 ≤ u ≤ 2, 0 ≤ v ≤ 4.

Η παραμέτρηση είναι τέτοια ώστε οι ακόλουθες μερικές παράγωγοι να είναι σταθερές:

∂G
∂u

= ⟨2, 0, 1⟩, ∂G
∂v

= ⟨4, 0, 3⟩.

Ποιο είναι το εμβαδόν της επιφάνειας S;
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11. Έστω S η σφαίρα ακτίναςR με κέντρο την αρχή των αξόνων. Εξηγήστε, χρησιμοποιώντας
επιχειρήματα συμμετρίας, γιατί πρέπει να ισχύουν οι ισότητες∫∫

S
x2 dS =

∫∫
S

y2 dS =
∫∫

S
z2 dS.

Στη συνέχεια, να αποδείξετε ότι ∫∫
S

x2 dS =
4
3

πR4

προσθέτοντας τα ολοκληρώματα.
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Λυμένες ασκήσεις 1.17.8

1. (a) Από τον ορισμό της G έχουμε

x = 2u+1, y = u− v, z = 3u+ v.

Τότε

2x− y− z = 2(2u+1)− (u− v)− (3u+ v) = 4u+2−u+ v−3u− v = 2,

άρα κάθε σημείο της επιφάνειας ικανοποιεί 2x−y−z= 2. Επομένως ηG παραμε-
τρά το επίπεδο 2x− y− z = 2.

(b) Υπολογισμός Tu, Tv, N(u,v).

Tu = Gu(u,v) =
(∂x

∂u
,

∂y
∂u

,
∂ z
∂u

)
= (2, 1, 3),

Tv = Gv(u,v) =
(∂x

∂v
,
∂y
∂v

,
∂ z
∂v

)
= (0,−1, 1).

Το κάθετο διάνυσμα δίνεται από το διανυσματικό γινόμενο

N(u,v) = Tu ×Tv =

∣∣∣∣∣∣
i j k
2 1 3
0 −1 1

∣∣∣∣∣∣= (4,−2,−2).

Παρατηρούμε ότι το N(u,v) είναι σταθερό, όπως αναμένεται για επίπεδο.

(b) Εμβαδόν της επιφάνειας S = G(D).
Για επιφάνεια που δίνεται από παραμέτρηση G(u,v), το στοιχείο επιφάνειας είναι

dS = ∥N(u,v)∥dudv.

Εδώ

∥N(u,v)∥=
√

42 +(−2)2 +(−2)2 =
√

16+4+4 =
√

24 = 2
√

6.

Άρα το εμβαδόν του S είναι

Area(S) =
∫∫

D
∥N(u,v)∥dudv =

∫∫
D

2
√

6dudv.

Το χωρίο D είναι 0 ≤ u ≤ 2, 0 ≤ v ≤ 1, οπότε

Area(S) =
∫ 2

0

∫ 1

0
2
√

6dvdu = 2
√

6 · (2 ·1) = 4
√

6.

(c) Επιφανειακό ολοκλήρωμα της f (x,y,z) = yz.
Πρώτα γράφουμε το f σε όρους των u,v. Από τη παραμέτρηση:

y = u− v, z = 3u+ v,

άρα
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f (G(u,v)) = yz = (u− v)(3u+ v) = 3u2 −2uv− v2.

Το επιφανειακό ολοκλήρωμα της βαθμωτής συνάρτησης f πάνω στην S είναι∫∫
S

f dS =
∫∫

D
f (G(u,v))∥N(u,v)∥dudv =∫∫

D
(3u2 −2uv− v2)2

√
6dudv.

Υπολογίζουμε:∫∫
D
(3u2 −2uv− v2)dudv =

∫ 2

0

∫ 1

0
(3u2 −2uv− v2)dvdu.

Εσωτερικό ολοκλήρωμα ως προς v:∫ 1

0
(3u2 −2uv− v2)dv =

[
3u2v−uv2 − 1

3
v3
]1

0
= 3u2 −u− 1

3
.

Έπειτα ως προς u:∫ 2

0

(
3u2 −u− 1

3

)
du =

[
u3 − 1

2
u2 − 1

3
u
]2

0
= 8−2− 2

3
= 6− 2

3
=

16
3
.

Άρα ∫∫
S

f dS = 2
√

6 · 16
3

=
32
√

6
3

.

Έτσι, το επιφανειακό ολοκλήρωμα της f (x,y,z) = yz πάνω στην επιφάνεια S είναι

∫∫
S

f dS =
32

√
6

3
.

2. (a) Έχουμε την παραμέτρηση

G(x,y) = (x, y, xy).

(b) Υπολογισμός των Tx, Ty, N(x,y)

Tx = Gx(x,y) =
(

∂x
∂x

,
∂y
∂x

,
∂ (xy)

∂x

)
= (1, 0, y),

Ty = Gy(x,y) = (0, 1, x) .

Το κάθετο διάνυσμα προκύπτει από το διανυσματικό γινόμενο:

N(x,y) = Tx ×Ty =

∣∣∣∣∣∣
i j k
1 0 y
0 1 x

∣∣∣∣∣∣= (−y,−x, 1).
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∥N(x,y)∥=
√

x2 + y2 +1.

(c) Το χωρίο παραμέτρων
Δίνεται

D = {(x,y) : x2 + y2 ≤ 1, x ≥ 0, y ≥ 0},

δηλαδή το πρώτο τεταρτημόριο του μοναδιαίου δίσκου.
Η επιφάνεια είναι

S = G(D).

(d) Απόδειξη της σχέσης και υπολογισμός του επιφανειακού ολοκληρώματος
Γνωρίζουμε ότι για παραμέτρηση G(x,y):∫∫

S
1dS =

∫∫
D
∥N(x,y)∥dxdy =

∫∫
D

√
1+ x2 + y2 dxdy.

Αλλάζουμε σε πολικές συντεταγμένες στο D:

x = r cosθ , y = r sinθ , 0 ≤ r ≤ 1, 0 ≤ θ ≤ π
2
.

Τότε:

1+ x2 + y2 = 1+ r2, dxdy = r dr dθ .

Άρα ∫∫
S

1dS =
∫ π/2

0

∫ 1

0

√
1+ r2 r dr dθ .

Υπολογίζουμε το εσωτερικό ολοκλήρωμα:∫ 1

0
r
√

1+ r2 dr.

Θέτουμε u = 1+ r2, du = 2r dr:

∫ 1
0 r

√
1+ r2 dr =

1
2

∫ 2

1
u1/2 du =

1
2
· 2

3
(
23/2 −13/2)= 1

3
(2
√

2−1).

Τελικό ολοκλήρωμα:∫∫
S

1dS =
∫ π/2

0

1
3
(2
√

2−1)dθ =
π

6(2
√

2−1).

∫∫
S

dS =
π
6
(
2
√

2−1
)
.

* Στις τρεις ασκήσεις που ακολουθούν έχουμε παραμετρικές επιφάνειες
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G(u,v) = (x(u,v),y(u,v),z(u,v))

και ορίζουμε

Tu = Gu(u,v), Tv = Gv(u,v), N(u,v) = Tu ×Tv.

Στο ζητούμενο σημείο παίρνουμε το σημείο

P = G(u0,v0)

και ένα διάνυσμα κάθετο στο εφαπτόμενο επίπεδο

n0 = N(u0,v0).

Η εξίσωση του εφαπτόμενου επιπέδου στο P = (x0,y0,z0) με κάθετο διάνυσμα n0 =
(A,B,C) είναι

A(x− x0)+B(y− y0)+C(z− z0) = 0.

3.
G(u,v) = (2u+ v, u−4v, 3u), u0 = 1, v0 = 4.

Υπολογίζουμε

Tu = Gu(u,v) = (2, 1, 3), Tv = Gv(u,v) = (1,−4, 0).

Άρα

N(u,v) = Tu ×Tv =

∣∣∣∣∣∣
i j k
2 1 3
1 −4 0

∣∣∣∣∣∣= (12, 3,−9).

Μπορούμε να χρησιμοποιήσουμε και το απλούστερο

N(u,v) = (4, 1,−3).

Στο σημείο

P = G(1,4) = (6,−15, 3).

Η εξίσωση του εφαπτόμενου επιπέδου στο P με κάθετο διάνυσμα n0 = (4,1,−3) είναι

4(x−6)+1(y+15)−3(z−3) = 0

που απλοποιείται σε

4x+ y−3z = 0.

4.
G(u,v) = (u2 − v2, u+ v, u− v), u0 = 2, v0 = 3.

Υπολογίζουμε
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Tu = Gu(u,v) = (2u, 1, 1), Tv = Gv(u,v) = (−2v, 1,−1).

Άρα

N(u,v) = Tu ×Tv =

∣∣∣∣∣∣
i j k

2u 1 1
−2v 1 −1

∣∣∣∣∣∣= (−2, 2u−2v, 2(u+ v))..

Στο σημείο (u0,v0) = (2,3) έχουμε

N(2,3) = (−2,−2, 10)

και μπορούμε να πάρουμε το απλούστερο κάθετο διάνυσμα

n0 = (1, 1,−5).

Το σημείο της επιφάνειας είναι

P = G(2,3) = (4−9, 2+3, 2−3) = (−5, 5,−1).

Η εξίσωση του εφαπτόμενου επιπέδου στο P είναι

1(x+5)+1(y−5)−5(z+1) = 0

δηλαδή

x+ y−5z−5 = 0.

5.
G(θ ,ϕ) = (cosθ sinϕ , sinθ sinϕ , cosϕ), θ0 =

π
2
, ϕ0 =

π
4
.

Υπολογίζουμε

Tθ = Gθ (θ ,ϕ) = (−sinθ sinϕ , cosθ sinϕ , 0),

Tϕ = Gϕ (θ ,ϕ) = (cosθ cosϕ , sinθ cosϕ , −sinϕ).

Το διανυσματικό γινόμενο είναι

N(θ ,ϕ) = Tθ ×Tϕ = (−cosθ sin2 ϕ , −sinθ sin2 ϕ , −sinϕ cosϕ).

Στο σημείο (θ0,ϕ0) = (π/2,π/4)

P = G
(π

2
,
π
4

)
=
(

0,

√
2

2
,

√
2

2

)
,

και

N
(π

2
,
π
4

)
=
(

0,−1
2
,−1

2

)
.

Μπορούμε να πάρουμε ως κάθετο διάνυσμα το

n0 = (0, 1, 1).
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Η εξίσωση του εφαπτόμενου επιπέδου στο P είναι

0(x−0)+1
(

y−
√

2
2

)
+1
(

z−
√

2
2

)
= 0

οπότε

y+ z−
√

2 = 0.

Έτσι, για καθεμία από τις τρεις παραμετρικές επιφάνειες υπολογίσαμε τα διανύσματα Tu,
Tv, N στο αντίστοιχο σημείο και βρήκαμε την εξίσωση του εφαπτόμενου επιπέδου.

1.18 Επιφανειακά ολοκληρώματα των διανυσματικών πεδίων

Το τελευταίο είδος ολοκληρώματος που θα μελετήσουμε είναι το επιφανειακό ολοκλήρωμα ενός
διανυσματικού πεδίου. Τα ολοκληρώματα αυτού του είδους αντιπροσωπεύουν τη ροή ή τον ρυθμό
με τον οποίο συντελείται η ροή μέσω μιας επιφάνειας, όπως για παράδειγμα η ροή μορίων που
διασχίζουν μια κυτταρική μεμβράνη (σε αριθμό μορίων ανά μονάδα χρόνου).

(a) Ένας πιθανός προσανατολισμός της S (b) Ο αντίθετος προσανατολισµός

Σχήμα 1.57 Η επιφάνεια S διαθέτει δύο πιθανούς προσανατολισμούς

Καθώς η ροή που διέρχεται μέσω μιας επιφάνειας S «διαπερνά» την επιφάνεια από τη μία της
πλευρά στην άλλη, θα πρέπει να ορίσουμε μια θετική κατεύθυνση για μια τέτοια ροή. Ο ορισμός
αυτός γίνεται με τη βοήθεια ενός προσανατολισμού που στην περίπτωσή μας είναι η επιλογή ενός
μοναδιαίου κάθετου διανύσματος n(P) σε κάθε σημείο P της επιφάνειας S, που επιλέγεται να
μεταβάλλεται με συνεχή τρόπο, όπως φαίνεται στο Σχήμα 1.57. Υπάρχουν δύο κάθετες κατευθύν-
σεις σε κάθε σημείο της επιφάνειας, επομένως ο προσανατολισμός χρησιμοποιείται για να επιλέ-
ξουμε τη μία από τις δύο πλευρές της επιφάνειας με έναν συνεπή τρόπο.
Η κάθετη συνιστώσα ενός διανυσματικού πεδίου F
σε ένα σημείο P μιας προσανατολισμένης επιφάνειας
S προκύπτει ως ένα εσωτερικό γινόμενο με τον
ακόλουθο τρόπο:

Κάθετη συνιστώσα στο σημείο
P = F(P) ·n(P) = ∥F(P)∥cosθ

όπου θ είναι η γωνία μεταξύ των διανυσμάτων F(P)
και n(P), όπως φαίνεται στο Σχήμα 1.58. Πολύ
συχνά γράφουμε n αντί για n(P), κατανοώντας όμως
ότι το διάνυσμα n μεταβάλλεται από σημείο σε
σημείο καθώς κινούμαστε πάνω σε μια επιφάνεια.

Σχήμα 1.58 Η κάθετη συνιστώσα ενός διανύσματος σε
μια επιφάνεια
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Επιφανειακό ολοκλήρωμα διανυσματικού πεδίου
∫∫

S
(F ·n)dS

Το επιφανειακό ολοκλήρωμα του διανυσματικού πεδίου F πάνω στην επιφάνεια S ορίζεται ως το
επιφανειακό ολοκλήρωμα της κάθετης συνιστώσας του πεδίου F και είναι γνωστή ως η ροή του
διανυσματικού πεδίου F που διασχίζει την επιφάνεια S. Μια προσανατολισμένη παραμέτρηση
G(u,v) είναι μια κανονική παραμέτρηση [δηλαδή το διάνυσμα N(u,v) είναι μη μηδενικό για
όλες τις τιμές των u,v] το μοναδιαίο διάνυσμα της οποίας ορίζει τον προσανατολισμό:

n = n(u,v) =
N(u,v)

∥N(u,v)∥

Από την προηγούμενη ενότητα, η έκφραση για το επιφανειακό ολοκλήρωμα μιας βαθμωτής συνάρτησης
με τη βοήθεια μιας παραμέτρησης είναι η:∫∫

S
f (x,y,z)dS =

∫∫
f (G(u,v))∥N(u,v)∥dudv

Εφαρμόζοντας την τελευταία εξίσωση για το εσωτερικό γινόμενο F ·n προκύπτει:∫∫
S
(F ·n)dS =

∫∫
D
(F ·n)∥N(u,v)∥dudv

=
∫∫

D
F(G(u,v)) ·

(
N(u,v)
∥N(u,v)∥

)
∥N(u,v)∥dudv

=
∫∫

D
F(G(u,v)) ·N(u,v)dudv

Η τελευταία σχέση εξακολουθεί να ισχύει ακόμα και όταν το διάνυσμα N(u,v) είναι μηδέν σε
σημεία που ανήκουν στο σύνορο του πεδίου ορισμού D των παραμέτρων. Αν αντιστρέψουμε τον
προσανατολισμό της επιφάνειας S στο επιφανειακό ολοκλήρωμα ενός διανυσματικού πεδίου, τότε
θα πρέπει να αντικαταστήσουμε το διάνυσμα N(u,v) με το−N(u,v), οπότε και το ολοκλήρωμα
θα αλλάξει πρόσημο.

Με τον τρόπο αυτόν καταλήγουμε στο ακόλουθο θεώρημα.

Θεώρημα 1.18.1Επιφανειακό ολοκλήρωμα διανυσματικού πεδίουΈστωG(u,v) μια προσανατο-
λισμένη παραμέτρηση μιας επιφάνειας S με πεδίο ορισμού των παραμέτρων τοD. Υποθέστε ότι
η G είναι ένα–προς–ένα και κανονική, εκτός πιθανώς από σημεία που βρίσκονται στο σύνορο
του χωρίου D. Τότε ∫∫

S
(F ·n)dS =

∫∫
D

F(G(u,v)) ·N(u,v)dudv

Αν ο προσανατολισμός της επιφάνειας S αντιστραφεί, το επιφανειακό ολοκλήρωμα αλλάζει
πρόσημο.

Ένας άλλος συμβολισμός για το επιφανειακό ολοκλήρωμα ενός διανυσματικού πεδίου προκύπτει
αν εκφράσουμε το γινόμενο του μοναδιαίου κάθετου διανύσματος n και του διαφορικού της
επιφάνειας dS ως το διανυσματικό διαφορικό της επιφάνειας dS = ndS. Έτσι, καταλήγουμε
στην έκφραση:
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∫∫
S
(F ·n)dS =

∫∫
S

F ·dS

Παράδειγμα 1.18.2
Υπολογίστε το επιφανειακό ολοκλήρωμα

∫∫
S

F ·dS,

όπου F = ⟨0,0,x⟩, αν S είναι η επιφάνεια με παραμέτρηση G(u,v) = (u2, v, u3 − v2) για
0≤ u≤ 1, 0≤ v≤ 1 που είναι προσανατολισμένη από κάθετα διανύσματα που κατευθύνονται
προς τα επάνω.

Λύση.
Βήμα 1 Υπολογίζουμε τα εφαπτόμενα διανύσματα
και το κάθετο διάνυσμα.

Tu = ⟨2u, 0, 3u2⟩, Tv = ⟨0, 1,−2v⟩

N(u,v) = Tu ×Tv =

∣∣∣∣∣∣∣∣∣∣
i j k

2u 0 3u2

0 1 −2v

∣∣∣∣∣∣∣∣∣∣
=

−3u2 i+4uv j+2uk = ⟨−3u2, 4uv, 2u⟩

Σχήμα 1.59 Η επιφάνεια, με παραμέτρηση G(u,v) =
(u2, v, u3 − v2), με κάθετα διανύσματα κατευθυνόμενα
προς τα επάνω. Το διανυσματικό πεδίο F = ⟨0,0,x⟩ έχει
κατακόρυφη διεύθυνση.

Η z συνιστώσα του διανύσματος N είναι θετική όταν 0 ≤ u ≤ 1, επομένως το διάνυσμα N είναι
το κάθετο διάνυσμα με προσανατολισμό προς τα επάνω (βλ. Σχήμα 1.59).

Βήμα 2 Υπολογίζουμε το εσωτερικό γινόμενο F ·N. Θα εκφράσουμε αρχικά το πεδίο F με τη
βοήθεια των παραμέτρων u και v. Αφού x = u2, θα έχουμε:

F(G(u,v)) = ⟨0,0,x⟩= ⟨0,0,u2⟩

οπότε

F(G(u,v)) ·N(u,v) = ⟨0,0,u2⟩ · ⟨−3u2, 4uv, 2u⟩= 2u3

Βήμα 3 Υπολογίζουμε το επιφανειακό ολοκλήρωμα.
Το πεδίο ορισμού των παραμέτρων είναι 0 ≤ u ≤ 1, 0 ≤ v ≤ 1, επομένως:∫∫

S
F ·dS =

∫ 1

u=0

∫ 1

v=0
F(G(u,v)) ·N(u,v)dvdu

=
∫ 1

u=0

∫ 1

v=0
2u3 dvdu =

∫ 1

u=0
2u3 du =

1
2
.
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Παράδειγμα 1.18.3
Ολοκλήρωμα πάνω σε ημισφαίριο Υπολογίστε τη ροή του πεδίου F = ⟨z,x,1⟩ διαμέσου της
επιφάνειας του άνω ημισφαιρίουτης σφαίρας x2+y2+z2 = 1 που είναι προσανατολισμένη με
κάθετα διανύσματα κατευθυνόμενα προς τα έξω, όπως φαίνεται στο Σχήμα 1.60.

Λύση. Θα παραμετρήσουμε το ημισφαίριο με τη
βοήθεια των σφαιρικών συντεταγμένων:

G(θ ,ϕ) = (cosθ sinϕ ,sinθ sinϕ ,cosϕ), 0 ≤
ϕ ≤ π

2
, 0 ≤ θ < 2π

Βήμα 1 Υπολογίζουμε το κάθετο διάνυσμα. Το κάθετο
διάνυσμα με κατεύθυνση προς τα έξω είναι το:

N = Tϕ ×Tθ =
sinϕ⟨cosθ sinϕ ,sinθ sinϕ ,cosϕ⟩

Σχήμα 1.60 Το διανυσματικό πεδίο F = ⟨z,x,1⟩.

Πράγματι, έστω η παραμετροποίηση του ημισφαιρίου

G(θ ,ϕ) = (cosθ sinϕ , sinθ sinϕ , cosϕ), 0 ≤ ϕ ≤ π
2 , 0 ≤ θ < 2π.

Παίρνουμε τις μερικές παραγώγους:

Tθ = Gθ (θ ,ϕ) = (−sinθ sinϕ , cosθ sinϕ , 0),

Tϕ = Gϕ (θ ,ϕ) = (cosθ cosϕ , sinθ cosϕ , −sinϕ).

Επομένως,

N =

∣∣∣∣∣∣∣∣∣∣
i j k

cosθ cosϕ sinθ cosϕ −sinϕ

−sinθ sinϕ cosθ sinϕ 0

∣∣∣∣∣∣∣∣∣∣
Υπολογίζοντας τις συνιστώσες έχουμε:

Nx = cosθ sin2 ϕ , Ny = sinθ sin2 ϕ , Nz = cosϕ sinϕ .

Άρα

N(θ ,ϕ) =
(
cosθ sin2 ϕ , sinθ sin2 ϕ , cosϕ sinϕ

)
.

Βήμα 2 Υπολογίζουμε το εσωτερικό γινόμενο F ·N.

F(G(θ ,ϕ)) = ⟨z,x,1⟩= ⟨cosϕ ,cosθ sinϕ ,1⟩

Επομένως,
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F(G(θ ,ϕ)) ·N(θ ,ϕ) = ⟨cosϕ ,cosθ sinϕ ,1⟩ · ⟨cosθ sin2 ϕ ,sinθ sin2 ϕ ,cosϕ sinϕ⟩=
cosθ sin2 ϕ cosϕ + cosθ sinθ sin3 ϕ + cosϕ sinϕ

Βήμα 3 Υπολογίζουμε το επιφανειακό ολοκλήρωμα.∫∫
S

F ·dS =
∫ π/2

ϕ=0

∫ 2π

θ=0
F(G(θ ,ϕ)) ·N(θ ,ϕ)dθ dϕ

=
∫ π/2

ϕ=0

∫ 2π

θ=0
(cosθ sin2 ϕ cosϕ + cosθ sinθ sin3 ϕ︸ ︷︷ ︸
Το ολοκλήρωμα στο διάστημα 0≤θ≤2π είναι μηδέν

+cosϕ sinϕ)dθ dϕ

Τα ολοκληρώματα των cosθ και cosθ sinθ στο διάστημα [0,2π] είναι και τα δύο μηδέν,
επομένως απομένει ο όρος∫ π/2

ϕ=0

∫ 2π

θ=0
cosϕ sinϕdθdϕ = 2π

∫ π/2

ϕ=0
cosϕ sinϕdϕ =−2π

cos2 ϕ
2

∣∣∣∣π/2

0
= π

Παράδειγμα 1.18.4
Επιφανειακό ολοκλήρωμα πάνω σε ένα γράφημα
Υπολογίστε τη ροή του πεδίου F = x2j δια μέσου
της επιφάνειας S η οποία ορίζεται από την y =
1 + x2 + z2 για 1 ≤ y ≤ 5. Η επιφάνεια είναι
προσανατολισμένη με κάθετα διανύσματα τα οποία
κατευθύνονται προς τα αρνητικά του άξονα y.

Λύση. Η επιφάνεια που περιγράφεται στην εκφώνηση
του παραδείγματος είναι το γράφημα της συνάρτησης

y = 1+ x2 + z2
Σχήμα 1.61

που απεικονίζεται στο Σχήμα 1.61, με τις x και z να είναι οι ανεξάρτητες μεταβλητές.

Βήμα 1 Βρίσκουμε μια παραμέτρηση της επιφάνειας. Εξυπηρετεί να χρησιμοποιήσουμε τις x
και z ως μεταβλητές της παραμέτρησης καθώς η y δίνεται ως συνάρτηση αυτών των δύο. Έτσι,
ορίζουμε την παραμέτρηση:

G(x,z) = (x, 1+ x2 + z2, z)

Ποιο είναι το πεδίο ορισμού των παραμέτρων; Αφού y = 1+x2+z2, η συνθήκη 1 ≤ y ≤ 5 είναι
ισοδύναμη με την 1 ≤ 1+x2+ z2 ≤ 5, ή 0 ≤ x2+ z2 ≤ 4. Αυτό σημαίνει ότι το πεδίο ορισμού
των παραμέτρων είναι ο δίσκος ακτίνας 2 στο επίπεδο xz – δηλαδή

D = {(x,z) : x2 + z2 ≤ 4}.

Επειδή το πεδίο ορισμού των παραμέτρων είναι ένας δίσκος, είναι βολικό να χρησιμοποιήσουμε
τις πολικές συντεταγμένες r και θ στο επίπεδο xz. Με άλλα λόγια, γράφουμε x = r cosθ και
z = r sinθ . Αν χρησιμοποιήσουμε αυτές τις σχέσεις, θα έχουμε:

y = 1+ x2 + z2 = 1+ r2

G(r,θ) = (r cosθ , 1+ r2, r sinθ), 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 2.
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Βήμα 2 Υπολογίστε τα εφαπτόμενα διανύσματα και το κάθετο διάνυσμα.

Tr = ⟨cosθ , 2r, sinθ⟩, Tθ = ⟨−r sinθ , 0, r cosθ⟩

N = Tr ×Tθ =

∣∣∣∣∣∣∣∣∣∣
i j k

cosθ 2r sinθ

−r sinθ 0 r cosθ

∣∣∣∣∣∣∣∣∣∣
= 2r2 cosθ i− rj+2r2 sinθ k.

Η j συνιστώσα του κάθετου διανύσματος είναι −r. Επειδή το πρόσημο είναι αρνητικό, το
διάνυσμα N έχει την αρνητική κατεύθυνση του άξονα y, όπως απαιτείται.

Υπολογίστε το εσωτερικό γινόμενο F ·N και ολοκληρώστε.

F(G(r,θ)) = x2j = r2 cos2 θ j = ⟨0, r2 cos2 θ , 0⟩

F(G(r,θ)) ·N = ⟨0, r2 cos2 θ , 0⟩ · ⟨2r2 cosθ , −r, 2r2 sinθ⟩

=−r3 cos2 θ

∫∫
S

F ·dS =
∫∫

D
F(G(r,θ)) ·N dr dθ

=
∫ 2π

0

∫ 2

0

(
−r3 cos2 θ

)
dr dθ

=−
(∫ 2π

0
cos2 θ dθ

)(∫ 2

0
r3 dr

)
=−(π)

(
24

4

)
=−4π

Δεν πρέπει να αποτελεί έκπληξη το γεγονός ότι η ροή είναι αρνητική αφού η θετική κατεύθυνση
κάθετα στην επιφάνεια επελέχθη να είναι προς την αρνητική κατεύθυνση του άξονα y, ενώ το
διανυσματικό πεδίο F κατευθύνεται προς τα θετικά του άξονα y.

Σχόλιο 1.18.5 Στο τρίτο βήμα ολοκληρώνουμε το εσωτερικό γινόμενο F ·N ως προς dr dθ και
όχι ως προς r dr dθ . Ο παράγοντας r στην έκφραση r dr dθ είναι ένας Ιακωβιανός παράγοντας
που εμφανίζεται μόνο όταν αλλάζουμε μεταβλητές στο διπλό ολοκλήρωμα. Στα επιφανειακά
ολοκληρώματα, αυτός είναι ενσωματωμένος στο μέτρο του διανύσματος N (θυμηθείτε ότι το
∥N∥ είναι ένας παράγοντας κλίμακας του εμβαδού).

Σημείωση 1.18.6 Αφού το επιφανειακό ολοκλήρωμα ενός διανυσματικού πεδίου εξαρτάται
από την κατεύθυνση της επιφάνειας, θα ορίζεται μόνο για επιφάνειες που έχουν δύο όψεις.
Υπάρχουν όμως ορισμένες επιφάνειες, όπως για παράδειγμα η λωρίδα τουMöbius (που ανακαλύφθηκε
το 1858 ανεξάρτητα από τους August Möbius και Johann Listing), η οποία δεν μπορεί να
προσανατολιστεί καθώς έχει μία μόνο όψη. Μπορείτε να κατασκευάσετε μια λωρίδα Möbius
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M με τη βοήθεια μιας ορθογώνιας μακρόστενης λωρίδας από χαρτί, της οποίας θα ενώσετε τα
δύο άκρα αφού προηγουμένως κάνετε μια στροφή του ενός από τα δύο κατά 180◦. Αντίθετα
από μια συνηθισμένη λωρίδα που διαθέτει δύο όψεις, η λωρίδα M του Möbius έχει μία μόνο
όψη, γεγονός που σημαίνει ότι είναι αδύνατο να ορίσουμε μια θετική κάθετη κατεύθυνση με
συνεπή τρόπο (βλ. Σχήμα 1.62). Αυτό συμβαίνει γιατί αν επιλέξουμε ένα μοναδιαίο κάθετο
διάνυσμα στο σημείοP το οποίο στη συνέχεια μεταφέρουμε με συνεπή τρόπο πάνω στη λωρίδα
M, τότε όταν επιστρέψουμε στο σημείο P το διάνυσμα θα έχει την αντίθετη από την αρχική
κατεύθυνση. Αυτό σημαίνει ότι δεν μπορούμε να ολοκληρώσουμε ένα διανυσματικό πεδίο
πάνω σε μια λωρίδα Möbius και επομένως δεν έχει έννοια να μιλάμε για τη ροή που διέρχεται
από αυτή. Από την άλλη όμως είναι εφικτό να ολοκληρώσουμε μια βαθμωτή συνάρτηση πάνω
στη λωρίδα M. Έτσι, για παράδειγμα, το ολοκλήρωμα της πυκνότητας μάζας θα είναι ίσο με
τη συνολική μάζα της λωρίδας του Möbius.

Σχήμα 1.62 Δεν είναι εφικτό να επιλέξουμε ένα μοναδιαίο κάθετο διάνυσμα που να μεταβάλλεται με συνεχή τρόπο πάνω σε
μια λωρίδα Möbius.

1.18.1 Είδη ολοκληρωμάτων

Θα ολοκληρώσουμε την ενότητα με έναν κατάλογο των ολοκληρωμάτων που εισαγάγαμε σε αυτό
το κεφάλαιο.

1. Επικαμπύλιο ολοκλήρωμα βαθμωτής συνάρτησης κατά μήκος μιας καμπύληςC που περιγράφεται
από την r(t) για a≤ t ≤ b (μπορεί να χρησιμοποιηθεί για τον υπολογισμό του μήκους ενός
τόξου, της μάζας ή του ηλεκτρικού δυναμικού):∫

C
f (x,y,z)ds =

∫ b

a
f (r(t))∥r′(t)∥dt

2. Επικαμπύλιο ολοκλήρωμα διανυσματικού πεδίου με το οποίο υπολογίζεται το έργο κατά
μήκος μιας καμπύληςC που περιγράφεται από την r(t) για a ≤ t ≤ b:∫

C
F ·dr =

∫ b

a
F(r(t)) · r′(t)dt =

∫
C

F1 dx+F2 dy+F3 dz

3. Επικαμπύλιο ολοκλήρωμα διανυσματικού πεδίου με το οποίο υπολογίζεται η ροή που διασχίζει
την καμπύληC η οποία περιγράφεται από την r(t) για a ≤ t ≤ b:∫

C
F ·nds =

∫ b

a
F(r(t)) ·N(t)dt

4. Επιφανειακό ολοκλήρωμα πάνω σε μια επιφάνεια με παραμέτρησηG(u,v) και πεδίο ορισμού
των παραμέτρων το χωρίο D (μπορεί να χρησιμοποιηθεί για τον υπολογισμό του εμβαδού
της επιφάνειας, του συνολικού φορτίου, του βαρυτικού δυναμικού):∫∫

S
f (x,y,z)dS =

∫∫
D

f (G(u,v))∥N(u,v)∥dudv
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5. Επιφανειακό ολοκλήρωμα διανυσματικής συνάρτησης με το οποίο υπολογίζεται η ροή ενός
διανυσματικού πεδίου F που διέρχεται από μια επιφάνεια S με παραμέτρηση G(u,v) και
πεδίο ορισμού των παραμέτρων το χωρίο D:∫∫

S
(F ·n)dS =

∫∫
S

F ·dS =
∫∫

D
F(G(u,v)) ·N(u,v)dudv

Ασκήσεις 1.18.7

1. Έστω το διανυσματικό πεδίο F = ⟨z, 0, y⟩ και S η προσανατολισμένη επιφάνεια που
παραμετροποιείται από τη

G(u,v) = (u2 − v, u, v2), 0 ≤ u ≤ 2, −1 ≤ v ≤ 4.

Υπολογίστε:
(a) Το κάθετο διάνυσμα N και το εσωτερικό γινόμενο F ·N ως συναρτήσεις των μετα-

βλητών u και v.

(b) Την κάθετη συνιστώσα του πεδίουF στην επιφάνεια και στο σημείοP=(3,2,1)=
G(2,1).

(c) Το επιφανειακό ολοκλήρωμα
∫∫

S
F ·dS.

2. Έστω το διανυσματικό πεδίο F = ⟨y,−x, x2 + y2⟩ και S το τμήμα της επιφάνειας του
παραβολοειδούς z = x2 + y2 με x2 + y2 ≤ 3.
(a) Δείξτε ότι αν η επιφάνεια S παραμετρηθεί με τις πολικές μεταβλητές x= r cosθ , y=

r sinθ , τότε F ·N = r3.

(b) Να αποδείξετε ότι ∫∫
S

F ·dS =
∫ 2π

0

∫ 3

0
r3 dr dθ

και να υπολογίσετε αυτό το επιφανειακό ολοκλήρωμα.

Στις Ασκήσεις 5–10 να υπολογίσετε το επιφανειακό ολοκλήρωμα
∫∫

S F⃗ ·dS⃗ για το διανυσμα-
τικό πεδίο και την προσανατολισμένη επιφάνεια που δίνονται σε κάθε περίπτωση.

3. F = ⟨y,z,x⟩, επίπεδο 3x−4y+ z = 1, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, με το κάθετο διάνυσμα
να κατευθύνεται προς τα επάνω.

4. F = ⟨ez,z,x⟩, G(r,s) = (rs,r+ s,r), 0 ≤ r ≤ 1, 0 ≤ s ≤ 1, προσανατολισμένη από
το Tr ×Ts.

5. F = ⟨0,3,x⟩, στο τμήμα της σφαίρας x2 + y2 + z2 = 9, με x ≥ 0, y ≥ 0, z ≥ 0, με το
κάθετο διάνυσμα να κατευθύνεται προς τα έξω.

6. F = ⟨x,y,z⟩, στο τμήμα της σφαίρας x2 + y2 + z2 = 1, με
1
2
≤ z ≤

√
3

2
, με το κάθετο

διάνυσμα να κατευθύνεται προς τα μέσα.
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7. F= ⟨z,z,x⟩, z= 9−x2−y2, x≥ 0, y≥ 0, z≥ 0, με το κάθετο διάνυσμα να κατευθύνε-
ται προς τα επάνω.

8. F = ⟨siny,sinz,yz⟩, στο ορθογώνιο 0 ≤ y ≤ 2, 0 ≤ z ≤ 3 του επιπέδου yz, με το
κάθετο διάνυσμα να κατευθύνεται προς τα αρνητικά του άξονα x.

9. F = ⟨0,0,e,y+z⟩, στο σύνορο του μοναδιαίου κύβου 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1,
με το κάθετο διάνυσμα να κατευθύνεται προς τα έξω.

10. F = ⟨0,0,z2⟩, G(u,v) = (ucosv, usinv, v), 0 ≤ u ≤ 1, 0 ≤ v ≤ 2π , με το
κάθετο διάνυσμα να κατευθύνεται προς τα επάνω.

11. F = ⟨y,z,0⟩, G(u,v) = (u3−v, u+v, v2), 0 ≤ u ≤ 2, 0 ≤ v ≤ 3, με το κάθετο
διάνυσμα να κατευθύνεται προς τα κάτω.

12. Έστω S η προσανατολισμένη επιφάνεια
του ημικυλίνδρου του Σχήματος 1.63.
Για καθεμία από τις περιπτώσεις
a)–f) των διανυσματικών πεδίων, να
ελέγξετε αν το επιφανειακό ολοκλήρωμα∫∫

S
F · dS⃗ είναι θετικό, αρνητικό ή

μηδέν. Εξηγήστε την απάντησή σας.

a) F⃗ = i b) F⃗ = j

c) F⃗ = k d) F⃗ = y i

e) F⃗ =−y j f) F⃗ = x j
Σχήμα 1.63

13. Να αποδείξετε ότι η ροή του διανυσματικού πεδίου F =
er

r2 μέσα από μια σφαίρα με
κέντρο την αρχή των αξόνων δεν εξαρτάται από την ακτίνα της σφαίρας.

14. Η ένταση του ηλεκτρικού πεδίου που δημιουργείται από ένα σημειακό φορτίο τοποθετημέ-
νο στην αρχή του χώρουR3 είναιE = k

er

r2 , όπου r =
√

x2 + y2 + z2 και k μια σταθερά.
Υπολογίστε τη ροή του πεδίουE μέσα από τον δίσκοD ακτίνας2, ο οποίος είναι παράλλη-
λος στο επίπεδο xy και το κέντρο του βρίσκεται στο σημείο (0,0,3).

Στις Ασκήσεις 17–18 μια απόχη είναι βυθισμένη στη ροή ενός ποταμού. Προσδιορίστε την
παροχή του νερού μέσα από την απόχη αν το πεδίο ταχυτήτων του νερού είναι το v, ενώ η
απόχη περιγράφεται από τις εξισώσεις που δίνονται σε κάθε περίπτωση.

15. v = ⟨x− y, z+ y+4, z2⟩, με την απόχη να περιγράφεται από την x2 + z2 ≤ 1, y = 0
και είναι προσανατολισμένη στη θετική κατεύθυνση του άξονα y.

16. v = ⟨x− y, z+ y+ 4, z2⟩, με την απόχη να περιγράφεται από την y = 1− x2 − z2,
y ≥ 0 και είναι προσανατολισμένη στη θετική κατεύθυνση του άξονα y.
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Στις Ασκήσεις 19 και 20 υποθέστε ότι T
είναι η τριγωνική επιφάνεια με κορυφές
τα σημεία (1,0,0), (0,1,0) και (0,0,1)
προσανατολισμένη έτσι ώστε το κάθετο
διάνυσμα να κατευθύνεται προς τα επάνω,
όπως φαίνεται στο Σχήμα 1.64. Υποθέστε
ότι όλες οι αποστάσεις είναι σε m.

Σχήμα 1.64

17. Ένα ρευστό ρέει με σταθερή ταχύτητα που περιγράφεται από το πεδίο v= 2k (εκφρασμέ-
νο σε m/s). Υπολογίστε:
(a) Την παροχή του ρευστού μέσα από την επιφάνεια T .

(b) Την παροχή του ρευστού μέσα από την προβολή της περιοχής T πάνω στο επίπεδο
xy [δηλαδή του τριγώνου με κορυφές τα σημεία (0,0,0), (1,0,0) και (0,1,0)].

18. Υπολογίστε την παροχή διαμέσου της επιφάνειας T αν το πεδίο των ταχυτήτων του
ρευστού είναι v =− j m/s.

Λυμένες ασκήσεις 1.18.8

1.
F(x,y,z) = ⟨z,0,y⟩, G(u,v) = (u2 − v, u, v2), 0 ≤ u ≤ 2, −1 ≤ v ≤ 4.

(a)
Gu(u,v) = (2u,1,0), Gv(u,v) = (−1,0,2v).

N(u,v) = Gu ×Gv =

∣∣∣∣∣∣
i j k

2u 1 0
−1 0 2v

∣∣∣∣∣∣= (2v,−4uv, 1).

F(G(u,v)) = ⟨v2, 0, u⟩

F ·N(u,v) = 2v3 +u.

(b) Το σημείο P=(3,2,1)=G(2,1).

N(2,1) = (2,−8,1), ∥N(2,1)∥=
√

69.

n(2,1) =
1√
69

(2,−8,1), F(P) = ⟨1,0,2⟩.
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F(P) ·n(2,1) = 4√
69

.

(c) ∫∫
S

F ·dS =
∫∫

D
F(G(u,v)) · (Gu ×Gv)dudv =

∫∫
D
(u+2v3)dudv,

όπου

D = {(u,v) : 0 ≤ u ≤ 2, −1 ≤ v ≤ 4}.

∫ 2

0

∫ 4

−1
(u+2v3)dvdu =

∫ 2

0

[
uv+

1
2

v4
]v=4

v=−1
du =

∫ 2

0

(
5u+

255
2

)
du.

∫ 2

0

(
5u+

255
2

)
du =

[
5
2

u2 +
255
2

u
]2

0
= 10+255 = 265.

∫∫
S

F ·dS = 265.

2. (a)
F(x,y,z) = ⟨y,−x, x2 + y2⟩, S : z = x2 + y2, x2 + y2 ≤ 3.

Παραμετροποιούμε το S με πολικές μεταβλητές

x = r cosθ , y = r sinθ , z = x2 + y2 = r2,

οπότε

G(r,θ) = (r cosθ , r sinθ , r2), 0 ≤ r ≤
√

3, 0 ≤ θ ≤ 2π.

Τα εφαπτόμενα διανύσματα είναι

Gr(r,θ) = (cosθ , sinθ , 2r), Gθ (r,θ) = (−r sinθ , r cosθ , 0).

Άρα ένα κάθετο διάνυσμα είναι

N(r,θ)=Gr×Gθ =

∣∣∣∣∣∣
i j k

cosθ sinθ 2r
−r sinθ r cosθ 0

∣∣∣∣∣∣=(−2r2 cosθ ,−2r2 sinθ , r).

Το N έχει θετική z–συνιστώσα, άρα δίνει την προς τα πάνω (εξωτερική) φορά.
Το πεδίο F πάνω στην επιφάνεια γράφεται

F(G(r,θ)) = ⟨r sinθ ,−r cosθ , r2⟩.

Υπολογίζουμε το εσωτερικό γινόμενο:
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F ·N = r sinθ(−2r2 cosθ)+(−r cosθ)(−2r2 sinθ)+ r2 · r =
−2r3 sinθ cosθ +2r3 sinθ cosθ + r3 = r3.

Άρα πράγματι

F ·N = r3.

(b) Το επιφανειακό ολοκλήρωμα ροής γράφεται∫∫
S

F ·dS =
∫∫

D
F(G(r,θ)) ·

(
Gr ×Gθ

)
dr dθ =

∫∫
D

r3 dr dθ ,

όπου D = {(r,θ) : 0 ≤ r ≤
√

3, 0 ≤ θ ≤ 2π}.
Έχουμε λοιπόν ∫∫

S
F ·dS =

∫ 2π

0

∫ √
3

0
r3 dr dθ .

Υπολογισμός:

∫ √
3

0
r3 dr =

[
r4

4

]√3

0
=

9
4
,

άρα ∫∫
S

F ·dS =
∫ 2π

0

9
4

dθ =
9
4
·2π =

9π
2
.

∫∫
S

F ·dS =
9π
2

3.
F(x,y,z) = ⟨y,z,x⟩, 3x−4y+ z = 1, 0 ≤ x ≤ 1, 0 ≤ y ≤

1, με κάθετο προς τα επάνω.

Το επίπεδο είναι γράφημα z = f (x,y) = 1−3x+4y, οπότε

fx =−3, fy = 4, N = (− fx,− fy,1) = (3,−4,1).

Πάνω στο S,

F(x,y, f (x,y)) = ⟨y, 1−3x+4y, x⟩
και

F ·N = 3y−4(1−3x+4y)+ x = 13x−13y−4.

Άρα ∫∫
S

F ·dS =
∫ 1

0

∫ 1

0
(13x−13y−4)dydx =−4.
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4.
F(x,y,z) = ⟨ez,z,x⟩, G(r,s) = (rs,r+ s,r), 0 ≤ r,s ≤ 1, με φορά Tr ×Ts.

Υπολογίζουμε

Gr = (s,1,1), Gs = (r,1,0),

οπότε

N(r,s) = Gr ×Gs = (−1, r, s− r).

Πάνω στο S έχουμε

z = r, x = rs =⇒ F(G(r,s)) = ⟨er,r,rs⟩.
Άρα

F ·N =−er + r2 + rs2 − r2s.

Το επιφανειακό ολοκλήρωμα είναι∫∫
S

F ·dS =
∫ 1

0

∫ 1

0

(
−er + r2 + rs2 − r2s

)
dsdr =−e+

4
3
.

5.
F(x,y,z) = ⟨0,3,x⟩ στο τμήμα της σφαίρας x2 + y2 + z2 = 9, x,y,z ≥

0, με κάθετο προς τα έξω.

Παραμετροποιούμε με σφαιρικές συντεταγμένες:

x = 3sinφ cosθ , y = 3sinφ sinθ , z = 3cosφ,
με

0 ≤ φ ≤ π
2
, 0 ≤ θ ≤ π

2
.

Για σφαίρα ακτίνας 3 η μοναδιαία εξωτερική κάθετη είναι

n =
1
3
⟨x,y,z⟩,

ενώ dS = 9sinφ dφ dθ . Πάνω στο S:

F = ⟨0,3,x⟩= ⟨0,3,3sinφ cosθ⟩,
οπότε

F ·n =
1
3
(
3y+ xz

)
=

1
3
(
9sinφ sinθ +9sinφ cosφ cosθ

)
.

Άρα ∫∫
S

F ·dS =
∫ π/2

0

∫ π/2

0

(
F ·n

)
dS =∫ π/2

0

∫ π/2

0
27sin2 φ

(
sinθ + cosφ cosθ

)
dθ dφ.
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Υπολογίζοντας:∫ π/2

0
sinθ dθ =

∫ π/2

0
cosθ dθ = 1,

∫ π/2

0
sin2 φ dφ =

π
4
,

∫ π/2

0
sin2 φ cosφ dφ =

1
3
,

παίρνουμε ∫∫
S

F ·dS = 27
(π

4
+

1
3

)
=

9
4
(3π +4).

6.
F(x,y,z) = ⟨x,y,z⟩ στο τμήμα της σφαίρας x2 + y2 + z2 = 1,

1
2
≤ z ≤

√
3

2
, με κάθετο προς τα μέσα.

Στη μοναδιαία σφαίρα η εξωτερική μοναδιαία κάθετη είναι

nout = ⟨x,y,z⟩.
Επομένως

F ·nout = ∥nout∥2 = 1, F ·nin =−1,

όπου nin =−nout είναι η εσωτερική κάθετη.
Η περιοχή είναι ζωνάρι της σφαίρας με

cosφ = z,
1
2
≤ z ≤

√
3

2
=⇒ π

6
≤ φ ≤ π

3
, 0 ≤ θ ≤ 2π.

Το στοιχείο επιφάνειας είναι dS = sinφ dφ dθ . Άρα η ροή (προς τα μέσα) είναι∫∫
S

F ·dS =
∫ 2π

0

∫ π/3

π/6
(−1)sinφ dφ dθ =−2π

[
cosφ

]π/3
π/6 = π(1−

√
3).

7.
F(x,y,z)= ⟨z,z,x⟩, z= 9−x2−y2, x≥ 0, y≥ 0, z≥ 0, με κάθετο προς τα επάνω.

Η επιφάνεια είναι γράφημα z = f (x,y) = 9− x2 − y2 πάνω από το τεταρτοκύκλιο

D = {(x,y) : x ≥ 0, y ≥ 0, x2 + y2 ≤ 9}.
Έχουμε

fx =−2x, fy =−2y, N = (− fx,− fy,1) = (2x,2y,1).

Πάνω στο S:

z = 9− x2 − y2, F = ⟨9− x2 − y2, 9− x2 − y2, x⟩.
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Άρα

F ·N = 2x(9− x2 − y2)+2y(9− x2 − y2)+ x =
19x+18y−2x3 −2x2y−2xy2 −2y3.

Περνάμε σε πολικές συντεταγμένες στο D:

x = r cosθ , y = r sinθ , 0 ≤ r ≤ 3, 0 ≤ θ ≤ π
2
,

οπότε dA = r dr dθ και

F ·N = r2
[
(18−2r2)sinθ +(19−2r2)cosθ

]
.

Τελικά∫∫
S

F ·dS =
∫ π/2

0

∫ 3

0
r2[(18−2r2)sinθ +(19−2r2)cosθ

]
dr dθ .

Θέτουμε

A =
∫ 3

0
r2(18−2r2)dr =

324
5

, B =
∫ 3

0
r2(19−2r2)dr =

369
5

,

και χρησιμοποιούμε ∫ π/2

0
sinθ dθ =

∫ π/2

0
cosθ dθ = 1.

Έτσι ∫∫
S

F ·dS = A+B =
324
5

+
369
5

=
693

5
.

12 Έστω S η (κλειστή) προσανατολισμένη επιφάνεια του ημικυλίνδρου καιV ο αντίστοιχος
όγκος. Με το Θεώρημα Απόκλισης∫∫

S
F ·dS =

∫∫∫
V
(∇ ·F)dV.

Άρα αρκεί να βρούμε την απόκλιση σε κάθε περίπτωση.
(a) F = ⟨1,0,0⟩= i

∇ ·F =
∂
∂x

(1)+
∂
∂y

(0)+
∂
∂ z

(0) = 0.

(b) F = ⟨0,1,0⟩= j

∇ ·F = 0.

(c) F = ⟨0,0,1⟩= k

∇ ·F = 0.
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(d) F = ⟨y,0,0⟩= y i

∇ ·F =
∂
∂x

(y)+0+0 = 0.

(e) F = ⟨0,−y,0⟩=−y j

∇ ·F = 0+
∂
∂y

(−y)+0 =−1.

(f) F = ⟨0,x,0⟩= x j

∇ ·F = 0+
∂
∂y

(x)+0 = 0.

Επομένως ∫∫
S

F ·dS =
∫∫∫

V
(∇ ·F)dV

είναι
(a) μηδέν στις περιπτώσεις (a), (b), (c), (d), (f), αφού ∇ ·F = 0,

(b) αρνητικό στην (e), γιατί∫∫
S

F ·dS =
∫∫∫

V
(−1)dV =−Vol(V )< 0.

Επαναληπτικές ασκήσεις κεφαλαίου 1.18.9

1. Βρείτε το διάνυσμα που αντιστοιχίζει στο σημείο P = (−3,5) καθένα από τα διανυσμα-
τικά πεδία:

(a) F(x,y) = ⟨xy, ,y− x⟩

(b) F(x,y) = ⟨4, ,8⟩

(c) F(x,y) = ⟨3x+y, , log2(x+ y)⟩

2. Προσδιορίστε ένα διανυσματικό πεδίο F του επιπέδου, τέτοιο ώστε ∥F(x,y)∥ = 1 και
το F(x,y) να είναι ορθογώνιο στο G(x,y) = ⟨x, ,y⟩ για κάθε x,y.

Στις Ασκήσεις 3–6 να σχεδιάσετε το διανυσματικό πεδίο που δίνεται σε κάθε περίπτωση.

3. F(x,y) = ⟨y, ,1⟩

4. F(x,y) = ⟨4, ,1⟩

5. ∇ f , όπου f (x,y) = x2 − y
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6. F(x,y) =

〈
4y√

x2 +4y2
,

−x√
x2 +16y2

〉
Υπόδειξη: Δείξτε ότι το F είναι ένα μοναδιαίο διανυσματικό πεδίο που είναι εφαπτόμενο
στην οικογένεια των ελλείψεων x2 +4y2 = c2.

Στις Ασκήσεις 7–14 να υπολογίσετε την κλίση div(F) και τον στροβιλισμό curl(F) του
διανυσματικού πεδίου που δίνεται σε κάθε περίπτωση.

7. F = ⟨x2, ,y2, ,z2⟩

8. F = ⟨yz, ,xz, ,xy⟩

9. F = ⟨x3y, ,xz2, ,y2z⟩

10. F = ⟨sin(xy), ,cos(yz), ,sin(xz)⟩

11. F = y, i− z,k

12. F = ⟨ex+y, ,ey+z, ,xyz⟩

13. F = ∇
(

e−x2−y2−z2
)

14. er = r−1⟨x, ,y, ,z⟩ όπου r =
√

x2 + y2 + z2.

15. Να αποδείξετε ότι αν οιF1,F2 καιF3 είναι παραγωγίσιμες συναρτήσεις μιας μεταβλητής,
τότε

curl
(
(F1(x),F2(y),F3(z))

)
= 0.

Χρησιμοποιήστε την ιδιότητα αυτή για να υπολογίσετε τον στροβιλισμό του διανυσματι-
κού πεδίου

F(x,y,z) =
〈

x2 + y2, lny+ z2, z3 sin(z2)ez3
〉
.

16. Να δώσετε ένα παράδειγμα ενός μη μηδενικού διανυσματικού πεδίου F με

curl(F) = 0 και div(F) = 0.

17. Να επιβεβαιώσετε την ταυτότητα

div(curl(F)) = 0

για την περίπτωση των διανυσματικών πεδίων

F = ⟨xz, yex, yz⟩, G = ⟨z2, xy3, x2y⟩.

Στις Ασκήσεις 18–26 να προσδιορίσετε αν το διανυσματικό πεδίο που δίνεται σε κάθε
περίπτωση είναι συντηρητικό ή όχι. Αν είναι, να βρείτε μια συνάρτηση δυναμικού.
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18. F(x,y) = ⟨x2y, y2x⟩

19. F(x,y) = ⟨4x3y5, 5x4y4⟩

20. F(x,y,z) = ⟨sinx, ey, z⟩

21. F(x,y,z) = ⟨2, 4, ez⟩

22. F(x,y,z) = ⟨xyz, 1
2x2z, 2z2y⟩

23. F(x,y) = ⟨y4x3, x4y3⟩

24. F(x,y,z) =
〈

y
1+ x2 , tan−1 x, 2z

〉

25. F(x,y,z) =
〈

2xy
x2 + z

, ln(x2 + z),
y

x2 + z

〉
26. F(x,y,z) = ⟨xe2x, ye2z, ze2y⟩

27. Προσδιορίστε ένα συντηρητικό διανυσματικό πεδίο της μορφής F = ⟨g(y), h(x)⟩ με
F(0,0)= ⟨1,1⟩, με τιςh(x) καιg(y) να είναι παραγωγίσιμες συναρτήσεις. Προσδιορίστε
όλα τα διανυσματικά πεδία αυτού του είδους.

Στις Ασκήσεις 28–31 να υπολογίσετε το επικαμπύλιο ολοκλήρωμα
∫

C
f (x,y)ds για τη

συνάρτηση και τη διαδρομή που δίνονται σε κάθε περίπτωση.

28. f (x,y) = xy, για τη διαδρομή r(t) = ⟨t, 2t −1⟩, για 0 ≤ t ≤ 1.

29. f (x,y) = x− y, για το μοναδιαίο ημικύκλιο x2 + y2 = 1, y ≥ 0.

30. f (x,y,z) = ex − y
2
√

2z
, για τη διαδρομή r(t) =

〈
ln t,

√
2 t, 1

2t2
〉
, 1 ≤ t ≤ 2.

31. f (x,y,z) = x+2y+ z, για την έλικα r(t) = ⟨cos t, sin t, t⟩, 0 ≤ t ≤ π
2
.

32. Προσδιορίστε τη συνολική μάζα μιας ράβδου σε σχήμαL που αποτελείται από τα τμήματα
(2t,2) και (2,2−2t) για 0≤ t ≤ 1 (τα μήκη εκφράζονται σε cm), αν η πυκνότητα μάζας
είναι δ (x,y) = x2y g/cm.

33. Υπολογίστε το διανυσματικό πεδίο F = ∇ f , όπου f (x,y,z) = xyez και υπολογίστε το

επικαμπύλιο ολοκλήρωμα
∫

C
F ·dr αν:

(a) ΗC είναι οποιαδήποτε καμπύλη που ξεκινά από το σημείο (1,1,0) και καταλήγει
στο (3,e,−1).

(b) Η C είναι το σύνορο του τετραγώνου
0 ≤ x ≤ 1, 0 ≤ y ≤ 1

το οποίο διαγράφεται αντι-ωρολογιακά.
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34. Υπολογίστε το επικαμπύλιο ολοκλήρωμα∫
C1

ydx+ x2ydy,

όπου C1 η προσανατολισμένη καμπύλη
του Σχήματος 1.65(α).

Σχήμα 1.65

35. Έστω το διανυσματικό πεδίο

F(x,y) = ⟨9y− y3, e
√

y (x2 −3x)⟩

καιC2 η προσανατολισμένη καμπύλη του Σχήματος 1.65(β).
(a) Δείξτε ότι το πεδίο F δεν είναι συντηρητικό.

(b) Δείξτε ότι ∫
C2

F ·dr = 0

χωρίς να υπολογίσετε αναλυτικά το ολοκλήρωμα.

Υπόδειξη: Δείξτε ότι το πεδίο F είναι ορθογώνιο στις πλευρές του τετραγώνου.

Στις Ασκήσεις 36–39 να υπολογίσετε το επικαμπύλιο ολοκλήρωμα.∫
C

F ·dr

για το διανυσματικό πεδίο και τη διαδρομή που δίνεται σε κάθε περίπτωση.

36.

F(x,y) =
〈

2y
x2 +4y2 ,

x
x2 +4y2

〉
,

r(t) = ⟨cos t, 1
2 sin t⟩, 0 ≤ t ≤ 2π.

37.
F(x,y) = ⟨2xy, x2 + y2⟩,

για το τμήμα του μοναδιαίου κύκλου στο πρώτο τεταρτημόριο, αντιωρολογιακά.

38.
F(x,y,z) = ⟨x2y, y2z, z2x⟩,

r(t) = ⟨e−t , e−2t , e−3t⟩, 0 ≤ t < ∞.

39.
F = ∇ f , f (x,y,z) = 4x2 ln(1+ y4 + z2),
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r(t) = ⟨t3, ln(1+ t2), et⟩, 0 ≤ t ≤ 1.

40. Θεωρήστε τα επικαμπύλια ολοκληρώματα∫
C

F · dr για τα διανυσματικά πεδία

F και τις διαδρομές r του Σχήματος
1.66 Ποια δύο από αυτά τα επικαμπύλια
ολοκληρώματα φαίνονται να είναι μηδέν;
Ποιο από τα άλλα δύο φαίνεται να έχει
αρνητική τιμή;

Σχήμα 1.66

41. Υπολογίστε το έργο που απαιτείται για να μετακινηθεί ένα αντικείμενο από το σημείο
P = (1,1,1) στο σημείο Q = (3,−4,−2) ενάντια στο πεδίο δυνάμεων F(x,y,z) =
−12r−4⟨x,y,z⟩, (οι αποστάσεις σε m, η δύναμη σε N), όπου

r =
√

x2 + y2 + z2.

Υπόδειξη: Προσδιορίστε μια συνάρτηση δυναμικού για το πεδίο F.

42. Προσδιορίστε τις τιμές των σταθερών a, b και c ώστε η

G(u,v) = (u+av, bu+ v, 2u− c)

να παραμετρά το επίπεδο 3x − 4y + z = 5. Υπολογίστε τα διανύσματα Tu, Tv και
N(u,v).

43. Υπολογίστε το ολοκλήρωμα της συνάρτησης f (x,y,z)= ez πάνωστο τμήμα του επιπέδου
x+2y+2z = 3 με x,y,z ≥ 0, δηλαδή το ολοκλήρωμα∫∫

S
f (x,y,z)dS.

44. Ἔστω S η επιφάνεια που παραμετράται από την

G(u,v) =
(
2usin v

2 , 2ucos v
2 , 3v

)
για 0 ≤ u ≤ 1 και 0 ≤ v ≤ 2π .

(a) Υπολογίστε τα εφαπτόμενα διανύσματα Tu και Tv καθώς και το κάθετο διάνυσμα
N(u,v) στο σημείο P = G

(
1, π

3

)
.

(b) Βρείτε την εξίσωση του εφαπτόμενου επιπέδου στο σημείο P.

(c) Υπολογίστε το εμβαδόν της επιφάνειας S.

45. Υπολογίστε το επιφανειακό ολοκλήρωμα
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∫∫
S

x2ydS,

αν S είναι η επιφάνεια z =
√

3x+ y2,−1 ≤ x ≤ 1, 0 ≤ y ≤ 1.

46. Υπολογίστε το επιφανειακό ολοκλήρωμα∫∫
S
(x2 + y2)e−z dS,

αν S είναι η επιφάνεια του κυλίνδρου με εξίσωση x2 + y2 = 9, για 0 ≤ z ≤ 10.

47. Υποθέστε ότι S είναι η επιφάνεια του άνω ημισφαιρίου x2 + y2 + z2 = 1, z ≥ 0. Για
καθεμία από τις συναρτήσεις α)–δ) να προσδιορίσετε αν το επιφανειακό ολοκλήρωμα∫∫

S
f dS

είναι θετικό, αρνητικό ή μηδέν (χωρίς να το υπολογίσετε). Να δικαιολογήσετε την επιλογή
σας σε κάθε περίπτωση.

α) f (x,y,z) = y3

β) f (x,y,z) = z3

γ) f (x,y,z) = xyz

δ) f (x,y,z) = z2 −2

48. Υποθέστε ότι S είναι ένα μικρό τμήμα μιας επιφάνειας με παραμετρική G(u,v), 0 ≤
u ≤ 0.1, 0 ≤ v ≤ 0.1 έτσι ώστε το κάθετο διάνυσμα N(u,v) για (u,v) = (0,0) να
είναι το N = ⟨2,−2,4⟩. Χρησιμοποιήστε την Εξίσωση

εµβαδoν(Si j)≈ ∥N(ui j,vi j)∥εµβαδoν(Ri j)

για να εκτιμήσετε το εμβαδόν της S.

49. Το άνω μισό της σφαίρας x2+y2+z2 = 9
παραμετράται από τη

G(r,θ) =
(
r cosθ , r sinθ ,

√
9− r2

)
σε κυλινδρικές συντεταγμένες (βλ. Σχήμα
1.67).

Σχήμα 1.67
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(a) Υπολογίστε το N = Tr ×Tθ στο σημείο G
(

2,
π
3

)
.

(b) Χρησιμοποιήστε την Εξίσωση (3) της Ενότητας 16.4 για να εκτιμήσετε το εμβαδόν
της επιφάνειας G(R), όπου R είναι το μικρό χωρίο που ορίζεται από τις διπλές
ανισώσεις:

2 ≤ r ≤ 2.1,
π
3
≤ θ ≤ π

3
+0.05

Στις Ασκήσεις 50–55 να υπολογίσετε το επιφανειακό ολοκλήρωμα∫∫
S

F ·dS

για το διανυσματικό πεδίο και την προσανατολισμένη επιφάνεια ή την παραμετρημένη
επιφάνεια που δίνονται σε κάθε περίπτωση.

50. F(x,y,z) = ⟨y, x, exz⟩, x2 + y2 = 9, x ≥ 0, y ≥ 0, −3 ≤ z ≤ 3, με κάθετο διάνυσμα
με κατεύθυνση προς τα έξω.

51. F(x,y,z) = ⟨−y, z, −x⟩,

G(u,v) = (u+3v, v−2u, 2v+5)

0 ≤ u ≤ 1, 0 ≤ v ≤ 1, με κάθετο διάνυσμα κατευθυνόμενο προς τα επάνω.

52. F(x,y,z) = ⟨0, 0, x2 + y2⟩, x2 + y2 + z2 = 4, z ≥ 0.

53.
F(x,y,z) = ⟨z, 0, z2⟩,G(u,v) = (vcoshu, vsinhu, v)0 ≤ u ≤ 1, 0 ≤ v ≤ 1,

με κάθετο διάνυσμα κατευθυνόμενο προς τα επάνω.

54.
F(x,y,z) = ⟨0, 0, xzexy⟩,z = xy, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,

με κάθετο διάνυσμα με κατεύθυνση προς τα επάνω.

55.
F(x,y,z) = ⟨0, 0, z⟩, 3x2 +2y2 + z2 = 1, z ≥ 0,

με κάθετο διάνυσμα με κατεύθυνση προς τα επάνω.

56. Υπολογίστε το συνολικό φορτίο του κυλίνδρου

x2 + y2 = R2, 0 ≤ z ≤ H

αν η πυκνότητα του φορτίου σε κυλινδρικές συντεταγμένες είναι

δ (θ ,z) = Kz2 cos2 θ ,

όπου K μια σταθερά.
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57. Υπολογίστε τον ρυθμό με τον οποίο ρέει ένα ρευστό με πεδίο ταχυτήτων

v = ⟨2x, y, xy⟩ m/s

διασχίζοντας το τμήμα του κυλίνδρου

x2 + y2 = 9, x ≥ 0, y ≥ 0, 0 ≤ z ≤ 4

(οι αποστάσεις εκφράζονται σε m).

58. Για το πεδίο ταχυτήτων v της Άσκησης 57 υπολογίστε τον ρυθμό με τον οποίο ρέει το
ρευστό διασχίζοντας το τμήμα του ελλειπτικού κυλίνδρου με εξίσωση

x2

4 + y2 = 1,

με x ≥ 0, y ≥ 0 και 0 ≤ z ≤ 4.

59. Υπολογίστε τη ροή του διανυσματικού πεδίου E(x,y,z) = ⟨0, 0, x⟩ μέσα από το τμήμα
του ελλειψοειδούς

4x2 +9y2 + z2 = 36

με z ≥ 3, x ≥ 0, y ≥ 0.

Υπόδειξη: Χρησιμοποιήστε την παραμέτρηση

G(r,θ) =
(

3r cosθ , 2r sinθ , 6
√

1− r2
)

Λυμένες ασκήσεις 1.18.10

1.
P = (−3,5).

(a) F(x,y) = ⟨xy, y− x⟩.

F(−3,5) = ⟨(−3) ·5, 5− (−3)⟩= ⟨−15, 8⟩.

(b) F(x,y) = ⟨4, 8⟩ (σταθερό πεδίο).

F(−3,5) = ⟨4, 8⟩.

(c) F(x,y) = ⟨3x+y, log2(x+ y)⟩.

F(−3,5) = ⟨3(−3+5), log2(−3+5)⟩= ⟨32, log2 2⟩= ⟨9, 1⟩.

2. Βήμα 1 Θέλουμε

F ·G = 0 =⇒ F1(x,y)x+F2(x,y)y = 0.
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Ένα απλό διάνυσμα κάθετο στο ⟨x,y⟩ είναι

⟨−y, x⟩.

Βήμα 2: Κανονικοποίηση (μήκος = 1).

∥F∥= 1 =⇒ F(x,y) = 1√
x2+y2

⟨−y, x⟩.

Αυτό ισχύει για όλα τα (x,y) ̸= (0,0).

3.
F(x,y) = ⟨y, 1⟩.

Τα διανύσματα έχουν οριζόντια συνιστώσα= y και κάθετη= 1. Άρα όλα τα διανύσματα
”δείχνουν” προς τα πάνω και η κλίση τους αυξάνει με το y.

4.
F(x,y) = ⟨4, 1⟩.

Σταθερό διανυσματικό πεδίο: όλα τα διανύσματα έχουν την ίδια διεύθυνση και μέτρο.
Κάθε σημείο του επιπέδου έχει το ίδιο βέλος προς τα δεξιά και λίγο προς τα πάνω.

5.
F = ∇ f , f (x,y) = x2 − y.

∇ f =
〈

∂ f
∂x

,
∂ f
∂y

〉
= ⟨2x,−1⟩.

Τα διανύσματα δείχνουν προς τα δεξιά όταν x > 0, προς τα αριστερά όταν x < 0, και
έχουν σταθερή κατακόρυφη συνιστώσα−1.

7.
F = ⟨x2, y2, z2⟩

∇ ·F =
∂
∂x

(x2)+
∂
∂y

(y2)+
∂
∂ z

(z2) = 2x+2y+2z.

∇×F =
〈 ∂

∂y
(z2)− ∂

∂ z
(y2),

∂
∂ z

(x2)− ∂
∂x

(z2),
∂
∂x

(y2)− ∂
∂y

(x2)
〉
= ⟨0,0,0⟩.

8.
F = ⟨yz, xz, xy⟩

∇ ·F =
∂
∂x

(yz)+
∂
∂y

(xz)+
∂
∂ z

(xy) = 0.
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∇×F =
〈 ∂

∂y
(xy)− ∂

∂ z
(xz),

∂
∂ z

(yz)− ∂
∂x

(xy),
∂
∂x

(xz)− ∂
∂y

(yz)
〉
= ⟨0,0,0⟩.

9.
F = ⟨x3y, xz2, y2z⟩

∇ ·F =
∂
∂x

(x3y)+
∂
∂y

(xz2)+
∂
∂ z

(y2z) = 3x2y+ y2.

∇×F =
〈 ∂

∂y
(y2z)− ∂

∂ z
(xz2),

∂
∂ z

(x3y)− ∂
∂x

(y2z),
∂
∂x

(xz2)− ∂
∂y

(x3y)
〉
=

⟨2z(y− x), 0, z2 − x3⟩.

10.
F = ⟨sin(xy), cos(yz), sin(xz)⟩

∇ ·F =
∂
∂x

(
sin(xy)

)
+

∂
∂y

(
cos(yz)

)
+

∂
∂ z

(
sin(xz)

)
=

ycos(xy)− zsin(yz)+ xcos(xz).

∇×F =
〈 ∂

∂y

(
sin(xz)

)
− ∂

∂ z

(
cos(yz)

)
,

∂
∂ z

(
sin(xy)

)
−

∂
∂x

(
sin(xz)

)
,

∂
∂x

(
cos(yz)

)
− ∂

∂y

(
sin(xy)

)〉
=

⟨ysin(yz), −zcos(xz), −xcos(xy)⟩.

18.
F(x,y) = ⟨x2y, y2x⟩.

Έχουμε

∂P
∂y

= x2,
∂Q
∂x

= y2.

Αφού γενικά x2 ̸= y2, το πεδίο δεν είναι συντηρητικό.

19.
F(x,y) = ⟨4x3y5, 5x4y4⟩.

∂P
∂y

= 20x3y4,
∂Q
∂x

= 20x3y4,
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άρα το πεδίο είναι συντηρητικό.
Βρίσκουμε f ώστε ∇ f = F.

fx = 4x3y5 =⇒ f = x4y5 +g(y), fy = 5x4y4 +g′(y) = 5x4y4 =⇒ g′(y) = 0.

Άρα (παραλείποντας σταθερά δυναμικού)

f (x,y) = x4y5.

20.
F(x,y,z) = ⟨sinx, ey, z⟩.

∇×F = 0

στο R3, άρα το πεδίο είναι συντηρητικό.

fx = sinx =⇒ f =−cosx+g(y,z), fy = gy = ey =⇒ g = ey +h(z), fz =

h′(z) = z =⇒ h(z) =
1
2

z2.

Άρα

f (x,y,z) =−cosx+ ey +
1
2

z2.

21.
F(x,y,z) = ⟨2, 4, ez⟩.

∇×F = 0

στο R3, οπότε είναι συντηρητικό.

fx = 2 =⇒ f = 2x+g(y,z), fy = gy = 4 =⇒ g = 4y+h(z), fz = h′(z) =
ez =⇒ h(z) = ez.

Άρα

f (x,y,z) = 2x+4y+ ez.

22.
F(x,y,z) = ⟨xyz,

1
2

x2z, 2z2y⟩.

(∇×F)1 =
∂
∂y

(2z2y)− ∂
∂ z

(1
2

x2z
)
= 2z2 − 1

2
x2 ̸= 0

γενικά, άρα το πεδίο δεν είναι συντηρητικό.
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23.
F(x,y) = ⟨y4x3, x4y3⟩.

∂P
∂y

= 4x3y3,
∂Q
∂x

= 4x3y3,

οπότε είναι συντηρητικό.

fx = x3y4 =⇒ f =
1
4

x4y4 +g(y), fy = x4y3 +g′(y) = x4y3 =⇒ g′(y) = 0.

Άρα

f (x,y) =
1
4

x4y4.

24.

F(x,y,z) =
〈

y
1+ x2 , tan−1 x, 2z

〉
.

∇×F = 0

στο R3, άρα είναι συντηρητικό.

fz = 2z =⇒ f = z2 +g(x,y), fx = gx =
y

1+ x2 =⇒ g =

y tan−1 x+h(y), fy = tan−1 x+h′(y) = tan−1 x =⇒ h′(y) = 0.

Άρα

f (x,y,z) = z2 + y tan−1 x.

25.

F(x,y,z) =
〈

2xy
x2 + z

, ln(x2 + z),
y

x2 + z

〉
, x2 + z > 0.

Στην περιοχή x2 + z > 0 ισχύει

∇×F = 0,

άρα το πεδίο είναι συντηρητικό.

fz =
y

x2 + z
=⇒ f = y ln(x2 + z)+g(x,y), fy = ln(x2 + z)+gy =

ln(x2 + z) =⇒ gy = 0

⇒ g = h(x), fx = y
2x

x2 + z
+h′(x) =

2xy
x2 + z

=⇒ h′(x) = 0.
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Άρα

f (x,y,z) = y ln(x2 + z).

28.
f (x,y) = xy, r(t) = ⟨t,2t −1⟩, 0 ≤ t ≤ 1.

f (r(t)) = t(2t −1) = 2t2 − t, r′(t) = ⟨1,2⟩, ∥r′(t)∥=
√

5.

Άρα ∫
C

f ds =
∫ 1

0
(2t2 − t)

√
5dt =

√
5
[

2
3

t3 − 1
2

t2
]1

0
=

√
5

6
.

29.
f (x,y) = x− y, x2 + y2 = 1, y ≥ 0.

Παράμετρος: x = cos t, y = sin t, 0 ≤ t ≤ π , οπότε ds = dt .

f (r(t)) = cos t − sin t,
∫

C
f ds =

∫ π

0
(cos t − sin t)dt = [sin t + cos t]π0 =−2.

30.
f (x,y,z) = ex − y

2
√

2z
, r(t) = ⟨ln t,

√
2 t,

1
2

t2⟩, 1 ≤ t ≤ 2.

Στην τροχιά: z =
1
2

t2 ⇒ 2z = t2,
√

2z = t ,

f (r(t)) = t −
√

2
2

.

Επίσης

r′(t) =
〈

1
t
,
√

2, t
〉
, ∥r′(t)∥=

√
1
t2 +2+ t2 =

t2 +1
t

.

Άρα ∫
C

f ds =
∫ 2

1

(
t −

√
2

2

)
t2 +1

t
dt =

∫ 2

1

(
t2 +1−

√
2

2
t −

√
2

2t

)
dt

=

[
1
3

t3 + t −
√

2
4

t2 −
√

2
2

ln t

]2

1

=
10
3
− 3

√
2

4
−

√
2

2
ln2.
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31.
f (x,y,z) = x+2y+ z, r(t) = ⟨cos t,sin t, t⟩, 0 ≤ t ≤ π

2
.

f (r(t)) = cos t +2sin t + t, r′(t) = ⟨−sin t,cos t,1⟩, ∥r′(t)∥=
√

2.

Άρα ∫
C

f ds =
√

2
∫ π/2

0
(cos t +2sin t + t)dt =

√
2
[
sin t −2cos t +

1
2

t2
]π/2

0

=
√

2
(

1+
π2

8
+2
)
=
√

2
(

3+
π2

8

)
.

32. Το σχήμα L αποτελείται από τα τμήματα

r1(t) = ⟨2t,2⟩, r2(t) = ⟨2,2−2t⟩, 0 ≤ t ≤ 1,

με πυκνότητα μάζας δ (x,y) = x2y.
Πρώτο τμήμα:

x = 2t, y = 2 ⇒ δ = 8t2, r′1(t) = ⟨2,0⟩, ∥r′1(t)∥= 2,

m1 =
∫ 1

0
8t2 ·2dt = 16

[
1
3

t3
]1

0
=

16
3
.

Δεύτερο τμήμα:

x = 2, y = 2−2t ⇒ δ = 4(2−2t) = 8−8t, r′2(t) = ⟨0,−2⟩, ∥r′2(t)∥= 2,

m2 =
∫ 1

0
(8−8t) ·2dt = 16

∫ 1

0
(1− t)dt = 16

[
t − 1

2
t2
]1

0
= 8.

Συνολική μάζα:

m = m1 +m2 =
16
3
+8 =

40
3

g.

33.
f (x,y,z) = xyez, F = ∇ f .

Υπολογίζουμε

F =

〈
∂ f
∂x

,
∂ f
∂y

,
∂ f
∂ z

〉
= ⟨yez, xez, xyez⟩.

Επειδή F = ∇ f είναι συντηρητικό πεδίο,
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∫
C

F ·dr = f (B)− f (A)

για κάθε καμπύλη C από A σε B.
(a) A = (1,1,0), B = (3,e,−1).

f (1,1,0) = 1 ·1 · e0 = 1, f (3,e,−1) = 3 · e · e−1 = 3,

άρα ∫
C

F ·dr = 3−1 = 2.

(b) C είναι το σύνορο του τετραγώνου 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 (π.χ. στο επίπεδο z = 0),
διαγραμμένο αντιωρολογιακά.
Η C είναι κλειστή καμπύλη, οπότε∫

C
F ·dr = f (τέλος)− f (αρχή) = 0.

∫
C F ·dr

36.

F(x,y) =
〈

2y
x2 +4y2 ,

x
x2 +4y2

〉
, r(t) = ⟨cos t, 1

2 sin t⟩, 0 ≤ t ≤ 2π.

Στην τροχιά:

x = cos t, y = 1
2 sin t ⇒ x2 +4y2 = cos2 t + sin2 t = 1,

οπότε

F(r(t)) = ⟨2y,x⟩= ⟨sin t, cos t⟩.
Επίσης

r′(t) = ⟨−sin t, 1
2 cos t⟩.

Άρα

F(r(t)) · r′(t) = sin t(−sin t)+ cos t
(

1
2 cos t

)
=−sin2 t + 1

2 cos2 t = 3
2 cos2 t −1.

∫
C F ·dr =

∫ 2π

0

(
3
2 cos2 t −1

)
dt =

∫ 2π

0

(3
4(1+ cos2t)−1

)
dt

=
∫ 2π

0

(
−1

4 +
3
4 cos2t

)
dt =−1

4(2π)+ 3
4

[
1
2 sin2t

]2π

0
=−π

2
.

37.
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F(x,y) = ⟨2xy, x2 + y2⟩,

για το τόξο του μοναδιαίου κύκλου στο πρώτο τεταρτημόριο, αντιωρολογιακά:

r(t) = ⟨cos t, sin t⟩, 0 ≤ t ≤ π
2
.

F(r(t)) = ⟨2cos t sin t, 1⟩, r′(t) = ⟨−sin t, cos t⟩.

F(r(t)) · r′(t) = 2cos t sin t(−sin t)+1 · cos t = cos t
(
1−2sin2 t

)
= cos t cos2t.

∫
C F ·dr =

∫ π/2

0
cos t cos2t dt =

∫ π/2

0

1
2
(
cos3t + cos t

)
dt

=
1
2

[1
3

sin3t + sin t
]π/2

0
=

1
2

(
1
3
(−1)+1

)
=

1
3
.

38.
F(x,y,z) = ⟨x2y, y2z, z2x⟩, r(t) = ⟨e−t ,e−2t ,e−3t⟩, 0 ≤ t < ∞.

Στην τροχιά:

x = e−t , y = e−2t , z = e−3t ⇒ F(r(t)) = ⟨e−4t , e−7t , e−7t⟩.

r′(t) = ⟨−e−t , −2e−2t , −3e−3t⟩.

F(r(t)) · r′(t) =−e−5t −2e−9t −3e−10t .

Άρα ∫
C F ·dr =

∫ ∞

0

(
−e−5t −2e−9t −3e−10t)dt

=−1
5
−2

1
9
−3

1
10

=−
(

1
5
+

2
9
+

3
10

)
=−13

18
.

43.
f (x,y,z) = ez, S : x+2y+2z = 3, x,y,z ≥ 0.

Λύνουμε ως προς z:

z =
3− x−2y

2
, 0 ≤ x ≤ 3, 0 ≤ y ≤ 3− x

2
.

Για επιφάνεια-γράφημα z = z(x,y) ισχύει
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dS =
√

1+ z2
x + z2

y dxdy.

Εδώ

zx =−1
2
, zy =−1 ⇒

√
1+ z2

x + z2
y =

√
1+

1
4
+1 =

3
2
.

Επίσης

f (x,y,z) = ez = e(3−x−2y)/2.

Άρα ∫∫
S

f (x,y,z)dS =
∫ 3

0

∫ (3−x)/2

0
e(3−x−2y)/2 3

2
dydx.

Υπολογίζουμε πρώτα ως προς y:∫ (3−x)/2

0
e(3−x−2y)/2 dy =

∫ (3−x)/2

0
e(3−x)/2e−y dy = e(3−x)/2(1− e−(3−x)/2)=

e(3−x)/2 −1.

Έτσι ∫∫
S

f dS =
3
2

∫ 3

0

(
e(3−x)/2 −1

)
dx.

Θέτουμε u =
3− x

2
, οπότε dx =−2du, u(0) =

3
2
, u(3) = 0:

∫ 3

0

(
e(3−x)/2 −1

)
dx = 2

∫ 3/2

0
(eu −1)du = 2

[
eu −u

]3/2
0 = 2

(
e3/2 − 5

2
)
.

Τελικά ∫∫
S

f dS =
3
2
·2
(

e3/2 − 5
2

)
= 3e3/2 − 15

2
.

44.
G(u,v) = (2usin v

2 , 2ucos v
2 , 3v), 0 ≤ u ≤ 1, 0 ≤ v ≤ 2π.

(a) Εφαπτόμενα διανύσματα:

Tu = Gu(u,v) = (2sin v
2 , 2cos v

2 , 0),

Tv = Gv(u,v) = (ucos v
2 , −usin v

2 , 3).

Κάθετο διάνυσμα:

N(u,v) = Gu ×Gv =
(
6cos v

2 , −6sin v
2 , −2u

)
.
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Στο σημείο P = G(1,
π
3
) (όπου v

2 = π
6 , sin

π
6
=

1
2
, cos π

6 =

√
3

2
) έχουμε

P = (1,
√

3,π), Tu(1, π
3 ) = (1,

√
3,0), Tv(1, π

3 ) =
(√3

2
,−1

2
,3
)
,

N(1, π
3 ) = (3

√
3,−3,−2).

(b) Η εξίσωση του εφαπτόμενου επιπέδου στο P είναι

N(P) ·
(
(x,y,z)−P

)
= 0

δηλαδή

3
√

3(x−1)−3(y−
√

3)−2(z−π) = 0.

(c) Εμβαδόν της επιφάνειας:

|N(u,v)|=
√

36cos2 v
2 +36sin2 v

2 +4u2 =
√

36+4u2 = 2
√

9+u2.

Άρα

Εμβ(S) =
∫ 2π

0

∫ 1

0
2
√

9+u2 dudv = 2π ·2
∫ 1

0

√
9+u2 du.

Γνωστό ολοκλήρωμα:∫ √
u2 +9du =

u
2

√
u2 +9+

9
2

ln
(
u+
√

u2 +9
)
+C.

Άρα ∫ 1

0

√
9+u2 du =

1
2

√
10+

9
2

ln
1+

√
10

3
.

Τελικά

Εμβ(S) = 4π

(
1
2

√
10+

9
2

ln
1+

√
10

3

)
= 2π

√
10+18π ln

1+
√

10
3

.

45. ∫∫
S

x2ydS, S : z =
√

3x+ y2, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1.

Παίρνουμε z = f (x,y) =
√

3x+ y2. Τότε

fx =
3

2
√

3x+ y2
, fy =

y√
3x+ y2

.

Για επιφάνεια-γράφημα ισχύει
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dS =
√

1+ f 2
x + f 2

y dxdy =

√
1+

9
4(3x+ y2)

+
y2

3x+ y2 dxdy =√
3x+2y2 + 9

4
3x+ y2 dxdy.

Επομένως

∫∫
S

x2ydS =
∫ 1

0

∫ 1

0
x2y

√
3x+2y2 + 9

4
3x+ y2 dxdy.

50.
F(x,y,z) = ⟨y, x, exz⟩, x2 + y2 = 9, x ≥ 0, y ≥ 0, −3 ≤ z ≤

3, με κάθετο προς τα έξω.

x = 3cosθ , y = 3sinθ , z = z, 0 ≤ θ ≤ π
2
, −3 ≤ z ≤ 3.

G(θ ,z) = (3cosθ ,3sinθ ,z), Gθ = (−3sinθ ,3cosθ ,0), Gz = (0,0,1).

N = Gθ ×Gz = (3cosθ ,3sinθ ,0)

(ακτινικά προς τα έξω).

F(G(θ ,z)) = ⟨3sinθ , 3cosθ , e3zcosθ ⟩.

F ·N = 3sinθ ·3cosθ +3cosθ ·3sinθ = 18sinθ cosθ = 9sin2θ .
Άρα ∫∫

S
F ·dS =

∫ π/2

0

∫ 3

−3
9sin2θ dzdθ =

∫ π/2

0
9sin2θ (6)dθ =

54
∫ π/2

0
sin2θ dθ = 54.

51.
F(x,y,z) = ⟨−y, z, −x⟩, G(u,v) = (u+3v, v−2u, 2v+5), 0 ≤ u ≤ 1, 0 ≤

v ≤ 1, με κάθετο προς τα επάνω.

Gu = (1,−2,0), Gv = (3,1,2).

N = Gu ×Gv =

∣∣∣∣∣∣
i j k
1 −2 0
3 1 2

∣∣∣∣∣∣= (−4,−2, 7),
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όπου ο z–συντελεστής είναι θετικός (προς τα επάνω).
Στην επιφάνεια:

x = u+3v, y = v−2u, z = 2v+5,

οπότε

F(G(u,v)) = ⟨2u− v, 2v+5, −u−3v⟩.

F ·N = (2u− v)(−4)+(2v+5)(−2)+(−u−3v)7 =−15u−21v−10.

Άρα ∫∫
S

F ·dS =
∫ 1

0

∫ 1

0
(−15u−21v−10)dudv.

∫ 1

0
(−15u−21v−10)du =−15

2
−21v−10 =−35

2
−21v,

∫ 1

0

(
−35

2
−21v

)
dv =−35

2
− 21

2
=−56

2
=−28.

∫∫
S

F ·dS =−28.

52.
F(x,y,z) = ⟨0, 0, x2 + y2⟩, S : x2 + y2 + z2 = 4, z ≥ 0, με κάθετο προς τα έξω.

Κλείνουμε την επιφάνεια με τον δίσκο

B : z = 0, x2 + y2 ≤ 4

και εφαρμόζουμε το θεώρημα απόκλισης.

∇ ·F =
∂
∂x

0+
∂
∂y

0+
∂
∂ z

(x2 + y2) = 0.

Άρα η ολική ροή από την κλειστή επιφάνεια S∪B είναι μηδέν:∫∫
S

F ·dS+
∫∫

B
F ·dS = 0.

Στον δίσκο B (στο z = 0) το κάθετο διάνυσμα προς τα κάτω είναι nB = ⟨0,0,−1⟩ και

F = ⟨0,0,x2 + y2⟩ ⇒ F ·nB =−(x2 + y2).

Σε πολικές συντεταγμένες x = r cosθ , y = r sinθ , r ∈ [0,2], θ ∈ [0,2π], έχουμε∫∫
B

F ·dS =
∫ 2π

0

∫ 2

0
−(r2)r dr dθ =−

∫ 2π

0

∫ 2

0
r3 dr dθ =−

∫ 2π

0
4dθ =−8π.

Επομένως
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∫∫
S

F ·dS =−
∫∫

B
F ·dS = 8π.

53.
F(x,y,z) = ⟨z,0,z2⟩, G(u,v) = (vcoshu, vsinhu, v), 0 ≤ u ≤ 1, 0 ≤ v ≤

1, με κάθετο προς τα επάνω.

Gu = (vsinhu, vcoshu, 0), Gv = (coshu, sinhu, 1).

N(u,v) = Gv ×Gu = (−vcoshu, vsinhu, v)

(έχει θετική z–συνιστώσα).

F(G(u,v)) = ⟨v,0,v2⟩ ⇒ F ·N = v(−vcoshu)+ v2 · v =−v2 coshu+ v3.

∫∫
S

F ·dS =
∫ 1

0

∫ 1

0
(−v2 coshu+ v3)dudv =

∫ 1

0
(−v2 sinh1+ v3)dv =

−sinh1
3

+
1
4
.

54.
F(x,y,z) = ⟨0,0,xzexy⟩, z = xy, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, με κάθετο προς τα επάνω.

Παραμετροποίηση:

G(x,y) = (x,y,xy), Gx = (1,0,y), Gy = (0,1,x).

N = Gx ×Gy = (−y,−x,1)

(θετική z–συνιστώσα).

F(G(x,y)) = ⟨0,0,x2yexy⟩ ⇒ F ·N = x2yexy.

∫∫
S

F ·dS =
∫ 1

0

∫ 1

0
x2yexy dydx.

Για σταθερό x: ∫ 1

0
yexy dy =

1
x2

∫ x

0
ses ds =

(x−1)ex +1
x2 ,

οπότε ∫ 1

0

∫ 1

0
x2yexy dydx =

∫ 1

0

(
(x−1)ex +1

)
dx = 3− e.

55.
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F(x,y,z) = ⟨0,0,z⟩, 3x2 +2y2 + z2 = 1, z ≥ 0, με κάθετο προς τα επάνω.

Η επιφάνεια είναι γράφημα

z =
√

1−3x2 −2y2, D = {(x,y) : 3x2 +2y2 ≤ 1}.

Για γράφημα z = z(x,y) με κάθετο προς τα επάνω,

F ·dS = zdA.

Άρα ∫∫
S

F ·dS =
∫∫

D

√
1−3x2 −2y2 dA.

Θέτουμε

x =
r cosθ√

3
, y =

r sinθ√
2

, 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π,

οπότε 3x2 +2y2 = r2 και dA =
r√
6

dr dθ .

∫∫
D

√
1− r2 r√

6
dr dθ =

2π√
6

∫ 1

0
r
√

1− r2 dr.

Θέτουμε s = 1− r2, ds =−2r dr:∫ 1

0
r
√

1− r2 dr =
1
2

∫ 1

0
s1/2 ds =

1
2
· 2

3
=

1
3
.

Άρα ∫∫
S

F ·dS =
2π√

6
· 1

3
=

2π
3
√

6
.

56.
x2 + y2 = R2, 0 ≤ z ≤ H, δ (θ ,z) = Kz2 cos2 θ (κυλινδρικές συντεταγμένες).

Πρόκειται για στερεό κύλινδρο ακτίνας R και ύψους H . Σε κυλινδρικές συντεταγμένες

0 ≤ r ≤ R, 0 ≤ θ ≤ 2π, 0 ≤ z ≤ H, dV = r dr dθ dz.

Ο συνολικός φόρτιος

Q =
∫∫∫

V
δ dV =

∫ H

0

∫ 2π

0

∫ R

0
Kz2 cos2 θ r dr dθ dz.

∫ R

0
r dr =

R2

2
,

∫ 2π

0
cos2 θ dθ = π,

∫ H

0
z2 dz =

H3

3
.

Άρα
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Q = K · R2

2
·π · H3

3
=

KπR2H3

6
.

57.
v(x,y,z) = ⟨2x, y, xy⟩ m/s, x2 + y2 = 9, x ≥ 0, y ≥ 0, 0 ≤ z ≤ 4.

Παραμετροποίηση του τμήματος του κυλίνδρου:

G(θ ,z) = (3cosθ , 3sinθ , z), 0 ≤ θ ≤ π
2
, 0 ≤ z ≤ 4.

Gθ = (−3sinθ ,3cosθ ,0), Gz = (0,0,1),

N = Gθ ×Gz = (3cosθ ,3sinθ ,0)

(ακτινικό προς τα έξω).

v(G(θ ,z)) = ⟨6cosθ , 3sinθ , 9cosθ sinθ⟩.

v ·N = 6cosθ ·3cosθ +3sinθ ·3sinθ = 18cos2 θ +9sin2 θ = 9(1+ cos2 θ).

Ο ρυθμός ροής (όγκος ανά δευτερόλεπτο) είναι

Φ =
∫∫

S
v ·dS =

∫ 4

0

∫ π/2

0
9(1+ cos2 θ)dθ dz.

∫ π/2

0
(1+ cos2 θ)dθ =

[
θ +

1
2

(
θ +

sin2θ
2

)]π/2

0
=

3π
4
.

Φ = 9 ·4 · 3π
4

= 27π m3/s.
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1.19 Τα θεμελιώδη θεωρήματα της Διανυσματικής Ανάλυσης

Σε αυτό το τελευταίο κεφάλαιο θα μελετήσουμε τρεις γενικεύσεις της πρώτης πρότασης του

θεμελιώδους θεωρήματος του Λογισμού, σύμφωνα με το οποίο
∫ b

a
F ′(x)dx = F(b)−F(a).

Αν σκεφτούμε ότι το σύνορο του διαστήματος [a,b] αποτελείται μόνο από δύο σημεία, τα {a,b},
τότε μπορούμε να καταλήξουμε στο συμπέρασμα ότι η πρώτη πρόταση του θεμελιώδους θεωρήμα-
τος του Λογισμού αναφέρει ότι μπορούμε να προσδιορίσου- με το ολοκλήρωμα της παραγώγου
μιας συνάρτησης πάνω σε ένα διάστημα υπολογίζοντας μόνο τις τιμές της συνάρτησης στο σύνορο
του διαστήματος στο οποίο γίνεται η ολοκλήρωση. Το πρώτο από τα καινούργια θεωρήματα που
θα αναλύσουμε στο κεφάλαιο αυτό, το θεώρημαGreen, αναφέρει ότι μπορούμε να προσδιορίσουμε
το διπλό ολοκλήρωμα μιας συγκεκριμένης παραγώγου πάνω σε ένα χωρίο του επιπέδου xy υπολο-
γίζοντας το επικαμπύλιο ολοκλήρωμα κατά μήκος της συνοριακής καμπύλης αυτού του χωρίου.
Το δεύτερο θεώρημα που θα μελετήσουμε, το θεώρημα Stokes, μας επιτρέπει να προσδιορίσουμε
το ολοκλήρωμα μιας συγκεκριμένης παραγώγου (στην οποία εμπλέκεται ο στροβιλισμός) πάνω σε
μια επιφάνεια με συνοριακές καμπύλες στον χώρο υπολογίζοντας ένα επικαμπύλιο ολοκλήρωμα
πάνω σε αυτές. Το τρίτο και τελευταίο θεώρημα που θα παρουσιάσουμε, το θεώρημα της απόκλι-
σης, μας επιτρέπει να προσδιορίσουμε το τριπλό ολοκλήρωμα μιας συγκεκριμένης παραγώγου
(όπου εμπλέκεται ο τελεστής της απόκλισης) πάνω σε ένα στερεό του χώρου υπολογίζοντας
ένα επιφανειακό ολοκλήρωμα πάνω στην συνοριακή επιφάνειά του στερεού. Πρόκειται για το
αποκορύφωμα της προσπάθειάς μας να επεκτείνουμε τις ιδέες του Λογισμού των συναρτήσεων
μιας μεταβλητής στο περιβάλλον των πολλών μεταβλητών. Θα πρέπει βέβαια να έχουμε υπόψη
μας ότι η διανυσματική ανάλυση δεν αποτελεί τόσο ένα τερματικό σημείο όσο την πύλη που
θα μας οδηγήσει στην πιο προχωρημένη μαθηματική θεωρία των πολλαπλοτήτων, αλλά και στη
σειρά εφαρμογών σε πολλά πεδία, συμπεριλαμβανομένων της φυσικής, της βιολογίας αλλά και
των επιστήμων μηχανικών και υπολογιστών. Προσθέτοντας τις τοπικές περιδινήσεις (στροβιλισ-
μούς–curl) πάνω στον ουρανό στον πίνακα
του Van Gogh με τίτλο Έναστρη Νύχτα
προκύπτει η συνολική κυκλοφορία κατά
μήκος του συνόρου της περιοχής του
ουρανού στον πίνακα. Στο παρόν κεφάλαιο,
με τη βοήθεια των διανυσματικών πεδίων,
του στροβιλισμού (curl), των επικαμπύλιων
και επιφανειακών ολοκληρωμάτων, θα
αναλύσουμε με μαθηματικούς όρους τη
σχέση μεταξύ του στροβιλισμού και της
κυκλοφορίας μέσω του θεωρήματος Stokes:∫∫

S
(∇×F) ·dS =

∮
∂S

F ·dr

1.20 Το θεώρημα Green

Στο προηγούμενο κεφάλαιο αποδείξαμε ότι η κυκλοφορία ενός συντηρητικού διανυσματικού
πεδίου F πάνω σε οποιαδήποτε κλειστή διαδρομή είναι μηδέν. Το θεώρημα Green μας επιτρέπει
να υπολογίζουμε το προηγούμενο ολοκλήρωμα για διανυσματικά πεδία που ανήκουν στο επίπεδο
και δεν είναι συντηρητικά.

Προκειμένου να διατυπώσουμε το θεώρημα Green πρέπει να χρησιμοποιήσουμε κάποια και-
νούργια στοιχεία συμβολισμού. Θεωρήστε ένα χωρίο D του επιπέδου, το σύνορο C του οποίου
είναι μια απλή κλειστή καμπύλη – είναι δηλαδή μια κλειστή καμπύλη που δεν τέμνει τον εαυτό
της, όπως η καμπύλη που φαίνεται στο Σχήμα 1. Ακολουθώντας τη συνηθισμένη πρακτική, θα
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συμβολίζουμε τη συνοριακή καμπύλη C με ∂D. Ο συνοριακός προσανατολισμός της καμπύλης
∂D είναι η κατεύθυνση εκείνη που όταν την ακολουθήσουμε κινούμενοι πάνω στη συνοριακή
καμπύλη το χωρίο παραμένει συνεχώς στα αριστερά μας, όπως φαίνεται στο Σχήμα 1. Όταν η
συνοριακή καμπύλη είναι απλή, ο συνοριακός προσανατολισμός είναι αντι−ωρολογιακός.

Θυμηθείτε τώρα ότι έχουμε χρησιμοποιήσει τους ακόλουθους δύο συμβολισμούς για το επικα-
μπύλιο ολοκλήρωμα του διανυσματικού πεδίου F = ⟨F1, F2⟩:

∫
C

F ·dr και
∫

C
F1 dx+F2 dy

Αν η καμπύληC παραμετράται από την r(t) = ⟨x(t), y(t)⟩ για a ≤ t ≤ b, τότε θα ισχύει:

dx = x′(t)dt, dy = y′(t)dt

∫
C

F1 dx+F2 dy =
∫ b

a

(
F1(x(t), y(t))x′(t)+F2(x(t), y(t))y′(t)

)
dt

Στο παρόν κεφάλαιο θα υποθέτουμε ότι οι συνιστώσες όλων των διανυσματικών πεδίων έχουν
συνεχείς παραγώγους δεύτερης τάξης, ενώ επίσης και οι καμπύλες C είναι λείες (δηλαδή κάθε
καμπύλη C έχει μία παραμέτρηση για την οποία υπάρχουν οι παράγωγοι όλων των τάξεων) ή
έστω κατά τμήματα λείες (κάθε καμπύλη αποτελείται από την ένωση ενός πεπερασμένου πλήθους
λείων καμπυλών που ενώνονται μεταξύ τους στα τερματικά τους σημεία).

Θεώρημα 1.20.1ΘεώρημαGreenΑς υποθέσουμε ότιD είναι ένα χωρίο του οποίου η συνοριακή
καμπύλη ∂D είναι μια απλή κλειστή καμπύλη προσανατολισμένη αντι-ωρολογιακά. Αν οι
συνιστώσεςF1 καιF2 έχουν συνεχείς μερικές παραγώγους σε μια ανοικτή περιοχή που περιέχει
το χωρίο D, τότε ∮

∂D
F1 dx+F2 dy =

∫∫
D

(
∂F2

∂x
− ∂F1

∂y

)
dA

Σχόλιο 1.20.2 Το επικαμπύλιο ολοκλήρωμα ενός διανυσματικού πεδίου πάνω σε μια κλειστή

καμπύλη λέγεται κυκλοφορία και παριστάνεται συχνά με το σύμβολο
∮
. Το θεώρημα Green

μπορεί επίσης να γραφεί στη μορφή∮
∂D

F ·dr =
∫∫

D

(
∂F2

∂x
− ∂F1

∂y

)
dA.
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Παράδειγμα 1.20.3
as Επικεβαίωση του θεωρήματος Green

Επιβεβαιώστε ότι το θεώρημα Green ισχύει για την
περίπτωση του επικαμπύλιου ολοκληρώματος∮

C
xy2 dx+ xdy

που υπολογίζεται κατά μήκος του μοναδιαίου
κύκλου C που είναι προσανατολισμένος αντι-
ωρολογιακά, όπως φαίνεται στο Σχήμα 1.20. Σχήμα 1.68

Βήμα 1Υπολογίστε απευθείας το επικαμπύλιο ολοκλήρωμα. Θα χρησιμοποιήσουμε τη συνηθισμένη
παραμέτρηση του μοναδιαίου κύκλου:

x = cosθ , y = sinθ

dx =−sinθ dθ , dy = cosθ dθ

Η ολοκληρωτέα έκφραση στο επικαμπύλιο ολοκλήρωμα παίρνει τη μορφή:

xy2 dx+ xdy = cosθ sin2 θ (−sinθ dθ)+ cosθ (cosθ dθ)

=
(
−cosθ sin3 θ + cos2 θ

)
dθ .

οπότε ∮
C

xy2 dx+ xdy =
∫ 2π

0

(
−cosθ sin3 θ + cos2 θ

)
dθ

=−sin4 θ
4

∣∣∣2π

0
+

1
2

(
θ +

1
2

sin2θ
)∣∣∣2π

0
= 0+

1
2
(2π +0) = π.
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